EPRI
Electromagnetic Pulse Research

Randy Horton, Ph.D., P.E.
Senior Program Manager

NERC EMP Task Force Meeting
Washington, D.C.
June 12, 2019
EPRI EMP Research Program

- Initial research project focused on switchyards, lines, and substations (Transmission)

- Assessed impacts of E1, E2, E3 and combined E1 + E3

- Answered two important questions:
 - What are the potential impacts of HEMP on the Transmission system?
 - If impacts are significant concern, can they be mitigated in cost-effective ways?
Collaborative EMP Research

- Transparent, objective EPRI R&D involving numerous energy stakeholders
- Collaboration with 63 U.S. utilities
- Leveraged resources and knowledge from U.S. DOE, National Labs, DoD
- Applied industry-leading expertise to address national security threat
Summary of Findings

- Extensive modeling, simulation and testing was utilized to assess potential impacts:
 - E1 EMP: Disruption or damage to substation electronics (e.g. digital protective relays) is possible and can be experienced over a large geographic area (electrical interconnection)
 - E2 EMP: Impacts to bulk power system are not expected
 - E3 EMP: Regional voltage collapse is possible; immediate, wide-spread damage to bulk power transformers not expected

- Options for mitigating E1 EMP impacts were tested, but deliberate approach to implementation is recommended to enhance designs, identify/manage potential unintended consequences and improve understanding of cost and long-term asset management

- Two follow-on research efforts are underway:
 - Field trials of E1 EMP hardening at 17+ electric utilities across the U.S.
 - E1 EMP assessment of generation facilities
Chapter 8 of Final Report - Research Needs

- Integrated Energy Network Assets
- Generation Facilities and End-Use Equipment
- Software Tools and Methods for Performing HEMP Assessments
- Equipment Testing
- HEMP Environments
- Field Trials of E1 EMP Hardening of Substations
E1 EMP Modeling – Individual Substations

- E1 EMP is considered a plane wave so coupling is different than traditional power system transients

- Only aware of commercial tools that are 3D EM solvers

- EPRI developed and used MATLAB/EMTP based-tools and also CST Studio
E1 EMP Modeling – Interconnection Scale

- Requires high-fidelity E1 EMP environment (not publicly available) and ability to perform coupling calculations on 1000’s of substations simultaneously

Notional Coupling Results
Voltage Stability Analysis (E3 Only)

- Because of the nature and duration of the event, transient stability tools are necessary for determining voltage collapse
- Key modeling features include:
 - Dynamic load models
 - Overexcitation limiters
 - Protective relays
 - UV/OV and UF/OF tripping of generators
- GIC analysis requires the use of highly non-uniform E-field that varies spatially and temporally
 - Additional off-line tool in addition to transient stability tool required for higher fidelity environments
Voltage Stability Assessment With E1 Impacts

Interconnection-scale E1 EMP impacts are used to initialize the transient stability tool prior to the E3 EMP event.

High-fidelity E1 EMP and E3 EMP environments are not publicly available.

Currently, no commercial tool(s) exist to perform this analysis.
Field Trials of E1 EMP Mitigation Are Needed

- Potential mitigation options include:
 - Low-voltage surge suppression devices and filters
 - Shielded or fiber optic cables
 - Substation control house design modifications
 - Grounding/bonding enhancements

- Identifying and managing unintended consequences is critical

- Improving designs and understanding cost and long-term asset management also very important

Currently working with 17 U.S. utilities to evaluate E1 EMP mitigations in substations
Together...Shaping the Future of Electricity