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Cloud Computing on the Bulk Electric System

e 8:30 am Opening remarks and Introductions
=  Mark Lauby, Senior Vice President and Chief Reliability Officer, NERC
=  Tobias Whitney, Senior Manager of CIP Compliance, NERC
=  Tom Hofstetter, Senior CIP Compliance Specialist, NERC
e 9:00 am —10:00 am — Overview of Cloud Services
= Jianhui Wang, Ph.D., Section Manager — Advanced Power Grid Modeling, Energy Systems
Division, Argonne National Laboratory
e 10:00 am —11:00 am — Building the business case for Cloud Services
» Jeff Gooding, IT Principal Manager, Enterprise Architecture & Strategy, Southern
California Edison (SCE)
» Xigochuan Luo, Technical Manager, Business Architecture & Technology, ISO New
England
e 11:00am —12:00 pm — Describing the Architecture of Cloud Offerings
= Stevan Vidich, Ph.D., Principal Program Manager, Azure Global Ecosystem engineering
team, Microsoft
e 12:00 pm—1:00 pm — Lunch
e 1:00 pm—2:00 pm — Security and CIP compliance considerations during Deployment
=  Tobias Whitney, Senior Manager of CIP Compliance, NERC
e 2:00 pm—4:00 pm — Roundtable Discussion, Industry and Vendor Experiences
e 4:00 pm—4:30pm — Closing and Next Steps
= Tobias Whitney, Senior Manager of CIP Compliance, NERC
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Introduction to Cloud Computing

What is it, the Need, Benefits, and Challenges



What is Cloud Computing?

Cloud Computing is an umbrella term used
to refer to Internet-based development
and services

— agroup of integrated and networked

hardware, software and Internet
infrastructures

— Using the Internet for communication and
transport provides hardware, software and
networking services to end-users

Cloud platforms hide the complexity of the
underlying infrastructure from users by
providing simple graphical interfaces
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Essential Characteristics of Cloud Computing

1. Resource Pooling
— No need to have servers in-house

. On-Demand
— Reduce the need for advanced hardware in-house Self Bervice
2. Broad Network Access
— Data is available anytime, anyplace, and anywhere MAC e NBrnadrk
— Secure backup and disaster recovery of data Service
3. Rapid Elasticity
— Quickly scale operations
4. On-Demand Self Service Resource
E!asﬁlzi‘ty Pooling
— Pay for only your use *
S. MeasurEd SerVICe Characteristics defined by NIST

— Resource usage can be monitored, controlled, and reported

— Transparency



Example of a Cloud Provider - Amazon EC2

= Amazon EC2is a widely-used platform in the cloud

computing industry
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— Full control: direct root access to each cloud instance M D,
Amazon Cloud Overview

— Flexible: choose your Operating System and install any software packages
e Redhat, Ubuntu, Windows Server, among others
e Small, large, extra large instances based on disk space, RAM, and CPUs

— Reliable: Amazon servers provide high availability and redundancies

— Secure: firewall settings, private key management, and Virtual Private Clouds (VPC) available



The Need for Cloud Computing for Power Grid Applications

Advent of smart grid technologies is causing
simulations to increase in size

= Computationallyintensive power grid
applicationsinclude:
— Wide-area state estimation
— Contingency analysis
— Security-constrained economic dispatch (SCED)
— Security-constrained unit commitment (SCUC)

— Faster-than-real-time grid dynamics simulation
and analysis

— Production cost simulation
— On-line stability analysis
= |n-house computinginfrastructureis not
flexible to solve such intensive applications

= Computational complexity hinders market
development
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Benefits of Cloud Computing to System Operators

= System Operators currently exploit High Performance Computing (HPC) on local in-
house infrastructures

— Requires high-capital expenditures
— Requires maintenance staff
— Limits rapid scalability for power grid applications

* Cloud computing provides:
1. Powerful computational capacity (e.g., Amazon EC2’s go up to 128 CPUs)
2. Unparalleled scalability (e.g., cloud instances can be launched quickly)
3. High cost-effectiveness

= Typical in-house HPC cost is significantly higher than cloud-based HPC
— e.g., 2.88 S/hourin-house comparedto 0.84 S/hour for Amazon EC2 cIoud1



Current State-of-Art of Cloud Computing for Grid Applications

= |SO-NE is at ’ghe forefront of cloud-hosted grid
applications

— Platform for real-time PMU data collection, storage, and

processing to achieve Wide Area Monitoring
— HPC platform for large-scale simulations

e Transmission Planning Studies (stability analysis, etc.)

e Resource Adequacy studies

— Software on the cloud: TARA, GE MARS, PSS/E, TSAT

= Majority of applications are focused on Grid Planning

as opposed to Grid Operations
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= Research and development of cloud-based operation models (e.g., SCUC, SCED) are needed

2 E. Litvinov, F. Ma, Q. Zhang, and X. Luo, “Cloud-based next-generation IT paradigm for the operations of future power systems,” in 2016 Power Systems Computation

Conference (PSCC), June 2016, pp. 1-7.



.
Challenges in Cloud Computing for Grid Operations

Three major challenges exist:

1. Infrastructuresecurity
e Confidentiality and integrity of data-in-transit to and from cloud providers
e Qutside attackers comprise data in transmission
e Inside attackers comprise a user or a cloud provider

)4
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Traditional Scenario vs. Cloud Scenario

2. Dataconfidentiality
e Grid data must be kept confidential
e Grid data must remain unaltered

3. Timecriticality
e Power system applications require timeliness assurance
e Data must be time-consistent, requiring high-speed data synchronization
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Project Overview

A Resilient and Trustworthy Cloud and Outsourcing Security
Framework for Power Grid Applications

Overview of Framework, Cyberattacks, and Potential Approaches



Project Synopsis

Objective

— The computational complexity of
power grid applications is increasing

— Cloud computing provides powerful
computational capacity, scalability,
and high cost-effectiveness

— Goal: Develop a secure and
trustworthy cloud computing and
outsourcing framework for power grid
applications

Project Schedule

— Started August 2016

— Framework and white paper (Q2
2017)

@

System Operator
Local Infrastructure

[]

—

®

Cloud Infrastructure

===

Performer: Argonne National Laboratory
Partners: University at Buffalo, lllinois
institute of Technology
Federal Cost: $1,500,000
Cost Share: N/A

Total Value of Award:

$1,500,000
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Project Objectives

1. Design a comprehensive cloud-based framework for power grid applications

2. Model/quantify the security and time criticality requirements of grid applications
3. Deploy grid applications with different time criticality requirements in cloud

4. Model/quantify different types of cyberattacks against grid applications

5. Deploy security enhancements to cloud-based power grid applications.

6. Recommend cybersecurity improvements

7. Demonstrate best practices in cybersecurity for cloud-based grid applications

13



Comprehensive Cloud and Outsourcing Security Framework for Power

Grid Applications

Develop a comprehensive framework that
considers:

— Infrastructure Security: ensure data-in-
transit is secured

— Data confidentiality: ensure confidentiality
and integrity of grid data outsourced to the
cloud

— Time critical: ensure system efficiency,
computation efficiency, communication
efficiency, and cloud provider availability
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.
Module-based Components for Grid Computing Framework

= Each grid application is unique in its computational, security, and time requirements

= Develop flexible module-based components that include Infrastructure Security, Data
Confidentiality, and Time Criticality

— Modules can be customized to each grid application’s needs

Time Criticali
2 Task Scheduler Failure Detector S

Component , | | Management

Differential
Privacy
Mechanism

Computation
Result
Verification

Infrastructure
Security Signature Encryption ;__'f.._'-._';.: : _7:;:;-_’_5- il |
Scheme Schemes N
Component ¢ j § y & )
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Fundamental WAMPAC Applications and Their Time Scales

Wide Area SCADA Communication Network B
>
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What types of Cyberattacks?

Cyberattacks may result from two groups - insiders and outsiders

Within the insider group are passive and active entities
e Passive: monitor communication channel between the user and the cloud
e Active: attacks to alter system resources, e.g., flood attack, spoofing attack

Encoded Application
Problems

Encoded Application
Answers

Public Cloud

[llustration of Outsider Attackers

Within the outsider group are compromised users and cloud providers, or malicious administrators
e User: compromise infrastructure security
e Cloud provider: compromise data confidentiality
* Administrator: obtain sensitive data

g Encoded Application
_. Problems
)@(
Encoded Application
Answers

Users

Public Cloud

Illustration of Insider Attackers



Progress to Date

Major Accomplishments to-date

— Industry Advisory Board consisting of a diverse group of individuals applying cloud
computing:
e Xiaochuan Luo, ISO-NE
e Alex Rudkevich, Newton Energy Group
e Jianzhong Tong, PJM
e Tobias Whitney, NERC

System Operator

Confidentiality-preserving SCED

LP Non-secured Secured
transformation —-{matrix generation|—»{matrix calculation

— Two papers under preparation

Local Computing

= Security and Cloud Outsourcing Framework for Security-Constrained Economic Dispatch
= Fast Encryption Scheme for Cloud-based SCUC Problem Outsourcing System

— Framework report and white paper being developed

18



Preliminary Technical Approach

" Grid data must be kept confidential while in transmission and storage on the cloud

— Various techniques (e.g., encryption, cryptography) will be explored

— Mathematical models (SCED, SCUC) can be reconstructed to consider confidentiality

— Leverage existing works in fields of Communications, Operational Research, among others
= Development of Confidentiality-Preserving SCED and SCUC models

— Must conformto market rules, e.g., 75°V€ + ¢! < 5-min if market operates under 5-min

Security Framework | [ Cloud Outsourcing Framework

System Transmit Cloud Transmit
Operator secured data Solve results T
< >
I--"-é-e-c-l-li‘é““""""""’f _____ '“"' ____________ '“' ______ :L----‘i
T T 7_Solve T

Security and Outsourcing Flow Chart
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Results: Security-Constrained Economic Dispatch (SCED) on the Cloud

= |nrecent work, a confidentiality-preserving SCED was developed and simulated on
— Argonne National Laboratory’s (ANL) Blues HPC cluster

— Four (4) Amazon EC2 instances
e C4.2xlarge = less compute-optimized than ANL blues
e C4.4xlarge and c4.8xlarge 2 more compute-optimized than ANL blues
e M4.16xlarge = more memory-optimized than ANL blues

= A comparison of the computational performance gain against ANL Blues was performed

15 . . .
10 +12.7% +13.6%
5 -
0 B
i 3.0%

Performance
gain/loss (%)
N

20 ¢ -22.7%
_25 1 | 1 |
c4.2xlarge c4.4xlarge c4.8xlarge m4.16xlarge

Computing Infrastructure
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Results (cont.): Cost Savings of SCED on the Cloud

= Amazon EC2 has different payment options, such as:
— Pay as used with no commitments (on-demand)
— 1-year contract with no upfront payment (1-yr NoUp)
— 1-year with full upfront payment (1-yr AllUp)
— 3-year with full upfront payment (3-yr AllUp)
= A monthly cost comparison was performed for compute-optimized EC2s and ANL Blues
— ANL Blues costis $2073.6 = EC2 provides max. savings of 88.5% with increased performance

1500
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—©—c4.8xlarge
--%-- c4.4xlarge -

Monthly Cost ($)
~1
3

On-Demand 1-yr NoUp 1-yr AllUp 3-yr AllUp
Purchasing Options



Collaboration/Technology Transfer

= Technology will conform to operating paradigms of system operators

— Enable ease of implementation and high impact to business processes

= Testing will occur on large-scale datasets to ensure applicability and scalability
— PJM and ComEd grid datasets will be used

= End-users may be but not limited too:

1.

System Operators: directly implement on cloud services (e.g., Amazon EC2, Microsoft
Azure, among others)

. Software-as-a-Service (SaaS): entity can host and maintain the technology framework for a

usage/service fee

. Software-as-a-Product (SaaP): entity can sell licenses of the technology to practicing users

22



Conclusions

" Cloud Computingis a paradigm-shifting technology for the Power System

= A comprehensive Cloud Security and Outsourcing Framework must:
— Ensureinfrastructure security, data confidentiality, and time criticality
— Be economical against in-house infrastructures
— Provide computational performance gains that justify the paradigm shift
— Conformto market operatingrules in practice today

= This project attempts to identify the benefits, challenges, and applicability to
specific grid applications

23
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Big Data from the Electric Grid

« Synchro phasors, Intelligent Relays, Transformers, Switches and
other IEDs on the electric grid & connected to control centers are
creating increasingly vast amounts of data each day.

 Grid modernization will dramatically increase the number of sensors
and control devices on the electric grid over the decade.

 Big data from the grid will yield high operational value through
engineering, analytics, simulations and situational awareness
applications

« To maximize the value of this data, storage, access, security and
compliance requirements must be met at a reasonable cost.

« Securely transmitting and storing grid data in the cloud will allow
utilities to realize the full value of the data created by systems and
sensors deployed on the electric grid.

I SOUTHERN CALIFORNIA
An EDISON INTERNATIONAL® Campany



Cloud service usage trends by industry

When cloud usage is examined across all cloud service types in aggregate| the utilities |
industry is overall the most progressive in current and planned usage, followed by the
insurance, communications and retail industries

laaS
6 38 Manufacturing (n = 41)
Insurance (n = 24) 75 21 Wholesale Trade (n = 11)
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* When considering current usage only, and when usage is taken in aggregate, respondents from the retail industry indicated the broadest current use of cloud services, across
all cloud service types, followed by utilities, government and wholesale trade

* When considering planned usage of cloud services, across all cloud service types, respondents from the healthcare industry indicated the most planned adoption, followed by
the communications, manufacturing and transportation industries

Source : Gartner Survey, Cloud Adoption Across Vertical Industries , Feb 2015
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Investment in Public Cloud Services by Industry

The highest percentage of organizations having made significantinvestments in
public cloud were found in the manufacturing and banking industries. In contrast,
only 30% of government organizations reported having made a significant public

cloud investment.
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I, 429
I, 4 5%
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—————— s I
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SaaS is the most common and the most widely used type of cloud service, regardless of industry.

Source : Gartner Survey, Cloud Adoption Across Vertical Industries , Feb 2015
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Top drivers of public cloud adoption

The most significant driver for cloud adoption is overall cost
reduction across industries
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Overall cost reduction | 44% 25% 33% | 31%

Public cloud services are more environmentally friendly | 19% | 21% | 25% | 31% | 35% | 256% | 45% | 20% | 22% | 46%

Financial considerations (moving from capital expenditure to 13% | 14% | 17% | 31% | 24% | 25% | 279 ) 200, | 239
operating expenditure, tax advantages, and so forth) ° ° ’ ° ’ ’ ° ° ’

Operational agility and scaling (ability to react quickly to

2 36% | 42% | 25% | 12% - 45% | 20% | 44% | 23%
opportunities)

Innovation to be gained from cloud services 29% | 42% | 19% | 24% - 9% | 80% | 33% | 54%
Business units prefer public cloud models | 25% | 36% | 17% | 25% | 6% | 25% | 27% | 20% - 15%

Cloud computing is a more modern computing approach | 25% | 36% | 33% | 25% | 41% | 256% | 27% | 20%

Next
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Top inhibitors of public cloud adoption

The most significant inhibitor for cloud adoption is security and
privacy concerns
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Cloud storage is easy to use, durable, highly
available, and secure...how can we leverage it?

« Data generated by grid devices and systems and used for
operational decision making or is sensitive enough to expose
the utility to increased risk of cyber attack must be protected
In accordance with compliance and cyber security policies

e To meet this requirement:

— Data should be encrypted outside of the protected control systems
networks

— The utility shall maintain key sovereignty (ability to manage, revoke,
roll keys and access to encryption keys at all times)

— Ability to use cybersecurity tools in the cloud to review access to the
encrypted data

— Audit and non-repudiation controls for data transfers and retrieval

— Assurance from the cloud vendor that vulnerabilities and appropriate
cyber controls are in place.

I SOUTHERN CALIFORNIA
An EDISON INTERNATIONAL® Campany



Encryption models provide various levels of
assurance

Encryption Models

Server Encryption Client Encryption
Server Side Encryptionusing  Server side encryption using Server side encryption using
service managed keys customer managed keys in on-prem customer managed
Azure KeyVault keys
* Azureservicescansee * Azureservicescansee * Azureservicescansee e Azureservices cannot
decrypted data decrypted data decrypted data see decrypted data
*  Microsoft manages the * Customercontrolskeysvia ¢ Customercontrols keys *  Customerkeep keys
keys AzureKey Vault On-Prem on-premises
e Full cloud functionality e Full cloud functionality e Fullcloud functionality e REDUCED cloud

functionality

SOUTHERN CALIFORNIA
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Encrypt data with SCE keys, secure transfer and
store the file in cloud storage
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Beyond Cloud Storage — Using Cloud Services

All my data is in the cloud and many services are availableto make
it more valuable...now do | access services?

What is Azure Key Vault?

An Azure resource provider that lets you

1. Store & manage SECRETS (esp app config), and release them to authorized apps & users.
2. Store & manage KEYS, and perform cryptographic operations in isolated service.

Backed by Hardware Security Modules (HSM)

All secrets and keys are protected at rest with key chain terminating in HSMs.
Keys marked as 'HSM-protected’ are protected even at runtime with HSMs.

Key Vault # customer’s dedicated HSM

Azure Key Vault is a multi-tenant service backed by Microsoft-managed HSMs.
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Encryption — all choices

Case 1: Only your code needs to see data.

Encrypt on your own. Store keysin either Azure Key Vault, external hoster, or on-premises.

Case 2: You pass data to one or more Microsoft PaaS/SaaS services

You keep keys on-premises.
REDUCED cloud functionality.

PaaS/Saa$s service 2> Azure SQL DB & 0365 at 0365 w/ VMs ML
Storage SQL Server rest RMS

MS service can see decrypted data. Transparent Bitlocker, Azure RMS Azure Disk
Microsoft manages your keys. Database Encryption el:cltreJFe);/iiln Encryption

Full cloud functionality.

MS service can see decrypted data. Advanced AzureRMSw/ | AzureDisk

You control keysvia Azure Key Vault. Encryption BYOK Encryption

Full cloud functionality.

MS service cannot see decrypted data. Client-side AlwaysEncrypted ADRMS + N.A. N.A.
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e Cloud computing and new opportunities
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— High performance computing needs in power system modeling and
simulations
— Deploy power system analysis software in the cloud
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— Synchrophasor technology, wide area monitoring and situational
awareness
— Cloud-hosted wide area monitoring
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Overview of ISO New England
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Reliability Is the Core of ISO New England’s Mission

Fulfilled by three interconnected andinterdependentresponsibilities

Overseeing the day-to-day, reliable
operation of New England’s
electricpower generationand
transmission system

Managing
comprehensiveregional
power system planning

Developing and
administering the region’s
competitivewholesale
electricity markets



Cloud Computing and New Opportunities

e Cloud computing technology has matured and been adopted

in many industries

— On-demand self-service
— Broad network access
— Resource pooling

— Rapid elasticity

— Measured service

* New opportunities
— High performance computing
— Big data capture, processing and storage
— Data sharing and exchange
— Shared applications for regional collaboration



Outline

e Application 1:
— High performance computing needs in power system modeling and
simulations
— Deploy power system analysis software in the cloud



Evolution of Network Model Size in PSS/E
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High Performance Computing Needs

 Transmission Planning
— Needs assessment, solutionsstudies, economicstudies
— Longrangetime horizon (1 to 10+ years) with manyscenarios
— N-1, N-1-1 contingency analysis (NERC TPL-001-4)
— Thermal, voltage, and dynamicstability simulations

e Examples:

— Southeast Massachusettsand Rhode Island assessment

e 36 power flow cases, 295 first level contingencies, 2,122 second level
contingencies

e 36*295=10,620 scenarios; each takes about 6 minutes
e 10,620*6 =63,720 minutes = 1,062 hours

— Maine Power Reliability Program (MPRP) stability study
e 11 power flow cases, 477 dynamic contingencies

* One 30-second dynamic simulation takes about 15 minutes in PSS/E
e 11*477*15=78,705 minutes =1,312 hours

e Expectedincreasein penetration of wind/solar generation will
further increase the computational requirements



High Performance Computing Needs (Cont.)

e NPCC Bulk Power System (BPS) testing
— Performance-based test which determineswhether an event at a specific
location onthe transmission systemwould have a significantadverse impact
outside of the local area
— A substation’s BPS status must be re-examined after any major transmission

or generation addition orretirement
— Anyinterfacetransfer limitincrease requires BPS testing across the entire

New England system

e Afull BPS assessmentinvolves simulation of a fault on every
transmission busin New England, across at least four to six

generation dispatches
— Arecentre-assessment tied to a transfer limitincreasein Northern New
Englandinvolved over 7000 faultsimulations

e NPCC Document A-10 Classification of Bulk Power System Elements



High Performance Computing Needs (Cont.)

e Resource adequacy studies
— Probabilistic study using Monte Carlo simulation to determine installed
capacity requirements, tie benefits, etc.
— Typically users run 1000 replication years, which takes around 10 hours
— Number of sensitivities
— Each replication is independent and can be parallelized

e QOperations Planning
— Line and generation outage conditions
— Different load levels (peak, shoulder and light load)
— Different stress conditions (generation dispatch) at each load level
— Hundreds of contingencies (N-1)
— Close to two hundred stability operating guides

10



High Performance Computing Needs (Cont.)

Other computation challenges:

ElectroMagnetic transient simulations

Stochastic Unit Commitment

Security constrained AC OPF

Unit commitment and economic dispatch with corrective actions (N-1
and N-1-1 security constraints)

Long-term market simulations (DAM-RTM-AGC)

Mid-term and long-term generation and transmission outage
coordination

11



Deploy Power System Simulations in the Cloud

* |nternal computing clusters are insufficient to meet our
engineers’ computational needs

e Use cloud as the HPC platform for large scale power system

simulations
— Amazon Web Services
— CloudFuzion

e Power system software:

— TARA

— GE MARS i

— PSS/E | INTERNAL Ef2
COMPUTE

— TSAT R COMPUTER CLOUD

FARM

12
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Deploy Power System Simulations in the Cloud
— Security

ldentity and Access Management (IAM)
— Users’ credentials, permissions, etc. entty and

Virtual Private Cloud (VPC)

— Alogicallyisolated section of AWS under
users’ complete control

Virtual
Private

Security Group Control smisir o
— Virtual firewall
— Specify allowable inbound and
outbound traffics (protocol, source, port, etc.)

Secure data in transit and at rest
— SSL certificates are created for data encryption
using HTTPS protocol
— EBS volume encryption for data at rest




Deploy Power System Simulations in the Cloud
— Case Study

7,090 TARA N-1-1 simulations in Greater Boston Reliability Study

470 hours on engineer's desktop and 8 hours in internal clusters

Nine CC2.8xlarge instances (32 cores/instance @ 2.60 GHz, 60.5 GB memory)
Completed in less than one hour and AWS cost is about $5.00
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Outline

e Application 2:
— Synchrophasor technology, wide area monitoring and situational
awareness
— Cloud-hosted wide area monitoring
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Synchrophasor Technology

 Synchrophasor:
— Phasor (magnitude and angle)
— Precise GPS time stamp
— High sampling rates
e 30to 120 samples per second

Synchrohasor = Phasor + GPS + high sampling rate

e PMU - Phasor Measurement Unit
— Synchrophasor is created in the substation by PMU

18



Example of Traditional SCADA Data vs New PMU Data in Power Grid Condition Monitoring
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Wide-Area Monitoring System (WAMS)

Monitoring wide-area power system conditions in real time is
key to operational situational awareness

— Large scale PMU deployment in Eastern Interconnection due to SGIG

— Information beyond the operational region is crucial
— Current practice

e |SOs collecting data from Transmission Owners
e PMU data exchange among regions

Phasor Measurement Units and Synchrophasor
Data Flows in the North American Power Grid

¥ Transmission Owner Data C
Y Regional Data Concentrator

b
&
| N ® ® ol s 0’
® .
/ L op e |um )
i 4 . i)
‘\“\‘ C / ® Y /" data up to reliability coordinator
Lr\ W ® - ./ data between reliability coordinators
e / /" peer to peer data exchange
NASP’ North American L

Wil informiation vailabie 32 of March 8, 2015
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Challenges of Current PMU Data Exchange Scheme

e Raw PMU data exchange only

— Large volumes of data
e Bandwidth: cost, performance

— High maintenance
e Each entity has to model and maintain its own and other region’s PMU data
e There is no central PMU Registry
* No data quality information or outage status

— Lacks coordination
* Each entity processes and analyzes data separately

e Operators in different entities see different results and displays
* Interpretation discrepancy

 Point-to-point data exchange structure
— Multiple bilateral data streams: network cost, maintenance

e Latency
— Bottom-uptree structure
— Chained PDC network which accumulates time delays

21



Proof-of-Concept Cloud Hosted WAMS

Objective: demonstrate a cloud-hosted distributed platform
for real-time PMU data collection, storage, processing and

dissemination to achieve wide-area monitoring
— Security

— Network latency

— Fault tolerance

— Data consistency

— Cost

Project collaborations among
— 1SO New England Inc.

— Cornell University

— Washington State University

22



Overview of the Concept of Cloud Hosted WAMS

-n Other Cloud-Hosted
BE ™ Applications

Regional
Network Model

Real-Time Phasor ’ :

@ State Estimator I
' .l“'

New England

Regional
Data Repository

Other Regions

Other Entities” Control Centers ISO New England Cuntrol Center
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Cloud Hosted WAMS Deployment
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Key Findings

The latency due to encryption of data in transit and at rest (cloud
archive) was satisfactory

— Around 15ms between EC classicand VPC
— SSH tunnelsadded less than 2ms

— AES 256 encryption has noimpact on performance (noise level)

The average round-trip time from the ISO-NE in Massachusetts to
the Phasor State Estimator in the cloud and back to Cornell was 350
milliseconds via the Virginia data center and 425 milliseconds via
the Oregon datacenter

Data consistency (PMU raw data and state estimator results) was
confirmed betweenthe two data centers

Each data center had 13 cloud instances, with a total average cost
of $2.47 per hour per data center

Full back-up redundancy was restored within 5 minutes after data
center shutdowns.
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Conclusions

e The rapid proliferation of new technologies is transforming
how electricity is produced, delivered, and consumed.

 While offering many benefits, these changes are also
increasing the complexity of power systems and requiring
innovative approaches to keeping the lights on.

 Cloud Computing has offered many new opportunities that
the power industry could take advantage of.

e Strong business cases are key to the decisions.

e Security concerns shall not discourage adopting cloud
computing; it is necessary to understand responsibilities and
adapt security practices to this new environment.
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== Microsoft

NERC Emerging Technology Roundtable
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NIST SP 800-145 definition of cloud computing

Service Models Deployment Models

Infrastructure as a Service (IaaS) Private cloud

Platform as a Service (IaaS) Community cloud

Software as a Service (IaaS) Public cloud

Hybrid cloud

http://nvipubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
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:& Connected Grid

Is your company seeking to capitalize on smart metering system investments? Are you
looking to create smart grids and more efficient network operations?
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Collectreal-time data to detect deviations in the grid. Real-time analysis eliminates time
from data collectionto analysis, thereby increasing the efficiency in grid operations.
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Deep learning for
automated inspections

' disc-2 0,990
10983 T AT
-dl5C 2 0.971' 2




e T A é
£210,7802:5074°7
*:E; - e "t ’
¢ . "“?i 157 5y
5 e p disc-270.42
disc-2 0.995 - oP-1 s, AV Jit=5 Oeg00

Al brown-disc-4 0 760
disc-2 0.984

1 bl T P_"-_‘_}'
¢ )

ddisc-2 0.9924

Redefining what cloud

solutions can do
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Cloud services — shared responsibility

(as a Service) (as a Service) (as a Service)
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Each customer
environment is
isolated on top of
Azure’s
Infrastructure

Shared Physical
Environment

Managed by:
Customer
Vendor

Certification
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Infrastructure protection

24 hour monitored physical security

System monitoring and logging

Patch management
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Anti-Virus/Anti-Malware protection

Intrusion detection/DDoS
Penetration testing, vulnerability scanning

Security incidents and breach notification



Secure multi-tenancy

Azure Compute Mode (Host)
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Network isolation

INTERNET - v" Provides logical isolation
while enabling customer
control

Microsoft Azure
Cloud Access M Endee v' Private IP addresses are
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Data segregation

Customer
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Data protection

Data segregation At-rest data protection

Logical isolation segregates each Customers can implement a range of
customer’s data from that of others. encryption options for virtual machines
and storage.

In-transit data protection Encryption

Industry-standard protocols encrypt data ~ Data encryption in storage or in transit

in transit to/from outside components, as  can be deployed by the customer to align

well as data in transit internally by default.  with best practices for ensuring
confidentiality and integrity of data.

Data redundancy Data destruction

Customers have multiple options for When customers delete data or leave
replicating data, including number of Azure, Microsoft follows procedures to
copies and number and location of render the previous customer’s data

replication datacenters. inaccessible.



Connect on-premises servers to cloud

Storage
Backup
Disaster recovery
[dentity

Networking

On-Premises Datacenter
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What does a hybrid cloud platform look like?

End-user experiences .
Cloud appl ication model

Infrastructure services
Platform services

Cloud infrastructure

Private | Hosted | Public



Microsoft's hybrid cloud platform

Power of Azure in your datacenter

Portal | PowerShell | Dev-ops tools : R Portal | PowerShell | Dev-ops tools

Azure Resource Manager Cioud applicatiorr model Azure Resource Manager

Inirastructure services Azure laa$ | Azure Paa$S
Compute | Networking | Storage
App Service | Service Fabric

Azure IaaS | Azure PaaS iy .
prm seq

Cloud infrastructure Cloud irirartructure Cloud-inspired infrastructure

Microsoft Azure Microsoft Azure Stack
Public Private | Hosted



Microsoft
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NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

NERC CIP Implications of €louc
Computing

Tobias Whitney, Senior Manager of CIP Compliance, NERC
Reliability Assurance
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NERC Standards Scope

NERC Standards apply to the Bulk Electric System
(BES)

" Generally, 100kV and above, but with some exceptions,
primarily for radial lines

= 20MVA and above generating units, 75MVA and above
generating plants, with some exceptions for wholly behind-
the-meter generation

= Includes Control Centers that monitor and control the BES

NERC Standards do not apply to distribution (i.e.,
non-BES)

= With several exceptions, primarily UFLS, UVLS, Blackstart
Resources (generation), Cranking Paths
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&RC— Definitions

MORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Cyber Asset: Programmable electronic devices, including the
hardware, software, and data in those devices.
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NERC

MORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Definitions

BES Cyber Asset (BCA): A Cyber Asset that if rendered
unavailable, degraded, or misused would, within 15 minutes of
its required operation, misoperation, or non-operation,
adversely impact one or more Facilities, systems, or equipment,
which, if destroyed, degraded, or otherwise rendered
unavailable when needed, would affect the reliable operation of
the Bulk Electric System. Redundancy of affected Facilities,
systems, and equipment shall not be considered when
determining adverse impact. Each BES Cyber Asset is included in
one or more BES Cyber Systemes.
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NERC

Definitions

MORTH AMERICAN ELECTRIC

LIABILITY CORPORATIOM

BES Cyber System (BCS): One or more BES Cyber Assets
logically grouped by a responsible entity to perform
one or more reliability tasks for a functional entity.

= Components of the BCS also include “glue” infrastructure
components (e.g., networking infrastructure) necessary for
the system to perform its reliability tasks, like network
switches

* Tremendous flexibility is built into the definition — BCS could
be the entire control system, or a subset based on function
(HMI, server, database, FEP, etc)
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% Definitions

MORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Electronic Security Perimeter (ESP): The logical border
surrounding a network to which BES Cyber Systems are

connected using a routable protocol.
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NERC

— Definitions

RELIABILITY CORPORATION

Protected Cyber Asset (PCA): One or more Cyber Assets
connected using a routable protocol within or on an Electronic
Security Perimeter that is not part of the highest impact BES
Cyber System within the same Electronic Security Perimeter.
The impact rating of Protected Cyber Assets is equal to the
highest rated BES Cyber System in the same ESP.
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ﬂ- Definitions

MORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Electronic Access Point (EAP): A Cyber Asset interface on an
Electronic Security Perimeter that allows routable
communication between Cyber Assets outside an Electronic
Security Perimeter and Cyber Assets inside an Electronic
Security Perimeter.

Electronic Access Control or Monitoring Systems (EACMS): Cyber
Assets that perform electronic access control or electronic
access monitoring of the Electronic Security Perimeter(s) or BES
Cyber Systems. This includes intermediate Systems.

RELIABILITY | ACCOUNTABILITY



NERC

E— i Definitions

RELIABILITY CORPORATION

Control Center: One or more facilities hosting operating
personnel that monitor and control the Bulk Electric System
(BES) in real-time to perform the reliability tasks, including
their associated data centers, of: 1) a Reliability Coordinator,
2) a Balancing Authority, 3) a Transmission Operator for
transmission Facilities at two or more locations, or 4) a
Generator Operator for generation Facilities at two or more
locations.

= Includes rooms and equipment where power system
operators sit, as well as rooms and equipment containing the
“back office” servers, databases, telecommunications
equipment, etc.

= They may all be in the same room, or be located in different
buildings or in different cities.
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NERC :
— Exclusions

MORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

4.2.3.2 Cyber Assets associated with communication networks
and data communication links between discrete Electronic

Security Perimeters.

= j.e., “wide-area communications”
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General Concepts

Energy Management/SCADA/AGC/Economic Dispatch — would
most likely be considered a BCS (BES Cyber System).

Other considerations:

Would you support taking all transmission substation data and
storing it in a cloud based HIS — including substation equipment
status, P&C settings, and substation topology?
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NERC

— General Concepts

RELIABILITY CORPORATION

Would transmission network planning using a cloud based
application and cloud based storage be considered a BCS?

If used to reduce the risk of outages, would Contingency Analysis
in the cloud be considered a BCS?

If utility asset management and predictive maintenance for
transmission assets be considered a BCS?
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3" Party Access CIP Applicability

Information Access

¢ Data classification
¢ Information
Protection

CIP-011 — Information
Protection

Temporary Access

e Escorted Access
® PeriodicOn-site

CIP-004 — Training and
Awareness

CIP-005 — Interactive
Remote Access

CIP-006 — Escorted Access

Operational Support

eDecision Support

eData Analytics
eInterfaceto Cyber Assets
eAccess to CElI

CIP-004 — Training and
Awareness

CIP-004 — Personnel Risk
Assessment

CIP-005 — Interactive
Remote Access

CIP-011 — Information
Protection

Real-time Operations

eDedicated Interfaceto BES
Cyber Assets

eQperations & Maintenance of
EACMS

¢Cloud Control Center
Operations

All applicable standards
and requirements
associated with the Cyber
Assets used to:

- performthe Registered
Entity’s reliability
tasks

- Manage or operate the
Registered Entities
applicable systems.



NERC

I T TS Application of Definitions

RELIABILITY CORPORATION

CIP definitions are “device” centric

= |.e., the physical computers that make up the cloud computing
infrastructure

BCAs / BCSs perform “real-time” functions of monitoring or
controlling the BES

" Includes core networking infrastructure and network attached
storage necessary to perform functions

= Since the cloud implementation allows application processing
to occur on different compute nodes depending on
availability, virtually all computers in the cloud would be
considered BES Cyber Assets
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Physical vs. Virtual
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Physical vs. Virtual
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NERC

MORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Physical vs. Virtual

X =BCA, O=PCA X=BCA, O=CAs

Cloud ESP

Hypervisor

ESP

% O :

% % | == || -2
O ¥ ~ |

% O x| O

Can other Cyber Assets (0) be securely operated within one logically separated
virtual environment? Is this conceptsupported by the standard? No it is not.

17 RELIABILITY | ACCOUNTABILITY



NERC

MORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Virtual Networks

Network VLANs (mixed trust) — 2 Options

1. Network device can be considered a BCS or PCA and fully enclosed
within an ESP with no connection outside the ESP.

2. Categorize the network interface as an Electronic Access Point (EAP)
and treat the whole device as an EACMS. Separate, non-ESP related
interfaces are permitted.

Technical discussions:

= Adequacy of layer 2 controls in CIP environment

____________________
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NERC

1 Virtual Storage

RELIABILITY CORPORATION

Can virtual storage be considered BCS,
PCAs, or non-impactful systems in
regards to CIP?

Are real-time decision being made?

Separation Technologies Employed: IF;Acl:ess control mechanisms employed:
- LUN Masking - E_port Authentication

What are the mixed-trust e
considerations? b

Storage Array [ Storage Controller
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Application of Definitions

BCAs / BCSs in the cloud performing Control Center functions
makes the cloud part of the defined the Control Center

BCAs / BCSs connected to a network must be surrounded by an
ESP

= Cloud border infrastructure (routers, firewalls, etc) would be
considered EACMS devices, and contain EAPs

20 RELIABILITY | ACCOUNTABILITY



e Application of Definitions

MORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Other Cyber Assets inside the ESP are at minimum, PCAs

= All the other computers in the cloud (i.e., inside the ESP /
cloud boundary) — even if configured to not execute your

applications
There is no exclusion consideration for location,
ownership, or other use of Cyber Assets

= All computers, network access points, users, etc. of the cloud,
regardless of who owns them or uses them, are therefore
subject to the Registered Entity compliance obligations
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NERC

I
NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Example Requirements

CIP-004-6, R2 (formal training), R3 (personnel risk assessments)
and R4 (access authorization)

= All personnel with electronic or physical access to BES Cyber Systems and
EACMS must undergo entity specific training, entity defined PRA, and be
individually authorized by the entity

= The standards do not restrict these requirements to only entity employees
— they are specifically broad to include vendors and contractors
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NERC . Example Requirements

MORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

CIP-005-5 Requirement 1 (ESP and border protections)

= All traffic crossing the ESP in either direction must be authorized, with
rationale for granting access, and traffic must be inspected for known or

suspected malicious activities
= Not just your traffic, or traffic to your site
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NERC

 mqmmm Example Requirements

RELIABILITY CORPORATION

CIP-006-6 Requirement R1 (physical security perimeters)

= All medium impact BES Cyber Systems with External Routable Connectivity
must utilize at least one physical access control to restrict access to
personnel individually authorized by the entity

= All high impact BES Cyber Systems with External Routable Connectivity
must utilize at least two physical access control to restrict access to
personnel individually authorized by the entity

= Monitoring and alarming required
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NERC - Example Requirements

MORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

CIP-007-6 R2 (patching)

= All high and medium impact BES Cyber Systems, PCAs, and EACMS must
have a patch management program to analyze patches at least every 35
days, and install or mitigate all patched vulnerabilities within 35 days of

the completion of the analysis

CIP-007-6 R4 (event monitoring)

= All high and medium impact BES Cyber Systems, PCAs, and EACMS must
have security event monitoring, including alerting, log retention, and a
process to identify undetected Cyber Security Incidents (high)
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NERC

I
NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Future Enhancements

Standard Drafting Team currently working on a number of issues,
including virtualization

* Looking at modifying definitions to accommodate “virtual” environments —
moving away from strict “device centric” approach

= Current reading of standard appears to not support “mixed-mode” (i.e.,
combining BES Cyber System and non-BES Cyber System environments on

common hardware)
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NERC

E— e Questions

RELIABILITY CORPORATION
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