Lesson Learned
Turbine Combustor Lean Blowout on Large-Frame Combustion Turbines

Primary Interest Groups
Generator Operators (GOPs)
Generator Owners (GOs)

Problem Statement
Under certain frequency excursions, some large-frame combustion turbines (CTs) may be prone to tripping by turbine combustor lean blowouts.

Details
Lean combustion flameout or blowout is a known characteristic of some combustion turbines due to their lean fuel and air mixture design. During a fault in the area of a CTs site, voltage dropped dramatically. This effectively reduced the area load, causing area generators to accelerate. Some CTs in that area that were operating in a lean-burn mode (used for reducing emissions) tripped offline as result of a phenomenon known as turbine combustor lean blowout. As CTs accelerated in response to the frequency excursion, the direct-coupled turbine compressors forced more air into their associated combustion chambers at the same time as the governor speed control function reduced fuel input in response to the increase in speed. This resulted in what is known as a CT blowout, or loss of flame, causing the units to trip offline.

Corrective Actions
- The combustion control systems were retuned to improve combustion system stability.
- A bore-scope inspection was performed.
- An additional inspection of combustion systems will be performed during scheduled outages to determine if the cracking issue is present in the unit.\(^1\)

Lesson Learned
Entities should check combustion control systems to improve unit stability for these conditions. Additional inspections of combustions systems may be warranted depending on the unit.

Note: General Electric (GE) issued a Technical Information Letter (TIL), dated December 31, 2010, which stated that an issue with certain type of transition pieces applicable to Frame 7FA DLN 2.6 CTs might contribute to flameout conditions. As noted in TIL 1774, recent fleet-wide unit, single-chamber lean blowouts can be attributed to cracking at the forward (round) end of the Transition Piece (TP) Impingement sleeve. GE’s root cause analysis determined that one possible cause of this type of cracking is excessive gaps between the wear pads and the TP forward sleeve. Cracks in these locations can result in an increase in

\(^1\) Per GE’s proprietary Technical Information Letter (TIL) 1774
airflow for the affected chamber and a lean blowout event. Because of this TIL, additional items will need to be checked during planned outages.

NERC also issued “Industry Advisory” A-2008-06-26-02 on Turbine Combustor Lean Blowout.

NERC’s goal in publishing lessons learned is to provide industry with technical and understandable information that assists them with maintaining the reliability of the Bulk-Power System. NERC requests that you provide input on this lesson learned by taking the short survey provided in the link below.

Click here for: Lesson Learned Comment Form

For more information, please contact:

NERC – Lessons Learned (via email)

Source of Lesson Learned: Florida Reliability Coordinating Council - FRCC – Lessons Learned
Texas Reliability Entity - David Penney (via email)
Reliability First - Jacquie Smith (via email)

Lesson Learned #: 20140301
Date Published: March 11, 2014
Category: Generation Facilities

This document is designed to convey lessons learned from NERC’s various activities. It is not intended to establish new requirements under NERC’s Reliability Standards or to modify the requirements in any existing Reliability Standards. Compliance will continue to be determined based on language in the NERC Reliability Standards as they may be amended from time to time. Implementation of this lesson learned is not a substitute for compliance with requirements in NERC’s Reliability Standards.