2022 Summer Reliability Assessment Energy Emergency Risk Areas

MISO

A **capacity shortfall** in the North and Central areas poses high risk of energy emergencies during peak summer conditions. The shortfall is largely driven by a peak demand increase of 1.7% percent and 3,200 MW less generation capacity than summer 2021.

SPP

Drought conditions may impact summer reliability. Low-output from affected thermal and hydro generation could lead to a shortfall in needed flexible capacity to balance wind variability during peak demand.

Saskatchewan

Saskatchewan **peak demand projections have risen** by over 7.5% since 2021. Sufficient operating reserves are expected during normal peak conditions but may require external assistance during extreme peak demand conditions.

Mexico

High Risk

Resources are potentially insufficient to meet peak load during both normal and extreme conditions.

Elevated Risk

Resources are likely sufficient to meet peak load during normal conditions, but potentially insufficient during extreme conditions.

Texas

Solar and wind additions in Texas ease concerns for capacity shortfalls for normal peak demand. **Drought conditions and high temperatures can challenge system balance.** Emergency procedures, including manual load shed, could be needed during a low wind and high outage rate scenario.

Pacific Northwest, Southwest, and California/Mexico

Reserve margins are expected to be sufficient under normal conditions, but **external assistance is likely needed under extreme conditions.** California continues to procure resources and is expected to have sufficient resources with external transfers to meet normal peak conditions. A wide-area heat event can limit the availability of electricity for transfer, causing energy emergencies. Wildfires, droughts, and supply chain issues can cause localized risks.