DRAFT

Cyber Security – BES Cyber System Logical Isolation

Technical Rationale and Justification for Reliability Standard CIP-005-8

June 2021
Table of Contents

Technical Rationale for Reliability Standard CIP-005-8... 3

Introduction ... 3

Background .. 3

Summary ... 3

New and Modified Terms and Applicability .. 4

Requirement R1 .. 6

Requirement R2 ... 9

Requirement R3 ... 11

Former Background Section from Reliability Standard CIP-005-7 .. 12

Background .. 12

Technical Rationale for Reliability Standard CIP-005-7 .. 14

Introduction .. 14

Requirement R1 ... 15

Requirement R1 ... 16

Requirement R2 ... 17

Requirement R3 ... 18

Technical Rational for Reliability Standard CIP-005-6 .. 20

Requirement R1 ... 20

Requirement R2 ... 23
Technical Rationale for Reliability Standard CIP-005-8

Introduction
This document is the technical rationale and justification for Reliability Standard CIP-005. It includes the rationale for changes in the current proposed version (CIP-005-8) as well as previous versions of the standard. The intent of this document is to provide stakeholders and the ERO Enterprise with an understanding of the revisions and the technical concepts of the Reliability Standard as well as the rationale for such revisions, both the currently proposed and historical revisions from previous versions and SDTs.

This document explains the technical rationale and justification for the proposed Reliability Standard CIP-005-8. It provides stakeholders and the ERO Enterprise with an understanding of the technology and technical requirements in the Reliability Standard. This Technical Rationale and Justifications for CIP-005-8 is not a Reliability Standard and should not be considered mandatory and enforceable.

Updates to this document now include the Project 2016-02 – Modifications to CIP Standards Drafting Team’s (SDT’s) intent in drafting changes to the requirements.

Background
The Version 5 Transition Advisory Group (V5TAG), which consisted of representatives from NERC, Regional Entities, and industry stakeholders, was formed to issue guidance regarding possible methods to achieve compliance with the CIP V5 standards and to support industry's implementation activities. During the course of the V5TAG’s activities, the V5TAG identified certain issues with the CIP Reliability Standards that were more appropriately addressed by a standard drafting team (SDT). The V5TAG developed the V5TAG Transfer Document to explain the issues and recommend that they be considered in future development activity. As Project 2016-02 was formed to address the directives in FERC Order 822 issued on January 21, 2016, that team also received the V5TAG issues as part of its Standard Authorization Request (SAR).

One of the areas of issue was virtualization. The V5TAG Transfer document said, “The CIP Version 5 standards do not specifically address virtualization. However, because of the increasing use of virtualization in industrial control system environments, questions around treatment of virtualization within the CIP Standards are due for consideration. The SDT should consider revisions to CIP-005-8 and the definitions of Cyber Asset and Electronic Access Point (EAP) that make clear the permitted architecture and address the security risks of network, server and storage virtualization technologies.”

Summary
The Project 2016-02 Standard Drafting Team (SDT) proposal accommodates for increasing use of virtualization and other technology innovation. The SDT’s purpose of incorporating the virtualization concept into the CIP standards is not to merely augment the current standards, but also to better position the CIP standards to be applicable to additional future technological innovation while, to the extent possible, maintaining backwards compatibility.

CIP-005-8 remains a standard concerned with controlling communications to and from BES Cyber Systems by establishing an Electronic Security Perimeter (ESP) with increased security controls for Interactive Remote Access and vendor remote access. However, virtualization is enabling models for network security, such as “Zero Trust”, that are not network perimeter based. Therefore, in CIP-005-8 the ESP is focusing on being a security perimeter rather than a network perimeter. Securing the communications to and from BES Cyber Systems is the security objective, but the standard no longer prescribes “where”, as in where on a network, the controls must be implemented. Innovations such as Zero Trust models are moving access control from network borders to a session level orientation and eliminating the implicit trust within a local network. Network perimeter-based ESP and EAP implementations remain a valid option and are one method for allowing only necessary and controlled communications to the Cyber Systems.
within the ESP but are no longer the only prescribed option. In combination with an updated, broader ESP definition, CIP-005-8 now focuses on the objective of having policies or configuration in an EACMS that permits only needed communications and denies all other communications.

Another concept introduced within CIP-005-8 is shared infrastructure (defined as Shared Cyber Infrastructure (SCI)). With the introduction of hardware (servers, storage, networks) as a generic infrastructure fabric on top of which virtual cyber systems, networks, and storage locations are built, the need to isolate Cyber Systems from others of different trust levels must move beyond a network only separation. In these virtualized environments where SCI is used, a risk of side channel attacks exists where, for example, a low impact BCS that is isolated from a high impact BCS from a network communication perspective but still shares CPU or memory with the high impact BCS, could be used to attack the high impact BCS through hardware-level vulnerabilities (e.g., Spectre, Meltdown, Rowhammer). CIP-005-8 mitigates this risk by either:

- Using affinity controls within the virtualization environment to configure the hypervisor(s) to disallow Virtual Cyber Assets (VCA) in these differing trust levels from simultaneously executing on the same CPU and memory in the hardware underlay (SCI), or
- Treating all VCA that can simultaneously share the same CPU or memory as associated Protected Cyber Assets (PCA) of the highest impact system (high watermarking) to raise them to the same trust level.

Additionally, the SDT is proposing a new requirement (CIP-005-8 Requirement R1 Part 1.3) to separate the management plane of the Shared Cyber Infrastructure (SCI) from the data plane. This is needed to ensure the reliability and security of the SCI and the VCA’s it hosts as the management plane is where network and hardware isolation is configured as well as where the VCAs themselves are created, managed, or deleted.

CIP-005-8 also introduces exemptions and requirements for extending ESPs across different Physical Security Perimeters (PSP) (often known as “Super ESPs”). This is often used to extend a flat network between two virtualization infrastructures (SCI) in two different locations to allow VCAs to seamlessly transfer between SCI at the locations to improve resilience and reliability.

New and Modified Terms and Applicability

This standard uses new or modified terms and contains new or modified exemptions in Section 4 Applicability. The rationale for this global content can be found in “CIP Definitions and Exemptions Technical Rationale” document for reference when reading the technical rationale that follows.
Requirement R1 General Considerations

ESP Redefinition
Network border-based ESPs and EAPs remain a valid option for controlling the communications to and from BES Cyber Systems. However, virtualization technologies and models such as Zero Trust present equally effective methods that are not based on network border-based solutions dealing only with layer 3 routable protocols. Virtualization and its accompanying SCI have other characteristics such as shared hypervisors, shared storage, shared virtual networks and switches, all of which pose different security concerns but also have their own security controls. To adapt to these changes, CIP-005-8 focuses on an objective-based requirement (in Requirement R1 Part 1.1) for controlling communications. Required ESPs are now more truly security perimeters rather than purely network perimeters and the standard doesn’t prescribe a single place the necessary controls must be implemented (a Cyber Asset interface on an EAP on a network border). Models such as Zero Trust can implement more granular controls throughout a network and without regard to network location on a per-access or per-session level.

Shared infrastructure and "Mixed Trust" Risks
For virtualized environments where SCI is used, a risk of side channel attacks exists. Virtualization allows disparate workloads of what could be differing impact or trust levels to execute on the same CPUs and share the same memory (i.e. RAM) within the infrastructure. There are vulnerabilities that are directly related to sharing hardware such as Spectre, Meltdown, and Rowhammer. Rowhammer, for example concerns processes sharing certain forms of hardware memory. Repeated writing of bits in one process could flip bits in a process in adjacent physical memory. This type of vulnerability is one of the unique risks of SCI.

As this class of vulnerability is specifically about processes executing side by side on the same CPU or memory chips of SCI, the risk of these vulnerabilities is being mitigated in CIP-005-8 by either:

- Declaring the VCAs that share CPU or memory or are within the same ESP with a BCS as associated PCAs which will require they meet the security requirements (high water marking) that include ‘associated PCAs’; or
- Configuring the virtualization infrastructure to place VCAs of differing impact or trust levels into differing ESPs and configuring affinity controls to these zones such that hypervisors do not allow workloads in these differing zones to simultaneously exist or execute on the same hypervisor.

Assets with Multiple Classifications (PCA, EACMS, Intermediate System, SCI, etc.)
The definitions created in support of the CIP Standards have historically included overlap. In this current version of CIP-005-8, the definition of PCA is updated with conforming changes that include VCAs that share CPU or memory with a BCS. Additional definitions such as SCI and VCA will add to the possibility of additional instances of assets or systems meeting multiple definitions, such as SCI that are also EACMS.

These definitions are used in both the Applicable Systems column as well as within the requirement language. The fact that one asset or system may have multiple classifications does not pose a significant challenge as long as the Responsible Entity ensures that all requirements that pertain to ANY of the classifications are applied. In other words, if an asset or system meets both the SCI and the EACMS definition, requirements that apply to either definition are applicable.
Requirement R1

Rationale

Requirement R1 requires implementation of an ESP between systems of different impact levels such that only necessary communication is allowed between them. However, there are other network security models available now (such as zero trust) that can accomplish this security objective that are not network perimeter-based and control these communications end-to-end at a session level. However, the network border-based ESP model continues unchanged as CIP-005-8 Requirement R1 moves to an objective-based requirement that the network border-based model continues to meet while allowing for other models.

Requirement R1 Part 1.1:

Rationale

This requirement part is a combination of the first three requirement parts (1.1-1.3) in the former CIP-005-7 into one security objective. Virtualization technologies introduce multiple additional methods to isolate systems and communications beyond the network perimeter-based model. This requirement part is now objective-based and does not prescribe one method of controlling communications to Applicable Systems.

By moving to an objective-based requirement, network border-based models still meet the objective but it allows for other models such as zero trust architectures. Such models are not based on network perimeter-based security that controls communications at a network boundary. Communications are authorized by policy enforcement points throughout the infrastructure. In this model, network security is less topology-based and more policy-based and is used to protect communication at a very granular level (an individual system or even process or resource level).

While zero-trust architectures are an emerging model, the objective-based requirement also allows for hybrid models that are various combinations of network border-based and zero trust architectures. As technology changes, this requirement is flexible as to how the objective is met. The ESP definition has been broadened as well to accommodate models that create a security perimeter, but not necessarily by implementing a network border-based perimeter.

The requirement part maintains the core security objective of permitting only needed communications and denying all others; it simply no longer prescribes that this must be implemented at a Cyber Asset interface on the network border (an EAP). However, by not prescribing the location it could allow for a firewall built into the host BCS itself as the location where this access control is implemented. Examples are a server running a Windows OS with the in-built Windows firewall, or a Linux server with an IPTABLES firewall, that are providing the only control of the communications to and from a system connected to a public network. In these instances, the management plane of the host is also the management plane of the network security control. The SDT’s intent is a host-based firewall (see RFC 7288\(^1\) for a discussion of host-based firewalls) does not have a sufficient level of isolation from the system it is protecting to meet this requirement. A compromise of the OS is a compromise of the network communications security control as well. Therefore, the SDT has addressed this with the statement in the requirement “Host-based firewalls (that only protect the host on which they reside) are not a sufficient control to meet this requirement.” This does not prescribe a physically separate control. A virtual firewall running as a separate VCA on the same SCI would be sufficient, as would technology such as privileged introspection within the hypervisor; these controls are isolated from the host being protected. The intent of this Requirement Part is to control the ‘reachability’ of the Applicable Systems; filtering network communications before they reach the Applicable Systems and their OS, not as part of it. This is not to discourage the use of integrated host-based firewalls to further filter network traffic to a host, it just cannot be the ESP for the purposes of this requirement. For example, host based firewalls can be used for further system hardening as part of CIP-007 R1, but not as the ESP for CIP-005 R1.

The Requirement Part brings to medium and high impact BCS the exclusion of communications between intelligent electronic devices (i.e., digital relays) that use routable communication protocols for time-sensitive protection or control functions. Time-sensitive in this context generally means functions that would be negatively impacted by the latency introduced in the communications by inserting an ESP and its controls. This time-sensitivity exclusion does not apply to SCADA communications which typically operate on scan rates of 2 seconds or greater. While technically time-sensitive, SCADA communications over routable protocols can withstand the delay introduced by electronic access controls. Examples of excluded time-sensitive communications are those communications which may necessitate the tripping of a breaker within a few cycles (sub-second response times) to protect BES assets. The SDT intent is a Responsible Entity using this technology is not expected to implement the electronic access controls in a situation where it would prohibit the proper function in the proper timeframe.

Requirement R1 Part 1.2: Rationale
The SDT is proposing a new Requirement, CIP-005-8 Requirement R1, Part 1.2. The purpose of this requirement is to permit only needed communications to and from the Management Interfaces, denying all other communications, of the systems that are providing the protection of BES Cyber Systems in part 1.1; namely SCI that is independently identified (not a part of an “all-in” scenario and thus is isolating systems of different impact levels from each other) and EACMS that are enforcing an ESP. As these are vital controls to performing the isolation/segmentation between systems of differing impact levels, the access to the Management Interface whereby these controls could be compromised is to be protected.

Requirement R1 Part 1.3: Rationale
As the same technologies used in on-premise virtualization are used by cloud vendors hosting systems from many different customers, the methods used to separate the management plane from the data plane developed quickly as systems moving to the cloud increased. For a cloud-based hosting facility to be successful, the tenants must share hardware resources (SCI as defined here) but have no ability to access or modify other tenants or their configuration. Cloud technology was forced to enhance existing methods and develop new methods to accomplish this separation. SCI presents the same issue for in-house (on-premise) virtualization environments to prevent users of various systems hosted on the SCI from affecting each other or the SCI’s configuration. CIP-005-8 Requirement R1 Part 1.3 addresses this risk within the CIP standards.

The SDT is proposing this new Requirement R1, Part 1.3 that applies to SCI that is independently identified (not a part of an “all-in” scenario and thus is isolating systems of different impact levels from each other). As virtualized servers, networks, switches, firewalls, and storage are logical constructs, controlling communications to the Management Interfaces of these systems becomes imperative. Communication with the Management Interfaces can allow users to create, modify, or delete objects or entire infrastructures, or move objects from one network to another. Therefore, administrative level or “management access” to the SCI is critical to the security and reliability of the hosted systems. By isolating the Management Interfaces of these devices from the larger audience of users that can communicate with the hosted tenant systems, the attack surface of the SCI is reduced to the group of users with administrative access. The intent is users of a BCS hosted on an SCI that is identified independently and hosting other VCAs of differing impact levels should be prevented from having any access to the Management Interface of the underlying SCI. For example, a user accessing a low impact BCS on SCI should have no ability to pivot from that system to the Management Interface and thus impact a higher impact BCS.

This new Requirement part therefore requires the denial of network communications to the Management Interfaces of SCI that is independently identified (not a part of an “all-in” scenario and thus is isolating systems of different
impact levels from each other) from the hosted BCS VCA’s on the SCI. It does not preclude a separate VCA that hosts the SCI Management Interface from being used to manage the SCI as that is not an applicable system from part 1.1, however it must still meet requirement part 1.2 as well as part 1.3. A separate VCA hosting only a Management Interface can be allowed necessary access from part 1.2 for administrative users, but all access from any hosted BCS must be denied per part 1.3.

Requirement R1 Part 1.4: Rationale

Requirement R1 Part 1.4 was written to address the issue of “Super ESPs” with high or medium impact BCS at Control Centers that extend a single ESP beyond one PSP. This often applies to virtualized Control Center environments that implement network adjacency to allow workloads to automatically move from one physical location to another to increase BCS resiliency between primary and backup Control Centers.

In summary, Requirement 1 Part 1.4 within CIP-005-8 requires that data traversing communication links between the two PSPs be protected to preserve its integrity and confidentiality. This new requirement part works in conjunction with the new 4.2.3.3 exemption in the CIP standards that exempts the Cyber Systems associated with such communication links since the data is required to be protected per this requirement. Also, the requirement part that formerly was CIP-006-6, Requirement 1, Part 1.10 has been removed from CIP-006 and incorporated into this new 1.4 requirement part. This consolidates the protections of an ESP and its components that extend outside of a PSP into one requirement part within one standard.

Communications equipment associated with communications links (e.g., equipment belonging to carriers) is exempted from the CIP standards with the 4.2.3.2 exemption, however that only applies to equipment between discrete ESPs. However, in this extended ESP situation where a single ESP spans different sites or PSPs, that exemption does not apply and the potential exists for data to traverse a connection that uses third-party communications equipment that is unprotected inside an ESP. The SDT chose to create Requirement R1 Part 1.4 to enforce confidentiality and integrity controls (such as encryption) on the data that traverses PSPs that is within the same ESP that works in conjunction with the new 4.2.3.3 exemption. In this case where communication equipment is used to extend a single ESP to more than one PSP, the confidentiality and integrity controls required in CIP-005-8 Requirement R1 Part 1.4 isolate any protected data from access through the communications equipment.

This Requirement Part applies to the data that traverses between PSPs. The SDT also combined CIP-006-6 Requirement R1 Part 1.10 into this Requirement Part to incorporate cabling and non-programmable communication components that are not protected within a PSP with the intent to protect data moving across the state as well as data traversing cabling that crosses the hall outside of the PSP. This consolidates these two requirements on protecting an ESP that spans differing PSPs into one requirement. The requirement language specifically exempts the data that falls under CIP-012 Requirements in order to avoid the potential for double jeopardy as well as the time-sensitive protection or control functions as described in CIP-005-8 Requirement R1 Part 1.1 above.

Requirement R1 Part 1.5: Rationale

The SDT included “SCI identified independently supporting an Applicable System above” to the scope of the requirement part to ensure that controls regarding Dial-up Connectivity are applicable to SCI as well.
Requirement R1 Part 1.6:
Rationale
The SDT made changes to specify that the known or suspected malicious communication detection is for Internet Protocol (IP) based traffic that enters or leaves the required ESP. Products available to implement this malicious communication detection are usually based on IP traffic (as defined in RFC 791 and upon which TCP and UDP reside).

Requirement R2:
General Considerations for Requirement R2.
External Routable Connectivity (ERC) and Interactive Remote Access (IRA)
The ERC and IRA definitions are changing substantively in order to:

1. Incorporate new models such as Zero Trust where a security perimeter is not necessarily a network perimeter and ESP’s become very granular based on policies that can be established at “people to resource” levels rather than IP address levels.
2. Recognize those CIP Systems that are of an increased risk due to their “reachability” via ERC and that have IRA available to them even if they are serial-only, non-routable devices.
3. Continue to limit scope of requirement parts to those locations that have a high enough level of remote connectivity to support the requirement. Locations that have connectivity such as non-routable serial leased circuits should not have to increase their level of remote connectivity and attack surface to meet security requirements.

One issue from the V5TAG transfer document in the SDT’s scope is that of a BCA that only speaks non-routable protocols over a serial port. These BCAs are not connected to a network with a routable protocol themselves and therefore can be considered to not be within an ESP and thus not have ERC or IRA. However, these BCAs can have interactive user access using those serial connections. The SDT’s intent is to clarify that IRA can occur to a device with only a serial, non-routable connection through subsequent IP-to-serial conversions and be subject to CIP-005-8 Requirement R2. For example, the intent is to clearly cover situations where a serial-only, non-routable BCA, such as a digital relay in a substation, has its serial communication from a ‘console port’ converted to IP or other routable protocols thus allowing IRA from users outside the substation to use a routable protocol to interact with the serial device and to require the CIP-005-8 Requirement R2 protection for that IRA.

In modifying the Intermediate Systems definitions, the SDT removed related requirement-style language (“The Intermediate System must not be located inside the Electronic Security Perimeter”). The SDT clarified the objective in CIP-005-8 Requirement R2 that all IRA must be through an Intermediate System and added Requirement Part 2.6.2 that addresses the location of the Intermediate System through an objective-based requirement.

See the “CIP Definitions and Exemptions Technical Rationale” document for further explanation of the changes to the R2 related definitions.

The scoping of R2 has been clarified to “all IRA and vendor remote access” and the applicability of several Requirement Parts was updated for virtualized environments to include SCI identified independently.

Requirement R2 Part 2.1:
Rationale
The Applicable Systems section of this requirement was updated to include SCI identified independently (SCI identified in the “all-in” scenario from CIP-002 is already included as part of the BCS). This was done to ensure that the same safeguards for remote access methods and technologies exist for the applicable SCI as for the high and
medium impact BCS and associated PCA being hosted on that SCI. Backwards compatibility with CIP-005-7 is maintained for entities that do not currently use SCI.

The inclusion of the SCI is intended to target the Management Interfaces (included in SCI definition) of the associated SCI. This is to ensure that the management of the SCI being used to support BCS is also protected in an equivalent manner.

The SDT has added to the scope of this Requirement Part 2.1 any EACMS that enforces the ESP for Applicable Systems in Part 1.1. The intent is to require IRA protections (Intermediate System, multi-factor authentication, etc.) for those users who are managing an EACMS that enforces an ESP, such as firewalls, policy enforcement points, or network switches with ACLs or VLANs that enforce an ESP. The intent is that such remote access from users that is ‘to’ (not ‘through’) the EACMS to configure the ESP requires the IRA protections.

The requirement language itself was simplified. Note the definitions of IRA and Intermediate System have been updated. Please note that the definition of IRA was changed to include serial communications connections. This change maintains backwards compatibility with CIP-005-7 except where serial connectivity is being used for IRA.

The required location of an Intermediate System was within the definition previously. The definition of Intermediate System has been simplified and the requirement as to its location is now within the requirement itself (Part 2.6.2) rather than within the definition.

Requirement R2 Part 2.2:

Rationale
The Applicable Systems was changed to “Intermediate Systems used to access Applicable Systems of Part 2.1”. This change better reflects that this requirement is associated with the Intermediate System itself.

The requirement was changed from a specific technical based requirement for encryption to an objective based requirement to protect confidentiality and integrity of the IRA session between the Intermediate System and the remote client. The proposed language of this requirement accounts for the possibility that other equally effective methods could be developed and deployed. This objective also keeps methods from being used that are merely obfuscation methods (XOR, ROT13, etc.) or deprecated encryption methods (DES with 56-bit keys) that no longer actually protect the confidentiality and integrity of the IRA session.

The changed requirement is backwards compatible with the CIP-005-7 except where outdated encryption methods have been used.

Requirement R2 Part 2.3:

Rationale
The Applicable Systems was changed to “Intermediate Systems used to access Applicable Systems of Part 2.1”. This change better reflects that this requirement is associated with the Intermediate System itself. This change also clarifies where the requirement for multifactor authentication should be applied (multi-factor authentication to the Intermediate System).

The changed requirement is backwards compatible with the CIP-005-7 except where serial connection-based IRA is being utilized.

Requirement R2 Part 2.4 – 2.5:

Rationale
The Applicable Systems section of this requirement was updated to include SCI identified independently (SCI
identified in the “all-in” scenario from CIP-002 is already included as part of the BCS), in instances where vendor remote access is allowed to the SCI (including its Management Interfaces). The Applicable Systems were also modified such that only those with vendor remote access are in scope and thus need to have one or more methods for CIP-005-8 Requirement R2 Parts 2.4 and 2.5.

The requirements themselves have not been changed. Note that the requirement includes both vendor-based IRA and system-to-system access.

Requirement R2 Part 2.6:

Rationale

This is a new requirement that applies to Intermediate Systems that are required by CIP-005-8 Requirement R2 Part 2.1. The intent of this new requirement is to further protect the BCS from the Intermediate System by reducing the attack surface between the two. Intermediate Systems have an externally accessible interface that may be used by external parties such as vendors or entity support staff using IRA across an Internet connection to support a remote site. Since Intermediate Systems by nature provide IRA from a less-trusted network, a degree of separation from the higher-trust systems they are protecting is necessary in case the Intermediate System is compromised. Previously, this risk was addressed not in an actual requirement but within the glossary definition of Intermediate System (“...must not be located inside the ESP”). The SDT has removed this from the definition and included a security objective in CIP-005-8 Requirement R2 Part 2.6.2 to permit only needed and controlled communications between the Intermediate System and the Applicable Systems it is providing IRA to.

In order to mitigate the risk of a compromised virtualized Intermediate System (VCA) hosted on SCI, Requirement CIP-005-8 Requirement R2 Part 2.6.1 restricts CPU and memory sharing on SCI to only its associated SCI and other Intermediate Systems. In summary, CIP-005-8 Requirement R2 Part 2.6.1 is intended to mitigate the risk associated with “side channel” based attack vectors where it could be possible to compromise the Intermediate System VCA from an external source and then subsequently access other CIP System VCAs running on the same hypervisor within the SCI.

Requirement R3

Rationale

The Applicable Systems section of CIP-005-8 Requirement R3 was updated to include “SCI identified independently supporting an Applicable System above” to ensure the same safeguards for vendor-initiated remote connections exist for the applicable SCI. Backwards compatibility with CIP-005-7 is maintained for entities that do not currently use SCI.
The section 6. Background has been retired and removed from the Standard, and preserved by cutting and pasting as-is below.

Background

Standard CIP-005 exists as part of a suite of CIP Standards related to cyber security, which require the initial identification and categorization of BCS and require a minimum level of organizational, operational and procedural controls to mitigate risk to BCS.

Most requirements open with, “Each Responsible Entity shall implement one or more documented [processes, plan, etc.] that include the applicable items in [Table Reference].” The referenced table requires the applicable items in the procedures for the requirement’s common subject matter.

The term documented processes refers to a set of required instructions specific to the Responsible Entity and to achieve a specific outcome. This term does not imply any particular naming or approval structure beyond what is stated in the requirements. An entity should include as much as it believes necessary in its documented processes, but it must address the applicable requirements in the table.

The terms program and plan are sometimes used in place of documented processes where it makes sense and is commonly understood. For example, documented processes describing a response are typically referred to as plans (i.e., incident response plans and recovery plans). Likewise, a security plan can describe an approach involving multiple procedures to address a broad subject matter.

Similarly, the term program may refer to the organization’s overall implementation of its policies, plans, and procedures involving a subject matter. Examples in the standards include the personnel risk assessment program and the personnel training program. The full implementation of the CIP Cyber Security Standards could also be referred to as a program. However, the terms program and plan do not imply any additional requirements beyond what is stated in the standards.

Responsible Entities can implement common controls that meet requirements for multiple high and medium impact BCS. For example, a single training program could meet the requirements for training personnel across multiple BCS.

Measures for the initial requirement are simply the documented processes themselves. Measures in the table rows provide examples of evidence to show documentation and implementation of applicable items in the documented processes. These measures serve to provide guidance to entities in acceptable records of compliance and should not be viewed as an all-inclusive list.

Throughout the standards, unless otherwise stated, bulleted items in the requirements and measures are items that are linked with an “or,” and numbered items are items that are linked with an “and.”

Many references in the Applicability section use a threshold of 300 MW for UFLS and UVLS. This particular threshold of 300 MW for UFLS and UVLS was provided in Version 1 of the CIP Cyber Security Standards. The threshold remains at 300 MW since it is specifically addressing UVLS and UFLS, which are last ditch efforts to save the Bulk Electric System. A review of UFLS tolerances defined within regional reliability standards for UFLS program requirements to date indicates that the historical value of 300 MW represents an adequate and reasonable threshold value for allowable UFLS operational tolerances.

“Applicable Systems” Columns in Tables:
Each table has an “Applicable Systems” column to further define the scope of systems to which a specific requirement row applies. The CS0706 SDT adapted this concept from the National Institute of Standards and Technology (“NIST”) Risk Management Framework as a way of applying requirements more appropriately based on impact and connectivity characteristics. The following conventions are used in the “Applicability Systems” column as described.

- **High Impact BES Cyber Systems** – Applies to BES Cyber Systems categorized as high impact according to the CIP-002 identification and categorization processes.

- **High Impact BES Cyber Systems with Dial-up Connectivity** – Only applies to high impact BES Cyber Systems with Dial-up Connectivity.

- **High Impact BES Cyber Systems with External Routable Connectivity** – Only applies to high impact BES Cyber Systems with External Routable Connectivity. This also excludes Cyber Assets in the BES Cyber System that cannot be directly accessed through External Routable Connectivity.

- **Medium Impact BES Cyber Systems** – Applies to BES Cyber Systems categorized as medium impact according to the CIP-002 identification and categorization processes.

- **Medium Impact BES Cyber Systems at Control Centers** – Only applies to medium impact BES Cyber Systems located at a Control Center.

- **Medium Impact BES Cyber Systems with Dial-up Connectivity** – Only applies to medium impact BES Cyber Systems with Dial-up Connectivity.

- **Medium Impact BES Cyber Systems with External Routable Connectivity** – Only applies to medium impact BES Cyber Systems with External Routable Connectivity. This also excludes Cyber Assets in the BES Cyber System that cannot be directly accessed through External Routable Connectivity.

- **Protected Cyber Assets (PCA)** – Applies to each Protected Cyber Asset associated with a referenced high impact BES Cyber System or medium impact BES Cyber System.

- **Electronic Access Points (EAP)** – Applies at Electronic Access Points associated with a referenced high impact BES Cyber System or medium impact BES Cyber System.

- **Physical Access Control Systems (PACS)** – Applies to each Physical Access Control System associated with a referenced high impact BES Cyber System or medium impact BES Cyber System.

- **Electronic Access Control or Monitoring Systems (EACMS)** – Applies to each Electronic Access Control or Monitoring System associated with a referenced high impact BES Cyber System or medium impact BES Cyber System. Examples may include, but are not limited to, firewalls, authentication servers, and log monitoring and alerting systems.
Technical Rationale for Reliability Standard CIP-005-7

Introduction
This document explains the technical rationale and justification for the proposed Reliability Standard CIP-005-7. It provides stakeholders and the ERO Enterprise with an understanding of the technology and technical requirements in the Reliability Standard. This Technical Rationale and Justifications for CIP-005-7 is not a Reliability Standard and should not be considered mandatory and enforceable.

Section “4. Applicability” of the standards provides important information for Responsible Entities to determine the scope of the applicability of the CIP Cyber Security Requirements.

Section “4.1. Functional Entities” is a list of NERC functional entities to which the standard applies. If the entity is registered as one or more of the functional entities listed in Section 4.1, then the NERC CIP Cyber Security Standards apply. Note that there is a qualification in this Section that restricts the applicability in the case of Distribution Providers to only those that own certain types of systems and equipment listed in 4.2.

Furthermore, Section “4.2. Facilities” defines the scope of the Facilities, systems, and equipment owned by the Responsible Entity, as qualified in Section 4.1, that is subject to the requirements of the standard. As specified in the exemption section 4.2.3.5, this standard does not apply to Responsible Entities that do not have High Impact or Medium Impact BES Cyber Systems under CIP-002-5’s categorization. In addition to the set of Bulk Electric System (BES) Facilities, Control Centers, and other systems and equipment, the list includes the set of systems and equipment owned by Distribution Providers. While the NERC Glossary term “Facilities” already includes the BES characteristic, the additional use of the term BES here is meant to reinforce the scope of applicability of these Facilities where it is used, especially in this applicability scoping section. This in effect sets the scope of Facilities, systems, and equipment that is subject to the standards.

Updates to this document now include the Project 2019-03 – Cyber Security Supply Chain Risks Standard Drafting Team’s (SDT’s) intent in drafting changes to the requirements.

The Federal Energy Regulatory Commission (the Commission) issued Order No. 850 on October 18, 2018, calling for modifications to the Supply Chain Suite of Standards to address Electronic Access Control or Monitoring Systems (EACMS), specifically those system that provide electronic access control or monitoring to high and medium impact BES Cyber Systems. In addition, NERC also recommended revising the Supply Chain Standards in its May 17, 2019 NERC Cyber Security Supply Chain Risk Report to address Physical Access Control Systems (PACS) that provide physical access control to high and medium impact BES Cyber Systems.

The Project 2019-03 SDT drafted Reliability Standard CIP-005-7 to require Responsible Entities to meet the directives set forth in the Commission’s Order No. 850 and the NERC Cyber Security Supply Chain Risk Report.

Additionally, the Project 2019-03 SDT removed Interchange Coordinator or Interchange Authority as that registration has been retired.

New and Modified Terms Used in NERC Reliability Standards
CIP-005-7 uses the following definition(s), which are cited below for reference when reading the technical rational that follows.

Proposed Modified Terms: None

Proposed New Terms: None
Requirement R1

General Considerations for Requirement R1
The ESP serves to control traffic at the external electronic boundary of the BES Cyber System. It provides a first layer of defense for network-based attacks as it limits reconnaissance of targets, restricts and prohibits traffic to a specified rule set, and assists in containing any successful attacks.

Summary of Changes: CIP-005, Requirement R1 has taken more of a focus on the discrete Electronic Access Points, rather than the logical “perimeter.”

CIP-005 (V1 through V4), Requirement R1.2 has been deleted from V5. This requirement was definitional in nature and used to bring dial-up modems using non-routable protocols into the scope of CIP-005. The non-routable protocol exclusion no longer exists as a blanket CIP-002 filter for applicability in V5, therefore there is no need for this requirement.

CIP-005 (V1 through V4), Requirement R1.1 and R1.3 were also definitional in nature and have been deleted from V5 as separate requirements but the concepts were integrated into the definitions of ESP and Electronic Access Point (“EAP”).

Reference to prior version: (Part 1.1) CIP-005-4, R1

Change Rationale: (Part 1.1)
Explicitly clarifies that BES Cyber Assets connected via routable protocol must be in an Electronic Security Perimeter.

Reference to prior version: (Part 1.2) CIP-005-4, R1

Change Rationale: (Part 1.2)
Changed to refer to the defined term Electronic Access Point and BES Cyber System.

Reference to prior version: (Part 1.3) CIP-005-4, R2.1

Change Rationale: (Part 1.3)
Changed to refer to the defined term Electronic Access Point and to focus on the entity knowing and having a reason for what it allows through the EAP in both inbound and outbound directions.

Reference to prior version: (Part 1.4) CIP-005-4, R2.3

Change Rationale: (Part 1.4)
Added clarification that dial-up connectivity should perform authentication so that the BES Cyber System is not directly accessible with a phone number only.

Reference to prior version: (Part 1.5) CIP-005-4, R1

Change Rationale: (Part 1.5)
Per FERC Order No. 706, Paragraphs 496-503, ESPs need two distinct security measures such that the Cyber Assets do not lose all perimeter protection if one measure fails or is misconfigured. The Order makes clear this is not simple redundancy of firewalls, thus the SDT has decided to add the security measure of malicious traffic inspection as a requirement for these ESPs.
Requirement R1
CIP-005-5, Requirement R1 requires segmenting of BES Cyber Systems from other systems of differing trust levels by requiring controlled Electronic Access Points between the different trust zones. Electronic Security Perimeters are also used as a primary defense layer for some BES Cyber Systems that may not inherently have sufficient cyber security functionality, such as devices that lack authentication capability.

All applicable BES Cyber Systems that are connected to a network via a routable protocol must have a defined Electronic Security Perimeter (ESP). Even standalone networks that have no external connectivity to other networks must have a defined ESP. The ESP defines a zone of protection around the BES Cyber System, and it also provides clarity for entities to determine what systems or Cyber Assets are in scope and what requirements they must meet. The ESP is used in:

- Defining the scope of ‘Associated Protected Cyber Assets’ that must also meet certain CIP requirements.
- Defining the boundary in which all of the Cyber Assets must meet the requirements of the highest impact BES Cyber System that is in the zone (the ‘high water mark’).

The CIP Cyber Security Standards do not require network segmentation of BES Cyber Systems by impact classification. Many different impact classifications can be mixed within an ESP. However, all of the Cyber Assets and BES Cyber Systems within the ESP must be protected at the level of the highest impact BES Cyber System present in the ESP (i.e., the “high water mark”) where the term “Protected Cyber Assets” is used. The CIP Cyber Security Standards accomplish the “high water mark” by associating all other Cyber Assets within the ESP, even other BES Cyber Systems of lesser impact, as “Protected Cyber Assets” of the highest impact system in the ESP.

For example, if an ESP contains both a high impact BES Cyber System and a low impact BES Cyber System, then each Cyber Asset of the low impact BES Cyber System are “Associated Protected Cyber Assets” of the high impact BES Cyber System and must meet all the requirements with that designation in the applicability columns of the requirement tables.

If there is routable connectivity across the ESP into any Cyber Asset, then an Electronic Access Point (EAP) must control traffic into and out of the ESP.

The EAP should control both inbound and outbound traffic. The standard added outbound traffic control, as it is a prime indicator of compromise and a first level of defense against zero-day vulnerability-based attacks. If Cyber Assets within the ESP become compromised and attempt to communicate to unknown hosts outside the ESP (usually ‘command and control’ hosts on the Internet, or compromised ‘jump hosts’ within the Responsible Entity’s other networks acting as intermediaries), the EAPs should function as a first level of defense in stopping the exploit. The SDT’s intent is that the Responsible Entity knows what other Cyber Assets or ranges of addresses a BES Cyber System needs to communicate with and limits the communication to that known range. The SDT’s intent is not for Responsible Entities to document the inner workings of stateful firewalls, where connections initiated in one direction are allowed a return path. The intent is to know and document what systems can talk to what other systems or ranges of systems on the other side of the EAP, such that rouge connections can be detected and blocked.

This requirement applies only to communications for which access lists and ‘deny by default’ type requirements can be universally applied, which today are those that employ routable protocols. Direct serial, non-routable connections are not included as there is no perimeter or firewall type security that should be universally mandated across all entities and all serial communication situations. There is no firewall or perimeter capability for an RS232 cable run between two Cyber Assets. Without a clear ‘perimeter type’ security control that can be applied in practically every circumstance, such a requirement would mostly generate technical feasibility exceptions (“TFEs”) rather than increased security.
As for dial-up connectivity, the Standard Drafting Team’s intent of this requirement is to prevent situations where only a phone number can establish direct connectivity to the BES Cyber Asset. If a dial-up modem is implemented in such a way that it simply answers the phone and connects the line to the BES Cyber Asset with no authentication of the calling party, it is a vulnerability to the BES Cyber System. The requirement calls for some form of authentication of the calling party before completing the connection to the BES Cyber System. If the dial-up connectivity is used for Interactive Remote Access, then Requirement R2 also applies.

The standard adds a requirement to detect malicious communications for Control Centers. This is in response to FERC Order No. 706, Paragraphs 496-503, where ESPs are required to have two distinct security measures such that the BES Cyber Systems do not lose all perimeter protection if one measure fails or is misconfigured. The Order makes clear that this is not simply redundancy of firewalls, thus the SDT has decided to add the security measure of malicious traffic inspection as a requirement for these ESPs.

Requirement R2

General Considerations for Requirement R2

Registered Entities use Interactive Remote Access to access Cyber Assets to support and maintain control systems networks. Discovery and announcement of vulnerabilities for remote access methods and technologies, that were previously thought secure and in use by a number of electric sector entities, necessitate changes to industry security control standards. Currently, no requirements are in effect for management of secure remote access to Cyber Assets to be afforded the NERC CIP protective measures. Inadequate safeguards for remote access can allow unauthorized access to the organization’s network, with potentially serious consequences. Additional information is provided in *Guidance for Secure Interactive Remote Access* published by NERC in July 2011.

Remote access control procedures must provide adequate safeguards through robust identification, authentication and encryption techniques. Remote access to the organization’s network and resources should only be permitted providing that authorized users are authenticated, data is encrypted across the network, and privileges are restricted.

The Intermediate System serves as a proxy for the remote user. Rather than allowing all the protocols the user might need to access Cyber Assets inside the Electronic Security Perimeter to traverse from the Electronic Security Perimeter to the remote computer, only the protocol required for remotely controlling the jump host is required. This allows the firewall rules to be much more restrictive than if the remote computer was allowed to connect to Cyber Assets within the Electronic Security Perimeter directly. The use of an Intermediate System also protects the Cyber Asset from vulnerabilities on the remote computer.

The use of multi-factor authentication provides an added layer of security. Passwords can be guessed, stolen, hijacked, found, or given away. They are subject to automated attacks including brute force attacks, in which possible passwords are tried until the password is found, or dictionary attacks, where words and word combinations are tested as possible passwords. But if a password or PIN must be supplied along with a one-time password supplied by a token, a fingerprint, or some other factor, the password is of no value unless the other factor(s) used for authentication are acquired along with it.

Encryption is used to protect the data that is sent between the remote computer and the Intermediate System. Data encryption is important for anyone who wants or needs secure data transfer. Encryption is needed when there is a risk of unauthorized interception of transmissions on the communications link. This is especially important when using the Internet as the communication means.

Summary of Changes: This is a new requirement to continue the efforts of the Urgent Action team for Project 2010-
15: Expedited Revisions to CIP-005-3.

Reference to prior version: (Part 2.1) New

Change Rationale: (Part 2.1)
This is a new requirement to continue the efforts of the Urgent Action team for Project 2010-15: Expedited Revisions to CIP-005-3.

Reference to prior version: (Part 2.2) CIP-007-5, R3.1

Change Rationale: (Part 2.2)
This is a new requirement to continue the efforts of the Urgent Action team for Project 2010-15: Expedited Revisions to CIP-005-3. The purpose of this part is to protect the confidentiality and integrity of each Interactive Remote Access session.

Reference to prior version: (Part 2.3) CIP-007-5, R3.2

Change Rationale: (Part 2.3)
This is a new requirement to continue the efforts of the Urgent Action team for Project 2010-15: Expedited Revisions to CIP-005-3. The multi-factor authentication methods are also the same as those identified in the Homeland Security Presidential Directive 12 (HSPD-12), issued August 12, 2007.

Requirement R3

Requirement Part 3.1 and Part 3.2 Vendor Remote Access Management for EACMS and PACS
The 2019-03 SDT added Requirement R3 to contain the requirements for all types of vendor remote access management for EACMS and PACS (i.e. system to system, user to system). EACMS were added based on FERC order 850 paragraph 5 where FERC ordered NERC to create a drafting team to add these devices. EACMS were added based on the risks FERC noted in paragraph 4, where a Department of Homeland Security Industrial Control System-Cyber Emergency Response Team (DHS ICS-CERT) said firewalls (normally defined as an EACMS) is the “first line of defense within an Industry Control System (ICS) network environment”. The compromise of those devices that control access management could provide an outsider the “keys to the front door” of the ESP where BES Cyber Systems reside. An intruder holding the “keys to the front door” could use those “keys” to enter the ESP or modify the access controls to allow others to bypass authorization.

In Requirement R3 Part 3.1 and Part 3.2, the word "connection" is the mechanism for a user or a system to interact with an EAMCS or PACS for the purpose of authenticating.

In Requirement R3 Part 3.1 and Part 3.2, the word "authenticate" is the mechanism for the EACMS or PACS to identify the user or device. This permits the EACMS or PACS to first perform its function to authenticate the user or device that is connecting, which in turn permits the entity to delineate or differentiate vendor-initiated connections from other remote access connections. This new proposed language is not prescriptive as to how authentication must occur to permit administrative and technical methods.

In Requirement R3 Part 3.2, the word "control" provides the entity flexibility to allow the vendor to reconnect under a specific set of conditions, established by the entity, where the reconnection is necessary to support critical operations of the entity. If the entity determines that they do not want to allow or does not need to allow a reconnection they can employ means to stop any reconnection.
The term *vendor(s)* as used in the standard is limited to those persons, companies, or other organizations with whom the Responsible Entity, or its affiliates, contract with to supply BES Cyber Systems and related services. It does not include other NERC registered entities providing reliability services (e.g., Balancing Authority or Reliability Coordinator services pursuant to NERC Reliability Standards). A *vendor*, as used in the standard, may include: (i) developers or manufacturers of information systems, system components, or information system services; (ii) product resellers; or (iii) system integrators.

Since remotely compromised PACS still require physical presence to exploit BES Cyber Systems, the SDT conducted extensive dialogue and considerations for the addition of PACS. The SDT concluded the risk posed to BES reliability by a compromised, misused, degraded, or unavailable PACS warranted their inclusion as an applicable Cyber Asset. Further, the inclusion of PACS:

1. addresses the Commission’s remaining concern stated in FERC Order No. 850 P 6. that, “…the exclusion of these components may leave a gap in the supply chain risk management Reliability Standards.”,

2. addresses the expectations of FERC Order No. 850 P 24. “...to direct that NERC evaluate the cybersecurity supply chain risks presented by PACS and PCAs in the study of cybersecurity supply chain risks directed by the NERC BOT in its resolutions of August 10, 2017.”, and

3. directly aligns with NERC’s recommendation to include PACS as documented in NERC’s final report on “Cyber Security Supply Chain Risks”\(^2\).

NERC’s final report on “Cyber Security Supply Chain Risks”, states on page 4, “The NERC CIP Reliability Standards provide a risk-based, defense-in-depth approach to securing the BES against cyber and physical security threats.” PACS are intended to manage physical threats to BES Cyber Systems, thus protecting BES Cyber Systems against compromise that could lead to misoperation or instability in the BES.

Additionally, NERC states on page 15 of their final report on “Cyber Security Supply Chain Risks” that, “In addition, a threat actor must be physically present at the facility in order to exploit the vulnerability created by a compromised PACS system. A threat actor may also need to bypass several physical accesses or monitoring controls that have not been compromised in order to gain access.” While a cyber-compromised PACSs may not in and of itself represent an immediate 15-minute adverse impact to the reliability of the BES, it could demonstrate a threat Actor’s intention to gain fully unauthorized electronic access.

While other Reliability Standards mitigate certain security risks relating to PACS none address supply chain risk. Based on this analysis the SDT included PACS within the applicable section of both Requirement Parts 3.1 and 3.2.

An additional aspect of the NERC Supply Chain Report, the SDT considered was the risk associated with the access control vs. access monitoring functions of both EACMS and PACS. While both types of systems, under the current definitions, have various functional activities they perform, the NERC Supply Chain Report pointed to the increased risk of the access control function beyond the access monitoring function. The SDT considered limiting the scope of the requirements to only those access control functions, however chose to stay with the currently approved definition of both EACMS and PACS. The SDT concluded staying with approved definitions would introduce less confusion. Additionally, an attempt to change the EACMS and PACS definition was outside the 2019-03 SAR.

Entities may or may not allow remote access into any of its systems, (BES Cyber Systems, EACMS or PACS), however if remote access is allowed, options to determine remote access connection(s) and capability to disable remote access connection(s) is required.

This section contains a “cut and paste” of the Technical Rationale components of the former Guidelines and Technical Basis (GTB) as-is of from CIP-005-6 standard to preserve any historical references. Similarly, former GTB content providing compliance guidance can be found in a separate Implementation Guidance document for this standard.

Section 4 – Scope of Applicability of the CIP Cyber Security Standards

Section “4. Applicability” of the standards provides important information for Responsible Entities to determine the scope of the applicability of the CIP Cyber Security Requirements.

Section “4.1. Functional Entities” is a list of NERC functional entities to which the standard applies. If the entity is registered as one or more of the functional entities listed in Section 4.1, then the NERC CIP Cyber Security Standards apply. Note that there is a qualification in Section that restricts the applicability in the case of Distribution Providers to only those that own certain types of systems and equipment listed in 4.2.

Furthermore, Section “4.2. Facilities” defines the scope of the Facilities, systems, and equipment owned by the Responsible Entity, as qualified in Section 4.1, that is subject to the requirements of the standard. As specified in the exemption section 4.2.3.5, this standard does not apply to Responsible Entities that do not have High Impact or Medium Impact BES Cyber Systems under CIP-002-5’s categorization. In addition to the set of BES Facilities, Control Centers, and other systems and equipment, the list includes the set of systems and equipment owned by Distribution Providers. While the NERC Glossary term “Facilities” already includes the BES characteristic, the additional use of the term BES here is meant to reinforce the scope of applicability of these Facilities where it is used, especially in this applicability scoping section. This in effect sets the scope of Facilities, systems, and equipment that is subject to the standards.

Requirement R1:

CIP-005-5, Requirement R1 requires segmenting of BES Cyber Systems from other systems of differing trust levels by requiring controlled Electronic Access Points between the different trust zones. Electronic Security Perimeters are also used as a primary defense layer for some BES Cyber Systems that may not inherently have sufficient cyber security functionality, such as devices that lack authentication capability.

All applicable BES Cyber Systems that are connected to a network via a routable protocol must have a defined Electronic Security Perimeter (ESP). Even standalone networks that have no external connectivity to other networks must have a defined ESP. The ESP defines a zone of protection around the BES Cyber System, and it also provides clarity for entities to determine what systems or Cyber Assets are in scope and what requirements they must meet. The ESP is used in:

- Defining the scope of ‘Associated Protected Cyber Assets’ that must also meet certain CIP requirements.
- Defining the boundary in which all of the Cyber Assets must meet the requirements of the highest impact BES Cyber System that is in the zone (the ‘high water mark’).

The CIP Cyber Security Standards do not require network segmentation of BES Cyber Systems by impact classification. Many different impact classifications can be mixed within an ESP. However, all of the Cyber Assets and BES Cyber Systems within the ESP must be protected at the level of the highest impact BES Cyber System present in the ESP (i.e., the “high water mark”) where the term “Protected Cyber Assets” is used. The CIP Cyber Security Standards accomplish the “high water mark” by associating all other Cyber|Assets within the ESP, even other BES Cyber Systems of lesser impact, as “Protected Cyber Assets” of the highest impact system in the ESP.
For example, if an ESP contains both a high impact BES Cyber System and a low impact BES Cyber System, each Cyber Asset of the low impact BES Cyber System is an “Associated Protected Cyber Asset” of the high impact BES Cyber System and must meet all requirements with that designation in the applicability columns of the requirement tables.

If there is routable connectivity across the ESP into any Cyber Asset, then an Electronic Access Point (EAP) must control traffic into and out of the ESP.

Responsible Entities should know what traffic needs to cross an EAP and document those reasons to ensure the EAPs limit the traffic to only those known communication needs. These include, but are not limited to, communications needed for normal operations, emergency operations, support, maintenance, and troubleshooting.

The EAP should control both inbound and outbound traffic. The standard added outbound traffic control, as it is a prime indicator of compromise and a first level of defense against zero day vulnerability-based attacks. If Cyber Assets within the ESP become compromised and attempt to communicate to unknown hosts outside the ESP (usually ‘command and control’ hosts on the Internet, or compromised ‘jump hosts’ within the Responsible Entity’s other networks acting as intermediaries), the EAPs should function as a first level of defense in stopping the exploit. This does not limit the Responsible Entity from controlling outbound traffic at the level of granularity that it deems appropriate, and large ranges of internal addresses may be allowed. The SDT’s intent is that the Responsible Entity knows what other Cyber Assets or ranges of addresses a BES Cyber System needs to communicate with and limits the communications to that known range. For example, most BES Cyber Systems within a Responsible Entity should not have the ability to communicate through an EAP to any network address in the world, but should probably be at least limited to the address space of the Responsible Entity, and preferably to individual subnet ranges or individual hosts within the Responsible Entity’s address space. The SDT’s intent is not for Responsible Entities to document the inner workings of stateful firewalls, where connections initiated in one direction are allowed a return path. The intent is to know and document what systems can talk to what other systems or ranges of systems on the other side of the EAP, such that rogue connections can be detected and blocked.

This requirement applies only to communications for which access lists and ‘deny by default’ type requirements can be universally applied, which today are those that employ routable protocols. Direct serial, non-routable connections are not included as there is no perimeter or firewall type security that should be universally mandated across all entities and all serial communication situations. There is no firewall or perimeter capability for an RS232 cable run between two Cyber Assets. Without a clear ‘perimeter type’ security control that can be applied in practically every circumstance, such a requirement would mostly generate technical feasibility exceptions (“TFEs”) rather than increased security.

As for dial-up connectivity, the Standard Drafting Team’s intent of this requirement is to prevent situations where only a phone number can establish direct connectivity to the BES Cyber Asset. If a dial-up modem is implemented in such a way that it simply answers the phone and connects the line to the BES Cyber Asset with no authentication of the calling party, it is a vulnerability to the BES Cyber System. The requirement calls for some form of authentication of the calling party before completing the connection to the BES Cyber System. If the dial-up connectivity is used for Interactive Remote Access, then Requirement R2 also applies.

The standard adds a requirement to detect malicious communications for Control Centers. This is in response to FERC Order No. 706, Paragraphs 496-503, where ESPs are required to have two distinct security measures such that the BES Cyber Systems do not lose all perimeter protection if one measure fails or is misconfigured. The Order makes clear that this is not simply redundancy of firewalls, thus the SDT has decided to add the security measure of malicious traffic inspection as a requirement for these ESPs.
Rationale:
During the development of this standard, references to prior versions of the CIP standards and rationale for the requirements and their parts were embedded within the standard. Upon BOT approval, that information was moved to this section.

Rationale for R1:
The Electronic Security Perimeter (“ESP”) serves to control traffic at the external electronic boundary of the BES Cyber System. It provides a first layer of defense for network based attacks as it limits reconnaissance of targets, restricts and prohibits traffic to a specified rule set, and assists in containing any successful attacks.

Summary of Changes: CIP-005, Requirement R1 has taken more of a focus on the discrete Electronic Access Points, rather than the logical “perimeter.”

CIP-005 (V1 through V4), Requirement R1.2 has been deleted from V5. This requirement was definitional in nature and used to bring dial-up modems using non-routable protocols into the scope of CIP-005. The non-routable protocol exclusion no longer exists as a blanket CIP-002 filter for applicability in V5, therefore there is no need for this requirement.

CIP-005 (V1 through V4), Requirement R1.1 and R1.3 were also definitional in nature and have been deleted from V5 as separate requirements but the concepts were integrated into the definitions of ESP and Electronic Access Point (“EAP”).

Reference to prior version: (Part 1.1) CIP-005-4, R1

Change Rationale: (Part 1.1)
Explicitly clarifies that BES Cyber Assets connected via routable protocol must be in an Electronic Security Perimeter.

Reference to prior version: (Part 1.2) CIP-005-4, R1

Change Rationale: (Part 1.2)
Changed to refer to the defined term Electronic Access Point and BES Cyber System.

Reference to prior version: (Part 1.3) CIP-005-4, R2.1

Change Rationale: (Part 1.3)
Changed to refer to the defined term Electronic Access Point and to focus on the entity knowing and having a reason for what it allows through the EAP in both inbound and outbound directions.

Reference to prior version: (Part 1.4) CIP-005-4, R2.3

Change Rationale: (Part 1.4)
Added clarification that dial-up connectivity should perform authentication so that the BES Cyber System is not directly accessible with a phone number only.
Change Rationale: (Part 1.5)

Per FERC Order No. 706, Paragraphs 496-503, ESPs need two distinct security measures such that the Cyber Assets do not lose all perimeter protection if one measure fails or is misconfigured. The Order makes clear this is not simple redundancy of firewalls, thus the SDT has decided to add the security measure of malicious traffic inspection as a requirement for these ESPs.

Requirement R2:
See Secure Remote Access Reference Document (see remote access alert).

Rationale for R2:
Registered Entities use Interactive Remote Access to access Cyber Assets to support and maintain control systems networks. Discovery and announcement of vulnerabilities for remote access methods and technologies, that were previously thought secure and in use by a number of electric sector entities, necessitate changes to industry security control standards. Currently, no requirements are in effect for management of secure remote access to Cyber Assets to be afforded the NERC CIP protective measures. Inadequate safeguards for remote access can allow unauthorized access to the organization’s network, with potentially serious consequences. Additional information is provided in Guidance for Secure Interactive Remote Access published by NERC in July 2011.

Remote access control procedures must provide adequate safeguards through robust identification, authentication and encryption techniques. Remote access to the organization’s network and resources will only be permitted providing that authorized users are authenticated, data is encrypted across the network, and privileges are restricted.

The Intermediate System serves as a proxy for the remote user. Rather than allowing all the protocols the user might need to access Cyber Assets inside the Electronic Security Perimeter to traverse from the Electronic Security Perimeter to the remote computer, only the protocol required for remotely controlling the jump host is required. This allows the firewall rules to be much more restrictive than if the remote computer was allowed to connect to Cyber Assets within the Electronic Security Perimeter directly. The use of an Intermediate System also protects the Cyber Asset from vulnerabilities on the remote computer.

The use of multi-factor authentication provides an added layer of security. Passwords can be guessed, stolen, hijacked, found, or given away. They are subject to automated attacks including brute force attacks, in which possible passwords are tried until the password is found, or dictionary attacks, where words and word combinations are tested as possible passwords.

But if a password or PIN must be supplied along with a one-time password supplied by a token, a fingerprint, or some other factor, the password is of no value unless the other factor(s) used for authentication are acquired along with it.

Encryption is used to protect the data that is sent between the remote computer and the Intermediate System. Data encryption is important for anyone who wants or needs secure data transfer. Encryption is needed when there is a risk of unauthorized interception of transmissions on the communications link. This is especially important when using the Internet as the communication means.

Summary of Changes: This is a new requirement to continue the efforts of the Urgent Action team for Project 2010-15: Expedited Revisions to CIP-005-3.

Reference to prior version: (Part 2.1) New
Change Rationale: (Part 2.1)
This is a new requirement to continue the efforts of the Urgent Action team for Project 2010-15: Expedited Revisions to CIP-005-3.

Reference to prior version: (Part 2.2) CIP-007-5, R3.1

Change Rationale: (Part 2.2)
This is a new requirement to continue the efforts of the Urgent Action team for Project 2010-15: Expedited Revisions to CIP-005-3. The purpose of this part is to protect the confidentiality and integrity of each Interactive Remote Access session.

Reference to prior version: (Part 2.3) CIP-007-5, R3.2

Change Rationale: (Part 2.3)
This is a new requirement to continue the efforts of the Urgent Action team for Project 2010-15: Expedited Revisions to CIP-005-3. The multi-factor authentication methods are also the same as those identified in the Homeland Security Presidential Directive 12 (HSPD-12), issued August 12, 2007.

Change Rationale: (Part 2.4 and 2.5)
Requirement R2 Parts 2.4 and 2.5 addresses Order No. 829 directives for controls on vendor-initiated remote access to BES Cyber Systems covering both user-initiated and machine-to-machine vendor remote access (P. 51). The objective is to mitigate potential risks of a compromise at a vendor during an active remote access session with a Responsible Entity from impacting the BES.

The objective of Requirement R2 Part 2.4 is for entities to have visibility of active vendor remote access sessions (including Interactive Remote Access and system-to-system remote access) that are taking place on their system. This scope covers all remote access sessions with vendors. The obligation in Part 2.4 requires entities to have a method to determine active vendor remote access sessions. While not required, a solution that identifies all active remote access sessions, regardless of whether they originate from a vendor, would meet the intent of this requirement. The objective of Requirement R2 Part 2.5 is for entities to have the ability to disable active remote access sessions in the event of a system breach as specified in Order No. 829 (P. 52).