

RELIABILITY CORPORATION

NERC Inverter-Based Resource (IBR) Webinar Nine:

Session 9: Commissioning

July 11, 2023

RELIABILITY | RESILIENCE | SECURITY

New Resource Commissioning

ISO New England Approaches and Lessons Learned

Al McBride

DIRECTOR, TRANSMISSION SERVICES AND RESOURCE QUALIFICATION

Highlights

- ISO New England (ISO-NE) has various technical requirements for the commissioning of new resources, including Inverter-Based Resource (IBR) interconnections
- ISO-NE is expecting to expand these requirements as part of our adoption of IEEE 2800 (Standard for Interconnection and Interoperability of Inverter-Based Resources (IBRs) Interconnecting with Associated Transmission Electric Power Systems)

ISO New England Performs Three Critical Roles to Ensure Reliable Electricity at Competitive Prices

Grid Operation

Coordinate and direct the flow of electricity over the region's high-voltage transmission system

Market Administration

Design, run, and oversee the markets where wholesale electricity is bought and sold

Power System Planning

Study, analyze, and plan to make sure New England's electricity needs will be met over the next 10 years

New England's Transmission Grid Is the Interstate Highway System for Electricity

ISO-NE Publi

- **9,000 miles** of high-voltage transmission lines (primarily 115 kV and 345 kV)
- **13 transmission interconnections** to power systems in New York and Eastern Canada
- **14%** of region's energy needs met by imports in 2022
- \$11.9 billion invested to strengthen transmission system reliability since 2002; \$1.3 billion planned
- Developers have proposed multiple transmission projects to access
 non-carbon-emitting resources
 inside and outside the region

IBRs Comprise Nearly All of New Resource Proposals in the ISO Interconnection Queue

ISO-NE Public

Source: ISO Generator Interconnection Queue (June 2023) FERC Jurisdictional Proposals; Nameplate Capacity Ratings Note: Some natural gas proposals include dual-fuel units (with oil backup). Some natural gas, wind, and solar proposals include battery storage. Other includes hydro, biomass, fuel cells and nuclear uprate. **Proposals by State**

(all proposed resources)

State	Megawatts (MW)		
Massachusetts	19,700		
Connecticut	7,125		
Maine	5,461		
Rhode Island	1,574		
New Hampshire	1,295		
Vermont	375		
Total	35,530		

Source: ISO Generator Interconnection Queue (June 2023) FERC Jurisdictional Proposals

NEW RESOURCE COMMISSIONING

Data collection, model review & performance verification

Commissioning Process

- The new resource registration process has numerous steps and requirements
 - Market registration and modeling
 - Communications and dispatch requirements
 - Technical submittals and demonstrations
- Here we will focus on specific technical requirements of interest to IBR commissioning
 - As-built model and data submittals
 - Power Factor demonstration
 - Voltage response demonstration
 - Frequency response demonstration

Model Submittal Sequence

As-Studied Data

- Initially submitted with the Interconnection Request
- Must pass acceptance testing
- Used for System Impact Study
- Updated at end of study with any upgrades needed

As-Purchased Data

- Due At Least 180 Days prior to initial synchronization
- Should be very similar to As-Studied Data
- Must Pass Acceptance Testing again if different than As-Studied

ISO-NE Publi

• As-Built Data (part of the commissioning process)

- Required prior to Commercial Operation
- Should be very similar to As-Purchased Data
- Must Pass Acceptance Testing
- MOD-26/27 requires testing of this data within 1 year
 - MOD-26 Attachment 1 Row 3
 - MOD-27 Attachment 1 Row 4

Model Acceptance Tool

• Provides all testing requirements within one application

ISO-NE Publi

- Reads in .dyr files
- Can run parameter wise
 comparison between two .dyr's
 (useful for MOD-26/27 review)
- Screens parameters to meet regional modeling requirements
- Runs all checked tests on all defined units within .dyr
- Parallel processing functionality

Load Input	te	Saue Inpute	Compare Day Film	Sereen w/ Def-ult-	A direct T+ I	Daramaterr
	ts	Save Inputs	Compare Dyr Files	Screen w/ Defaults	Adjust Test	Parameters
Run Tests Lo	cally	Create Enfzion Run	Add Plot Channels			
Ente		far tha anti-ta				
Ente	a study name	(e.a. DDM	S-123 UnitXVZ OP456 etc.)			
Save or	ut files w/ result	s after plotting?				
Include in	terface definitio	ns in snapshot? 🔽				
Dvnamic Da	ta Files to	Compare/Scree	en			
· , · · · · · · · · · · · · · · · · · · ·	Select the pre-p	roject file (.dvr):				Sele
	elect the port-p	roject file (dyr):				Sala
	cicci inc post p	oject ne (laji).				
Pro Project	Files for 9		o Droj Tortr	Sal	act DSSE Varriant	
-re-Project	Flies for a		e-Proj Tests	38	ect PSSE version:	<u> </u>
Select the pre	e-project power	flow case (.sav):				Sele
Select the	pre-project snap	oshot file (.snp):				Sele
Select the pre-project stability auxiliary data (.zip):					Sele	
Select the pre-proje	ect interface def	initions (.mon):				Sele
Post-Project	t Files for	Stability 🛛 Run Po	st-Proj Tests	Sel	ect PSSE Version:	33 —
Select the post	t-project power	flow case (.sav):				Sele
C.1	ne post-project s	snapshot (.snp):				Sele
Select th						Sele
Select the post-proj	ect stability auxi	iliary data (.zip):				
Select the post-proj Select the post-proie	iect stability auxi ect interface def	iliary data (.zip):				Sele
Select the post-proj Select the post-proje	ect stability auxi ect interface def	iliary data (.zip): initions (.mon):				Sele
Select the post-proj Select the post-proje Select which	ect stability auxi ect interface def n tests to	iliary data (.zip): initions (.mon):	Select None			Sele
Select the post-proje elect the post-proje Select which	ect stability auxi ect interface def n tests to	iliary data (.zip): initions (.mon): run: Select All	Select None	Elst Run		Sele
Select the post-proj Select the post-proje Select which GREF	ect stability auxi ect interface def n tests to VREF	iliary data (.zip): initions (.mon): run: Select All GR	Select None	☐ Flat Run	□ Ov/Un Freq	Sele
Select the post-proj Select the post-proje Select Which GREF Ringdown	ect stability auxi ect interface def n tests to N VREF	Illiary data (.zip): initions (.mon): run: Select All GR uber(s) congrated by common	Select None	☐ Flat Run	Ov/Un Freq	Sele
Select the post-proj Select the post-proje Select Which GREF Ringdown	ect stability auxi ect interface def n tests to VREF Enter bus num	initions (.mon): run: Select All GR uber(s) separated by comma	Select None	☐ Flat Run	C Ov/Un Freq	Sele
Select the post-proj Select the post-proje Select which GREF Ringdown Fault Ctgs	iect stability auxi ect interface def n tests to VREF Enter bus num	initions (.mon): run: Select All GR uber(s) separated by comma	Select None	☐ Flat Run	C Ov/Un Freq	E HVRT/L

10

Dynamics Data Submittals Approval

• For MOD-26/27 submittals, a checklist to show what was tested and what passed/failed is also provided

ISO New England - Transmission Planner – MOD-026/MOD-027 Review Summary						
Test	Pass/Fail	Comments				
Summary of results	Pass	Results acceptable overall				
Model Provided in proper format	Pass					
Test report documentation provided	Pass					
Model initialization results (MOD-026 R6.1 and MOD-027 R5.1)	Pass					
No disturbance results (MOD-026 R6.2 and MOD-027 R5.2)	Pass					
Exciter response (MOD-026 R6.3)	Pass					
Exciter response ratio (MOD-026 R6.3)	Pass					
Vref (i.e. Qgen) change results (MOD-026 R6.3)	NA					
Governor response (MOD-027 R5.3)	Pass					
Gref (i.e. Pgen) change results (MOD-027 R5.3)	NA					
SLG fault test result (MOD-026 R6.3 and MOD-027 R5.3)	NA					
LL fault test result (MOD-026 R6.3 and MOD-027 R5.3)	NA					
LLG fault test result (MOD-026 R6.3 and MOD-027 R5.3)	NA					
3PH fault test result (MOD-026 R6.3 and MOD-027 R5.3)	Pass					

ISO-NE Publi

PSCAD Models – Model Requirements

- Models are required to be provided as part of the interconnection of all IBRs
- Models are vetted for accuracy, useability, and efficiency as part of the interconnection
 - request review process
 - Benchmarking
 - Single Machine infinite bus
 - Playback Testing

Power Factor Demonstration

- During the Reactive Capability Audit, the Reactive Resource shall absorb or produce the maximum reactive power of the Reactive Resource such that the Reactive Resource reaches a defined limit, given the current conditions and limitations, for the entire audit duration
 - This limit may be internal to the Reactive Resource (e.g., maximum excitation limiters (MEL), under excitation limiters (UEL), volts/hertz limiters, terminal voltage, procedural) or external to the Reactive Resource (e.g., transmission bus voltage)
- In the event that reactive equipment or elements that may limit reactive capability (e.g., transformers, feeders, etc.) are shared between multiple Reactive Resources (e.g., pseudo-combined cycle assets, wind, co-located solar and storage facilities), those Reactive Resources may be required to test at the same time in order to determine limitations

13

Voltage Regulator Testing

- Test requirements:
 - Automatic voltage regulator on and in voltage control mode
 - Five percent change in Large Generating Facility terminal voltage initiated by a change in the voltage regulators reference voltage
- Interconnection Customer shall provide validated test recordings showing the responses of Large Generating Facility terminal and field voltages

Voltage Regulator Testing - Example

Frequency Response Testing

- Performance requirements
 - Droop based on nameplate capability set between a minimum of four percent (4%) and a maximum of five percent (5%);
 - Frequency response deadband of no greater than 59.964-60.036 Hz; and
 - Real power response is not inhibited by effects of outer loop controls (such as operator set point controls and load control but excluding AGC) that would override the governor response (including blocked or nonfunctioning governors or modes of operating that limit Frequency Response)
- Testing conditions
 - Under the on-line condition, measure and record the MW output (for a period of certain length with sampling rate of sufficient precision) of the applicable unit by injecting a step change of the speed reference with the following requirements met:
 - Variant sizes of the step change (in both directions, i.e. over-speed and under-speed) should be tested;
 - The step size is no less than 50mHz;
 - The test shall be repeated under different loading conditions of the applicable unit;
 - If there exists an outer-loop load control that is enabled in the normal operating mode of the unit, such a control loop shall be placed in-service during the governor testing.

ISO-NE Publ

Example of Additional Tuning Resulting from Frequency Response Testing (initial sluggish response)

....

Example of Additional Tuning Resulting from Frequency Response Testing (improved as-built response)

18

Future changes

- More formal adoption of the requirements associated with IEEE 2800 (Standard for Interconnection and Interoperability of Inverter-Based Resources (IBRs) Interconnecting with Associated Transmission Electric Power Systems)
- Development of verification requirements to follow in conjunction, or after, publication of IEEE P2800.2
 - Interim approach may be to accept developer provided verification/validation in conjunction with conformity assessment performed by ISO-NE

Questions

ISO-NE Public

20

Questions and Answers After All Presentations

Traversing the Commissioning Process

Katie Iversen,

Generator Modeling Manager AES Clean Energy

Introduction – Why do settings matter & how did I get here?

Inverter/turbine settings govern **important** aspects of plant behavior. They are **key elements** of power flow models.

Settings Background

Types of settings:

- Ride-Through
- Grid Support
- Normal Operation
- Communication & Restarts
- Monitoring & Logging
- Security

Overall, settings are loaded in finality at **"hot** commissioning".

Lessons Learned

Collaboration & Communication is Key

"A single leaf working alone provides no shade." – Chuck Page

- → The commissioning team must have settings to commission
 - Requires collaboration and communication between multiple parties <u>across</u> and <u>within</u> companies
 - Equipment Manufacturer ("OEM")
 - Developer/Generator Owner, including hired consultants or contractors
 - ISOs/RTOs/Utilities

26

aes

Be Curious

"I have no special talent. I am only passionately curious." – Albert Einstein

- → Ask Questions
 - Check on communication and collaboration across parties
 - Deliverables and consistency
 - Seek understanding of overlap effects
 - If X is studied, commission based on X
 - If Y is studied, commission based on Y

Document and Verify

"Trust, but verify." – Ronald Reagan

\rightarrow QA/QC

- \rightarrow Verify commissioned settings
 - Manufacturer verification
 - Developer/owner verification
- → Retain documentation of settings and notes within databases

Margaret Hamilton standing next to the navigation software that she and her MIT team produced for the Apollo Project. (Draper Laboratory)

Where to go from here?

"Making things easy is hard." – Ted Nelson

- → Learn from each other across functions and organizations
- → Consistency in process and application
- → Clear documentation, including settings and properties of interest

aes

→ Tools & Automation

Recap

- Settings matter!
- Lessons learned
 - 1. Collaboration & Communication is Key
 - 2. Be Curious
 - 3. Document and Verify
- Future

Questions or Comments

Katie Iversen katie.lversen@aes.com

Questions and Answers After All Presentations

NERC – Commissioning

OEM Perspectives

August 28, 2023 Chris Chuah P.E., CEng Commissioning Manager

Process Overview

At Commissioning

- OEM involvement depends on scope
 - Equipment Packages Commission the equipment
 - Engineering Procurement & Construction Turnkey Do everything
 -but we have no direct contract with the GO. Must go through our customers.
- At Commissioning (Cx)
 - Cold Cx Verify Settings Prepare for Energization
 - Energization Witness test by GO
 - Hot Cx Verify equipment and System operation

Issues

- GO Parameters vs Contract
 - What we are obligated to provide to our Customers is often restricted by the GO
 - Example Ramp Rate; Technology & Contract align with msec response time. GO wants minute responses
- Witness Testing
 - Scheduling & Scope varies wildly
 - Scheduling witness tests can push projects by months
 - Some GOs require 1st energization at witness test, others will do witness test in stages.
 - No Energization No Cx. A limited exception during Cx across GOs would help...even if import/export limited

Observation

- Performance Testing Not Well Defined
 - US: Primarily. WECC & GO dictated. Subjective on criteria.
 - Step tests, ramp rate, grid loss/recovery
 - Write a report
 - EU: G99. Very Prescriptive; Voltage, Frequency, Active & Reactive Power
 - Model
 - Test
 - Submit Report & Results
 - Feedback
- Grid Loss/ Recovery Time
 - Only seeing this in the US
 - Islanding is understood but minutes to recover seems long.

Questions and Answers

Feel free to reach out to us if interested in participating in the NERC IRPS or EMTTF!