Report submitted to

EMPRIMUS - Critical Infrastructure Protection

Grid Impact of Neutral Blocking for GIC Protection:

Impact of neutral blocking capacitor on effective grounding

By:

Athula Rajapakse

Nuwan Perera

Date: 26 June, 2013

Third Party Disclaimer:

The content of this document is not intended for the use of, nor is it intended to be relied upon by any person, firm or corporation, other than the authors of the report and EMPRIMUS LLC.

Authors of this report deny any liability whatsoever to any parties for damages or injury suffered by such third party arising from the use of this document by the third party.

Confidentiality:

This document is restricted to the confidential use of the authors and EMPRIMUS LLC. Any retention, reproduction, distribution or disclosure to third parties is prohibited without written authorization of EMPRIMUS LLC.

Table of Contents

1.0 Introduction	1
2.0 Study Methodology	2
3.0 Results	3
3.1 Impedance Ratio Analysis	3
3.2 Analysis of COG and Fault Current Ratio	11
3.3 Analysis of Transient Overvoltages	19
4.º Concluding Remarks	26
5.0 References	26

1.0 Introduction

A commonly proposed solution to block the flowing of geomagnetically induced currents (GIC) in power transmission lines during solar storms is to ground the transformer neutrals through capacitors. This report details the impact of neutral blocking capacitors used for GIC blocking on effective grounding of the power system.

According to IEEE C62.92.1-2000 [1], the objectives of system grounding are

- a) Voltage ratings and degree of surge-voltage protection available from surge arresters
- b) Limitation of transient line-to-ground overvoltages
- c) Sensitivity, operating time, and selectivity of the ground-fault relaying
- d) Limitation of the magnitude of the ground-fault current
- e) Safety

The standard identifies different means of grounding, solidly grounded, inductance grounded, resistance grounded, capacitance grounded and ungrounded systems. In the case of capacitive grounding, main concerns are in the overvoltages. The standard recommends to avoid capacitance grounding and to perform a careful analysis for resonance conditions or increased fault currents, if used.

In multiple-grounded systems, the class of grounding of the system is determined by the cumulative effect of all the grounding points. If most of the major transformer neutrals are grounded by similar means, then the system may loosely be described as being of one class (e.g., an *inductance grounded system*). In general, where there are multiple grounding points of different types of apparatus and different means of apparatus neutral grounding, the class of grounding can only be determined by the zero-sequence to positive-sequence symmetrical component ratios, as viewed from a selected location.

Effectively grounded system is defined as a system grounded through a sufficiently low impedance (inherent or intentionally added, or both) so that the coefficient of grounding (COG) does not exceed 80%. COG is defined as [1]

$$COG = \frac{E_{LG}}{E_{LL}} \cdot 100\%$$

where E_{LG} is the highest root-mean-square (rms), line-to-ground power-frequency voltage on a sound phase, at a selected location, during a line-to-ground fault affecting one or more phases. E_{LL} is the line-toline power-frequency voltage that would be obtained, at the selected location, with the fault removed. COG for three-phase systems are calculated from the phase-sequence impedance components, as viewed from the fault location.

This value is obtained approximately when, for all system conditions, the ratio of the zero-sequence reactance to the positive-sequence reactance, (X0/X1) is positive and < 3, and the ratio of zero-sequence resistance to positive-sequence reactance, (R0/X1), is positive and < 1. In addition to the condition that COG < 80%, effecting grounding also expected to ensure that transient line to ground overvoltage is less than 2 pu and the line to ground fault current is more than 60% of the three phase fault current [1].

In systems operating at 115 kV and above, there are strong economic reasons encouraging the use of effective grounding [1]. The most significant factors are insulation costs and the lower cost per kVA of transformers. Neutral grounding affects insulation requirements in two ways. First, the use of effective grounding controls temporary overvoltages due to ground faults at lower levels than those obtained with other classes of grounding. Second, effective grounding permits the use of lower-rated surge arresters, thereby providing better protection of the insulation against surge voltages [2].

Operation of the GIC blocking scheme proposed by Emprimus may result in a situation where HV transformer neutrals are capacitance grounded. The objective of this study is to evaluate the likelihood of such conditions resulting in a non- effectively grounded system. A 500/345 kV test network modeled in an electromagnetic transient simulation program (PSCAD/EMTDC) is used to analyze sequence impedance ratios, temporary overvoltages, ground fault current magnitudes, and transient overvoltages due to capacitive neutral grounding of transformer neutrals. All studies and analyses are conducted with the objective of understanding the impact of the neutral blocking capacitor, and thus involve comparison of various performance indices with and without the neutral grounding capacitors. In the following sections methodologies used and the results are presented.

2.0 Study Methodology

The rest network used for studies is shown in Figure 1. The simulations presented in this report consider neutral grounding circuits of the two 22 kV/500 kV two winding transformers connected to bus-2 (T_1 , T_2), and the two 500 lK/345 kV autotransformers connected to bus-1 (T_3), and bus-3 (T_4). In case of capacitance grounding, the relevant capacitor is always connected in series with a 1 Ω resistor, a feature in the GIC blocking scheme proposed by Emprimus, which is shown in Figure 2.

Figure 1: Locations of protection relays and faults

Figure 2 GIC blocking transformer neutral grounding scheme proposed by Emprimus.

The study methodology used has three parts:

- a) The first part of the study attempts to determine whether the system X0/X1 ratio and R0/X1 ratio satisfy the criteria defined in IEEE C62.92.1-2000. For this purpose, the test power system is modeled in detail in PSCAD/EMTDC program. The frequency scan tool (Harmonic Impedance Solution module) available in PSCAD/EMTD program is used to obtain X0, X1 and R0 at 60 Hz. These values are then use to determine X0/X1 ratio and R0/X1 ratio of the test network at different locations with and without capacitance neutral grounding.
- b) In the second part, the PSCAD/EMTDC simulation model of the power system is used to calculate COG (E_{LG}/E_{LL}) and fault current ratio ($I_{1\phi}/I_{3\phi}$) at different locations in the system, under single-line-to-ground (SLG) faults at selected locations (F_1 , F_2 , F_3 , and F_4). COGs and fault current ratios calculated with and without capacitance neutral grounding are comapred.
- c) In the third part, PSCAD/EMTDC simulations are used to determine the transient line-to-ground voltages due to SLG faults at different locations. The faults are simulated at several selected locations, and each simulation case is repeated considering different fault initiation time to obtain the maximum transient over voltages. Again transient overvoltages obtained with and without capacitance neutral grounding are compared.

In order to examine the effects of the value of the grounding capacitance, most of the studies were repeated with three different capacitor values (265μ F, 1000μ F, and 2650μ F). Moreover, different system conditions resulting from prior outages of various elements in the test circuit are also considered. These different test conditions are referred to as simulation scenarios in the report.

3.0 Results

The results are presented in three sub-sections. Sub-section 3.1 presents the results of impedance ratio analysis; Sub-section 3.2 presents the analysis of COG and fault current ratios; Sub-section 3.3 presents the analysis of transient over voltages.

3.1 Impedance Ratio Analysis

The values of R0, X0 and X1 (at 60 Hz) at different location of the power system shown in Figure 1 were obtained through frequency scans in PSCAD/EMTDC. Calculations are repeated under six different network conditions named as Scenario-1 to 6. Under each scenario, four different transformer neutral grounding conditions (solidly grounded and capacitance grounding with 2650 μ F, 1000 μ F, and 265 μ F) are considered. A list of scenarios considered and different grounding conditions simulated under each scenario (simulation cases) are given in Table 1.

The values of R0, X0, and X1 measured at bus-1 to bus-7 and the ratios X0/X1 and R0/X1 for different transformer neutral grounding cases under Scenario-1 are listed in Table 2. The same quantities for Scenarios-2-6 are reported in Table 3-Table 7 respectively.

For all cases studied, the ratio X0/X1 remains positive and well below 3. Also, the ratio R0/X1 remains positive and less than 1, for all conditions studied. The highest X0/X1 ratio of 2.165 is reported at bus-7, which is on the Delta side of the 22 kV/500 kV Delta-Wye connected generator step up transformer. Being on the Delta side of the Delta-Wye connected transformer, zero sequence impedance at bus-7 is not affected by the grounding impedance of the Wye connected winding or the grounding impedance of any other transformers in the system. From the results tables, it is clearly seen R0 and X0 at bus-7 have not

changed, as expected. However, the ratios X0/X1 and R0/X1 have changed due to changes in X1 in different scenarios.

Decreasing neutral grounding capacitance values reduce the zero sequence reactance (X0) measured at the buses close to the grounding point, thus actually increasing the effectiveness of grounding. However, it is likely that further reduction of grounding capacitances can cause the zero sequence reactance to become zero (or negative) resulting in a power frequency resonance. For the range of capacitances considered in the study (2650-265 μ F), X0 remains positive at all buses. Changes in the grounding capacitance values can slightly change the zero sequence resistance (R0) values.

Scenario	Condition	Neutral grounding	Case No.
Scenario-1	System intact	Solidly grounded	Case (1)
		Capacitor grounded, C = 265 μ F	Case (2)
		Capacitor grounded, C = 1000 μF	Case (3)
		Capacitor grounded, C = 2650 μF	Case (4)
Scenario-2	One of the 660 MVA,	Solidly grounded	Case (5)
	22/500 kV transformers	Capacitor grounded, C = 265 μ F	Case (6)
	out of service	Capacitor grounded, C = 1000 μF	Case (7)
		Capacitor grounded, C = 2650 µF	Case (8)
Scenario-3	One of the 500 kV circuits	Solidly grounded	Case (9)
	between bus-1 and bus-2	Capacitor grounded, C = 265 μF	Case (10)
	out of service	Capacitor grounded, C = 1000 μF	Case (11)
		Capacitor grounded, C = 2650 μF	Case (12)
Scenario-4	750 MVA, 500/345 kV	Solidly grounded	Case (13)
	autotransformer between	Capacitor grounded, C = 265 μF	Case (14)
	bus-1 and bus-4 out of	Capacitor grounded, C = 1000 μF	Case (15)
	service	Capacitor grounded, C = 2650 μF	Case (16)
Scenario-5	One of 500 kV circuits	Solidly grounded	Case (17)
	between bus-1 and bus-3	Capacitor grounded, C = 265 μF	Case (18)
	out of service	Capacitor grounded, C = 1000 μF	Case (19)
_		Capacitor grounded, C = 2650 μF	Case (20)
Scenario-6	System intact, two winding	T ₁ ,T ₂ solidly grounded in all cases	
	transformer neutral	T ₃ , T ₄ capacitor grounded, C=265 μ F	Case (21)
	grounding capacitors	T ₃ , T ₄ Capacitor grounded, C=1000 μ F	Case (22)
	bypassed	T_3, T_4 Capacitor grounded, C=2650 μF	Case (23)

Table 1 Scenarios and test conditions for impedance ratio analysis

Table 2 Sequence reactance/resistance values, and X0/X1 and R0/X1 ratios for Scenario-1

		Bus-1			
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	2.778	28.630	37.205	0.770	0.075
$C_{gnd} = 2650 \ \mu F$	3.541	27.530	37.205	0.740	0.095
$C_{gnd} = 1000 \ \mu F$	3.310	25.865	37.205	0.695	0.089
$C_{gnd} = 265 \ \mu F$	2.556	15.710	37.205	0.422	0.069
		Bus-2			
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	2.658	15.928	33.091	0.481	0.080
$C_{gnd} = 2650 \ \mu F$	3.985	14.616	33.091	0.442	0.120
$C_{gnd} = 1000 \ \mu F$	4.017	12.409	33.091	0.375	0.121
$C_{gnd} = 265 \ \mu F$	4.264	2.074	33.091	0.063	0.129
		Bus-3			
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	1.431	27.380	41.286	0.663	0.035
$C_{gnd} = 2650 \ \mu F$	2.061	26.683	41.286	0.646	0.050
$C_{gnd} = 1000 \ \mu F$	2.056	25.462	41.286	0.617	0.050
$C_{gnd} = 265 \ \mu F$	2.387	16.765	41.286	0.406	0.058
		Bus-4			
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	2.217	23.989	21.129	1.135	0.105
$C_{gnd} = 2650 \ \mu F$	3.224	22.621	21.129	1.071	0.153
$C_{gnd} = 1000 \ \mu F$	2.997	20.494	21.129	0.970	0.142
$C_{gnd} = 265 \ \mu F$	2.573	7.332	21.129	0.347	0.122
		Bus-5			
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	0.636	17.647	18.621	0.948	0.034
$C_{gnd} = 2650 \ \mu F$	1.285	16.959	18.621	0.911	0.069
$C_{gnd} = 1000 \ \mu F$	1.313	15.722	18.621	0.844	0.071
$C_{gnd} = 265 \ \mu F$	1.997	6.649	18.621	0.357	0.107
		Bus-6			
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	2.652	31.190	19.622	1.590	0.135
$C_{gnd} = 2650 \ \mu F$	2.760	31.124	19.622	1.586	0.141
$C_{gnd} = 1000 \ \mu F$	2.805	30.970	19.622	1.578	0.143
$C_{gnd} = 265 \ \mu F$	3.150	30.048	19.622	1.531	0.161
		Bus-7			
Grounding	$R0 \Omega$	$X0 \Omega$	$X1 \Omega$	X0/X1	R0/X1
$Zgnd = 0 \Omega$	0.005	0.150	0.069	2.165	0.076
$C_{gnd} = 2650 \ \mu F$	0.005	0.150	0.069	2.165	0.076
$C_{gnd} = 1000 \ \mu F$	0.005	0.150	0.069	2.165	0.076
$C_{gnd} = 265 \ \mu F$	0.005	0.150	0.069	2.165	0.076

Table 3 Sequence reactance/resistance values, and X0/X1 and R0/X1 ratios for Scenario-2

	Bus-1									
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	2.769	28.789	42.922	0.671	0.065					
$C_{gnd} = 2650 \ \mu F$	3.554	27.670	42.922	0.645	0.083					
$C_{gnd} = 1000 \ \mu F$	3.324	25.973	42.922	0.605	0.077					
$C_{gnd} = 265 \ \mu F$	2.570	15.719	42.922	0.366	0.060					
		Bus-2								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	4.983	29.904	50.512	0.592	0.099					
$C_{gnd} = 2650 \ \mu F$	7.350	27.590	50.512	0.546	0.146					
$C_{gnd} = 1000 \ \mu F$	7.456	23.632	50.512	0.468	0.148					
$C_{gnd} = 265 \ \mu F$	8.362	4.234	50.512	0.084	0.166					
		Bus-3								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	1.426	27.389	45.288	0.605	0.031					
$C_{gnd} = 2650 \ \mu F$	2.059	26.691	45.288	0.589	0.045					
$C_{gnd} = 1000 \ \mu F$	2.054	25.468	45.288	0.562	0.045					
$C_{gnd} = 265 \ \mu F$	2.387	16.765	45.288	0.370	0.053					
		Bus-4								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	2.217	24.057	22.830	1.054	0.097					
$C_{gnd} = 2650 \ \mu F$	3.235	22.678	22.830	0.993	0.142					
$C_{gnd} = 1000 \ \mu F$	3.008	20.534	22.830	0.899	0.132					
$C_{gnd} = 265 \ \mu F$	2.574	7.332	22.830	0.321	0.113					
		Bus-5								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	0.634	17.650	19.561	0.902	0.032					
$C_{gnd} = 2650 \ \mu F$	1.285	16.962	19.561	0.867	0.066					
$C_{gnd} = 1000 \ \mu F$	1.313	15.724	19.561	0.804	0.067					
$C_{gnd} = 265 \ \mu F$	1.997	6.649	19.561	0.340	0.102					
		Bus-6			B 0 (11)					
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	2.650	31.195	20.310	1.536	0.130					
$C_{gnd} = 2650 \ \mu F$	2.760	31.128	20.310	1.533	0.136					
$C_{gnd} = 1000 \ \mu F$	2.805	30.973	20.310	1.525	0.138					
$C_{gnd} = 265 \ \mu F$	3.150	30.048	20.310	1.479	0.155					
		Bus-7								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	0.005	0.150	0.083	1.800	0.063					
$C_{gnd} = 2650 \ \mu F$	0.005	0.150	0.083	1.800	0.063					
$C_{gnd} = 1000 \ \mu F$	0.005	0.150	0.083	1.800	0.063					
$C_{md} = 265 \ \mu F$	0.005	0.150	0.083	1.800	0.063					

Table 4 Sequence reactance/resistance values, and X0/X1 and R0/X1 ratios for Scenario-3

	Bus-1									
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	2.764	29.426	42.887	0.686	0.064					
$C_{gnd} = 2650 \ \mu F$	3.571	28.271	42.887	0.659	0.083					
$C_{gnd} = 1000 \ \mu F$	3.333	26.521	42.887	0.618	0.078					
$C_{gnd} = 265 \ \mu F$	2.578	15.958	42.887	0.372	0.060					
		Bus-2								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	2.691	16.166	36.511	0.443	0.074					
$C_{gnd} = 2650 \ \mu F$	4.056	14.816	36.511	0.406	0.111					
$C_{gnd} = 1000 \ \mu F$	4.083	12.551	36.511	0.344	0.112					
$C_{gnd} = 265 \ \mu F$	4.283	2.064	36.511	0.057	0.117					
		Bus-3								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	1.410	27.424	45.263	0.606	0.031					
$C_{gnd} = 2650 \ \mu F$	2.046	26.724	45.263	0.590	0.045					
$C_{gnd} = 1000 \ \mu F$	2.044	25.496	45.263	0.563	0.045					
$C_{gnd} = 265 \ \mu F$	2.385	16.771	45.263	0.371	0.053					
		Bus-4								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	2.230	24.333	22.821	1.066	0.098					
$C_{gnd} = 2650 \ \mu F$	3.269	22.924	22.821	1.005	0.143					
$C_{gnd} = 1000 \ \mu F$	3.036	20.737	22.821	0.909	0.133					
$C_{gnd} = 265 \ \mu F$	2.589	7.348	22.821	0.322	0.113					
		Bus-5								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	0.630	17.660	19.555	0.903	0.032					
$C_{gnd} = 2650 \ \mu F$	1.282	16.971	19.555	0.868	0.066					
$C_{gnd} = 1000 \ \mu F$	1.310	15.731	19.555	0.804	0.067					
$C_{gnd} = 265 \ \mu F$	1.997	6.650	19.555	0.340	0.102					
		Bus-6								
Grounding	R0 Ω	X0 Ω	$X1 \Omega$	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	2.643	31.214	20.307	1.537	0.130					
$C_{gnd} = 2650 \ \mu F$	2.755	31.146	20.307	1.534	0.136					
$C_{gnd} = 1000 \ \mu F$	2.801	30.988	20.307	1.526	0.138					
$C_{gnd} = 265 \ \mu F$	3.150	30.049	20.307	1.480	0.155					
		Bus-/	¥4.0	NO /N1						
Grounding	KUΩ	XUΩ	$X1\Omega$	XU/X1	- KU/XI					
$Zgnd = 0 \Omega$	0.005	0.150	0.072	2.080	0.073					
$C_{gnd} = 2650 \ \mu F$	0.005	0.150	0.072	2.080	0.073					
$C_{gnd} = 1000 \ \mu F$	0.005	0.150	0.072	2.080	0.073					
$L_{gnd} = 265 \ \mu F$	0.005	0.150	0.072	2.080	0.073					

Table 5 Sequence reactance/resistance values, and X0/X1 and R0/X1 ratios for Scenario-4

		Bus-1			
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	16.998	83.784	50.842	1.648	0.334
$C_{gnd} = 2650 \ \mu F$	17.515	83.309	50.842	1.639	0.345
$C_{gnd} = 1000 \ \mu F$	17.586	82.424	50.842	1.621	0.346
$C_{gnd} = 265 \ \mu F$	18.251	76.755	50.842	1.510	0.359
		Bus-2			
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	2.691	16.127	36.632	0.440	0.073
$C_{gnd} = 2650 \ \mu F$	4.048	14.784	36.632	0.404	0.111
$C_{gnd} = 1000 \ \mu F$	4.076	12.530	36.632	0.342	0.111
$C_{gnd} = 265 \ \mu F$	4.281	2.064	36.632	0.056	0.117
		Bus-3			
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	0.828	30.846	50.832	0.607	0.016
$C_{gnd} = 2650 \ \mu F$	1.593	30.050	50.832	0.591	0.031
$C_{gnd} = 1000 \ \mu F$	1.634	28.612	50.832	0.563	0.032
$C_{gnd} = 265 \ \mu F$	2.334	18.367	50.832	0.361	0.046
		Bus-4			
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	48.497	134.101	48.121	2.787	1.008
$C_{gnd} = 2650 \ \mu F$	48.497	134.101	48.121	2.787	1.008
$C_{gnd} = 1000 \ \mu F$	48.497	134.101	48.121	2.787	1.008
$C_{gnd} = 265 \ \mu F$	48.497	134.101	48.121	2.787	1.008
		Bus-5			
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	0.476	18.667	20.864	0.895	0.023
$C_{gnd} = 2650 \ \mu F$	1.212	17.916	20.864	0.859	0.058
$C_{gnd} = 1000 \ \mu F$	1.266	16.545	20.864	0.793	0.061
$C_{gnd} = 265 \ \mu F$	2.063	6.746	20.864	0.323	0.099
		Bus-6		X0 /X4	D0 /0/4
Grounding	$R0 \Omega$	XU Ω	$X1 \Omega$	X0/X1	RU/XI
$Zgnd = 0 \Omega$	2.727	40.121	30.550	1.313	0.089
$C_{gnd} = 2650 \ \mu F$	2.727	40.121	30.550	1.313	0.089
$C_{gnd} = 1000 \ \mu F$	2./2/	40.121	30.550	1.313	0.089
$C_{gnd} = 265 \ \mu F$	2./2/	40.121	30.550	1.313	0.089
Cuern din a		Bus-/	¥1 O	V0 /V1	
Tand = 0.0				AU/AI	
$z_{gna} = 0.52$	0.005	0.150	0.072	2.077	0.073
$C_{gnd} = 2050 \ \mu F$	0.005	0.150	0.072	2.077	0.073
$C_{gnd} = 1000 \ \mu F$	0.005	0.150	0.072	2.077	0.073
$G_{\text{and}} = 203 \text{ ur}$	0.005	0.120	0.072	2.077	0.073

Table 6 Sequence reactance/resistance values, and X0/X1 and R0/X1 ratios for Scenario-5

	Bus-1									
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	2.778	28.630	37.205	0.770	0.075					
$C_{gnd} = 2650 \ \mu F$	2.796	28.619	37.205	0.769	0.075					
$C_{gnd} = 1000 \ \mu F$	2.802	28.595	37.205	0.769	0.075					
$C_{gnd} = 265 \ \mu F$	2.831	28.482	37.205	0.766	0.076					
		Bus-2								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	2.658	15.928	33.091	0.481	0.080					
$C_{gnd} = 2650 \ \mu F$	3.983	14.620	33.091	0.442	0.120					
$C_{gnd} = 1000 \ \mu F$	4.017	12.415	33.091	0.375	0.121					
$C_{gnd} = 265 \ \mu F$	4.268	2.073	33.091	0.063	0.129					
		Bus-3								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	1.431	27.380	41.286	0.663	0.035					
$C_{gnd} = 2650 \ \mu F$	1.432	27.380	41.286	0.663	0.035					
$C_{gnd} = 1000 \ \mu F$	1.433	27.379	41.286	0.663	0.035					
$C_{gnd} = 265 \ \mu F$	1.438	27.373	41.286	0.663	0.035					
		Bus-4								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	2.217	23.989	21.129	1.135	0.105					
$C_{gnd} = 2650 \ \mu F$	2.224	23.983	21.129	1.135	0.105					
$C_{gnd} = 1000 \ \mu F$	2.226	23.973	21.129	1.135	0.105					
$C_{gnd} = 265 \ \mu F$	2.236	23.923	21.129	1.132	0.106					
		Bus-5								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	0.636	17.647	18.621	0.948	0.034					
$C_{gnd} = 2650 \ \mu F$	0.636	17.647	18.621	0.948	0.034					
$C_{gnd} = 1000 \ \mu F$	0.636	17.647	18.621	0.948	0.034					
$C_{gnd} = 265 \ \mu F$	0.637	17.645	18.621	0.948	0.034					
		Bus-6								
Grounding	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1					
$Zgnd = 0 \Omega$	2.652	31.190	19.622	1.590	0.135					
$C_{gnd} = 2650 \ \mu F$	2.653	31.190	19.622	1.590	0.135					
$C_{gnd} = 1000 \ \mu F$	2.653	31.189	19.622	1.589	0.135					
$C_{gnd} = 265 \ \mu F$	2.655	31.186	19.622	1.589	0.135					
		Bus-7								
Grounding	R0 Ω	X0 Ω	X1 Ω	R0 Ω	R0/X1					
$Zgnd = 0 \Omega$	0.005	0.150	0.069	2.165	0.076					
$C_{gnd} = 2650 \ \mu F$	0.005	0.150	0.069	2.165	0.076					
$C_{gnd} = 1000 \ \mu F$	0.005	0.150	0.069	2.165	0.076					
$C_{\text{gnd}} = 265 \ \mu\text{F}$	0.005	0.150	0.069	2.165	0.076					

Table 7 Sequence reactance/resistance values, and X0/X1 and R0/X1 ratios for Scenario-6

		Bus-1			
T ₃ , T ₄ Grounding*	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	2.778	28.630	37.205	0.770	0.075
$C_{\text{gnd}} = 2650 \ \mu\text{F}$	3.525	27.542	37.205	0.740	0.095
$C_{gnd} = 1000 \ \mu F$	3.292	25.895	37.205	0.696	0.088
$C_{gnd} = 265 \ \mu F$	2.546	15.758	37.205	0.424	0.068
		Bus-2			
T ₃ , T ₄ Grounding*	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	2.658	15.928	33.091	0.481	0.080
$C_{gnd} = 2650 \ \mu F$	2.661	15.925	33.091	0.481	0.080
$C_{\text{gnd}} = 1000 \ \mu\text{F}$	2.660	15.919	33.091	0.481	0.080
$C_{gnd} = 265 \ \mu F$	2.661	15.883	33.091	0.480	0.080
		Bus-3			
T ₃ , T ₄ Grounding*	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	1.431	27.380	41.286	0.663	0.035
$C_{gnd} = 2650 \ \mu F$	2.060	26.683	41.286	0.646	0.050
$C_{\text{gnd}} = 1000 \ \mu\text{F}$	2.054	25.464	41.286	0.617	0.050
$C_{gnd} = 265 \ \mu F$	2.386	16.766	41.286	0.406	0.058
		Bus-4			
T ₃ , T ₄ Grounding*	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	2.217	23.989	21.129	1.135	0.105
$C_{gnd} = 2650 \ \mu F$	3.217	22.627	21.129	1.071	0.152
$C_{gnd} = 1000 \ \mu F$	2.992	20.506	21.129	0.971	0.142
$C_{\text{gnd}} = 265 \ \mu\text{F}$	2.575	7.336	21.129	0.347	0.122
		Bus-5			
T ₃ , T ₄ Grounding*	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	0.636	17.647	18.621	0.948	0.034
$C_{gnd} = 2650 \ \mu F$	1.285	16.959	18.621	0.911	0.069
$C_{gnd} = 1000 \ \mu F$	1.312	15.722	18.621	0.844	0.070
$C_{gnd} = 265 \ \mu F$	1.997	6.649	18.621	0.357	0.107
		Bus-6			
T ₃ , T ₄ Grounding*	R0 Ω	X0 Ω	X1 Ω	X0/X1	R0/X1
$Zgnd = 0 \Omega$	2.652	31.190	19.622	1.590	0.135
$C_{gnd} = 2650 \ \mu F$	2.760	31.124	19.622	1.586	0.141
$C_{\text{gnd}} = 1000 \ \mu\text{F}$	2.805	30.971	19.622	1.578	0.143
$C_{gnd} = 265 \ \mu F$	3.150	30.048	19.622	1.531	0.161
		Bus-7			
T_3 , T_4 Grounding*	$R0 \Omega$	Χ0 Ω	$X1 \Omega$	X0/X1	R0/X1
$Zgnd = 0 \Omega$	0.005	0.150	0.069	2.165	0.076
$C_{gnd} = 2650 \ \mu F$	0.005	0.150	0.069	2.165	0.076
$C_{gnd} = 1000 \ \mu F$	0.005	0.150	0.069	2.165	0.076
$C_{gnd} = 265 \ \mu F$	0.005	0.150	0.069	2.165	0.076

* T₁,T₂ solidly grounded in all cases

3.2 Analysis of COG and Fault Current Ratio

In order to calculate coefficient of grounding, SLG (Phase-A to ground-AG) faults with zero fault impedance were simulated at bus-1, bus-2, bus-3, and bus-4 (F_1 , F_2 , F_3 , and F_4 indicated on Figure 1). In order to obtain COG, the maximum RMS phase-to-ground voltage observed on any of the healthy phases (Phase-B and Phase-C) during the AG fault is divided by the pre-fault RMS line-to-line voltage (Phase-B to Phase-C voltage) measured at the respective bus. All simulations are carried out in PSCAD/EMTDC and the RMS values were calculated by taking one cycle DFT of the time domain waveforms. Generally GOG is calculated for the faulted bus, but in the result tables, for each fault, E_{LG}/E_{LL} ratios calculated at all buses (bus-1 to bus-7) are reported for examination.

In order to calculate the ratio between the SLG fault current and the three-phase (LLL) fault current, threephase-to-ground faults were simulated at the same locations as SLG faults. Ratios between the RMS values of the SLG and LLL fault currents at steady state (after the decaying of DC components) are reported as the fault current ratio. Again, the RMS values were calculated using one cycle DFT of time domain current waveforms.

Calculations are repeated under different neutral grounding conditions and different network conditions. Various scenarios considered and the different simulation cases performed under each scenario are listed in Table 8.

Fault current ratios for the four faults considered and the corresponding ELG/ELL ratios computed at different locations (bus-1 to bus-7) under Scenario-1 are given in Table 9. Highlighted in yellow are the E_{LG}/E_{LL} ratios at the location of the respective fault. The corresponding results for Scenario-2 to Scenario-6 are presented in Table 10 to Table 14 respectively.

In an effectively grounded system, SLG fault current at a given location is expected to be at least 60% of the three phase fault current at the same location. For all faults considered in the simulations, this condition is satisfied under all four neutral grounding conditions examined. For most of the faults considered, SLG fault current is higher than the three phase fault current, thus the fault current ratio is greater than 1.0. Capacitive neutral grounding actually increases the SLG fault currents compared to solidly grounded case, due to negative reactance in the zero sequence networks. Decreasing capacitor values (in the range of 2650 μ F -256 μ F) increase the SLG fault currents. If the grounding capacitance is further decreased, power frequency resonance could be formed causing extremely high SLG fault currents, as pointed out earlier.

Also, in an effectively grounded system, temporary overvoltages due SLG faults are expected to be less than 80% of the pre-fault line-to-line voltages. This condition is indicated by COG < 0.8. For all cases simulated, this condition was satisfied, even when the transformer neutrals are grounded through a 265 μ F capacitance. It is also notable that in some cases, for a given fault, the highest E_{LG}/E_{LL} ratio may occur in a location other than the faulted bus. As expected, E_{LG}/E_{LL} ratio at bus-7 is not affected by the transformer grounding method.

Table 8 Scenarios, test locations, and test conditions

Scenario	Condition	Neutral grounding	Case No.
Scenario-1	System intact	Solidly grounded	Case (1)
		Capacitor grounded, C = 265 μF	Case (2)
		Capacitor grounded, C = 1000 µF	Case (3)
		Capacitor grounded, C = 2650 µF	Case (4)
Scenario-2	One of the 660 MVA,	Solidly grounded	Case (5)
	22/500 kV transformers	Capacitor grounded, C = 265 μF	Case (6)
	out of service	Capacitor grounded, C = 1000 µF	Case (7)
		Capacitor grounded, C = 2650 µF	Case (8)
Scenario-3	One of the 500 kV circuits	Solidly grounded	Case (9)
	between bus-1 and bus-2	Capacitor grounded, C = 265 μF	Case (10)
	out of service	Capacitor grounded, C = 1000 μF	Case (11)
		Capacitor grounded, C = 2650 μF	Case (12)
Scenario-4	750 MVA, 500/345 kV	Solidly grounded	Case (13)
	autotransformer between	Capacitor grounded, C = 265 μF	Case (14)
	bus-1 and bus-4 out of	Capacitor grounded, C = 1000 µF	Case (15)
	service	Capacitor grounded, C = 2650 µF	Case (16)
Scenario-5	One of 500 kV circuits	Solidly grounded	Case (17)
	between bus-1 and bus-3	Capacitor grounded, C = 265 μF	Case (18)
	out of service	Capacitor grounded, C = 1000 μF	Case (19)
		Capacitor grounded, C = 2650 μF	Case (20)
Scenario-6	System intact, two winding	T ₁ ,T ₂ solidly grounded in all cases	
	transformer neutral	T ₃ , T ₄ capacitor grounded, C=265 μ F	Case (21)
	grounding capacitors	T ₃ , T ₄ Capacitor grounded, C=1000 μF	Case (22)
	bypassed	T ₃ , T ₄ Capacitor grounded, C=2650 μF	Case (23)

Parameter	Location	Grounding	F ₁	F_2	F ₃	F ₄
I _{F1Φ} /I _{F3Φ}		$Zgnd = 0 \Omega$	1.207	1.081	1.127	0.990
	Fault point	$C_{gnd} = 2650 \ \mu F$	1.225	1.092	1.134	0.996
		$C_{gnd} = 1000 \ \mu F$	1.259	1.114	1.147	1.031
		$C_{gnd} = 265 \ \mu F$	1.446	1.235	1.247	1.338
		$Zgnd = 0 \Omega$	0.557	0.562	0.539	0.578
	Bus-1	$C_{gnd} = 2650 \ \mu F$	0.560	0.564	0.536	0.580
		C_{gnd} = 1000 μ F	0.561	0.560	0.534	0.573
		$C_{gnd} = 265 \ \mu F$	0.564	0.536	0.523	0.538
		$Zgnd = 0 \Omega$	0.540	0.558	0.566	0.568
	Bus-2	$C_{gnd} = 2650 \ \mu F$	0.550	0.556	0.565	0.566
		C_{gnd} = 1000 μ F	0.547	0.556	0.565	0.565
		$C_{gnd} = 265 \ \mu F$	0.551	0.553	0.563	0.562
		$Zgnd = 0 \Omega$	0.564	0.526	0.546	0.548
	Bus-3	$C_{gnd} = 2650 \ \mu F$	0.566	0.529	0.548	0.543
		$C_{gnd} = 1000 \ \mu F$	0.567	0.528	0.545	0.541
$E_{LG(max)}/E_{LL}$		$C_{gnd} = 265 \ \mu F$	0.570	0.525	0.532	0.531
(COG)	Bus-4	$Zgnd = 0 \Omega$	0.562	0.579	0.544	0.597
		$C_{gnd} = 2650 \ \mu F$	0.566	0.583	0.540	0.600
		$C_{gnd} = 1000 \ \mu F$	0.566	0.576	0.538	0.591
		$C_{gnd} = 265 \ \mu F$	0.567	0.546	0.523	0.549
		$Zgnd = 0 \Omega$	0.571	0.545	0.562	0.554
	Bus-5	$C_{gnd} = 2650 \ \mu F$	0.573	0.548	0.565	0.556
		$C_{gnd} = 1000 \ \mu F$	0.573	0.547	0.562	0.555
		$C_{gnd} = 265 \ \mu F$	0.576	0.545	0.550	0.548
		$Zgnd = 0 \Omega$	0.569	0.550	0.546	0.554
	Bus-6	$C_{gnd} = 2650 \ \mu F$	0.570	0.552	0.545	0.548
		$C_{gnd} = 1000 \ \mu F$	0.570	0.550	0.545	0.547
		$C_{gnd} = 265 \ \mu F$	0.572	0.547	0.543	0.540
		$Zgnd = 0 \Omega$	0.578	0.578	0.578	0.578
	Bus-7	$C_{gnd} = 2650 \ \mu F$	0.579	0.578	0.578	0.578
		$C_{gnd} = 1000 \ \mu F$	0.578	0.578	0.578	0.578
		$C_{gnd} = 265 \ \mu F$	0.578	0.578	0.578	0.578

Table 9 Coefficient of grounding and fault current ratios for Scenario-1

Parameter	Location	Grounding	F_1	F_2	F_3	F_4
$I_{F1\Phi}/I_{F3\Phi}$		$Zgnd = 0 \Omega$	1.156	1.124	1.152	1.021
	Fault point	$C_{gnd} = 2650 \ \mu F$	1.174	1.134	1.159	1.023
		C_{gnd} = 1000 μ F	1.211	1.152	1.171	1.057
		$C_{gnd} = 265 \ \mu F$	1.428	1.268	1.266	1.355
		$Zgnd = 0 \Omega$	0.552	0.552	0.534	0.569
	Bus-1	$C_{gnd} = 2650 \ \mu F$	0.556	0.554	0.530	0.571
		$C_{gnd} = 1000 \ \mu F$	0.556	0.550	0.529	0.565
		$C_{gnd} = 265 \ \mu F$	0.559	0.530	0.518	0.534
		$Zgnd = 0 \Omega$	0.553	0.548	0.557	0.560
	Bus-2	$C_{gnd} = 2650 \ \mu F$	0.562	0.544	0.555	0.556
		$C_{gnd} = 1000 \ \mu F$	0.559	0.544	0.555	0.555
		$C_{gnd} = 265 \ \mu F$	0.565	0.541	0.553	0.550
		$Zgnd = 0 \Omega$	0.558	0.523	0.540	0.543
	Bus-3	$C_{gnd} = 2650 \ \mu F$	0.560	0.525	0.542	0.539
		$C_{gnd} = 1000 \ \mu F$	0.560	0.524	0.540	0.537
$E_{LG(max)}/E_{LL}$		$C_{gnd} = 265 \ \mu F$	0.564	0.522	0.529	0.528
(COG)	Bus-4	$Zgnd = 0 \Omega$	0.558	0.569	0.541	0.589
		$C_{gnd} = 2650 \ \mu F$	0.561	0.573	0.536	0.592
		$C_{gnd} = 1000 \ \mu F$	0.561	0.566	0.534	0.583
		$C_{gnd} = 265 \ \mu F$	0.561	0.539	0.521	0.545
	Bus-5	$Zgnd = 0 \Omega$	0.565	0.541	0.557	0.551
		$C_{gnd} = 2650 \ \mu F$	0.567	0.543	0.560	0.553
		$C_{gnd} = 1000 \ \mu F$	0.568	0.542	0.557	0.552
		$C_{gnd} = 265 \ \mu F$	0.570	0.540	0.545	0.544
		$Zgnd = 0 \Omega$	0.564	0.546	0.544	0.552
	Bus-6	$C_{gnd} = 2650 \ \mu F$	0.566	0.547	0.543	0.547
		$C_{gnd} = 1000 \ \mu F$	0.566	0.546	0.542	0.543
		$C_{gnd} = 265 \ \mu F$	0.567	0.541	0.539	0.536
		$Zgnd = 0 \Omega$	0.578	0.578	0.578	0.578
	Bus-7	$C_{gnd} = 2650 \ \mu F$	0.578	0.578	0.578	0.578
		$C_{gnd} = 1000 \ \mu F$	0.578	0.578	0.578	0.578
		$C_{gnd} = 265 \ \mu F$	0.578	0.578	0.578	0.578

Table 10 Coefficient of grounding and fault current ratios for Scenario-2

Parameter	Location	Grounding	F_1	F_2	F_3	F_4
		$Zgnd = 0 \Omega$	1.227	1.115	1.152	1.028
$I_{F1\Phi}/I_{F3\Phi}$	Fault point	C _{gnd} = 2650 μF	1.243	1.129	1.158	1.029
		$C_{gnd} = 1000 \ \mu F$	1.276	1.146	1.171	1.066
		$C_{gnd} = 265 \ \mu F$	1.451	1.266	1.266	1.386
		$Zgnd = 0 \Omega$	0.571	0.553	0.534	0.571
	Bus-1	$C_{gnd} = 2650 \ \mu F$	0.573	0.556	0.530	0.573
		$C_{gnd} = 1000 \ \mu F$	0.574	0.551	0.529	0.567
		$C_{gnd} = 265 \ \mu F$	0.577	0.531	0.518	0.535
		$Zgnd = 0 \Omega$	0.536	0.571	0.575	0.574
	Bus-2	$C_{gnd} = 2650 \ \mu F$	0.545	0.569	0.574	0.573
		$C_{gnd} = 1000 \ \mu F$	0.543	0.569	0.574	0.573
		$C_{gnd} = 265 \ \mu F$	0.547	0.569	0.574	0.572
		$Zgnd = 0 \Omega$	0.574	0.523	0.540	0.543
	Bus-3	$C_{gnd} = 2650 \ \mu F$	0.576	0.526	0.542	0.539
		$C_{gnd} = 1000 \ \mu F$	0.576	0.525	0.540	0.538
$E_{LG(max)}/E_{LL}$		$C_{gnd} = 265 \ \mu F$	0.579	0.522	0.529	0.529
(COG)	Bus-4	$Zgnd = 0 \Omega$	0.572	0.571	0.541	0.590
		$C_{gnd} = 2650 \ \mu F$	0.575	0.574	0.537	0.593
		$C_{gnd} = 1000 \ \mu F$	0.575	0.567	0.534	0.584
		$C_{gnd} = 265 \ \mu F$	0.576	0.539	0.520	0.545
		$Zgnd = 0 \Omega$	0.577	0.541	0.557	0.551
	Bus-5	$C_{gnd} = 2650 \ \mu F$	0.578	0.543	0.560	0.553
		$C_{gnd} = 1000 \ \mu F$	0.579	0.543	0.557	0.552
		$C_{gnd} = 265 \ \mu F$	0.581	0.540	0.545	0.545
		Zgnd = 0Ω	0.575	0.546	0.544	0.552
	Bus-6	$C_{gnd} = 2650 \ \mu F$	0.576	0.547	0.543	0.547
		$C_{gnd} = 1000 \ \mu F$	0.576	0.546	0.541	0.544
		$C_{gnd} = 265 \ \mu F$	0.577	0.541	0.539	0.536
		$Zgnd = 0 \Omega$	0.578	0.578	0.578	0.578
	Bus-7	$C_{gnd} = 2650 \ \mu F$	0.578	0.578	0.578	0.578
		$C_{gnd} = 1000 \ \mu F$	0.578	0.578	0.578	0.578
		$C_{gnd} = 265 \ \mu F$	0.578	0.578	0.578	0.578

Table 11 Coefficient of grounding and fault current ratios for Scenario-3

Parameter	Location	Grounding	F_1	F_2	F_3	F ₄
		$Zgnd = 0 \Omega$	1.228	0.818	1.151	0.612
$I_{F1\Phi}/I_{F3\Phi}$	Fault point	$C_{gnd} = 2650 \ \mu F$	1.244	0.820	1.158	0.612
		C_{gnd} = 1000 μ F	1.277	0.823	1.171	0.612
		$C_{gnd} = 265 \ \mu F$	1.451	0.848	1.269	0.612
		$Zgnd = 0 \Omega$	0.553	0.663	0.550	0.578
	Bus-1	$C_{gnd} = 2650 \ \mu F$	0.558	0.664	0.546	0.578
		$C_{gnd} = 1000 \ \mu F$	0.559	0.663	0.544	0.578
		$C_{gnd} = 265 \ \mu F$	0.565	0.659	0.527	0.578
		$Zgnd = 0 \Omega$	0.536	0.555	0.564	0.578
	Bus-2	$C_{gnd} = 2650 \ \mu F$	0.545	0.554	0.562	0.578
		$C_{gnd} = 1000 \ \mu F$	0.543	0.553	0.562	0.578
		$C_{gnd} = 265 \ \mu F$	0.547	0.548	0.559	0.578
		$Zgnd = 0 \Omega$	0.560	0.553	0.542	0.578
E _{LG(max)} /E _{LL}	Bus-3	$C_{gnd} = 2650 \ \mu F$	0.563	0.555	0.539	0.578
		$C_{gnd} = 1000 \ \mu F$	0.564	0.554	0.537	0.578
		$C_{gnd} = 265 \ \mu F$	0.569	0.552	0.527	0.578
(COG)		$Zgnd = 0 \Omega$	0.578	0.578	0.578	0.759
	Bus-4	$C_{gnd} = 2650 \ \mu F$	0.578	0.578	0.578	0.759
		$C_{gnd} = 1000 \ \mu F$	0.578	0.578	0.578	0.759
		$C_{gnd} = 265 \ \mu F$	0.578	0.578	0.578	0.759
		$Zgnd = 0 \Omega$	0.571	0.565	0.557	0.578
	Bus-5	$C_{gnd} = 2650 \ \mu F$	0.574	0.567	0.560	0.578
		$C_{gnd} = 1000 \ \mu F$	0.574	0.567	0.558	0.578
		$C_{gnd} = 265 \ \mu F$	0.578	0.567	0.550	0.578
		$Zgnd = 0 \Omega$	0.578	0.578	0.578	0.592
	Bus-6	$C_{gnd} = 2650 \ \mu F$	0.578	0.578	0.578	0.592
		$C_{gnd} = 1000 \ \mu F$	0.578	0.578	0.578	0.592
		$C_{gnd} = 265 \ \mu F$	0.578	0.578	0.578	0.592
		$Zgnd = 0 \Omega$	0.578	0.578	0.578	0.578
	Bus-7	$C_{gnd} = 2650 \ \mu F$	0.578	0.578	0.578	0.578
	_	$C_{gnd} = 1000 \ \mu F$	0.578	0.578	0.578	0.578
		$C_{gnd} = 265 \ \mu F$	0.578	0.578	0.578	0.578

Parameter	Location	Grounding	F_1	F_2	F_3	F_4
		$Zgnd = 0 \Omega$	1.210	1.087	1.149	0.990
$I_{F1\Phi}/I_{F3\Phi}$	Fault point	$C_{gnd} = 2650 \ \mu F$	1.228	1.098	1.155	0.997
		$C_{gnd} = 1000 \ \mu F$	1.261	1.117	1.168	1.032
		$C_{gnd} = 265 \ \mu F$	1.446	1.243	1.264	1.335
		$Zgnd = 0 \Omega$	0.555	0.559	0.549	0.576
	Bus-1	$C_{gnd} = 2650 \ \mu F$	0.559	0.561	0.546	0.578
		$C_{gnd} = 1000 \ \mu F$	0.559	0.557	0.544	0.571
		$C_{gnd} = 265 \ \mu F$	0.563	0.534	0.536	0.536
		$Zgnd = 0 \Omega$	0.540	0.558	0.570	0.568
	Bus-2	$C_{gnd} = 2650 \ \mu F$	0.549	0.556	0.570	0.566
		$C_{gnd} = 1000 \ \mu F$	0.547	0.555	0.569	0.565
		$C_{gnd} = 265 \ \mu F$	0.551	0.553	0.568	0.562
ELG(max)/ELL		$Zgnd = 0 \Omega$	0.568	0.537	0.540	0.548
	Bus-3	$C_{gnd} = 2650 \ \mu F$	0.570	0.540	0.542	0.550
		$C_{gnd} = 1000 \ \mu F$	0.571	0.539	0.540	0.548
		$C_{gnd} = 265 \ \mu F$	0.574	0.537	0.529	0.540
(COG)		$Zgnd = 0 \Omega$	0.561	0.577	0.552	0.595
	Bus-4	$C_{gnd} = 2650 \ \mu F$	0.565	0.581	0.549	0.598
		$C_{gnd} = 1000 \ \mu F$	0.565	0.574	0.547	0.589
		$C_{gnd} = 265 \ \mu F$	0.566	0.545	0.536	0.548
		$Zgnd = 0 \Omega$	0.574	0.552	0.557	0.559
	Bus-5	$C_{gnd} = 2650 \ \mu F$	0.575	0.555	0.560	0.561
		$C_{gnd} = 1000 \ \mu F$	0.576	0.554	0.558	0.560
		$C_{gnd} = 265 \ \mu F$	0.578	0.552	0.546	0.554
		Zgnd = 0Ω	0.569	0.549	0.553	0.553
	Bus-6	$C_{gnd} = 2650 \ \mu F$	0.570	0.551	0.552	0.548
		$C_{gnd} = 1000 \ \mu F$	0.571	0.550	0.551	0.547
		$C_{gnd} = 265 \ \mu F$	0.572	0.547	0.546	0.541
		$Zgnd = 0 \Omega$	0.578	0.578	0.578	0.578
	Bus-7	$C_{gnd} = 2650 \ \mu F$	0.578	0.578	0.578	0.578
	-	$C_{gnd} = 1000 \ \mu F$	0.578	0.578	0.578	0.578
		$C_{gnd} = 265 \ \mu F$	0.578	0.578	0.578	0.578

Table 13 Coefficient of grounding and fault current ratios for Scenario-5

Table 14 Coefficient of grounding and fault current ratios for Scenario-6	Table 1	L4 Coefficient	of grounding	and fault	current	ratios f	or Scenario-6
---	---------	----------------	--------------	-----------	---------	----------	---------------

Parameter	Location	Grounding	F_1	F_2	F_3	F_4
		$Zgnd = 0 \Omega$	1.207	1.081	1.127	0.990
$I_{F1\Phi}/I_{F3\Phi}$	Fault point	C _{gnd} = 2650 μF	1.207	1.095	1.134	0.996
		$C_{gnd} = 1000 \ \mu F$	1.207	1.113	1.147	1.031
		$C_{gnd} = 265 \ \mu F$	1.208	1.238	1.246	1.339
		$Zgnd = 0 \Omega$	0.557	0.562	0.539	0.578
	Bus-1	$C_{gnd} = 2650 \ \mu F$	0.557	0.564	0.536	0.580
		$C_{gnd} = 1000 \ \mu F$	0.557	0.559	0.534	0.573
		$C_{gnd} = 265 \ \mu F$	0.557	0.536	0.523	0.538
		$Zgnd = 0 \Omega$	0.540	0.558	0.566	0.568
	Bus-2	$C_{gnd} = 2650 \ \mu F$	0.540	0.557	0.566	0.567
		$C_{gnd} = 1000 \ \mu F$	0.540	0.557	0.566	0.566
		$C_{gnd} = 265 \ \mu F$	0.540	0.555	0.564	0.562
		Zgnd = 0 Ω	0.564	0.526	0.546	0.548
E _{LG(max)} /E _{LL}	Bus-3	$C_{gnd} = 2650 \ \mu F$	0.564	0.529	0.548	0.543
		$C_{gnd} = 1000 \ \mu F$	0.564	0.528	0.545	0.541
		$C_{gnd} = 265 \ \mu F$	0.564	0.525	0.533	0.531
(COG)		$Zgnd = 0 \Omega$	0.562	0.580	0.544	0.597
	Bus-4	$C_{gnd} = 2650 \ \mu F$	0.563	0.583	0.540	0.600
		$C_{gnd} = 1000 \ \mu F$	0.563	0.576	0.538	0.591
		$C_{gnd} = 265 \ \mu F$	0.563	0.546	0.523	0.549
		$Zgnd = 0 \Omega$	0.571	0.545	0.562	0.554
	Bus-5	$C_{gnd} = 2650 \ \mu F$	0.571	0.548	0.565	0.556
		$C_{gnd} = 1000 \ \mu F$	0.571	0.547	0.562	0.555
		$C_{gnd} = 265 \ \mu F$	0.572	0.545	0.550	0.548
		$Zgnd = 0 \Omega$	0.569	0.550	0.546	0.554
	Bus-6	$C_{gnd} = 2650 \ \mu F$	0.569	0.552	0.545	0.548
		$C_{gnd} = 1000 \ \mu F$	0.569	0.550	0.545	0.547
		$C_{gnd} = 265 \ \mu F$	0.570	0.547	0.543	0.540
		$Zgnd = 0 \Omega$	0.578	0.578	0.578	0.578
	Bus-7	$C_{gnd} = 2650 \ \mu F$	0.578	0.578	0.578	0.578
	-	$C_{gnd} = 1000 \ \mu F$	0.578	0.578	0.578	0.578
		$C_{gnd} = 265 \ \mu F$	0.578	0.578	0.578	0.578

3.3 Analysis of Transient Overvoltages

In this section, electromagnetic transient simulations carried out in PSCAD/EMTDC are used to determine the highest transient overvoltages observed between any of the phases and the ground due to SLG faults. SLG faults are simulated at nine different locations (F_1 to F_9) on the network, and the each SLG fault simulation is repeated 32 times considering different fault inception angles (i.e. fault is initiated at 32 different time points uniformly distributed over one voltage cycle). Voltages at number of different locations on the network are monitored and the highest transient overvoltage observed at each location is reported as a per unit value, based on the nominal phase to ground peak voltage.

$$E_{LG(transient-pu)} = \frac{E_{LG(transient)}}{E_{LG(peak-nominal)}}$$

Calculations are repeated under different transformer neutral grounding conditions and different network conditions (scenarios). The three different grounding conditions simulated include (i) solidly grounded transformer neutrals, (ii) capacitance grounded transformer neutrals, and (iii) capacitance grounded transformer neutrals with MOV in parallel with the capacitance/resistance branch. The neutral grounding capacitance used was 2650 μ F, except for Scenario-6 where the grounding capacitance was 265 μ F. Descripts of the various scenarios considered and the different simulation cases performed under each scenario are listed in Table 15 .

Scenario Scenario-1	Condition All the elements are in- service	Neutral grounding Solidly grounded Capacitor grounded, C = 2650 µF	Case No. Case (1) Case (2)
		Capacitor grounded with MOV, $C = 2650 \mu\text{F}$	Case (3)
Scenario-2	All the lines on bus-1 are	Solidly grounded	Case (4)
	disconnected from bus-1	Capacitor grounded, C = 2650 μF	Case (5)
		Capacitor grounded with MOV, C = 2650 µF	Case (6)
Scenario-3	One of the 660 MVA,	Solidly grounded	Case (7)
	22/500 kV transformers	Capacitor grounded, C = 2650 μF	Case (8)
	out of service	Capacitor grounded with MOV, C = 2650 μF	Case (9)
Scenario-4	750 MVA, 500/345 kV	Solidly grounded	Case (10)
	autotransformer between	Capacitor grounded, C = 2650 μF	Case (11)
	bus-1 and bus-4 out of	Capacitor grounded with MOV, C = $2650 \mu\text{F}$	Case (12)
	service		
Scenario-5	One of 500 kV, 250 km	Solidly grounded	Case (13)
	circuits is out of service	Capacitor grounded, C = 2650 μF	Case (14)
		Capacitor grounded with MOV, C = $2650 \mu\text{F}$	Case (15)
Scenario-6	All the elements are in-	Capacitor grounded, C = 265 μF	Case (16)
	service	Capacitor grounded with MOV, C = 265 μ F	Case (17)

Table 15 Scenarios and different test conditions considered in transient overvoltage analysis

The locations of the faults simulated under Scenario-1 and the monitoring points are shown on Figure 3. The highest transient overvoltages observed at different monitoring points due to each fault are given in Table 16. Highlighted are the observations at fault locations.

Figure 3: Locations of the faults and monitoring points in Scenario-1

			Location												
Fault	Case	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10				
	1	1.24	1.18	1.19	1.19	1.28	1.31	1.25	1.17	1.17	1.03				
F1	2	1.23	1.20	1.22	1.21	1.29	1.31	1.26	1.18	1.18	1.03				
	3	1.23	1.19	1.21	1.20	1.29	1.31	1.26	1.18	1.17	1.03				
	1	1.13	1.32	1.24	1.09	1.09	1.08	1.05	1.07	1.08	1.03				
F2	2	1.13	1.33	1.23	1.09	1.10	1.08	1.05	1.08	1.08	1.03				
	3	1.13	1.33	1.23	1.09	1.10	1.08	1.05	1.08	1.08	1.03				
	1	1.06	1.28	1.35	1.13	1.13	1.11	1.06	1.08	1.09	1.03				
F 3	2	1.06	1.28	1.34	1.12	1.12	1.12	1.06	1.09	1.09	1.03				
	3	1.06	1.28	1.34	1.12	1.12	1.12	1.06	1.09	1.09	1.03				
	1	1.14	1.40	1.43	1.33	1.41	1.39	1.23	1.23	1.15	1.08				
F4	2	1.13	1.41	1.44	1.34	1.43	1.40	1.23	1.24	1.16	1.07				
	3	1.13	1.41	1.44	1.34	1.43	1.40	1.23	1.24	1.16	1.08				
	1	1.09	1.16	1.18	1.14	1.17	1.19	1.10	1.14	1.09	1.09				
F5	2	1.09	1.17	1.18	1.16	1.21	1.21	1.11	1.14	1.08	1.07				
	3	1.09	1.16	1.18	1.15	1.20	1.21	1.11	1.14	1.08	1.09				
	1	1.05	1.09	1.08	1.06	1.07	1.24	1.09	1.05	1.03	1.04				
F6	2	1.05	1.08	1.08	1.06	1.07	1.24	1.09	1.05	1.03	1.04				
	3	1.05	1.08	1.08	1.06	1.07	1.24	1.09	1.05	1.03	1.04				
	1	1.07	1.09	1.09	1.06	1.04	1.11	1.17	1.06	1.05	1.04				
F7	2	1.07	1.09	1.09	1.06	1.04	1.11	1.17	1.06	1.05	1.04				
	3	1.07	1.09	1.09	1.06	1.04	1.11	1.17	1.06	1.05	1.04				
	1	1.11	1.18	1.24	1.20	1.16	1.18	1.12	1.33	1.18	1.06				
F 8	2	1.10	1.18	1.25	1.21	1.18	1.19	1.12	1.34	1.19	1.06				
	3	1.10	1.18	1.25	1.21	1.18	1.19	1.12	1.34	1.19	1.06				
	1	1.14	1.17	1.16	1.14	1.15	1.16	1.12	1.22	1.29	1.09				
F9	2	1.14	1.16	1.16	1.14	1.14	1.17	1.12	1.23	1.29	1.09				
	3	1.14	1.16	1.16	1.14	1.14	1.17	1.12	1.23	1.29	1.09				

Table 16 Transient overvoltages (pu) in Scenario -1

The locations of the faults simulated under Scenario-2 and the monitoring points are shown on Figure 4. The highest transient overvoltages observed at different monitoring points due to each fault are given in Table 17.

Figure 4: Locations of the faults and monitoring points in Scenario-2

Table 17 Transient overvoltages (pu) in Scenario -2

		Location														
Fault	Case	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15
	4	1.42	1.34	1.32	1.26	1.07	1.06	1.04	1.03	1.03	1.09	1.09	1.26	1.09	1.03	1.03
F1	5	1.42	1.36	1.34	1.29	1.07	1.06	1.04	1.03	1.03	1.09	1.09	1.29	1.09	1.03	1.03
	6	1.42	1.36	1.34	1.29	1.07	1.06	1.04	1.03	1.03	1.09	1.09	1.29	1.09	1.03	1.03
	4	1.18	1.37	1.47	1.47	1.07	1.06	1.04	1.03	1.03	1.08	1.08	1.47	1.09	1.03	1.03
F2	5	1.17	1.37	1.47	1.46	1.07	1.06	1.04	1.03	1.03	1.08	1.08	1.46	1.09	1.03	1.03
	6	1.17	1.37	1.47	1.46	1.07	1.06	1.04	1.03	1.03	1.08	1.08	1.46	1.09	1.03	1.03
	4	1.14	1.31	1.39	1.48	1.07	1.06	1.04	1.03	1.03	1.07	1.07	1.46	1.09	1.03	1.03
F3	5	1.15	1.32	1.38	1.48	1.07	1.06	1.04	1.03	1.03	1.07	1.07	1.46	1.09	1.03	1.03
	6	1.15	1.32	1.38	1.48	1.07	1.06	1.04	1.03	1.03	1.07	1.07	1.46	1.09	1.03	1.03
	4	1.16	1.30	1.33	1.46	1.07	1.06	1.04	1.03	1.03	1.07	1.07	1.46	1.09	1.03	1.03
F4	5	1.16	1.30	1.33	1.46	1.07	1.06	1.04	1.03	1.03	1.07	1.07	1.46	1.09	1.03	1.03
	6	1.16	1.30	1.33	1.46	1.07	1.06	1.04	1.03	1.03	1.07	1.07	1.46	1.09	1.03	1.03
	4	1.07	1.08	1.08	1.07	1.53	1.43	1.29	1.03	1.03	1.07	1.07	1.07	1.61	1.03	1.03
F5	5	1.07	1.08	1.08	1.07	1.33	1.26	1.18	1.03	1.03	1.07	1.07	1.07	1.37	1.03	1.03
	6	1.07	1.08	1.08	1.07	1.52	1.42	1.28	1.03	1.03	1.07	1.07	1.07	1.59	1.03	1.03
	4	1.07	1.08	1.08	1.07	1.30	1.35	1.22	1.03	1.03	1.07	1.07	1.07	1.33	1.03	1.03
F 6	5	1.07	1.08	1.08	1.07	1.20	1.29	1.16	1.03	1.03	1.07	1.07	1.07	1.23	1.03	1.03
	6	1.07	1.08	1.08	1.07	1.28	1.34	1.20	1.03	1.03	1.07	1.07	1.07	1.31	1.03	1.03
	4	1.07	1.08	1.08	1.07	1.51	1.49	1.42	1.03	1.03	1.07	1.07	1.07	1.60	1.03	1.03
F7	5	1.07	1.08	1.08	1.07	1.50	1.48	1.42	1.03	1.03	1.07	1.07	1.07	1.59	1.03	1.03
	6	1.07	1.08	1.08	1.07	1.50	1.48	1.42	1.03	1.03	1.07	1.07	1.07	1.59	1.03	1.03
	4	1.07	1.08	1.08	1.07	1.07	1.06	1.04	1.32	1.24	1.07	1.07	1.07	1.09	1.38	1.42
F8	5	1.07	1.08	1.08	1.07	1.07	1.06	1.04	1.32	1.25	1.07	1.07	1.07	1.09	1.37	1.43
	6	1.07	1.08	1.08	1.07	1.07	1.06	1.04	1.32	1.25	1.07	1.07	1.07	1.09	1.37	1.43
	4	1.07	1.08	1.08	1.07	1.07	1.06	1.04	1.31	1.29	1.07	1.07	1.07	1.09	1.38	1.38
F9	5	1.07	1.08	1.08	1.07	1.07	1.06	1.04	1.29	1.29	1.07	1.07	1.07	1.09	1.36	1.36
	6	1.07	1.08	1.08	1.07	1.07	1.06	1.04	1.29	1.29	1.07	1.07	1.07	1.09	1.36	1.36

The locations of the faults simulated under Scenario-3 and the monitoring points are shown on Figure 5. The highest transient overvoltages observed at different monitoring points due to each fault are given in Table 18.

Figure 5: Locations of the faults and monitoring points in Scenario-3

Table 18 Transient overvoltages (pu) in Scenario -3

			Location											
Fault	Case	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11		
	7	1.24	1.20	1.20	1.17	1.23	1.24	1.18	1.16	1.15	1.01	1.08		
F1	8	1.23	1.21	1.22	1.18	1.24	1.25	1.19	1.17	1.15	1.01	1.08		
	9	1.23	1.20	1.21	1.18	1.24	1.25	1.19	1.17	1.15	1.01	1.08		
	7	1.16	1.33	1.25	1.10	1.10	1.06	1.05	1.08	1.07	1.01	1.08		
F2	8	1.16	1.33	1.26	1.11	1.11	1.07	1.05	1.08	1.08	1.01	1.08		
	9	1.16	1.33	1.26	1.11	1.11	1.07	1.05	1.08	1.08	1.01	1.08		
	7	1.09	1.29	1.33	1.10	1.12	1.11	1.06	1.08	1.09	1.01	1.08		
F3	8	1.08	1.29	1.33	1.10	1.12	1.11	1.06	1.09	1.09	1.01	1.08		
	9	1.08	1.29	1.33	1.10	1.12	1.11	1.06	1.09	1.09	1.01	1.08		
	7	1.21	1.54	1.55	1.38	1.36	1.35	1.21	1.31	1.21	1.03	1.08		
F4	8	1.21	1.55	1.56	1.40	1.38	1.37	1.22	1.32	1.21	1.03	1.08		
	9	1.21	1.55	1.56	1.40	1.38	1.37	1.22	1.32	1.21	1.03	1.08		
	7	1.10	1.21	1.22	1.17	1.19	1.16	1.10	1.16	1.11	1.03	1.08		
F5	8	1.10	1.21	1.21	1.16	1.18	1.18	1.11	1.16	1.11	1.03	1.08		
	9	1.10	1.21	1.21	1.16	1.18	1.18	1.11	1.16	1.11	1.03	1.08		
	7	1.05	1.10	1.10	1.08	1.07	1.26	1.10	1.06	1.04	1.01	1.08		
F6	8	1.05	1.10	1.09	1.08	1.07	1.26	1.10	1.06	1.04	1.02	1.08		
	9	1.05	1.10	1.09	1.08	1.07	1.26	1.10	1.06	1.04	1.01	1.08		
	7	1.07	1.10	1.11	1.08	1.07	1.12	1.18	1.07	1.07	1.03	1.08		
F7	8	1.07	1.10	1.11	1.08	1.06	1.12	1.18	1.07	1.06	1.03	1.08		
	9	1.07	1.10	1.11	1.08	1.06	1.12	1.18	1.07	1.06	1.03	1.08		
	7	1.15	1.25	1.27	1.19	1.16	1.13	1.08	1.32	1.18	1.03	1.08		
F8	8	1.15	1.25	1.28	1.20	1.17	1.14	1.09	1.33	1.19	1.03	1.08		
	9	1.15	1.25	1.28	1.20	1.17	1.14	1.09	1.33	1.19	1.03	1.08		
	7	1.17	1.22	1.21	1.18	1.21	1.11	1.09	1.22	1.34	1.08	1.08		
F9	8	1.17	1.22	1.22	1.18	1.20	1.11	1.09	1.23	1.34	1.07	1.08		
	9	1.17	1.22	1.22	1.18	1.20	1.11	1.09	1.23	1.34	1.07	1.08		

The locations of the faults simulated under Scenario-4 and the monitoring points are shown on Figure 6. The highest transient overvoltages observed at different monitoring points are given in Table 19Table 18.

Figure 6: Locations of the faults and monitoring points in Scenario-4

Table 10	Transiont	overveltages	(00)	in	Scopario /
I able 13	Hanslent	overvoitages	(pu)		Scenario-4

		Location										
Fault	Case	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11
	10	1.33	1.28	1.33	1.35	1.00	1.00	1.00	1.35	1.33	1.04	1.04
F1	11	1.32	1.31	1.35	1.36	1.00	1.00	1.00	1.36	1.33	1.04	1.04
	12	1.32	1.30	1.34	1.36	1.00	1.00	1.00	1.36	1.33	1.04	1.04
	10	1.13	1.41	1.39	1.29	1.00	1.00	1.00	1.21	1.12	1.03	1.03
F2	11	1.13	1.42	1.39	1.29	1.00	1.00	1.00	1.21	1.13	1.04	1.04
	12	1.13	1.42	1.39	1.29	1.00	1.00	1.00	1.21	1.13	1.04	1.04
	10	1.06	1.35	1.37	1.30	1.00	1.00	1.00	1.24	1.09	1.03	1.03
F3	11	1.05	1.35	1.38	1.30	1.00	1.00	1.00	1.24	1.09	1.04	1.04
	12	1.05	1.35	1.38	1.30	1.00	1.00	1.00	1.24	1.09	1.04	1.04
	10	1.07	1.33	1.36	1.29	1.00	1.00	1.00	1.20	1.11	1.04	1.04
F4	11	1.07	1.34	1.36	1.30	1.00	1.00	1.00	1.20	1.11	1.04	1.04
	12	1.07	1.34	1.36	1.30	1.00	1.00	1.00	1.20	1.11	1.04	1.04
	10	1.00	0.99	0.98	0.97	1.40	1.28	1.14	0.97	0.96	1.03	1.03
F5	11	1.00	0.99	0.98	0.97	1.40	1.28	1.14	0.97	0.96	1.03	1.03
	12	1.00	0.99	0.98	0.97	1.40	1.28	1.14	0.97	0.96	1.03	1.03
	10	1.00	0.99	0.98	0.97	1.33	1.27	1.11	0.97	0.96	1.03	1.03
F6	11	1.00	0.99	0.98	0.97	1.33	1.27	1.11	0.97	0.96	1.03	1.03
	12	1.00	0.99	0.98	0.97	1.33	1.27	1.11	0.97	0.96	1.03	1.03
	10	1.00	0.99	0.98	0.97	1.20	1.18	1.15	0.97	0.96	1.03	1.03
F7	11	1.00	0.99	0.98	0.97	1.20	1.18	1.15	0.97	0.96	1.03	1.03
	12	1.00	0.99	0.98	0.97	1.20	1.18	1.15	0.97	0.96	1.03	1.03
	10	1.09	1.30	1.30	1.25	1.00	1.00	1.00	1.27	1.11	1.03	1.03
F8	11	1.09	1.30	1.31	1.25	1.00	1.00	1.00	1.27	1.11	1.03	1.03
	12	1.09	1.30	1.31	1.25	1.00	1.00	1.00	1.27	1.11	1.03	1.03
	10	1.15	1.27	1.33	1.29	1.00	1.00	1.00	1.22	1.29	1.04	1.04
F9	11	1.15	1.28	1.31	1.27	1.00	1.00	1.00	1.20	1.29	1.04	1.04
	12	1.15	1.28	1.31	1.28	1.00	1.00	1.00	1.21	1.29	1.04	1.04

The locations of the faults simulated under Scenario-5 and the monitoring points are shown on Figure 7. The highest transient overvoltages observed at different monitoring points are given in Table 20Table 18.

Figure 7: Locations of the faults and monitoring points in Scenario-5

		Location										
Fault	Case	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11
	13	1.15	1.15	1.17	1.15	1.22	1.26	1.22	1.15	1.14	1.04	1.04
F1	14	1.14	1.18	1.19	1.16	1.23	1.27	1.22	1.16	1.14	1.04	1.04
	15	1.14	1.17	1.18	1.16	1.23	1.27	1.22	1.16	1.14	1.04	1.04
	13	1.33	1.29	1.25	1.12	1.13	1.11	1.10	1.13	1.10	1.27	1.27
F2	14	1.32	1.30	1.25	1.13	1.14	1.11	1.10	1.14	1.11	1.27	1.27
	15	1.32	1.30	1.25	1.13	1.14	1.11	1.10	1.14	1.11	1.27	1.27
	13	1.11	1.34	1.38	1.18	1.18	1.14	1.08	1.18	1.13	1.11	1.11
F3	14	1.10	1.34	1.38	1.19	1.19	1.16	1.08	1.19	1.13	1.11	1.11
	15	1.10	1.34	1.38	1.19	1.19	1.16	1.08	1.19	1.13	1.11	1.11
	13	1.20	1.33	1.31	1.31	1.41	1.40	1.24	1.26	1.14	1.12	1.12
F4	14	1.19	1.32	1.32	1.32	1.44	1.41	1.25	1.27	1.14	1.12	1.12
	15	1.19	1.32	1.32	1.32	1.43	1.41	1.25	1.27	1.14	1.12	1.12
	13	1.11	1.17	1.17	1.18	1.23	1.23	1.12	1.15	1.10	1.07	1.07
F5	14	1.11	1.17	1.18	1.19	1.27	1.25	1.13	1.14	1.08	1.07	1.07
	15	1.11	1.17	1.18	1.19	1.26	1.24	1.13	1.15	1.10	1.07	1.07
	13	1.06	1.09	1.09	1.06	1.08	1.27	1.10	1.05	1.03	1.05	1.05
F6	14	1.06	1.08	1.08	1.06	1.09	1.28	1.10	1.05	1.03	1.05	1.05
	15	1.06	1.08	1.08	1.06	1.09	1.28	1.10	1.05	1.03	1.05	1.05
	13	1.09	1.10	1.10	1.06	1.05	1.12	1.18	1.06	1.04	1.06	1.06
F7	14	1.09	1.09	1.10	1.05	1.05	1.12	1.18	1.06	1.04	1.06	1.06
	15	1.09	1.09	1.10	1.05	1.05	1.12	1.18	1.06	1.04	1.06	1.06
	13	1.15	1.16	1.20	1.19	1.19	1.18	1.13	1.33	1.16	1.12	1.12
F8	14	1.15	1.16	1.19	1.20	1.20	1.19	1.14	1.34	1.17	1.12	1.12
	15	1.15	1.16	1.19	1.20	1.20	1.19	1.14	1.34	1.17	1.12	1.12
	13	1.21	1.20	1.21	1.12	1.13	1.20	1.16	1.23	1.27	1.15	1.15
F9	14	1.21	1.19	1.20	1.13	1.14	1.20	1.16	1.24	1.28	1.15	1.15
	15	1.21	1.19	1.20	1.13	1.14	1.20	1.16	1.24	1.28	1.15	1.15

Table 20 Transient overvoltages (pu) in Scenario-5

The locations of the faults simulated under Scenario-6 and the monitoring points are shown on Figure 8. The highest transient overvoltages observed at different monitoring points are given in Table 21.

Figure 8: Locations of the faults and monitoring points in Scenario-6

		Location									
Fault	Case	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
F1	1	1.24	1.18	1.19	1.19	1.28	1.31	1.25	1.17	1.17	1.03
	16	1.44	1.37	1.32	1.26	1.34	1.35	1.28	1.24	1.22	1.03
	17	1.21	1.17	1.19	1.19	1.28	1.31	1.25	1.17	1.17	1.03
F2	1	1.13	1.32	1.24	1.09	1.09	1.08	1.05	1.07	1.08	1.03
	16	1.13	1.36	1.27	1.13	1.16	1.10	1.07	1.10	1.10	1.03
	17	1.12	1.34	1.24	1.10	1.12	1.10	1.06	1.09	1.09	1.03
F3	1	1.06	1.28	1.35	1.13	1.13	1.11	1.06	1.08	1.09	1.03
	16	1.10	1.29	1.32	1.15	1.20	1.15	1.08	1.13	1.11	1.03
	17	1.08	1.28	1.34	1.13	1.14	1.13	1.07	1.10	1.10	1.03
F4	1	1.14	1.40	1.43	1.33	1.41	1.39	1.23	1.23	1.15	1.08
	16	1.13	1.46	1.50	1.42	1.53	1.47	1.27	1.30	1.20	1.05
	17	1.13	1.41	1.43	1.33	1.43	1.41	1.24	1.24	1.17	1.08
F5	1	1.09	1.16	1.18	1.14	1.17	1.19	1.10	1.14	1.09	1.09
	16	1.09	1.24	1.27	1.26	1.37	1.31	1.16	1.19	1.11	1.06
	17	1.09	1.15	1.16	1.13	1.17	1.19	1.10	1.12	1.07	1.09
F6	1	1.05	1.09	1.08	1.06	1.07	1.24	1.09	1.05	1.03	1.04
	16	1.05	1.08	1.09	1.09	1.15	1.28	1.09	1.07	1.04	1.03
	17	1.05	1.08	1.07	1.05	1.07	1.25	1.09	1.05	1.02	1.04
F7	1	1.07	1.09	1.09	1.06	1.04	1.11	1.17	1.06	1.05	1.04
	16	1.07	1.08	1.08	1.05	1.05	1.11	1.17	1.06	1.05	1.04
	17	1.07	1.08	1.08	1.05	1.04	1.11	1.17	1.06	1.05	1.04
F8	1	1.11	1.18	1.24	1.20	1.16	1.18	1.12	1.33	1.18	1.06
	16	1.10	1.21	1.29	1.25	1.25	1.22	1.14	1.38	1.22	1.05
	17	1.10	1.19	1.26	1.22	1.20	1.20	1.13	1.35	1.20	1.06
F9	1	1.14	1.17	1.16	1.14	1.15	1.16	1.12	1.22	1.29	1.09
	16	1.14	1.18	1.20	1.19	1.16	1.19	1.14	1.28	1.28	1.08
	17	1.14	1.16	1.17	1.15	1.13	1.18	1.13	1.23	1.28	1.10

Table 21 Transient overvoltages (pu) in Scenario-6

Results indicate that transient overvoltages are less than 2 pu (the limiting value under effective grounding conditions) for all cases. Furthermore, the results show that capacitance neutral grounding does not significantly alter the transient overvoltages, when the capacitance is $2650 \,\mu$ F. The results of Scenario-6 shows that when the grounding capacitance is decreased to $265 \,\mu$ F, transient overvoltages slightly increase (but still below 2 pu). However, when the parallel MOVs are introduced, the transient overvoltages drop to normal values.

4.0 Concluding Remarks

Based on the three studies conducted, capacitance grounding of transformer neutrals with a capacitance in the range of 265 μ F to 2650 μ F has no significant impact on effectiveness of the grounding of the 500 kV/345 kV test system considered. Especially with the proposed capacitance value of 2650 μ F in the GIC blocking scheme proposed by Emprimus, only a minimum impact is expected on the effective grounding. This conclusion obtained with the test network should be valid for most power systems, but characteristics of a specific power system vary from that analyzed in this study and therefore an appropriate grounding impact analysis for that specific system is recommended when applying the proposed GIC blocking scheme.

5.0 References

[1]IEEE Standard C62.92.5-2000, IEEE Guide for the Application of Neutral Grounding in Electrical Utility Systems-Part 1:Introduction, IEEE Power Engineering Society, September 2000.
[2] IEEE Standard C62.92.5-2009, IEEE Guide for the Application of Neutral Grounding in Electrical Utility Systems-Part V: Transmission Systems and Subtransmission Systems, IEEE Power Engineering Society, 2009.