Special Reliability Assessment: Interconnection Requirements for Variable Generation
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Rev</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/25/10</td>
<td>01</td>
<td>Original submission by David Jacobson, including Chapter 2 and Section 3.5, in the NERC document template</td>
</tr>
<tr>
<td>12/6/10</td>
<td>02</td>
<td>Revise Introduction, add Chapter 1 (Task Overview)</td>
</tr>
<tr>
<td>4/29/11</td>
<td>03</td>
<td>Added sections 3.1, 3.2, 3.3, 3.6</td>
</tr>
<tr>
<td>5/24/11</td>
<td>04</td>
<td>Major revisions to formatting, figure numbering, and physical arrangement.</td>
</tr>
<tr>
<td>6/6/11</td>
<td>04.1</td>
<td>Added Chapter 4 and Section 3.4</td>
</tr>
<tr>
<td>6/9/11</td>
<td>04.2</td>
<td>Numerous editorial revisions; added draft of executive summary</td>
</tr>
<tr>
<td>7/11/11</td>
<td>04.3</td>
<td>Merged Chapters 2 and 4 into Chapter 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Divided Chapter 3 into six smaller chapters</td>
</tr>
<tr>
<td>8/25/11</td>
<td>04.4</td>
<td>Cleaned up formatting; Ready for team review and final revisions</td>
</tr>
<tr>
<td>02/28/12</td>
<td>05</td>
<td>All chapters revised per comments from IVGTF 1-3 team review</td>
</tr>
</tbody>
</table>

Report Contributors

IVGTF Task Force 1-3 Chair

Richard Piwko

Lead Authors for Report Chapters

Abraham Ellis, Reigh Walling, Bob Zavadil, David Jacobson, Richard Piwko

Contributing Authors

Mahendra Patel, Daniel Brooks, Bob Nelson, Jason MacDowell, Chris Barker, Edi von Engeln, Eric Seymour, Leo Casey, Eric John, William Peter, Warren Lasher, Clyde Loutan, Lisa Dangelmaier, Eric Seymour, Mike Behnke

Reviewers

This report was reviewed and revised per comments received from all IVGTF 1-3 members. See Appendix C for a complete list of Task Force members and affiliations.
Table of Contents

Revision History ... i
List of Figures .. vi
List of Tables .. viii

Executive Summary ... 1
 Summary of Recommendations .. 1
 Reactive Power and Voltage Control .. 2
 Technical Guidelines for Specification of Reactive Power Requirements 3
 Performance During and After Disturbances ... 5
 Applicable plants .. 5
 Disturbance Ride Through .. 6
 Power Recovery .. 7
 Recovery after Blackout ... 7
 Standards for manufactured equipment ... 7

Active Power Control Capabilities .. 8
 Require curtailment capability, but avoid requirements for excessively fast response ... 8
 Require capability to limit rate of increase of power output 8
 Encourage or mandate reduction of active power in response to high frequencies 8
 Consider requiring the capability to provide increase of active power for low frequencies ... 8
 Consider requiring inertial response in near future .. 9

Harmonics and Subsynchronous Interaction .. 9

Models for Facility Interconnection Studies .. 10
 Discussion of Generator Unit/Facility Size Applicability ... 10
 NERC Standard FAC-001-0 Modifications ... 11
 Summary of Facility Connection Model Grid Code Requirements 12

Communications between Variable Generation Plants and Grid Operators 12
 1. Introduction ... 14
 1.1 Background .. 14
 1.2 NERC’s Mission ... 16
Table of Contents

1.3 **Similarities and Differences between Variable Generation and Conventional Plants** ... 16

1.4 **Distribution Connected Variable Generation** 17

2. **Reactive Power and Voltage Control** 21

2.1 **Background** .. 21

2.2 **Reactive Capability of Synchronous Generators** 22

2.3 **Reactive Capability or Requirements for Wind and Solar PV Generators** ... 24

2.4 **Reactive Capability of Variable Generation Plants** 27

2.5 **Static vs. Dynamic Reactive Capability** 29

2.6 **Operational Considerations** .. 30

2.7 **Review of Existing Reactive Power Standards** 31

2.7.1 **Standards Applicable in North America** 32

2.7.2 **International Standards** ... 36

2.8 **Specific Recommendations to Improve Interconnection Standards** ... 38

2.8.1 **Recommendations for modification of existing NERC standards** ... 38

2.8.2 **General Recommendations for Standards Development and Reconciliation** ... 39

2.8.3 **Technical Guidelines for Specification of Reactive Power Requirements** .. 39

2.9 **References** .. 41

3. **Performance During and After Disturbances** 43

3.1 **Introduction** ... 43

3.2 **General Objectives of System Disturbance Performance Requirements** ... 43

3.2.1 **Continuity of Generation Resource** 44

3.2.2 **System Support During and After Disturbance** 44

3.3 **Attributes of a System Disturbance Performance Requirement** ... 45

3.3.1 **Disturbance Event Specification** 45

3.3.2 **Specification of disturbance severity** 46

3.3.3 **Behavior during disturbance** 50

3.3.4 **Post-disturbance behavior – power recovery characteristics** ... 51

3.3.5 **Islanding and Anti-Islanding Requirements** 52
Table of Contents

3.4 Survey of Existing Interconnection Requirements and Standards 53

3.4.1 FERC Order 661a 53
3.4.2 NERC Standard FAC-001 54
3.4.3 Draft NERC PRC-024 Standard 54
3.4.4 NERC TPL-001-2 Standard 55
3.4.5 Draft NERC PRC-019 Standard 55
3.4.6 Requirements Imposed by Transmission Operators 57

3.5 Recommendations 62

3.5.1 Applicable plants 62
3.5.2 Disturbance Ride Through 62
3.5.3 Power Recovery 64
3.5.4 Recovery after Blackout 64
3.5.5 Standards for manufactured equipment 64

3.6 Reasoning Supporting Recommendations 64

3.6.1 Applicable plants 64
3.6.2 Disturbance Ride Through 64
3.6.3 Power Recovery 65
3.6.4 Recovery after Blackout 65
3.6.5 Standards for manufactured equipment 65

4. Active Power Control Capabilities 66

4.1 Real Power Production Characteristics and Control Capabilities of Variable Generation 66

4.1.1 Power limits from grid operator (curtailment) 67
4.1.2 Wind Generation Ramp Rate Limiting 68
4.1.3 Solar PV Ramp Rate Limiting 70

4.2 Forecasting for Reliability 74

4.3 Real Power Response to Bulk System Events 75

4.3.1 Inertial Response of Variable Generation Resources 76
4.3.2 Frequency governing response 79
4.3.3 Over-Frequency Response 80
4.3.4 AGC participation 82

4.4 Recommendations 82

4.4.1 Require curtailment capability, but avoid requirements for excessively fast response 82
4.4.2 Require capability to limit rate of increase of power output .. 83
4.4.3 Encourage or mandate reduction of active power in response to high frequencies 83
4.4.4 Consider requiring the capability to provide increase of active power for low frequencies 83
4.4.5 Consider requiring inertial response in near future ________ 83
4.5 References .. 84
5. Harmonics and Subsynchronous Interaction ________________________ 85
 5.1 Harmonics ... 85
 5.2 Subsynchronous Resonance and Interactions _________________ 86
 5.3 Recommendations .. 89
6. Models for Facility Interconnection Studies _________________________ 90
 6.1 Discussion of Generator Unit/Facility Size Applicability _________ 92
 6.2 NERC Standard FAC-001-0 Modifications _____________________ 93
 6.3 Summary of Facility Connection Model Grid Code Requirements .. 94
7. Communications between Variable Generation Plants and Grid Operators ________________________ 96
 7.1 Communication Paths .. 96
 7.2 Data, Information, and Control Requirements _________________ 97
 7.2.1 Monitoring signals from wind plant to grid operator ______ 97
 7.2.2 Control signals from grid operator to wind plant _________ 98
 7.2.3 Data Required by Forecast Providers ___________________ 99
 7.3 Communication standards and initiatives _____________________ 99
 7.4 Recommendations .. 103
Appendix A. Disturbance Performance Requirements from International Standards and Grid Codes A–1
Appendix B. Acronyms .. B–10
Appendix C. IVGTF Task 1-3 Roster ... C–12
Appendix D. Wind-Turbine Generation Technologies D–16
Appendix E. Further Reading ... E–18
Appendix F. Review of Utility Facility Connection Requirements or Grid Codes F–19
Appendix G. Summary of Existing Reactive Power Standards G-1
List of Figures

Figure 1 NERC Regions. ___ 20
Figure 2 Example of reactive power capability of a synchronous generator considering plant minimum load. ________________________ 22
Figure 3 Influence of voltage on reactive power capability of a synchronous generator. __ 23
Figure 4 Illustration of Reactive Power Requirements as a function of POI Voltage. __ 24
Figure 5 Various reactive power capability curves for wind generators at nominal voltage. ____________________________________ 25
Figure 6 Reactive power capability of an inverter (red curve) based on current limit. ___ 27
Figure 7 Example of reactive capability specification at the POI. At low output levels, as indicated by the shaded area, a permissive reactive range may be considered. ______________________ 28
Figure 8 Reactive power capability of a PV plant compared to a typical triangular reactive power requirement. ____________________ 29
Figure 9 Example of Reactive Droop control with Deadband. _____________________________ 31
Figure 10 Reactive Power Capability Requirement for AESO. ________________ 35
Figure 11 Sample reactive capability PQ charts from different TOs in Europe. __ 37
Figure 12 Voltage disturbance that is completely above the low voltage criterion envelope. _________________________________ 48
Figure 13 Voltage disturbance that crosses the low voltage criterion envelope. __ 49
Figure 14 Voltage disturbance and high voltage criteria envelope. _____________________________ 49
Figure 15 Alternative approach for defining a high voltage criterion. _____________________________ 50
Figure 16 Curtailment of WTG output using blade pitch control (Source: BEW report for CEC, May 2006.) ________________________ 68
Figure 17 Demonstration of power ramp-rate control performance. ________________ 70
Figure 18 Short-term variability and longer-term ramp rate trends (data for illustration only). _________________________________ 73
Figure 19 Field demonstration of the commercial wind turbine inertial response. _________________________________ 79
Figure 20 Power response of prototype wind plant to overfrequency condition. _________________________________ 81
Figure 21 Power response of plant to underfrequency condition. ________________________ 82
Figure 22 Equivalent circuit showing wind plant as a sink for harmonic distortion from the grid. _________________________________ 86
Figure 23 Electrical instability event involving wind farm in Texas. 87
Figure 24 Example of unstable and mitigated subsynchronous interaction with Type 3 wind turbine. 88
Figure 25 Generator facility connection process. 91
Figure 26 Monitoring and Control Communication Paths for VG Plant Operations. 97
Figure 27 IEC 61400-25 communication model. Actors can include power system control centers and wind generation forecasting systems. 100
Figure A.1 Manitoba Hydro voltage ride through and performance curves. A–8
Figure D.1 (a) Type 1 Wind Turbine-Generator: Fixed Speed Induction Generator. D–16
Figure D.2 (b) Type 2 Wind Turbine-Generator: Variable Slip Induction Generator. D–16
Figure D.3 (c) Type 3 Wind Turbine-Generator: Double-Fed Asynchronous Generator. D–17
Figure D.4 (d) Type 4 Wind Turbine-Generator: Full Power Conversion. D–17
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>IVGTF Task 1-3 Work Plan from Phase 1 Report.</td>
<td>15</td>
</tr>
<tr>
<td>Table 2</td>
<td>Voltage and Frequency Ride-Through Criteria from Selected Standards and Grid Codes.</td>
<td>58</td>
</tr>
<tr>
<td>Table G.1</td>
<td>Summary of Existing Reactive Power Standards.</td>
<td>G-1</td>
</tr>
<tr>
<td>Table G.2</td>
<td>Summary of Existing Reactive Power Standards.</td>
<td>G-2</td>
</tr>
</tbody>
</table>
Executive Summary

Many of NERC’s existing interconnection standards and procedures have been based on technical characteristics and physical capabilities of traditional power generation resources which employ synchronous generators. With the global trend towards renewable energy, the penetration of wind and solar generation is rapidly increasing in many power grids under NERC’s jurisdiction.

Variable generation comprises any power generating facility where the source of the energy is not dispatchable. Wind and solar generation are the most common types of variable generation, although ongoing research may lead to increased utilization of tidal, wave, ocean thermal, and other new energy sources. Some common characteristics of wind plants and solar photovoltaic (PV) plants include:

- The energy source is variable, influenced by atmospheric conditions, and predicted by day-ahead and short-term forecasting
- Variable generation plants are often comprised of multiple individual “generators”, connected together and operated in a coordinated manner
- To a large extent, the power sources (such as wind turbines or solar panels) are connected to the electrical network via power electronics rather than synchronous machines
- Responses to system disturbances are primarily determined by control functions, not the inherent electromechanical dynamics of synchronous machines

Summary of Recommendations

This task force was asked to make recommendations for how NERC interconnection procedures and standards should be enhanced to address voltage and frequency ride-through, reactive and real power control, and frequency/inertial response criteria, in light of the evolving range of technical characteristics and physical capabilities of variable generation equipment. This report documents the results of that project.

Although many readers of this report would probably prefer to see a simple one or two page summary that explains everything about what rules/procedures need to be modified and how to do it, the Task Force found that the issues are very complex and do not lend themselves to brief unqualified bullet points. Instead, each recommendation must be considered in light of the technical reasoning behind it.

The remainder of this executive summary gives an overview of the recommendations in each of the following technical subject areas. Subsequent chapters of the report provide background, context, and reasoning behind the recommendations.
Reactive Power and Voltage Control

Recommendations for modification of existing NERC standards

NERC should consider revisions to FAC and VAR standards to ensure that reactive power requirements for all generators are addressed in a technically clear and technology-neutral manner. As with all new or changing requirements, appropriate consideration should be given to the applicability to existing generators. Suggested updates are as follows:

- Consider adding a clarification to FAC-001 expanding R.2.1.3 or as an Appendix, stating that interconnection standards for reactive power must cover specifications for minimum static and dynamic reactive power requirements at full power and at partial power, and how terminal voltage should affect the power factor or reactive range requirement (see Section 2.8.3 below for technical guidelines).

- Consider modifying VAR-001 to include the term “plant-level volt/var controller” (in addition to “AVR”), which is more appropriate for variable generation. Specific recommended changes are underlined below:

 “VAR-001 R4. Each Transmission Operator shall specify a voltage or Reactive Power schedule at the interconnection between the generator facility and the Transmission Owner's facilities to be maintained by each generator. The Transmission Operator shall provide the voltage or Reactive Power schedule to the associated Generator Operator and direct the Generator Operator to comply with the schedule in automatic voltage control mode (AVR or plant-level volt/var regulator in service and controlling voltage).”

A large amount of variable generation, including most of the solar PV deployment, will be relatively small plants with capacity below the threshold specified in the existing NERC Registry Criteria, and connected at voltages below 100 kV. This includes residential and commercial systems, as well as larger plants connected to the distribution or sub-transmission system. To the extent that these systems, in aggregate, can affect the reliability of the bulk grid, the FAC and VAR standards should be extended or revised to
accommodate them. A prospective NERC standard addressing reactive requirements for smaller plants should recognize that distribution-connected variable generation plants have traditionally been operated in power factor control mode.

General Recommendations for Standards Development and Reconciliation

For the most part, existing NERC and FERC interconnection standards were developed with a class of equipment in mind (synchronous generators), and do not fully define performance requirements for reactive power support. This has resulted in unclear, inconsistent and sometimes inappropriate interconnection reactive power requirements for generators, especially variable generation. Specific recommendations are as follows:

- NERC should promote greater uniformity and clarity of reactive power requirements contained in connection standards that Transmission Operators have issued pursuant to FAC-001. NERC, FERC and other applicable regional standards should be reconciled.

- NERC should consider initiating a Standards Authorization Request (SAR) to establish minimum reactive power capability standards for interconnection of all generators, and provide clear definitions of acceptable control performance (see Section 2.8.3 for technical guidelines).

Technical Guidelines for Specification of Reactive Power Requirements

Variable generation technologies are technically capable of providing steady-state and dynamic reactive power support to the grid. Based on a review of best practices and operating experience, we offer the following technical guidelines for specification of reactive power capability and control requirements for interconnection of generating plants to the transmission system:

- **Applicability:** Generator interconnection requirement for reactive power should be clearly established for all generator technologies. NERC adheres to the notion of technology neutrality when it comes to reliability standards; however, certain unique characteristics of variable generation may justify different applicability criteria or appropriate variances. Technology differences were considered in nearly all international interconnection standards for wind generation. A key consideration is whether reactive power capability should be a base-line requirement for all variable generation plants, or it should evaluated on a case-by-case basis. The later approach was adopted in FERC’s Order 661-A. A thorough analysis to establish the need for reactive power support necessitates the establishment and application of clear and consistent criteria for reactive planning that takes into account system needs such as steady-state voltage regulation, voltage stability, and local line compensation.
requirements under normal and contingency conditions. Without consistent application of a set of planning criteria, establishing the “need” for reactive power can become a complicated process considering that multiple transmission expansion plans and generator interconnection requests may be under evaluation. Application of a baseline requirement for reactive power to all generators would address this concern to a large extent. However, in some situations, additional reactive power from variable generation plants may not contribute appreciably to system reliability. NERC should consider giving transmission planners some discretion to establish variance based on the characteristics of their transmission system.

- **Specification of Reactive Range:** The reactive range requirement should be defined over the full output range, and it should be applicable at the point of connection. A \(Q \) vs. \(P \) chart should be used for clarity. A baseline capability of 0.95 lag to lead at full output and nominal voltage should be considered. This design criterion is consistent with several grid codes and is becoming common industry practice. Unlike most conventional generators, variable generation plants routinely operate at low output levels, where it is difficult and unnecessary to operate within a power factor envelope. All or a portion of the generators in a wind or solar plant may be disconnected during periods of low wind or solar resource, which means that reactive power capability may be considerably reduced. For these reasons, it makes technical sense to allow variable generation to operate within a permissive reactive power range (as opposed to a power factor envelope) when the active power level is below a reasonable threshold such as 20% of plant rating.

- **Impact of System Voltage on Reactive Power Capability:** It should be recognized that system voltage level affects a generating plant’s ability to deliver reactive power to the grid and the power system’s requirement for reactive support. A \(Q \) vs. \(V \) chart could be used to describe the relationship between system voltage and reactive power. A reduced requirement to inject vars into the power system when the POI voltage is significantly above nominal and a reduced requirement to absorb vars when the POI voltage is significantly below nominal should be considered.

- **Specification of Dynamic Reactive Capability:** The standard should clearly define what is meant by “Dynamic” Reactive Capability. The standard could specify the portion of the reactive power capability that is expected to be dynamic. For example, the baseline requirement could be that at least 50% of the reactive power range be dynamic. This design criterion is consistent with several grid codes. Alternatively, the definition of control performance (e.g., time response) can be used to specify the desired behavior.

- **Definition of Control Performance:** Expected volt/var control performance should be specified, including minimum control response time for voltage control, power factor control and reactive power control. For example, a reasonable minimum
response time constant for voltage, power factor or reactive power control may be 10 seconds or comparable to a synchronous generator under similar grid conditions. Consistent with existing VAR-002, voltage control should be expected for transmission-connected plants; however, as discussed in Section 2.4, power factor control is a technically reasonable alternative for plants that are relatively small. An interim period for the application of precisely defined control capabilities should be considered.

- **Effect of Generator Synchronization on System Voltage**: Synchronization of generators to the grid should not cause excessive dynamic or steady-state voltage change at the point of connection. A 2% limit may be considered as a baseline.

- **Special Considerations**: NERC should investigate whether transmission operators can, under some conditions, allow variable generating plants to operate normally or temporarily at an active power level where dynamic reactive capability is limited or zero. If needed for reliability and upon command from the system operator, these plants could temporarily reduce active power output to maintain a reactive range. Such an approach could make sense depending on the size of the plant (more appropriate for smaller plants) and the location on the system. The possibility of operating in this manner could be considered as part of the interconnection study.

- **Technical Alternatives for Meeting Reactive Power Capability**: The reactive power requirements should be applicable at the point of interconnection. Technical options to meet the interconnection requirements should not be restricted. For example, reactive power support at the point of interconnection need not be provided by inverters themselves; they could be provided by other plant-level reactive support equipment.

- **Commissioning Tests**: Commissioning tests, which are part of the interconnection process, often include a test to demonstrate plant compliance with reactive power capability requirements. Commissioning tests often include verification of reactive power capability at rated power as a condition to allow operation at that level of output. An alternative approach should be used for variable generation plants, considering that the output cannot be controlled. For example, PV plants may be designed such that maximum output is reached only during certain months of the year, and it may not be possible to conduct a commissioning test at rated power output for several months.

Performance During and After Disturbances

Applicable plants

The scope of PRC-024-1 should be broadened to cover smaller plant sizes. The current proposal of 75 MVA will miss many variable generator facilities that potentially could
impact the Bulk Electric System. It is suggested that the scope be broadened to cover all projects covered under a Large Generator Interconnection Agreement (LGIA), or greater than 20MW. Another option is to extend the scope to any project greater than 10MW in order to provide coverage for plants not included under IEEE 1547. See Section 1.4 for further discussion.

Applicability should depend on total plant rating, and should not be based on individual unit size.

Disturbance Ride Through

Fault ride-through and frequency ride-through capability of generators will be covered by the NERC standards under development. TPL-001-2 will cover the planning assessment for new and existing generators to ensure that grid performance reliability standards are met. PRC-024-1 will provide additional clarity to the generator industry in terms of uniform requirements. No additional requirements are needed for FAC-001-0.

It is suggested that ride-through plots be provided, specifying both high and low voltage ride through requirements. It is recommended that the zero voltage ride through should be equal to the three phase fault clearing time on the network. The zero voltage ride through is up to 9 cycles, but may be less, depending on the clearing time. This should be made explicit in any requirement.

NERC PRC-024 should clearly define performance requirements for unbalanced, as well as balanced faults. The specification of voltage magnitude should define what voltage metric is applicable.

Voltage disturbance performance requirements, particularly high voltage ride-through, should use the severity-cumulative duration form of specification to avoid unnecessary increase of VER plant costs to meet voltage disturbance durations that will never occur in practice.

It is not suggested that a NERC wide requirement be mandated for riding through a rate of change of frequency. If a standard is desired by individual operators, a rate of change ride through requirement of 2.5 Hz/second appears adequate. (This rate of frequency change is stipulated in the current draft of NERC PRC-024). There may be some regional differences where at least 4.0 Hz/second is required.

PRC-024 should define the performance required during and after disturbances, and should make clear and unambiguous statements as to what remaining “connected” entails. It is not recommended that active power be required during a voltage disturbance unless there is a reliability concern. The sourcing of reactive power during a severe fault should instead be given priority over real power delivery, and the magnitude of reactive power should be consistent with pre-fault reactive power capability. The capability to supply
reactive current during a fault varies with technology and product offerings, and so a market to incentivize, but not require, the increased sourcing of reactive current during a voltage dip is recommended.

Disturbance performance requirements, including PRC-024, should indicate the maximum level of transmission contingency (e.g., N-1-1) for which a plant should be required to ride-through.

Disturbance performance requirements, such as PRC-024, should clearly define the requirement, if any, for repeated disturbances.

Transmission interconnected VER should not have any active anti-islanding functions enabled that detract from bulk transmission system transient or dynamic stability.

Power Recovery

A detailed power recovery characteristic for variable generators is not necessary to be specified in a standard. Detailed accurate models provided by the Generator Owner will be sufficient for interconnection studies. If performance criteria are not met, then the Transmission Owner/Planner will work with the Generator Owner to develop a mitigation plan.

Recovery after Blackout

It is reasonable to clarify the restart expectations of a generator facility following a disturbance. In some cases, the Transmission Operator provides a signal to the facility that prohibits automatic restarting after a severe grid event. FAC-001 could be modified to include a facility connection requirement to address generator facility restarting.

Standards for manufactured equipment

Current solar PV inverters designed to comply with IEEE 1547 are required to provide anti-islanding capability and disconnection requirements that are not compatible with the fault ride through requirements recommended here. Although individual inverters may have capacities on the order of 500kW, utility scale PV plants may have hundreds of these units and hence have a plant capacity of upwards of 100 MW. Furthermore, the inverters are listed to UL-1741, which is based on the requirements of IEEE 1547. Therefore, it is recommended that new standards are proposed for utility scale PV plants in order to drive the industry towards the adoption of new inverter specifications, testing, and certification.
Active Power Control Capabilities

Require curtailment capability, but avoid requirements for excessively fast response

Variable generation can respond rapidly to instructions to reduce power output. In many cases response is faster than convention thermal or hydro generation. However, there have been cases where proposed grid codes have made excessive requirements for speed of step response to a curtailment order. This is technically challenging and should be avoided. A Δ10%/second for rate of response to a step command to reduce power output is reasonable. This rate of response to step instructions should not be confused with deliberate imposition of ramp rate limits, as discussed next.

Some conventional generation can reach, or even exceed, these rates. Most cannot. The project team is not aware of any NERC standards that specify rate of response to re-dispatch commands (of which curtailment is a subset) in this time frame. Typically, plants must respond to economic re-dispatch within minutes. Mechanisms such as markets or other incentives to encourage rapid rate of response from all generating resources should be considered.

Require capability to limit rate of increase of power output

Variable generation plants should be required have the capability to limit the rate of power increase. This type of up ramp rate control capability has been required in some other systems. This function should include the ability to be enabled and disabled by instruction from transmission operator or Balancing Authority. Plants must be able to accept commands to enable pre-selected ramp rate limits. Plants should be designed with recognition that ramp rate limits should not be required under all operating conditions. It should not be required that variable generation plants limit power decreases due to declines in wind speed or solar irradiation, i.e. down ramp rate limits. However, limits on decrease in power output due to other reasons, including curtailment commands, shutdown sequences, and response to market conditions can be reasonably required.

Encourage or mandate reduction of active power in response to high frequencies

Variable generation plants should be encouraged to provide over-frequency droop response of similar character to that of other synchronous machine governors.

Consider requiring the capability to provide increase of active power for low frequencies

This is the other face of frequency control. Variable generation plants should not be required to provide governor-like frequency response for low frequency under normal operating conditions. This is consistent with any conventional power plant operating at
full throttle output (i.e. valves wide open). However, encouraging VGs to have the capability to provide this response, and then establish rules, and possibly compensation, for when such controls would be enabled, could be considered. This presumably would be a rare occurrence, as the economic penalty associated with enabling these controls is high.

Consider requiring inertial response in near future

Some OEMs are now offering inertial response for wind turbines. This is distinct from the previous two items on frequency response, in that inertial response is faster and strictly transient in nature. Consequently, there is not a significant economic penalty associated with the use of this new feature.

Synchronous generators have inherent inertial response. It is not a design requirement. It is simply a consequence of the physical characteristics of the rotating masses connected to a synchronous generator which is in turn connected to an AC transmission network. With the exception of Hydro-Quebec, inertia response characteristics have not been specified in grid codes or interconnection requirements for wind plants. Furthermore, language describing this functionality in technology-neutral terms and subject to the physical reality of variable generation facilities is not presently available.

Requiring this function in the future as the technology matures and as grid operators and reliability organizations learn more about the need for inertial response characteristics from wind plants should be evaluated further. However, incremental costs should be carefully weighed against alternatives on both the supply and demand side for providing this important reliability service.

Harmonics and Subsynchronous Interaction

Although harmonic and subsynchronous interaction issues can pose a reliability risk to the power grid in some instances, such risks are rare and only affect a small portion of variable generation plants. There is no need for NERC to develop interconnection criteria related to SSR/SSI or harmonics at this time. However, it would be prudent for transmission owners and/or grid operators to:

- Consider design study reports that assess the harmonic performance of all wind and solar plants, and
- Until better understanding of the control interactions issue is gained, consider design study reports that assess the risk, and if necessary mitigation, of wind and solar plant located near series compensated transmission lines.
Models for Facility Interconnection Studies

Discussion of Generator Unit/Facility Size Applicability

Accurate models are required for all generator facilities that are connected to or are planning to connect to the Bulk Electric System (100 kV and higher) regardless of size.

Ongoing model revalidation is currently covered by:

- MOD-024-1: Verification of Generator Gross and Net Real Power Capability
- MOD-025-1: Verification of Generator Gross and Net reactive Power Capability
- MOD-026-1: Verification of Models and Data for Generator Excitation System Functions
- MOD-027-1: Verification of Models and Data for Turbine/Governor and Load Control

These standards were reviewed and reported in the NERC Special Report “Standard Models for Variable Generation.” The on-going detailed model validation may evolve to cover generator units or generator facilities 75 MVA or larger. This breakpoint covers at least 80% of the currently installed generation in North America and also matches the FERC registry criteria.

Generator Facilities smaller than the 75-MVA threshold; especially variable generation facilities, may experience rapid changes in control performance over its lifetime due to equipment upgrades and replacements. These changes should get captured in updated models. However, substantial modifications on facilities less than 75 MVA may not be captured by the FAC-001 standard or MOD standards.

It is recommended to modify FAC-001-0 to:

“R2 The Transmission Owner’s facility connection requirements shall address, but are not limited to, the following items:

> R2.1.1 Procedures for coordinated joint studies of new or substantially modified facilities\(^1\) and their impacts on the interconnected transmission systems.”

\(^1\) A generator modification is considered substantial if it results in a change in the net real power output by more than 10% of the original nameplate rating or more than 20 MW, whichever is less or includes any of the following: generator rewind, rotor replacement, new or refurbished excitation system, or turbine replacement. Replacement of failed equipment with identical spare units is not a substantial modification. A substantially modified generator is a generator that receives Planning Coordinator agreement to make the generator modification after the effective date of this standard.
NERC Standard FAC-001-0 Modifications

Currently, submittal of generator model data is covered via the following requirement in FAC-001-0:

“R2 The Transmission Owner’s facility connection requirements shall address, but are not limited to, the following items:

R2.1.1 Procedures for coordinated joint studies of new facilities and their impacts on the interconnected transmission systems.”

Transmission Owners make reference to the interconnection procedures in their respective Open Access Interconnection Tariff, such as the FERC Large Generator Interconnection Procedures.

The existing NERC Standard FAC-001-0 could be modified to include an explicit requirement related to Generator facility modeling for all generators, including variable generation and also including model validation.

“R2 The Transmission Owner’s facility connection requirements shall address, but are not limited to, the following items:

R2.1.17 Generation facility modeling data, including appropriate power flow, short circuit and dynamic models, and verification requirements.”

Modeling needs for the interconnection process are different than modeling needs for evaluation of regional grid performance. To clarify this point, we recommend that the following statement be added to the FAC-001-0 standard as an appendix for clarifying R2.1.17:

“Preliminary or approximate power flow and dynamic models may be adequate for the preliminary assessment of interconnection impacts, or to represent existing and proposed projects that are not in the immediate electrical vicinity of the Facility being studied. However, detailed dynamic (and possibly transient) models for the specific equipment may be needed for the System Impact Study and Facilities Study, to represent the Facility and other equipment in the electrical vicinity. Generic non-proprietary publicly available models are more appropriate for the NERC model building process covered by existing MOD standards, although validated generic models with specifically tuned parameters may be adequate for interconnection studies. The models for interconnection studies must be acceptable to the Transmission Owner in terms of simulation platform, usability, documentation and performance.”

The above recommended sub-requirement R2.1.17, as with all of the sub-requirements in FAC-001-0, leave it up to the Transmission Owner to “fill in the blanks” or develop
specific requirements that will be applied to facilities intending to interconnect to their network. This can lead to inconsistencies across North America. In order to avoid inconsistencies, several Facility Interconnection requirement documents or grid codes were reviewed to try to develop a recommended best practice to aid Transmission Owners.

Summary of Facility Connection Model Grid Code Requirements

After reviewing the interconnection procedures and standards of several grid codes with respect to models and model validation, several key features could be recommended for adoption by Transmission Owners:

- Preliminary model data may be used for the initial feasibility study of a variable generator interconnection project.

- The best model available shall be used for the final System Impact Study or Facilities Study. These models can be user written and require non-disclosure agreements.

- The detailed dynamic model must be accurate over the frequency range of 0.1 to 5 Hz. Time constants in the model should not be less than 5 ms.

- The detailed dynamics model must have been validated against a physical or type test.

- Verification of detailed model performance should be confirmed during commissioning to the extent possible. The following tests shall be performed:
 - Primary/secondary voltage control
 - Low voltage and high voltage ride through
 - Power factor/reactive power capability
 - Power ramping and power curtailment

- Verification of the non-proprietary model accuracy may be performed by simulation tests compared with the detailed model performance.

- At the end of the commissioning tests, the Generator Owner shall provide a verified detailed model and a non-proprietary model, ideally in IEEE, IEC or other approved format, for ongoing regional studies such as TPL-001.

Communications between Variable Generation Plants and Grid Operators

The project team recommends that the basic requirements for communications and control between grid operators and variable generation plants be based on existing policy for conventional generators. That is,
• Variable generation plants should send a minimum set of monitoring data to the grid operation via the grid’s SCADA network (see Section 7.2.1).

• Variable generation plants should receive and execute command signals (power limit, voltage schedule, ramp rate limit, etc.) sent from the grid operator via the SCADA network (see Section 7.2.2).

• Variable generation plants should have trained on-call plant operators that can receive calls from the grid operator 24/7 and immediately execute verbal commands. The plant operators would not need to be located at the plant provided they have secure remote control capability for the plant.
1. Introduction

1.1 Background

Existing state and federal energy policies such as renewable portfolio standards (RPS) and production tax credits have driven development of wind plants in the US and Canada that presently comprise in excess of 35 GW of installed capacity. This trend is expected to continue with the addition of many other forms of renewable technologies such as photovoltaics (PV). Furthermore, other technologies such as plug-in hybrid electric vehicles (PHEV) are also on the horizon.

Unlike traditional, non-renewable resources, the output of wind, solar, ocean and some hydro generation resources varies according to the availability of the primary fuel (wind, sunlight and moving water) that cannot be reasonably stored. Therefore, these resources are considered variable, following the availability of their primary fuel source. There are two overarching attributes of a Variable Energy Resource (VER) that can impact the reliability of the bulk power system if not properly addressed:

- Variability: The output of a VER changes according to the availability of the primary fuel resulting in fluctuations in the plant output on all time scales.
- Uncertainty: The magnitude and timing of VER output is less predictable than for conventional generation.

The North American Electric Reliability Corporation (NERC) is responsible for ensuring the reliability of the bulk power system in North America. Anticipating the growth of VERs, in December 2007, the NERC Planning and Operating Committees (PC and OC) created the Integration of Variable Generation Task Force (IVGTF), charging it with preparing a report [1] to identify the following:

- Technical considerations for integrating variable resources into the bulk power system, and
- Specific actions, practices and requirements, including enhancements to existing or development of new reliability standards.

One of the identified follow-up tasks from [1] was enhancement of generation plant interconnection requirements so they can be applied consistently to both conventional and variable generation resources. For the purpose of completeness of this document, the proposed action item Task 1-3 from [1] is repeated below.
Table 1 IVGTF Task 1-3 Work Plan from Phase 1 Report.

<table>
<thead>
<tr>
<th>Proposed Improvement</th>
<th>Interconnection procedures and standards should be enhanced to address voltage and frequency ride-through, reactive and real power control, frequency and inertial response and must be applied in a consistent manner to all generation technologies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Interconnection procedures and standards should be reviewed to ensure that voltage and frequency ride-through, reactive and real power control, frequency and inertial response are applied in a consistent manner to all generation technologies. The NERC Planning Committee should compile all existing interconnection requirements that Transmission Owners have under FAC-001 and evaluate them for uniformity. If they are inadequate, action should be initiated to remedy the situation (e.g. a Standard Authorization Request). Balancing areas must have sufficient communications for monitoring and sending dispatch instructions to variable resources. The NERC Operating Committee should undertake a review of COM-002, FAC-001 and registry criteria to ensure adequate communications are in place. Further, as NERC Standards Project 2006-06 is reviewing COM-002, input to this review should be provided. If these standards are found to be inadequate, action should be initiated to remedy the situation (e.g. SAR).</td>
</tr>
<tr>
<td>Lead</td>
<td>Ad Hoc group: Members from IVGTF - Planning and Operating</td>
</tr>
<tr>
<td>Deliverables</td>
<td>Make recommendations and identify changes needed to NERC’s FAC-001-0 Standard to ensure appropriate interconnection procedures and standards are established. Review NERC’s COM-002-2 and registry criteria to ensure adequate communications are established.</td>
</tr>
<tr>
<td>Milestones</td>
<td>Draft report ready by December 2010 PC meeting. Final report sent with recommendations to PC for endorsement in February 2011. Develop SAR with Standards Committee if required.</td>
</tr>
</tbody>
</table>

Thus, the goal of this document is to address the above action item and to provide:

1. The roadmap for development of interconnection procedures and standards for variable generation technologies. Namely, what is available at present and what is the path forward to developing such procedures and standards.

2. The NERC standards implications and feedback on what further NERC action items may be needed, if any, to address model application and validation as it relates to variable generation.

This report describes the range up to and including the state of the art in Variable Energy Resource equipment capabilities and their application with respect to power system operation. It is anticipated that the this report is a step towards a NERC Standards Authorization Request (SAR), and which would ultimately lead to a standard or standards governing the topics presented in this report. The standards need to be unambiguous, and need to provide criteria that utilities and grid operators can use to ensure the continued reliability of their operating areas. As VERs increasingly augment and/or supplant conventional generation, the reliable operation of the grid will depend increasingly on the reactive power control, active power control and other contributions from VERs. The new reliability standards should require that VERs adequately mimic or replace the capabilities that are lost when VERS supplant conventional generation.
1.2 NERC’s Mission

The North American Electric Reliability Corporation (NERC) is an international regulatory authority for reliability of the bulk power system in North America. NERC develops and enforces Reliability Standards; assesses adequacy annually via a 10-year forecast and winter and summer forecasts; monitors the bulk power system; and educates, trains, and certifies industry personnel. NERC is a self-regulatory organization, subject to oversight by the U.S. Federal Energy Regulatory Commission (FERC) and governmental authorities in Canada.2

NERC assesses and reports on the reliability and adequacy of the North American bulk power system divided into the eight Regional Areas3 as shown in Figure 1. The users, owners, and operators of the bulk power system within these areas account for virtually all the electricity supplied in the U.S., Canada, and a portion of Baja California Norte, México.

1.3 Similarities and Differences between Variable Generation and Conventional Plants

Significant work has been published that defines the characteristics of variable generation. Chapter 2 of the NERC Special Report “Accommodating High Levels of Variable Generation,” summarized the characteristics of wind generation, solar generation; including both solar thermal and solar photovoltaic and hydrokinetic generation.

Currently, four main types of wind turbines technology have evolved. These include fixed speed induction generators, variable speed induction generators, double-fed asynchronous generators, and full power conversion generators (see Appendix D of this report). Solar generation falls into two major categories; concentrating solar plants (CSP) and photovoltaic (PV). In a PV facility, energy from photovoltaic panels is interconnected to the power grid through power electronic dc to ac converters. CSP facilities capture solar energy as heat which generates steam to feed into a conventional steam turbine-generator.

2 As of June 18, 2007, the U.S. Federal Energy Regulatory Commission (FERC) granted NERC the legal authority to enforce Reliability Standards with all U.S. users, owners, and operators of the bulk power system, and made compliance with those standards mandatory and enforceable. Reliability Standards are also mandatory and enforceable in Ontario and New Brunswick, and NERC is seeking to achieve comparable results in the other Canadian provinces. NERC will seek recognition in Mexico once necessary legislation is adopted.

3 Note ERCOT and SPP are tasked with performing reliability self-assessments as they are regional planning and operating organizations. SPP-RE (SPP - Regional Entity) and TRE (Texas Regional Entity) are functional entities to whom NERC delegates certain compliance monitoring and enforcement authorities.
Each type of wind or solar generation has varying capabilities in terms of:

- Voltage/var control/regulation
- Voltage ride through
- Power curtailment and ramping
- Primary frequency regulation
- Inertial response

This report focuses primarily on wind generation and solar PV generation. Since CSP uses a steam turbine-generator as its interface to the power grid, CSP facilities can use the same interconnection criteria as other conventional generation facilities with synchronous machines. Hence CSP is not addressed in this report.

The present status of modeling variable generation is covered in Chapter 3 of the NERC Special Report “Standard Models for Variable Generation.” WECC, IEEE and IEC are working towards the development of standard dynamic simulation models for wind turbine generators. WECC will also be extending their efforts to begin to develop generic models of solar PV arrays.

Many textbooks are now available in the subject area, such as “Wind Power in Power Systems” by T. Ackerman [2] and “Integration of Alternative Sources of Energy,” by F. Farret and M. Godoy Simões [3].

1.4 Distribution Connected Variable Generation

Given the growing penetration of distribution-connected variable generation, there is an imminent potential for such generation resources to have a significant impact on the reliability of the bulk power system. However, these types of resources fall outside the jurisdiction of NERC’s reliability criteria and therefore no reliability-based interconnection requirements exist.

The reliability risks due to distribution-connected variable resources are being evaluated by IVGTF Task Force 1-8 (Potential Reliability Impacts of Distributed Resources) and Task Force 1-7 (Reconciling Existing LVRT and IEEE Requirements).

Task Force 1-8, Potential Reliability Impacts of Distributed Resources

The goals of the Task 1-8 team were to identify the potential adverse bulk system reliability impacts that high penetrations of emerging distributed resources and review the existing NERC Registry Criteria to ensure continued reliability in systems with large amounts of distributed energy resources.
The amount of distributed energy resources present in the electrical grid is forecast to grow in the next decade. While these resources may contribute to bulk system reliability, as found in the report documenting the results of this activity, the emergence of high levels of resources at the distribution system that are not visible to, or controllable by the bulk system operator can result. Potential reliability concerns associated with distributed energy resources include the following:

- Visibility/controllability of distributed energy resources and impacts on load forecast
- Ramping/variability of certain distributed energy resources and impacts on base load/cycling generation
- Reactive power control
- VRT and FRT and coordination with the IEEE Standard 1547
- Under-Frequency-Load-Shedding (UFLS) and Under-Voltage-Load-Shedding (UVLS)

These issues may impact the bulk system at different levels of penetration, depending on the characteristics of the particular area to which the distributed energy resources are connected. Some factors will need to be managed by technical requirements (grid codes) for the distributed energy resources itself, while others need the bulk system operator to adapt new planning and/or operational methods. In North America, the conflict between the transmission need for low-voltage-ride-through and the IEEE 1547 standard, which mandates disconnection of distributed energy resources to allow distribution protection systems to operate and to prevent islanding, has to be addressed and is separately considered in the Task 1-7 team’s activities. A fundamental component to mitigation will be the development or adjustment of standards.

The following general recommendations were made by Task Force 1-8:

- NERC and/or industry should develop an analytical basis for understanding the potential magnitude of the identified adverse reliability impacts.
- Based on these analytical results, specific recommendations should be developed considering the potential implications on reliability from previously non-jurisdictional entities.

The conclusions of these analyses will hopefully lead to new interconnection requirements for distribution-connected variable generators that would be consistent with the interconnection requirements for other high-penetration resources that have significant impact on overall grid reliability.

Task Force 1-7, Reconciling Existing LVRT and IEEE Requirements
This activity addresses a fundamental incompatibility between the requirements for transmission-connected and distribution-connected generation. When IEEE Standard 1547 was first developed, it was not anticipated that distributed generation could grow as quickly as it did, or that it could come to play an important role in the transient behavior of the bulk power systems following a major disturbance. While distribution connected wind generation has not grown as fast in North America as it has in Europe, there are some areas in North America where it is a major player, particularly in the upper Midwest. And while the rate at which distribution-connected solar photovoltaic generation is unknown for certain, it has the potential to grow more rapidly than wind. It therefore behooves a prudent planner to be prepared for a broad range of uncertain futures regarding the impact of distribution-connected generation on power system reliability during system disturbances.

This is another task where the experience of European system operators has been very helpful. With the rapid growth of wind generation on the distribution systems in Denmark and Germany, and now the rapid development of solar PV in Germany, they were the first to see the need for LVRT requirements on the distribution system, and incorporate those requirements into their grid codes. The task force has been proactive in engaging the IEEE 1547 leadership in this discussion, and has held a joint panel session at the 2011 Power and Energy Society’s (PES) annual meeting in Detroit. The task force will prepare an implementation plan to reconcile the conflicting LVRT requirements of FERC Order 661-A and IEEE 1547. The final recommendation from the task force will be prepared and submitted to NERC’s Planning Committee for their review. The task force will work with IEEE and NERC in parallel, once the recommendation is made, to initiate any required standards activities.
NERC Regional Entities

<table>
<thead>
<tr>
<th>ERCOT</th>
<th>RFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Reliability Council of Texas</td>
<td>ReliabilityFirst Corporation</td>
</tr>
<tr>
<td>FRCC</td>
<td>SERC</td>
</tr>
<tr>
<td>Florida Reliability Coordinating Council</td>
<td>SERC Reliability Corporation</td>
</tr>
<tr>
<td>MRO</td>
<td>SPP</td>
</tr>
<tr>
<td>Midwest Reliability Organization</td>
<td>Southwest Power Pool, Incorporated</td>
</tr>
<tr>
<td>NPCC</td>
<td>WECC</td>
</tr>
<tr>
<td>Northeast Power Coordinating Council, Inc.</td>
<td>Western Electricity Coordinating Council</td>
</tr>
</tbody>
</table>

Figure 1 NERC Regions.

Note: The highlighted area between SPP and SERC denotes overlapping regional area boundaries: For example, some load serving entities participate in one region and their associated transmission owner/operators in another.
2. Reactive Power and Voltage Control

2.1 Background

Voltage on the North American bulk system is normally regulated by Generator Operators, which typically are provided with voltage schedules by Transmission System Operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (PV) that have no inherent voltage regulation capability. Bulk system voltage regulation was provided almost exclusively by synchronous generators. However, the growing level of penetration of non-traditional renewable generation – especially wind and solar – has led to the need for renewable generation to contribute more significantly to power system voltage and reactive regulation. For the most part, new wind plants use doubly fed asynchronous generators or full-conversion machines with self-commutated electronic interfaces, which have considerable dynamic reactive and voltage regulation capability. If needed to meet interconnection requirements, the reactive power capability of solar and wind plants can be further enhanced by adding of SVC, STATCOMS and other reactive support equipment at the plant level. It should be noted that converters need to be sized larger to provide reactive power capability at full output. Currently, inverter-based reactive capability is more costly compared to the same capability supplied by synchronous machines. Partly for this reason, FERC stipulated in Order 661-A (applicable to wind generators) that a site-specific study must be conducted by the transmission operator to justify the reactive capability requirement up to 0.95 lag to lead at the point of interconnection. For Solar PV, it is expected that similar interconnection requirements for power factor range and low-voltage ride-through will be formulated in the near future. Inverters used for solar PV and wind plants can provide reactive capability at partial output, but any inverter-based reactive capability at full power implies that the converter need to be sized larger to handle full active and reactive current.

Nonetheless, variable generation resources such as wind and solar PV are often located in remote locations, with weak transmission connections. It is not uncommon for wind parks and solar PV sites to have short circuit ratios (i.e. ratios of 3-phase short circuit MVA divided by nominal MVA rating of the plant) of 5 or less. Voltage support in systems like this is a vital ancillary service to prevent voltage instability and insure good power transfer.

Voltage regulation in distribution systems is normally performed at the distribution substation level and distribution voltage regulation by distributed resources is not allowed by IEEE 1547. Normally, distributed resources operate with fixed power factor with respect to the local system.
2.2 Reactive Capability of Synchronous Generators

Customarily, when reactive capability of variable generation resources is specified for transmission interconnections, it is done at the Point of Interconnection (POI), which is the point at which power is delivered to the transmission system. This is often (but not always) at the high side of the main facility transformer. A typical requirement would be 0.95 lag to lead power factor\(^4\) at the POI, meaning that the machine should be capable of injecting or absorbing the equivalent of approximately 1/3 of its active power rating (MW) as reactive power (MVAr). This “lag to lead” specification originated from FERC Order 2000 (Large Generator Interconnection Agreement) and was suggested by NERC as a representative synchronous generator capability. In reality, synchronous generators are almost always applied with power factor measured at the terminals, not at the POI. Conventional synchronous generator reactive power capability is typically described by a “D curve” that covers the range from zero to rated output. However, it should be noted that synchronous generators are limited by the minimum load capability of the generating plant. Some conventional generators are designed to operate as synchronous condensers, allowing them to provide reactive power at zero load, but they still cannot operate between zero and minimum load. The ability to provide reactive power at zero load must be designed into the plant and it is not possible with many larger plant designs. The significance of the discussion above is that the practical reactive power capability of a typical synchronous generator is more limited than the typical “D curve” shows (see Figure 2).

![Figure 2](example_of_reactive_power_capability_of_a_synchronous_generator_conceiving_plant_minimum_load.png)

Assuming negligible auxiliary load, the corresponding power factor at the transmission interface can be easily calculated given the generator power factor at the terminals and

\(^4\) In this document, a generator convention is used for power factor sign. Lagging power factor means that the generator is injecting reactive power to the grid. Leading power factor means that the generator is absorbing reactive power from the grid. In conventional generators, lagging and leading power factor are commonly referred to as over-excited and under-excited, respectively.
the reactance of the generator step-up transformer. Generally, a generator with a reactive capability of 0.9 lag, 0.983 lead (measured at the generator terminals) connected to the transmission system through a transformer with a leakage reactance of 14% on the generator MVA base can provide 0.95 lag to lead at the transmission interface if the transmission system is at nominal (i.e., 100%) voltage.

Typical specifications for synchronous generators require 0.90 lag (over-excited) and 0.95 lead (under-excited) at the machine terminals in order to allow voltage regulation at a transmission voltage range within 90% to 110% of nominal. Synchronous generators have maximum continuous voltages of 105%, and minimum continuous voltage of 95%. Depending on the system voltage and generator output level, these limits may come into play, in which case the reactive power capability would be reduced. For example, Figure 3 depicts the reactive power capability at the POI for a synchronous generator at rated power with a typical reactive capability of 0.90 lag to 0.95 lead at the machine terminals, connected to the system by a 14% (on the generator MVA base) reactance step-up transformer. Note that over-excited power factor range at the POI is roughly 0.95 lag for system voltages at nominal or below, but drops off sharply at voltages above nominal. Similarly, under-excited power factor range at the POI is actually close to 0.9 lead (i.e., Q = 0.48 x P) for voltages above 100% of nominal, but the capability drops off for system voltages below nominal.

![Figure 3](image)

Figure 3 Influence of voltage on reactive power capability of a synchronous generator.

A specification of 0.95 lag to lead at full power is commonly stipulated for variable generation. However, terminal voltage limitations also affect reactive power capability of variable generators; therefore, to capture this effect, the reactive power vs. voltage characteristic should be specified separately from the reactive range. For example, in addition to a 0.95 lag to lead reactive range requirement, the chart shown in Figure 4 could be used to specify the reactive power capability vs. voltage characteristic.
2.3 Reactive Capability or Requirements for Wind and Solar PV Generators

PV generators and some types of wind generators use power converters. The reactive capability of converters differ from those of synchronous machines because they are normally not power-limited, as synchronous machines are, but limited by internal voltage, temperature and current constraints. The sections below discuss reactive power capability of individual wind turbine-generators and solar PV inverters. Section 2.4 addresses the reactive power capability of multi-unit variable generation power plants.

Wind Generators

Wind generators with converter interface are often designed for operation from 90% to 110% of rated terminal voltage. Lagging power factor range may diminish as terminal voltage increases because of internal voltage constraints and may diminish as terminal voltage decreases because of converter current constraints. Leading capability normally increases with increasing terminal voltage. These characteristics also apply to PV inverters. Doubly-fed and full-converter wind generators are often sold with a “triangular,” “rectangular” or “D shape” reactive capability characteristic, shown in Figure 5. This represents the reactive power capability of individual wind generators or PV inverters. Reactive power capability at the plant level is discussed in Section 2.4.
Machines with a rectangular or D-shaped reactive capability characteristic may be employed to provide voltage regulation service when they are not producing active power (e.g., a low-wind speed condition for a wind resource or at night for a PV resource, or during curtailment) by operation in a STATCOM mode. However, this capability may not be available or may not be enabled by default. Unlike doubly-fed or full-converter wind turbine generators, induction-based wind generators without converters are unable to control reactive power. Under steady-state conditions, they absorb reactive power just like any other induction machine. Typically, mechanically switched capacitors are applied at the wind generator terminals to correct the power factor to unity. Several capacitor stages are used to maintain power factor near unity over the range of output.
PV Inverters

PV inverters have a similar technological design to full-converter wind generators, and are increasingly being sold with similar reactive power capability. Historically, however, PV inverters have been designed for deployment in the distribution system, where applicable interconnection standards (IEEE 1547) do not currently allow for voltage regulation. Inverters for that application are designed to operate at unity power factor, and are sold with a kW rating, as opposed to a kVA rating. Like inverter-based wind generators, PV inverters are typically designed to operate within 90% to 110% of rated terminal voltage. Reactive power capability from the inverter, to the extent that is available, varies as a function of terminal voltage. Furthermore, DC input voltage could also affect reactive power capability where single-stage inverter designs are used. For example, a low maximum power point (MPP) voltage could reduce the lagging reactive power capability. With the increased use of PV inverters on the transmission network, the industry is moving towards the ability to provide reactive power capability. Some PV inverters have the capability to absorb or inject reactive power, if needed, provided that current and terminal voltage ratings are not exceeded. Considering that inverter cost is related to current rating, provision of reactive power at “full output” means that the inverter needs to be larger for the same plant MW rating, which comes at a higher cost compared to existing industry practice. Figure 6 shows the reactive capability of an inverter based on current limits only. Based on historical industry practice, this inverter would be rated based on unity power factor operation (P1 in Figure 6). Inverters would be able to produce or absorb reactive power when it operates at a power levels lower than P1 (e.g., P2). However, in response to recent grid codes like the German BDEW, more PV inverter manufacturers have “de-rated” their inverters and now provide both a kW and KVA rating. In principle, inverters could also provide reactive power support at zero power, similar to a STATCOM. However, this functionality is not standard in the industry. PV inverters are typically disconnected from the grid at night, in which case the inverter-based reactive power capability is not available. This practice could, of course, be modified, if site conditions dictate the use of reactive capability during periods when generation is normally off-line.

5 The DC power supplied to the inverter from a PV source is a non-linear function of voltage. The voltage level that corresponds to the maximum power point (MPP) varies with temperature, irradiance and other factors. PV inverters have a maximum power point tracking function which continuously adjusts the DC voltage of the PV array to operate the array at the MPP. In single-stage inverters, the dc voltage of the array is the same dc voltage applied to the inverter. In dual-stage inverters, a dc-to-dc boost stage allows the dc voltage applied to the inverter to be independent of the array dc voltage, and thus these inverters have reactive power capability that is independent of the array dc voltage.
2.4 Reactive Capability of Variable Generation Plants

Reactive power requirements for interconnection are specified at the POI. This is an important consideration for wind and solar plants. First of all, it means that several technical options can be considered in the plant design to meet interconnection requirements. Technically, a plant with inverter-based wind or solar generators could rely on the inverters to provide part or all of the necessary reactive power range at the POI. It may be more economical to use external static and dynamic devices such as a STATCOM (static compensator), an SVC (static var compensator), or MSCs (mechanically-switched capacitors). The additional amount of reactive support required depends on the reactive capability of individual wind generators of PV inverters and how it is utilized. Sometimes, external dynamic reactive support is required to assist with voltage ridethrough compliance.

During periods of low wind or solar resource, some generators in the plant may be disconnected from the grid. The DC voltage for solar PV inverters may limit the reactive power capability of the inverters. This should be taken into consideration when specifying reactive power capability for variable generation plants. Below a certain output level, it makes sense for the specification to show a reduced power factor range, or a permissive MVAr range. Figure 7 shows several possible reactive power capability specifications for variable generation, applicable at the POI.

Figure 6 Reactive power capability of an inverter (red curve) based on current limit.
Figure 7 Example of reactive capability specification at the POI. At low output levels, as indicated by the shaded area, a permissive reactive range may be considered.

The interconnection requirements such as those shown in Figure 7 are often applied to transmission-connected wind power plants. In the case of PV, a requirement to maintain reactive power range at full output represents a change with respect to historical industry practice. This cost impact could be substantial if the PV plant relies on the PV inverters to provide a portion or all of the required plant-level reactive power capability. Figure 8 shows the reactive capability curve for a PV plant based unity power factor operation (red line), and how it compares with a “triangular” reactive power requirement (blue line) that is commonly specified for transmission interconnection. In this case the PV plant would not meet the requirement at full output without adding inverter capacity, de-rating the plant, or installing external reactive power support devices. In order to achieve a power factor range of 0.95 lag to lead at the POI at rated plant output using only the inverters, the total inverter rating would have to increase by as much as 10%, considering reactive losses. It should be noted that that both PV plants and inverter-based wind plants are technically capable of providing reactive capability at full output. The difference is that such requirement is new to the solar industry compared to the wind industry.
The requirement implied by the blue curve in Figure 8 may not be needed for all transmission-connected PV plants. Considering that most PV plants are relatively small and the output is variable, operation along the red curve or at unity power factor may be just as beneficial to the system as operation along the blue curve. During periods where system conditions warrant, these plants could be instructed to reduce active power output such that a reactive power range can be maintained.

In addition to the reactive capability versus output level discussed above, a complete specification should address the expected reactive capability during off-nominal voltage conditions, as illustrated in Figure 4.

2.5 Static vs. Dynamic Reactive Capability

The provision of dynamic reactive capability may have cost implications different than that of static reactive capability, and thus should be separately specified. Some grid codes specify both a dynamic range and a total range of reactive operation. For example, a grid code may specify a dynamic range of 0.95 lag to lead, and a total range of 0.90 lag to 0.95 lead, indicating a need for smooth and rapid operation between 0.95 lag and 0.95 lead, but allowing for some time delay for lagging power factors below 0.95. Dynamic reactive capability from converters can be provided almost instantaneously in a manner similar to that of synchronous machines, responding almost instantly (i.e., within a cycle) to system voltage variations, to support the system during transient events, such as short circuits, switching surges, etc. Fixed capacitors or reactors can be used to shift the dynamic reactive capability toward the lagging or leading side, respectively, as needed. If there is inadequate dynamic reactive capability available from the variable generation resources, it may be necessary to supplement the variable generation resources with an SVC or STATCOM.
Non-dynamic reactive sources, such as supplemental mechanically switchable capacitors or reactors, can be installed to increase total (but not dynamic) reactive capability. Breaker times are in the range of cycles, not seconds. However, once disconnected, capacitors cannot be re-inserted without first being discharged (unless synchronous switching is used). Normally, discharge takes five minutes. Rapid discharge transformers can be applied to execute discharge in a few seconds. Good engineering practice requires that consideration be given to operation of switched reactive resources. For example, it is sometimes required that lagging reactive capability be placed in service as a function of variable generation output, irrespective of system voltage conditions. A Transmission Operator may require, for example, that capacitors be placed in service to compensate for transmission reactive losses whenever the output of a wind park exceeds 90% of rated capability. If the system voltage is high and the turbines are already operating at the leading power factor limit, placing capacitors in service may cause a high transient and steady-state overvoltage that can result in turbine tripping and other operational difficulties. It may be necessary to adjust transformer taps to bias turbine voltages in a safe direction if such operation is necessary.

2.6 Operational Considerations

Reactive capability on transmission systems is typically deployed in voltage regulation mode. The transmission system operator provides a voltage schedule and the generator (conventional or variable generation) is expected to adjust reactive output to keep the voltage close to the setpoint level. Normally, this is done by regulating the resource’s terminal voltage on the low side of the resource’s main transformer. Another emerging practice is to adjust reactive output per a “reactive droop” characteristic, using the transmission voltage. Reactive droop in the range of 2% to 10% is typically employed. A typical drop of 4% simply means that the resource will adjust reactive output linearly with deviation from scheduled voltage so that full reactive capability is deployed when the measured voltage deviates from the scheduled voltage by more than 4%. A 1% deviation results in 25% of available reactive capability being deployed etc. A voltage deviation less than the deadband limit would not require the resource to change reactive power output. Figure 9 shows an example of a reactive droop control with deadband.

The specifications of the reactive droop requirement (e.g., the deadband of the droop response, together with the response time to voltage changes) may lead to requirements for dynamic reactive power support as well as potentially fast-acting plant controller behavior. Reactive droop capability is an emerging capability for solar PV plants, although there are no technical impediments to the implementation of such control schemes. Individual wind generators and solar PV inverters typically follow a power factor, or reactive power, set point. The power factor set point can be adjusted by a plant-level volt/var regulator, thus allowing the generators to participate in voltage control. In
some cases, the relatively slow communication interface (on the order of several seconds) of inverters limits the reactive power response time.

![Graph](image)

Figure 9 Example of Reactive Droop control with Deadband.

Reactive droops of less than 2% for voltage regulation on the transmission system are essentially “bang-bang” voltage controls that may introduce oscillations, cause excessively rapid voltage fluctuations, and deplete reactive reserves for contingencies. They may be necessary in some weak systems, but they should generally be avoided, if possible. For large plants connected to the transmission system, reactive power control (fixed Q) and power factor control (fixed ratio of Q to P) is not generally used because they can result in inappropriate response to system voltage fluctuations and they generally detract from local system voltage stability. However, it should be noted that reactive control or power factor control are reasonable options when connected to a very stiff bus relative to the plant size. This is an important consideration in anticipation of smaller plants needing to be addressed in NERC standards. Moreover, reactive power control or power factor control are appropriate for distribution-connected generators.\(^6\)

2.7 Review of Existing Reactive Power Standards

The following sections discuss the key reactive power requirements applicable in North America and internationally. Appendix G contains a table summarizing several existing relevant standards regarding reactive support.

\(^6\) Most PV systems are distribution connected, or are small relative to the transmission system stiffness.
2.7.1 Standards Applicable in North America

A. FERC
FERC Order 661-A applies specifically to wind farms with aggregated nameplate capacity greater than 20 MVA. Wind generation plants are generally required by Transmission Operators to provide a 0.95 lag to lead power factor range at the point of interconnection, and voltage regulation functionality. Order 661-A places the burden on the transmission operator to establish the need for a power factor requirement up to the 0.95 lag to lead power factor range, and the need for dynamic reactive capability. Some transmission operators would prefer to interpret Order 661-A as a baseline requirement based on a system-level need, and not on a case-by-case basis. There is still a great deal of uncertainty regarding this issue for all types of variable generation. Furthermore, there are different interpretations and a lack of clarity regarding the amount of dynamic versus static reactive power that is required, with Order 661-A requiring that wind farms provide sufficient dynamic voltage support in lieu of PSS and AVR. FERC’s interconnection requirements currently do not contain language that applies to solar generation. However, generation interconnection procedures in California were recently revised to incorporate provisions similar to FERC Order 661A, but applicable to all asynchronous generators—see discussion in Section D below.

B. NERC
Applicability of NERC standards to generators is defined in NERC’s “Criteria Statement of Compliance Registry Criteria (Revision 5.0)”. Generators larger than 20 MVA, plant/facility larger than 75 MVA in aggregate, and any generator that is a blackstart unit is subject to NERC standards. Regional standards and other requirements supplement the NERC standards. An important consideration is that NERC standards, unlike some regional grid codes, strive to be technology neutral. A good example of this philosophy is the PRC-024 standard on voltage and frequency tolerance, which is currently being drafted.

NERC FAC-001 directs the Transmission Owner to define and publish connection requirements for Facilities, including generators. The connection requirements must address reactive power capability and control requirements (R2.1.3 and R2.1.9). As stated in the previous section, the manner in which reactive power capability may be used affects interconnection requirements. In that regard, NERC VAR standards address operating requirements with respect to reactive power control, although the language used is more pertinent to synchronous generation and could be modified to better address variable generation. VAR-001 R3 states that “The Transmission Operator shall specify criteria that exempt generators from compliance with the requirements defined in Requirement 4, and Requirement 6.1.” VAR-001 R4 and R6.1 refer to requirements to operate in automatic voltage control or reactive power
VAR-002 indicates that generators with automatic voltage regulators must operate in voltage control mode unless directed otherwise by the Transmission Operator.

Interconnection standards issued by Transmission Operators pursuant to FAC-001 are not uniform. Some Transmission Operators address the reactive power requirements explicitly, and some just refer back to the FERC pro-forma LGIA/SGIA. For example, the Idaho Power document states in Section R2.1.9 that “IPC’s voltage, reactive power, and power factor control requirements for generators are described in its generator interconnection agreements. The requirements for generators larger than 20 MW are listed in section 9.6 of IPC’s Standard Large Generator Interconnection Agreement (LGIA). For generators smaller than 20 MW, section 1.8 of IPC’s Small Generator Interconnection Agreement (SGIA) describes the requirements. In contrast, the PG&E Generation Interconnection Handbook states in Section G3.1.2.2 that “Wind generating facilities must provide unity power factor at the point of interconnection (POI), unless PG&E studies specify a range. PG&E may further require the provision of reactive support equivalent to that provided by operating a synchronous generator anywhere within the range from 95 percent leading power factor (absorbing Vars) to 90 percent lagging power factor (producing Vars) within an operating range of ±5 percent of rated generator terminal voltage and full load. (This is typical, if the induction project is greater than 1,000 kW.)” Further, in G3.1.3, the PG&E document states that “Inverter-based generating facilities need to provide reactive power (Vars) to control voltage. It shall be measured at the facility side (generally the low voltage side) of the step-up transformer that connects to PG&E. The facility reactive capability shall be at least capable of providing 43 percent of facility Watt rating into the system and capable of accepting 31 percent of facility Watt rating from the system.” Other standards related to reactive power capability are reviewed below.

C. ERCOT

ERCOT Generator Interconnection or Change Request Procedures apply to single units larger than 20 MVA or multiple units (such as wind and solar generators) with aggregated capacity of 20 MVA connected to the transmission system. The required power factor range is 0.95 lag to lead at maximum power output and must be supplied at the point of interconnection (transmission). At partial power, reactive capability must be up to the MVAr range at rated power, or at least the required range at rated power scaled by the ratio of active power to rated power. The reactive range must be met at the voltage profile established by ERCOT. All generators are required to follow a voltage schedule, within the reactive capability of the generator, and operate

in voltage regulation mode unless otherwise directed by ERCOT at power output levels equal to or greater than 10% of rated output.

D. California ISO
The California ISO recently proposed more detailed power factor requirements that apply to all forms of “asynchronous generation” (including wind and solar). The proposed requirement was a 0.95 lag to lead power factor baseline requirement at the POI. A parallelogram similar to the one in Figure 3 was used to specify reactive power capability versus voltage. The proposed standard also would have allowed a permissive reactive range when the generating facility output is below 20% of rated active power output. It also stated that the reactive power must be met at full real power output, and clarified that the reactive power capabilities could be met with external static or dynamic reactive power support equipment. Specific requirement for automatic voltage regulation included definitions for voltage deadband and response time. FERC rejected the CAISO proposal on the grounds that baseline reactive power requirements should be justified by a specific interconnection study.

E. HECO
The Hawaiian Electric Company (HECO) currently is determining the power factor requirements through the interconnection agreement and PPA process, including for sites below 20MW. The requirements are similar to that proposed by other bodies, with indications that a VAR requirement (that corresponds to 0.95 power factor at rated power) would be satisfactory in place of a power factor requirement.

F. AESO
The Alberta Electric System Operator (AESO) specifies reactive power requirements for wind generators as shown in Figure 7. The basic requirement is that sustained reactive power capability shall meet or exceed 0.9 lag to 0.95 lead power factor based on the aggregated plant MW level. A portion of the reactive capability, 0.95 lag to 0.985 lead must be dynamic. Short-term reactive power capability that can be sustained for one second or longer counts toward the required dynamic reactive power capability. Subject to review and approval of the AESO, several wind plants connected to a common transmission substation may consider aggregating voltage regulation and reactive power from a single source to meet the overall reactive power requirement. The intent of voltage regulation requirements is to achieve reasonable response to disturbances as well as a steady-state regulation of +/- 0.5% of the controlled voltage. The standard identifies a minimum requirement for dynamic reactive power and permits some controlled reactive devices such as capacitor banks to satisfy total reactive power requirements. The reactive power performance (as shown in Figure 10) and voltage regulation is assessed at the low voltage side of the transmission step-up transformer(s), and at rated collector system voltage.
G. Reactive Power Requirements Applicable to Distribution Interconnection

In North America, distribution interconnections generally conform to IEEE 1547 standards, as codified in FERC’s Standard Generator Procedures (SGIP) and state-level interconnection processes. With respect to reactive power, IEEE 1547.1 states that output power factor must be 0.85 lag to lead or higher; however, distribution-connected PV and wind systems are typically designed to operate at unity or leading power factor under power factor control and can provide little or no reactive capability at full output. Operating in voltage control, often required for transmission connected generation, is not permitted under IEEE 1547.
2.7.2 International Standards

There are several good examples of interconnection standards that apply to interconnection of variable generation in Europe and elsewhere. Some examples are provided below.

H. Wind Generation “Grid Codes” in Europe

In Europe, interconnection standards for wind generation, known as “grid codes” are relatively mature compared to standards in North America. Standards vary across Transmission Operator jurisdictions, and there are efforts underway to harmonize the format of the standards. Power factor design requirements are expressed as a Q vs. P capability curve. Some examples are provided below (Figure 11). These charts specify reactive power requirements across the full operating range of active power, not only at full output. As a point of reference, power factor design requirements at full output vary between unity and 0.9 under/over excited at the point of connection. Most codes recognize that reactive power capability depends on voltage conditions, and contain specifications to that effect.
Some grid codes specify the portion of the capability curve that must be dynamic, similar to the AESO standard (Alberta). Some grid codes discuss how this reactive capability may be utilized in operations (voltage/droop control, power factor control and reactive power control), and the expected response time for each. Some grid codes also discuss the control strategy required during fault conditions, which could play a role in the system design and equipment selection.

I. Medium Voltage Standards in Germany
Interconnection requirements for solar PV systems installed at medium voltage (10kV to 100 kV) were recently put into effect in Germany. The power factor design
Reactive Power and Voltage Control

criterion is 0.95 lag to lead at full output, which requires inverters to be oversized or de-rated. This standard also requires dynamic reactive power support during voltage excursions.

2.8 Specific Recommendations to Improve Interconnection Standards

2.8.1 Recommendations for modification of existing NERC standards

NERC should consider revisions to FAC and VAR standards to ensure that reactive power requirements for all generators are addressed in a technically clear and technology-neutral manner. As with all new or changing requirements, appropriate consideration should be given to the applicability to existing generators. Suggested updates are as follows:

• Consider adding a clarification to FAC-001 expanding R.2.1.3 or as an Appendix, stating that interconnection standards for reactive power must cover specifications for minimum static and dynamic reactive power requirements at full power and at partial power, and how terminal voltage should affect the power factor or reactive range requirement (see Section 2.8.3 below for technical guidelines).

• Consider modifying VAR-001 to include the term “plant-level volt/var controller” (in addition to “AVR”), which is more appropriate for variable generation. Specific recommended changes are underlined below:

 “VAR-001 R4. Each Transmission Operator shall specify a voltage or Reactive Power schedule at the interconnection between the generator facility and the Transmission Owner's facilities to be maintained by each generator. The Transmission Operator shall provide the voltage or Reactive Power schedule to the associated Generator Operator and direct the Generator Operator to comply with the schedule in automatic voltage control mode (AVR or plant-level volt/var regulator in service and controlling voltage).”

A large amount of variable generation, including most of the solar PV deployment, will be relatively small plants with capacity below the threshold specified in the existing NERC Registry Criteria, and connected at voltages below 100 kV. This includes residential and commercial systems, as well as larger plants connected to the distribution or sub-transmission system. To the extent that these systems, in aggregate, can affect the reliability of the bulk grid, the FAC and VAR standards should be extended or revised to accommodate them. A prospective NERC standard addressing reactive requirements for smaller plants should recognize that distribution-connected variable generation plants have traditionally been operated in power factor control mode.
2.8.2 General Recommendations for Standards Development and Reconciliation

For the most part, existing NERC and FERC interconnection standards were developed with a class of equipment in mind (synchronous generators), and do not fully define performance requirements for reactive power support. This has resulted in unclear, inconsistent and sometimes inappropriate interconnection reactive power requirements for generators, especially variable generation. Specific recommendations are as follows:

- NERC should promote greater uniformity and clarity of reactive power requirements contained in connection standards that Transmission Operators have issued pursuant to FAC-001. NERC, FERC and other applicable regional standards should be reconciled.

- NERC should consider initiating a Standards Authorization Request (SAR) to establish minimum reactive power capability standards for interconnection of all generators, and provide clear definitions of acceptable control performance (see Section 2.8.3 below for technical guidelines).

2.8.3 Technical Guidelines for Specification of Reactive Power Requirements

Variable generation technologies are technically capable of providing steady-state and dynamic reactive power support to the grid. Based on a review of best practices and operating experience, we offer the following technical guidelines for specification of reactive power capability and control requirements for interconnection of generating plants to the transmission system:

- **Applicability:** Generator interconnection requirement for reactive power should be clearly established for all generator technologies. NERC adheres to the notion of technology neutrality when it comes to reliability standards; however, certain unique characteristics of variable generation may justify different applicability criteria or appropriate variances. Technology differences were considered in nearly all international interconnection standards for wind generation. A key consideration is whether reactive power capability should be a base-line requirement for all variable generation plants, or it should evaluated on a case-by-case basis. The later approach was adopted in FERC’s Order 661-A. A thorough analysis to establish the need for reactive power support necessitates the establishment and application of clear and consistent criteria for reactive planning that takes into account system needs such as steady-state voltage regulation, voltage stability, and local line compensation requirements under normal and contingency conditions. Without consistent application of a set of planning criteria, establishing the “need” for reactive power can become a complicated process considering that multiple transmission expansion plans and generator interconnection requests that may be under evaluation. Application of a
baseline requirement for reactive power to all generators would address this concern to a large extent. However, in some situations, additional reactive power from variable generation plants may not contribute appreciably to system reliability. NERC should consider giving transmission planners some discretion to establish variance based on the characteristics of their transmission system.

- **Specification of Reactive Range:** The reactive range requirement should be defined over the full output range, and it should be applicable at the point of connection. A Q vs. P chart should be used for clarity. A baseline capability of 0.95 lag to lead at full output and nominal voltage should be considered. This design criterion is consistent with several grid codes and is becoming common industry practice. Unlike most conventional generators, variable generation plants routinely operate at low output levels, where it is difficult and unnecessary to operate within a power factor envelope. All or a portion of the generators in a wind or solar plant may be disconnected during periods of low wind or solar resource, which means that reactive power capability may be considerably reduced. For these reasons, it makes technical sense to allow variable generation to operate within a permissive reactive power range (as opposed to a power factor envelope) when the active power level is below a reasonable threshold such as 20% of plant rating.

- **Impact of System Voltage on Reactive Power Capability:** It should be recognized that system voltage level affects a generating plant’s ability to deliver reactive power to the grid and the power system’s requirement for reactive support. A Q vs. V chart could be used to describe the relationship between system voltage and reactive power. A reduced requirement to inject vars into the power system when the POI voltage is significantly above nominal and a reduced requirement to absorb vars when the POI voltage is significantly below nominal should be considered.

- **Specification of Dynamic Reactive Capability:** The standard should clearly define what is meant by “Dynamic” Reactive Capability. The standard could specify the portion of the reactive power capability that is expected to be dynamic. For example, the baseline requirement could be that at least 50% of the reactive power range be dynamic. This design criterion is consistent with several grid codes. Alternatively, the definition of control performance (e.g., time response) can be used to specify the desired behavior.

- **Definition of Control Performance:** Expected volt/var control performance should be specified, including minimum control response time for voltage control, power factor control and reactive power control. For example, a reasonable minimum response time constant for voltage, power factor or reactive power control may be 10 seconds or comparable to a synchronous generator under similar grid conditions. Consistent with existing VAR-002, voltage control should be expected for transmission-connected plants; however, as discussed in Section 2.4, power factor
control is a technically reasonable alternative for plants that are relatively small. An interim period for the application of precisely defined control capabilities should be considered.

- **Effect of Generator Synchronization on System Voltage:** Synchronization of generators to the grid should not cause excessive dynamic or steady-state voltage change at the point of connection. A 2% limit may be considered as a baseline.

- **Special Considerations:** NERC should investigate whether transmission operators can, under some conditions, allow variable generating plants to operate normally or temporarily at an active power level where dynamic reactive capability is limited or zero. If needed for reliability and upon command from the system operator, these plants could temporarily reduce active power output to maintain a reactive range. Such an approach could make sense depending on the size of the plant (more appropriate for smaller plants) and the location on the system. The possibility of operating in this manner could be considered as part of the interconnection study.

- **Technical Alternatives for Meeting Reactive Power Capability:** The reactive power requirements should be applicable at the point of interconnection. Technical options to meet the interconnection requirements should not be restricted. For example, reactive power support at the point of interconnection need not be provided by inverters themselves; they could be provided by other plant-level reactive support equipment.

- **Commissioning Tests:** Commissioning tests, which are part of the interconnection process, often include a test to demonstrate plant compliance with reactive power capability requirements. Commissioning tests often include verification of reactive power capability at rated power as a condition to allow operation at that level of output. An alternative approach should be used for variable generation plants, considering that the output cannot be controlled. For example, PV plants may be designed such that maximum output is reached only during certain months of the year, and it may not be possible to conduct a commissioning test at rated power output for several months.

2.9 References

• FERC Large Generator Interconnection Agreement,

• FERC Large Generator Interconnection procedures,

• European Wind Energy Association, “Generic Grid Code Format for Wind Power Plants,” November 2009,
GCF_Final_Draft.pdf
3. Performance During and After Disturbances

3.1 Introduction

NERC Standard FAC-001 was developed to ensure Transmission Owners publish facility interconnection requirements to avoid adverse impacts on reliability. In the Phase 1 NERC IVGTF report, it was identified that several aspects related to variable generation were missing from FAC-001 and Task Force 1-3 was formed to address these issues. The specific NERC action recommended in the IVGTF report was:

Interconnection procedures and standards should be reviewed to ensure that voltage and frequency ride-through, reactive and real power control, frequency and inertial response are applied in a consistent manner to all generation technologies. The NERC Planning Committee should compile all interconnection requirements that Transmission Owners have under FAC-001 and evaluate them for uniformity. If they are inadequate, action should be initiated to remedy the situation.

This section of the report focuses on the required performance of a generator during and after a disturbance. Several of the main interconnection procedures and standards or grid codes in current use in North America and worldwide were reviewed specifically to determine how the following were being treated:

- Fault Ride Through
- Frequency Ride Through
- Power Recovery Characteristics
- Islanded Operating Conditions
- Restart After Disturbances

3.2 General Objectives of System Disturbance Performance Requirements

Reliability of the interconnected power system is greatly affected by adequacy of generation and transmission system to meet load demand at all times (in steady state), as well as its dynamic performance during and immediately after system disturbances until the next acceptable steady state is achieved. Most of the high probability system disturbances are; symmetrical or unsymmetrical faults on transmission system elements and switching associated with clearing the faulted elements, switching of system

8 NERC Special Report: Accommodating High Levels of Variable generation, April 2009
elements, as well as switching on or off significant amounts of generation or load. During such disturbances, performance of all the unaffected elements of the transmission and interconnected generation systems should be such that transition to the new acceptable steady state is stable and well damped. Generation resources and their associated control and protection systems play a key role in providing acceptable system dynamic performance.

3.2.1 Continuity of Generation Resource

During normal system operation, the amount of generation available on the system is equal to the sum of load, system losses, and required spinning and regulating reserve. Spinning reserve and generation resources providing regulation are supposed to meet the needs of instantaneously balancing generation and demand of load plus losses, during normal operations as well as expected (according to system operating criteria) system disturbances. However, during such system disturbances, if additional generation resources not directly associated with the disturbance are inadvertently lost (or their output significantly altered) as a result of the disturbance and associated voltage and frequency transients, it can have detrimental effect on the system reliability. Therefore, all generation resources not directly involved in the disturbance, at the least should continue supplying real power immediately after the disturbance close to its pre-disturbance output (plus its share of regulating requirements to mitigate the effects of the disturbance). Their governing systems should also participate in primary frequency control.

3.2.2 System Support During and After Disturbance

In addition to providing real power to meet the system demand (load and losses), generators on the interconnected systems also play an important role in providing voltage and frequency control. This role of generating resources is not only required for its own stable operation, but is also essential for system reliability. During and immediately after faults, most synchronous generators in the areas affected by faults provide needed reactive power to maintain their own synchronization as well as to restore system voltage to acceptable levels. Their governing systems also participate in primary frequency control. As significant amount of traditional synchronous generators are replaced by variable generators during any operating periods, it would be desirable to have positive contribution to system voltage and frequency controls by the variable generation. At the least, the performance of the variable generation should not aggravate voltage and frequency transients.

Many wind turbine designs are configured to provide reactive power support during faults and other low-voltage conditions. Some designs inject reactive power in direct proportion to the voltage decrease, as mandated by certain grid codes, and other designs
provide a fast-responding closed-loop voltage regulation function which achieves similar results.

3.3 Attributes of a System Disturbance Performance Requirement

The function of a grid disturbance performance requirement is to enforce minimum capabilities of VERs to contribute to grid security immediately following, and possibly during, system disturbances. A properly defined requirement must clearly and unambiguously define the characteristics of the grid event or conditions for which the VER must provide the required performance, as well as the specifics of the VER performance which must be provided. Disturbance performance requirements which are unclear or ambiguous can result in diverse interpretations by different parties, resulting in contention.

3.3.1 Disturbance Event Specification

The disturbance performance requirement must specify the location for which the described grid conditions are applicable. There are two basic approaches used for this. The first is to define certain grid events at certain locations. The second is to define the critical disturbance by a measure of a grid parameter, such as voltage, at a particular location.

Specification of a critical event has been traditionally used in transmission planning as the basis for determining if synchronous generators remain in synchronism with the system. For example, it is common to consider normally-cleared three-phase faults and single-phase faults with backup clearing as the critical cases for assessing system stability – which is essentially the only voltage disturbance ride-through behavior presently required of conventional synchronous generators. These faults, and subsequent loss of associated transmission elements, can be located anywhere in the transmission system and do not need to be located at, or adjacent to the affected generators. This manner of specification has also been applied by the FERC in Order 661a, which dictates that wind plants must ride through normally-cleared three-phase faults (of no more than nine cycle duration), and single-phase faults with delayed clearing, and any resulting voltage recovery behavior. While FERC 661a implies the faults are at the Point of Interconnection, it is ambiguous what would constitute the “normal” and “delayed” clearing time if there are different clearing times for various transmission elements in proximity to the POI.

The other approach to disturbance specification is to provide a voltage vs. time or frequency vs. time characteristic applicable at some point in the system. This location can be the point of interconnection of the VER plant with the transmission system, or it is also sometimes specified as the HV side of the VER plant’s substation transformer.
Generally, the point of interconnection is at the HV side of a VER plant’s substation transformer. However, where there is a dedicated radial transmission line connecting the VER plant, the point of interconnection may be remote from the plant.

3.3.2 Specification of disturbance severity

3.3.2.1 Event-described criteria

For an event-described voltage performance requirement, the severity is defined by the type of fault (e.g., three-phase, single-phase, etc.) and by the duration of the fault. Also, a fault usually is cleared by the removal of some system element, and an event-based criterion might indicate what elements might be removed. For example, any fault requiring tripping of a radial VER plant interconnection line is typically excluded, for obvious reasons. Some event-described criteria, specifically FERC Order 661a, also require the VER to withstand whatever dynamic voltage recovery behavior that occurs in the grid as a consequence of the fault event. This rather open-ended voltage recovery requirement presents difficulty in VER plant design, because of the following:

- The post-fault voltage recovery envelope is highly dependent on system conditions outside of the VER plant’s control.
- The recovery envelope is location and situation (e.g., load level, season of year, etc.) dependent, and there is no uniform value for design and potentially no upper limit of what is required.
- The prediction of dynamic voltage recoveries are dependent on models (particularly load models) which are highly speculative and have little calibration. The impact of load model accuracy will be partially addressed in the future as TPL-001-2 R2.4.3 requires sensitivity studies be performed with changes in dynamic load model assumptions.

Frequency disturbance performance could potentially be based on the system response to a defined event, such as loss of the largest generating station, etc. Disturbance-defined frequency performance criteria are not normally used.

3.3.2.2 Specification of magnitude and duration

An alternative to an event-defined disturbance performance criterion is a criterion based on a defined voltage or frequency versus time. While this appears to be a simple and straightforward approach, there are many potential pitfalls in practice if care is not taken to avoid ambiguity.

The specification of the relevant system parameter must be clearly specified. In the case of frequency, there is no ambiguity. However, for voltage, there are a number of different
measures of three-phase sinusoidal voltage magnitude, each having their own relevance. A partial list of voltage magnitude metrics include:

- **Positive sequence fundamental-frequency voltage** – this is the metric of most familiarity to transmission planners. However, for different types of faults, the severity of an event to VER plant equipment can vary widely for the same value of this metric. This metric is poor when unbalanced disturbances are to be considered.

- **Least-phase rms voltage (or least-phase fundamental-frequency component of voltage)** – these metrics are most relevant to the impacts of low voltage on many types of VER equipment, however, they cannot be directly associated with the results of typical transmission planning studies.

- **Maximum phase rms voltage (or maximum-phase fundamental-frequency component of voltage)** – these metrics are relevant to some of the impacts of high voltage on VER equipment, however, they cannot be directly associated with the results of typical transmission planning studies.

- **Maximum crest phase voltage** – this metric is most relevant to the impacts of high voltage on VER equipment, and includes both fundamental-frequency and non-fundamental frequency components (harmonics plus transients). However, the prediction of this voltage metric requires simulations in electromagnetic transients type of software, which are not routinely used in transmission planning.

- **Negative sequence voltage fundamental-frequency voltage** – this is a measure of voltage unbalance during faults. Various types of generation have their own particular sensitivity to this measure.

Specification of the duration metric is also more complex than it may appear. There are two approaches taken for specifying the duration of voltage disturbances for which VER plant performance must be achieved. The more commonly used is the envelope-type of specification. The other is specification of a severity versus cumulative duration curve.

An envelope specification is a plot of disturbance severity versus time. The beginning point of the plot is the initiation of the disturbance, such as the application of a fault. The envelope approach is illustrated in Figure 12 and Figure 13. In each figure, the low voltage envelope criterion is shown by the bold dashed line. The voltage recovery plot in Figure 12 does not cross the envelope, and the VER would be required to achieve the specified performance for this event. In Figure 13, the voltage plot crosses the envelope, and the VER would not be required to meet the associated performance requirement.

The adverse consequence of an envelope specification is that the VER equipment needs to be designed to operate according to the performance requirements assuming that the voltage trajectory follows the envelope. This inherently causes the equipment to be designed with far more voltage withstand capability than is actually necessary. This is
particularly important for a high-voltage performance requirement, where the envelope begins when the fault is applied. As shown in Figure 14, the voltage does not typically reach a high value until the angular backswing that occurs well after fault clearing. Thus, an envelope specification must have an extended period of the highest voltage level in order to accommodate the period between fault application and the actual occurrence of high voltage. Lower voltage threshold levels also have to be extended to accommodate multiple system angular oscillations. It is particularly onerous to design equipment to withstand extended periods of elevated voltage, and this may be unnecessary when the envelope does not reflect the real duration of exposure.

![Voltage vs Time Graph](image)

Figure 12 Voltage disturbance that is completely above the low voltage criterion envelope.
An alternative approach is to specify the cumulative duration at, or exceeding, the given severity threshold. For example, in the high voltage case, the duration only needs to include periods when the voltage is elevated. Figure 15 illustrates a voltage plot and an associated overvoltage-duration specification based on the plot. In this figure, time period \(a \) is the duration that the voltage exceeds the overvoltage threshold \(V_2 \) but is less than \(V_3 \), and time periods \(b \), \(c \), and \(d \) are when the voltage exceed \(V_1 \). The duration of the maximum value of a cumulative duration specification is only equal to the time that the voltage exposure exceeds the next lower criterion. Thus, a voltage-duration curve based

Figure 13 *Voltage disturbance that crosses the low voltage criterion envelope.*

Figure 14 *Voltage disturbance and high voltage criteria envelope.*
on the case shown in Figure 15 would require withstanding $V3$ for a total time equal to a, and withstand of voltage $V2$ for a total time equal to the sum of periods b, c, and d. While less intuitive, a cumulative severity-duration type of specification is more closely associated with the actual stresses on equipment and the actual behavior of many protective relays.

![Figure 15](image)

Figure 15 Alternative approach for defining a high voltage criterion.

Another disturbance attribute that should be defined is quick repetition of faults, such as repeats of faults within a 30 second interval. Generally, such repetition is the result of unsuccessful line reclosing. It is normal practice to avoid high-speed transmission line reclosing in the vicinity of generating plants. Thus, it would be equally inadvisable to mandate VER plants to withstand repetitive fault events as a general requirement.

3.3.3 Behavior during disturbance

With conventional synchronous generators, the definition of “ride through” is unambiguous. Unless these generators are physically disconnected from the system using breakers or other switchgear (i.e., tripped) as a result of a disturbance, they can be defined as riding through. Reconnection of these generators cannot be performed rapidly, as resynchronization must be performed. With VER generation, the definition of “ride-through” is less well defined. An inverter, for example, can cease to gate its transistors or thyristors. This disconnects the generation from the standpoint of the ability to inject current into the transmission system. Very fast reconnection after a fault may be possible.
It is ambiguous whether a VER that stops electrical current injection by electronic means, but remains physically connected, “rides through.”

The key issue is whether there is a necessity for the VER to perform some function for the system during the actual fault. If there is no such need, and the VER returns to function in sufficient time to perform necessary system support after the fault is cleared, then it may be reasonable to consider such behavior as an acceptable form of “ride-through”

Some potentially necessary function of a VER during a fault might be to inject current such that there is sufficient current to operate protective relays, or to inject reactive power to help support system voltage. Such requirements should not be made without thorough investigation of the need. There are alternative “weak infeed” relay schemes which diminish the need for VER plants to be a reliable source of current to drive relays. The increase in the voltage, during faults, from the limited dynamic reactive power that a VER plant can inject may be rather marginal. Prompt application of reactive support during the post-fault period may be much more effective in achieving system voltage recovery than reactive power injected during the fault itself.

VER plants may be required to provide a ground source to the transmission system. This is achieved using the proper choice of transformer winding configuration, and is not relevant to a VER generator ride-through requirement.

Frequency disturbance performance requirements may include a maximum rate of frequency change specification. Such a specification should not be made arbitrarily, but should be based on thorough studies. For large interconnected systems, the maximum rate of frequency change is quite small. For isolated systems, or consideration of extreme events where a large interconnection is broken into isolated subsystems, greater frequency change rates can be justified.

3.3.4 Post-disturbance behavior – power recovery characteristics

As discussed above, it may or may not be necessary for a VER to perform a generating function during faults. However, in either case, it is generally necessary for the VER to return to function immediately after fault clearing. Disturbance performance requirements should indicate the maximum allowable time delay for return to function after fault clearing (or other severity criterion).

During the immediate post-fault period, voltage will dynamically recover from the fault value. The degraded voltage magnitude, until the voltage fully recovers, will typically limit the real and reactive power capability of a VER. The required real and reactive power performance should be specified as a function of voltage magnitude and time after fault clearing. Alternatively, real and reactive current performance could be specified in lieu of power requirements when voltages are outside of the normal range.
3.3.5 Islanding and Anti-Islanding Requirements

Many types of VER are designed to only operate in a system where a synchronous source is connected which provides an effective grid voltage source of sufficient strength, as seen from the VER generator terminals. The necessary strength for proper VER operation is usually specified as a “short-circuit ratio” (SCR), which is the ratio of the transmission system’s three-phase short-circuit MVA, divided by the rated MW of the VER plant. Undesirable behavior can result if a VER plant is isolated from the bulk grid, such that the SCR is less than the value required for the VER equipment. The concerns regarding operation, or mis-operation, in an islanded sub-system with degraded short circuit capacity are increased when the island contains utility customers.

Transmission-connected VER is usually interconnected with a networked transmission system. The VER may have a radial transmission interconnection dedicated to the VER plant, but loss of this tie leaves no utility load islanded with VER. Only in more severe contingencies, such as a line trip while another line is out of service, is there a risk of islanding VER along with utility customers. In some transmission VER interconnections, there may be a radial topology such that a simple line outage may result in islanding a VER plant with utility customer loads. Where there is a risk of VER plant islanding, either by simple or complex contingencies, and the VER plant is not capable of acceptable operation in the islanded situation, appropriate measures need to be taken during interconnection design and system operations. This may include requirements for transfer trip schemes, or restricting VER plant operation when transmission circuit outages are planned.

The risk of sustained islanded operation, and the consequences of even short-term islanding (such as overvoltages) are substantially diminished when the connected load far exceeds the rated output of the VER. Load demand exceeding 300%-400% of VER rating is generally sufficient to eliminate significant risk, assuming that the load does not trip prior to the VER. The time correlation of VER output capability with load demand should be considered. For solar generation (without energy storage capability), system load only during daylight hours need be considered.

Some types of VER generator units are designed for distribution interconnection applications. To comply with IEEE Standard 1547, as well as various local and state/provincial distribution interconnection codes, such units may have disturbance response (tripping on voltage or frequency deviation) and active anti-islanding (power system destabilization) features. These distribution-oriented features are generally inappropriate for transmission interconnections, and are contrary to bulk grid security needs. Such functionality should be disabled for transmission-connected VER applications. Many PV inverters are listed to UL-1741, and the disabling of such functionality may void this listing and require expensive modifications to the equipment.
It may therefore be advisable to instead allow for the use of PV inverters that are not listed to UL-1741 where ride-through behavior is preferred, such as transmission and sub-transmission interconnections.

3.4 Survey of Existing Interconnection Requirements and Standards

3.4.1 FERC Order 661a

FERC Order 661a imposes low-voltage ride-through requirements, as well as other requirements, exclusively on wind plants. The Order requires that wind plants remain connected for three phase faults with normal clearing (which the Order states to be within the range of 4 – 9 cycles), as well as any resulting post-fault dynamic voltage recovery behavior. The order does not specify or limit the duration, magnitude, or voltage recovery ramp rate characteristics. Wind plants must also remain connected for single-phase faults with backup clearing, as well as the consequent post-fault voltage recovery. There is no specification in the order establishing a maximum duration for this delayed fault clearing, nor any limitations to the voltage recovery characteristics. Language similar to FERC Order 661-A has been adopted for all asynchronous generators, including solar PV, in some recent LGIAs and regional interconnection requirements.

It is not clear if the fault ride-through requirements of FERC Order 661a pertain only to faults at the point of wind plant interconnection, or to faults anywhere in the transmission system that result in voltage depression at the point of interconnection. Faults at a given location in the transmission system will result in a corresponding voltage depression at the wind plant point of interconnection. Each fault location has associated normal and backup clearing times, as well as an associated voltage impact at the wind plant. Certain locations may have a longer than typical clearing time, but also may be electrically remote from the wind plant and thus have a less severe voltage impact (e.g., fault at a lower transmission or sub-transmission voltage level). Thus, it appears that the required low-voltage ride through duration should not be based on only the specific clearing practices at the location where the wind plant is connected, but also locations elsewhere in the transmission grid. However, the Order contains the sentence “The clearing time requirement for a three-phase fault will be specific to the wind generating plant substation location, as determined by and documented by the transmission provider.” Thus, there is a significant degree of ambiguity here.

FERC Order 661a sets requirements that are locationally-dependent, and thus difficult for wind turbine manufacturers to build compliance into product design.
3.4.2 NERC Standard FAC-001

The existing NERC standard FAC-001-0 covers fault ride-through and frequency ride-through in a very general way.

“R2. The Transmission Owner’s facility connection requirements shall address, but are not limited to, the following items:

 R2.1.14 Operational Issues (abnormal frequency and voltages).”

The above sub requirement, as with all of the sub requirements in FAC-001, leave it up to the Transmission Owner to “fill in the blanks” or develop specific requirements that will be applied to facilities wishing to interconnect to their network. This can lead to inconsistencies across North America.

3.4.3 Draft NERC PRC-024 Standard

The purpose of PRC-024-1 is to ensure generating units remain connected during frequency and voltage excursions. This standard is part of NERC Project 2007-09. A SAR was approved on July 12, 2007. Draft 1 of the standard was posted on Feb. 17, 2009 for a 45-day comment period. The initial draft was intended as a relay setting standard, applicable only to relays that directly sense voltage or frequency. There were no ride-through performance requirements, only requirements that relays not be set where they would preclude ride-through during disturbances of defined severity and duration. At the direction of FERC staff, Draft 2 of the standard was redirected to be a generation plant performance standard. Currently the comments have been analyzed and Draft 2 of the standard has been prepared and will soon be circulated for comment.

Currently the scope is limited to units greater than 20 MVA or plants greater than 75 MVA.

The standard includes frequency and voltage ride through curves as Attachment 1 and 2. In general, these curves are consistent with practices with the grid codes that were reviewed, with the exception that the severity-cumulative duration approach to ride-through performance specification is used.

There are a number of issues in PRC-024 Draft 2 that are of particular note, in addition to the exclusion of plants less than 75 MVA:

- The draft states that a generating plant will not trip for the defined range of disturbance severity. However, as stated previously, ”not tripping” is ill-defined in the case of VER with power electronic interface. The standard does not indicate the performance required during, nor after, a disturbance.

- Specification of voltage deviation severity, at the point of interconnection, does not alone adequately specify the limits of the system disturbance for which ride-through
must be performed. For example, if the post-disturbance system is severely weakened, continued operation may not be possible. The draft does not specify the extent of transmission system degradation accompanying a voltage deviation that must be endured.

3.4.4 NERC TPL-001-2 Standard

The purpose of TPL-001-2 is to establish planning performance requirements to ensure that the Bulk Electric System is planned to operate reliably. This standard was recently approved by the NERC board on August 4, 2011.

The standard requires the Planning Coordinator and Transmission Planner to establish the acceptable post-contingency voltage response (e.g., Maximum length of time the transient voltage may remain below a particular level). There is some potential for a coordination issue with PRC-024-1.

The planning assessment is required to simulate removal of any generators where the voltage is less than the assumed low voltage ride through capability (R4.3.2). This is not considered to be Cascading. However, the performance of the remaining network must meet the relevant criteria given in Table 1 of TPL-001-1.

3.4.5 Draft NERC PRC-019 Standard

The purpose of PRC-019-1 is to improve the reliability of the Bulk Electric System by preventing tripping of generating units/facilities due to mis-coordination of generating unit/facility voltage regulating controls and limit functions with generator capabilities and protection system settings. This standard is part of NERC Generator Verification Standards Drafting Team (GVSDT) Project 2007-09. A SAR was approved and Standard Drafting Team formed on August 18, 2007. Draft 2 of the standard was posted on June 15, 2011 for comment.

PRC-019-1 is applicable to all Generator Owners, regardless of unit or plant rating. The latest draft has been modified to include language pertaining to coordination of “generating unit/facility” voltage regulators, protection and equipment capability, which includes variable energy plants.

The main requirement of PRC-019-1 is that each Generator Owner shall coordinate generating unit/facility voltage regulating system controls, including limiters and protective functions, with the generating unit/facility capabilities and protective relays through an evaluation of:

- the in-service voltage regulating system control, limiting, and protection functions
- the in-service generator protection system settings
- the generating equipment capabilities
• the steady state stability limit (if applicable)

This coordination is to ensure that the limiters will operate before the protection and the protection will operate before conditions exceed equipment capabilities, including the steady state stability limit when operating within the normal AVR control loop and under steady state operating conditions.

The measures for this requirement are that the Generator Owner shall have evidence the generating unit/facility voltage regulating system limiters and protection are coordinated in accordance with the requirements. The evidence demonstrates:

• That the limiters will operate before the protection
• That the protection will operate before conditions exceed equipment capabilities, including the steady state stability limit.

This evidence includes documentation such as tables or plots defining the Equipment Capabilities, and Operating Region for the Limiters and Protection Elements, which may include some of the following:

• Generator Reactive Capability Curve Plots and/or R-X diagram plots containing some or all of the following equipment limits, limiters and associated protection functions such as:
 • Under-excitation limiters; over-excitation limiters; inverter current limits; and associated protection functions,
 • Steady state stability limits,
 • Loss of field protection curves.

• Inverse Time Limit/Protection Characteristic Plots containing some or all of the following equipment limits, limiters and associated protection functions such as:
 • Field over-excitation limiters; volts per hertz limiters; and associated protection functions,
 • Stator over-voltage protection,
 • Generator and transformer volts per hertz capability.

• Short-Term Thermal Capabilities Plots showing limiter and protection curves containing some or all of the following equipment limits, limiters and associated protection functions such as:
 • time vs. field current or time vs. stator current
 • Converter over-temperature limiter and associated protection system
NOTE: The standard does not require the installation or activation of any of the above limiters or protective functions.

Since PRC-019-1 applies to all Generator Owners, regardless of plant rating, and appropriately includes language that applies to variable energy resources (e.g., plant, facility, inverter current limits, converter over-temperature limiter, etc...), this draft standard adequately addresses variable energy (wind and solar) plants.

3.4.6 Requirements Imposed by Transmission Operators

Several facility interconnection requirement documents or grid codes were reviewed to identify typical disturbance performance requirements applied by transmission operators in North America and elsewhere. To the extent appropriate, performance requirements recommended in this report are modeled on these existing practices in order to minimize inconsistencies. Details of this review are documented in 1 for the following criteria:

- Low-voltage ride through
- High-voltage ride through
- Frequency excursion ride through
- Power recovery performance
- Islanded operation
- Restart following disturbances

Overall trends are summarized in Table 2.
<table>
<thead>
<tr>
<th>Standard</th>
<th>Technology Addressed</th>
<th>Voltage Ride Thru</th>
<th>Ride Thru Contribution</th>
<th>Frequency Ride Thru</th>
</tr>
</thead>
<tbody>
<tr>
<td>FERC 661A - Appendix G</td>
<td>Wind Plants</td>
<td>0.00 p.u. fault ride thru for up to 9 cycles for three-phase faults at the primary winding of GSU and single-phase faults with backup clearing (unspecified maximum duration), plus voltage recovery time. Faults between primary winding of GSU and inverter are exempt. SPS can trip generators after fault period. May meet by use of generators, bulk equipment, or a combination.</td>
<td>Not Addressed</td>
<td>Not Addressed - Per Order 2003</td>
</tr>
<tr>
<td>NERC FAC-001</td>
<td>All Technologies</td>
<td>Transmission Owner's facility connection requirements shall specify</td>
<td>Not Addressed</td>
<td>Transmission Owner's facility connection requirements shall specify</td>
</tr>
<tr>
<td>PRC-024-1 (Draft)</td>
<td>Currently the scope is limited to units greater than 20 MVA or plants greater than 75 MVA.</td>
<td>0.00 p.u. fault ride thru for up to 9 cycles with undervoltage durations up to three seconds specified; 1.20 pu fault ride through for up to 9 cycles with undervoltage durations specified up to one second. Cumulative voltage duration based specification, not specified as an envelope.</td>
<td>Not specified</td>
<td>57.8 Hz for 2 s; envelope to 59.5 Hz from 1,800 to 10,000 s. 62.2 Hz for 2 s; envelope to 60.5 Hz from 600 to 10,000 s</td>
</tr>
<tr>
<td>TPL-001-2</td>
<td>All Technologies</td>
<td>Voltage ride through not required. Tripping of generators must be modeled when voltage is less than known or assumed low voltage ride through capability.</td>
<td>Not Addressed</td>
<td>Not Addressed</td>
</tr>
<tr>
<td>Standard</td>
<td>Technology Addressed</td>
<td>Voltage Ride Thru</td>
<td>Ride Thru Contribution</td>
<td>Frequency Ride Thru</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>WECC Off Nominal Frequency Requirements</td>
<td>All Technologies?</td>
<td>Not Addressed</td>
<td>Not Addressed?</td>
<td>Per WECC Generator ONF: 59.4 Hz (< f < 60.6 \text{ Hz}) - Continuous (f \leq 59.4 \text{ Hz} \text{ or } f \geq 60.6 \text{ Hz}) - 3 min (f \leq 58.4 \text{ Hz} \text{ or } f \geq 61.6 \text{ Hz}) - 30 s (f \leq 57.8 \text{ Hz}) - 7.5 s (f \leq 57.3 \text{ Hz}) - 45 cycles (f \leq 57 \text{ Hz}) - Instantaneous trip (f > 61.7 \text{ Hz}) - Instantaneous trip</td>
</tr>
<tr>
<td>CAISO (Proposed)</td>
<td>All Variable Energy Generation</td>
<td>Similar to 661-A: 0.00 p.u. fault ride thru for up to 9 cycles for three-phase faults at the primary winding of GSU. Faults between primary winding of GSU and inverter are exempt. SPS can trip generators after fault period. May meet by use of generators, bulk equipment, or a combination. HVRT removed from ruling.</td>
<td>Not Addressed</td>
<td>The off-nominal frequency limits follow the WECC ONF limits</td>
</tr>
<tr>
<td>HECO (PPA Example)</td>
<td>Under negotiation</td>
<td>Low or high voltage affecting one or more of the three voltages phases: (V \geq 0.80 \text{ p.u.}) - Continuous (0.10 \text{ p.u.} \leq V < 0.80 \text{ p.u.}) - 2 s (0.00 \text{ p.u.} \leq V < 0.10 \text{ p.u.}) - 200 ms (1.00 \text{ p.u.} \leq V < 1.10 \text{ p.u.}) - Continuous (1.10 \text{ p.u.} \leq V < 1.15 \text{ p.u.}) - 3 s (1.15 \text{ p.u.} \leq V < 1.175 \text{ p.u.}) - 2 s (1.175 \text{ p.u.} \leq V < 1.2 \text{ p.u.}) - 1 s (1.2 \text{ p.u.} \leq V) - Instantaneous</td>
<td>Within 1 second of the voltage recovering to at least 0.80 pu, provide at least 90% of prefault active and reactive power immediately before the fault within the parameters of resource availability, as long as the prefault real power was greater than 5% of rated MW capacity. Supersedes ramp rate requirements.</td>
<td>57.0 Hz (\leq f \leq 61.5 \text{ Hz}) - Continuous (f < 57.0 \text{ Hz}) or (f > 61.5 \text{ Hz}) - 6 s (f < 56.0 \text{ Hz}) or (f > 63.0 \text{ Hz}) - Instantaneous</td>
</tr>
<tr>
<td>German E-On</td>
<td>Type 2 generator is an asynchronous generator or generator with frequency converter.</td>
<td>Continuous Operation: For 110 kV: 96 - 123 kV For 220 kV: 193 - 245 kV For 380 kV: 350 - 420 kV 30-minute Low Voltage Limits: For 110 kV: 127 kV For 220 kV: 253 kV For 380 kV: 440 kV</td>
<td>For plants that do not disconnect during the fault, the active power output must be increased to the original pre-fault value with a gradient of at least 20% of the rated power per second.</td>
<td>At frequencies between 47.5 and 51.5 Hz, automatic disconnection is not permitted. Beyond these limits, immediate tripping is required.</td>
</tr>
<tr>
<td>Standard</td>
<td>Technology Addressed</td>
<td>Voltage Ride Thru</td>
<td>Ride Thru Contribution</td>
<td>Frequency Ride Thru</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Irish (EirGrid)</td>
<td>Specific requirements for wind plants are included. No specific requirements for solar plants are included.</td>
<td>Continuous Operating Voltages: 110-kV 99-123 kV 220-kV: 200-245 kV 400-kV: 350-420 kV Voltage envelope with minimum voltage is 15% at the high voltage terminals for 625 ms.</td>
<td>Active power: proportional to the retained voltage, return to within 90% of the available active power within 1 second of the voltage returning within the normal range. Reactive power: Maximized but be within plant capability, should continue for at least 600 ms or until voltage recovers to within the normal range.</td>
<td>49.5 - 50.5Hz: Continuous Operation 47.5 - 52 Hz: 60 Minutes 47.0 - 47.5 Hz: 20 seconds</td>
</tr>
<tr>
<td>UK Grid Code (Issue 4, Rev 2)</td>
<td>Tidal, wave, wind, geothermal or similar. Wind, wave and solar units are referred to as Intermittent Power Sources. Onshore and offshore defined</td>
<td>Fault ride through requirements depend on whether the installation is on shore or off shore and on the type of technology. To avoid unwanted island operation, must trip if the voltage at POI is less than 0.8 pu for more than 2 s; or is above 120% for more than 1s.</td>
<td>Active power should return to within 90% of the available active power for intermittent generation within 1 second of the voltage returning within the normal range. Fault ride through requirements depend on whether the installation is on shore or off shore and on the type of technology. To avoid unwanted island operation, must trip if the frequency is above 52 Hz or below 47 Hz for more than 2 s.</td>
<td></td>
</tr>
<tr>
<td>BCTC</td>
<td>Specific requirements are provided for wind generators. Solar plants are not mentioned.</td>
<td>A 150 ms zero voltage fault must not result in plant tripping. The normal operating voltage range is within +/-10% of nominal. Short time under and overvoltage requirements are given</td>
<td>The post transient recovery follows the WECC Table W-1. The voltage ride-through follows the WECC white paper, developed on June 13, 2007.</td>
<td>operate continuously at normal rated output in the range 59.5Hz to 60.5Hz; operate continuously between 56.4 Hz and 61.7 Hz;</td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td>A voltage ride through curve is provided (Fig. 5-1 Page 11). The generator must not trip for a 150 ms zero voltage fault.</td>
<td>Not Addressed</td>
<td>The continuous operation range is between 57.5 Hz and 62 Hz. Instantaneous tripping may occur above 62 Hz or below 57.5 Hz.</td>
</tr>
<tr>
<td>AESO</td>
<td>Wind plant facilities greater than 5 MW. No specific rules are set for other technologies like solar.</td>
<td>Continuous operation occurs between 90 and 110% of rated voltage. There is a 15% minimum low voltage ride through and a 110% high voltage ride through requirement (Appendix 1 - Page 43).</td>
<td>Not Addressed</td>
<td>The off-nominal frequency limits follow the WECC limits</td>
</tr>
<tr>
<td>Standard</td>
<td>Technology Addressed</td>
<td>Voltage Ride Thru</td>
<td>Ride Thru Contribution</td>
<td>Frequency Ride Thru</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------</td>
<td>---</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>ISO-NE Recommendations</td>
<td>Wind only</td>
<td>GE recommends contributing to the development of PRC-024 and following these requirements rather than creating unique requirements.</td>
<td>GE is recommending that mandating active power contribution during a fault is not needed. Recovery of the wind plant to within 90% of pre-disturbance power within 1/2 second is a reasonable target. It is more beneficial to provide reactive current during voltage depressions. An exact prescriptive level is not needed.</td>
<td>The Northeast Power Coordinating Council has requirements for off nominal frequency</td>
</tr>
<tr>
<td>Hydro Quebec</td>
<td>Specific requirements are set for a wind plant facility. No specific rules are set for other technologies like solar.</td>
<td>Ride through a three-phase fault cleared in 150 ms; a two-phase-to-ground of phase-phase fault cleared in 150 ms; a single line-to-ground fault cleared in 300 ms at HV POI. Requirements are given for remote slow-clearing faults (up to 45 cycles).</td>
<td>Undervoltage performance is given in Fig. 6 (Page 64). Overvoltage ride-through performance is given in Table 6.</td>
<td>FRT requirements are given in Table 7. The wind plants must remain connected between 55.5 and 61.7 Hz. Remain connected during disturbances that cause frequency variations of +/- 4 Hz/second.</td>
</tr>
<tr>
<td>Manitoba Hydro</td>
<td>Specific requirements are set for a wind plant facility. No specific rules are set for other technologies like solar.</td>
<td>Remain in-service during a normally cleared single phase, multi phase or three-phase fault on the transmission network. The clearing times are specific for the voltage level. A 230 kV interconnection would require 100 ms (5 cycle clearing plus 1 cycle margin). A 115 kV interconnection would require 150 ms.</td>
<td>If the voltage is outside blue envelope then additional dynamic reactive power support will be added, and the power output of a wind plant can be reduced as required. Following the disturbance, the wind facility will return to the pre-disturbance power output level, once the voltage and frequency are within the normal range. The wind facility will provided reactive power to assist in voltage recovery during the disturbance.</td>
<td>Wind plants may be permitted to trip off outside 57.5 and 63.5 Hz.</td>
</tr>
<tr>
<td>IESO</td>
<td>Generator facilities greater than 50 MW or generator units greater than 10 MW</td>
<td>Continuous Operating Voltages: 115-kV: 113-127 kV; 230-kV: 220-250 kV; 500-kV: 490-550 kV The upper value can be exceeded for 30 minutes in northern Ontario. Maximum 30-minute Voltage Limits: 115-kV: 132 kV; 230-kV: 260 kV</td>
<td></td>
<td>Generator facilities should remain in operation between 58 to 61.5 Hz.</td>
</tr>
</tbody>
</table>
3.5 Recommendations

3.5.1 Applicable plants

The scope of PRC-024-1 should be broadened to cover smaller plant sizes. The current proposal of 75 MVA will miss many variable generator facilities that potentially could impact the Bulk Electric System. It is suggested that the scope be broadened to cover all projects covered under a Large Generator Interconnection Agreement (LGIA), or greater than 20MW. Another option is to extend the scope to any project greater than 10MW in order to provide coverage for plants not included under IEEE 1547. See Section 1.4 for further discussion.

Applicability should depend on total plant rating, and should not be based on individual unit size.

3.5.2 Disturbance Ride Through

Fault ride-through and frequency ride-through capability of generators will be covered by the NERC standards under development. TPL-001-2\(^9\) will cover the planning assessment for new and existing generators to ensure that grid performance reliability standards are met.

met. PRC-024-1 will provide additional clarity to the generator industry in terms of uniform requirements. No additional requirements are needed for FAC-001-0.

It is suggested that ride-through plots be provided, specifying both high and low voltage ride through requirements. It is recommended that the zero voltage ride through should be equal to the three phase fault clearing time on the network. The zero voltage ride through is up to 9 cycles, but may be less, depending on the clearing time. This should be made explicit in any requirement.

NERC PRC-024 should clearly define performance requirements for unbalanced, as well as balanced faults. The specification of voltage magnitude should define what voltage metric is applicable.

Voltage disturbance performance requirements, particularly high voltage ride-through, should use the severity-cumulative duration form of specification to avoid unnecessary increase of VER plant costs to meet voltage disturbance durations that will never occur in practice.

It is not suggested that a NERC wide requirement be mandated for riding through a rate of change of frequency. If a standard is desired by individual operators, a rate of change ride through requirement of 2.5 Hz/second appears adequate. (This rate of frequency change is stipulated in the current draft of NERC PRC-024). There may be some regional differences where at least 4.0 Hz/second is required.

PRC-024 should define the performance required during and after disturbances, and should make clear and unambiguous statements as to what remaining “connected” entails. It is not recommended that active power be required during a voltage disturbance unless there is a reliability concern. The sourcing of reactive power during a severe fault should instead be given priority over real power delivery, and the magnitude of reactive power should be consistent with pre-fault reactive power capability. The capability to supply reactive current during a fault varies with technology and product offerings, and so a market to incentivize, but not require, the increased sourcing of reactive current during a voltage dip is recommended.

Disturbance performance requirements, including PRC-024, should indicate the maximum level of transmission contingency (e.g., N-1-1) for which a plant should be required to ride-through.

Disturbance performance requirements, such as PRC-024, should clearly define the requirement, if any, for repeated disturbances.

Transmission interconnected VER should not have any active anti-islanding functions enabled that detract from bulk transmission system transient or dynamic stability.
3.5.3 Power Recovery

A detailed power recovery characteristic for variable generators is not necessary to be specified in a standard. Detailed accurate models provided by the Generator Owner will be sufficient for interconnection studies. If performance criteria are not met, then the Transmission Owner/Planner will work with the Generator Owner to develop a mitigation plan.

3.5.4 Recovery after Blackout

It is reasonable to clarify the restart expectations of a generator facility following a disturbance. In some cases, the Transmission Operator provides a signal to the facility that prohibits automatic restarting after a severe grid event. FAC-001 could be modified to include a facility connection requirement to address generator facility restarting.

3.5.5 Standards for manufactured equipment

Current solar PV inverters designed to comply with IEEE 1547 are required to provide anti-islanding capability and disconnection requirements that are not compatible with the fault ride through requirements recommended here. Although individual inverters may have capacities on the order of 500kW, utility scale PV plants may have hundreds of these units and hence have a plant capacity of upwards of 100 MW. Furthermore, the inverters are listed to UL-1741, which is based on the requirements of IEEE 1547. Therefore, it is recommended that new standards are proposed for utility scale PV plants in order to drive the industry towards the adoption of new inverter specifications, testing, and certification.

3.6 Reasoning Supporting Recommendations

3.6.1 Applicable plants

Disturbance ride-through requirements should apply to all transmission-connected plants. The 20 MW threshold, which applies to plants required to comply with the Large Generation Interconnection process, is a suitable threshold, with substantial precedence in the FERC Large Generation Interconnection Procedures (LGIP), that establishes a reasonable demarcation for plants considered to be of significance to the Bulk Electrical System.

3.6.2 Disturbance Ride Through

Disturbance ride-through requirements should be as unambiguous as possible, and should cover all typical fault types.

The cumulative magnitude-duration method of disturbance ride-through specification more closely follows equipment capabilities, and avoids the need to provide additional capacity that is not necessary for system reliability.
Frequency ramp rates should not be arbitrarily specified, and should be based on reasonable disturbance scenarios. In some grid codes around the world, frequency ramp rates have been specified which appear to exceed the boundaries of reasonableness.

3.6.3 Power Recovery
Requirements for a specific power recovery characteristic can counterproductive in many situations. Because the relationships between power recovery characteristics and system reliability are very case dependent, it is inappropriate to mandate a standard characteristic for all plants.

3.6.4 Recovery after Blackout
Elimination of vagueness and ambiguity benefits the grid reliability, and provides clear guidance to plant owners.

3.6.5 Standards for manufactured equipment
The present UL standards driving the PV inverter industry are based on distribution application considerations, and result in performance that can be deleterious to system reliability when applied to PV plants of significant size.
4. Active Power Control Capabilities

Variable generation is typically controlled to maximize the production of electric energy from a zero-cost source of fuel. Consequently, variable generation sources are not dispatched, but operate at output levels governed by the availability and strength of their prime mover.

The technologies used to interface the most common variable generation types - those based on renewable energy - have become increasingly sophisticated over the past decade, and do afford some opportunity for changing production levels in response to either instructions or conditions of the BES. In some cases, however, operation in any other manner than maximizing output represents an economic penalty. So, while certain capabilities for active power control may exist, have been demonstrated, or may be commercially available, care must be taken to recommend or require only those that have significant implications for BES reliability.

The focus of the following discussion will be on bulk-connected wind generation and solar photovoltaic (PV) systems. Smaller-scale systems connected to the distribution system are also sources of variable generation and with sufficient penetration would be visible at the bulk system level. Distributed generation introduces a number of other power system engineering challenges not directly related to bulk system reliability, but those are outside the scope of this document. For purposes of bulk system reliability, the following discussion are applicable to significant penetrations of distributed wind or solar generation systems in the aggregate, recognizing, of course, that certain aspects of operation such as coordinated control would be much more difficult to achieve.

Other solar power technologies that have been demonstrated or even commercialized (in the case of concentrating solar thermal power, CSP), also exhibit variability in production, but to date represent just a small fraction of the installed or planned variable generation. Again, the general discussion is applicable, but the unique variability characteristics of these other technologies should be considered in more detail if and when they become significant source of variable generation at the bulk system level.

4.1 Real Power Production Characteristics and Control Capabilities of Variable Generation

Production of real power from most (renewable) variable generation resources is predominantly a function of meteorology, and subject to the nuances of complicated atmospheric dynamics. Predictions of future output – minutes, hours, or days ahead, is also subject to these complications and therefore can only be made with some degree of uncertainty. In bulk system operations and control, accommodation must be made for the additional variability and uncertainty attendant with these resources.
Natural changes in VG production over various time scales combine with changes in demand and affect the operation of controllable resources used for balancing generation and load. The characteristics of these natural changes and the ability to predict them are of great interest and importance to system operators. And, with modern technology for variable generation, it is possible to control the nature of some of these changes, usually, however, at the expense of energy production.

Terminology has emerged to describe the natural and controlled changes in VG real power production, listed here for clarity:

- **Ramp** – the change in VG production over a defined period of time important from a systems operation perspective, e.g. MW/min. The duration of the change may also be important, and is sometimes used as a qualifier – “sustained” ramp. A ramp may either be natural (driven by the meteorology) or controlled (below).

- **Ramp Rate Limit** – a change in VG production over time that is controlled by technology within the VG plant, e.g. coordinated pitching of individual wind turbine blades or a limitation imposed by the inverters in a PV plant on the change of production over time.

- **Curtailment** – The purposeful limiting of real power production from a VG plant to an instructed level, which may be zero.

It is important to distinguish between requirements for the capability to limit ramp rates and operational requirements that effectively result in curtailment of the plant. While the development of such ramp rate limit capability may be useful for system reliability, there are significant costs associated with the use of such ramp rate limits and the implementation of plant-level operational requirements in the form of lost energy production. Operational requirements for ramp rate limits should be explored in the context of the full range of possible measures available for mitigating bulk system reliability issues.

4.1.1 Power limits from grid operator (curtailment)

Variable renewable generation is a source of low marginal cost energy, so the default operational scenario would be to accept all of the energy available. Under certain operational scenarios however, reduction of the variable generation levels may be required. Transmission congestion in constrained areas and minimum generation conditions in areas with high variable generation penetration are the most common contemporary examples.

For most interconnections, curtailment capability is generally required. At the least, wind plants must trip off-line when so instructed by the grid operators. However, curtailment without tripping individual wind turbines is better. As shown in Figure 16, wind curtailment can be implemented as an operator-settable limit on the maximum power...
output of the plant. This approach maintains generation in reserve, reduces mechanical stresses on the equipment, and provides the opportunity for curtailed wind generation to provide ancillary services to the grid. While wind generation can respond rapidly, in many cases much faster than convention thermal or hydro generation, there have been cases where proposed grid codes have made excessive requirements for speed of response to step changes in curtailment order. This is technically challenging for the wind turbine electro-mechanical systems and should be avoided. Capability to move active power output at rates on the order of 10%/second in response to step changes in curtailment (or dispatch) appear to be within several, if not most, OEM’s capabilities.

![Figure 16 Curtailment of WTG output using blade pitch control (Source: BEW report for CEC, May 2006.)](image)

4.1.2 Wind Generation Ramp Rate Limiting

Since pitch controlled WTGs can limit their active power output, they are also capable of controlling the rate of change of power output in some circumstances, including:

- Rate of increase of power when wind speed is increasing
- Rate of increase in power when a curtailment of power output is released
- Rate of decrease in power when a curtailment limit is engaged

These functions could be implemented either at an individual turbine level or at a plant level.
Figure 17 demonstrates the power ramp limiter maintaining a specified rate of change in power output for a plant with advanced commercial wind turbines. The power ramp limiter is able to track and limit to two simultaneous ramp rates that are measured and averaged over two different time frames. The two ramp rate limits allow targeting of different potential grid operating constraints. Specifically, a short window (typically 1-minute) ramp rate limit addresses possible limitations in system regulation capability. A longer window (typically 10-minutes) addresses possible limitations in grid load-following capability. As with the governor response discussed above, this functionality is most likely to be valuable and economic at times of high wind and light load.

In the figure, initially, the wind power plant is curtailed to 4 MW. Then the curtailment is released, and the plant is allowed to ramp up at a controlled rate of 5% per minute (3 MW/min or 50 kW/s) averaged and measured over a one minute interval. The second longer time frame ramp limit was set at 3.3 %/min (2 MW/min) and averaged and measured over a 10 minute interval (20 MW per ten minutes).

Ramp-rate limits can be set to meet the requirements for specific grids and applications. Ramp-rate limits can be imposed for grid operating conditions that warrant their use, and ought not be continuously enabled. The controller allows for switching in and out of ramp-rate control by either the plant operator or in response to an external command. This ability to enable or disable ramp rate limits is valuable to the grid, as wind energy production is reduced by up ramp rate controls. Industry practice is not mature regarding appropriate limits.

Many wind plants have the ability to change active power output quite rapidly. If change in active power output is necessitated by grid events, fast response is good. However, some recent experiences in the US have surprised grid operators when wind plants have responded very rapidly to market signals. For example, wind plants have been reported to very rapidly reduce power output in response to drops in LMP. Such fast response can ‘overshoot’ in exactly the same fashion that other control systems with high gain can be destabilizing. Some ISOs have moved to create rules which direct or limit the rate at which wind plants are expected to respond to market signals.
4.1.3 Solar PV Ramp Rate Limiting

For PV technologies, it is important to distinguish between different timescales of ramp rates, the forecastability of these ramps, and whether they occur over large geographical areas or are highly localized. The two most notable changes in output are the diurnal cycle and localized effects. Diurnal effects are widespread, but highly forecastable, and relatively slow (typically less than 1% per minute for single axis trackers). Sharp changes in output of individual plants caused by low, fast moving clouds are highly localized effects. Specifically, extreme changes in irradiance measured at a point can be ~80% in tens of seconds. However, the most extreme ramps for 10 – 20 MW systems are on the order of 50% over approximately 1 minute. This is due to geographic diversity within the plant. For larger plants, this is expected to occur over a longer timeframe and be of lower magnitude relative to the plant rating; observation of 1 minute duration data indicates that variability is essentially uncorrelated for ~ 1 MW PV arrays located as little as 1 km apart. Geographical diversity over larger areas leads to less correlation of cloud-induced ramps even over larger timescales, such as 5 minutes, 10 minutes, and even 60 minutes10.

10 Mills, Andrew, et. al., Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System, Ernest Orlando Lawrence Berkeley National Laboratory, December 2009.
Therefore, sharp ramp rates observed by irradiance sensors or in data collected at individual PV systems do not translate to PV systems or groups of PV systems at a scale that is meaningful to the power system. The timescales that are relevant also vary depending on the technical, operational, or planning timeframes being considered. For instance, variability on the order of seconds to minutes is more relevant to the impact on frequency regulation, while variability over tens of minutes is most relevant to load following, and diurnal variability is most relevant to economic dispatch and system planning.

While PV plant level ramp rate control is often considered and discussed, it is important to keep the foregoing in mind—that is, plant-level ramp rate limits will inherently ignore any reductions in variability achieved by geographic and technological diversity, as well as leveraging the additional diversity of load and other VERs such as wind generation. This makes it likely that ramp rate control requirements for individual plants will not be the most economically efficient means of achieving the desired system management goals.

That said, for solar PV technology, the control of ramp rates is expected to be technically achievable at both the inverter level and plant level but is not yet commercially proven. The existing ability of individual inverters to move quickly to a new power set point is necessary, but not sufficient, to achieve ramp rate control under quickly changing irradiance conditions. A fast acting control system would be needed to accomplish this, possibly at the plant level to ensure adequate inverter coordination. This capability is not readily commercially available, nor has it been demonstrated even on a pilot basis. Such a control system needs to be thoroughly tested and validated for its ability to conform to the specific performance requirements. However, it is expected that projects in the coming years may demonstrate varying degrees of ramp rate control in locations where aggregation of variability is.

It is important to distinguish between ramp rates during post-fault recovery periods. Any ramp rate limit requirements should be considered separately for this case and in many cases should be waived in order to bring the plant back up to operation quickly. A more detailed discussion of active power management during post-fault recovery is included in Section 4.3.

A significant concern is long duration ramps of aggregate PV in a control area, at sunrise and sunset. This is obviously predictable, but could represent a large ramp in MW/hour terms at high PV penetration. In this case the request is the ability to command the plant to ramp more slowly over several hours. This would require spilling energy in the morning and afternoon but would be less technically challenging than controlling short-duration ramps. Further study is needed to understand at what level of penetration, if any, this solution is economically justifiable or technically necessary. Any discussion of
curtailment of PV, where there are other possible alternatives, must recognize that the marginal cost of PV generation is extremely low and therefore it is unlikely to be the most economically dispatched resource for system management.

For current PV technology, having the capability to limit downward ramp rates caused by variations in irradiance would require some form of energy storage. There has been little field demonstration of the provision of energy storage at the plant level, and the cost implications are considered to be significant. It is important to consider cost implications of any requirements, and whether they best be considered at a plant or system-wide level given the inherent difficulties in providing downward ramp rate limits for solar technologies. It is considered outside the scope of this report to assess the need and economic viability of energy storage or demand side management options.

The distinction between ramp rate implications over different time frames suggests a need to understand the importance of measuring and defining these ramp rates appropriately. An example is a “sustained” ramp rate requirement, intended to address a one minute timeframe, versus an “instantaneous” requirement intended to address a 1-second timeframe. Such requirements are sometimes expressed in the same units of kW per second, but are not equivalent; that is a ramp rate limit of 6000 kW / min is not accurately expressed as 100 kW / sec because these two limits would have very different frequency of occurrence and implications. As one example, maximum daily ramp rates were calculated using a moving average approach at three discrete time intervals for all days with typical inverter operation between September 2009 and May 2010 at the La Ola Solar Farm at Lanai, Hawaii. Very few high two second ramps are sustained over ten second and one minute time intervals. The high concentration of large magnitude ramps at relatively low durations is consistent with the conclusion of the standard ramp rate calculation method that large ramp rates are rarely sustained for long durations.

Similarly, the definition of ramp rate metrics must appropriately take the timeframe of operational or planning interest into account. As an example, one possible one minute ramp rate metric is to take the difference of instantaneously read output values that are 60 seconds apart. This is known as “windowing.” Calculating ramp rates on a windowed basis is quite common. Windowed ramp rates are easy to compute and are superficially “most accurate” but pick up sub-minute transients, which is problematic because these are represented as “1-minute variability” when they actually are not. Specifically, because there is no averaging, this method captures all sub-minute transients into the “1 minute” variability metric. This is illustrated in Figure 18, which shows a 2 MW/min upward ramp rate trend, with some random variability added to it. The manner in which ramp rates are defined means that small upward deviations from the trend result in the ramp rate momentarily being exceeded, particularly in instances where an upward deviation happens to coincide with a downward deviation, 60 seconds prior. This situation is shown by the purple line, the slope of which represents the 1-min ramp rate as
calculated by this method. The implication of this is that a quite fast acting control system is required – fast enough to detect a “out of bounds” fluctuation, and respond, between scans (2 seconds in this case). Certainly it does not have tens of seconds to react, as the “1 minute” metric implies. In addition, if a ramp limit of 2 MW per minute were required as shown in the example below, but expressed as 33.3 kW / sec, this would in fact require that many of the relatively small perturbations around the overall trend be actively managed, which would be costly, unnecessary, and potentially infeasible.

![Figure 18](image)

Figure 18 Short-term variability and longer-term ramp rate trends (data for illustration only).

Note: Data is for illustrative purposes only, and isn’t representative of a real PV system output.

An alternative is a 1 minute moving average metric. It would compare the averaged output of one 60-second period to the averaged output of the previous 60-second period.
This metric would be calculated as described:

$$RR = \left| \frac{\Sigma_{s-29}^{s-30} MW_{s}}{30} - \frac{\Sigma_{s-29}^{s} MW_{s}}{30} \right|$$

Where:
- RR = Ramp Rate, may be calculated once every scan.\(^{11}\)
- $MW_{s} = $ Instantaneous MW analog value for the present scan.
- $MW_{s-x} = $ Instantaneous MW analog value x scans prior the present scan.

This is just one, relatively simple, alternative approach. These issues are common to any timeframe (not just 1 minute versus 1 second) and are illustrative of a broader point, which is that if ramp rate restrictions are determined to be necessary, the magnitude and duration of these restrictions should be carefully considered based on the actual operational limitations of the system being interconnected with, and defined appropriately. This may require the definition of multiple ramp rate limits over various critical timeframes.

Work on recommendations for metrics which are better aligned to standards (i.e., CPS1) and to statistically meaningful “reference day” output profiles to run dynamic irradiance-driven models is underway. Dissemination and adoption of commonly accepted variability metrics by all stakeholders would provide great benefit.

4.2 Forecasting for Reliability

Predicting the output of variable generation over the various operational time frames has long been recognized as a key for successful integration and accommodating larger penetrations of these resources in the supply mix. More accurate forecasts reduce uncertainty that can lead to much better economic decisions. The art and science of wind generation forecasting has steadily improved over the last decade, with promise of more advances to come. Much recent attention is also being placed on solar PV forecasting using many lessons learned from the experience with bulk wind generation.

As variable renewable generation forecasting systems are implemented in control rooms, there has been increasing emphasis on forecast products that map directly to the reliability functions that must be performed by the system operators. Many standard forecast products were designed to optimize certain accuracy metrics, such as root-mean-square error or mean absolute error. In working to improve these metrics, it was found that the techniques employed could have a tendency to hide characteristics of variable generation production, such as large production changes or ramps, that are actually of prime importance for maintaining reliability.

\(^{11}\) Note that each time period summed, which is inclusive of the present scan, is 30 scans (60 seconds).

\(^{12}\) Note that each time period summed, which is inclusive of the present scan, is 30 scans (60 seconds).
This emphasis has evolved directly into research and development activities in renewable generation forecasting targeted as specific regions of the country and specific balancing area challenges. The changes in production discussed above present a different challenge to system operators if they occur without warning, at times when the system is particularly vulnerable. Some forewarning, a day or hours ahead of a significant change in production, allows operators to take appropriate precautions and actions to protect the operating reliability of the system. Such "situational awareness" can reduce the cost of accommodating variable generation by allowing additional operating reserves to be maintained when warranted, rather than during all hours "just in case".

Just as with wind generation, improved forecasting of PV output will be critical to build confidence, reduce integration costs, and assist in maintaining operating reliability as penetrations increase. Forecasting techniques used for wind energy are just beginning to be applied to solar. Forecast products for PV systems are relatively new and have not yet been validated with sufficient real output data to state accuracy with confidence, however, it is expected that the experience gained in generating increasingly sophisticated wind forecasts will directly benefit solar forecasting.

Importantly, the variability of solar technologies has very different characteristics during different parts of the day, and these diurnal and seasonal patterns are easily and accurately forecast. At night, there is of course no variability, as there is no PV generation. Furthermore, the “envelope” of variability will change from zero (at night) to a maximum at noon, and this envelope is easily forecasted and allows for appropriate scheduling of regulation reserves relative to maximum plant output at any given time.

The times of day when short-term variability of solar technologies may occur should be readily forecastable, allowing for appropriate unit commitment. However, it is unlikely that specific short duration ramp events at an individual plant could be forecasted and even if it could, this is likely of limited value. That is because this short duration variability is mitigated significantly by geographical diversity and other uncorrelated sources of variability such as load and VERs. Again, this short duration variability is likely best managed in the same manner load variability is today, and for the same reasons.

4.3 Real Power Response to Bulk System Events

System frequency is one of the primary measures of the “health” of a large interconnected electric power system. Frequency represents an indication of the balance between supply and demand; declining frequency indicates more demand than supply, while rising frequency results from more supply than demand. Further, frequency under conditions of balance must be maintained within a tight window, usually within tens of mHz of the target 60 Hz.
While maintaining the interconnection frequency at the target during “normal” conditions (as demand continuously changes over multiple time scales as the result of millions of individual and automated decisions by end users and end-use equipment) is a feat in and of itself, it is the sudden disruption to the supply/demand balance that is of the most potential consequence. The sudden loss of one to several generating units, due to mechanical failure or loss of significant transmission system elements (that are importing power into an area) may put system frequency into a temporary “freefall”. What happens in the few seconds following is the difference between a reliable system and widespread blackout.

In response to the falling frequency, convention generating units will give up a portion of their stored kinetic energy (in the rotation energy of the turbine generator shaft) as increased power output, which helps to retard the frequency decline. Within a few to several seconds, governor controls on individual generator units with “headroom” (margin below their maximum rating that allows output to be increased) will autonomously increase power input from prime movers, further increasing the electrical output. The combined response of the units must be sufficient to first arrest the frequency decline, then act to stabilize and move the frequency back towards the desired value.

This action, known as “primary frequency response”, and comprised of inertial and governor response, is critical for bulk system reliability.

Large interconnected systems generally have large aggregate inertia, which results in small frequency deviations in response to system disturbances. Small isolated systems have much smaller aggregate inertia, and as a result, experience larger frequency deviations when disturbances occur.

The lower the system inertia, the faster the frequency will change and the larger the deviation will be if a variation in load or generation occurs. Thus, the response of bulk power systems to system disturbances is of great concern to those responsible for grid planning and operations. System events that include loss of generation normally result in transient depressions of system frequency. The rate of frequency decline, the depth of the frequency excursion, and time required for system frequency to return to normal are all critical bulk power system performance metrics that are affected by the dynamic characteristics of generation connected to the grid.

4.3.1 Inertial Response of Variable Generation Resources

As the share of variable generation in the system increases, the effective inertia of the system will decrease considering the existing technologies. While conventional synchronous generators inherently add inertia to the system, it is not necessarily the case with the current generation of wind turbines generators or static power converters utilized in PV plants.
In the case of wind turbines employing induction machines or synchronous machines, there is a direct connection between the power system and the machine. When there is frequency decay on the power system, the induction machine will increase its output temporarily because of the slip change. The induction machines are then able to contribute to some extent to system inertia while the truly synchronous machines will inherently add inertia to the system the same way a conventional generating unit would.

The basic design of converter based technology (Type 3 and 4), however, does not include any inertial response unless explicitly designed to do so. The DFAG (doubly-feed asynchronous generator) and full converter generators employ a back-to-back converter to connect to the power system. For the DFAG design, there is a direct connection between the system and the stator while the rotor is decoupled from the system by the ac\dc\ac converter. It is possible to take advantage of this direct coupling between the frequency of the system and the stator with appropriate control so that a frequency deviation on the power system varies the electromagnetic torque of the DFAG, resulting in a change of its rotational speed and thus modify active power (MW) acting as an inertial response. In the case of the full converter generators, they are completely decoupled from the frequency of the system. A change in the system frequency will not have any effect on the machine. Therefore, the full converter generators will not by their design contribute to system inertia when there is a frequency deviation on the power system.

Inertial response capability for wind turbines, similar to that of conventional synchronous generators for large under-frequency grid events, is now available from some OEMs. This is new and is not widely recognized or used by the industry yet.

For large under frequency events, the inertial control increases the power output of the wind turbine in the range of 5% to 10% of the rated turbine power. The duration of the power increase is on the order of several seconds. This inertial response is essentially energy neutral. Below rated wind, stored kinetic energy from the turbine-generator rotors is temporarily donated to the grid, but is recovered later. At higher wind speeds, it is possible to increase the captured wind power, using pitch control, to temporarily exceed the steady-state rating of the turbine. Under these conditions, the decline in rotor speed is less and the energy recovery is minimal.

The control utilizes the kinetic energy stored in the rotor to provide an increase in power only when needed. Hence, this feature does not adversely impact annual energy production.

Unlike the inherent response of synchronous machines, inertial WTG response is dependent on active controls and can be tailored, within limits, to the needs of the power system. Further, the response is shared with controlled variations in active power necessary to manage the turbine speed and mechanical stresses. These stress management
controls take priority over inertial control. Turbulence may mask the response for individual turbines at any instant in time, but overall plant response will be additive. GE’s inertial control design has sufficient margin over the turbine operating range to meet the equivalent energy (kW-sec) contribution of a synchronous machine with 3.5 sec pu inertia for the initial 10 seconds. This inertia constant is representative of large thermal generation, and is the target inertia included in the Hydro-Québec grid code provision for inertial response.

Hydro-Québec requires that wind plants be able to contribute to reducing large (> 0.5 Hz), short-term (< 10 s) frequency deviations on the power system, as does the inertial response of a conventional synchronous generator whose inertia constant (H) equals 3.5 s. This target is met, for instance, when the system dynamically varies the real power by about 5 % for 10 seconds when a large, short-duration frequency deviation occurs on the power system [7]. It requires that the frequency control is available permanently, i.e. not limited to critical moments. In 2010, Hydro-Québec will integrate the first wind plants equipped with this feature in its network. Hydro-Québec is the only transmission owner currently requiring wind plants to contribute to frequency regulation by using the inertial response.

Given the systemic needs, and the Hydro-Québec requirement, the overall control is designed to provide similar functional response to that of a synchronous machine. Unlike the inherent response of a synchronous machine, the response is not exactly the same under all operating conditions, nor does it provide synchronizing torque. Frequency error is simply the deviation from nominal. A positive frequency error means the frequency is low and extra power is needed. The deadband suppresses response of the controller until the error exceeds a threshold. Thus, the controller only responds to large events. The continuous small perturbations in frequency that characterize normal grid operation are not passed through to the controller.

There are a number of differences between this controlled inertial response, and the inherent inertial response of a synchronous machine. First, and most important, the control is asymmetric: it only responds to low frequencies. High frequency controls are handled separately, by a different controller that can, if necessary, provide sustained response, as discussed in Section 4.2. Second, the deadband ensures that the controller only responds to large events – those for which inertial response is important to maintain grid stability, and for which seriously disruptive consequences, like under frequency load shedding (UFLS), may result. Finally, a controlled inertial response means the speed of response is a function of the control parameters. In the example shown, the response was tuned to provide good coordination not only with inertial response of other generation on the system, but with governor response of conventional generation as well. The ability to tune inertial response (including shutting it off) provides the planning engineer with an additional tool to manage system stability.
Field test results of the inertial control on a commercial wind turbine for various wind speeds on a single wind turbine are shown in Figure 19. The field data was generated by repeated application of a frequency test signal to the control. The results, at various wind speeds, were then averaged and plotted. Below rated wind speed (<14m/s) the results clearly demonstrate the inertial response and recovery. Above rated wind speed the inertial response is sustained by extracting additional power from the available wind (i.e. short-term overload of the WTG).

![Figure 19 Field demonstration of the commercial wind turbine inertial response.](image)

Ultimately, grid codes may be modified to include some type of inertial response requirement. The development and demonstration of such capabilities by multiple commercial wind turbine manufacturers shows that such functionality is, indeed, possible. However, it also shows that inertial response identical to that of synchronous generation is neither possible nor necessary. Controlled inertial response of wind plants is in some ways better than the inherent inertial response of conventional generators. Inertial response of wind generation is limited to large under-frequency events that represent reliability and continuity-of-service risks to the grid. The crafting of new grid codes should therefore proceed cautiously and focus on functional, systemic needs.

4.3.2 Frequency governing response

Many double fed and full conversion wind turbines are capable of adjusting their power output in real time in response to variations in grid frequency. This is an optional control
feature, implemented in wind plants where participation in grid frequency regulation is deemed necessary.

When frequency increases above a control deadband, the frequency regulation function reduces power output from the wind turbine, similar to a droop-type governor function in a thermal or hydro generating plant. A wind turbine would always be able to respond to increased grid frequency, since it is always possible to reduce power output below the total available power in the wind. The frequency regulation function is also capable of increasing power when grid frequency decreases below a deadband, provided that the turbine’s power output at nominal frequency is below the total available power in the wind. When operating in this mode (power output curtailed below total available power), the wind turbine would be contributing spinning reserve to the grid.

The Nordic and ESBNG grid operators require wind plants to be able to change the active power production as a function of the network frequency. Wind plants will have to provide frequency control only when the system requires it (e.g. at low load and high wind power output). Whereas the wind plants can make downward regulation of the production while at rated power following a sudden rise of the system frequency, they have to maintain a power margin (reserve margin) that may be called upon during a frequency decline.

Since wind plants must ‘spill’ wind continuously in order to provide spinning reserve, there are substantial commercial implications: maintaining this margin results in ‘free’ (zero marginal cost of production) wind power being discarded. This means the opportunity cost of providing up reserve with wind plants is equal to the marginal value of that power – roughly the spot price plus tax credits plus renewable credits. Thus, it is only economically justified to use this capability under conditions when it is the least cost alternative. It is very probably that under the vast majority of system operating conditions, providing this service with other conventional generators will be more cost-effective.

4.3.3 Over-Frequency Response

Figure 20 illustrates the power response of the wind plant due to a grid over-frequency condition. For this test, the controller settings correspond to a 4% droop curve and 0.02Hz dead band. During this test, the site was operating unconstrained at prevailing wind conditions. It was producing slightly less than 23MW prior to the over-frequency condition. The system over-frequency condition was created using special test software that added a 2% controlled ramp offset into the measured frequency signal. The resulting simulated frequency (the red trace in Figure 20) increased at a 0.25Hz/sec rate from 60Hz to 61.2 Hz. While the frequency is increasing the plant power (the dark trace in Figure 20) is observed to drop at a rate of 2.4MW/sec. After 4.8 seconds the frequency reaches 61.2 Hz and the power of the plant is reduced by approximately 50%.
The over frequency condition is removed with a controlled ramp down to 60Hz at the same 0.25Hz/sec rate. In response, the plant power increases to its unconstrained power level. This is slightly higher than the unconstrained level prior to the test, due to an increase in the wind speed. The droop and deadband settings for this test are typical values. Settings can be adjusted to meet specific grid and application requirements.

An under frequency condition is simulated using the same test software and the results are presented in Figure 21. In order to allow for an increase of wind plant active power output in response to an under-frequency condition, some active power production must be kept in reserve. Unlike a conventional power plant, the maximum power production of the wind plant is constrained to that possible with the prevailing wind. For this test, the output of the plant was constrained to 90% of prevailing wind power during nominal frequency conditions, allowing a 10% increase in power with a 4% decrease in frequency. The plant controller continuously calculates the available plant power based on average wind conditions and turbine availability. The controller regulates the output power to 90% (12.4MW) of this calculated value and operates the plant at this level while the system frequency is within +/- 0.02 Hz of nominal frequency (60Hz).

As the system frequency decreases, the control increases the plant power according to the droop schedule. At 57.6 Hz, 4% under frequency, 100% of the calculated available power of the plant is produced (13.8 MW). The power of the plant will remain at this value until either wind conditions reduce or the system frequency increases.
4.3.4 AGC participation

The ability of some VG plants to curtail output, as discussed previously presents the opportunity for variable generation plants to participate in AGC. To date, variable generation plants have not been designed to accept AGC dispatch signals, so specific details cannot be provided here. However, plants should be required to respond to curtailment, and thus dynamic modification of curtailment set-points has the potential to provide AGC response. The range and minimum speed of response must be consistent with the dynamic characteristics of available variable generation. Unlike large signal frequency events during operation which are relatively rare, rescheduling associated with AGC response will occur constantly. Thus, both the amplitude and speed of response will likely need to be limited considerably compared to large signal frequency response.

4.4 Recommendations

4.4.1 Require curtailment capability, but avoid requirements for excessively fast response

Variable generation can respond rapidly to instructions to reduce power output. In many cases response is faster than convention thermal or hydro generation. However, there have been cases where proposed grid codes have made excessive requirements for speed of step response to a curtailment order. This is technically challenging and should be avoided. A $\Delta 10\%$/second for rate of response to a step command to reduce power output
is reasonable. This rate of response to step instructions should not be confused with deliberate imposition of ramp rate limits, as discussed next.

Some conventional generation can reach, or even exceed, these rates. Most cannot. The project team is not aware of any NERC standards that specify rate of response to re-dispatch commands (of which curtailment is a subset) in this time frame. Typically, plants must respond to economic re-dispatch within minutes. Mechanisms such as markets or other incentives to encourage rapid rate of response from all generating resources should be considered.

4.4.2 Require capability to limit rate of increase of power output
Variable generation plants should be required have the capability to limit the rate of power increase. This type of up ramp rate control capability has been required in some other systems. This function should include the ability to be enabled and disabled by instruction from transmission operator or Balancing Authority. Plants must be able to accept commands to enable pre-selected ramp rate limits. Plants should be designed with recognition that ramp rate limits should not be required under all operating conditions. It should not be required that variable generation plants limit power decreases due to declines in wind speed or solar irradiation, i.e. down ramp rate limits. However, limits on decrease in power output due to other reasons, including curtailment commands, shut-down sequences, and response to market conditions can be reasonably required.

4.4.3 Encourage or mandate reduction of active power in response to high frequencies
Variable generation plants should be encouraged to provide over-frequency droop response of similar character to that of other synchronous machine governors.

4.4.4 Consider requiring the capability to provide increase of active power for low frequencies
This is the other face of frequency control. Variable generation plants should not be required to provide governor-like frequency response for low frequency under normal operating conditions. This is consistent with any conventional power plant operating at full throttle output (i.e. valves wide open). However, encouraging VGs to have the capability to provide this response, and then establish rules, and possibly compensation, for when such controls would be enabled, could be considered. This presumably would be a rare occurrence, as the economic penalty associated with enabling these controls is high.

4.4.5 Consider requiring inertial response in near future
Some OEMs are now offering inertial response for wind turbines. This is distinct from the previous two items on frequency response, in that inertial response is faster and
strictly transient in nature. Consequently, there is not a significant economic penalty associated with the use of this new feature.

Synchronous generators have inherent inertial response. It is not a design requirement. It is simply a consequence of the physical characteristics of the rotating masses connected to a synchronous generator which is in turn connected to an AC transmission network. With the exception of Hydro-Quebec, inertia response characteristics have not been specified in grid codes or interconnection requirements for wind plants. Furthermore, language describing this functionality in technology-neutral terms and subject to the physical reality of variable generation facilities is not presently available.

Requiring this function in the future as the technology matures and as grid operators and reliability organizations learn more about the need for inertial response characteristics from wind plants should be evaluated further. However, incremental costs should be carefully weighed against alternatives on both the supply and demand side for providing this important reliability service.

4.5 References

5. Harmonics and Subsynchronous Interaction

5.1 Harmonics

Most commercially available wind turbines comply with IEEE 519, which if applied on a turbine-by-turbine basis would limit the total harmonic distortion (THD) of the current at the terminals of the machine to 5% (of rated fundamental frequency current) or less. Turbine vendors will usually note this in their product specifications.

This includes turbines in each of the four major topologies. Type III and Type IV machines utilize static power converters, but the quality of the output currents is well within the IEEE 519 limits.

Similarly, modern power converters used in bulk PV applications also comply with IEEE 519 limits.

From the perspective of the bulk electric system, it is the quality of the current injected from the plant in aggregate, not individual turbines or devices, which is of prime interest. Experience from around the country shows that harmonic issues have been encountered in the design and commissioning of large wind plants, especially those employing capacitors at medium voltage for reactive power support, or plants with extensive collector networks of underground medium voltage cable. The phenomenon at issue is the interaction of the medium voltage shunt capacitance in series with the interconnection substation transformer inductance. The combination appears as a series filter, and provides a low-impedance path for harmonic currents driven by background harmonic voltage distortion on the transmission network. (Figure 22).

The concern regarding interconnection is that it may appear the plant is in violation of the IEEE 519 limits when the root cause is actually background distortion on the transmission system. At high levels of harmonics resulting from the interaction between plant equipment and background distortion on the bulk electric system, equipment for voltage control or reactive power management such as shunt capacitor banks could be compromised or damaged.
5.2 Subsynchronous Resonance and Interactions

On October 22, 2009, a single line to ground fault occurred due to a downed static wire on a 345-kV transmission circuit in southeastern Texas. The resulting line outage created a radial connection between two wind generation facilities and series-compensated circuits. Over-voltages (up to 195%) and sub-synchronous currents were noted during the ensuing 2.5-second event, which resulted in numerous crowbar failures at the two wind farms.

Sub-synchronous resonance (SSR) is a well-understood phenomenon involving interactions between series-compensated lines and thermal generators. In contrast, little is known about the potential subsynchronous interactions (SSI) between wind turbines and series capacitors, although events such as the one described above indicate that this phenomenon can have significant impacts on wind generation equipment and possibly on system security. Recent studies, such as those conducted for implementation of the Texas Competitive Renewable Energy Zones Transmission Plan, have included an analysis of the potential impacts of subsynchronous interactions on wind generation facilities and possible mitigation methods.

Figure 22 Equivalent circuit showing wind plant as a sink for harmonic distortion from the grid.
Figure 23 shows a subsynchronous instability event. Both electrical and rotor torsional instabilities are possible. The risk and type of instability depends on the electrical interface used in the wind turbine-generator and the control logic. Subsynchronous interactions can be mitigated by appropriate control functions and within the wind turbine-generators. Figure 24 shows an example of a subsynchronous oscillation initiated by the insertion of a series capacitor. The plots on the right show how the unstable oscillations can be mitigated by a well-designed and tuned turbine control system.
Although subsynchronous interactions with wind turbines are a recent phenomenon, a reasonable level of understanding has been achieved and best practices for dealing with SSI are emerging.

- Modify controls of wind turbine converter. This approach has already been demonstrated and proven at some wind plants.
- Avoid known grid configurations that cause subsynchronous interactions. This could involve transfer-tripping a wind plant or bypassing a series capacitor if certain grid events occur.
- Add some damping in network for subsynchronous currents. This is most effective if installed at the series capacitor, but it could also be installed at a wind plant.

Figure 24
Example of unstable and mitigated subsynchronous interaction with Type 3 wind turbine.
5.3 Recommendations

Although harmonic and subsynchronous interaction issues can pose a reliability risk to the power grid in some instances, such risks are rare and only affect a small portion of variable generation plants. There is no need for NERC to develop interconnection criteria related to SSR/SSI or harmonics at this time. However, it would be prudent for transmission owners and/or grid operators to:

- Consider design studies that assess the harmonic performance of all wind and solar plants, and
- Until better understanding of the control interactions issue is gained, consider design studies that assess the risk, and if necessary mitigation, of wind and solar plant located near series compensated transmission lines.
6. Models for Facility Interconnection Studies

NERC IVGTF 1-1 reviewed the MOD standards to determine gaps in the annual NERC model development process and ongoing model validation process. Task Force 1-1 recommended several changes be made to improve the MOD standards and also recommended that FAC-001 be reviewed and expanded to clearly cover modeling requirements for the joint study phase of the facility connection process.

Figure 25 gives a high level overview of a typical facility connection process. Interconnection studies are defined in the FERC interconnection process to consist of three stages. The Feasibility Study phase includes short circuit and power flow investigations. The System Impact Study is more detailed and includes additional power flow and short circuit analysis as well as dynamics analysis. The final Facilities Study phase is typically more of a preliminary engineering design phase in order to derive accurate cost estimates to include in any Facility construction agreements. NERC Standard FAC-002-0\(^{13}\) requires evidence that assessments included steady-state, short-circuit and dynamics studies as necessary to confirm compliance with NERC Standard TPL-001-0.

The Facility Study may include electromagnetic transient simulation if deemed necessary. As mentioned in Chapter 5, subsynchronous interactions may be an issue for installations near series compensated lines. Wind and solar plant manufacturers are encouraged to develop detailed electromagnetic transient models. However, it is not recommended to modify FAC-001 to address electromagnetic transient modeling at this time. The models are not widely available and the technical issues requiring such modeling are not continent wide.

\(^{13}\) http://www.nerc.com/files/FAC-002-0.pdf
The NERC standard FAC-001-0 should be expanded to ensure the Transmission Owner (TO) documents modeling requirements during the coordinated joint study phase of the Facility connection process. Preliminary power flow and dynamic models may be adequate for the preliminary assessment of interconnection impacts, or to represent existing and proposed projects that are not in the immediate electrical vicinity of the Facility being studied. However, detailed models for the specific equipment may be needed for the System Impact Study (SIS) and Facilities Study (FS) to represent the Facility and other equipment in the electrical vicinity. Generic non-proprietary and publicly available models are more appropriate for the NERC model building process covered by existing MOD standards, although validated generic models with specifically tuned parameters may also be adequate for interconnection studies. The models for interconnection studies must be acceptable to the TO in terms of simulation platform, usability, documentation and performance. Validation of the generic and detailed model parameters may be needed during commissioning. The generic non-proprietary model with associated parameters feed into the NERC model building process covered by existing MOD standards.

Given the rapid changes in the wind industry over the past 10 years, there is insufficient confidence in the accuracy of older generic models currently applied in NERC stability models. The solar photovoltaic industry is beginning to see similar growth as the wind
industry. Some confirmation tests during commissioning or type tests or comparison simulation tests with a detailed model that has been verified are necessary to get buy in from the Transmission Owner. As the technology matures, and standard IEEE or IEC type models are developed and enhanced, and associated data parameter sets are developed for specific machine types, the new models will become more accepted as is the case with models of hydro or thermal plants. The WECC Renewable Energy Modeling Task Force is helping lead the effort to create wind and solar models and modeling guidelines.14

6.1 Discussion of Generator Unit/Facility Size Applicability

Accurate models are required for all generator facilities that are connected to or are planning to connect to the Bulk Electric System (100 kV and higher) regardless of size.

Ongoing model revalidation is currently covered by:

- MOD-024-1: Verification of Generator Gross and Net Real Power Capability
- MOD-025-1: Verification of Generator Gross and Net reactive Power Capability
- MOD-026-1: Verification of Models and Data for Generator Excitation System Functions
- MOD-027-1: Verification of Models and Data for Turbine/Governor and Load Control

These standards were reviewed and reported in the NERC Special Report “Standard Models for Variable Generation.” The ongoing detailed model validation may evolve to cover generator units or generator facilities 75 MVA or larger. This breakpoint covers at least 80% of the currently installed generation in North America and also matches the FERC registry criteria.

Generator Facilities smaller than the 75-MVA threshold; especially variable generation facilities, may experience rapid changes in control performance over its lifetime due to equipment upgrades and replacements. These changes should get captured in updated models. However, substantial modifications on facilities less than 75 MVA may not be captured by the FAC-001 standard or MOD standards.

It is recommended to modify FAC-001-0 to:

\begin{quote}
“\textit{R2 The Transmission Owner’s facility connection requirements shall address, but are not limited to, the following items:}"
\end{quote}

14 WECC REM TF Website:
R2.1.1 Procedures for coordinated joint studies of new or substantially modified facilities15 and their impacts on the interconnected transmission systems.”

6.2 NERC Standard FAC-001-0 Modifications

Currently, submittal of generator model data is covered via the following requirement in FAC-001-0:

“R2 The Transmission Owner’s facility connection requirements shall address, but are not limited to, the following items:

R2.1.1 Procedures for coordinated joint studies of new facilities and their impacts on the interconnected transmission systems.”

Transmission Owners make reference to the interconnection procedures in their respective Open Access Interconnection Tariff, such as the FERC Large Generator Interconnection Procedures.

The existing NERC Standard FAC-001-0 could be modified to include an explicit requirement related to Generator facility modeling for all generators, including variable generation and also including model validation.

“R2 The Transmission Owner’s facility connection requirements shall address, but are not limited to, the following items:

R2.1.17 Generation facility modeling data, including appropriate power flow, short circuit and dynamic models, and verification requirements.”

Modeling needs for the interconnection process are different than modeling needs for evaluation of regional grid performance. To clarify this point, we recommend that the following statement be added to the FAC-001-0 standard as an appendix for clarifying R2.1.17:

“The preliminary or approximate power flow and dynamic models may be adequate for the preliminary assessment of interconnection impacts, or to represent existing and proposed projects that are not in the immediate electrical vicinity of the Facility being studied. However, detailed dynamic (and possibly transient) models for the specific equipment may be needed for the System Impact Study

15 A generator modification is considered substantial if it results in a change in the net real power output by more than 10% of the original nameplate rating or more than 20 MW, whichever is less or includes any of the following: generator rewind, rotor replacement, new or refurbished excitation system, or turbine replacement. Replacement of failed equipment with identical spare units is not a substantial modification. A substantially modified generator is a generator that receives Planning Coordinator agreement to make the generator modification after the effective date of this standard.
and Facilities Study, to represent the Facility and other equipment in the electrical vicinity. Generic non-proprietary publicly available models are more appropriate for the NERC model building process covered by existing MOD standards, although validated generic models with specifically tuned parameters may be adequate for interconnection studies. The models for interconnection studies must be acceptable to the Transmission Owner in terms of simulation platform, usability, documentation and performance.”

The above recommended sub-requirement R2.1.17, as with all of the sub-requirements in FAC-001-0, leave it up to the Transmission Owner to “fill in the blanks” or develop specific requirements that will be applied to facilities intending to interconnect to their network. This can lead to inconsistencies across North America. In order to avoid inconsistencies, several Facility Interconnection requirement documents or grid codes were reviewed to try to develop a recommended best practice to aid Transmission Owners.

6.3 Summary of Facility Connection Model Grid Code Requirements

After reviewing the interconnection procedures and standards of several grid codes with respect to models and model validation, several key features could be recommended for adoption by Transmission Owners:

- Preliminary model data may be used for the initial feasibility study of a variable generator interconnection project.
- The best model available shall be used for the final System Impact Study or Facilities Study. These models can be user written and require non-disclosure agreements.
- The detailed dynamic model must be accurate over the frequency range of 0.1 to 5 Hz. Time constants in the model should not be less than 5 ms.
- The detailed dynamics model must have been validated against a physical or type test.
- Verification of detailed model performance should be confirmed during commissioning to the extent possible. The following tests shall be performed:
 - Primary/secondary voltage control
 - Low voltage and high voltage ride through
 - Power factor/reactive power capability
 - Power ramping and power curtailment
- Verification of the non-proprietary model accuracy may be performed by simulation tests compared with the detailed model performance.
• At the end of the commissioning tests, the Generator Owner shall provide a verified detailed model and a non-proprietary model, ideally in IEEE, IEC or other approved format, for ongoing regional studies such as TPL-001.
7. Communications between Variable Generation Plants and Grid Operators

Wind and solar plants typically employ comprehensive data collection systems for command and control purposes. These systems link all individual units to a common master control and monitoring device, normally located in the substation at the point of interconnection with the power grid. These systems are a critical part of the control and monitoring interface with the local grid operator or ISO.

This section discusses the types of information that must be communicated between variable generation plants and grid operators. The discussion focuses primarily on communications related to wind plants, since wind power presently has the highest penetration of variable generation on the grid, and wind plant technology is somewhat more mature than other types of variable generation. However, the concepts and recommendations discussed here would apply to solar plants and other types of variable generation.

In a related project, IVGTF 2-2 is examining Balancing Area communication requirements for monitoring and dispatching variable resources. The information presented here complements that in the IVGTF Task 2-2 report.

7.1 Communication Paths

Figure 26 shows the communication paths and signal flows between a grid operator and a variable generation plant. The grid operator is responsible for monitoring and dispatching all plants within its balancing area. SCADA communications are used to transmit monitoring and command signals between the grid operator and all power plants under its control. When a grid has sufficient penetration of variable generation, forecasting the expected future output of variable generation plants becomes critical to grid operations, for reliability as well as economic reasons. Forecasting is normally done at the grid level, although the function is typically performed by a third-party vendor located external to the operating center.

Variable generation plants, like all conventional power plants, need to continuously communicate control and monitoring information to the grid operator. For system reliability, the grid operator needs to know the operating status of the plant (power output, bus voltage, reactive power, etc.) and needs to transmit operation orders to the plant (power limit/curtailment, voltage schedule, etc.).

Variable generation plants should be required to have the same level of human operator control and supervision as similar sized conventional power plants. The grid operator should have 24/7 access for voice communication with the wind plant operator for the
purpose of implementing control orders or dealing with abnormal situations. There is anecdotal evidence that grid operator with low penetrations of wind power have been tolerating some wind plants without such on-call plant operators. With increasing penetration of variable generation, this needs to change.

It is understood that a plant operator may be located remotely from the variable generation plant, perhaps in a facility that monitors and operates multiple plants, possibly in multiple operating areas. The point is that the grid operator must have 24/7 access to a person that has direct and immediate control of the variable generation plant.

If the grid operator allows unmanned operation for conventional power plants that have sufficient automated and remote control/monitoring functions, then the same should be applied to variable generation plants of similar MW ratings.

7.2 Data, Information, and Control Requirements

This section provides detailed lists of signals that are considered to be the minimum necessary for adequate communication between grid operator and variable generation power plants. Although the signals listed here are specifically for wind plants, the overall concept can be extended to other types of variable generation plants.

7.2.1 Monitoring signals from wind plant to grid operator

The following signals should be sampled at the normal SCADA (system control and data acquisition) update rate.

- Active power (MW)
• Reactive power (MVAr)
• Voltage at point of interconnection

The following wind plant status signals are also recommended, but may be sampled at a slower rate:

• Number of turbines available (or total MW rating of available turbines)
• Number of turbines running and generating power (or total MW rating of turbines on-line and generating power)
• Number of turbines not running due to low wind speed
• Number of turbines not running due to high speed cutout
• Maximum and minimum reactive power capability of plant (for some plants in weak grid locations, it would also be prudent to know how much of the total range is dynamic, as opposed to switched capacitors or reactors)
• Total available wind power (equal to production unless curtailed)
• Average plant wind speed (When wind speeds are high and increasing, operators could anticipate high-speed cutout actions)
• Plant main breaker (binary status)
• Plant in voltage regulation mode (binary status)
• Plant in curtailment (binary status)
• Plant up ramp rate limiter on (binary status)
• Plant down ramp rate limiter on (binary status)
• Plant frequency control function on (binary status)
• Plant auto-restart blocked (on/off)

7.2.2 Control signals from grid operator to wind plant

The following command signals are recommended from the grid operator to wind plants:

• Plant breaker trip command
• Voltage order (kV, setpoint for wind plant voltage regulator)
• Maximum power output limit (MW, for curtailment)
• Engage up ramp rate limiter (on/off)
• Engage down ramp rate limiter (on/off)
• Engage frequency control function (on/off)
• Block auto-restart (on/off)

For ramp-rate functions, predetermined up and down ramp rate setpoints could be programmed into the wind plant controls. With this approach the grid operator would not need to communicate the setpoints, but would still have capability to engage those functions when required.

7.2.3 Data Required by Forecast Providers

In addition to the plant status information provided to the grid operator, wind forecasters need additional plant and meteorological data as inputs to the forecasting process. This data typically includes:

Operating Conditions:

• Wind plant status and future availability factor
• Number or percentage of turbines on-line
• Plant curtailment status
• Average plant power or total energy produced for the specified time intervals
• Average plant wind speed as measured by nacelle-mounted anemometers
• Average plant wind direction as measured by nacelle-mounted wind vanes or by turbine yaw orientation

Meteorological Data (typical examples):

• Average (scalar) wind speed
• Peak wind speed (several-second duration) over measurement interval
• Average wind direction
• Air temperature
• Air pressure
• Relative humidity or other atmospheric moisture parameter

The meteorological condition data should be provided at intervals that are equal to or less than the intervals for which the power production forecast is desired. For example, if short-term power production forecasts are desired in 15-minute intervals, then meteorological condition data should be provided at intervals of 15 minutes or less.

7.3 Communication standards and initiatives

The IEC 61400-25 series of standards provide a basis for wind plant communications and interoperability, including a comprehensive specification of wind plant data that may be needed by a grid operator and its forecasting agent. Application of this standard is not yet widespread in the U.S. wind energy industry. However, there is awareness of the need for such a standard in both the wind energy and electric power industries. Given that the object models encapsulate any plant data that would be required for production
forecasting or decision support in power system operations, grid operators should consider adoption of this standard and timing for that action.

Communications for electric utility applications has undergone a very substantial transformation over the past twenty years, and has led to the development of international standards the promise a new generation of interchangeable pieces and parts that speak a common language.

The legacy development of wind turbines in Germany and Denmark, where individual or small clusters of turbines are connected to public distribution networks and therefore nearly invisible to bulk system operators, inspired a movement to develop a wind energy specific communications standard that builds on the developments mentioned above. The result is the IEC 61400-25 series of standards (Figure 27), each known under the general title “Communications for Monitoring and Control of Wind Power Plants.” Key features of the standards series include:

- The standard addresses all communication means between wind power plant components such as wind turbines and actors such as SCADA systems and dispatch centers.
- Applies to any wind power plant operational concept, i.e., both in individual and integrated operations.
- The application area of IEC 61400-25 covers all components required for the operation of wind power plants including the meteorological subsystem, the electrical subsystem and the wind power plant management system.

IEC 61400-25 defines how to:
• Model the information,
• Perform information exchange,
• Map specific communication protocols stacks, and
• Perform conformance testing.

The wind power plant specific information given in IEC 61400-25 is built on the common data classes specified in the IEC 61850 series of standards. The standard excludes a definition of how and where to implement the communication interface and thereby enables any topology to be applied. Specific advantages in application of the standard are that it:

• Provides a uniform communication platform for monitoring and control of wind power plants
• Is compliant with ICCP (Inter-Control Center Protocol)
• Minimizes the communication barriers arising from the wide variety of proprietary protocols, data labels, data semantics etc.
• Provides the ability to manage different wind power plants independently of vendor specific SCADA systems
• Enables components from various vendors to easily communicate with other subsystems
• Is more efficient in handling and presentation of information from wind power plants
• Maximizes scalability, connectivity, and interoperability in order to reduce total cost of ownership or cost of energy
• Is a common solution within the wind power area secures availability of products and competence at a lower cost

The standard is designed to support a range of current day applications and provide a platform for future applications not yet defined.

The IEC 61400-25 standards are relatively new, and to the project team’s knowledge have yet to be adopted by a RTO or ISO in the U.S. However, at a Wind Integration Workshop in 2009, two major vendors indicated that IEC 61400-25 is a key component of their EMS platform architecture going forward.

The application of IEC 61400-25 is farther along in Europe. Distribution system connection of wind generation has been a major driver. A majority of the wind generation installed in Germany, for example, is comprised of individual or small groups of turbines connected to the public distribution network. They are mostly invisible to the German
grid operators. The IEC 61400-25 standards provide a means for grid operators to communicate directly with individual turbines that comply with the standard.

In January 2010, the National Institute of Standards and Technology (NIST) initiated Priority Action Plan 16 (PAP-16) under the Smart Grid Interoperability Panel (SGIP). PAP-16 addresses communications standards for wind plants, building on IEC 61400-25.

More information is on NIST PAP-16 is available at the following web page:

http://collaborate.nist.gov/twiki-sggrid/bin/view/SmartGrid/PAP16WindPlantCommunications

NIST SGIP Priority Action Plan 15; Wind Plant Communications

Description: IEC Technical Committee 88 (TC 88) is responsible for mechanical, electrical, and communications standards related to wind power. These elements are addressed in the various subparts of the IEC 61400 standard. Subpart 25 is focused on wind power plant communications. The standard is based on the more well-known IEC 61850 standard and it primarily defines additional logical nodes (information models) within the 61850 framework.

This plan seeks to achieve the following objectives:

• Gather and develop use cases and requirements related to wind power plant communications.
• Map these requirements to the existing 61400-25 standard and identify gaps and issues that are hindering its use in the US.
• Develop best practices on the application of 61400-25.
• Identify any elements needed to support CIM representation of 61400-25 information
• Provide specific recommendations to the IEC TC 88 working group responsible for maintaining the 61400-25 standard to address the gaps identified.
• Coordinate with PAP 7 in extending ES-DER standards to transmission level and in harmonizing distribution and transmission level standards, where possible. This will be needed to extend to utility scale PV, energy storage, and other large scale alternate generation plants.

The PAP team will gather use cases and requirements from wind industry stakeholders with a focus on those requirements associated with integrating bulk wind assets into wind plant operation and utility command and control systems. Special attention will be given to those use cases and requirements that differ from those developed by the IEC TC 88 61400-25 working group to quickly identify the gaps that are preventing ubiquitous application of the standard in the US. The PAP Team will seek out recent ARRA funding awardees involved in wind plant projects to ensure that their requirements are discovered and they are made aware of the existing portfolio of standards available.
7.4 Recommendations

The project team recommends that the basic requirements for communications and control between grid operators and variable generation plants be based on existing policy for conventional generators. That is,

- Variable generation plants should send a minimum set of monitoring data to the grid operation via the grid’s SCADA network (see Section 7.2.1).

- Variable generation plants should receive and execute command signals (power limit, voltage schedule, ramp rate limit, etc.) sent from the grid operator via the SCADA network (see Section 7.2.2).

- Variable generation plants should have trained on-call plant operators that can receive calls from the grid operator 24/7 and immediately execute verbal commands. The plant operators would not need to be located at the plant provided they have secure remote control capability for the plant.
Appendix A. Disturbance Performance Requirements from International Standards and Grid Codes

1. German E-ON Grid Code April 2006

Figure 2 on page 11 of the E-ON document provides a curve where there may be no limitation on the active power output. The frequency ride-through characteristics are provided in Figure 3 of that document.

At frequencies between 47.5 and 51.5 Hz, automatic disconnection is not permitted. Beyond these limits, immediate tripping is required. At 50.5 Hz, a reduction in active power can be demanded.

Renewable plants must reduce their output when the frequency is between 50.2 and 51.5 Hz at a rate of 40% of the present available power per second (Fig 8).

Islanding operation for renewables must be detected and generators must trip within 3 seconds. Auto resynchronization is not mandatory and can be offered as an option.

Continuous Operating Voltages:

- 110-kV: 96-123 kV
- 220-kV: 193-245 kV
- 380-kV: 350-420 kV

The upper value can be exceeded for 30 minutes.

Maximum 30-minute Voltage Limits:

- 110-kV: 127 kV
- 220-kV: 253 kV
- 380-kV: 440 kV

Type 1 generator is a synchronous generator. Three phase short circuits with clearing time of 150 ms must not cause instability or disconnection. After fault clearing, the grid voltage must not drop below 0.7 pu for more than 700 ms (Fig. 5).

Type 2 generator is an asynchronous generator or generator with frequency converter. Following disconnection, automatic synchronization is permitted only with sufficient grid voltage (e.g. >105 kV in 110 kV). The maximum gradient of the generator is 10% of connection capacity per minute. For plants that do not disconnect during the fault, the active power output must be increased to the original pre-fault value with a gradient of at least 20% of the rated power per second.

Voltage control during the fault is required, beyond a +/-10% deadband (Fig. 7-Page 19).
2. **Irish Grid Code (EirGrid V3.4 October 2009)**

Each generator unit shall (CC-10 Page 71 and WFPS1.5.1 page 253):

- Operate continuously at normal rated output in the range 49.5Hz to 50.5Hz;
- Remain synchronised to the Transmission System within the range 47.5Hz to 52.0Hz for a duration of 60 minutes;
- Remain synchronised to the Transmission System within the range 47.0Hz to 47.5Hz for a duration of 20 seconds required each time the Frequency is below 47.5Hz;
- Remain synchronised to the Transmission System during rate of change of frequency of values up to and including 0.5 Hz per second;
- Remain synchronised to the Transmission System at normal rated output at Transmission System Voltages for step changes in Transmission System Voltage of up to 10%;
- Remain synchronised during and following Voltage dips at the HV terminals of the Generator Transformer of 95% of nominal Voltage (5% retained) for duration 0.2 seconds and Voltage dips of 50% of nominal Voltage (i.e. 50% retained) for duration of 0.6 seconds (for synchronous generators only);
- Following the fault clearance the Generation Unit should return to prefault conditions subject to its normal Governor Control System and Automatic Voltage Regulator response (for synchronous generators only);
- Remain synchronised to the Transmission System during a negative phase sequence load unbalance in accordance with IEC 60034-1

Specific requirements for wind plants are included (WFPS - Page 250). No specific requirements for solar plants are included.

Fault ride through capability is provided in Fig. WFPS 1.1, (Page 252). The minimum voltage is 15% at the high voltage terminals for 625 ms. The active power contribution during the voltage dip is in proportion to the retained voltage. The reactive power should be maximized but be within plant capability. The reactive power contribution should continue for at least 600 ms or until voltage recovers to within the normal range. Active power should return to within 90% of the available active power within 1 second of the voltage returning within the normal range.

No additional wind turbines may be started when the frequency is above 50.2 Hz.

A power-frequency response curve is provided in Figure WFPS1.2. Controllable wind plants (able to change active power output via remote signals from TSO) operate at 90% of the available active power and provide this as inertial response for
frequencies below 49.8 Hz. Above 50.2 Hz, the wind plant output must be further reduced. The response rate should be a minimum of 1% of rated capacity per second.

Continuous Operating Voltages:

- 110-kV: 99-123 kV
- 220-kV: 200-245 kV
- 400-kV: 350-420 kV

The TSO will provide the wind plant with a black start shutdown signal. The wind plant may only be reconnected when the network is fully restored and the TSO provides permission.

These notes provide some overview guidance to help wind developers understand the detailed codes given in the UK code.

Simulation studies may be used to demonstrate compliance with 140 msec fault ride and voltage dip ride-through requirements. (Page 26)

When a plant is to be registered for frequency controller response performance then the following tests are completed (Page 36):

- A 0.8Hz ramp over 30 seconds
- A +0.5 Hz ramp over 10 seconds
- A -0.5 Hz ramp over 10 seconds

4. **UK grid Code (Issue 4 Rev. 2 March 2010)**

Renewable generation are referred to as Novel Units and include tidal, wave, wind, geothermal or other similar units. Wind, wave and solar units are referred to as Intermittent Power Sources. Offshore wind power parks are defined. An onshore power park module is a collection of intermittent power source units that may or may not be connected through a DC converter.

Each generator unit shall meet a variety of connection requirements (CC-6.3 Page 163): The minimum frequency response requirements including testing for frequency response capability are included in Appendix 3 (Page 213). For the frequency response test, a linear ramp signal (0 to 0.5 Hz in 10 seconds) is injected into the governor control system. The plant response is recorded as the minimum between 30 seconds and 30 minutes (Fig. Cc.A.3.2 Page 217).

Fault ride through (CC.6.3.15 page 175) requirements depend on whether the installation is on shore or off shore and on the type of technology including whether a DC converter is present. Appendix 4A/B (Page 218) provides additional details.
Active power should return to within 90% of the available active power for intermittent generation within 1 second of the voltage returning within the normal range.

Non-synchronous generators must withstand the negative phase sequence loading caused by close-in phase-to-phase fault cleared by backup protection without tripping.

To avoid unwanted island operation, the non-synchronous generators must trip if the frequency is above 52 Hz or below 47 Hz for more than 2 seconds; the voltage at the point of interconnection is less than 0.8 pu for more than 2 seconds or above 120% for more than 1 second.

Resynchronization will be determined via procedures with the Network Operator.

5. **BCTC Technical Interconnection Requirements for Generators (October 2008)**

Each generator unit shall (Section 5.4.5a) page 32):

- operate continuously at normal rated output in the range 59.5Hz to 60.5Hz;
- operate continuously between 56.4 Hz and 61.7 Hz;

Some generators may participate in local islands (Section 6.4).

The normal operating voltage range is within +/-10% of nominal. Short time under and overvoltage requirements are given in table 7 (page 34).

Specific requirements are provided for wind generators in Appendix A (page 56). Solar plants are not mentioned.

Fault ride through requirements are provided in Figure A-2. A 150 ms zero voltage fault must not result in plant tripping. The post transient recovery follows the WECC Table W-1. The voltage ride-through follows the WECC white paper, developed on June 13, 2007.

Black start is not a requirement for wind plants. BCTC will send a trip and inhibit signal to the wind plant to ensure disconnection and prevent reconnection in the event of a black start (A11.3).

The power generating facility shall not cause a voltage unbalance greater than 1% or a current unbalance greater than 5%.

6. **Mexico Interconnection requirements Version 2.0**

The continuous operation range is between 57.5 Hz and 62 Hz. Instantaneous tripping may occur above 62 Hz or below 57.5 Hz.

A voltage ride through curve is provided (Fig. 5-1 Page 11). The generator must not trip for a 150 ms zero voltage fault.
7. CAISO Interconnection Standards: draft straw proposal March 2010

CAISO defines a variable energy resource (VER) plant as a plant that uses inverters or other types of asynchronous generators. These plants include both wind and solar. Recommendations are to follow NERC PRC-024-1 standard\(^\text{16}\) “Generator performance During Frequency and Voltage Excursions” for low and high voltage ride through rather than FERC requirements (Order 661a or LGIA App. H). It is important to respect both low and high voltage requirements. There can be cases of high voltages following fault clearing, especially if shunt capacitor banks are nearby. Solar plants that are compliant with IEEE 1547 may not be compliant with this ride-through requirement. However, it is necessary to meet the requirement to ensure a high level of reliability for the BES. The NERC standard is currently limited in scope to plants greater than 75 MVA. CAISO has concerns that a large number of important units will be overlooked if this criterion is adopted.

All existing generators must comply with the WECC high and low frequency ride-through requirements. NERC PRC-024-1 is also proposing frequency ride through requirements but these are in conflict with WECC limits.

All generators must respond to overfrequency conditions (5% droop setting - 5% change in frequency results in 100% change in plant output).

8. AESO Comparison of proposed new rules 501.3.1 for Wind generator facilities with existing Nov. 2004 rules December 2009

Specific requirements are set for a wind plant facility (WPF). No specific rules are set for other technologies like solar.

Wind generating facilities greater than 5 MW must meet the voltage ride through requirements. Continuous operation occurs between 90 and 110% of rated voltage. There is a 15% minimum low voltage ride through and a 110% high voltage ride through requirement (Appendix 1 - Page 43).

The off-nominal frequency limits follow the WECC limits (Appendix 3 - page 45).

All wind generating facilities must have an overfrequency control system and may have an intentional deadband of up to 0.036 Hz. The reduction in output must be proportional to the frequency increase by a factor of 33% per Hertz. This equates to a 5% droop.

Wind generators must not cause a voltage unbalance greater than 3%.

9. **GE Technical requirements for generator interconnection prepared for ISO New England November 2009** - GE recommends contributing to the development of PRC-024 and following these requirements rather than creating unique requirements.

The Northeast Power Coordinating Council has requirements for off nominal frequency (Fig. 12 - Page 12).

GE recommends not specifying explicit rate of change of frequency ride-through requirements. Some small systems are mandating rates of 4 Hz/second. 1-2 Hz/second are typical for severe events in large systems.

Some European grid codes have been mandating active power contribution during a fault. GE is recommending that this is not needed. Recovery of the wind plant to within 90% of pre-disturbance power within 1/2 second is a reasonable target. It is more beneficial to provide reactive current during voltage depressions. An exact prescriptive level is not needed.

Wind plants are not suitable for sustaining a local island. The wind plant should accept a signal from the TSO that prohibits automatic restarting after a severe grid event or black out.

GE recommends that wind plants provide over-frequency droop response. Under-frequency response could be provided as an optional service. The TSO needs to establish appropriate rules or markets to allow for fair compensation.

Inertial response could be considered as a near future requirement. For large frequency drops, the power output could be forced up by 5-10% for several seconds and the kinetic energy in the rotor utilized. Currently, only Hydro Quebec mandates this requirement based on the unique characteristics of their network.

10. **Hydro Quebec Technical Requirements Feb. 2009**

Specific requirements are set for a wind plant facility. No specific rules are set for other technologies like solar.

Wind plants must remain in service without tripping during and after:

A three-phase fault cleared in 150 ms,
A two-phase-to-ground or phase-to-phase fault cleared in 150 ms,
A single line-to-ground fault cleared in 300 ms.

The above faults are located at the high voltage point of interconnection. In addition, requirements are given for remote slow-clearing faults (up to 45 cycles).

Undervoltage performance is given in Fig. 6 (Page 64).

Overvoltage ride-through performance is given in Table 6.
All plants, including wind plants, must remain connected during disturbances that cause frequency variations of +/- 4 Hz/second.

Frequency ride through requirements are given in Table 7. The wind plants must remain connected between 55.5 and 61.7 Hz.

Hydro-Québec requires that wind plants larger than 10 MW be able to contribute to reducing large short-term (< 10 s) frequency deviations on the power system, with an equivalent inertial response (H) of at least 3.5 s. This target is met, for instance, when the system dynamically varies the real power by about 5 % for 10 seconds when a large, short-duration frequency deviation occurs on the power system. It requires that the frequency control is available permanently, i.e. not limited to critical moments.

Wind generators must not trip for voltage unbalances of up to 2% on a steady state basis and up to 50% during network disturbances (e.g. Faults).

Unless special arrangements are made, power plants may not supply islanded areas of the Hydro-Québec network. A remote tripping scheme may be installed when unwanted islanding may occur.

Wind plants must be built and designed so they can be equipped with a stabilizer.

11. Manitoba Hydro Transmission System Interconnection requirements April 2009

Specific requirements are set for a wind plant facility. No specific rules are set for other technologies like solar.

All wind plants must remain in-service during a normally cleared single phase, multi-phase or three-phase fault on the transmission network. The clearing times are specific for the voltage level. A 230 kV interconnection would require a 100 ms ride through capability (5-cycle clearing plus 1-cycle margin). A 115 kV interconnection would require a 150 ms ride through (8-cycle clearing plus 1 cycle margin).

The low and high voltage ride through characteristic is given in Fig. 1. For credible disturbances (NERC Category B and C from Table 1 TPL-001-0), the transmission voltage will be within the blue envelope following fault clearing. If the voltage is not then additional dynamic reactive power support will be added along with the new generator addition. Within the blue region, all generators including wind are expected not to trip. For less credible disturbances (e.g. NERC Category D), the voltage could fall within the green region. It is required that all generators will remain connected; however, the power output of a wind plant can be reduced as required. Following the disturbance, the wind facility will return to the pre-disturbance power output level, once the voltage and frequency are within the normal range. The wind facility will provided reactive power to assist in voltage recovery during the disturbance.

Synchronous generators are required to remain connected between 57.5 and 63.5 Hz. Extreme disturbances may cause frequency decay rates of between 1 and 10
Hz/second. No specific frequency decay ride-through requirements have been documented but they are under consideration. Wind plants may be permitted to trip off below 63.5 Hz. No requirements are listed to provide overfrequency control.

There are no specific inertia requirements. However, interconnection studies are performed to ensure that the addition of wind generation does not impact the underfrequency load shed program. Frequency response may be required depending on the penetration level.

Resynchronizing of wind plants following a plant trip is currently permitted with Manitoba Hydro operator permission.

12. IESO Market Rules Chapter 4 March 2010

Grid performance requirements are asked for in Appendix 4.1 and 4.2.

Continuous Operating Voltages:

- 115-kV: 113-127 kV
- 230-kV: 220-250 kV
- 500-kV: 490-550 kV
The upper value can be exceeded for 30 minutes in northern Ontario.

Maximum 30-minute Voltage Limits:

- 115-kV: 132 kV
- 230-kV: 260 kV

Generator facilities should remain in operation between 58 to 61.5 Hz.

Generator facilities greater than 50 MW or generator units greater than 10 MW must remain in-service during routine switching events on the transmission network. No specific ride-through requirements are given.

The generator should not cause a phase unbalance larger than 1% and should operate continuously with a phase unbalance of 2%.
Appendix B. Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>Area Control Error</td>
</tr>
<tr>
<td>AESO</td>
<td>Alberta Electric System Operator</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>BAL</td>
<td>Balancing</td>
</tr>
<tr>
<td>CAISO</td>
<td>California Independent System Operator</td>
</tr>
<tr>
<td>COM</td>
<td>Communications</td>
</tr>
<tr>
<td>CF</td>
<td>Capacity Factor</td>
</tr>
<tr>
<td>CPS</td>
<td>Control Performance Standard</td>
</tr>
<tr>
<td>CSP</td>
<td>Concentrating Solar Power</td>
</tr>
<tr>
<td>CIGRE</td>
<td>International Council on Large Electric Systems</td>
</tr>
<tr>
<td>DCS</td>
<td>Disturbance Control Standard</td>
</tr>
<tr>
<td>DFAG</td>
<td>Doubly Fed Asynchronous Generator</td>
</tr>
<tr>
<td>DFIG</td>
<td>Doubly Fed Induction Generator;</td>
</tr>
<tr>
<td>DSO</td>
<td>Distribution System Operator</td>
</tr>
<tr>
<td>ELCC</td>
<td>Equivalent Load Carrying Capability</td>
</tr>
<tr>
<td>EMS</td>
<td>Energy Management System</td>
</tr>
<tr>
<td>ERCOT</td>
<td>Electricity Reliability Council of Texas</td>
</tr>
<tr>
<td>EV</td>
<td>Electric Vehicles</td>
</tr>
<tr>
<td>FAC</td>
<td>Facilities Design, Connections, and Maintenance</td>
</tr>
<tr>
<td>FERC</td>
<td>Federal Energy Regulatory Commission</td>
</tr>
<tr>
<td>FRT</td>
<td>Frequency Ride-Through</td>
</tr>
<tr>
<td>HVDC</td>
<td>High-Voltage Direct-Current transmission</td>
</tr>
<tr>
<td>HVRT</td>
<td>High-Voltage Ride-Though</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronic Engineers</td>
</tr>
<tr>
<td>IVGTF</td>
<td>Integration of Variable Generation Task Force</td>
</tr>
<tr>
<td>ISO</td>
<td>Independent System Operator</td>
</tr>
<tr>
<td>LOLP</td>
<td>Loss of Demand Probability</td>
</tr>
<tr>
<td>LOLE</td>
<td>Loss of Demand Expectation</td>
</tr>
<tr>
<td>LSE</td>
<td>Demand Serving Entities</td>
</tr>
<tr>
<td>LVRT</td>
<td>Low-Voltage Ride-Through</td>
</tr>
<tr>
<td>MOD</td>
<td>Modeling, Data and Analysis Standards</td>
</tr>
<tr>
<td>NERC</td>
<td>North American Electric Reliability Corporation</td>
</tr>
<tr>
<td>NWP</td>
<td>Numerical Weather Prediction</td>
</tr>
<tr>
<td>DNI</td>
<td>Direct normal irradiance</td>
</tr>
<tr>
<td>PHEV</td>
<td>Plug-in Hybrid Electric Vehicle</td>
</tr>
<tr>
<td>POI</td>
<td>Point of Interconnection (as define what it means)</td>
</tr>
<tr>
<td>RE</td>
<td>Reliability Entity</td>
</tr>
<tr>
<td>RPS</td>
<td>Renewable Portfolio Standard</td>
</tr>
<tr>
<td>RRO</td>
<td>Regional Reliability Organization</td>
</tr>
<tr>
<td>RTO</td>
<td>Regional Transmission Operator</td>
</tr>
<tr>
<td>SAR</td>
<td>Standards Authorization Request (NERC process)</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>STATCOM</td>
<td>Static Compensator (voltage source converter based technology)</td>
</tr>
<tr>
<td>SVC</td>
<td>Static Var Compensator (thyristor based technology)</td>
</tr>
<tr>
<td>TSO</td>
<td>Transmission System Operator</td>
</tr>
<tr>
<td>VER</td>
<td>Variable Energy Resource</td>
</tr>
<tr>
<td>VG</td>
<td>Variable generation</td>
</tr>
<tr>
<td>VRT</td>
<td>Voltage Ride-Through</td>
</tr>
<tr>
<td>VSC</td>
<td>Voltage Source Converter</td>
</tr>
<tr>
<td>WTG</td>
<td>Wind Turbine Generator</td>
</tr>
<tr>
<td>WECC</td>
<td>Western Electricity Coordinating Council</td>
</tr>
</tbody>
</table>
Appendix C. IVGTF Task 1-3 Roster

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Company/Title</th>
<th>Address/Location</th>
<th>Phone/Fax/Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman</td>
<td>J. Charles Smith</td>
<td>Executive Director</td>
<td>Utility Wind Integration Group</td>
<td>(703) 860-5160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2004 Lakebreeze Way Reston, Virginia 20191</td>
<td>(703) 860-1544 Fax</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>jcharlessmith@comcast.net</td>
</tr>
<tr>
<td>Co-Chairman</td>
<td>Richard Piwko</td>
<td>Director</td>
<td>GE Energy</td>
<td>(518) 385-7610</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>One River Road Bldg. 2-644 Schenectady, New York 12345</td>
<td>richard.piwko@ge.com</td>
</tr>
<tr>
<td></td>
<td>Sandeep Arora</td>
<td>Sr. Regional Transmission Engineer</td>
<td>California ISO 151 Blue Ravine Folsom, California 95630</td>
<td>(916) 351-2431 SArora@caiso.com</td>
</tr>
<tr>
<td></td>
<td>Christopher Barker, P.E.</td>
<td>Manager, Systems Application Engineering and Development</td>
<td>Sunpower Corporation, Systems 1414 Harbour Way South Richmond, California 94804</td>
<td>(510) 260-8277 (415) 269-3574 Fax chrisk.barker@sunpowercorp.com</td>
</tr>
<tr>
<td></td>
<td>Kieran Connolly</td>
<td>Manager, Generation Scheduling</td>
<td>Bonneville Power Administration 905 NE 11th Avenue Portland, Oregon 97232</td>
<td>(503) 230-4680 (503) 230-5377 Fax kpcconnolly@bpa.gov</td>
</tr>
<tr>
<td></td>
<td>Lisa Dangelmaier</td>
<td>Operations Superintendent</td>
<td>Hawaii Electric Light Company 54 Halekauila Street P.O. Box 1027 Hilo, Hawaii 96721</td>
<td>(808) 969-0427 (808) 969-0416 Fax lisa.dangelmaier@helcohi.com</td>
</tr>
<tr>
<td></td>
<td>James Feltes</td>
<td>Senior Manager, Consulting Services</td>
<td>Siemens Energy, Inc. 400 State Street 1058 Schenectady, New York 12301-1058</td>
<td>(518) 395-5083 (518) 346-2777 Fax james.feltes@siemens.com</td>
</tr>
<tr>
<td></td>
<td>Jerry Fohey</td>
<td>Interconnection Planning Technical Manager</td>
<td>Midwest ISO, Inc. 701 City Center Drive Carmel, Indiana 46032</td>
<td>(317) 249-5759 (518) 346-2777 Fax jfohey@midwestiso.org</td>
</tr>
<tr>
<td></td>
<td>Warren Frost</td>
<td>Primary Consultant</td>
<td>Frost Power Consulting Inc. A402 500 Eau Claire Ave SW Calgary, Alberta T2P 3R8</td>
<td>(403) 261-2050 wrost@telusplanet.net</td>
</tr>
<tr>
<td></td>
<td>Joerg Grosshennig</td>
<td>Product Manager</td>
<td>SMA Solar Technology AG Sonnenallee 1 Niestetal, 34266</td>
<td>+49-0561-9522-3376 +49-0561–9522-3129 Fax Joerg.Grosshennig@SMA.de</td>
</tr>
<tr>
<td>Name</td>
<td>Title and Company</td>
<td>Address/Location</td>
<td>Phone</td>
<td>Fax</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---</td>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>David Jacobson</td>
<td>Interconnection & Grid Supply Planning Engineer</td>
<td>Manitoba Hydro 820 Taylor Ave. (3rd) P.O.</td>
<td>(204) 360-3765</td>
<td>(204) 360-6177 Fx</td>
</tr>
<tr>
<td>Khaqan Khan</td>
<td>Senior Engineer</td>
<td>Ontario, IESO Station A P.O. Box 4474</td>
<td>(905) 855-6288</td>
<td>(905) 855-6372 Fx</td>
</tr>
<tr>
<td>Warren Lasher</td>
<td>Manager, System Assessment</td>
<td>Electric Reliability Council of Texas, Inc. 2705 West Lake Drive Taylor, Texas 76574</td>
<td>(512) 248-6379</td>
<td>(512) 248-4235 Fx</td>
</tr>
<tr>
<td>Clyde Loutan</td>
<td>Senior Advisor - Planning and Infrastructure Development</td>
<td>California ISO 151 Blue Ravine Road Folsom, California 95630</td>
<td>(916) 608-5917</td>
<td>(505) 844-2890 Fx</td>
</tr>
<tr>
<td>Jason M. MacDowell</td>
<td>Senior Engineer</td>
<td>GE Energy One River Road B53-310A Schenectady, New York 12345</td>
<td>(518) 385-2416</td>
<td>(518) 385-9709 Fx</td>
</tr>
<tr>
<td>David Marshall</td>
<td>Project Manager</td>
<td>Southern Company Services, Inc. 600 N. 18th Street Birmingham, Alabama 35203</td>
<td>205-257-3326</td>
<td>205-257-1040 Fx</td>
</tr>
<tr>
<td>Matt Pawlowski</td>
<td>Compliance Manager</td>
<td>FPL Energy 700 Universe Boulevard FEX/JB Juno Beach, Florida 33408</td>
<td>(561) 304-5465</td>
<td>(561) 304-5161 Fx</td>
</tr>
<tr>
<td>William Peter</td>
<td>Systems Application Engineer</td>
<td>Sunpower Corporation, Systems 1414 Harbour Way South Richmond, California 94804</td>
<td>(510) 260-8559</td>
<td>(510) 540-0552 Fx</td>
</tr>
<tr>
<td>Christopher Thompson</td>
<td>Director, Advanced Power Conversion</td>
<td>First Solar 400 Somerset Corporate Blvd Bridgewater, New Jersey 08807</td>
<td>908-809-4055</td>
<td></td>
</tr>
<tr>
<td>Edi Kelley von Engeln</td>
<td>Senior Engineer Regional Planning</td>
<td>NV Energy 6100 Neil Road Reno, Nevada 89511</td>
<td>(775) 834-4456</td>
<td>(775) 834-3047 Fx</td>
</tr>
<tr>
<td>Name</td>
<td>Title/Position</td>
<td>Company/Location</td>
<td>Phone</td>
<td>Fax</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Reigh Allen Walling</td>
<td>Director</td>
<td>GE Energy</td>
<td>(518) 385-5370</td>
<td>(518) 385-9529</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MID 53-300U One River Road Schenectady, NY 12345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eric Seymour</td>
<td>Technical Fellow</td>
<td>Advanced Energy Industries</td>
<td>(970) 407-6515</td>
<td>(970) 407-5515</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1625 Sharp Point Drive Fort Collins, CO 80525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aaron Bennett</td>
<td>Reliability Assessments Engineer</td>
<td>North American Electric Reliability Corporation</td>
<td>(609) 452-8060</td>
<td>(609) 452-9550</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116-390 Village Boulevard Princeton, New Jersey 08540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michael Edds</td>
<td>Manager, Electrical Systems</td>
<td>DeWind, Inc.</td>
<td>(949) 250-9491</td>
<td>(949) 4250-9492</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abraham Ellis</td>
<td>Principal Member of Technical Staff Renewable</td>
<td>Sandia National Laboratories</td>
<td>(505) 844-7717</td>
<td>(505) 844-2890</td>
</tr>
<tr>
<td></td>
<td>System Integration</td>
<td>1515 Eubank SE Albuquerque, New Mexico 87123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eric John</td>
<td>Vice President, Electric Utility Projects</td>
<td>SkyFuel Inc.</td>
<td>(505) 999-5823</td>
<td>(505) 323-2747</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10701 Montgomery Boulevard Suite A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Albuquerque, New Mexico 87111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuriy Kazachkov</td>
<td></td>
<td>Siemens Energy, Inc.</td>
<td>(518) 395-5132</td>
<td>(518) 346-2777</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400 State Street Schenectady, New York 12305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brendan Kirby</td>
<td>Consultant</td>
<td>American Wind Energy Association</td>
<td>(865) 250-0753</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2307 Laurel Lake Road Knoxville, Tennessee 37932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Victor Lilly</td>
<td>Marketing & Technical Advisor</td>
<td>DeWind Engineering</td>
<td>004-945-130-73110</td>
<td>004-945-130-73203</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seelandstrasse 1 Lübeck, 23569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Srijib Kantha Mukherjee</td>
<td>Principal Advisor</td>
<td>Quanta Technology</td>
<td>(919) 334-3028</td>
<td>(919) 538-5348</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4020 Westchase Boulevard Suite 300</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Raleigh, North Carolina 27607</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert John Nelson</td>
<td>Manager, Codes, Regulations, Standards</td>
<td>Siemens Wind Turbines - Americas</td>
<td>(407) 736-4785</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4400 Alafaya Trail MC 400 Orlando, Florida 32826</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Observer** | **Subbaiah Pasupulati**
Director of Technical Studies | **Oak Creek Energy Systems, Inc.**
14633 Willow Springs Road
Mojave, California 93501 | (909) 241-9197
(661) 822-5991 Fx
subbaiah@oakcreekenergy.com |
| **Observer** | **Steven Saylors**
Chief Electrical Engineer | **Vestas Americas**
1881 SW Naito Parkway
Portland, Oregon 97201 | (503) 327-2111
(503) 327-2001 Fx
sayl@vestas.com |
| **Observer** | **Robert Zavadil**
Vice President and Principal Consultant | **EnerNex Corp**
620 Mabry Hood Road
Suite 300
Knoxville, Tennessee 37932 | (865) 218-4600 Ext. 6149
(865) 218-8999 Fx
bobz@enernex.com |
| **NERC Staff** | **Jessica J. Bian**
Manager of Benchmarking | **North American Electric Reliability Corporation**
116-390 Village Boulevard
Princeton, New Jersey 08540-5721 | (609) 452-8060
(609) 452-9550 Fx
jessica.bian@nerc.net |
| **NERC Staff Coordinator** | **Rhaiza Villafranca**
Technical Analyst | **North American Electric Reliability Corporation**
116-390 Village Boulevard
Princeton, New Jersey 08540-5721 | (609) 452-8060
(609) 452-9550 Fx
rhaiza.villafranca@nerc.net |
| **NERC Staff** | **Mark G. Lauby**
Director of Reliability Assessment and Performance Analysis | **North American Electric Reliability Corporation**
116-390 Village Boulevard
Princeton, New Jersey 08540-5721 | (609) 452-8060
(609) 452-9550 Fx
mark.lauby@nerc.net |
Appendix D. Wind-Turbine Generation Technologies

Figure D.1 (a) Type 1 Wind Turbine-Generator: Fixed Speed Induction Generator.

Figure D.2 (b) Type 2 Wind Turbine-Generator: Variable Slip Induction Generator.17

17 IGBT R control = Isolated Gate Bi-Polar Transistor controlled by Resistor
Figure D.3 (c) Type 3 Wind Turbine-Generator: Double-Fed Asynchronous Generator.

Figure D.4 (d) Type 4 Wind Turbine-Generator: Full Power Conversion.
Appendix E. Further Reading

1. NERC Special Report, Accommodation of High Levels of Variable Generation, April 2009. www.nerc.com
Appendix F. Review of Utility Facility Connection Requirements or Grid Codes

This section summarizes model-related requirements from selected facility connection requirement documents and grid codes.

1. **Irish Grid Code (EirGrid V3.4 October 2009)** - Controller wind plants greater than 5 MW must provide special written models, detailed parameters, reactive power devices and associated controls. Models are treated as preliminary project planning data (similar to IES data), committed project planning data (similar to IFS data) or system planning data (similar to MOD data) as appropriate. The models must run on PSS/E and not require a time step smaller than 5 ms. The dynamic model shall include the following features, at minimum:

- The electrical characteristics of the Generator;
- The separate mechanical characteristics of the turbine and the Generator and the drive train between them;
- Variation of power co-efficient with pitch angle and tip speed ratio;
- Blade pitch control;
- Converter controls;
- Reactive compensation;
- Protection relays.

A suitable aggregation of the collector system network may be included to reduce the model size.

All dynamic models shall be validated ideally before commissioning. The tests and measurements shall be agreed by the System Operator.

2. **UK Grid Code (Guidance Notes for Power Park Developers Sept. 2008) England & Wales (NGET Area) - Large ≥ 100MW, Medium ≥ 50MW, Small < 50MW.**

South of Scotland (SPT Area) - Large ≥ 30MW, Small < 30MW.

North of Scotland (SHETL Area) - Large ≥ 10MW, Small < 10MW.

Detailed planning data must be submitted for all large power parks. Small and medium embedded parks must follow the specific requirements of the Distribution Network Operator.

The detailed planning data should be validated. Standard models that have a type validation report are encouraged. The validation tests should include fault ride through, voltage control and frequency response.
Various compliance tests are specified to be completed prior to commercial operation. The tests confirm compliance with the Grid Code as well as confirming validity of submitted model and control data. Field recordings are compared against the simulation models for the specified compliance tests.

3. **UK grid Code (Issue 4 Rev. 2 March 2010)** - Section PC.A.5.4.2 (Page PC-53) covers the detailed data requirements of asynchronous generators.

4. **BCTC Technical Interconnection Requirements for Generators (October 2008)** - Generator is responsible for providing detailed steady-state and dynamics model data (PSS/E or PSLF) for Interconnection Studies. The model shall be validated during commissioning tests. The final model shall be non-proprietary and can be used in the NERC regional model. (Section A9 Pg. 60).

 A detailed three-phase electromagnetic transient model (PSCAD) shall be provided. (Sect. A10).

5. **Mexico Interconnection requirements Version 2.0** - Basic steady state and dynamic modeling data is requested.

6. **CAISO Interconnection Standards: draft straw proposal March 2010** - Propose to require Interconnection Customers to supply WECC standard models rather than detailed user written models, if available.

7. **AESO Comparison of proposed new rules 501.3.1 for Wind generator facilities with existing Nov. 2004 rules December 2009** - The model provided must be validated against physical performance tests on at least one unit of each type. Any model provided will be shared with WECC for regional studies. The Generator Owner must provide studies that show the model meets voltage ride through requirements.

8. **Technical requirements for generator interconnection prepared for ISO New England November 2009** - This paper provides a broad overview on the subject and provides guidance for ISO-NE in terms of activities to support or watch. Wind plant modeling is covered in Section 3.6 (Page 56). They recommend NERC to work on:

 • Clarification of the expectation that wind generators must comply with standards and a fixed timetable for compliance, with penalties for non-compliance;

 • An assessment of existing standards to determine what modifications to standards (if any) are necessary in consideration of wind generation, especially in the modeling area and including verification of models.

 • Definition of appropriate tests for wind plants that considers the unique operational nature; verification of reactive limits for operating plants is an example.
Short circuit modeling is a current challenge and is being worked on by an IEEE PES task force.

Requesting transient (point-on-wave) models is usually unnecessary and is recommended to be avoided unless there is a suspected interaction with nearby equipment such as an HVdc converter.

9. **Hydro Quebec Technical Requirements Feb. 2009** - The model provided must be compatible with PSS/E and work with a time step greater than 4 ms. Ideally an IEEE standard model will be provided. If none exists, then a black box model may be provided as long as compliance test results are provided. Models must be able to be shared with NPCC for regional studies. Detailed requirements are included in Appendix A.

Prior to commissioning, the Generator Owner must provide test and verification reports that demonstrate the facilities comply with the technical requirements including verification of numerical models used in the interconnection and facilities studies. Appendix D provides details of verification tests. Tests are intended to verify:

- Primary voltage control
- Undervoltage response and LVRT
- Inertial response
- Secondary voltage control
- Power factor
- Maximum ramp rate

An electromagnetic transient model (EMTP) must be provided when the Interconnection Study Agreement is signed. Detailed requirements are included in Appendix B.

10. **Manitoba Hydro Transmission System Interconnection requirements April 2009**

 - All Generators regardless of size of the facility connecting to the 66 kV or higher network shall provide preliminary model data for an IES, best available model for Interconnection Facility Studies and as-built model data after commissioning.

 The model should be accurate over the frequency range 0.1 to 5 Hz. The model should not require integration step sizes less than 2 ms. Time constants less than 5 ms should only be included if critical to performance. The models must have been validated against physical tests.

 The Generator must also provide non-proprietary models ideally in IEEE format. The non-proprietary models may be compared against detailed models for verifying accuracy assuming the detailed models have been compared against physical test.
Special commissioning tests will be performed to verify:

- Low voltage ride through
- Voltage regulation
- Reactive power control
- Power ramping and power curtailment

The generator is responsible for revalidating the models according to the NERC MOD standards.

11. **IESO Market Rules Chapter 4 March 2010** - Generic data requirements are asked for in Appendix 4.6.

12. **Australia Energy Market Operator (Checklist of Model Data Requirements V1.1-Oct 2009; Generating System Model Guidelines V1. Feb. 2008; Generating System Design Data Sheets 19V1.Feb. 2008)** - Registered participants in the Australia Energy Market are bound the National Electricity Rules. Each relevant Network Service Provider may also have specific connection requirements. The AEMO has prepared a checklist of model data requirements, model guidelines and data sheets as required by the Rules. The model guidelines describe:

- The functional requirements for static and dynamic models.

- The requirements for accuracy of such models (e.g. the deviation between the model and actual plant response for active and reactive power must not exceed 10%; the model cannot show behavior not present in the actual plant response; other detailed criteria are listed in Section 7.3 for transient stability model accuracy).

- The requirements for validating the model (either rigorously from design information or from on-site tests, such as voltage and frequency disturbances).

- The requirements for steady-state, fault, transient stability, eigenvalue analysis, medium and long term dynamics, subsynchronous resonance and harmonic analysis.

For load flow and short circuit the model must be capable of representing all possible values of fuel source strength (e.g. wind) where the generator would be in operation.

AEMO permits preliminary system data to be included with the application to connect. Registered data consists of validated data derived from manufacturer’s data, design calculations, site tests or on-site testing after connection. Normally, on-site...
testing of each unit is required or type-testing of a representative unit may be acceptable.

The data sheets specifically refer to thermal, gas, hydro, wind (various types) and photovoltaic cell arrays and fuel cells.

13. FERC Interconnection Requirements Related to Modeling

FERC Order 661-A\(^\text{20}\) states that wind power plants can provide a preliminary set of electrical design specifications for depicting the plant as a single equivalent generator. It also states that the Generator Owner must submit within six months of submitting the interconnection request, detailed electrical design specifications and other data (including collector system layout data) needed to allow the Transmission Provider to complete the System Impact Study. In practice, “other data” also refers to dynamic models and possibly transient models.

The modeling data requirements documented in FERC Order 661-A are added as Appendix 7 of the FERC Large Generator Interconnection Procedures\(^\text{21}\) (LGIP). FERC Order 661-A also defined certain criteria such as low voltage ride through, reactive power and communication, which are to be added as Appendix G “Requirements of Generators relying on Newer Technologies” in the FERC Large Generator Interconnection Agreement.

It should be noted the FERC LGIP applies to generators larger than 20 MW. For smaller generators, the Small Generator Interconnection Procedures\(^\text{22}\) apply. Generating facility information is required to be provided along with the Interconnection request such as what is the energy source (e.g. solar, wind, hydro etc.) as well as some of basic characteristic data depending if the generator is a synchronous generator, induction generator or inverter-based machine.

\(^{20}\) FERC Order 661-A (Dec 12, 2005) http://www.ferc.gov/EventCalendar/Files/20051212171744-RM05-4-001.pdf

Appendix G. Summary of Existing Reactive Power Standards

Table G.1 Summary of Existing Reactive Power Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Technology Addressed</th>
<th>Power Factor Requirements</th>
<th>Voltage Range</th>
<th>Equipment Specified (Static/Dynamic)</th>
<th>Control Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FERC 661A - Appendix G</td>
<td>Wind Plants</td>
<td>±0.95 leading/lagging at POI, burden of proof required</td>
<td>Not Specified</td>
<td>By means of power electronics within the limitations due to voltage level and real power output or fixed and switched capacitors as agreed by the Transmission Provider</td>
<td>Not Addressed</td>
</tr>
<tr>
<td>NERC FAC-001</td>
<td>Generators larger than 20 MVA, plant/facility larger than 75 MVA in aggregate, any generator that is a blackstart unit, and any generator connected to the bulk transmission system (typically 100 kV and above)</td>
<td>Directs Transmission Owner to define and publish connection requirements. The connection requirements must address reactive power capability and control requirements. Interconnection standards issued by Transmission Operators pursuant to FAC-001 are not uniform.</td>
<td>Not Specified</td>
<td>Not Addressed</td>
<td>VAR-001 R4 and R6.1 refer to requirements to operate in automatic voltage control or reactive power control. VAR-002 indicates that generators with automatic voltage regulators must operate in voltage control mode unless directed otherwise by the Transmission Operator.</td>
</tr>
<tr>
<td>ERCOT</td>
<td>single units larger than 20 MVA or multiple units (such as wind and solar generators) with aggregated capacity of 20 MVA connected to the transmission system.</td>
<td>The required power factor range is 0.95 lead/lag at maximum power output and must be supplied at the point of interconnection (transmission). At partial power, reactive capability must be up to the MVar range at rated power, or at least the required range at rated power scaled by the ratio of active power to rated power.</td>
<td>The reactive range must be met at the voltage profile established by ERCOT.</td>
<td>All generators are required to follow a voltage schedule, within the reactive capability of the generator, and operate in voltage regulation mode unless otherwise directed by ERCOT.</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>Technology Addressed</td>
<td>Power Factor Requirements</td>
<td>Voltage Range</td>
<td>Equipment Specified (Static/Dynamic)</td>
<td>Control Modes</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>--------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>CAISO (Proposed)</td>
<td>All Variable Energy Generation</td>
<td>±0.95 leading/lagging (consuming/producing) at POI when VER is exporting >20% of maximum rated power to the POI. Maximum VAR is a function of real power delivered (triangle VAR support above 20% rated capacity). Example, a VER is exporting 10 MW to the POI, the VER should be capable of injecting or absorbing up to 3.3 MVAr at the POI.</td>
<td>Ability to provide the full range of reactive power support at voltages between 0.95 and 1.05 pu was initially proposed but is under review.</td>
<td>By means of inverters, switched or fixed capacitors, static devices (STATCOM) or a combination of these sources.</td>
<td>Voltage control mode is default with ability to operate in power factor control mode. Per WECC requirements. Regulate voltage at POI under steady state and disturbance conditions, per the voltage schedule by use of Automatic Voltage Control System (AVCS). All reactive power devices must be controlled by AVCS. No mention of dynamic voltage support or time response. Within the limits of the rating of the equipment.</td>
</tr>
<tr>
<td>HECO (PPA Example)</td>
<td>Under negotiation</td>
<td>Minimum 0.95 leading, 0.95 lagging within the limits of the reactive power range at full apparent power.</td>
<td>Specified at Nominal Voltage</td>
<td>VAR response shall be able to achieve 90% of its final value within 1 sec. following a step change in voltage. Voltage regulation will be reviewed and approved by HECO.</td>
<td></td>
</tr>
<tr>
<td>Australian NEM Minimum Connection Standards</td>
<td>>30MW, All technologies?</td>
<td>None</td>
<td>Not Specified?</td>
<td>No capability to supply or absorb reactive power at the connection point (POI)</td>
<td>Regulates V, p.f., or Q. Settling times of < 7.5s for 5% change in voltage setpoint where this would not cause any limiting device to operate.</td>
</tr>
<tr>
<td>Australian NEM Automatic Connection Standards</td>
<td>>30MW, All technologies?</td>
<td>See VAR Requirement</td>
<td>Not Specified?</td>
<td>Capable of supplying and absorbing continuously at its POI equal to product of rated active power and 0.395, at any level of active power output and any voltage at the POI (within network limits) without a contingency event within 0.5% of setpoint, continuously controllable from 0.95 to 1.05 pu of POI voltage without reliance on tap changing transformer. Settling times for P, Q, V of < 5s for 5% change in voltage setpoint. Reactive power rise time <2s</td>
<td></td>
</tr>
</tbody>
</table>