2019 ERO Enterprise Dashboard Metrics
1. Fewer, less severe events (Goals 1-5)*
2. Compliance violations (Goals 1 & 2)
3. Protection system misoperations rate and misoperations with loss of load (Goals 1-4)
4. Events caused by generating unit forced outages due to cold weather or fuel unavailability (Goals 1-4)
5. Reduce AC Transmission line forced outages (Goals 1-4)
6. Unauthorized physical or electronic access (Goals 1-3 & 5)
7. Disturbance control events greater than the most severe single contingency (Goals 1-4)

8. Interconnection Frequency Response (Goals 1-4)

Inferential statistics will be calculated when sample sizes are appropriate at a 95% confidence interval.
Metric Status Definitions*

*Dashboards are for illustrative purposes only and are not meant to represent current status or projections.

Green
Risk indicator getting better

Neutral
Risk indicator between getting better and getting worse

Red
Risk indicator getting worse

Pass/Fail
Risk indicator either met or did not
• **Why is it important?**
 - Measures risk to the bulk power system (BPS) from events on the Bulk Electric System (BES)

• **How is it measured?**
 - Cumulative eSRI line in the composite daily event Severity Risk Index (eSRI) for Category 1–3 events (see pages 2-3 of ERO Event Analysis Process for category determination)

Data (Annual Measurement)
- No Category 3 or above events: *Zero is green, else is red*

Data (Compared to a 3-year rolling average)
- Slope of eSRI line is flat to decreasing and does not show an increase above zero that is statistically significant (95% Confidence Interval)
- “2019 Status” relates to the slope of the 3-year rolling average (Positive, Flat or Negative), not just the 2019 performance
Metric 2: Compliance Violations

Why is it important?
- Reduce risk to BPS reliability from Standard violations by registered entities

How is it measured?
- Compliance History* of moderate/serious risk noncompliance
- The number of violations discovered through self-reports, audits, etc.
- Risk to the BPS based on the severity of Standard violations

Data (Annual Measurement)
- Moderate and serious risk repeat violations filed with FERC on organizations that have Compliance History (based on 2017 metric)

<table>
<thead>
<tr>
<th>2019 Status</th>
<th>48</th>
<th>45</th>
</tr>
</thead>
</table>

Data (Annual Measurement)
- Percent of noncompliance self-reported (Self-certified noncompliance is not included) (same as 2018 metric)

<table>
<thead>
<tr>
<th></th>
<th>75%</th>
<th>80%</th>
</tr>
</thead>
</table>

Data (Compared to a 3-year rolling average)
- The number of serious risk violations resolved compared to the total noncompliance resolved (based on 2018 metric)

<table>
<thead>
<tr>
<th></th>
<th>5%</th>
<th>4%</th>
</tr>
</thead>
</table>

* To measure the effectiveness of the risk-based CMEP in reducing noncompliance, NERC reviews moderate and serious risk violations and includes them in one of three categories: 1) noncompliance with no prior compliance history; 2) noncompliance with prior compliance history that does not involve similar conduct; and 3) noncompliance with compliance history that includes similar conduct.
• Why is it important?
 ▪ Protection system misoperations exacerbate the impacts

• How is it measured?
 ▪ Annual Misoperations rate and the annual cumulative loss of load for events with misoperations (cumulative rate through Q2 2019)

Data (Year-Over-Year Comparison)
 ▪ Q3-Q2 comparison misoperations rate based on collection interval (95% Confidence Interval) (Based on 2018 Metric)

Data (Year-Over-Year Comparison)
 ▪ Q3-Q2 comparison for qualified events with misoperations and loss of load (load loss/number of events) during the collection interval (95% Confidence Interval) (New)
Metric 4: Events Caused by Gas-Fired Unit Forced Outages Due to Cold Weather or Gas Unavailability

Dashboards are for illustrative purposes only and are not meant to represent current status or projections.

- **Why is it important?**
 - Reduce risk to BPS reliability due to gas-fired unit outages during cold weather or gas unavailability

- **How is it measured?**
 - Firm load loss due to cold weather or gas unavailability
 - MWh of potential production lost initiated by cold weather and gas unavailability

Data (Annual Measurement)
- No firm load loss due to gas-fired unit outages during cold weather: *Zero is green, else is red*

Data (Annual Measurement)
- No firm load loss due to gas unavailability: *Zero is green, else is red*

Data (Compared to a 5-year rolling average)
- Percentage of winter period net MWh of potential production lost due to gas-fired unit outages during cold weather (Winter season January – March and December of the same calendar year)

Data (Compared to a 5-year rolling average)
- Percentage of annual net MWh of potential production lost due gas unavailability compared to a 5-year rolling average (Due to data availability, year defined as Q3-Q2)

2019 Status
- Percent of MWhrs Lost Due to Lack of Fuel vs Winter Storms
 - Lack of fuel
 - Storms (ice, snow, etc)
 - 2014: 0.0000, 2015: 0.0001, 2016: 0.0002, 2017: 0.0003, 2018: 0.0005
 - 2019: 0.0010, 2020: 0.0019

- 2019 Status:
 - 2019 Status: 0.192% Lack of Fuel, 0.0898% Storms (ice, snow, etc)
 - 2018 Status: 0.00149%, 0.00053%

Dashboards are for illustrative purposes only and are not meant to represent current status or projections.
• Why is it important?
 - Measures risks to BPS reliability from three priority causes:
 1. Operator or other human performance issues
 2. Substation equipment failures or failed circuit equipment
 3. Vegetation encroachment
• How is it measured?
 ▪ Number of transmission line outages caused by Human Error divided by the total inventory of circuits

Data (Compared to a 5-year rolling average)
 ▪ Annual outage rate* decreasing compared to a 5-year rolling average (95% Confidence Interval) (Based on 2018 metric)

* Due to data availability, collection year defined as Q3-Q2
• **How is it measured?**
 - Number of transmission line outages caused by AC substation equipment failures and failed AC circuit equipment (such as transformers), divided by the total inventory of circuits

Data (Compared to a 3-year rolling average)
- Annual outage rate* decreasing compared to a 3-year rolling average (95% Confidence Interval) (Based on 2018 metric)

* Due to data availability, collection year defined as Q3-Q2

2019 Status
- *Increasing*
- *Flat*
- *Decreasing*
• How is it measured?
 - Number of possible FAC-003 violations*

 Year: #
 2018: 4
 2017: 6
 2016: 0
 2015: 3
 2014: 0
 Mean = 2.6 Standard deviation = 2.33

Data* (Compared to a 5-year rolling average)
 - Number of vegetation encroachments reported as possible FAC-003 violations decreasing (within one standard deviation, based on small sample size) (Based on 2018 metric)

Data** (Compared to a 5-year rolling average)
 - Fall-ins: Number of vegetation fall-ins resulting in sustained outages decreasing (within one standard deviation, based on 6-year sample size)
• **Why is it important?**
 - Measures risk and impact to the BPS from cyber or physical security attacks

• **How is it measured?**
 - Based on industry-submitted OE-417 and/or EOP-004 Electric Emergency Incident and Disturbance Reports*
 - No disruption** of BES operations due to physical attacks

<table>
<thead>
<tr>
<th>Data (Annual Measurement), based on 2018 metric</th>
<th>2019 Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>No disruption** of BES operations due to cyber attacks: Zero is green, else is red</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data (Annual Measurement), based on 2018 metric</th>
<th>2019 Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>No disruption** of BES operations due to physical attacks: Zero is green, else is red</td>
<td></td>
</tr>
</tbody>
</table>

*As more data becomes available this metric will be enhanced to provide increased granularity of this risk.

**A disruption means that a BES facility was removed from service as a result of the cyber or physical incident.
• Why is it important?
 ▪ Measures risk to the BPS by monitoring the number of Disturbance Control Standard (DCS) events that are greater than the Most Severe Single Contingency (MSSC)

• How is it measured?
 ▪ Information received by NERC based on the BAL-002 Reliability Standard
 ▪ Measures a rolling 7 year quarterly time trend testing for statistical significance

Data (Quarterly Measurement), New
 ▪ **Green**: a rolling 7 year trend line with a negative slope that compares the number of DCS events greater than the MSSC
 ▪ **Middle**: no statistically significant trend for the slope
 ▪ **Red**: a rolling 7 year trend line with a positive slope that compares the number of DCS events greater than the MSSC

Calculated quarterly: Green, Middle or Red to 95% confidence level
• **Why is it important?**
 - Measures risk and impact to the BPS by measuring the interconnection frequency response performance measure (IFRM) for each BAL-003-1 event as compared to the Interconnection Frequency Response Response Obligation (IFRO)

• **How is it measured?**
 - IFROs are calculated and recommended in the Frequency Response Annual Analysis Report for Reliability Standard BAL-003-1.1 implementation
 - IFRM performance is measured for each event by comparing the resource (or load) MW loss to the frequency deviation

Data (Quarterly & Annual Measurement), New
- IFRM for each BAL-003-1 event is compared to the IFRO for each quarter of the 2019 operating year
- Success is no Interconnection experiencing a BAL-003-1 frequency event where IFRM performance is below their respective IFRO

Zero is green, else is red

2019 Status