UNITED STATES OF AMERICA
BEFORE THE
FEDERAL ENERGY REGULATORY COMMISSION

Grid Reliability and Resilience Pricing)

Docket No. RM18-1-000

COMMENTS OF THE
NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION
IN RESPONSE TO NOTICE OF PROPOSED RULEMAKING

Gerald W. Cauley
President and Chief Executive Officer
Mark G. Lauby
Senior Vice President and Chief Reliability Officer
North American Electric Reliability Corporation
3353 Peachtree Road NE
Suite 600, North Tower
Atlanta, GA 30326
(404) 446-2567

Charles A. Berardesco
Senior Vice President and General Counsel
North American Electric Reliability Corporation
1325 G Street N.W., Suite 600
Washington, DC 20005
(202) 400-3000
(202) 644-8099 – facsimile
Charles.Berardesco@nerc.net
Nina.Johnston@nerc.net
Candice.Castaneda@nerc.net

October 23, 2017
TABLE OF CONTENTS

I. COMMUNICATIONS ..2

II. EXECUTIVE SUMMARY ...2

III. COMMENTS...5

 A. Reliable operation of the BPS requires dependable capacity.................................6
 B. Reliable operation of the BPS requires essential reliability services.................7
 C. Reliable operation of the BPS requires a generation resource mix that includes resources with fuel assurance and low sensitivity to disruptions of the fuel supply...9

IV. CONCLUSION ..13

Exhibit A – Testimony of Gerry W. Cauley
President and Chief Executive Officer
North American Electric Reliability Corporation
“Powering America: Defining Reliability in a Transforming Electricity Industry”

Exhibit B – Synopsis of NERC Reliability Assessments
The Changing Resource Mix and the Impacts of Conventional Generation Retirements

Consistent with its core mission, NERC conducts regular and special assessments of the Bulk Power System (“BPS”), including assessments of the changing generation resource mix. NERC assessments find that the BPS continues to operate reliably, while identifying potential risks related to the changing resource mix. These comments reflect NERC’s key findings and recommendations related to secure capacity and essential reliability services. As discussed below, NERC recommends that the Commission continue to pursue policy reform that recognizes the secure capacity and essential reliability service attributes currently and

historically provided by coal and nuclear generation, incentivizes development of such reliability attributes in non-synchronous resources, such as wind and solar facilities, and promotes fuel assurance for natural gas-fired resources.

I. COMMUNICATIONS

Notices and communications with respect to these comments may be addressed to the following:4

Gerald W. Cauley*
President and Chief Executive Officer
North American Electric Reliability Corporation
3353 Peachtree Road NE
Suite 600, North Tower
Atlanta, GA 30326
Gerry.Cauley@nerc.net
(404) 446-2560

Mark G. Lauby*
Senior Vice President and Chief Reliability Officer
North American Electric Reliability Corporation
3353 Peachtree Road NE
Suite 600, North Tower
Atlanta, GA 30326
Mark.Lauby@nerc.net

Charles A. Berardesco*
Senior Vice President and General Counsel
North American Electric Reliability Corporation
1325 G Street N.W., Suite 600
Washington, DC 20005
Charles.Berardesco@nerc.net

Nina Jenkins-Johnston*
Senior Counsel
Nina.Johnston@nerc.net

Candice Castaneda*
Counsel
Candice.Castaneda@nerc.net

II. EXECUTIVE SUMMARY

Reliable and resilient operation of the BPS requires a balanced portfolio of diverse generation resources that provide adequate capacity and essential reliability services to meet consumer needs and support the system. The right combination and amount of resources and transmission together maintain adequacy of the system. The changing resource mix is altering this combination, influencing the operational characteristics of the grid and challenging reliable system planning and operation. The attached Synopsis of NERC Reliability Assessments, The

4 Persons to be included on the Commission’s service list are identified by an asterisk. NERC respectfully requests a waiver of Rule 203 of the Commission’s regulations, 18 C.F.R. § 385.203 (2017), to allow the inclusion of more than two persons on the service list in this proceeding.
Changing Resource Mix and the Impacts of Conventional Generation Retirements ("Synopsis of NERC Reliability Assessments") (Exhibit B) describes how resource diversity improves resilience. The reliability benefits provided by resource diversity can be even greater when policies and market rules recognize the value provided by essential reliability services and support greater fuel assurance by encouraging firm transportation, multiple pipeline connections, and dual-fuel capability. Recognizing the reliability benefits provided by all generation should help ensure that the generation resource mix continues to evolve in a manner that avoids creating risk to reliability of the BPS.

As the Electric Reliability Organization, NERC must “conduct periodic assessments of the reliability and adequacy of the bulk-power system in North America.” To fulfill this responsibility, NERC annually assesses seasonal and long-term reliability of the BPS and conducts special assessments regarding developing issues – such as the changing resource mix. As summarized in the Synopsis of NERC Reliability Assessments, NERC’s assessments have identified and analyzed the manner in which the generation resource mix has been evolving from a fleet that primarily relies on coal and nuclear generation to one with increasing levels of non-synchronous and natural gas-fired resources. With their benefits, non-synchronous resources also experience variability, while natural gas-fired resources are more susceptible to fuel interruptions in the supply chain than coal and nuclear generation. In the Commission’s recent

6 16 U.S.C. §824o(g).

notice of proposed rulemaking to require that newly interconnecting resources be capable of providing primary frequency response, the Commission reported:

[T]he nation’s resource mix has undergone significant change …. This transformation has been characterized by the retirement of baseload, synchronous generating facilities and the integration of more distributed generation, demand response, and natural gas generating facilities, and the rapid expansion of non-synchronous variable energy resources (VERs) …. the U.S. Energy Information Administration (EIA) has observed that the U.S. added approximately 13 gigawatts (GW) of wind, 6.2 GW of utility scale solar photovoltaic (PV), and 3.6 GW of distributed solar PV generating facilities in 2014 and 2015. Conversely, NERC has reported that almost 42 GW of synchronous generating facilities (e.g., coal, nuclear, and natural gas) have retired between 2011 and 2014, and the EIA recently reported that nearly 14 GW of coal and 3 GW of natural gas generating facilities retired in 2015.8

NERC’s forthcoming 2017 Long Term Reliability Assessment will also note that six nuclear units have retired since 2012, with 10.5 GW of additional capacity from 14 units at seven plants planning to retire by 2025. Retirement of traditional coal and nuclear generation with rapid replacement by non-synchronous and natural gas-fired generation is introducing new considerations for reliability and resilience planning.

Coal and nuclear generation serve a critical reliability function within the diverse resource mix by providing secure capacity to serve firm load and supporting reliability and resilience of the BPS. Specifically, coal and nuclear generation are secure sources of dependable capacity in support of resource adequacy (see infra, Section III.A) and substantial amounts of essential reliability services in the form of inertia and voltage support (see infra, Section III.B), with low levels of unavailability due to fuel supply constraints (see infra, Section III.C). These reliability attributes balance the intermittency of non-synchronous resources and potential fuel interruptions of natural gas-fired resources. As reflected in Mr. Gerry Cauley’s, President and

Chief Executive Officer of NERC, Testimony, “[w]ith appropriate insight, careful planning, and support, the electricity sector can continue to navigate these changes in a manner that results in enhanced reliability and resilience. Even with all the changes underway, the bulk power system (BPS) remains highly reliable and resilient, showing improved reliable performance year over year.”

NERC is continuing to study the reliability implications of coal and nuclear generation retirements and the changing resource mix. While NERC has not identified an immediate or near-term emergency related to such retirements, NERC assessments demonstrate that the ongoing trend reduces system flexibility to respond to events and may affect reliability, increasing risk to the BPS. NERC appreciates the Commission’s attention to NERC’s findings on how the changing resource mix may affect reliability. It is critical that policy makers understand and address how the ongoing evolution of the North American generation fleet influences reliability. NERC recommends that the DOE and Commission continue to pursue policies and market rules supporting reliability and resilience.

III. COMMENTS

The North American BPS is reliable and resilient. In NERC’s State of Reliability 2017, NERC highlighted, “the BPS provided an adequate level of reliability (ALR) during 2016.” Reliability is a function of resource adequacy and operating reliability. Resource adequacy reflects the ability of the system to supply electricity to meet consumer demand. Operating reliability includes resilience and is the ability of the system to withstand sudden disturbances to

9 Exhibit A, at Summary.
10 Id. at p. 1.
12 Exhibit B, at p. 1 (stating, “NERC defines the reliability of the interconnected BPS in terms of two basic and functional aspects.”).
system stability or unanticipated loss of components.13 A balanced portfolio of generation
resources and transmission infrastructure ensures that the system has adequate capacity to meet
consumer needs and is ready to respond to unexpected outages or extreme weather events.14

Coal and nuclear generation support reliability by providing dependable capacity, substantial essential reliability services in the form of inertia and voltage control, and fuel security. These reliability attributes balance the variable characteristics of non-synchronous variable energy resources and the fuel sensitivity of both non-synchronous and natural gas-fired resources.15 Non-synchronous and natural gas-fired resources also present reliability benefits, such as resource diversity, capacity, and the essential reliability services they can provide. Together, these resources support reliable and resilient operation of the BPS. The Commission should continue to pursue policies that recognize the reliability attributes of all resources and find opportunities to enhance these attributes as discussed herein.

A. Reliable operation of the BPS requires dependable capacity.

Reliable operation of the BPS requires dependable capacity on a consistent basis to address consumer needs, the impacts of extreme weather conditions, and sudden disturbances on the system. Without dependable resource adequacy, a Balancing Authority responsible for managing the balance of demand and resources may become capacity deficient and unable to serve firm load, which in turn, may lead to manual load shedding. Coal and nuclear generation

13 Id. The National Infrastructure Advisory Council defines “resilience” as follows: “Infrastructure resilience is the ability to reduce the magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure or enterprise depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event.” This definition is cited in, NERC, Severe Impact Resilience: Considerations and Recommendations (May 9, 2012), available at http://www.nerc.com/docs/oc/sirtf/SIRTF_Final_May_9_2012-Board_Accepted.pdf.

14 Exhibit B, at p. 1.

15 Id. at pp. 3-4 (describing the reliability attributes of coal and nuclear generation and the benefits of a diverse resource portfolio).
generally have the unique attributes of low outage rates, high availability rates, and, with on-site storage, low fuel supply sensitivity necessary to provide secure and stable capacity to the grid.\(^{16}\)

While their current benefits and potential are significant, non-synchronous generation and natural gas-fired facilities do not currently replace the secure capacity provided by coal and nuclear generation. Recognizing the need for sufficient capacity, the Commission has approved market mechanisms compensating certain generators for reliability purposes.\(^{17}\) For example, the Commission permitted the Midcontinent Independent System Operator, Inc. (“MISO”) to designate coal-fired or other facilities planned for retirement as “System Support Resources” (“SSR”) if all or a portion of the resource’s capacity is necessary for reliability.\(^{18}\) The Commission has stated that it expects entities will use “[a]greements [designating resources as SSR units] only as a last-resort measure to meet short-term reliability needs precipitated by the retirement or suspension of a resource and will ensure that SSR Agreements have a limited and short duration.”\(^{19}\) While this policy is limited, it is appropriate for the Commission to consider the reliability attributes provided by coal and nuclear generation to ensure that the generation resource mix continues evolving in a manner that maintains a reliable and resilient BPS.

B. Reliable operation of the BPS requires essential reliability services.

Essential reliability services are vital to reliable operation of the BPS. Power system operators use these essential reliability services, such as frequency response, voltage control, and

\(^{16}\) *Id.* at p. 2.

ramping, to plan and operate the BPS reliably under a variety of system conditions. Coal and nuclear generation provide substantial essential reliability services as a function of large spinning generators and governor control settings, along with reactive support for voltage control.20

As the generation resource mix evolves, reliability depends on the capacity that resources provide, their operating characteristics, and their capability to provide essential reliability services. When operating, variable energy resources (which are not synchronously connected to the grid through inverters) can provide essential reliability services, although costs and market rules may not fully recognize such capabilities.21 Natural gas-fired resources provide essential reliability services and often support frequency response needs, however, natural gas-fired generation, like non-synchronous variable energy resources, receives fuel on a “just-in-time” basis, and is sensitive to fuel supply availability.

NERC supports continued Commission action to ensure that newly interconnecting generation resources provide essential reliability services. After NERC began highlighting the potential challenges that might arise from the changing resource mix, the Commission initiated rulemakings to require that new resources be capable of providing essential reliability services. First, the Commission revised its Pro Forma Interconnection Agreements to require that all

20 Exhibit B, at p. 2. See also. ERSTF Report, at p. iv (stating, “Conventional units such as coal plants provide frequency support services as a function of their large spinning generators and governor control settings along with reactive support for voltage control. Power system operators use these services to plan and operate reliably under a variety of system conditions, generally without the concern of having too few of these services available.”); and NERC, Essential Reliability Services Task Force A Concept Paper on Essential Reliability Services that Characterizes Bulk Power System Reliability, at p. 8 (October 2014), available at, http://www.nerc.com/comm/Other/essentialrsrvstskfrcDL/ERSTF%20Concept%20Paper.pdf.

21 ERSTF Report, at p. iv (adding, “Gas-fired units, VERs, storage, and other resources are equipped to provide similar reliability services; however, the functionality may not always be installed or made available due to costs or market rules. The controllability of new generator and load resources to maintain the balance between load and generation, especially during ramping periods, is necessary to ensure reliability).
newly interconnecting generators ride through abnormal frequency and voltage events and not disconnect during such events. In directing these revisions, the Commission acknowledged that:

[A]s the North American Electric Reliability Corporation (NERC) has noted in multiple reports, the mix of generation resources is changing and the high penetration of distributed energy resources will impact the reliability of the electric grid if sufficient care is not taken to mitigate potential adverse impacts. NERC also has found that a lack of coordination between small generating facilities and Reliability Standards can lead to events where system load imbalance may increase during frequency excursions or voltage deviations due to the disconnection of distributed energy resources, which may exacerbate a disturbance on the Bulk-Power System….22

Second, in 2016, the Commission began a rulemaking proposing to revise the Pro Forma Interconnection Agreements to require that all newly interconnecting resources be capable of providing primary frequency response service.23 All new resources should be capable of providing essential reliability services.24 NERC encourages further policies that would acknowledge the value provided by essential reliability services and require the integration of new resources in a manner that supports a reliable and resilient electric grid.

C. Reliable operation of the BPS requires a generation resource mix that includes resources with fuel assurance and low sensitivity to disruptions of the fuel supply.

Reliable operation of the BPS requires that the generation resource mix include facilities that have fuel assurance and low sensitivity to fuel supply disruptions. A fuel diverse generation portfolio creates redundancies in available resources and supports fuel assurance. Fuel diversity also results in an electric grid that is less susceptible to disturbances and better capable of

23 Supra, n. 8.
24 See e.g., ERSTF Report, at p. vi (stating, “All new resources should have the capability to support voltage and frequency”); and Supplemental Comments of NERC in Response to Notice of Request for Supplemental Comments, Docket No. RM16-6-000, at p. 2 (filed Oct. 10, 2017) (reiterating, “All newly interconnecting resources should fall within the scope of the Commission’s proposed primary frequency response requirements – including storage.”).
restoring service quickly after an event on the system. Without fuel assurance, external events such as hurricanes, polar vortices, and natural gas and pipeline disruptions may have a greater and longer impact on available capacity. Coal and nuclear generation serve a key function in this regard, as these facilities typically maintain onsite fuel and can therefore generally operate with greater independence from the fuel supply chain.25 Natural gas-fired generation with dual-fuel capabilities can also operate resiliently after natural gas fuel supply disruptions.

Burgeoning reliance on natural gas-fired generation as a replacement for coal and nuclear generation decreases fuel diversity and increases single source fuel dependency. While natural gas-fired resources serve a key function in the generation fleet, single source fuel dependency can have adverse impacts under common-mode outages. Natural gas-fired generation faces greater susceptibility to fuel supply chain disruption than coal and nuclear generation, because it typically relies upon “just-in-time” fuel transportation and delivery. A large portion of fuel supplied to natural gas generation units is transported under interruptible pipeline contracts. Moreover, natural gas supply is subject to curtailment during force majeure events affecting the fuel supply chain.26 Natural gas fuel dependency is particularly concerning in areas where: (i) generators rely on interruptible gas pipeline transportation; (ii) natural gas interstate pipelines are constrained to meet demand beyond what has been contracted and committed; and (iii) there is

26 Id. at pp. 3-4 (summarizing, “the reliability ramifications of a substantial reliance on just-in-time fuel delivery and the potential for single points of failure and common-mode outages across natural gas infrastructure must be taken into account when considering resource adequacy assessments.”).
greater reliance on natural gas-fired generation as a “primary” generation resource. Natural gas-fired generation is also sensitive to market signals. Higher natural gas prices or regulation that curtails hydraulic fracturing could affect economic considerations currently making natural gas-fired generation a cost effective alternative to coal and nuclear generation. As highlighted in NERC’s 2014/2015 Winter Reliability Assessment, “increased reliance on gas-fired generation requires new approaches for assessing reliability.”

Recent events demonstrate the risks created by single source fuel dependency. For example, during the 2013 and 2014 winter season, the ISO-New England region lost more than 8,000 MW of gas-fired generation during its peak hour. Lack of fuel, stemming from non-Firm fuel delivery arrangements, forced a majority of these generators out of service. The Aliso Canyon incident provides further illustration, as this outage of a single underground gas storage facility in Southern California affects fuel supply to approximately 9,800 MW of generation at 18 power plants. The facility also supports ramping requirements to accommodate the variability of renewable energy resources. While being monitored, the continuing outages at Aliso Canyon have the potential to disrupt reliability in Southern California until the facility is fully operational or other measures mitigate the situation. As summarized in NERC’s Short-Term Special Assessment: Operational Risk Assessment with High Penetration of Natural Gas-Fired Generation, “[t]he electric sector’s growing reliance on natural gas raises concerns regarding the ability to maintain BPS reliability when facing constraints on the natural gas

27 Id.
28 Id. at p. 8.
29 Id. at p. 4, fig. 3.
delivery systems.”31 Later this fall, NERC plans to release additional analysis of the potential impacts to reliability from a large disruption on the natural gas system.

The Commission should consider policies that build upon its prior examination of electric–natural gas coordination to better calibrate the electric and gas industries and to help ensure fuel adequacy during both average and extreme conditions challenging fuel supply.32 These measures can begin to mitigate some of the risks created by single source fuel dependency. For example, the Commission could encourage firm transportation, multiple pipeline connections, and dual-fuel capability as these measures can reduce the risks from common-mode failures and wider-spread reliability challenges from fuel supply disruptions. Further, the Commission should consider requiring that resource adequacy assessments account for reliability ramifications associated with the “just-in-time” natural gas fuel delivery model. Finally, the Commission should consider whether it would be beneficial to pursue market rules that would provide assurances that generators will perform in normal and extreme circumstances.

31 Id. at p. 12.
32 See e.g., Request for Comments of Commissioner Moeller on Coordination between the Natural Gas and Electricity Markets, Docket No. AD12-12-000 (Feb. 3, 2012).
IV. CONCLUSION

Wherefore, for the reasons stated above NERC supports DOE and Commission efforts to recognize the reliability attributes provided by coal and nuclear generation and incentivize the development of such reliability attributes by other generation resources. Continued policy and market reform should maintain the existence of a balanced generation portfolio supporting a reliable and resilient electric grid.

Respectfully submitted,

/s/ Candice Castaneda

Charles A. Berardesco
Senior Vice President and General Counsel
Nina Jenkins Johnston
Senior Counsel
Candice Castaneda
Counsel
North American Electric Reliability Corporation
1325 G Street, N.W., Suite 600
Washington, DC 20005
(202) 400-3000
(202) 644-8099 – facsimile
charles.berardesco@nerc.net
nina.johnston@nerc.net
candice.castaneda@nerc.net

Counsel for the North American Electric Reliability Corporation

Date: October 23, 2017
CERTIFICATE OF SERVICE

I hereby certify that I have served a copy of the foregoing document upon all parties listed on the official service lists compiled by the Secretary in Docket No. RM18-1-000.

Dated at Washington, DC this 23rd day of October, 2017.

/s/ Courtney M. Baughan

Courtney M. Baughan
Senior Legal Assistant
North American Electric Reliability Corporation
1325 G Street, N.W., Suite 600
Washington, DC 20005
(202) 400-3000
courtney.baughan@nerc.net

Legal Assistant for the North American Electric Reliability Corporation
Exhibit A
Testimony of Gerry W. Cauley
President and Chief Executive Officer of the
North American Electric Reliability Corporation
“Powering America: Defining Reliability in a Transforming Electricity Industry”
“Powering America: Defining Reliability in a Transforming Electricity Industry”

September 14, 2017

Before the Subcommittee on Energy
House Committee on Energy and Commerce
U.S. House of Representatives
Washington, DC

Testimony of Gerry W. Cauley
President and Chief Executive Officer
North American Electric Reliability Corporation
SUMMARY

The electricity sector is undergoing significant change that is unprecedented for both its transformational nature and rapid pace, presenting new challenges and opportunities for reliability. With appropriate insight, careful planning, and support, the electricity sector can continue to navigate these changes in a manner that results in enhanced reliability and resilience. Even with all the changes underway, the bulk power system (BPS) remains highly reliable and resilient, showing improved reliable performance year over year.

About NERC and NERC’s Role in Evaluating BPS Reliability and Security
The North American Electric Reliability Corporation (NERC) is a private non-profit corporation certified by the Federal Energy Regulatory Commission (FERC) as the Electric Reliability Organization (ERO) for the United States. NERC reliability assessments evaluate the performance of the BPS, identify reliability trends, anticipate challenges, and provide a technical platform for important policy discussions. NERC’s analyses of system disturbances also provide critical insights.

Reliability and How the Changing Resource Mix Affects It
Adequate capacity must be maintained to serve firm load. It is important to understand and plan for the different operating characteristics of variable resources. These resources also contribute to reliability and resilience.

Changes occurring in the generation resource mix and new technologies are altering the operational characteristics of the grid and will challenge system planners and operators. Conventional baseload generation has important reliability attributes. Reliability of the electric grid depends upon the operating characteristics of replacement resources.

Learning from System Events – A Case Study
NERC’s analysis of a frequency excursion event in California revealed that protection settings on certain solar facility inverters caused erroneous tripping. This led to a recommendation to adjust the inverter settings. It is an example of NERC’s focus on identifying small, isolated events that could pose greater threats to reliability.

DOE Staff Report
The Department of Energy’s (DOE) recent staff report cites NERC’s assessments. Many topics, findings, and recommendations in the staff report are consistent with NERC’s work.

The Changing Resource Mix: NERC Recommendations

Baseload Retirements – Regulators and market operators should keep in mind the changing reliability aspects of the grid when considering resource needs, adequacy requirements, distribution-level interconnection requirements, and long-term resiliency.

Essential Reliability Services – All new resources should have the capability to support voltage and frequency. Policies and market mechanisms may not provide enough incentive or clarity.

Natural Gas Regulation and Markets – Regulators and policy makers should evaluate the natural gas regulatory framework for transportation priority and construction. Market operators should also evaluate whether market rules should be revised to provide assurances that generators will perform in normal and extreme circumstances.
Introduction

Good morning Chairman Upton, Ranking Member Rush, members of the subcommittee and fellow panelists. I am Gerry Cauley, President and Chief Executive Officer of NERC. On behalf of NERC, I appreciate the committee’s focus on reliability in a transitioning electricity industry.

The electricity sector is undergoing significant change that is unprecedented for both its transformational nature and rapid pace. Such extraordinary change presents new challenges and opportunities for reliability. Dramatic advances in technology, customer preferences, public policy, and market forces are altering the generation resource mix and challenging the conventional understanding of baseload power, traditionally provided by large generating units with low maintenance and forced outage rates. These changes also are pressuring regulatory policy, sometimes blurring the lines between federal and state jurisdiction. Within the North American continent, cross-border electricity trade between the United States, Canada, and Mexico requires enhanced cooperation. Security is yet another major challenge as the threat landscape becomes ever more complicated with the rise of malicious actors seeking to attack critical infrastructure through cyber warfare.

With appropriate insight, careful planning, and support, I am confident the electricity sector will continue to navigate these changes in a manner that results in enhanced reliability and resilience. Even with all the changes underway, the BPS remains highly reliable and resilient, showing improved reliable performance year over year. This record demonstrates the strong commitment to reliability by industry and all stakeholders, and the effectiveness of the model adopted by this committee in the Energy Policy Act of 2005.

1 The National Infrastructure Advisory Council provides this definition of “resilience” — “Infrastructure resilience is the ability to reduce the magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure or enterprise depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event.” This definition is cited in a NERC report, “Severe Impact Resilience: Considerations and Recommendations” (May 9, 2012).
2 See “State of Reliability 2017” (NERC, June 2017).
While these accomplishments are highly significant, I have learned from more than 35 years of experience that reliability requires constant vigilance. This is more true now than at any point in history. Working with FERC, DOE, industry, and numerous other stakeholders, NERC remains focused on identifying, assessing, and responding to reliability risks posed by change in the electricity sector. I am pleased to discuss NERC’s work to address this critical priority.

About NERC and NERC’s Role in Evaluating BPS Reliability and Security

NERC is a private non-profit corporation that was founded in 1968 to develop voluntary operating and planning standards for the users, owners and operators of the North American BPS. Pursuant to Section 215 of the Federal Power Act (FPA) (16 U.S.C. §824o) and the criteria included in Order No. 672 for designating an ERO, FERC certified NERC as the ERO for the United States on July 20, 2006. On March 16, 2007, FERC issued Order No. 693 which approved the initial set of reliability and security standards. These reliability standards became mandatory in the United States on June 18, 2007.

NERC develops and enforces reliability and security standards; annually assesses seasonal and long-term reliability; monitors the BPS through system awareness; and educates, trains, and certifies industry personnel. NERC performs a critical role in real-time situational awareness and information sharing to protect the electricity industry’s critical infrastructure against threats to the BPS. NERC’s responsibility spans the continental United States, Canada, and Mexico. Our jurisdiction includes users, owners, and operators of the BPS, which serves more than 334 million people.

Section 215(g) of the FPA requires NERC to assess the reliability and adequacy of the BPS. NERC reliability assessments evaluate the performance of the BPS, identify reliability trends, anticipate challenges, and provide a technical platform for important policy discussions. Each year, NERC assesses the overall reliability, adequacy, and associated risks that could impact the upcoming summer and winter seasons, and the long-term, 10-year period. As emerging risks and potential impacts to reliability are identified, NERC also conducts special assessments on focused reliability topics that provide a similar technical framework and insights.
By identifying and quantifying emerging reliability and security issues, we are able to provide risk-informed recommendations and support a learning environment for industry to pursue improved reliability performance. These recommendations, along with the associated technical analysis, provide the basis for actionable enhancements to resource and transmission planning methods, planning and operating guidelines, security, as well as NERC reliability and security standards. In short, NERC’s objective assessments provide critical insights necessary for assuring reliability and security of a rapidly changing electricity sector.

Reliability and How the Changing Resource Mix Affects It

The North American BPS is designed to be highly reliable, robust, and resilient. The system is interconnected, and the integrated networks work together to maintain reliability through both wide-area interregional planning and coordinated system operations. The adequacy of the system is maintained by having the right combination and amount of resources and transmission to deal with unexpected facility outages or extreme weather events. Operating reliability is maintained in real-time through highly coordinated operator actions across many operating companies. The system is also planned as many as 15 years in advance through highly detailed, complex, and data-intensive power system simulations.

The BPS resource mix is changing in fundamental ways. As some conventional baseload generation from coal and nuclear retires, variable energy resources – especially wind and solar – are rapidly expanding and capturing the majority share of new capacity additions. The balancing resource tends to be natural gas. It is essential to understand the implications of these trends in order to maintain reliability.

The changing resource mix can fundamentally impact reliability in two major ways:

3 NERC defines “reliable operation” in the following manner: “Operating the elements of the [Bulk-Power System] within equipment and electric system thermal, voltage, and stability limits so that instability, uncontrolled separation, or cascading failures of such system will not occur as a result of a sudden disturbance, including a cybersecurity incident, or unanticipated failure of system elements. See “Glossary of Terms Used in NERC Reliability Standards.”
• **Resource Adequacy** – A balancing authority responsible for managing the balance of demand and resources through unit commitment and forecasting must maintain sufficient capacity at all times to serve firm load.

• **Planning for Variable Resources** – It is important to understand and plan for the different operating characteristics of variable resources. These include planning for adequate essential reliability services, managing faster fault-clearing times, reduced oscillation dampening, and unexpected inverter action. Variable resources significantly diversify the generation portfolio and can contribute to reliability and resilience in important ways.

The rapid changes occurring in the generation resource mix and new technologies are altering the operational characteristics of the grid and will challenge system planners and operators. More specifically:

• **Impact of Retirements** – Conventional baseload electric generating units, such as coal and nuclear plants, provide frequency support services as a function of their large spinning generators and governor-control settings along with reactive support for voltage control. Power system operators use these services to plan and operate reliably under a variety of system conditions. These units also have relatively high availability rates and on-site fuel.

• **Replacement Resource Capability and Characteristics** – As the generation resource mix evolves, the reliability of the electric grid depends upon the operating characteristics of the replacement resources. Natural gas-fired units, variable generation, storage, and other resources can provide reliability services. However, as a practical matter, operating characteristics, economics, and market rules can affect whether these resources are equipped and available to provide reliability services. New generator and load resources must maintain the balance between load and generation, especially during ramping periods. In addition, in some areas, substantial amounts of generation is now being added “behind the meter” (e.g., rooftop solar). It will become increasingly important for system operators to have visibility into these resources.

Learning from System Events – A Case Study

NERC also gains considerable insight into reliability risk through analysis of system disturbances. An event last year in California is a recent example that is directly related to avoiding risk from the changing resource mix. It shows how NERC identifies and addresses a small problem today in order to avoid a potentially larger, more significant problem in the future.
On August 16, 2016, smoke from the Blue Cut wildfire in San Luis Obispo County, California, resulted in the tripping of two 500 kV lines in the active fire area. There was a noticeable frequency excursion with Peak Reliability reporting the loss of more than 1,000 MW across multiple renewable resources following these line outages. California ISO, Southern California Edison, and Peak Reliability confirmed that no conventional generators tripped, and that the near instantaneous loss of resources were all utility-scale renewables, primarily solar.

While the event did not rise to the level of a major disturbance by NERC criteria, the occurrence was significant and unusual because it is the first known major loss of renewable resources due to a transmission system disturbance. Subsequent analysis of this event determined that the protection settings on the solar facility inverters caused erroneous tripping. In response, manufacturers of inverters that experienced this type of tripping during the event have recommended a change in their inverter settings to avoid this issue. This recommendation calls for the addition of a time delay to their frequency tripping settings. This will allow the inverter to “ride through” the transient/distorted waveform period without tripping.

NERC has taken two additional actions in response to the Blue Cut wildfire event. In June, we published a report prepared by a joint task force of NERC, the Western Electricity Coordinating Council, FERC, and involved entities to analyze this disturbance, determine the causes, and develop key findings and recommendations.4 We also issued a public Level II NERC Alert to industry. This alert – which requires a response – provides specific actions that NERC registered entities should consider taking to address this particular issue. NERC’s work following this event is an example of detecting “faint signals” – identifying small, isolated events that could pose greater threats to reliability.

DOE Staff Report

DOE’s recent study, “Staff Report to the Secretary on Electricity Markets and Reliability,” cites NERC’s assessments throughout the reliability and resilience chapter. We appreciate DOE’s focus on reliability and resiliency as well as recognition of NERC’s long time work on these issues. Many topics, findings, and recommendations in the staff report are consistent with NERC’s work.

Specifically, as conventional resources retire, essential reliability services much be maintained. Voltage control, frequency support and ramping capability must be provided based on the configuration and needs of the system. Reliable operation of the grid depends upon these characteristics.

As an enhanced yardstick of reliability, resilience is reflected throughout NERC’s programs. For instance, NERC’s definition of “adequate level of reliability” includes a performance outcome providing for expeditious recovery from major system disturbances. NERC has a family of emergency preparedness and operations standards covering such topics as blackstart capability, system restoration coordination, and geomagnetic disturbance operations. NERC published a report on severe impact resilience and has collaborated with FERC and regional entities on industry’s response and recovery plans.

The combination of growth in natural gas demand within the electricity sector and its changing status among the gas-consuming sectors continues to increase significantly the interdependencies between the natural gas and electricity industries. Real-time delivery of natural gas through a network of pipelines and bulk gas storage is critical to support electric generators. It is also important to evaluate the impacts of a loss of major pipeline infrastructure. NERC has examined natural gas and electricity interdependencies in detail and has developed recommendations for the power industry.

DOE’s staff report also recommends expanded cooperation on grid reliability with Canada and Mexico. Cross-border interconnections require shared priorities for reliability and security throughout North America. Consistent with a set of principles signed in 2005 by DOE and Canadian provincial and federal counterparts, NERC is structured as an international organization. Under memoranda of understanding or other agreements with authorities in each province, NERC standards are adopted and enforced under provincial laws. In addition to strong

5 See Emergency Preparedness and Operations Standards.
8 See “Accommodating an Increased Dependence on Natural Gas for Electric Power” (NERC, 2013).
collaboration with Canadian provincial and federal government stakeholders, NERC works extensively with Canadian industry on reliability and security matters, and has partnered with DOE on numerous relevant efforts. In March, NERC signed a memorandum of understanding (MOU) with government authorities in Mexico to advance shared reliability priorities as Mexico implements comprehensive electricity reforms. NERC expects that Mexico will become a full participant, on par with the United States and Canada, as the implementation of the MOU is fully realized over the next several years.

The Changing Resource Mix: NERC Recommendations

As detailed above, NERC continually assesses the reliability of the BPS to evaluate system performance, identify trends, assist policymakers, and promote a learning environment. NERC’s event analysis group also supports these objectives through detailed examination of system disturbances. Based upon this recent work, NERC has formulated recommendations related to the changing resource mix. For additional findings and recommendations, the appendix includes references to recent NERC assessments.

Baseload Retirements – State regulators and market operators should keep in mind the changing reliability aspects of the grid when considering resource needs, adequacy requirements, distribution-level interconnection requirements, and long-term resiliency. States and FERC should continue review of the economic and policy issues impacting fuel secure baseload generation in order to plan for and identify reliability implications of these retirements. States and FERC should ensure that required reliability characteristics are considered when identifying future reliability and capacity needs.

Essential Reliability Services – All new resources should have the capability to support voltage and frequency. Some variable energy resources and storage technologies can contribute to essential reliability services. Policies and market mechanisms may not provide enough incentive or clarity to ensure these services are maintained across the system. Regional transmission organizations and independent system operators and FERC have taken steps in this direction, which should continue.
Natural Gas Regulation and Markets – Regulators and policy makers should evaluate whether the natural gas regulatory framework for transportation priority and construction is compatible with the requirements of the changing BPS. Market operators should also evaluate whether market rules should be revised to provide assurances that generators will perform in normal and extreme circumstances.

Conclusion
The transitioning electricity sector poses challenges and opportunities for reliability. Retirements of baseload generation and the addition of greater variable resources are altering the operating characteristics of the grid. A significant influx of natural gas generation raises unique considerations for fuel delivery and dependence. To address the challenges and capitalize upon the benefits of a more diverse resource mix, industry stakeholders and policymakers must understand and plan for the implications of the ongoing evolution. With a focus on these challenges, the grid can become even more reliable and resilient. Throughout this transition, NERC plays a critical role in identifying, assessing, and addressing risks to help navigate the transition reliably. The Subcommittee is asking highly salient questions that are central to the nation’s energy future and prosperity. I appreciate the opportunity to share NERC’s perspective and expertise.
APPENDIX

This appendix includes summaries of recent NERC assessments which provide additional findings and recommendations.

Distributed Energy Resources: Connection, Modeling, and Reliability Considerations
(February 2017)
Increasing amounts of distributed energy resources can change how the distribution system interacts with the BPS and will transform the distribution system into an active source for energy and essential reliability services. Attention must be paid to potential reliability impacts, the time frame required to address reliability concerns, coordination of essential reliability services and system protection considerations for both the transmission and distribution system, and the growing importance of information sharing across the transmission-distribution interface.

2016 Long-Term Reliability Assessment
(December 2016)
NERC prepares seasonal and long-term assessments to examine current and future adequacy and operational reliability of the North American BPS. NERC’s primary objective with this assessment is to assess resource and transmission adequacy across the NERC footprint, and to assess emerging issues that have an impact on BPS reliability over the next ten years.

A Concept Paper on Essential Reliability Services that Characterizes Bulk Power System Reliability, NERC
(October 2014)
Conventional generation with large rotating mass (steam, hydro, and combustion turbine technologies) provide necessary operating characteristics, defined as essential reliability services, needed to operate the North American electric grid reliably. Essential reliability services represent a necessary and critical part of the fundamental reliability functions that are vital to ensuring reliability. They are key services and attributes that are needed to maintain operating reliability—primarily voltage and frequency support. Many of these services and attributes are provided by baseload conventional generating plants; however, as the resource mix changes, essential reliability services must be maintained.

Accommodating an Increased Dependence on Natural Gas for Electric Power
(May 2013)
The combination of growth in natural gas demand within the electricity sector and its changing status among the gas-consuming sectors continues to significantly increase the interdependencies between the gas and electricity industries. As a result, the interface between the two industries has become the focus of industry discussions and policy considerations. In its effort to maintain and improve the reliability of the North American BPS, NERC examined this issue in detail and developed recommendations for the power industry. These recommendations will help improve existing coordination between the gas and electricity sectors and facilitate the reliable operation of the two industries.
Exhibit B
Synopsis of NERC Reliability Assessments
The Changing Resource Mix and the Impacts of Conventional Generation Retirements
May 9, 2017

The Honorable Rick Perry
Secretary
U.S. Department of Energy
1000 Independence Avenue
Washington, DC 20585-1000

Dear Secretary Perry:

The North American electric power system is undergoing a significant transformation with ongoing retirements of fossil-fired and nuclear capacity, while at the same time, experiencing growth in capacity fueled by natural gas, wind, and solar. This shift is caused by several drivers, such as federal, state, and provincial policies, low natural gas prices, electricity market forces, and integration of both distributed and utility-scale renewable resources. The changing resource mix is altering the operating characteristics of the bulk power system (BPS). In order to assure continued reliability, these changing characteristics must be well understood and properly managed. Understanding that the Department of Energy is reviewing these reliability matters, the accompanying document summarizes NERC’s recent work in this area.

The North American Electric Reliability Corporation (NERC) has important responsibilities under federal law to assess the reliability of the BPS. NERC annually assesses seasonal and long-term reliability of the BPS and conducts special assessments relating to issues potentially impacting the reliable operation of the grid. The assessments summarized focus on the impacts from the changing resource mix on the reliability of the BPS, including increased dependency on natural gas, operating characteristics (essential reliability services) and distributed energy resources. By identifying and quantifying the impacts from emerging reliability concerns, NERC is able to provide risk-informed recommendations for their mitigation and support a learning environment for industry.

NERC is an independent, non-profit organization with a single focus on assuring the reliability and security of the grid. We have a strong partnership with DOE and can be a resource as you move forward on numerous policy initiatives.

I look forward to meeting with you on May 18 to discuss critical grid reliability and security issues, and our partnerships with DOE. I thank you for your attention to reliability and look forward to our discussion. In the meantime, please contact Mr. Fritz Hirst (fritz.hirst@nerc.net), NERC’s Director of Legislative and Regulatory Affairs, with any questions.

Respectfully,

Gerry Cauley
President and CEO
Synopsis of NERC Reliability Assessments
The Changing Resource Mix and the Impacts of Conventional Generation Retirements

Introduction
The North American electric power system is undergoing a rapid and significant transformation with ongoing retirements of fossil-fired and nuclear capacity, as well as growth in natural gas, wind, and solar resources. This shift is caused by several drivers, such as federal, state, and provincial policies, low natural gas prices, electricity market forces, and integration of both distributed and utility-scale renewable resources. The changing resource mix is altering the operating characteristics of the bulk power system (BPS). These changing characteristics must be well understood and properly managed in order to assure continued reliability and ensure resiliency.

Voltage control, frequency support, and ramping capability are essential to maintaining BPS reliability. Through this transition, policy makers and stakeholders must recognize the need to maintain these essential reliability services. It is also necessary to assure resilience measures, such as maintaining fuel diversity and new technologies that work with, not against, the BPS.

Growing reliance on natural gas continues to raise reliability concerns regarding the ability of both gas and electric infrastructures to maintain the BPS reliability at acceptable levels. Many efforts have focused on the gas-electric interface and yet, insufficient progress has been made reconciling the planning approaches and operating practices (scheduling situation awareness, information sharing) between these two inter-linked sectors. Planning approaches, operational coordination, and regulatory partnerships are needed to assure fuel deliverability, availability, security (physical and cyber), and resilience to potential disruptions. Unfortunately, an approach not obvious in electricity markets today.

Reliability and How the Changing Resource Mix Affects It
The North American BPS is designed to be a highly reliable, robust, and resilient system. The system is interconnected, and the integrated networks work together to maintain reliability through both wide-area interregional planning and coordinated system operations. The adequacy of the system is maintained by having the right combination and amount of resources and transmission to deal with unexpected facility outages or extreme weather events that increase system demand. Operating reliability is maintained in real-time through highly coordinated operator actions across many operating companies. The system is also planned as many as 15 years in advance by performing highly detailed, complex, and data-intensive power system simulations.

The resource mix of the BPS is changing in fundamental ways. Variable energy resources, especially wind and solar) are rapidly expanding and capturing the majority share of new capacity additions. Conventional generation (such as coal and nuclear) are retiring and have become economically

NERC defines the reliability of the interconnected BPS in terms of two basic and functional aspects:

Adequacy — The ability of the electric system to supply the aggregate electric power and energy requirements of the electricity consumers at all times, taking into account scheduled and reasonably expected unscheduled outages of system components.

Operating Reliability — The ability of the electric system to withstand sudden disturbances to system stability or unanticipated loss of system components.
The balancing resource tends to be natural gas as environmental rules and commodity economics tend to make oil fired generation uneconomic. Development of hydro-electric resources, a major energy source in some parts of the country such as the west, is extremely challenging. The confluence of the changing resource mix can fundamentally impact reliability in two major ways:

- A Balancing Authority responsible for managing the balance of demand and resources through unit commitment and forecasting may become capacity deficient and unable to serve firm load. Resources may not be available when needed, particularly those that have not secured on-site fuel. In that instance, manual load shedding may be required to maintain reliability.

- Large unanticipated voltage or frequency deviations during a disturbance can lead to uncontrolled, cascading instability. With no mass, moving parts, or inertia, increasing amounts of inverter-based resources (such as solar photovoltaic) present new risks to reliability, such as managing faster fault-clearing times, reduced oscillation dampening, and unexpected inverter action.

The rapid changes occurring in the generation resource mix and technologies are altering the operational characteristics of the grid and will challenge system planners and operators to maintain reliability. More specifically:

- Impact of Premature Retirements: Conventional units, such as coal plants, provide frequency support services as a function of their large spinning generators and governor-control settings along with reactive support for voltage control. Power system operators use these services to plan and operate reliably under a variety of system conditions, generally without the concern of having too few of these services available. Coal-fired and nuclear generation have the added benefits of high availability rates, low forced outages, and secured on-site fuel. Many months of on-site fuel allow these units to operate in a manner independent of supply chain disruptions.

- Replacement Resource Capability and Characteristics: As the generation resource mix evolves, the reliability of the electric grid depends on the operating characteristics of the replacement resources. Natural gas-fired units, variable generation, storage, and other resources can provide similar reliability services. However, as a practical matter, costs, market rules, or regulatory requirements (or lack thereof) can affect whether these resources are equipped and available to provide reliability services. To ensure reliability, new generator and load resources must maintain the balance between load and generation, especially during ramping periods. In addition, in some jurisdictions, substantial amounts of generation is now being added “behind the meter” (e.g., roof top solar) and these resources are invisible to system operators.

NERC and the ERO-Enterprise’s Role in Evaluating BPS Reliability
A comprehensive understanding of the complexity of the changing BPS is key to developing effective approaches for achieving reliability and resiliency. The North American Electric reliability Corporation (NERC) and eight regional Entities (the RE’s, or collectively the ERO-Enterprise) are charged with assuring the reliability of the BPS. NERC and RE experts work with industry leaders to create a reliability strategy that is relevant, timely, and effective with regard to addressing the highest priority reliability risks. The ERO-Enterprise maintains a technical framework and understanding of the reliability threats facing our industry and uses those insights to communicate guidance and information to entities and policy-makers across North America to enhance reliability. It accomplishes this through its own engineering and analytical efforts, as well as through marshaling stakeholder resources with subject matter expertise.

Our Reliability Assessments provide a technical platform for important policy discussions on challenges facing the interconnected North American BPS. Each year, the ERO-Enterprise independently assesses and reports on the overall reliability, adequacy, and associated risks that could impact the upcoming summer and winter seasons and the long-term, 10-year period. As emerging risks and potential impacts to reliability are identified, special assessments are conducted that provide similar technical framework and insights about the range and specific aspects of these to guide steps that may be warranted. Unbiased judgment of industry’s plans for maintaining
electric reliability in the future is founded on solid engineering through collaborative and consensus-based assessments.

By identifying and quantifying emerging reliability issues, we are able to provide risk-informed recommendations and support a learning environment for industry to pursue improved reliability performance. These recommendations, along with the associated technical analysis, provide the basis for actionable enhancements to resource and transmission planning methods, planning and operating guidelines, and NERC Reliability Standards.

The Reliability Assessment group conducts evaluations and reports that fulfill the statutory requirements of Section 215 in the Energy Policy Act of 2005.

Summary of Overarching Key Findings
As a common thread in each of our Reliability Assessments, the most pressing reliability issues in North America are:

- As conventional resources prematurely retire, sufficient amounts of essential reliability services, such as frequency and voltage support, ramping capability, etc., must be replaced based on the configuration and needs of the system.

- Resource flexibility is needed to supplement and offset the variable characteristics of solar and wind generation.

- Higher reliance on natural gas exposes electric generation to fuel supply and delivery vulnerabilities, particularly during extreme weather conditions. Maintaining fuel diversity and security provides best assurance for resilience. Premature retirements of fuel secure baseload generating stations reduces resilience to fuel supply disruptions.

- Because the system was designed with large, central-station generation as the primary source of electricity, significant amounts of new transmission may be needed to support renewable resources located far from load centers.

Summary of Recommendations
Three overarching recommendations for policy makers and stakeholders are the focus of our most recent reliability assessments:

- State regulators and market operators should give due consideration to the changing reliability aspects of the grid when considering resource needs, adequacy requirements, distribution-level interconnection requirements, and long-term resiliency. States and FERC should immediately review the economic and policy issues impacting fuel secure baseload generation in an effort to limit early closure of existing assets. States and FERC should ensure that required reliability characteristics are giving consideration when identifying future reliability and capacity needs.

- Regulators and policy makers should evaluate whether the natural gas regulatory framework for transportation priority and construction is compatible with the requirements of the changing BPS, which has significant amounts of natural gas generation, along with identifying a transition plan that provides certainty in the long-term. Market operators should also evaluate whether market rules should be revised to provide assurances that generators will perform in normal and extreme circumstances.
• NERC should conduct a comprehensive evaluation of its Reliability Standards to ensure compatibility with large amounts of non-synchronous resources, as well as for completeness of expectations related to essential reliability services, generator performance, and balancing. This review should include both non-synchronous resources connected directly to the BPS and distributed energy resources connected to the distribution system.

Key Concepts from NERC Reliability Assessments

• What makes “baseload” generation so important for reliability?
There is a distinction between baseload generation and the characteristics of generation providing reliable “baseload” power. Baseload is a term used to describe generation that falls at the bottom of the economic dispatch stack, meaning they are the most economical to run. Coal and nuclear resources, by design, are designed for low cost O&M and continuous operation. However, it is not the economics nor the fuel type that make these resources attractive from a reliability perspective. Rather, these conventional steam-driven generation resources have low forced and maintenance outage hours traditionally and have low exposure to fuel supply chain issues. Therefore, “baseload” generation is not a requirement; however, having a portion of a resource fleet with high reliability characteristics, such as low forced and maintenance outage rates and low exposure to fuel supply chain issues, is one of the most fundamental necessities of a reliable BPS. These characteristics ensure that “baseload” generation is more resilient to disruptions.

• What are the reliability benefits of having a diverse resource portfolio?
Fuel diversity provides a fundamental benefit of increased resilience. Without this diversity, the impact of rare events impacting availability of resources on the power system increases and are more likely the result of a common-mode failure impacting multiple generation or transmission facilities (e.g., extreme and prolonged cold weather event leads to freezing generator components, transmission line icing, fuel delivery disruption, etc.). Areas with limited fuel and/or limited resource diversity may be challenged and should increase their attention to resiliency planning, which requires a strong partnership with state regulators. With natural gas generation primed to continue its growth as the leading choice for new and replacement capacity, important distinctions around fuel security need to be incorporated into reliance and long-term planning at states and with market operators. Mainly, natural gas generation is fueled using just-in-time transportation and delivery, and therefore, is subject to interruption. Roughly 50 percent of natural gas generation resources are considered interruptible, and in constrained natural gas markets these units are not expected to be served during peak pipeline conditions. Many of these plants no longer have the option of burning a liquid fuel. Further, regardless of fuel service arrangements, natural gas generation is subject to curtailment during a force majeure event.

• What are the challenges with natural gas generation becoming more “baseload?”
Natural gas provides “just-in-time” fuel; therefore, disruptions to the fuel supply can impact multiple generators that may be connected to the same supply chain. Firm transportation, multiple pipeline connections, and dual-fuel capability can significantly reduce the risk of common-mode failure and widespread reliability challenges. As part of future transmission and resource planning studies, planning entities will need to more fully understand how impacts to the natural gas transportation system can impact electric reliability. This level of reliability is not only needed to produce electricity during “average” conditions, but during extreme conditions where fuel supply chains can breakdown or fail. Additionally, since natural gas does not generally have on-site storage, its supply is threatened to disruption by pipeline failure that potentially can lead to the loss of a substantial amount of capacity and threaten the adequacy of the electric system. Regulatory action may be needed to better calibrate electric and gas industries due to regulatory differences in how infrastructure is planned with reliability given due consideration.

Two major trends are contributing to changes in generator performance: 1) the retirement of large coal and nuclear generation and 2) the addition of large amounts of solar and wind resources. Natural gas generation can be a very flexible resource—particularly combustion turbines. The ability to balance the variability of
Solar and wind resources make them very attractive. However, the more they are being used as a “baseload” resource (i.e., higher capacity factor), the less they can be used to provide flexibility to the system. Additionally, as cycling increases, generator’s experience higher forced outage rates and require more maintenance. This is a common challenge with all thermal-based conventional generation.

Finally, expansion of natural gas and its transition from a “supplemental resource” to the “primary resource” is creating challenges. Natural gas infrastructure has proven to be reliable, but not designed to meet the electric sector needs. Natural gas infrastructure is optimized for economics, not reliability. As a result, it tends to be based on large single elements. When problems occur with major elements, they can significantly disrupt the power system. For example, the operational challenges faced by the BES, and specifically the Los Angeles and greater Southern California area due to the loss of the Aliso Canyon gas storage facility. Also, a major disruption on a key pipeline could also interrupt fuel supply for thousands of megawatts of generation, because it is a common-mode element.

• How do resource mix changes impact the pace at which infrastructure can be developed?

From an adequacy perspective, the existing transmission system was planned and designed to support the existing generation fleet, which is comprised mostly of larger, central-station electric generation. Therefore, accommodating new resources, particularly those located in areas different from the existing fleet, transmission lines, facilities, and/or other transmission elements will likely be necessary. Generation retirements can happen quickly, but adequate replacement facilities must be in-service prior to retirement.

The lead times required and associated uncertainties for the planning, engineering, permitting, and construction of new generating resources, transmission facilities, and fuel infrastructure adds complexity to the pace at which new facilities can be built. Uncertainty in the timing of such resource decisions and the ability to construct the necessary energy infrastructure to implement those decisions stems from the following factors:

• The addition of new generating resources can take several years to permit and construct. There will be a range of time periods depending on the circumstances related to each project, including regulatory approvals at various state, municipal, county, federal, and provincial levels, secured financing and fuel supply chain, and the availability of construction crews and equipment.

• Changes to resources (such as retirements or new generation) can require a need for additional electric transmission infrastructure. Such transmission can require many years to permit and construct, typically longer than generation construction, and timing will depend on the facts and circumstances of each project.

• Where new or repowered generating resources are dependent on natural gas as a fuel, there will be a requirement for additional gas pipeline infrastructure. Depending on the location of the plant relative to interstate gas pipelines, plant-specific gas infrastructure will require several years to permit and construct. The resource decisions of neighboring states can also impact the transmission infrastructure required to maintain reliability within a given state.

Reliability Assessments from NERC and the Regional Entities

• **2016 Long-Term Reliability Assessment, NERC (December 2016)**

Summary: NERC prepares seasonal and long-term assessments to examine current and future adequacy and operational reliability of the North American BPS. NERC’s primary objective with this assessment is to assess resource and transmission adequacy across the NERC footprint, and to assess emerging issues that have an impact on BPS reliability over the next ten years.
Key Findings:

- **Resource Adequacy:** Factors that are included when performing a resource adequacy assessment include a reserve margin analysis and the study of emerging reliability issues that can impact generation and demand projections. The results of this study identified four assessment areas as having a medium resource adequacy risk in the first five years of the assessment period.

- **Single-Fuel Dependency:** NERC has identified that reliance on a single fuel increases vulnerabilities, particularly during extreme weather conditions. Over the past decade, several areas have significantly increased their dependence on natural gas. This trend has continued amidst historically low natural gas prices and regulatory rulings that continue to promote increased natural gas generation. The Aliso Canyon outage in Southern California illustrates the effects of a potential single point of disruption. This one underground gas storage facility in SoCal Gas’ service territory contains 86 BCF of gas capacity, providing fuel to approximately 9,800 MWs of electric generation. The facility also supports ramping requirements to accommodate the variability of renewable energy resources. This outage has the potential to cause rolling black outs in Southern California until the facility is completely operational again or other mitigation approaches have been employed.

- **Nuclear Uncertainty:** Low natural gas prices continue to affect the competitiveness of nuclear generation and are a key contributing factor to nuclear generation’s difficulty in remaining economic with competing fuel sources. While new nuclear facilities are being built in Georgia, Tennessee, and South Carolina, potential retirements have been announced for nuclear facilities in Illinois, California, Nebraska, Massachusetts, and New York, creating longer-term uncertainty for system planners.

- **Distributed Energy Resources:** Increasing installations of distributed energy resources modify how distribution and transmission systems interact with each other. Many utilities currently lack sufficient visibility and operational control of these resources, increasing the risk to BPS reliability. This visibility is a crucial aspect of power system planning, forecasting, and modeling that requires adequate data and information exchanges across the transmission and distribution interface.

Recommendations:

- As the resource mix changes, the need for more investments in transmission and natural gas infrastructure is projected. The lengthy lead times involved in acquiring, siting, and permitting for infrastructure should also be considered when assessing reliability impacts.

- As natural gas-fired resources continue to increase, system planners, and operators should evaluate the potential effects of an increased reliance on natural gas on BPS reliability. As part of future transmission and resource planning studies, planning entities will need to more fully understand how impacts to the natural gas transportation system can affect electric reliability.

- Regulators and legislators should consider the uncertainties in resource retirements and resource mix changes projected by resource planners. The implementation of a regulatory framework (e.g., interconnection requirements) that helps ensure an adequate level of essential reliability services could help to address these uncertainties.

Letter from Jim Robb (CEO WECC) to Michael Picker, President of the CPUC (appendix to this document)
A Concept Paper on Essential Reliability Services that Characterizes Bulk Power System Reliability, NERC (October 2014)

Summary: Conventional generation with large rotating mass (steam, hydro, and combustion turbine technologies) provide necessary operating characteristics, defined as essential reliability services, needed to reliably operate the North American electric grid. Essential reliability services represent a necessary and critical part of the fundamental reliability functions that are vital to ensuring reliability. They are key services and attributes that are needed to maintain operating reliability—primarily voltage and frequency support. Many of these services and attributes are provided by baseload conventional generating plants; however, as the resource mix changes, NERC must ensure that essential reliability services are maintained.

Key Findings:
- Generating resources need to be able to provide voltage control, frequency support, and ramping capability as essential reliability services to balance and maintain the electric grid. Without these characteristics, the grid could not be operated reliably.
- Federal, state, and local jurisdictional policy decisions have a direct influence on changes in the resource mix and can also affect the reliability of the electric grid. As resources retire, in addition to replacing lost capacity, it is necessary for policy decisions to recognize the need for essential reliability services from the current and future mix of resources.
- Some variable energy resources and storage technologies can contribute to essential reliability services; however, policies and market mechanisms may not provide enough incentive or clarity to ensure these services are maintained across the system.

Recommendations:
- All new resources should have the capability to support voltage and frequency. Ensuring that these capabilities are present in the future resource mix is prudent and necessary.
- Monitoring of the essential reliability services measures, investigation of trends, and use of recommended industry practices will highlight aspects that could become reliability concerns if not addressed with suitable planning and engineering practices.
- Distributed energy resources will increasingly impact the planning and operation of the grid. The task force recommends further examination of the forecasting, visibility, and participation of distributed energy resources as an active part of the electric grid.

Multi-Media Link: https://vimeopro.com/nerclearning/erstf-1
Distributed Energy Resources: Connection, Modeling, and Reliability Considerations, NERC (February 2017)

Summary: Increasing amounts of distributed energy resources can change how the distribution system interacts with the BPS and will transform the distribution system into an active source for energy and essential reliability services. Attention must be paid to potential reliability impacts, the time frame required to address reliability concerns, coordination of essential reliability services and system protection considerations for both the transmission and distribution system, and the growing importance of information sharing across the transmission-distribution interface.

Key Findings:

- **Modeling and Data Requirements:** The effect of aggregated distributed energy resources is not fully represented in BPS models and operating tools. This could result in unanticipated power flows and increased demand forecast errors.

- **Frequency and Voltage Ride-Through:** Distributed energy resources are not coordinated with the voltage and frequency ride-through requirements of NERC Reliability Standard PRC-024-2.

- **System Protection:** Distributed energy resources are not completely coordinated with under frequency load shedding (UFLS) and under voltage load shedding (UVLS) programs or other system protection measures. High levels of distributed energy resources with inverters can also result in a decline in short circuit current, which can make it more difficult for protection devices to detect and clear system faults.

Recommendations:

- **Guidelines:** The Distributed Energy Resources Task Force recommends that a set of guidelines be developed to assist in modeling and assessments, such that owners and operators of the BPS can account for the impact of distributed energy resources.

- **Data Sharing:** Data requirements and sharing of information across the transmission-distribution interface should be further evaluated to allow for adequate assessment of future distributed energy resources deployments.

- **Modeling:** Based on reliability considerations for modeling purposes, generation from distributed energy resources should not be netted with load as penetration increases. Load and distributed energy resources should be explicitly modeled in 1) steady-state power flow and short-circuit studies and 2) dynamic disturbance ride-through studies and transient stability studies for BPS planning with a level of detail that is appropriate to represent the aggregate impact of distributed energy resources on the modeling results over a five- to 10-year planning horizon.

- **Coordination:** A coordinated effort by transmission and distribution entities is needed to determine the appropriate use of future distributed energy resources capabilities (such as settings available under proposed IEEE 1547 revisions). This must be coordinated with voltage and frequency ride-through performance and potentially coordinated with UFLS programs and BPS performance under PRC-024. Note that PRC-024 was developed with BPS issues in mind and where PRC-024-2 and desired distribution-level protection and operations conflict, the transmission and distribution utilities will need to coordinate the required distributed energy resources ride-through settings to meet BPS reliability needs while minimizing distribution impact.

• **Western Interconnection Flexibility Assessment, WECC (December 2015)**

Summary: With growing penetrations of renewable resources, new challenges will arise for resource planners and operators. The report assesses the ability of the fleet of resources in the Western Interconnection to accommodate high renewable penetrations while maintaining reliable operations. Higher penetrations of renewable generation will test the flexibility of the electric systems by requiring individual power plants to operate in fundamentally new ways, changing operating practices as well as the dynamics of wholesale power markets.

Wind and solar resources, which will likely account for a significant share of the additional renewable generation in the Western Interconnection, are characterized by three key attributes that have important implications for power system operations:

- **Variability:** production changes from moment to moment, and from hour to hour;
- **Uncertainty:** production over a given period of time cannot be predicted with perfect accuracy; and
- **Concentration:** production is highly concentrated during certain hours of the year in which the resource is available.

As the penetrations of variable renewable resources in the Western Interconnection continue to increase, planners must confront the question of how to build and operate a reliable system in which a large portion of the energy available has these qualities.

Key Findings:

- The analysis conducted in this study identifies no technical barriers to the achievement penetrations of renewable generation of up to 40 percent of total supply in the Western Interconnection.
- Because the penalty prices for unserved energy and curtailment prioritize load service over the delivery of renewable generation, renewable curtailment is the key indicator of a system that is constrained in its ability to integrate renewables.
- Routine, automated renewable curtailment is a fundamental necessity to electric systems at high renewable penetrations, as it provides operators with a relief valve to manage net load conditions to ensure a system can be operated reliably at increasing penetrations. Renewable curtailment is identified as the “default solution” to flexibility challenges as it represents a last recourse for system operators—prior to shedding load—once the flexibility of the existing traditional dispatchable system has been exhausted. However, there are many options for alternative strategies that, if identified and deployed in advance, can provide operators with additional flexibility and mitigate the need to curtail renewable generation.
- While renewable curtailment is identified as the predominant challenge in operations at high renewable penetrations, its magnitude can be mitigated through efficient coordination of operations throughout the Western Interconnection.

Recommendations:

- To facilitate increased coordination in operations, the report recommends increased regional coordination and scheduling, investments in energy storage technologies, and investments in flexible gas generation.
- System operators must fully understand the conditions and circumstances under which renewable curtailment is necessary or desirable.
- The consequences of extended periods of negative pricing must be examined and understood.
Accommodating an Increased Dependence on Natural Gas for Electric Power, NERC (May 2013)

Summary: The combination of growth in natural gas demand within the electricity sector and its changing status among the gas-consuming sectors continues to significantly increase the interdependencies between the gas and electricity industries. As a result, the interface between the two industries has become the focus of industry discussions and policy considerations. In its effort to maintain and improve the reliability of the North American BPS, NERC examined this issue in detail and developed recommendations for the power industry. These recommendations will help improve existing coordination between the gas and electricity sectors and facilitate the reliable operation of the two industries.

Key Findings:

- Gas use is expected to continue to increase in the future, both in absolute terms and as a share of total power generation and capacity. Unlike coal and fuel oil, natural gas is not easily stored on-site. As a result, real-time delivery of natural gas through a network of pipelines and bulk gas storage is critical to support electric generators.

- Natural gas is widely used outside the power sector, and the demand from other sectors—particularly coincident end-user gas peak demand during cold winter weather—critically affects the ability to deliver interruptible transportation service in the power sector. Additionally, demand for natural gas is expected to grow in other sectors (e.g., transportation, exports, and manufacturing).

- While extremely rare, disruptions in natural gas supply and/or transportation to power generators have prompted industry to seek an understanding of the reliability implications associated with increasing gas-fired generation. Contracts for firm natural gas supply and transportation affect the risk profile of each power plant (or group of power plants).

- Natural gas is expected to play a growing role in offsetting the variability and uncertainty associated with renewable resources. As variable generation increases, swings in variable generation may call for dispatch of gas-fired generation at a larger and less predictable rate.

Recommendations:

Policy makers, market operators, and asset owners should consider factors that reduce risk, such as:

- **Maintaining Alternative Fuel Capabilities**: Evaluate capabilities across generator fleet, maintain back-up fuel inventories at key stations, and annually test fuel switching capability.

- **Enhancing Market and Regulatory Rules**: Provide additional incentives for behavior and investments that support reliability and resiliency.

- **Evaluating Single Points of Disruption**: Assess reliability under extreme conditions, loss of major pipeline infrastructure, or supply.

- **Continuing Pipeline Expansion**: Keep pace with generation expansion and increasing electricity production.

- **Limiting Exposure to Supply Chain Failures**: Increase resiliency by maintaining alternative supply chains and paths.

- **Maintaining Situational Awareness**: Electric system operators need awareness of pipeline conditions and must be able to predict generators that may become unavailable.
• **Communicating Risks to Policymakers:** Results and conclusions of studies that evaluate electric reliability should be shared and clarified with policymakers and regulators.

• **Maintaining Fuel Diversity:** Maintaining fuel diversity provides inherent resiliency to common-mode risk.

MEMO

Date: June 22, 2016
To: Michael Picker, President of the California Public Utilities Commission
Subject: WECC Electric Reliability Analysis of Issues Related to Aliso Canyon

President Picker:

I am responding to your request that WECC provide its view of the reliability issues created by the situation at the Aliso Canyon natural gas storage facility. As you know, WECC is the Regional Entity responsible for assuring the reliability of the Bulk Electric System in the Western Interconnection. The limited ability to draw from Aliso Canyon is likely to cause electric generation fuel supply challenges in Southern California. During this challenging energy supply situation, WECC’s chief concern will be that the reliability of the broader interconnection is protected. To this end, WECC conducted an independent assessment of potential impacts to the electric system resulting from potential fuel limitations in Southern California stemming from the Aliso Canyon issues. In this letter I highlight some of the key takeaways from that analysis and would like to express our appreciation for the transparency and collaboration taking place among affected entities.

We performed two types of analyses: a resource adequacy assessment to determine whether the Interconnection has enough generation to support Southern California’s needs, and a series of power system contingency analyses to understand how the entire system performs under different stressors. Overall, our studies showed no major Interconnection-wide impacts but did reveal important operational considerations for Southern California.

A key element to preserving electric reliability in Southern California is the ability to supply an adequate level of imports to support its needs under a range of conditions. To study this, we used our established annual resource adequacy assessment with assumptions changed to reflect potential local supply conditions in Southern California this summer. The study showed adequate generation across the Interconnection to supply Southern California in all but the most extreme scenarios. It is important to note that this type of study assumes that generating resources are available to generate when called upon and that the power can get to where it needs to go—it does not address restrictions in deliverability.

To address deliverability, WECC regularly uses advanced study tools to identify system stability power flow issues. We used this capability to study the potential operational impacts to the Interconnection and Southern California. We created a baseline for comparison using our 2016 “Heavy Summer Base
WECC Aliso Canyon Assessment

Case,” a model of the Interconnection that assumes high summer loads and moderate power transfers to reflect a stressed system scenario. From here, we created two comparison cases to reflect potential conditions in Southern California, one with all of the natural gas generation in the L.A. Basin at minimum output and one with it all turned off. We chose these cases specifically because they are expected to emphasize potential negative study results, making them worst-case bookends. We then tested these cases by applying a number of contingencies, or hypothetical system element outages.

In running the model, we were concerned with the following indicators of system health:

- Generation availability and unit stability – With low generation in the L.A. Basin, would there be sufficient resources elsewhere to replace the generation?

- Overloading of transmission lines – Assuming the resources are available, can they be imported without causing overloading of transmission lines and exceedances of WECC Transmission Path Ratings?

- Voltage stability – With low generation in the L.A. Basin, would there be sufficient voltage support in the area to maintain acceptable transmission and distribution voltages?

There are four takeaways from our power system contingency analyses:

- There is a minimum amount of generation that must be online in the L.A. Basin to provide voltage support to the local system and allow power to be imported. Without this generation, there is a high likelihood of voltage collapse within the L.A. Basin and concomitant risk to the interconnection if such a collapse is not quickly isolated. LADWP and CAISO have the detailed tools to determine the minimum level of generation that must remain online for system stability and have estimated 1300 MW to be the “must-run” capacity to support transmission import capability. Our analytics have affirmed that this is a reasonable estimate.

- The generation facilities capable of producing reactive power to provide voltage support include the natural gas facilities in the L.A. Basin. Some of these units are dual-fuel units and were designed with the capability to burn distillate. The ability to run these plants on an alternative fuel, other than natural gas, will help ensure adequate minimum levels of generation when gas supply is scarce.

- The location of the online generation within the L.A. Basin is critical to stability. Certain combinations of online units can lead to poor voltage support or additional stress on the transmission system in the L.A. Basin area due to unusual or abnormal power flows. CAISO will be in the best position to determine the correct units to run in real time based on the actual operating configuration of the system.

- Communication and collaboration among the affected entities is critical. This situation highlights the interdependency of the gas and electric infrastructures and operating protocols.
The high level of communication and information sharing occurring now between the entities will need to be closely managed throughout the summer and until the Aliso Canyon natural gas storage facility can be further utilized.

It is important to note that this study assumes all normally operating transmission lines in the L.A. Basin, and the rest of the interconnection, are in service. The study also assumes availability of the additional generating resources used in the simulations. If either transmission or generation capacity is limited for any reason (e.g., a fire that takes out multiple transmission lines, unforeseen events that result in the unavailability of major generating resources such as gas constraints or unscheduled maintenance), the additional stress to the Western Interconnection could result in negative impacts that have not yet been identified.

I hope you find this assessment useful in your policy deliberations. We believe very positive steps are in place to preserve electric reliability in Southern California. First are the recent actions to allow at least some of the Aliso Canyon facility to be used this summer to support the L.A. Basin electric system. Second are the conditional waivers issued by SCAQMD to allow LADWP to burn distillate under certain circumstances. We continue to be impressed with the coordination between the affected entities and involved agencies in California and believe it will serve the state well through this energy supply challenge. We are appreciative of the transparency with which LADWP, CAISO, and SoCal Gas have dealt with this issue and allowing us to be directly involved in the winter studies. We have also been coordinating closely with Peak Reliability and it appears they are taking appropriate steps to execute their responsibilities to protect the broader interconnection from any cascading outages.

Please feel free to contact me if you would like to discuss this analysis further. We look forward to continuing to work with the Western states, CAISO, LADWP, and Peak Reliability on this important matter.

Cc: Dr. Robert Weisenmiller, Chairman of the California Energy Commission