Appendix E1: Unit Design Data – Fossil Steam

Fossil Steam (Voluntary Reporting)

Note: The NERC Board of Trustees approved the GADS Task Force Report (dated July 20, 2011), which states that design data collection outside the required nine fields is solely voluntary. However, the GADS staff encourages reporters to report and update GADS design data frequently. This action can be completed by sending in this form to gads@nerc.net. GADS staff encourages using the software for design entry and updating.

Instructions
Use these forms to report design and installed equipment information for FOSSIL (steam) units. FOSSIL units are units with a single steam generator connected to a single or cross-compound turbine generator drive train. Report units that have multiple steam generators and/or multiple turbine generators connected by headers using the forms found under the heading “MISCELLANEOUS.”

Data reported on these forms should reflect the current condition and design of the unit. Do not report data for start-up equipment or equipment that is not used to carry normal load unless specifically requested.

Some data fields are designated as M1 and M2. These fields indicate that the equipment being reported may have been supplied by more than one manufacturer. Use fields designated as M1 to report all the data associated with one manufacturer’s equipment and M2 for the other.

Unit name: ________________________________

Energy Information Administration (EIA) Number: ________________________________

Subregion: ________________________________

Telephone number: ________________________________

Location of unit (State): ________________________________

Regional Entity: ________________________________

Data reporter: ________________________________

Date: ________________________________

General Unit Data

1. Identification
A series of codes uniquely identifies your utility and units. NERC assigned a unique code to identify your utility. You must assign the unique code that will identify the FOSSIL unit being reported. This code may be any number from 100 to 199 or 600 to 649. Enter the unique utility and unit code and the full name of the unit below.

Utility Codes: ________________________________ Unit Codes: ________________________________

Name of Unit: ________________________________

2. **Date the Unit Entered Service**
The in-service date establishes the starting point for review of historical performance of each unit. Using the criteria described below, report the date the unit entered service:

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Day</th>
</tr>
</thead>
</table>

Criteria:

a. The date the unit was first declared available for dispatch at some level of its capability, OR

b. The date the unit first operated at 50% of its generator nameplate megawatt capability (product of the megavolt amperes (MVA) and the rated power factor as stamped on the generator nameplate(s)).

3. **Unit Loading Characteristics at Time of Unit’s Design**
Enter the number from the list below that best describes the mode of operation the unit was originally designed for

1 – Base loaded with minor load following at night and on weekends
2 – Periodic startups with daily load-following and reduced load nightly
3 – Weekly startup with daily load-following and reduced load nightly
4 – Daily startup with daily load-following and taken off-line nightly
5 – Startup chiefly to meet daily peaks
6 – Other, describe ________________________________
7 – Seasonal Operation

4. **Design and Construction Contractors**
Identify both the architect/engineer and the general construction contractor responsible for the design and construction of the unit. If your utility was the principal designer or general constructor, enter “SELF.”

_________________________ Architect/Engineer
_________________________ Constructor

5. **Boiler – Manufacturer**
Enter the name of the manufacturer and the model or series name or number of the boiler:

_________________________ Boiler manufacturer
_________________________ Manufacturers’ model, series name, or number

6. **Boiler – Enclosure**
Is 50% or more of the boiler outdoors (not enclosed in building framing and siding)?

_____ 1 – Yes 2 – No
7. **Boiler – Nameplate Conditions**
Enter the following steam conditions for the MAIN STEAM LINES at the full-load, valves-wide-open design point:

- Steam flow rate (in lbs/hr)
- Design temperature (°F)
- Design pressure (psig)

8. **Boiler – Fuel Firing System**
Enter the type of fuel firing system the unit was designed for:

 A – *Front OR Back* – wall-mounted burners on either the front OR the back of the furnace.
 B – *Opposed* – wall-mounted burners on BOTH the front and back of the furnace.
 C – *Vertical* – burners are mounted on the ceiling of the furnace.
 D – *Tangential* – firing from the corners of the furnace with burners capable of directing the fireball up or down.
 E – *Cyclone* – horizontal (burner) cylinders connected to furnace walls wherein fuel and air are combusted in a controlled environment. Combustion gases exit through re-entrant throat into furnace, and slag drains to slag tanks. Cyclone burners may be installed in either single walls or opposed walls.
 F – *Concentric* – staged combustion system, designed primarily for NO\(_2\) control, in which the walls are blanketed with air.
 G – *Circulating fluidized bed* – upward flow of air holds the fuel and sorbent particles (e.g., limestone) in suspension in the combustion zone. Partially burned fuel passes into a collector and is routed back into the combustion zone.
 H – *Bubbling fluidized bed* – similar to circulating fluidized bed except the partially burned fuel is not recirculated.
 I – *Stoker* – overfeed method combined with suspension firing.

9. **Boiler – Type of Circulation**
Enter the type of circulation the boiler was originally designed for:

 1 – *Natural* (thermal) – water flows through furnace wall tubes unaided by circulating pumps. Primarily used with subcritical units.
 2 – *Controlled* (forced or pump assisted thermal) – water flows through furnace wall tubes aided by boiler recirculation pumps located in the downcomers or lower headers of the boiler. Used on some subcritical units.
 3 – *Once through* – no recirculation of water through the furnace wall tubes and no steam drum. Used on supercritical and some subcritical units.

10. **Boiler – Circulation System**
Enter the following information on the pumps used to recirculate water through the boiler:

 - Boiler recirculation pump(s) manufacturer(s)
 - TOTAL number of boiler recirculation pumps; include installed spares
 - MINIMUM number of boiler recirculation pumps required to obtain maximum capacity from the unit
Enter the type of circulation the boiler was originally designed for:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>M2</td>
</tr>
</tbody>
</table>

1 – **Injection** (or injection seal) – controlled-leakage boiler recirculation pumps mounted vertically with a rigid shaft designed to carry its own thrust.

2 – **Leakless** (or canned, canned-motor, or zero-leakage) – pump and its motor are an integral pressurized sealed unit.

9 – **Other**, describe

11. **Boiler – Type of Furnace Bottom**
Enter the type of furnace bottom the boiler was originally designed for:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

1 – **Dry bottom** – no slag tanks at furnace throat area (throat area is clear). Bottom ash drops through throat to bottom ash water hoppers. Design used when ash-melting temperature is greater than temperature on furnace wall, allowing for relatively dry furnace wall conditions.

2 – **Wet Bottom** – slag tanks installed at furnace throat to contain and remove molten ash from the furnace.

12. **Boiler – Furnace (Surface) Release Rate**
Enter the furnace (surface) release rate of the PRIMARY FUEL. This rate is specified in the boiler contract as the heat available per hour, in Btu’s per square foot of heat-absorbing surface in the furnace. The absorbing surface includes the furnace tube walls and the first convection superheater and re heater tubes. If the furnace contains superheater and reheater platens which extend into the furnace, these absorbing surfaces should be included also.

_____________________________ Furnace (surface) release rate (in Btu’s/SqFt/Hr)

13. **Boiler – Furnace Volumetric Heat Release Rate**
Enter the furnace volumetric heat release rate. This rate is the total quantity of thermal energy released into the furnace by the PRIMARY FUEL at its higher heating value (HHV). The volumetric heat-release rate is expressed in Btu’s per cubic foot of furnace volume per hour. It does not include the heat added by the preheated air or the heat unavailable due to the evaporation of moisture in the fuel and the combustion of hydrogen.

_____________________________ Furnace volumetric heat release rate (in Btu’s/CuFt/Hr)

14. **Boiler – Primary and Secondary Design Fuels**
Enter information on the characteristics of the primary and secondary fuels considered in the DESIGN of the unit. These fuels are used to sustain load on the unit. PRIMARY is the first fuel of choice for economic or control reasons, or that fuel contributing 50% or more of the load-carrying Btu’s. Fuel characteristics are based on design specifications. Additional notes are provided where appropriate.

<table>
<thead>
<tr>
<th>Primary Fuel</th>
<th>Secondary Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Codes</td>
<td></td>
</tr>
<tr>
<td>BM Biomass</td>
<td>OO Oil</td>
</tr>
<tr>
<td>CC Coal</td>
<td>OS Other-Solid (Tons)</td>
</tr>
<tr>
<td>DI Distillate Oil (No. 2)</td>
<td>PC Petroleum Coke</td>
</tr>
</tbody>
</table>
Appendix E1: Unit Design Data – Fossil Steam

NERC | 2023 GADS Data Reporting Instructions | January 2023
E1-FS-5

GE Geothermal PE Peat
GG Gas PR Propane
JP JP4 or JP5 SL Sludge Gas
KE Kerosene SO Solar
LI Lignite WA Water
NU Nuclear WD Wood
OG Other-Gas (Cu. Ft.) WH Waste Heat
OL Other-Liquid (BBL) WM Wind

15. Boiler – Fuel Oil Forwarding System
Some units are equipped with a fuel oil forwarding system that transfers oil from the main storage tanks to smaller tanks closer to the unit. (Complete Item 18, below, if interim storage tanks are not used.) Enter the following data on the fuel oil forwarding system:

______________________________ Fuel forwarding/transfer pump(s) manufacturer(s)
______________________________ Manufacturer(s) of the motor(s) that drives the fuel forwarding/transfer pump(s)
______________________________ TOTAL number of fuel forwarding/transfer pumps; include installed spares
______________________________ MINIMUM number of pumps required to obtain maximum capacity from the unit

16. Boiler – Burner System (General)
Enter the following information on the burner systems installed at the unit (this includes the nozzles, igniter, air registers, and the wind box arrangements):

Conventional Burners
______________________________ Primary fuel burner(s) manufacturer(s)
______________________________ TOTAL number of primary fuel burners
17. **Boiler – Burner Management System**
Enter the name of the manufacturer of each of the following burner management systems:

- Manufacturer of the combustion control system that coordinates the feedwater, air, and fuel subsystems for continuous unit operation
- Manufacturer of the burner management system that monitors only the fuel and air mixture during all phases of operation to prevent the formation of an explosive mixture

18. **Boiler – Fuel Oil Burner Supply System (In-plant)**
Enter the following information on the pumps used to forward fuel oil from the main storage tanks or the interim storage tanks (if the unit is so equipped) to the burners:

- Fuel oil burner supply pump(s) manufacturer(s)
- Manufacturer(s) of the motor(s) that drives the fuel oil burner supply pump(s)
- TOTAL number of fuel oil burner supply pumps; include installed spares
- MINIMUM number of fuel oil burner supply pumps required to obtain maximum capacity from the unit

19. **Boiler – Igniter System**
Enter the following information on the igniter system installed at the unit:

- Igniter manufacturer

_____ Enter the type of fuel the igniter(s) were originally designed for:

- A – Light (distillate) oil
- B – Heavy oil
- C – Gas
- D – Coal
- E – Oil and Gas
- F – Propane
- M – More than one

_____ Enter igniter type:
1 – *Pilot torch lighter* – an oil or gas igniter that uses an electric spark to ignite the fuel

2 – *Carbon arc* – a carbon or graphite electrode that is energized and used to ignite the fuel

3 – *High energy arc* – a low voltage, high energy pulse arc that is used to ignite the fuel

4 – *Plasma arc* – a high dc voltage current used to ionize the air resulting in a high energy arc that ignites the fuel

9 – *Other, describe* ____________________________

20. **Boiler – Coal Handling Systems – Yard Area**
Enter the following information on the equipment installed in the coal yard:

<table>
<thead>
<tr>
<th>Manufacturer(s)</th>
<th>Manufacturer(s)</th>
<th>Coal crusher(s)</th>
<th>Stack/reclaimer system(s)</th>
<th>Number of critical path coal conveyor systems available to the unit</th>
</tr>
</thead>
</table>

21. **Boiler – Coal Feeders for Pulverizers or Coal Mills**
Enter the following information on the coal feeder equipment used to supply coal from the in-plant coal holding bunkers to the pulverizers or coal mills:

<table>
<thead>
<tr>
<th>Manufacturer(s)</th>
<th>TOTAL number of feeders PER pulverizer or coal mill</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of feeder(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Gravimetric belt</td>
<td>system that weighs the coal as it is fed to the pulverizer or coal mill</td>
</tr>
<tr>
<td>2 – Volumetric belt</td>
<td>system that measures the volume of coal fed to the pulverizer or coal mill.</td>
</tr>
<tr>
<td>3 – Star roll</td>
<td>a multi-blade rotor that turns about a fixed, hollow, cylindrical core feeding a fixed measure of coal</td>
</tr>
<tr>
<td>4 – Rotating table</td>
<td>system that operates by piling coal on a rotating table, and, as the table rotates, a stationary blade diverts the coal to a feed chute to the mill</td>
</tr>
<tr>
<td>9 – Other, describe</td>
<td>____________________________</td>
</tr>
</tbody>
</table>

22. **Boiler – Pulverizer or Coal Mill Capability**
Enter the following information on the capability of the pulverizer(s) or coal mill(s):

<table>
<thead>
<tr>
<th>Manufacturer(s)</th>
<th>Design coal flow rate in lb/hr (per pulverizer or coal mill) using design fuel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pulverizer(s) or coal mill(s)</th>
<th>TOTAL number of pulverizers or coal mills; include installed spares</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Model number(s)</th>
<th>MINIMUM number of pulverizers or coal mills required to obtain maximum capacity from the unit</th>
</tr>
</thead>
</table>
Appendix E1: Unit Design Data – Fossil Steam

NERC | 2023 GADS Data Reporting Instructions | January 2023
E1-FS-8

23. **Boiler – Primary Air System**
Enter the following information on the primary air system that provides the air needed to transport the coal from the pulverizers or coal mills to the furnace (note: exhausters for pulverizers or coal mills covered in item 24):

<table>
<thead>
<tr>
<th>Primary air fan(s) manufacturer(s)</th>
<th>Manufacturer(s) of the motor(s) that drives the primary air fan(s)</th>
<th>TOTAL number of primary air fans; include installed spares</th>
<th>MINIMUM number of primary air fans required to obtain maximum capacity from the unit</th>
</tr>
</thead>
</table>

Enter the type of primary air fan(s) at the unit:

M1 M2

Centrifugal – blades mounted on an impeller (or rotor) that rotates within a spiral or volute housing.

Mark the type of blades used on this type of fan:

1 – Forward curved
2 – Straight (radial or radial tipped)
3 – Backward curved (air foil or flat)
4 – Axial (fixed or variable pitch) – blades attached to central hub parallel to air flow
9 – Other, describe

24. **Boiler – Exhausters for Pulverizers or Coal Mills**
Enter the following information on the exhausters used to transport the pulverized coal from the pulverizer(s) or coal mill(s) to the burner front:

<table>
<thead>
<tr>
<th>Exhauster fan(s) manufacturer(s)</th>
<th>Manufacturer(s) of the motor(s) that drives the exhauster fan(s)</th>
<th>TOTAL number of exhauster fans; include installed spares</th>
<th>MINIMUM number of exhauster fans required to obtain maximum capacity from the unit</th>
</tr>
</thead>
</table>

Enter the type of exhauster fan(s) at the unit:

M1 M2
Centrifugal – blades mounted on an impeller (or rotor) which rotates within a spiral or volute housing. Mark the type of blades used on this type of fan:
1 – Forward curved
2 – Straight (radial or radial tipped)
3 – Backward curved (airfoil or flat)
4 – Axial (fixed or variable pitch) – blades attached to central hub parallel to air flow
9 – Other, describe

25. Boiler – Balanced Draft or Pressurized Draft

Enter the type of draft the boiler was designed for:

1 – Balanced draft – equipped with both induced draft and forced draft fans. The furnace operates at positive pressure at air entry and negative pressure at flue gas exit
2 – Pressurized draft – equipped with forced draft fans only. The furnace and draft system operate at positive pressure

Year Month Day

Enter the following information on the forced draft fans installed at the unit:

Forced draft fan(s) manufacturer(s)
Manufacturer(s) of the motor(s)/steam turbine(s) that drives the forced draft fan(s)
TOTAL number of forced draft fans; include installed spares
MINIMUM number of forced draft fans required to obtain maximum capacity from the unit

Enter the type of forced draft fan(s) at the unit:

M1 M2

Centrifugal – blades mounted on an impeller (or rotor) which rotates within a spiral or volute housing. Mark the type of blades used on this type of fan:
1 – Forward curved
2 – Straight (radial or radial tipped)
3 – Backward curved (airfoil or flat)
4 – Axial (fixed or variable pitch) – blades attached to central hub parallel to air flow
9 – Other, describe

Enter the type of forced draft fan drives(s) at the unit:

M1 M2

1 – Single speed motor
2 – Two speed motor
Appendix E1: Unit Design Data – Fossil Steam

NERC | 2023 GADS Data Reporting Instructions | January 2023
E1-FS-10

27. **Boiler – Induced Draft Fan System**

Enter the following information on the induced draft fans installed at the unit:

- Induced draft fan(s) manufacturer(s)
- Manufacturer(s) of the motor(s)/steam turbine(s) that drives the induced draft fan(s)
- TOTAL number of induced draft fans; include installed spares
- MINIMUM number of induced draft fans required to obtain maximum capacity from the unit

Enter the type of induced draft fan(s) at the unit:

M1 M2

Centrifugal – blades mounted on an impeller (or rotor) which rotates within a spiral or volute housing. Mark the type of blades used on this type of fan:

1 – Forward curved
2 – Straight (radial or radial tipped)
3 – Backward curved (air foil or flat)
4 – Axial (fixed or variable pitch) – blades attached to central hub parallel to air flow
9 – *Other, describe*

Enter the type of induced draft fan drive(s) at the unit:

M1 M2

1 – Single speed motor
2 – Two speed motor
3 – Variable speed motor
4 – Steam turbine
9 – *Other, describe*

28. **Boiler – Gas Recirculating Fan System**

Enter the following information on the gas recirculating fans installed at the unit:

- Gas recirculating fan(s) manufacturer(s)
- Manufacturer(s) of the motor(s)/steam turbine(s) that drives the gas recirculating fan(s)
- TOTAL number of gas recirculating fans; include installed spares
- MINIMUM number of gas recirculating fans required to obtain maximum capacity from the unit
Enter the type of gas recirculating fan(s) at the unit:

M1 \[\underline{\text{M2}} \]

Centrifugal – blades mounted on an impeller (or rotor) which rotates within a spiral or volute housing. Mark the type of blades used on this type of fan:

- 1 – Forward curved
- 2 – Straight (radial or radial tipped)
- 3 – Backward curved (air foil or flat)
- 4 – Axial (fixed or variable pitch) – blades attached to central hub parallel to air flow
- 9 – Other, describe

Enter the type of gas recirculating fan drive(s) at the unit:

M1 \[\underline{\text{M2}} \]

1 – Single speed motor
2 – Two speed motor
3 – Variable speed motor
4 – Steam turbine
9 – Other, describe

29. Boiler – Primary Air Heating System
Enter information about the air heaters used to transfer the excess heat from the flue gases to the incoming primary air for the furnace:

Primary air heater(s) manufacturer(s)
TOTAL number of primary air heaters

Enter the type of primary air heater(s) at the unit:

M1 \[\underline{\text{M2}} \]

1 – Regenerative (Ljungstrom) – rotating heat exchanger that continuously rotates sections (baskets) composed of metal plates from the hot flue gas furnace exit plenum to the furnace intake air plenums
2 – Tubular – hot flue gas from the furnace is channeled through tubes (vertical or horizontal) where the heat is transferred to the furnace intake air passing across the outside of the tubes
3 – Steam Coil – similar to tubular except steam is used to preheat the intake air
4 – Regenerative (Rothemule)
9 – Other, describe

30. Boiler – Secondary Air Heating System
Enter information about the secondary (or backup) air heaters used to transfer the excess heat from the flue gases to the incoming primary air for the furnace:

Secondary air heater(s) manufacturer(s)
TOTAL number of secondary air heaters
Enter the type of secondary air heater(s) at the unit:

M1 M2

1 – *Regenerative* (Ljungstrom) – rotating heat exchanger that continuously rotates sections (baskets) composed of metal plates from the hot flue gas furnace exit plenum to the furnace intake air plenums thus heating the intake air

2 – *Tubular* – hot flue gas from the furnace is channeled through tubes (vertical or horizontal) where the heat is transferred to the furnace intake air passing across the outside of the tubes

3 – *Steam Coil* – similar to tubular except steam is used to preheat the intake air

4 – *Regenerative* (Rothemule)

9 – *Other, describe*

31. **Boiler – Soot Blowers**

Enter the following information on the soot blower system installed on the furnace:

| Soot blower(s) manufacturer(s) | TOTAL number of soot blowers installed on the furnace |

Enter the type(s) of medium(s) used to blow the soot. If a variety of soot blowers are used at the unit, note the number of each type used.

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Type</th>
<th>Number</th>
<th>Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Steam</td>
<td></td>
<td>2 – Air</td>
<td></td>
<td>3 – Water</td>
<td></td>
</tr>
<tr>
<td>4 – Sonic</td>
<td></td>
<td>5 – Steam/Air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 – Other, describe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32. **Boiler – Bottom Ash Handling System**

Bottom ash handling system manufacturer

33. **Boiler – Mechanical Fly Ash Precipitator System**

Fly ash contained in the furnace exit flue gases can be removed by various types of mechanical precipitators including cyclone collectors, and wet or venturi scrubbers (note: SO₂ scrubbers covered in items 37–48). Enter the following information on the mechanical precipitator equipment:

Mechanical precipitator manufacturer

Enter the location of the mechanical precipitator with respect to the air heaters:

1 – Before air heaters
Appendix E1: Unit Design Data – Fossil Steam

34. **Boiler – Electrostatic Precipitator**
Fly ash contained in the furnace exit flue gases can be removed by using an electrostatic precipitator. Enter the following information on the electrostatic precipitator:

- Electrostatic precipitator manufacturer
- Enter the location of the electrostatic precipitator with respect to the air heaters:
 1. Before air heaters
 2. After air heaters
 3. Both – Flue gas is extracted both before and after the air heaters
 9. Other, describe

35. **Boiler – Baghouse Fly Ash System**
Fly ash contained in the furnace exit flue gas may be removed using fabric or fabric bag filters. Enter the following information on the baghouse fly ash system:

- Baghouse system manufacturer
- Manufacturer of the baghouse exhauster booster fans
- Manufacturer of the motor that drives the baghouse booster fans
- TOTAL number of baghouse booster fans installed on the unit
- Enter the baghouse type:
 1. Reverse – clean flue gas is blown in the direction counter to normal operation to remove fly ash from the bag
 2. Pulse (or pulse set) – short bursts of compressed air are blown into the bag to cause a momentary expansion of the bag to dislodge the entrapped fly ash
 3. Shaker – the bag is literally shaken to remove the fly ash collected on its surface
 9. Other, describe
- Enter the type of baghouse booster fan(s) at the unit:
 - Centrifugal – blades mounted on an impeller (or rotor) which rotates within a spiral or volute housing. Mark the type of blades used on this type of fan:
 1. Forward curved
 2. Straight (radial or radial tipped)
 3. Backward curved (air foil or flat)
 4. Axial (fixed or variable pitch) – blades attached to central hub parallel to air flow
 9. Other, describe
36. **Boiler – Fly Ash Transport System**

Enter the following information on the fly ash removal system:

_________________________ Fly ash removal system manufacturer

_______ Enter the type of fly ash removal system:

1 – *Vacuum* – ash conveying system operates at a vacuum relative to the fly ash collection hoppers.

2 – *Pressure* – ash conveying system operates at a pressure greater than the pressure in the fly ash collection hoppers

3 – *Vacuum-pressure* – employs the best features of both the vacuum and pressure systems

4 – *Water* (sluice) – employs water to sluice the ash away from the hoppers

5 – *Vacuum and water slurry*

9 – Other, describe ____________________________

37. **FGD Manufacturer**

Enter the following information on the FGD system (venturi scrubbers covered in Item 33):

_________________________ FGD system manufacturer

38. **FGD Installation Date**

Enter the date the FGD system was initially operated:

Year __________ Month __________ Day __________

Was the FGD system a part of the original design of the unit? A “no” answer means the FGD system was a retrofit after the unit entered service.

_______ 1 – Yes 2 – No

39. **FGD Cycle Type**

_______ Enter the type of FGD cycle used by the unit:

1 – *Single loop* – single recirculation loop for controlling the reagent

2 – *Dual loop* – two separate and distinct recirculation loops for controlling the reagent (same reagent used in both loops)

3 – *Dual alkali* – two separate and distinct reagents controlled through the use of separate recirculation loops operated in series

9 – Other, describe ____________________________

40. **FGD Absorbing Reagents**

The “reagent” is the substance that reacts chemically with the flue gas to remove the resident sulfur dioxide. Name the reagent(s) used in the unit’s FGD system:
Appendix E1: Unit Design Data – Fossil Steam

Reagent #1
Reagent #2 (if dual alkali system)

41. **FGD Flow Rates**
Enter the following information regarding the flue gas flow rates into the FGD system:

- Maximum design flue gas flow rate at the exit of the boiler in actual cubic feet per minute (ACFM).
- Maximum design flue gas flow rate capable of passing through the FGD system in ACFM

42. **FGD Bypass Capacity**
The flue gas bypass capacity is the percent of the total flue gas flow (maximum design condition) that can be bypassed around the FGD while permitting the unit to operate within compliance. Enter the following information:

Percent of scrubber bypass capacity at compliance levels. (Enter 0% if no bypass capacity exists.)

43. **FGD Modules**
Several towers may work together in series or in parallel to form a single FGD module with one or more modules installed at a single unit. Enter the following information:

- TOTAL number of FGD modules on the unit
- TOTAL number of FGD towers per module
- MINIMUM number of FGD modules required to obtain maximum capacity from the unit
- Are the FGD modules shared with another unit? 1 – Yes 2 – No

44. **Scrubber/Absorber Tower Type**
The scrubber/absorber tower type identifies the interaction methods used between the flue gas and the reagent.

Enter the type combination of types of scrubber/absorber used on the unit:

- 1 – Venturi – a conveying throat to accelerate the inlet flue gas to a higher velocity
- 2 – Spray – an open gas absorption vessel in which scrubbing slurry is introduced into the gas stream from atomizing nozzles
- 3 – Tray – tray(s) internal to the scrubber/absorber consists of a horizontal metal surface perforated with holes or slots mounted transversely across the vessel
- 4 – Packed – a bed of stationary (static) or mobile (moving bed) packing, mounted transversely across the vessel
- 5 – Combination – two or more of the above-noted designs used in the same tower
- 9 – Other, describe

45. **FGD Fans**
FGD fans are those USED EXCLUSIVELY to induce or force flue gases through the FGD towers. These fans help overcome the pressure drop through the FGD and are IN ADDITION to the boiler I.D. and F.D. fans. Enter the following information:

FGD fan(s) manufacturer(s)

Manufacturer(s) of the motor(s) that drives the FGD fan(s)

TOTAL number of FGD fans; include installed spares

MINIMUM number of FGD fans required to obtain maximum capacity from the unit

Enter the type of FGD fan(s) at the unit:

M1 M2

Centrifugal – blades mounted on a impeller (or rotor) which rotates within a spiral or volute housing. Mark the type of blades used on this type of fan:

1 – Forward curved

2 – Straight (radial or radial tipped)

3 – Backward curved (air foil or flat)

4 – Axial (fixed or variable pitch) – blades attached to central hub parallel to air flow

9 – Other, describe

Enter the location of the FGD fan(s) with respect to the FGD:

M1 M2

1 – Before

2 – After

9 – Other, describe

46. Scrubber Recycle (Liquid) Pumps

Recycle (liquid) pumps circulate reagent through the FGD towers. Enter the following information on the scrubber recycle pumps at the unit:

Recycle pump(s) manufacturer(s)

Manufacturer(s) of the motor(s) that drives the recycle pump(s)

TOTAL number of recycle pumps PER tower; include installed spares

MINIMUM number of recycle pumps required to obtain maximum capacity from the unit

47. Stack Gas Reheater Methods

After the flue gases leave the FGD system, the exit gases may be heated before discharge through the stack. Two methods commonly used to reheat the flue gases are: direct (injection of hot gases) or indirect (passing through a heat exchanger).

Enter the type of stack gas reheating method used at the unit:

1 – In-line – installation of a heat exchanger in the flue gas duct downstream of the mist eliminators
2. **Direct combustion** – firing of gas or oil burners and mixing product gases with the cooler scrubbed flue gas

3. **Indirect hot air** – heating of ambient air in an external heat exchanger (using steam) and injecting this heated air into scrubbed flue gas discharge

4. **Waste heat recovery** – use of unscrubbed flue gas in a heat exchanger to reheat the scrubbed stack gas

5. **Exit gas recirculation** – a portion of the scrubbed gas is diverted from the exit stream, reheated by a heat exchanger and then injected into the scrubbed flue gas before entering the stacks

6. **Bypass reheater** – bypass of a portion of the hot unscrubbed flue gas around the FGD system for injection into the cooler scrubbed flue gas

9. **Other, describe**

48. **FGD Primary Mist Eliminator**
Enter the following information on the FGD primary mist eliminators:

Enter the type of mist eliminator(s) used in the FGD towers:

1. **Impingement (or inertial impaction)** – open or chevron vanes placed in the gas stream divert and collect the mist on their surfaces and direct the droplets away

2. **Electrostatic** – mist removal through the use of an electrostatic field

3. **Centrifugal** – uses baffles that impart a centrifugal force on the gas

4. **Cyclonic** – uses tangential inlets which impart a swirl or cyclonic action to the gas as it passes through the separator chamber

9. **Other, describe**

A “mist eliminator stage” is a single set of separate and distinct elements through which the flue gas must pass.

Enter the type of mist eliminator(s) used in the FGD towers:

49. **Steam Turbine – Manufacturer**
Enter the name of the manufacturer of the steam turbine:

Steam turbine manufacturer

50. **Steam Turbine – Enclosure**
Is 50% or more of the steam turbine outdoors (not enclosed in building framing and siding)?

1. **Yes**
2. **No**

51. **Steam Turbine – Nameplate Rating in MW**
“Nameplate” is the design capacity stamped on the steam turbine’s nameplate or published on the turbine guarantee flow diagram. In cases where the steam turbine’s nameplate rating cannot be determined, approximate the rating by multiplying the MVA (megavoltamperes) by the rated power factor found on the nameplate affixed to the unit’s generator (or nameplates in the case of cross compound units).
52. **Steam Turbine – Type of Steam Turbine**
Identify the steam turbine’s casing or shaft arrangement.

Enter the type of steam turbine at the unit:

1 – *Single casing* – single (simple) turbine having one pressure casing (cylinder)
2 – *Tandem compound* – two or more casings coupled together in line
3 – *Cross compound* – two cross-connected single casing or tandem compound turbine sets where the shafts are not in line
4 – *Triple compound* – three cross-connected single casing or tandem compound turbine sets
9 – Other, describe

53. **Steam Turbine – Manufacturer’s Building Block or Design Codes**
Steam turbine building blocks or manufacturer’s design codes are assigned by the manufacturer to designate a series of turbine designs, LM5000 or W501 for example. Enter the following information:

Manufacturer’s code, first shaft

Manufacturer’s code, second shaft (cross or triple compound

Turbine configuration and number of exhaust flows (e.g., tandem compound, four flow)

54. **Steam Turbine – Steam Conditions**
Enter the following information on the Main, First Reheat, and Second Reheat Steam design conditions:

<table>
<thead>
<tr>
<th></th>
<th>Main Stream</th>
<th>First Reheat</th>
<th>Second Reheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure (psig)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

55. **Steam Turbine – High, Intermediate, and Low Pressure Sections**
Enter the following information describing various sections of the steam turbine:

High Pressure Casings

TOTAL number of high pressure casings, cylinders or shell

Back pressure of the high pressure condenser (if applicable) to the nearest one-tenth inch of mercury at the nameplate capacity and design water temperature

Combined High Pressure/Intermediate Pressure Casings

TOTAL number of high/intermediate pressure casings, cylinders or shells

Intermediate Pressure Casings

TOTAL number of intermediate pressure casings, cylinders or shells

Combined Intermediate/Low Pressure Casings

TOTAL number of intermediate/low pressure casings, cylinders or shell
Low Pressure Casings

__________ TOTAL number of low pressure casings, cylinders or shells

__________ Back pressure of the low pressure condenser to the nearest one-tenth inch of mercury at nameplate capacity and design water temperature

__________ The last stage blade length (inches) of the low pressure turbine, measured from hub to end of top of blade

56. Steam Turbine – Governing System

Enter the following information for the steam turbine governing system:

_______ Enter the type of governing system used at the unit:

1 – Partial arc – main steam flow is restricted to one sector of the turbine’s first stage at startup

2 – Full arc – main steam is admitted to all sectors of the turbine’s first stage at startup

3 – Either – capable of admitting steam using either partial or full arc technique

9 – Other, describe __________________________

_______ Enter the type of turbine governing system used at the unit:

1 – Mechanical hydraulic control (MHC) – turbine speed monitored and adjusted through mechanical and hydraulic linkage

2 – Analog electro-hydraulic control (EHC) – analog signals control electro-hydraulic linkages to monitor and adjust turbine speed

3 – Digital electro-hydraulic control (DHC) – same as EHC except signals are digital rather than analog

9 – Other, describe __________________________

57. Steam Turbine – Lube Oil System

Enter the following information for the steam turbine main lube oil system:

___________________________ Main lube oil system manufacturer

___________________________ Main lube oil pump(s) manufacturer

___________________________ Manufacturer of the motor(s)/steam turbine(s) that drives the main lube oil pump(s)

___________________________ TOTAL number of steam turbine main lube oil pumps; include installed spares

_______ Enter the type of driver on the main lube oil pump:

1 – Motor

2 – Shaft

3 – Steam turbine

9 – Other, describe __________________________

58. Generator – Manufacturer

Enter the name of the manufacturer of the electric generator:
Appendix E1: Unit Design Data – Fossil Steam

NERC | 2023 GADS Data Reporting Instructions | January 2023
E1-FS-20

59. Generator – Enclosure
Is 50% or more of the generator outdoors (not enclosed in building framing and siding)?

[] 1 – Yes [] 2 – No

60. Generator – Ratings and Power Factor
Enter the following information about the generator:

<table>
<thead>
<tr>
<th>Design (Nameplate) Item</th>
<th>Main Generator</th>
<th>Second* Shaft</th>
<th>Third* Shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage to nearest one-tenth kV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megavoltamperes (MVA) Capability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Factor (enter as %)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Cross compound units.

61. Generator – Cooling System
Two types of cooling methods are typically used. First is the “innercooled” method, where the cooling medium is in direct contact with the conductor copper or is separated by materials having little thermal resistance. The other is the “conventional” cooling method where the heat generated within the windings must flow through the major ground insulation before reaching the cooling medium.

[] Enter the type of cooling method used by the generator:

1 – Stator innercooled and rotor innercooled
2 – Stator conventionally cooled and rotor conventionally cooled
3 – Stator innercooled and rotor conventionally cooled
9 – Other, describe ___________________________

Enter the mediums used to cool the generator’s stator and rotor:

[] Stator [] Rotor

<table>
<thead>
<tr>
<th>Medium</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Air</td>
<td>H – Hydrogen</td>
<td>O – Oil</td>
<td>W – Water</td>
</tr>
</tbody>
</table>

62. Generator – Hydrogen Pressure
Enter the generator hydrogen pressure IN PSIG at nameplate MVA

63. Exciter – Configuration
Enter the following information about the main exciter:

[] Exciter manufacturer

[] TOTAL number of exciters; include installed spares
MINIMUM number of exciters required to obtain maximum capacity from the unit

Enter the type of main exciter used at the unit:

1 – Static – static excitation where D.C. is obtained by rectifying A.C. from generator terminals and D.C. is fed into rotor by collector rings

2 – Rotating D.C. generator – exciter supplies D.C. from a commutator into the main rotor by means of collector rings

3 – Brushless – an A.C. exciter (rotating armature type) whose output is rectified by a semiconductor device to provide excitation to an electric machine. The semiconductor device would be mounted on and rotate with the A.C. exciter armature

4 – Alternator rectifier

9 – Other, describe

Enter the type(s) of exciter drive(s) used by the main exciter IF it is rotating:

1 – Shaft direct

2 – Shaft gear

3 – Motor

9 – Other, describe

64. Auxiliary Systems – Main Condenser

Enter the following information for the main condenser and its auxiliaries:

Main condenser manufacturer

TOTAL number of passes made by the circulating water as it passes through the condenser

TOTAL number of condenser shells

Condenser tube materials used in the majority (50% or more) of the condenser tubes

Air ejector(s) or vacuum pump(s) manufacturer

Enter the type of air removal equipment used on the condenser:

1 – Vacuum pump

2 – Steam jet air ejector

3 – Both

9 – Other, describe

Enter the type of cooling water used in the condenser:

1 – Fresh – salinity values less than 0.50 parts per thousand

2 – Brackish – salinity value ranging from approximately 0.50 to 17 parts per thousand

3 – Salt – salinity values greater than 17 parts per thousand
9 – Other, describe

Enter the origin of the circulating water used in the condenser:

1 – River
2 – Lake
3 – Ocean or Bay
4 – Cooling Tower
9 – Other, describe

65. **Auxiliary Systems – Condenser Cleaning System**
Enter the following information about the ON-LINE main condenser cleaning system (leave blank if cleaning is manual):

On-line main condenser cleaning system manufacturer

Enter the type of on-line main condenser cleaning system used at the unit:

1 – Ball sponge rubber
2 – Brushes
9 – Other, describe

66. **Auxiliary Systems – Condensate Polishing System**
A “condensate polisher” is an in-line demineralizer located in the condensate water system to treat water coming from the condenser to the boiler. It is not the demineralizer that prepares raw or untreated water for eventual use in the steam production process.

Enter the following information about the condensate polishing system at the unit:

Condensate polishing system manufacturer

Enter the % of the condensate flow at maximum unit capacity that can be treated:

% Treated

67. **Auxiliary Systems – Condensate Pumps**
Enter the following information for the main condensate pumps (those at the discharge of the condenser):

Condensate pump(s) manufacturer(s)

Manufacturer(s) of the motor(s) that drives the condensate pump(s)

TOTAL number of condensate pumps; include installed spares

MINIMUM number of condensate pumps required to obtain maximum capacity from the unit

68. **Auxiliary Systems – Condensate Booster Pumps**
Appendix E1: Unit Design Data – Fossil Steam

Condensate booster pumps increase the pressure of the condensate water between the low pressure and the intermediate or high pressure feedwater heaters. Enter the following information for the condensate booster pumps:

<table>
<thead>
<tr>
<th>Manufacturer(s) of the motor(s) that drives the condensate booster pump(s)</th>
<th>TOTAL number of condensate booster pumps; include installed spares</th>
<th>MINIMUM number of condensate booster pumps required for maximum capacity from the unit</th>
</tr>
</thead>
</table>

69. Auxiliary Systems – Feedwater (Boiler Feed) Pumps

The feedwater (boiler feed) pumps move the feedwater through the feedwater system into the boiler. Enter the following information on the feedwater pumps installed at the unit:

<table>
<thead>
<tr>
<th>Feedwater (boiler feed) pump(s) manufacturer(s)</th>
<th>Normal operating speed (RPM) of the feedwater pumps</th>
<th>TOTAL number of feedwater pumps; include installed spares</th>
<th>MINIMUM number of feedwater pumps required to obtain maximum capacity from the unit</th>
<th>PERCENT (%) of the unit’s maximum capacity that can be achieved with a single feedwater pump</th>
</tr>
</thead>
</table>

70. Auxiliary Systems – Feedwater (Boiler Feed) Pump Drives

Enter the following information for the feedwater (boiler feed) pump drives:

<table>
<thead>
<tr>
<th>Manufacturer(s) of motor(s) or steam turbine(s) that drives the feedwater pump(s)</th>
<th>Enter the type of equipment used to drive the feedwater (boiler feed) pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>M2</td>
</tr>
<tr>
<td>1 – Motor – single speed</td>
<td>5 – Shaft</td>
</tr>
<tr>
<td>2 – Motor – two speed</td>
<td>6 – Motor gear</td>
</tr>
<tr>
<td>3 – Motor – variable speed</td>
<td>7 – Steam gear</td>
</tr>
<tr>
<td>4 – Steam turbine</td>
<td>8 – Shaft gear</td>
</tr>
<tr>
<td>9 – Other, describe</td>
<td></td>
</tr>
</tbody>
</table>

Specify coupling type used for feedwater (boiler feed) pump

<table>
<thead>
<tr>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – Hydraulic</td>
<td></td>
</tr>
<tr>
<td>2 – Mechanical</td>
<td></td>
</tr>
<tr>
<td>3 – Other, describe</td>
<td></td>
</tr>
</tbody>
</table>
71. **Auxiliary Systems – Startup Feedwater (Boiler Feed) Pumps**

Enter the following information for the startup feedwater pump(s) at the unit:

- **Startup feedwater pump(s) manufacturer(s)**
- **Manufacturer(s) of the motor(s) that drives the startup feedwater pump(s)**
- **PERCENT (%) of the unit’s maximum capacity that can be achieved with a single startup feedwater pump**

Indicate the additional capabilities of the startup feedwater pump:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>M2</td>
</tr>
</tbody>
</table>
1. ADDITIVE: operated in conjunction with the feedwater (boiler feed) pumps
2. REPLACEMENT: can carry load when the feedwater pumps are inoperative
3. STARTUP only: cannot be used in lieu of the feedwater pumps
9. Other, describe

72. **Auxiliary Systems – High Pressure Feedwater Heaters**

High pressure feedwater heaters are heat exchangers between the feedwater (boiler feed) pumps discharge and the economizer inlet. Enter the following information for the HIGH pressure feedwater heaters at the unit:

- **High pressure feedwater heater(s) manufacturer(s)**
- **TOTAL number of high pressure feedwater heaters**
- **Feedwater heater tube materials used in 50% or more of the tubes**

Enter the type of HIGH pressure feedwater heater(s):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>M2</td>
</tr>
</tbody>
</table>
1. Horizontal – longitudinal axis of the heater shell is horizontal
2. Vertical – longitudinal axis of the heater shell is vertical
3. Both
9. Other, describe

73. **Auxiliary Systems – Intermediate Pressure Feedwater Heaters**

Intermediate pressure feedwater heaters are heat exchangers between the condensate booster pump discharge and the deaerator. Enter the following information for the INTERMEDIATE pressure feedwater heaters at the unit:

- **Intermediate pressure feedwater heater(s) manufacturer(s)**
- **TOTAL number of intermediate pressure feedwater heaters**
- **Feedwater heater tube materials used in 50% or more of the tubes**
Enter the type of INTERMEDIATE pressure feedwater heater(s):

M1 M2

1 – Horizontal – longitudinal axis of the heater shell is horizontal
2 – Vertical – longitudinal axis of the heater shell is vertical
3 – Both
9 – Other, describe ____________________________

74. Auxiliary Systems – Low Pressure Feedwater Heaters
Low pressure feedwater heaters are heat exchangers between the condensate pump discharge and the condensate booster pump inlet. If the unit does not have condensate booster pumps, the low pressure feedwater heaters are located between the condensate pumps and the deaerator. Enter the following information for the LOW pressure feedwater heaters at the unit:

_____________________________ Low pressure feedwater heater(s) manufacturer(s)
_____________________________ TOTAL number of low pressure feedwater heaters
_____________________________ Feedwater heater tube materials used in 50% or more of the tubes

_____________________________ Enter the type of LOW pressure feedwater heater(s):

M1 M2

1 – Horizontal – longitudinal axis of the heater shell is horizontal
2 – Vertical – longitudinal axis of the heater shell is vertical
3 – Both
9 – Other, describe ____________________________

75. Auxiliary Systems – Deaerator Heater
Enter the following information on the deaerator heater at the unit:

_____________________________ Deaerator manufacturer(s)

_____________________________ Enter the type of deaerator heater(s):

M1 M2

1 – Spray – high-velocity stream jet atomizes and scrubs the condensate
2 – Tray – series of trays over which the condensate passes and is deaerated
3 – Vacuum – a vacuum condition inside the shell for deaeration
4 – Combination
9 – Other, describe ____________________________

76. Auxiliary Systems – Heater Drain Pumps
Enter the following information for the heater drain pumps at the unit:

_____________________________ Heater drain pump(s) manufacturer(s)
_____________________________ Manufacturer(s) of the motor(s) that drives the heater drain pump(s)
Appendix E1: Unit Design Data

77. **Auxiliary Systems – Circulating Water Pumps**
Enter the following information for the circulating water pumps:

- Circulating water pump(s) manufacturer(s)
- Manufacturer(s) of the motor(s) that drives the circulating water pump(s)
- TOTAL number of circulating water pumps; include installed spares
- MINIMUM number of circulating water pumps required to obtain maximum capacity from the unit DURING WINTER SEASON

78. **Auxiliary Systems – Cooling Tower and Auxiliaries**
Enter the following information for the cooling towers and all related auxiliary equipment at the unit:

- Cooling tower manufacturer(s)
- Cooling tower fan(s) manufacturer(s)
- Manufacturer(s) of the motor(s) that drives the cooling tower fan(s)

Enter the type of cooling tower(s) used:

<table>
<thead>
<tr>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

The cooling tower booster pumps increase the pressure of the circulating water and force the water to the top of the cooling tower.

- Cooling tower booster pump(s) manufacturer(s)
- Manufacturer(s) of the motor(s) that drives the cooling tower booster pump(s)
- TOTAL number of cooling tower booster pumps; include installed spares
- MINIMUM number of cooling tower booster pumps required to obtain maximum capacity from the unit

79. **Balance of Plant – Main Transformer**
The “main transformer” is the unit step-up transformer connecting the generator (or multiple generators if unit is cross compound) to the transmission system. Enter the following information for the MAIN transformer(s) at the unit:

<table>
<thead>
<tr>
<th>Information</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main transformer(s) manufacturer(s)</td>
<td></td>
</tr>
<tr>
<td>TOTAL number of main transformers; include installed spares</td>
<td></td>
</tr>
<tr>
<td>Megavoltampere (MVA) size of the main transformer(s)</td>
<td></td>
</tr>
<tr>
<td>HIGH SIDE voltage in kilovolts (kV) of the main transformer(s) at 55 ºF</td>
<td></td>
</tr>
</tbody>
</table>

Enter the type of MAIN transformer at the unit

- **M1** - Single Phase
- **M2** - Three Phase
- **9** - Other, describe

80. Balance of Plant – Unit Auxiliary Transformer

The “unit auxiliary transformer” supplies the auxiliaries when the unit is synchronized. Enter the following information for this transformer:

<table>
<thead>
<tr>
<th>Information</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit auxiliary transformer(s) manufacturer(s)</td>
<td></td>
</tr>
<tr>
<td>TOTAL number of unit auxiliary transformer(s)</td>
<td></td>
</tr>
<tr>
<td>LOW SIDE voltage in kilovolts (kV) of the unit auxiliary transformer(s) at 55 ºF</td>
<td></td>
</tr>
</tbody>
</table>

81. Balance of Plant – Station Service Transformer

The “station service (start-up) transformer” supplies power from a station high voltage bus to the station auxiliaries and also to the unit auxiliaries during unit start-up and shutdown. It also may be used when the unit auxiliary transformer is not available or nonexistent.

<table>
<thead>
<tr>
<th>Information</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station service transformer(s) manufacturer(s)</td>
<td></td>
</tr>
<tr>
<td>TOTAL number of station service transformer(s)</td>
<td></td>
</tr>
<tr>
<td>HIGH SIDE voltage in kilovolts (kV) of the station service transformer(s) at 55 ºF</td>
<td></td>
</tr>
<tr>
<td>LOW SIDE voltage in kilovolts (kV) of the station service transformer(s) at 55 ºF</td>
<td></td>
</tr>
</tbody>
</table>

82. Balance of Plant – Auxiliary (Start-up) Boiler

Enter the following information on the auxiliary boiler at the unit:

<table>
<thead>
<tr>
<th>Information</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary boiler manufacturer(s)</td>
<td></td>
</tr>
</tbody>
</table>

83. Balance of Plant – Auxiliary Generator

Enter the following information on the auxiliary generator at the unit:

<table>
<thead>
<tr>
<th>Information</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary generator manufacturer(s)</td>
<td></td>
</tr>
</tbody>
</table>

Is the auxiliary generator shaft driven?
84. **Balance of Plant – Plant Process Computer**
Enter the following information for the plant process computer(s):

________________________ Plant process computer manufacturer(s)

Enter the number of plant process computers available to the unit:

M1 M2
1 – One computer for this unit only
2 – Two computers for this unit only
3 – One computer shared by one or more units
4 – Two computers shared by one or more units
9 – Other, describe ________________________________

Describe how the plant process computers are linked within the plant:

M1 M2
1 – Centralized
2 – Distributive
3 – Stand alone
9 – Other, describe ________________________________

Enter the system capability of the plant process computer:

M1 M2
1 – Monitor only
2 – Monitor and control
9 – Other, describe ________________________________

85. **CEMS – General**

________________________ System vendor

First-certified date:

Year Month Day

Monitoring technique

1 – Extractive
2 – Dilution
3 – In Situ
Analysis Method

1 – Wet
2 – Dry
9 – Other, describe

CEMS – Pollutant Gas and Diluent Gas Analyzers/Monitors

Sulfur Dioxide (SO\(_2\)) Analyzers

<table>
<thead>
<tr>
<th>Manufacturer(s)</th>
<th>Model number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>M2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of installed analyzers</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of installed spare analyzers</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
</tr>
</tbody>
</table>

1 – Ultraviolet
2 – Infrared
3 – Fluorescence
9 – Other, describe

<table>
<thead>
<tr>
<th>Instrument range (parts per million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
</tr>
</tbody>
</table>

1 – 0-50
2 – 0-150
3 – 0-500
9 – Other, describe

<table>
<thead>
<tr>
<th>Shared? (1 – Yes 2 – No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
</tr>
</tbody>
</table>

Oxides of Nitrogen (NO\(_x\)) Analyzers

<table>
<thead>
<tr>
<th>Manufacturer(s)</th>
<th>Model number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>M2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of installed analyzers</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
</tr>
</tbody>
</table>
Number of installed spare analyzers

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Type(s)

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Infrared</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Chemiluminescent</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Other, describe</td>
<td></td>
</tr>
</tbody>
</table>

Instrument range (parts per million)

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0-150</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0-500</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Other, describe</td>
<td></td>
</tr>
</tbody>
</table>

Shared? (1 – Yes 2 – No)

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Carbon Monoxide (CO) Analyzers

<table>
<thead>
<tr>
<th></th>
<th>Manufacturer(s)</th>
<th>Model number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of installed analyzers

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Number of installed spare analyzers

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Type(s)

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Infrared solid state</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Infrared luft</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Gas filter correlation</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Other, describe</td>
<td></td>
</tr>
</tbody>
</table>

Instrument range (parts per million)

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0-150</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0-500</td>
<td></td>
</tr>
</tbody>
</table>
Carbon Dioxide (CO\(_2\)) Analyzers

<table>
<thead>
<tr>
<th>Manufacturer(s)</th>
<th>Model number(s)</th>
<th>Number of installed analyzers</th>
<th>Number of installed spare analyzers</th>
<th>Instrument range (parts per million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>M2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 – 0-50
2 – 0-150
3 – 0-500
9 – Other, describe

Oxygen (O\(_2\)) Analyzers

<table>
<thead>
<tr>
<th>Manufacturer(s)</th>
<th>Model number(s)</th>
<th>Number of installed analyzers</th>
<th>Number of installed spare analyzers</th>
<th>Type(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 – Zirconia oxide
2 – Paramagnetic
3 – Fuel cell
9 – Other, describe

Instrument range (parts per million)

<table>
<thead>
<tr>
<th>Shared? (1 – Yes 2 – No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
</tr>
<tr>
<td>M2</td>
</tr>
</tbody>
</table>
Appendix E1: Unit Design Data – Fossil Steam

<table>
<thead>
<tr>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-50</td>
</tr>
<tr>
<td>2</td>
<td>0-150</td>
</tr>
<tr>
<td>3</td>
<td>0-500</td>
</tr>
<tr>
<td>9</td>
<td>Other, describe</td>
</tr>
</tbody>
</table>

Shared? (1 – Yes 2 – No)

<table>
<thead>
<tr>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
</table>

Opacity Monitors

<table>
<thead>
<tr>
<th>Manufacturer(s)</th>
<th>Model number(s)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of installed analyzers</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of installed spare analyzers</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Probe placement (if unit is equipped with a FGD system)</th>
</tr>
</thead>
</table>

1 – Before scrubber
2 – After scrubber

CEMS – Flue Gas Flow Monitors

<table>
<thead>
<tr>
<th>Manufacturer(s)</th>
<th>Model number(s)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of installed monitors</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Number of installed spare monitors</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Volumetric Flow Rate (ACFM)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Flow rate measurement technique:</th>
</tr>
</thead>
</table>

1 – Thermal sensing (hot-wire anemometer or dispersion)
2 – Differential pressure array
Appendix E1: Unit Design Data – Fossil Steam

3 – Acoustic velocimetry (ultrasonic transducers)
4 – Combination
9 – Other, describe

88. CEMS – Data Acquisition and Reporting System

________________________ Hardware Manufacturer

________ Hardware architecture

1 – Vendor-supplied dedicated system
2 – Modified existing plant computer
3 – Stand alone, pc-based system not supplied by CEMS system vendor
9 – Other, describe

________________________ Software supplier

________ Shared (1 – Yes 2 – No)

NOₓ REDUCTION SYSTEMS

These systems include Selective Non-catalytic Reduction, Selective Catalytic Reduction, Catalytic Air Heaters, and Staged NOₓ Reduction, which is a combination of the three methods. Excluded from this category are Low NOₓ burners (see Item 16, Page E-6), combustion modifications, and flue gas recirculation.

Please complete the following information for the NOₓ Reduction Systems installed on your unit. (The appropriate items under each method should be completed for a Staged NOₓ Reduction System).

89. Selective Non-Catalytic Reduction System (SNCR)

________ Reagent

1 – Ammonia
2 – Urea
9 – Other, describe

________ Injector Type

1 – Wall nozzles
2 – Lance
9 – Other, describe

________ Injection Equipment Location

1 – Furnace
2 – Superheater
Appendix E1: Unit Design Data

– Fossil Steam

NERC | 2023 GADS Data Reporting Instructions | January 2023
E1-FS-34

3 – Economizer
9 – Other, describe __________________________

________________ Number of injectors

______ Carrier Gas Type

1 – Steam
2 – Air
9 – Other, describe __________________________

________________ Total Flow rate (lb./hr.)
________________ Pressure at nozzle (psi)
________________ Nozzle exit velocity (ft./sec.)

90. Selective Catalytic Reduction System (SCR)

______ Reactor

1 – Separate
2 – In Duct

________________ Flue gas take-off location

______ Reagent

1 – Ammonia
2 – Urea
9 – Other, describe __________________________

______ Ammonia Injection Grid Location

1 – Furnace
2 – Superheater
3 – Econimizer
4 – Zoned

______ Duct Configuration

1 – Flowing straighteners
2 – Turning vanes
3 – Dampers

______ Catalyst Element Type
Appendix E1: Unit Design Data – Fossil Steam

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plate</td>
<td>Honeycomb</td>
<td>Other, describe</td>
</tr>
<tr>
<td></td>
<td>Stainless steel</td>
<td>Carbon steel</td>
<td>Other, describe</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Other, describe</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Surface face area (sq. ft.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Catalyst volume (cu. ft.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of layers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer thickness (inches)</td>
<td></td>
</tr>
</tbody>
</table>

Sootblowers (if applicable)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air</td>
<td>Steam</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manufacturer(s)</td>
</tr>
<tr>
<td></td>
<td>Number of sootblowers</td>
</tr>
</tbody>
</table>

91. Catalytic Air Heaters

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Element Type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laminar surface</td>
<td>Turbulent surface</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Support material, if any</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stainless steel</td>
<td>Carbon steel</td>
</tr>
</tbody>
</table>
Appendix E1: Unit Design Data – Fossil Steam

Catalytic Material Configuration

1 – Horizontal air shaft
2 – Carbon steel
9 – Other, describe

__

Total face area (sq. ft.)

Open face area (sq. ft.)

Layer thickness (inches)