Reliability Guideline
DER Data Collection for Modeling in Transmission Planning Studies
March 2020
Preface

Electricity is a key component of the fabric of modern society and the Electric Reliability Organization (ERO) Enterprise serves to strengthen that fabric. The vision for the ERO Enterprise, which is comprised of the North American Electric Reliability Corporation (NERC) and the six Regional Entities (REs), is a highly reliable and secure North American bulk power system (BPS). Our mission is to assure the effective and efficient reduction of risks to the reliability and security of the grid.

Reliability | Resilience | Security
Because nearly 400 million citizens in North America are counting on us

The North American BPS is divided into six RE boundaries as shown in the map and corresponding table below. The multicolored area denotes overlap as some load-serving entities participate in one Region while associated Transmission Owners/Operators participate in another.

<table>
<thead>
<tr>
<th>MRO</th>
<th>Midwest Reliability Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPCC</td>
<td>Northeast Power Coordinating Council</td>
</tr>
<tr>
<td>RF</td>
<td>ReliabilityFirst</td>
</tr>
<tr>
<td>SERC</td>
<td>SERC Reliability Corporation</td>
</tr>
<tr>
<td>Texas RE</td>
<td>Texas Reliability Entity</td>
</tr>
<tr>
<td>WECC</td>
<td>Western Electricity Coordinating Council</td>
</tr>
</tbody>
</table>
Preamble

It is in the public interest for NERC to develop guidelines that are useful for maintaining or enhancing the reliability of the Bulk Electric System (BES). The NERC technical committees (the Operating Committee (OC), the Planning Committee, and the Critical Infrastructure Protection Committee (CIPC)) are authorized per their charters\(^1\) by the NERC Board of Trustees (Board) to develop reliability (OC and Planning) and security guidelines (CIPC). These guidelines establish a voluntary code of practice on a particular topic for consideration and use by BES users, owners, and operators. These guidelines are coordinated by the technical committees and include the collective experience, expertise, and judgment of the industry. The objective of this reliability guideline is to distribute key practices and information on specific issues critical to maintaining the highest levels of BES reliability. Reliability guidelines are not to be used to provide binding norms or create parameters by which compliance to standards is monitored or enforced. While the incorporation of guideline practices are strictly voluntary; reviewing, revising, or developing a program using these practices is highly encouraged to promote and achieve the highest levels of reliability for the BES.

NERC, as the FERC certified ERO\(^2\), is responsible for the reliability of the BES and has a suite of tools to accomplish this responsibility, including, but not limited to, lessons learned, reliability and security guidelines, assessments and reports, the Event Analysis Program, the Compliance Monitoring and Enforcement Program, and mandatory reliability standards. Each entity as registered in the NERC compliance registry is responsible and accountable for maintaining reliability and compliance with the mandatory standards to maintain the reliability of their portions of the BES. Entities should review this guideline in detail in conjunction with the periodic review of their internal processes and procedures and make any needed changes to their procedures based on their system design, configuration, and business practices.

Executive Summary

Modeling the BPS for performing BPS reliability studies hinges on the availability of data and information needed to represent the various elements of the grid. While many individual BPS elements are modeled explicitly, some components are represented in aggregate. These include representation of end-use loads as well as a growing focus on the representation of aggregate amounts of distributed energy resources (DERs). As the penetration of DERs continues to grow, representing DERs in planning assessments becomes increasingly important. Steady-state powerflow, dynamics, short-circuit, electromagnetic transient (EMT), and other types of planning studies may need information and data that enable Transmission Planners (TPs) and Planning Coordinators (PCs) to develop models of aggregate amounts of DERs for planning purposes.

TPs and PCs establish modeling data requirements and reporting procedures per the requirements of NERC Reliability Standard MOD-032-1. These requirements should include specifications for collecting aggregate DER data for the purposes of modeling, particularly as DER penetration levels continue to increase. Clear and consistent requirements developed by the TPs and PCs will help facilitate the transfer of information between the Distribution Providers (DPs) and any other external parties such as state regulatory entities or other entities performing DER forecasting to the TP and PC for modeling purposes. The modeling data requirements established by TPs and PCs may differentiate utility-scale DER (U-DER) and retail-scale DER (R-DER) based on their size, impact, or location on the distribution system. U-DER may require detailed information regarding the facility; whereas smaller-scale R-DER data will typically represent aggregate amounts of DERs. TPs and PCs should establish clear requirements and any applicable thresholds regarding DER modeling practices; however, aggregated amounts of DERs should be accounted and reported to the TP and PC for modeling purposes.

The goal of this reliability guideline is to provide clear recommendations and guidance for establishing effective modeling data requirements on collecting aggregate DER data for the purposes of reliability studies. TPs and PCs should review their requirements to ensure they encompass the considerations presented in this guideline. DPs are encouraged to review the recommendations and reference materials to better understand the types of modeling data needed by the TP and PC, and to help facilitate this data and information transfer. In many cases, the aggregate data needed for the purposes of modeling may not require detailed information from individual DERs; rather, aggregate data related to location, type of DERs, vintage of IEEE 1547, interconnection timeline and projections, and other key data points can help develop aggregate DER models. In instances of larger U-DERs, more detailed modeling information may be needed if those DERs can have an impact on BPS performance. In either case, the DP, TP, and PC should coordinate on the best approaches for gathering aggregate DER data for modeling purposes.

3 Such as BPS transformers, generators, circuits, and other elements.
4 Typically loads are aggregated to each distribution transformer. Therefore, all loads connected to that distribution transformer are represented as one load in the steady-state base case, and then an aggregate representation of the dynamic performance of those loads are developed using engineering judgment combined with available data.
6 U-DER and R-DER are terms used for modeling aggregate amounts of DER. This Reliability Guideline furthers the flexible framework established in previous NERC Reliability Guidelines. See: https://www.nerc.com/comm/PC_Reliability_Guidelines_DL/Reliability_Guideline_DER_A_Parameterization.pdf.
Introduction

The ability to develop accurate models for BPS reliability studies hinges on the availability of data and information needed to represent the various elements of the grid. While many individual BPS elements are modeled explicitly such as transformers, large BPS generators, transmission lines, etc., some components of the grid are represented in aggregate for the purposes of BPS studies. Such models include the representation of end-use loads\(^8\) as well as a growing focus on the representation of aggregate amounts of DERs. TPs and PCs are establishing modeling data requirements for DER data for the purposes of transmission planning assessments, and reasonable representation of DER in the models used to execute these studies will be increasingly important. DPs likely account for aggregate DER connected to their systems, with varying degrees of detail and information available.

The primary objective of this reliability guideline is to provide recommended practices for PCs and TPs to work with DPs to facilitate the transfer of data needed to represent aggregate DER in BPS reliability studies. The detailed guidance provided in this guideline follows the required data transfer established in NERC Reliability Standard MOD-032-1, which is described below in more detail. Data collection requirements and reporting procedures established by each TP and PC are expected to vary slightly based on the types of studies being performed as well as how those studies are performed. However, there are commonalities in the type of data needed to model DER and in how that data can be collected.

Background

The NERC Reliability Guideline *Modeling DER in Dynamic Load Models*,\(^9\) published December 2016, established a foundation for classifying DER as either U-DER or R-DER for the purpose of modeling. That guideline also provided a flexible framework for modeling U-DER and R-DER in the steady-state powerflow base cases as well as options for modeling DER in the dynamic models. This included options for representing DER using a stand-alone DER dynamic model or integrating DER as part of the composite load model. The NERC Reliability Guideline *Distributed Energy Resource Modeling*,\(^10\) published September 2017, provided further guidance on establishing reasonable parameter values for the DER dynamic models. That guideline reviewed the available dynamic models and recommended default parameter values that could be used as a starting point for modeling DER. The NERC Reliability Guideline *Parameterization of the DER_A Model*\(^11\) recommended use of the DER_A dynamic model to represent either U-DER or R-DER in dynamic simulations. This model was in the process of being developed during the publication of the previous two guidelines. Therefore, that guideline demonstrated the benchmarking and testing of the DER_A model and also provided recommended default parameter values for the DER_A model for different scenarios of DER installation in various systems. Again, the recommendations presented in that guideline are intended to be a starting point for planning engineers to further determine representative DER dynamic model parameter values.

The NERC Distributed Energy Resources Task Force (DERTF) also published a technical report on *Distributed Energy Resources: Connection Modeling and Reliability Considerations*\(^12\) in December 2016 and a technical brief on *Data Collection Recommendations for Distributed Energy Resources* in March 2018.\(^13\) Both of these reports provided industry with a high-level overview of the information that may need to be collected and shared among entities for the purposes of modeling and studying DER impacts as well as monitoring DERs in real-time. Further, they emphasized

\(^8\) Typically loads are aggregated to each distribution transformer. Therefore, all loads connected to that distribution transformer are represented as one load in the steady-state base case, and then an aggregate representation of the dynamic performance of those loads are developed using engineering judgment combined with available data.

that netting of DERs with load should be avoided since it can mask the impacts that either may have on BPS reliability, particularly for dynamic simulations.

The goal of this reliability guideline is to build upon all these past efforts and specifically focus on gathering the data and modeling information needed to effectively execute transmission planning modeling and study activities.

Recommended DER Modeling Framework

The recommendations regarding DER data collection for the purposes of modeling and transmission planning studies use the recommended DER modeling framework proposed in previous NERC Reliability Guidelines (see Figure I.1).\(^\text{14}\)

For the purposes of modeling, the framework characterizes DERs as either U-DER or R-DER. These definitions are intended to be adapted to specific TP and PC planning practices and specific DER installations, as needed. For reference, from the previous DER modeling recommendations, these definitions are provided here as a reference:

- **U-DER**: DERs directly connected to, or closely connected to, the distribution bus through a dedicated, non-load serving feeder.\(^\text{15}\) These resources are typically three-phase interconnections and can range in capacity (e.g., 0.5 to 20 MW).

- **R-DER**: DERs that offset customer load, including residential,\(^\text{16}\) commercial, and industrial customers. Typically, the residential units are single-phase while the commercial and industrial units can be single- or three-phase facilities.

Both U-DERs and R-DERs can be differentiated and modeled in powerflow base cases and dynamic simulations. TPs and PCs have successfully adapted these general definitions for their system, and often refer to U-DER and R-DER for the purposes of modeling aggregate DERs. Aggregate amounts of all DERs should be accounted for in either U-DER or R-DER models in the base case, and TPs and PCs may establish requirements for modeling either individual large U-DER as well as aggregate amounts of the remaining DER as R-DER. The aggregate impact of DERs, such as the sudden loss of a large amount of DERs, and has been observed\(^\text{17}\) to have an impact on BPS reliability.

Types of Reliability Studies

Data of BPS elements as well as other necessary aspects\(^\text{18}\) of the interconnected BPS are used in a wide array of reliability studies performed by TPs and PCs. In particular, studies considered by the System Planning Impacts from Distributed Energy Resources Working Group (SPIDERWG) include the following:

\(^{15}\) Some entities have chosen to model large U-DER that are connected to load-serving feeders as U-DER explicitly in the base case as well. This has been demonstrated as an effective means of representing U-DER as well, and is a reasonable adaptation of the definition above.

\(^{16}\) This also applies to community DERs that do not serve any load directly but are interconnected directly to a single-phase or three-phase distribution load serving feeder.

\(^{18}\) Such as aggregate demand (steady-state) and the dynamic nature of end-use loads (dynamics).
• **Steady-State Studies:** Steady-state reliability studies include both powerflow analysis of future operating conditions as well as steady-state contingency analysis. In addition, steady-state stability studies typically include voltage stability (P-V and Q-V analysis) as well as small signal eigenvalue analysis. These studies all require information regarding the end-use load as well as possible DER penetration to accurately model the behavior of these resources in future normal and abnormal operating conditions.

• **Dynamic Studies:** Dynamic studies typically refer to phasor-based, time-domain simulations of the interconnected BPS. These studies include performing contingencies and identifying any potential instabilities, uncontrolled separation, or cascading events that may occur due to dynamic behavior of the BPS and all the elements connected to it. The data used in these simulations also represents the aggregate effects of end-use loads as well as aggregate DERs. DERs, particularly in dynamic simulations, can have a relatively significant impact on BPS performance for voltage stability due to re-dispatched dynamic reactive devices on the BPS, rotor angle stability due to changes in BPS-connected generation dispatch, and frequency stability due to changes in rate of change of frequency and frequency response performance. Further, the dynamic behavior (e.g., momentary cessation, tripping, and voltage and frequency support) of aggregate amounts of DERs can have a significant impact on the BPS, and the expected performance of aggregate DERs should be represented in dynamic models. In many cases, the details of individual DER are not relevant unless their individual size is deemed impacts to BPS performance; rather, a reasonable understanding of the aggregate behavior of DERs is suitable for dynamic simulations.

• **Short Circuit Studies:** Short circuit studies are used for a wide range of analyses such as assessing breaker duty and setting protective relays. As DERs continue to offset BPS-connected generation, particularly during high DER output levels, short circuit conditions may need to be assessed more regularly or close attention may be needed in certain areas of low short circuit strength. This is particularly a concern for systems with high penetrations of DERs as well as BPS-connected inverter-based resources. At a high level, as described in Chapter 4, as DER penetrations continue to increase, some DER data associated with short circuit performance may be needed in the future.

• **Geomagnetic Disturbance (GMD) Studies:** GMD studies are performed for applicable facilities per NERC TPL-007-3, which analyzes the risk to BPS reliability that could be caused by quasi-dc geomagnetically-induced currents (GICs) resulting in transformer hot-spot heating or damage, loss of reactive power sources, increased reactive power demand, and misoperation of system elements due to GMD events. TPL-007-3 GIC vulnerability assessments typically do not model the distribution system for various reasons, mainly because the transmission-distribution (T-D) transformers include a delta-wye transformation, with GICs not propagating through delta windings and distribution circuits being relatively short in length (with high impedance). Therefore, negative effects of GMD at this level are minimal and not likely to impact the distribution system. Based on this findings, DER modeling for the purposes of GMD vulnerability assessments per NERC TPL-007-3 is likely not needed at this time.

• **EMT Studies:** Given the higher fidelity models, EMT analysis for DER interconnections can be useful in finding weak grid control instabilities, voltage control coordination issues, confirming ride through capability, and

19 RMS positive sequence simulations.
20 For example, high penetrations of DERs may have an impact on BPS voltage control and voltage stability due to reduced or limited dynamic reactive resources on the BPS.
21 RMS positive sequence simulations.
22 Or possible individual large loads or resources connected to the distribution system if they can potential have an impact to the BPS.
23 NERC SPIDERWG is working on more comprehensive Reliability Guidelines that will cover these topics in more detail (e.g., impacts of DERs to underfrequency load shedding (UFLS) programs).
25 At least for most instances of R-DER. U-DER may need additional or more accurate data collection in some cases.
benchmarking positive sequence RMS models. Items such as ride through and voltage response can be better represented in EMT studies than traditional positive sequence RMS studies. This is important when large groups of DER (relative to the size of the system) are interconnected. While EMT studies are not necessary for all DER interconnections it can be a useful tool when large amounts of aggregate DER are connecting to areas where system strength is of concern.

Case Assumptions

Similar to end-use load models, the assumptions used for modeling DERs will dictate how the resource(s) should be represented in planning base cases. NERC TPL-001-4 requires that planning assessments use steady-state, stability, and short-circuit studies to determine whether the BPS meets performance requirements for system peak and off-peak conditions. TPs and PCs need to determine and specify these conditions to ensure clarity in data submittals from DPs. For example, solar photovoltaic (PV) DER is highly dependent on time of day, which is closely linked to the assumptions used in creating the base cases. In some areas, system peak loading may occur during late afternoon when active power output from solar PV is minimal (as illustrated in Figure I.2 and discussed below).

PCs and TPs should clearly identify the assumptions used in planning cases as part of their data requirements so that DPs can effectively provide this information for the purposes of modeling aggregate DERs in planning base cases. Note that these studies are generally used to determine whether the BPS is robust enough to handle expected or impending operating conditions and credible contingencies based on the study results obtained. The following assumptions should be clearly defined for each base case in the TP and PC data requirements:

- **Year**: Each base case represents a specific year being studied. TPs forecast expected demand levels, and should also forecast the aggregate amount of DERs for each year being modeled. This data is based on local or regional DER growth trends, and can come from multiple data sources.

- **Season**: Each base case typically has a specified season (e.g., summer, spring, winter) or type of season (e.g., shoulder season), which is already defined in the planning process.

- **Time of Day**: Each TP and PC should identify the critical times of day that should be studied, which is often dependent on the time when gross load peaks (or hits its minimum) and when DER peaks (or hits its minimum). The time of day used in each base case should be clearly defined by each TP and PC to aid in the data collection from DPs related to DER.

- **Load (Peak versus Off-Peak)**: The NERC TPL-001 standard uses terms such as “System peak Load” and “System Off-Peak Load”; however, it is not clear if these terms refer to gross or net load (demand) conditions. Therefore, it is recommended that TPs and PCs clearly articulate which load is being referred to in the year creation process. As the penetration of DERs continues to grow, it is likely that both peak and off-peak gross load and net load conditions should both be studied for potential reliability issues. This is particularly applicable to systems where the gross load and net load peak and off-peak conditions are significantly different.

- **DER Dispatch Assumptions**: The TP and PC likely have established assumptions around how the DER will be dispatched in the planning base cases. While this may not directly affect the information flow from the DP to the TP and PC, these assumptions may help the DP in gathering the necessary data and information needed. These dispatch assumptions may include both active power output levels and reactive power capability. Additional planning base cases should reflect expected stressed system conditions that depend on the geospatial and temporal patterns of demand and DERs, and their impact on BPS-connected generation dispatch (most notably, BPS-connected synchronous generation). These conditions might include heavy transmission flows that have a very different pattern than during peak-load conditions.

27 Such as state incentive policy forecasts or other relevant regional DER forecasting tools.
To illustrate this concept, consider the development of the interconnection-wide “System Peak” base case. Refer to Figure I.2 for a visualization of this example. Let us assume that this is a summer peak case, so the season has been defined. Then it is determined that the gross load peaks around 6 PM local time, which defines the time of day. Based on this time, the DER output assumptions are established – DER output is assumed to be roughly 40-50% of its maximum capability at this time. Since the majority of DER were installed prior to 2015, they are likely compliant with IEEE Std. 1547-2003\(^2\) and therefore provide little voltage support (unity power factor). This defines both the active and reactive power output assumptions to be used in the base case.

This concept applies to off-peak loading conditions as well as system peaking in winter as well.

Using the established case creation assumptions and DER modeling requirements specified by the TP and PC (described in the following sub-section), the DP can provide the necessary DER data needed to represent the aggregate DER in planning cases.

Timeline and Projections of DER Interconnections

The TP and PC are focused on developing planning base cases with reasonable assumptions of future BPS scenarios, including BPS generation, demand, and aggregate DERs. Accounting for the currently installed penetration of DERs helps the TP and PC understand what the existing system contains regarding DERs. This information, in most cases, should be provided by the DP to support data sharing across the transmission-distribution interface. Further, the TP and PC should develop forecasts for DER growth into future years. This information may or may not be available to the DP; however, if the DP or state-level agency or regulatory body is performing DER forecasting for the purposes of distribution planning, this information may be available. In many cases, regional forecasts may be available from other data sources that could be useful for the DP, TP, and PC. If external sources (e.g., DER forecasts through state-level forecasts) are used by the DP, the DP should share that information with the TP and PC so they can incorporate those forecasts into their planning practices. Therefore, development of planning base cases uses a combination of data for existing DERs and projections of DERs.

Visualization of DER penetration, both existing and forecasted values, can be useful to the TP for the purposes of modeling DER in steady-state powerflow base cases as well as dynamic simulations. Chapters 2 and 3 describe why understanding and estimating the vintage of DERs installed can be of significant value for the purposes of DER modeling.

Example of Applying DER Interconnection Timelines

Consider Figure I.3, which shows an example system with actual installed DER capacity from early 2010 to the end of 2019, as illustrated by the solid blue curve. The TP and PC are in the process of developing a 5-year out 2025 base case, and therefore have pulled in forecasted DER growth (dotted blue curve) from either the DP or an external source (e.g., state-level agency or regulator body) that projects DER out to the end of 2025.

Assume all DERs connected to this example system are inverter-based and therefore comply with the various versions of IEEE 1547. For example, up to November 2016, due to interconnection requirements at the time, assume DERs were installed with settings compliant with IEEE 1547-2003. After November 2016 up to an assumed July 2021, assume that DERs were installed with settings compliant with IEEE 1547a-2014. Finally, after July 2021, assume that DERs will be installed with settings compliant with IEEE 1547-2018 once interconnection requirements are updated and compliant equipment becomes available. The red numbers show the amount of aggregate DER capacity that meet each standard implementation. It is clear that a small amount of resources are compliant with IEEE 1547-2003 while the remaining majority are mixed between IEEE 1547a-2014 and IEEE 1547-2018. The revised IEEE 1547-2018 includes much more robust ride-through performance and the capability for active power-frequency control over frequency conditions. In this example, no resources are required to maintain headroom to respond to under frequency conditions. Interconnection requirements will presumably be updated in July 2021 to required local DER voltage control (volt-var capability) as well.

Based on this information alone, the TP and PC can make reasonable assumptions regarding the following modeling considerations:

- Overall capacity of DERs connected to the system
- The percentage of DERs responding to over frequency disturbances
- The assumption that no DERs will respond to under frequency disturbances
- The assumed DER ride-through capability, and frequency and voltage trip settings
- The assumed DER ride-through performance in terms of active and reactive current injection
- The percentage of DERs controlling voltage (steady-state)

The ability of TPs and PCs to understand when DERs were installed will greatly improve their ability to use engineering judgment to assume modeling parameters. This is particularly important for modeling aggregate amounts of R-DERs where minimal information is available.

29 https://standards.ieee.org/standard/1547a-2014.html
Chapter 1: MOD-032-1 Data Collection Process

The purpose of NERC Reliability Standard MOD-032-1 is to “establish consistent modeling data requirements and reporting procedures for development of planning horizon cases necessary to support analysis of the reliability of the interconnected transmission system.” MOD-032-1 serves as the foundation for the development of the interconnection-wide planning base cases that are used as a starting point by TPs and PCs to perform their reliability assessment per the NERC Reliability Standard TPL-001. The requirements and overall flow of data is shown in Figure 1.1, specifically related to DER modeling information. The process is described briefly with the following steps:

- Requirement R1 of MOD-032-1 requires that each PC and each of its TPs jointly develop data requirements and reporting procedures for steady-state, dynamics, and short circuit modeling data collection.
 - These requirements should include the data listed in Attachment 1 of MOD-032-1, as well as any additional data deemed necessary for the purposes of modeling.
 - The specifications should address the data format, the level of detail, assumptions needed for the various types of planning cases or scenarios, a data submittal timeline, and posting the data requirements and reporting procedures.
- Requirement R2 of MOD-032-1 requires each of the applicable entities to provide the modeling data to the TPs and PCs according to the requirements specified.
- Requirement R3 requires each of the applicable entities to provide either updated data or an explanation with a technical basis for maintaining the current data if a written notification is provided to them by the PC or TP with technical concerns regarding the data submitted.
- Requirement R4 requires each PC to make the models for its footprint available to the ERO or its designee to support the creation of the interconnection-wide base cases.

MOD-032-1 Data Collection and DER

Attachment 1 of MOD-032-1 “indicates information that is required to effectively model the interconnected transmission system for the Near-Term Transmission Planning Horizon and Long-Term Transmission Planning

31 This generally includes any model-related formats, possible software versioning, or other relevant data submittal formatting issues. Practices for collecting data differ from each TP and PC to integrate with their planning practices.
32 Including each Balancing Authority (BA), Generator Owner (GO), Load Serving Entity (LSE), Resource Planner, Transmission Owner (TO), and Transmission Service Provider (TSP). Note that at the time of writing this guideline, a Standard Authorization Request (SAR) was submitted by the NERC DERTF to replace LSE with DP since the registration of LSE was removed. SPIDERWG also submitted a SAR further emphasizing that the DP is the appropriate entity to support collection of DER data. Therefore, DP is used as the applicable entity throughout this document.
33 In each interconnection of the NERC footprint, a “MOD-032 Designee” has been designated to create the interconnection-wide base cases. Each Designee has a signed agreement with NERC to develop base cases of sufficient data quality, fidelity, and timeliness for industry to perform its planning assessments.
Horizon...A [PC] may specify additional information that includes specific information required for each item in the table below”, as illustrated in Figure 1.2.

<table>
<thead>
<tr>
<th>steady-state</th>
<th>dynamics</th>
<th>short circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Items marked with an asterisk indicate data that vary with system operating state or conditions. Those items may have different data provided for different modeling scenarios)</td>
<td>(If a user-written model(s) is submitted in place of a generic or library model, it must include the characteristics of the model, including block diagrams, values and names for all model parameters, and a list of all state variables)</td>
<td></td>
</tr>
<tr>
<td>1. Each bus [TO]</td>
<td>1. Generator [GO, RP] (for future planned resources only)</td>
<td>1. Provide for all applicable elements in column “steady-state” [GO, RP, TO]</td>
</tr>
<tr>
<td>a. nominal voltage</td>
<td>2. Excitation System [GO, RP] (for future planned resources only)</td>
<td>a. Positive Sequence Data</td>
</tr>
<tr>
<td>b. area, zone and owner</td>
<td>3. Governor [GO, RP] (for future planned resources only)</td>
<td>b. Negative Sequence Data</td>
</tr>
<tr>
<td>a. real and reactive power*</td>
<td>5. Demand [LSE]</td>
<td>2. Mutual Line Impedance Data [TO]</td>
</tr>
<tr>
<td>b. in-service status*</td>
<td></td>
<td>3. Other information requested by the Planning Coordinator or Transmission Planner necessary for modeling</td>
</tr>
<tr>
<td>3. Generating Units* [GO, RP] (for future planned resources only)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. real power capabilities - gross maximum and minimum values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. reactive power capabilities - maximum and minimum values at</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1.2: MOD-032-1 Attachment 1 Table

Currently, the table in Attachment 1 of MOD-032-1 does not provide a line item for aggregate DER data. Rather, the table includes a statement\(^{34}\) in each of the columns that states “other information requested by the [PC] or [TP] necessary for modeling purposes” should be collected.\(^{35}\) This item can be used by the TP and the PC as technical justification for collecting aggregate DER data necessary for modeling purposes.

Regardless of the elements explicitly defined in MOD-032-1 Attachment 1, each TP and PC should jointly develop data requirements and reporting procedures for the purpose of developing the interconnection-wide base cases used for transmission planning assessments. These requirements are often very detailed and specific to each PC and TP planning practices, tools, and study techniques. Therefore, TPs and PCs should ensure that their data reporting requirements for Requirement R1 of MOD-032-1 explicitly describe the requirements for aggregate DER data in a manner that is clear and consistent with their modeling practices. Chapter 2 provides a foundation and starting point for establishing the specific information that should be gathered, in coordination with the DP, for modeling purposes.

\(^{34}\) Refer to items #9 and #10 in the steady-state and dynamics columns in NERC MOD-032-1, respectively.

\(^{35}\) The NERC Planning Committee, on behalf of the NERC SPIDERWG, has also endorsed and submitted a SAR to the NERC Standards Committee to include DER data collection as a specific line item in a revision to MOD-032, specifically in the table in Attachment 1.
Chapter 2: Steady-State Data Collection Requirements

This chapter describes the recommended data reporting requirements for collecting sufficient data to model aggregate DER in interconnection-wide powerflow base cases. Each PC, in coordination with their TPs, should consider integrating these recommendations into their requirements per MOD-032-1 Requirement R1.

DER Modeling Needs for TPs and PCs

Modeling data requirements for steady-state aggregate DER data should be explicitly defined in the modeling data requirements established by each PC and TP per MOD-032-1. This section describes the recommended data necessary for representing the aggregate DER in steady-state powerflow base cases.

TPs and PCs will generally model the gross load and aggregate DER at specific BPS buses or distribution buses at the low-side of the T-D transformers (depending on modeling practices). To accomplish the latter, TPs and PCs require T-D transformer modeling data for explicit representation in the powerflow model, and can then assign the gross load and aggregate DERs connected to the low-side bus accordingly. The TP and PC should collect aggregate DER data for each T-D transformer so this can be modeled correctly. Therefore, it is recommended for DPs to have some accounting of DER at either of these levels, in coordination with the TP and PC data reporting needs.

The DER models in the steady-state power flow base case, whether represented as a generator record (U-DER) or as a component of the load record (R-DER), have specific data points that must be accurately populated in order to represent the aggregate DER. These data points, on a bus-level or T-D transformer level, include the following:

- Location, both electrical and geographic
- Type of DER (or aggregate type)
- Historical DER output profiles
- Status
- Maximum DER active power capacity (Pmax)
- Minimum DER active power capacity (Pmin)
- Maximum DER reactive power capability (Qmax, producing vars)
- Minimum DER reactive power capability (Qmin, consuming vars)
- Reactive power-voltage control operating mode

36. Modeling on a T-D transformer basis is the most common approach for DER modeling, where the T-D transformer is explicitly modeled and the aggregate load and aggregate DERs from the connected distribution feeders are represented. However, some TPs and PCs may have different modeling practices (e.g., by feeder-level basis), and therefore their requirements for data collection of DER may be slightly different.

37. This may be defined as part of the generator name, generator ID, or load record ID, and may be useful as the penetration of DER continues to increase and different types of DER may need to be tracked.

38. If meter-level data is available, profiles of DER output help TPs and PCs understand how the DER should be dispatched in the powerflow base case. This is essential for developing reasonable base cases that represent expected operating conditions of the BPS, including the operation of aggregate DERs.

39. The preferred approach for renewable, inverter-based DERs is for the DP to provide the total aggregate DER capacity and the TP and PC can set the active power output (Pgen) of the DER in the powerflow to an appropriate level based on the assumptions specified for each case. For large synchronous DERs, similar data collection requirements for steady-state modeling data can be used as would be used for BPS-connected resources.

40. TPs and PCs should consider local DER interconnection requirements regarding power factor and reactive power-voltage control operating modes, where applicable. These modes may include operation at a set power factor (e.g., unity power factor or some of static power factor level) or operation in automatic voltage control. TPs and PCs can configure the powerflow models by adjusting Qmax, Qmin, and the mode of operation to appropriately model aggregate DERs.
Chapter 2: Steady-State Data Collection Requirements

If the unit is represented as a U-DER and modeled with a generator record, then a generator step up (GSU) transformer should be modeled. This model may represent an explicit U-DER facility or can be used to represent multiple U-DER facilities. The TP and PC may need specific information pertaining to the following to accurately represent this element:

- Transformer impedances
- Equivalent feeder or generator tie line\(^{41}\) impedance (for large U-DER facilities), if applicable
- Load tap changer status and settings

The majority of newly interconnecting DER across North America are either rooftop solar PV (R-DER) or utility-scale solar PV (U-DER) facilities. The TP and PC may request that the DP provide a reasonable estimate or differentiation between U-DER and R-DER resources, to reasonably represent these resources in the base case. This may simply be a percentage value of the estimate of R-DER versus U-DER, and possibly the number and size of U-DER resources. While individual accounting of R-DER is very unlikely and inefficient, typically the accounting of U-DER is much more straightforward since these resources are typically relatively large (e.g., 0.5 to 20 MW).\(^{42}\)

On the other hand, DER other than solar PV should be noted by the DP since these resources (e.g., battery energy storage, wind, small gas engines, combined heat and power facilities) may have different operational characteristics. For example, these resources may operate at different hours of the day, which would change the dispatch pattern when studying different hourly system conditions. DPs should have the capability to account for these different types of DER to aid in the development of the base case models for the TP and PC.

Mapping TP and PC Modeling Needs to DER Data Collection Requests

The information described above defines the necessary information that will be needed by TPs and PCs to model aggregate DER as either U-DERs or R-DE Rs. However, this information will likely not need to be provided or collected by the TP and PC for each individual DER. Rather, these entities will need a reasonable understanding of the aggregate DER information. This section provides a mapping between the TP and PC needs and the information that should be requested from DPs by TPs and PC as part of MOD-032. Table 2.1 shows how the DER modeling needs are mapped to data requests.

Example of Mapping DER Information for Steady-State Powerflow Modeling

To apply the concepts described in Table 2.1, consider an example where aggregate DER data is being provided by the DP (possibly in coordination with external parties such as a state regulatory body or other entity performing state-level DER forecasts) to the TP and PC. Following the structure of Table 2.1, the TP and PC would receive useful data for steady-state powerflow modeling:

- 50 MW total aggregate DER, allocated to T-D transformer (per TP and PC modeling requirements)
- 35 MW is considered U-DER and 15 MW is considered R-DER (based on TP and PC modeling practices)
- Of the U-DER, 20 MW is solar PV and 15 MW is BESS (i.e., ± 15 MW)
- Of the R-DER, all 15 MW is solar PV
- About 75% of these resources are likely IEEE 1547-2003 vintage and the remaining are IEEE 1547a-2014
- All DER operates at unity power factor

\(^{41}\) In some cases, for generator tie line modeling, the MVA rating and length may be needed by the TP and PC.

\(^{42}\) These values are used as a guideline in the DER modeling framework; however, they can be adapted based on specific modeling needs.
Table 2.1: Steady-State Powerflow Modeling Data Collection

<table>
<thead>
<tr>
<th>Aggregate DER Modeling Information Needed(^{43})</th>
<th>Information Necessary for Suitable Modeling of Aggregate DERs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>The DER interconnection location will need to be assigned to a specific T-D transformer or associated BPS or distribution bus based on the TP and PC modeling practices. Geographic location should also be given so that proper DER (e.g., solar) profiles and estimated impedance can be applied.</td>
</tr>
<tr>
<td>Type of DER (or aggregate type)</td>
<td>Specify the percentage of DERs considered R-DER and U-DER.(^{44}) Provide an aggregate breakdown (percentage) of the types of DERs per T-D transformer. Preferably, this is specified as a percentage of aggregate DERs that are solar PV, synchronous generation, energy storage, hybrid(^{45}) power plants, and any other types of DERs.</td>
</tr>
<tr>
<td>Historical DER output profiles</td>
<td>For each type of aggregate DER (e.g., solar PV, combined heat and power, energy storage, etc.), specify a general historical DER output profile occurring during the studied conditions. What output are these resources dispatched to during peak and off-peak conditions? The TP and PC should define what peak and off-peak conditions are (e.g., season, time of day, etc.).</td>
</tr>
<tr>
<td>Status</td>
<td>Based on the DER output profile provided, TPs and PCs will know whether to set the aggregate DER model to in-service or out-of-service based on assumed normal operating conditions for the case.</td>
</tr>
<tr>
<td>Maximum DER active power capacity (P(\text{max}))</td>
<td>Maximum active power capacity of aggregate DERs should be provided to the TP and PC. This, again, should be aggregated to a T-D transformer basis, categorized by DER type, depending on the TP and PC requirements.</td>
</tr>
<tr>
<td>Minimum DER active power capacity (P(\text{min}))</td>
<td>Minimum active power capacity of aggregate DERs should also be provided, similar to maximum capacity. Systems with energy storage may have a P(\text{min}) value for aggregate DER modeling less than since the storage resources may be able to charge when generation DERs are at 0 MW output.</td>
</tr>
<tr>
<td>Reactive power-voltage control operating mode</td>
<td>Are the DERs controlling local voltage? Or are they set to operate at a fixed power factor? If some are operating in one mode while others are operating in a different mode, estimate the percentage in each mode using engineering judgment based on time of interconnection.</td>
</tr>
<tr>
<td>Maximum DER reactive power capability (Q(\text{max}) and Q(\text{min}))(^{46})</td>
<td>If DERs are controlling voltage, they have a reactive capability that should be modeled appropriately. If they are operating at a fixed power factor, what value? Q(\text{max}) and Q(\text{min}) can be configured for each aggregate DER representation in the model accordingly. In some cases for U-DER, a capability curve may be needed for accurate reactive capability at different active power levels (at least Q(\text{max}/\text{Qmin} at \ P\text{max}) and P(\text{min}) values).(^{47})</td>
</tr>
</tbody>
</table>

\(^{43}\) The granularity of information submitted to the TP and PC by the DP should be defined in the data reporting requirements established by the TP and PC. This is most commonly on a T-D transformer basis.

\(^{45}\) Hybrid plants combine generation and energy storage, and have different operational characteristics than either individual type of DER.

\(^{46}\) Q\(\text{max}\) refers to producing vars and Q\(\text{min}\) refers to consuming vars.

\(^{47}\) If this information is not known, the vintage of IEEE 1547-2018 standard could be useful to apply engineering judgment to develop a conservative capability curve.
Chapter 3: Dynamics Data Collection Requirements

This chapter describes the recommended data reporting requirements for collecting sufficient data to model aggregate DER in interconnection-wide dynamics cases. Each PC, in coordination with their TPs, should consider integrating these recommendations into their requirements per MOD-032-1 Requirement R1.

DER Modeling Needs for TPs and PCs

Dynamics modeling data requirements for aggregate DER should be explicitly defined in the modeling data requirements established by each PC and TP per MOD-032-1. This section describes the recommended data necessary for representing the aggregate DER in dynamic simulations performed by TPs and PCs to ensure BPS reliability. Refer to the existing NERC Reliability Guidelines regarding DER modeling for more information about recommended dynamic modeling approaches for DERs. While synchronous DERs exist across North America, inverter-based DERs (e.g., solar PV and battery energy storage) are rapidly being interconnected to the system in many areas. Therefore, this section will use the DER_A dynamic model as an example for describing necessary information for the purposes of developing DER dynamic models.

The DER_A dynamic model is the recommended model for representing inverter-based DERs (i.e., wind, solar PV, BESS). The DER_A model is appropriate for representing R-DER modeled as part of a component of the load model (e.g., using the composite load model) and U-DER and R-DER modeled as a standalone generator record in the powerflow case. The TP and PC will need to specify what their modeling practices are regarding U-DER and R-DER:

- How are U-DER and R-DER differentiated in the planning base cases?
- Is a size threshold used to differentiate resources? Or is this based on location along the distribution feeder(s)?
- Are the details of DER data different in any way between U-DER and R-DER?
- Are there specific interconnection requirements applicable to either U-DER, R-DER, or both?
- Are U-DER expected to have higher performance requirements for participating in energy markets?
- Are U-DER resources combining generation and energy storage (i.e., hybrid plants), and are these technologies ac-coupled or dc-coupled, and what are the operational characteristics of the facility (i.e., how is charging and discharging of the energy storage portion modifying total plant output)?
- Are there specific distribution-level tripping schemes or return to service requirements that would apply during the dynamics timeframe that differ from applicable IEEE 1547-2018 requirements?

The DER_A dynamic model consists of many different parameter values that are used to parameterize different control philosophies and performance capabilities for aggregate or individual inverter-based DERs; however, most of the parameter values remain fixed when representing different DER vintages. Therefore, it is important to focus primarily on the control modes of operation and parameter values that change based on what types and vintages of DERs are connected to the distribution system. The following sub-section will describe how gathering this data can be a fairly straightforward task, and provide adequate information for the TP and PC to be able to use engineering judgment to model aggregate DERs in their footprint.

48 DERs that are synchronously connected to the grid exist across North America; in some areas, these are the predominant type of DER. The DER modeling guidelines mentioned above can be referenced and adapted for gathering DER data for the purposes of modeling these resources.

49 For example, representing DERs compliant with different versions of IEEE 1547 (e.g., -2003, -2018, etc.).
Mapping TP and PC Modeling Needs to DER Data Collection Requests

As mentioned, the complexity and number of parameter values of the DER_A dynamic model should not prohibit or preclude entities from developing relatively straightforward information sharing to gather the needed data for TPs and PCs to be able to model these resources. Table 3.1 shows how parameterization of the DER_A dynamic model can be mapped to questions that should be asked by the TP and PC and to information that should be provided by the DP or other external entity to help facilitate DER model development. Note that the table describes IEEE 1547 and its various versions; however, the concepts would also apply to other local or regional rules such as California Rule 21 or Hawai‘i Rule 14H. Values listed in red are those that are likely subject to change across different vintages of the IEEE 1547 standard, and would likely need to be modified to account for systems with DERS with varying vintages of IEEE 1547. This is intended as an example to help illustrate how the TP and PC could map questions related to DER information for the purposes of developing an aggregate DER dynamic model.

<table>
<thead>
<tr>
<th>Param</th>
<th>Default Parameters for IEEE 1547-2018 Systems (Category II)</th>
<th>Information Necessary for Suitable Modeling of Aggregate DERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>trv</td>
<td>0.02</td>
<td>Parameter values do not generally change between vintages of IEEE 1547. No information needed from DP for the purposes of modeling, assuming that these default parameters are appropriate. In cases where the TP or PC has determined that these default parameters are not appropriate, the TP or PC may request additional information of the DP for this purpose.</td>
</tr>
<tr>
<td>dbd1</td>
<td>-99</td>
<td></td>
</tr>
<tr>
<td>dbd2</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>kqv</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>vref0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>tp</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>tiq</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>ddn</td>
<td>20</td>
<td>Are DERs required to have frequency response capability enabled and operational for overfrequency conditions? As in, do DERs respond to overfrequency conditions by automatically reducing active power output based on this type of active power-frequency control system? If so, what are the required droop characteristics for these resources (e.g., 5% droop would equal a ddn gain of 20)? What is the estimated fraction of resources installed on your system that are required to have this capability (based on interconnection date and requirements)?</td>
</tr>
<tr>
<td>dup</td>
<td>0</td>
<td>Are DERs required to have frequency response capability enabled and operational for underfrequency conditions? As in, if there is available energy, do DERs respond to underfrequency conditions by automatically increasing active power output based on this type of active power-frequency control system? Are there any requirements for DERs to have headroom to provide underfrequency response? If so, what are the required droop characteristics for these resources? What is the estimated fraction of resources installed on your system that are required to have this capability (based on interconnection date and requirements)?</td>
</tr>
</tbody>
</table>

51 Note that the order of parameters and exact names of parameters may be slightly different across software platforms. Refer to a specific software vendor model library for exact parameter names and order of parameters. However, the concepts contained within this guideline can be applied regardless.
Table 3.1: Data Collection for Parameterizing the DER_A Dynamic Model

<table>
<thead>
<tr>
<th>Param</th>
<th>Default Parameters for IEEE 1547-2018 Systems (Category II)</th>
<th>Information Necessary for Suitable Modeling of Aggregate DERs</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{bd1}</td>
<td>-0.0006</td>
<td>If frequency response capability is enabled and operational, the deadband should be set to match any interconnection requirements governing this capability and performance. Consider the different types of interconnection requirements and what the correct assumption would be for this parameter, where applicable.</td>
</tr>
<tr>
<td>f_{bd2}</td>
<td>0.0006</td>
<td>If frequency response capability is enabled and operational, the deadband should be set to match any interconnection requirements governing this capability and performance. Consider the different types of interconnection requirements and what the correct assumption would be for this parameter, where applicable.</td>
</tr>
<tr>
<td>f_{max}</td>
<td>99</td>
<td>Values vary based on what vintage of IEEE 1547 the DERs are; therefore, a timeline of interconnection capacity estimating the amount and timing of DER interconnection will support modeling.</td>
</tr>
<tr>
<td>f_{min}</td>
<td>-99</td>
<td>Values vary based on what vintage of IEEE 1547 the DERs are; therefore, a timeline of interconnection capacity estimating the amount and timing of DER interconnection will support modeling.</td>
</tr>
<tr>
<td>p_{max}</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>p_{min}</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$d_{p_{max}}$</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>$d_{p_{min}}$</td>
<td>-99</td>
<td></td>
</tr>
<tr>
<td>t_{pord}</td>
<td>5</td>
<td>Parameter values do not generally change between vintages of IEEE 1547. No information needed from DP for the purposes of modeling, assuming that these default parameters are appropriate. In cases where the TP or PC has determined that these default parameters are not appropriate, the TP or PC may request additional information of the DP for this purpose.</td>
</tr>
<tr>
<td>l_{max}</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>v_{l0}</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>v_{l1}</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>v_{h0}</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>v_{h1}</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>$t_{v_{l0}}$</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>$t_{v_{l1}}$</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>$t_{v_{h0}}$</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>$t_{v_{h1}}$</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>V_{frac}</td>
<td>1.0</td>
<td>Values vary based on what vintage of IEEE 1547 the DERs are; therefore, a timeline of interconnection capacity estimating the amount and timing of DER interconnection will support modeling.</td>
</tr>
</tbody>
</table>

52 The active power-frequency response from DERs, if utilized in studies, should be tuned to achieve and ensure a closed-loop stable control. This parameter may need to be adapted based on this tuning.
Table 3.1: Data Collection for Parameterizing the DER_A Dynamic Model

<table>
<thead>
<tr>
<th>Param</th>
<th>Default Parameters for IEEE 1547-2018 Systems (Category II)</th>
<th>Information Necessary for Suitable Modeling of Aggregate DERs</th>
</tr>
</thead>
<tbody>
<tr>
<td>fltrp</td>
<td>56.5</td>
<td>Values vary based on what vintage of IEEE 1547 the DERs are; therefore, a timeline of interconnection capacity estimating the amount and timing of DER interconnection will support modeling.</td>
</tr>
<tr>
<td>fhtrp</td>
<td>62.0</td>
<td>Values vary based on what vintage of IEEE 1547 the DERs are; therefore, a timeline of interconnection capacity estimating the amount and timing of DER interconnection will support modeling.</td>
</tr>
<tr>
<td>tfl</td>
<td>0.16</td>
<td>Parameter values do not generally change between vintages of IEEE 1547. No information needed from DP for the purposes of modeling, assuming that these default parameters are appropriate. In cases where the TP or PC has determined that these default parameters are not appropriate, the TP or PC may request additional information of the DP for this purpose.</td>
</tr>
<tr>
<td>tfh</td>
<td>0.16</td>
<td>Parameter values do not generally change between vintages of IEEE 1547. No information needed from DP for the purposes of modeling, assuming that these default parameters are appropriate. In cases where the TP or PC has determined that these default parameters are not appropriate, the TP or PC may request additional information of the DP for this purpose.</td>
</tr>
<tr>
<td>tg</td>
<td>0.02</td>
<td>Parameter values do not generally change between vintages of IEEE 1547. No information needed from DP for the purposes of modeling, assuming that these default parameters are appropriate. In cases where the TP or PC has determined that these default parameters are not appropriate, the TP or PC may request additional information of the DP for this purpose.</td>
</tr>
<tr>
<td>rrpwr</td>
<td>2.0</td>
<td>Values vary based on what vintage of IEEE 1547 the DERs are; therefore, a timeline of interconnection capacity estimating the amount and timing of DER interconnection will support modeling.</td>
</tr>
<tr>
<td>tv</td>
<td>0.02</td>
<td>Parameter values do not generally change between vintages of IEEE 1547. No information needed from DP for the purposes of modeling, assuming that these default parameters are appropriate. In cases where the TP or PC has determined that these default parameters are not appropriate, the TP or PC may request additional information of the DP for this purpose.</td>
</tr>
<tr>
<td>Kpg</td>
<td>0.1</td>
<td>Values vary based on what vintage of IEEE 1547 the DERs are; therefore, a timeline of interconnection capacity estimating the amount and timing of DER interconnection will support modeling.</td>
</tr>
<tr>
<td>Kig</td>
<td>10.0</td>
<td>Values vary based on what vintage of IEEE 1547 the DERs are; therefore, a timeline of interconnection capacity estimating the amount and timing of DER interconnection will support modeling.</td>
</tr>
<tr>
<td>xe</td>
<td>0.25</td>
<td>Parameter values do not generally change between vintages of IEEE 1547. No information needed from DP for the purposes of modeling, assuming that these default parameters are appropriate. In cases where the TP or PC has determined that these default parameters are not appropriate, the TP or PC may request additional information of the DP for this purpose.</td>
</tr>
<tr>
<td>vfth</td>
<td>0.3</td>
<td>TP and PC engineering judgment can be used to set this parameter value. May be subject to change across vintages of IEEE 1547 for the purposes of modeling.</td>
</tr>
<tr>
<td>iqh1</td>
<td>1.0</td>
<td>Parameter values do not generally change between vintages of IEEE 1547. No information needed from DP for the purposes of modeling, assuming that these default parameters are appropriate. In cases where the TP or PC has determined that these default parameters are not appropriate,</td>
</tr>
<tr>
<td>iql1</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>pfflag</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3.1: Data Collection for Parameterizing the DER_A Dynamic Model

<table>
<thead>
<tr>
<th>Param</th>
<th>Default Parameters for IEEE 1547-2018 Systems (Category II)</th>
<th>Information Necessary for Suitable Modeling of Aggregate DERs</th>
</tr>
</thead>
<tbody>
<tr>
<td>fraflag</td>
<td>1</td>
<td>the TP or PC may request additional information of the DP for this purpose.</td>
</tr>
<tr>
<td>pqflag</td>
<td>Q priority</td>
<td>Values vary based on what vintage of IEEE 1547 the DERs are; therefore, a timeline of interconnection capacity estimating the amount and timing of DER interconnection will support modeling.</td>
</tr>
<tr>
<td>typeflag</td>
<td>1</td>
<td>What penetration of energy storage resources are connected to the distribution system? What percentage of DERs are energy storage? Are these larger utility-scale energy storage DERs, or more distributed (e.g., residential) energy storage DERs? Any values or estimates as the interconnection of energy storage DERs will help determine whether to and how to separate out energy storage DERs in the models.</td>
</tr>
</tbody>
</table>

Table 3.1 highlights the concept that interconnection timeline is critical for the purposes of creating dynamic models of aggregate DER because the capabilities and performance of DERs is dominated by the interconnection requirements set forth on those DERs. TPs and PCs may have additional data points that provide useful information for capturing more information relevant to developing reasonable DER models, and may have other data points needed for modeling larger U-DER installations (depending on whether additional requirements or data are needed). For DER model parameter values that vary with the vintage of IEEE 1547, a timeline of interconnection capacity can be shared to estimate the amount and time in which resources were interconnected.

To recap the relevant information needed for aggregate DER dynamic modeling, the following data points should be considered by TPs, PCs, DPs, and other external entities in the development of requirements and when providing this information for modeling purposes:53

- What is the vintage of IEEE 1547 that is applicable to the DERs? If it is a mixed collection of vintages, based on the interconnection date, engineering judgment should be used by the DP, TP, and PC to assign percentages to different vintages, as applicable.
- Do the installed or projected future installations of DERs have the capability to provide frequency response in the upward or downward direction? If so, are there any relevant requirements or markets in which DERs may be dispatched below maximum available active power?
- Are DERs providing dynamic voltages support or any fault current contribution, or are they entering momentary cessation?
- What are the expected trip settings (both voltage and frequency) associated with the vintages of IEEE 1547 or other local or regional requirements that may dictate the performance of DERs?
- Are DERs installed on feeders that are part of UFLS programs? If so, more detailed information regarding the expected penetration of DERs on these feeders may be needed. As stated previously, hybrid U-DER facilities likely need specific, more detailed modeling considerations by the TP and PC, and therefore should be differentiated accordingly.

53 The TP and PC will need to consider these points when developing aggregate DER dynamic models, and therefore will need information from the DP and any other external entities that may be able to help provide information in these areas.
Chapter 4: Short-Circuit Data Collection Requirements

This chapter briefly describes considerations that should be made for gathering aggregate DER data for the purposes of short-circuit modeling and studies at the BPS level. Note that aggregate DER data collection for the purposes of distribution-level short-circuit studies is not considered.

Applications of Short-Circuit Studies

In general, short-circuit studies are used by transmission entities in two key ways: breaker duty assessment, and setting protective relays.

- **Breaker Duty Assessments**: In breaker duty assessments, the assumption of “all resources on-line” is used as a worst case assumption for ensuring that BPS breakers will always be rated sufficiently to clear BPS fault events. This assumption has been used extensively in the past and will likely continue to be used in the future for these types of studies. In any system, the “significance” of aggregate DER fault current will need to be considered by the engineer performing the studies. In areas where breakers are very close to their duty rating, then aggregate DER contributions may be warranted (particularly of localized issues).

- **Setting Protective Relays**: Protective relay setting analyses study “all lines in-service” conditions as well as credible outage conditions that can affect the fault current characteristics of the local network. Alternate contingency events are selected and studied to ensure correct relay operation for a wide range of system configurations. In this case, the focus is not on equipment ratings; rather, it is on secure protection system operation. As the penetration of BPS-connected inverter-based resources as well as DERs continues to increase, their impact on BPS fault current impacts will become more “significant” and therefore will need to be considered. This will likely be on a case-by-case basis in the near-term; however, this type of aggregate DER modeling data will likely be needed on a more regular basis in the future. Not fully modeling potential impacts to BPS fault current can have an adverse impact on setting protective relays.

Potential Future Conditions for DER Data and Short-Circuit Studies

As the BPS continues to experience an increase in the penetration of BPS-connected inverter-based resources as well as DERs, short-circuit modeling and study practices may need to evolve. In some cases, aggregate DER data (along with possibly end-use load data) may become increasingly important for BPS short-circuit studies. In particular, each TP and PC should consider Table 4.1 which lays out potential future conditions where aggregate DER data may be needed for short-circuit modeling. Table 4.1 is intended as a guide to help describe the considerations as they relate to specific system needs and therefore the need for aggregate DER short-circuit modeling data.

54 “Significance” is used loosely and generally in this discussion, but becomes increasingly important under high penetration DER conditions.
Table 4.1: Potential Future Conditions for DER Data Collection for Short-Circuit Studies

<table>
<thead>
<tr>
<th>#</th>
<th>Potential Future Conditions and Considerations</th>
</tr>
</thead>
</table>
| 1 | **Condition:** BPS-connected synchronous generators dominate, and DERs are not prevalent
Consideration: This may be the status quo for some entities. BPS-connected synchronous generators provide significant fault current, and aggregate DERs and end-use loads are typically not modeled because the majority of fault current comes from synchronous machines. |
| 2 | **Condition:** Resource mix consists of both BPS-connected inverter-based and synchronous generators, and DERs are not prevalent
Consideration: This is likely the status quo for many entities, with growing penetrations of BPS-connected wind and solar PV but fairly low penetrations of DERs. BPS fault currents are decreasing due to the BPS-connected inverter-based resources. Aggregate DERs and end-use loads are generally not modeled in short-circuit studies because the majority of fault current still comes from the BPS (mainly synchronous generators). |
| 3 | **Condition:** BPS resource mix consists of both synchronous and inverter-based resources, and DERs are becoming increasingly prevalent
Consideration: Some areas are experiencing this condition today (e.g., CAISO, ISO-NE). The growth of DERs in conjunction with increasing BPS-connected inverter-based resources is leading to a high overall inverter-based system. Increased BPS-connected inverter-based resources is still affecting fault characteristics on the BPS. Legacy DERs are likely not providing fault current due to the use of momentary cessation for large disturbances, and there likely has been a lack of interconnection requirements to specify behavior for DERs during fault events. Inverter-based DERs providing fault current, where applicable, may have an impact on localized breaker duty studies, and may need to be considered for setting protective relays. On a broader scale, synchronous generators dominate BPS fault current; the impedance between DERs and the BPS fault is so large that DER fault current contribution is relatively low. Therefore, TPs and PCs will need to explore this on a case-by-case basis but should ensure the ability to collect aggregate DER data. |
| 4 | **Condition:** DERs can provide the majority of energy to end-use customers during certain instances; these conditions are likely coupled with increasing BPS-connected inverter-based resources and limited on-line synchronous generators
Consideration: Few, if any, areas of the North American BPS experience situations like this today; however, this scenario may be more likely in the future (even within the planning horizon). Lack of on-line synchronous generators causes low fault current magnitudes. DER interconnection requirements for new-vintage DERs may allow for momentary cessation as a default setting (i.e., 1547-2018). Existing and future installations of DERs may not provide fault current unless momentary cessation is prohibited by local requirements. Where DERs are providing fault current, inverter-based DERs can only provide a limited magnitude of current and their contribution will be primarily for nearby local faults; the impedance between the DERs and the BPS fault location cause their contribution to be low. BPS protective relaying could experience issues under these types of scenarios either due to very low fault current levels or unknown/unstudied fault current behavior (e.g., phase relationship). Solutions may be needed to maintain acceptable levels of fault current (e.g., synchronous condensers). Some synchronous generation will likely remain on-line for the foreseeable future. |

55 The power electronics interface of inverter-based resources limits fault current contribution from these resources. Further, some BPS-connected solar PV resources may employ momentary cessation which is an operating state for inverters where no current is injected into the grid by the inverter during low or high voltage conditions outside the continuous operating range.
56 Decreasing fault current magnitude and uncertain phase angle relationship between voltages and currents from inverter-based resources.
57 This will need to be analyzed closely, and coordinated between distribution and transmission planning and protection engineers.
58 This would be caused both by BPS-connected inverter-based resources as well as the DERs.
Differentiating Inverter-Based DERs

It may be prudent for TPs and PCs to consider separating requirements for inverter-based and synchronous DERs due to their relatively different impacts on BPS fault characteristics. Synchronous DERs such as low head hydro, run of river hydro, and combined heat and power plants likely should be modeled in short-circuit studies since they can be a significant source of fault current in that local area. However, these are relatively rare, with the majority of newly interconnecting DERs being inverter-based (e.g., solar PV and BESSs). Inverter-based DERs may only provide a relatively small fault current (i.e., on the order of 1.1 pu maximum), if any. IEEE 1547-2018 allows for the use of momentary cessation during low voltages such as during fault events, and therefore fault current from DERs may very well be minimal or zero in the future. This type of information should be considered by the TP and PC performing short-circuit studies.

Example Impact of Aggregate DERs on BPS Fault Characteristic

Whether or not a specific DER (i.e., U-DER) or aggregate amounts of DERs (i.e., R-DER as well as U-DER) have a significant impact on the BPS will need to be determined (likely through study) by the TP and PC performing such studies. During SPIDERWG discussions, one utility provided a rough rule-of-thumb for DER impacts to be the following:

- At 500kV, 1-2A/MW
- At 230kV, 4-5A/MW
- At 115kV, 7-8 A/MW
- At 66 kV, 10-15 A/MW

These values assume a 3-phase fault is applied at the transmission or sub-transmission system bus where the DERs (and end-use loads) are directly being served out of, and roughly account for typical impedance between the DERs and the T-D interface. These numbers will vary by system configuration, but they demonstrate a relative impact as DER penetrations continue to increase across large portions of the BPS.

Considering Short-Circuit Response from DERs and Loads

Inverter-based DERs providing fault current have limitations due to the power electronics interface of the inverter. These devices are typically limited to around 1.1 pu current. On the other hand, synchronous motor loads may consume substantially more current during the fault, offsetting any contribution from DERs along the feeder. This is particularly true for R-DER spread throughout the feeder; however, even fault current from U-DERs located at or near the head of the feeder may provide little fault current through the T-D interface.

Typically, load is not modeled in short-circuit analysis because its impact and significance to overall BPS fault current levels is very low. However, in localized areas or systems dominated by DERs, fault current from DERs may play a significant role.

59 The term “significant” is used loosely and generally in this discussion, but becomes increasingly important under higher penetrations of DERs.
60 This utility has a mix of R-DER and U-DER along the feeder, and assumes a 1.1-1.2 pu maximum fault current.
more significant role in overall fault current contributions. In these cases, it may be deemed necessary to model DERs for short-circuit analysis. It is important to note, however, that in cases where DER contribution to BPS fault current is deemed necessary to model, the response from end-use loads (particularly motor load) should also be considered. This is analogous to short-circuit studies performed at large industrial facilities, where the effects of motor loads on fault current cannot be overlooked since they have a significant impact on proper relay operation. The same concept applies to the BPS in a system dominated by DERs.

Aggregate DER Data for Short-Circuit Studies

In cases where DER data may be necessary for short-circuit studies, the TP and PC will need to establish requirements per MOD-032-1 Requirement R1 around what types of short-circuit modeling data needs to be provided by the DP. These requirements should be as clear and concise as possible to help facilitate this data transfer. It is likely that many TPs and PCs fall into either categories 2 or 3 of Table 4.1 today. Where DER data may be needed for forward-looking short-circuit studies, the following information may be needed regarding the aggregate DERs:

- Continuous MVA rating of aggregate DERs
- Vintage of IEEE 1547-2018, and settings applicable for DER tripping and momentary cessation (i.e., would the DER trip or cease current injection for fault events)
- Assumed effective fault current contribution at a specific timeframe(s) during the fault
- Assumed phase relationship between voltages and currents

Example where DER Modeling Needed for Short-Circuit Studies

One example where U-DER data may be needed is for local breaker duty short-circuit analyses. Consider Figure 4.1 showing a 230/69 kV network with a hypothetical yet possible situation where breaker underrating could happen. At the MK-69 bus, before the addition of DER #1 (20 MW) and DER #2 (20 MW), the breaker at MK-69 (shown in red) connecting the circuit to GY-69 is at 99.4% of interrupting duty when a fault is applied on the MK-69–GY-69 circuit (shown in the figure as well). If the DER fault current contribution was ignored, then short-circuit studies would remain unchanged since the contribution from DERs would not be modeled. However, if the 40 MW nameplate capacity of DERs is modeled to provide 1.1 pu fault current, then the breaker could be underrated as the interrupting fault duty jumps to 101.1%.

![Figure 4.1: Example Network for Breaker Underrating Example](image)

61 Again, this is likely on a T-D transformer basis, per TP and PC data reporting requirements.
62 Based on minimum requirements for modeling voltage-controlled current sources in short circuit programs.
63 These may include sub-transient, transient, and other applicable time frames based on TP and PC modeling and study techniques.
Chapter 5: GMD Data Collection Requirements

NERC TPL-007-3\(^{64}\) requires TPs, PCs, TOs, and GOs owning facilities that include power transformers with a high-side, wye-grounded winding with terminal voltage greater than 200 kV to perform GMD vulnerability analysis. The GMD vulnerability assessment is a documented evaluation of potential susceptibility to voltage collapse, cascading, and localized damage to equipment due to GMD events.\(^{65}\)

During a GMD event, quasi-dc GICs flow through transmission circuits and return through the Earth by grounded-wye transformers and series windings of autotransformers that provide a direct current (dc) path between different voltage levels. DC current flow through transformers produces harmonic currents that can increase transformer reactive power consumption and may cause hot-spot heating that potentially leads to premature transformer loss of life or failure. Further, harmonic currents propagate through the power system, can cause BPS elements to trip, and may be a potential susceptibility for aggregate DER tripping.\(^{66}\)

In performing GMD vulnerability assessments, TPs and PCs use a dc-equivalent system model (GIC system model) for determining GIC levels and a steady-state power flow model for assessing voltage collapse risks. Current GMD vulnerability assessment techniques per TPL-007-3 do not call for modeling the distribution system or including DER data.\(^{67}\) Typically, only higher voltage BPS elements are represented in these simulations because long transmission circuits with low impedance generally produce the highest levels of GICs. Further, delta transformer windings block GICs from flowing since they do not create a return path for GICs to flow. Many T-D transformers are delta-wye (grounded) and therefore only GICs could flow on the distribution side. However, distribution circuits are relatively short and have high impedance; therefore, GMD events are not a significant focus.

Based on these findings, there is currently no need to model the distribution system, end-use loads, or aggregate DERs for the purposes of vulnerability assessments in TPL-007-3. Regardless, as the penetration of DERs continues to increase to higher levels, these assumption may need to be revisited in the future.

66 While local distribution-related issues may arise, there is no evidence that widespread distribution issues could manifest and impact the BPS during GMD events. However, a large GMD event may cause severe harmonic distortion on the distribution system. The main concern related to DER would be potential tripping caused by harmonic distortion. However, further research is needed in this area to understand the extent to this risk. Refer to the EPRI report for more details: https://www.epri.com/#/pages/product/000000003002017707/?lang=en-US.

Chapter 6: EMT Data Collection Requirements

As the penetration of BPS-connected inverter-based resources continues to grow, EMT modeling and simulations is becoming increasingly critical for ensuring reliable operation of the BPS. Entities are developing interconnection requirements for BPS-connected inverter-based resources to ensure that modeling information is available to perform EMT simulations when needed. As the penetration of DERs continues to grow as well, there may be situations where studying reliable operation of the BPS, including networked sub-transmission systems, will require modeling DERs. If industry is moving towards performing EMT simulations for BPS-connected plants (for example, on the order of 50 MW) because of known reliability issues, it warrants similar EMT simulations to be performed for pockets of high penetrations of DERs as well (for example, a small geographic region of 50-100 MW of DERs). This section describes the situations where representing DERs in EMT models may be needed by the TP and PC, and steps that can be taken to help facilitate development of these models in coordination with the DP.

DER Modeling Needs for TPs and PCs

EMT simulations are used to study very detailed interactions between grid elements and controls, and can capture potential reliability issues that may not be detected with RMS positive sequence tools. As the penetration of inverter-based resources grows, EMT simulations become increasingly important in many areas. In most cases, EMT simulations are needed in pockets of the BPS where the localized penetration of these resources is high. Examples of situations where these types of studies are needed include, but are not limited to, the following:

- High penetration pockets of inverter-based resources, particularly when DERs replace or displace synchronous generation in the local area. The lack of synchronous resources presents challenges related to synchronous inertia and low short circuit strength conditions. As these pockets approach 100% of DER penetration, potential reliability risks may arise that require EMT simulations to identify.

- Ride-through performance for DERs (and BPS-connected inverter-based resources) becomes critical during severe voltage excursions in pockets of low short circuit strength. This often requires EMT simulations that represent the specific phase-based protection aspects and inner control loops of inverter controls.

- Analysis of voltage control performance and coordination of voltage control settings across many DERs and the BPS. Areas with high penetration of DERs may need to rely on dynamic reactive support on the BPS, and may see greater variability of voltages at the distribution level. This will need to be coordinated, and EMT simulations are more effective at identifying issues than RMS positive sequence simulations.

- Pockets of high penetrations of inverters are prone to control interactions between neighboring facilities or with the grid. In addition, these pockets may present control stability issues for inverter-based resources that require attention for aspects of large disturbance behavior such as active and reactive power recovery and oscillations. When DERs represent a substantial amount of generation in a localized area, these issues may arise and could impact the BPS.

- Selection of control modes such as momentary cessation and other ride-through performance, and reliable operation of the overall area or region (including parts of the BPS) may be necessary under high DER penetration conditions.

There is no clear threshold for when EMT simulations are needed in any of the situations described above. TPs and PCs have developed various metrics to identify potential conditions that warrant closer attention through EMT simulation techniques.

69 https://www.nerc.com/comm/PC_Reliability_Guidelines_DL/Item_4a._Integrating%20_Inverter-Based_Resources_into_Low_Short_Circuit_Strength_Systems_-_2017-11-08-FINAL.pdf
Mapping TP and PC Modeling Needs to DER Data Collection Requests

EMT models are detailed representations of system elements used for identifying a wide range of potential issues, as mentioned above. However, representing end-use loads or aggregate DERs, in many cases, requires some assumptions and estimations to be applied. While use of generic models for EMT simulations is typically discouraged for BPS-connected resources, the data for creating EMT models (or the EMT models themselves) may not be available for many types of DERs. However, for cases where the TP and PC have determined that an EMT study involving aggregate DERs may be needed to ensure reliability of the BPS, the following recommendations are made:

- **R-DER:** Small, retail-scale DERs across the distribution system (e.g., rooftop solar PV) will most likely not have DER models or information available, nor is this level of detail needed for a BPS EMT simulation. Rather, generic EMT models can be used to represent the aggregate amount of DERs at locations similar to how steady-state powerflow and RMS positive sequence simulations are performed. For the most part, the information needed to formulate an EMT model of aggregate DERs will mirror the information needed for RMS positive sequence dynamic models, including:
 - Type of DER and vintage of IEEE 1547
 - Disturbance ride-through behavior including use of momentary cessation
 - Voltage, frequency, phase angle, and ROCOF trip thresholds
 - Dynamic and steady-state voltage control performance expectations

- **U-DER:** Some entities have implemented the same modeling requirements for larger inverter-based U-DERs as for BPS-connected inverter-based resources; namely that an EMT model may be requested from the TP or PC and will need to be supplied by the DER owner in coordination with the manufacturer, to the extent possible. This is typically applicable only for U-DER facilities, say, greater than 1 MVA in capacity. For substations with multiple inverter manufacturers, the TP and PC may aggregate these models into distinct U-DER resources for the more predominant inverter types. On the other hand, other entities may deem that generic models may be suitable for U-DERs as well, and the information described above could also apply for developing EMT models for U-DERs.

Industry is still grappling with the growing need for EMT simulations in many areas, and new findings and recommendations will continually be developed. It is clear, however, that EMT simulations are needed for appropriately identifying specific reliability issues; therefore, the TP and PC should coordinate with the DP or other external entity to gather EMT modeling information to the extent possible, when needed.
Appendix A: References

Appendix B: Data Collection for DER Energy Storage

Collecting data for DER energy storage is similar to collecting data for DER generating resources. However, it is worthwhile to highlight considerations that should be made when developing data reporting requirements for collecting DER data that ensure clarity for representing energy storage for planning assessments. This appendix describes at a high level some of the considerations that should be made, and also describes specific data points that are unique to energy storage from a data collection standpoint. While there are many types of energy storage technologies available today, this section focuses mainly on inverter-based battery energy storage since it is the most prominent form of DER expected in the foreseeable future and widely observed in DER interconnection queues today. Existing large, synchronous DERs may need to be modeled explicitly based on TP and PC modeling practices, and the TP and PC should have these considerations listed in any modeling requirements. Note that, today, electric vehicles (EVs) are likely modeled as part of the load since most existing EVs do not provide storage capability, and demand response actions (such as reduction of heat pump loads) are also not generally modeled as energy storage in planning models. Lastly, there are different ways to model energy storage DER – as part of the composite load model, as a standalone resource, or lumped with other forms of DER. This guideline focuses on data collection necessary for the TP and PC to be able to make appropriate modeling decisions based on their own practices.

Considerations for Steady-State Modeling

Energy storage DERs are likely modeled similarly to other DERs in planning base cases, although modeling and study practices may vary based on whether the energy storage is assumed to be charging or discharging. Energy storage DERs will need to be accounted for to ensure appropriate modeling based on TP and PC modeling practices. The following considerations should be made by the TP and PC, when developing data requirements for DER information with the DP (note that these considerations build off of Table 2.1):

- **Location**: TPs and PCs will need to know the general location, at least mapped to a T-D transformer, of energy storage batteries such that they can be modeled appropriately in planning base cases (in conjunction with other DERs and end-use loads). Separating DER generation and energy storage for collecting accurate DER data from the DP in coordination with any other state-level agency or regulatory body is a prudent step for effectively developing base cases based on TP and PC practices.

- **Type of DER (or aggregate type)**: As stated, differentiating out DER generators, DER energy storage, and hybrid facilities will be needed for the purposes of aggregate modeling of DERs in the future.

- **Transformer Information**: If the energy storage DER is considered a U-DER, a step-up GSU may be explicitly modeled by the TP and PC based on their modeling practices. In this case, transformer information will be needed by the TP and PC for the energy storage DER facility.

- **Historical DER output profiles**: The output profiles for energy storage DERs are likely much different than for DER generation, such as synchronous or solar PV DERs. As such, the TP and PC will need to determine a suitable assumption for output profiles for each to create planning base cases. Therefore, some information will be needed on energy storage DER output profiles. Some questions for consideration include, but are not limited to, the following:
 - What percentage of energy storage DERs are participating in wholesale markets, and can the markets in which those DERs are participating provide any useful information in terms of how the energy storage DERs may be dispatched?
 - What percentage of energy storage DERs are operating based on retail signals such as time of use charges or other third party signals that drive charging and discharging at specific hours of the day? Most

70 These practice may include explicit modeling of the plant main power transformer and equivalent representation of individual pad-mounted transformers within the U-DER facility, or may be simplified to an equivalent representation of transformations. The TP and PC should have modeling requirements that clarify this point.
commonly, the assumption is made that energy storage DERs will charge during light load conditions and
 discharge during peak loading conditions; however, various entities have experienced energy storage
 charging patterns that do not conform to these basic assumptions. Therefore, the DP in coordination
 with any other state-level agency or regulatory body will need to coordinate with the TP and PC to
determine how these patterns could affect transmission planning processes and practices.

- **DER Status**: It is not likely that additional considerations will be needed for energy storage DERs related to
 status (on-line versus off-line). However, TPs and PCs will need to consider for whether the aggregate amount
 of energy storage DER is charging or discharging.

- **Maximum DER active power capacity (Pmax)**: As mentioned, differentiating the amount (capacity) of energy
 storage DERs will enable the TP and PC to model these resources, as needed. Therefore, it is not likely that
 additional information would be needed for energy storage DERs.

- **Minimum DER active power capacity (Pmin)**: Energy storage resources have the ability to charge, unlike DER
 generators, and therefore energy storage DERs will have a modeled negative Pmin value in the base case.
 Therefore, separating out energy storage DERs will enable reasonable representation of Pmin values in the
 base case.

- **Reactive power-voltage control operating mode**: Similar to DER generators, it is important to understand
 any interconnection requirements and operating practices for the DERs regarding their reactive power-
 voltage controls. Knowing this information, TPs and PCs will be able to model them accordingly.

- **Maximum DER reactive power capability (Qmax and Qmin)**: If energy storage DERs are providing any voltage
 support, then these resources will need an associated Qmax and Qmin value in the base case, and the DP will
 need to coordinate with the TP and PC to understand appropriate assumptions.

Considerations for Dynamics Modeling

Energy storage DERs represented in the planning base case should have some aggregate dynamic model that captures
the general behavior of these resources during abnormal BPS conditions. The DER_A dynamic model is used to
represent inverter-based DERs, which energy storage DERs fall under. However, the parameter values for the DER_A
dynamic model that would need to be modified are fairly minimal. These include, but may not be limited to, the
following (note that these considerations build off of Table 3.1):

- **Typeflag**: Explicit modeling of energy storage DER requires consideration of the `typeflag` parameter of the
 DER_A dynamic model. Refer to software model specifications for how to set `typeflag` to emulate an energy
 storage device.71

- **Pmin**: The `Pmin` will need to be modified to accommodate the capability to absorb active power (i.e., negative
 `Pmin`), based on the expected energy storage capacity being modeled. If the voltage-dependent current limits
 (absolute value, not sign) are different in charging versus discharging mode, then the values of the VDL tables
 will need to be changed based on operating mode assumption.

- **Frequency Response Parameters**: If the energy storage DER is providing frequency response capability, in
 either the upward or downward directions, or both, then these parameters will need to be configured
 accordingly. This could be different than the aggregate DER generation model. For example, R-DER may not
 be providing underfrequency response; however, larger energy storage DERs may be providing this capability
 and service to a wholesale market.

- **Frequency and Voltage Ride-Through Capability**: TPs, PCs, and DPs should consider whether any different
 requirements are in place for DER energy storage versus DER generation; however, this is not likely in most
 cases once the new IEEE 1547-2018 inverters become available. Consider whether the fractional

71 Based on the specification for the DER_A dynamic model: https://www.wecc.org/Reliability/DER_A_Final_061919.pdf.
reconnection \((vrfrac)\) or active power ramp rate \((rrpwr)\) may also be different for DER energy storage and generation.

- **Voltage Control Parameters**: TPs, PCs, and DPs should also consider whether any different requirements are in place for DER energy storage versus DER generation regarding voltage control. Voltage control settings that differ across DER energy storage and generation may require modeling details where additional data may be required by the TP and PC.

Considerations for Short-Circuit Modeling

As with DER generation, DER energy storage will most likely be inverter-based and therefore will only provide a small amount of fault current to BPS faults. Therefore, the TP and PC can consider whether DER energy storage would need to be differentiated in short-circuit studies based on the materials in Chapter 4. However, it is not likely that DER modeling for short-circuit studies is widely performed in the near-term.

Considerations for GMD Modeling

No additional considerations for DER energy storage are needed beyond the recommendations provided in Chapter 5.

Considerations for EMT Modeling

EMT modeling considerations for energy storage DER are similar to those described above for dynamics modeling. If the TP or PC determine that DER data is needed for EMT simulations, then differentiating DER energy storage and DER generation is recommended. Larger U-DER (either DER generation or DER energy storage) may require more detailed models than aggregate amounts of R-DER (again, either DER generation or DER energy storage).
Appendix C: DER Data Provision Considerations

DPs have some accounting of aggregate DER, in coordination with the TP and PC data requirements per MOD-032-1. A timeline and projection of aggregate DER growth at each T-D transformer is of particular importance for steady-state, dynamics, short-circuit, and EMT modeling purposes. The transfer of aggregate DER data to the TP and PC for modeling is ultimately critical to the reliable operation of the BPS, particularly moving forward as the penetration of DERs continues to grow.

In some cases, however, the DP may not have aggregate DER information readily available to provide to the TP and PC for modeling purposes. This may be particularly true to future projections of DERs most relevant for TPs and PCs for planning purposes. External parties such as state regulatory bodies like the California Energy Commission\(^{72}\) and Minnesota Public Utilities Commission\(^{73}\), as well as R-DER and U-DER installers, may have more detailed information pertaining to wide-area DER projections. Thus, TPs and PCs will benefit from collaborating with DPs to determine if external parties can be engaged to help support the provision of DER data for modeling aggregate DER by the TP and PC.

TPs and PCs should consider developing an overall framework for the process DER data collection. In particular, TPs and PCs will likely benefit by establishing data specifications that leverage the respective strengths of both DPs and DER installers for existing facilities as well as other sources for forward-looking projections. Further, DPs could establish requirements that require DER installers to provide information to the DP, TP, and PC during DER interconnections. DPs may consider working with state regulators and other agencies to determine the most effective method for establishing these types of requirements. If alternative sources of DER data are readily available in higher quality forms for use by the TP and PC, these should be leveraged to the extent possible for use in planning BPS studies. Diagrammatic examples accompanying data specifications will likely reduce any confusion or misunderstanding between entities. Collaborative processes by which data specifications are determined and data collection frameworks are designed will likely result in higher quality information transferred from the DP, and other applicable external entities, to TPs and PCs. Higher quality information for the purposes of modeling will support reliable operation of BPS.

AEMO DER Registry Case Study

A recent example of external DER data that can be useful for modeling purposes comes from the Australian Electricity Market Operator (AEMO) DER Register.\(^{74}\) Under the National Electricity Rules that govern Australia’s major electricity market across the east and south eastern states, all Network Service Providers (NSPs) to provide or update “DER generation information,” defined as “standing data in relation to a small generating unit” for any DER rated below 30 MW.\(^{75}\) To facilitate the collection of DER generation information, AEMO worked with NSPs, DER installers, and other stakeholders for over a year to develop a secure online DER data submission process. AEMO requires submission of DER generation information at the National Metering Identifier (NMI)-level, simultaneously leveraging the relative strengths of NSPs and installers as DER data providers. Figure C.1 illustrates AEMO’s expectation for NSPs and installers to have different types of DER data, which AEMO determined are necessary to model and plan for the impacts of aggregate DER (options are allowed as to how the data is provided into AEMO’s system).\(^{76}\)

\(^{72}\) https://www2.energy.ca.gov/renewables/tracking_progress/documents/renewable.pdf

\(^{73}\) https://mn.gov/puc/energy/distributed-energy/data/

The work flow for joint submission of DER generation data from the NSP and DER installers, ultimately resulting in a DER installation certificate, is shown in Figure C.2. The work flow diagram emphasizes the importance of a collaborative specification for attaining DER generation information. The distinction between “as-approved” and “as-installed” information is crucial; one subset of data is likely readily available to NSPs, whereas another subset of data is likely readily available to DER installers (see Figure C.3).

Figure C.1: AEMO Expectations for Provision of DER Data [Source: AEMO]

Figure C.2: Workflow of Joint Submission of DER Generation Data [Source: AEMO]

Figure C.3: Combination of DER Data as Defined by AEMO’s Data Model
To ensure quality of responses consistent with AEMO’s data model structure, AEMO developed a series of scenarios to illustrate hypothetical DER configurations for NSPs and DER installers as shown in Figure C.4. These scenarios help ensure that the data requests are completed consistent with AEMO’s specifications. The submission process is supported by an Information Collection Framework that emphasizes four principals:

1. Data collected should initially comprise of the statically configured, physical, DER system, at the time of installation.
2. Have regard to reasonable costs of efficient compliance compared to the likely benefits from the use of DER generation information.
3. Best practice data collection should be implemented, wherever possible, leveraging existing data collection methods.
4. Balancing information and transparency, the DER register should be accessible and easy to use, while confidentiality and privacy are protected.

NSPs in the NEM have varying levels of sophistication when it comes connection approvals and data collection. As a result, AEMO’s DER Register system is designed with optionality to provide and validate DER data via API directly from the NSP, AEMO’s Web Portal or via smart-phone applications that many DER installers are already using to register an installation to access government subsidies. These options enable the minimum change and cost for implementation for each NSP. The full design of the Information Collection Framework and related implementation material is also publicly available.

Figure C.4: AEMO Scenarios of Collecting DER Data
Contributors

NERC gratefully acknowledges the invaluable contributions and assistance of the following industry experts in the preparation of this guideline. NERC also would like to acknowledge all the contributions of the NERC SPIDERWG as well as the NERC System Protection and Control Subcommittee and leadership of the NERC Geomagnetic Disturbance Task Force.

<table>
<thead>
<tr>
<th>Name</th>
<th>Entity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shahrokh Akhlaghi</td>
<td>Southwest Power Pool</td>
</tr>
<tr>
<td>Hassan Baklou</td>
<td>San Diego Gas and Electric</td>
</tr>
<tr>
<td>Tom Butler</td>
<td>Australian Energy Market Operator</td>
</tr>
<tr>
<td>Jorge Chacon</td>
<td>Southern California Edison</td>
</tr>
<tr>
<td>Nicolas Compas</td>
<td>Hydro Quebec</td>
</tr>
<tr>
<td>Ransome Engujobi</td>
<td>Lower Colorado River Authority</td>
</tr>
<tr>
<td>Mohab Elnashar (Sub-Group Co-Lead)</td>
<td>Independent Electricity System Operator</td>
</tr>
<tr>
<td>Irina Green (Sub-Group Co-Lead)</td>
<td>California ISO</td>
</tr>
<tr>
<td>Evangelos Farantatos</td>
<td>Electric Power Research Institute</td>
</tr>
<tr>
<td>Lou Fonte</td>
<td>California ISO</td>
</tr>
<tr>
<td>Andrew Isaacs</td>
<td>Electranix</td>
</tr>
<tr>
<td>Dan Kopin</td>
<td>Utility Services</td>
</tr>
<tr>
<td>Andrew Lopez</td>
<td>Southern California Edison</td>
</tr>
<tr>
<td>Brad Marszalkowski</td>
<td>ISO New England</td>
</tr>
<tr>
<td>David Milner</td>
<td>CPS Energy</td>
</tr>
<tr>
<td>Amir Mohammednur</td>
<td>Southern California Edison</td>
</tr>
<tr>
<td>Nihal Mohan</td>
<td>Midcontinent ISO</td>
</tr>
<tr>
<td>Michael Odom</td>
<td>Southwest Power Pool</td>
</tr>
<tr>
<td>Jeff Palermo</td>
<td>PJP Consulting</td>
</tr>
<tr>
<td>Bill Quaintance (SPIDERWG Vice Chair)</td>
<td>Duke Energy Progress</td>
</tr>
<tr>
<td>Sunny Raheem</td>
<td>Southwest Power Pool</td>
</tr>
<tr>
<td>Deepak Ramasubramanian</td>
<td>Electric Power Research Institute</td>
</tr>
<tr>
<td>Jay Ramamurthy</td>
<td>Entergy</td>
</tr>
<tr>
<td>John Schmall</td>
<td>Electric Reliability Council of Texas</td>
</tr>
<tr>
<td>Chelsea Zhu</td>
<td>National Grid</td>
</tr>
<tr>
<td>Kun Zhu (SPIDERWG Chair)</td>
<td>MISO</td>
</tr>
<tr>
<td>Rich Bauer</td>
<td>North American Electric Reliability Corporation</td>
</tr>
<tr>
<td>Mark Olson</td>
<td>North American Electric Reliability Corporation</td>
</tr>
<tr>
<td>Ryan Quint (SPIDERWG Coordinator)</td>
<td>North American Electric Reliability Corporation</td>
</tr>
<tr>
<td>John Skeath (SPIDERWG Coordinator)</td>
<td>North American Electric Reliability Corporation</td>
</tr>
</tbody>
</table>