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Lesson Learned  
Loss of Automatic Generation Control During Routine Update 
 
Primary Interest Groups 

Transmission Operators (TOPs) 
Generator Operators (GOPs) 
Balancing Authorities (BAs) 
Reliability Coordinators (RCs) 
 
Problem Statement 

During a weekly automatic generation control (AGC) software update, a critical AGC task aborted at one of 
two fully redundant control centers, and the same critical task aborted at the other control center four 
minutes later. As a result, generation schedules could not be set, and area control error (ACE) could not be 
automatically calculated until the issue was resolved. The cause was a modified line of code. 
 
Details 

On December 10, 2019, a typical weekly AGC system build was being deployed. AGC was controlled from 
Control Center #1 with a completely redundant hot-standby system at Control Center #2. The standard 
process of work is to complete the deployment on the Control Center #2 AGC system and have the 
dispatcher transfer control to Control Center #2 AGC so the deployment can be completed on Control 
Center #1 AGC once that is complete. After the completion of that work, the dispatcher switches back to 
control using Control Center #1 AGC and remains in that state.  
 
When the Control Center #2 AGC deployment was complete, the generation dispatcher was informed by 
software support staff that they could transfer control to the Control Center #2 AGC system so the software 
update could be completed on the Control Center #1 AGC system. Approximately 1 hour and 15 minutes 
after switching control to Control Center #2, a critical AGC task aborted and critical control functionality 
was lost. The software support staff immediately became aware of the problem and, after being unable to 
restart the task, advised the dispatcher to switch control back to Control Center #1 AGC since its software 
deployment had been completed. The dispatcher switched control to Control Center #1 AGC, and the same 
critical task aborted on the Control Center #1 AGC. At this point, the dispatcher contacted the generation 
plants under AGC control to confirm plant schedules and to instruct them to remain at their current 
generation levels. The RC was notified.  
 
It was discovered that there was a change made to the primary inadvertent interchange (PII) alarm text 
during this AGC update that caused the failure. Prior to the update, when the PII value exceeded +/- 999 
MW, the value in the alarm text defaulted to “****,” preventing dispatchers from having an accurate 
indication of the amount of PII change. This alarm comes in when the PII value has a change greater than 
+/-200MW. During this deployment, the two MW value fields in the PII alarm text were modified from i4 to 
i5 (4 digit integers to 5 digit integers) to allow for an additional digit. While the dispatcher was controlling 
from the Control Center #2 AGC, the PII value went from +71 to +338 (267 MW change), causing the alarm. 
The original alarm text array had 79 characters which almost hit the max character limit of 80, and the 
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change from i4 to i5 resulted in the alarm text increasing by 2 characters to 81 characters in length. Writing 
an 81 character text string into an 80 character fixed length array resulted in a run-time abort of the task. 
When the dispatcher transferred control to the Control Center #1 AGC system, the Control Center #1 system 
began processing alarms and issued the same PII alarm, resulting in the same task to abort and loss of 
critical functionality on the Control Center #1 AGC. To immediately remedy the problem, code was written 
to tell the critical task to ignore the PII alarm. The dispatcher was able to go back on control on Control 
Center #1 AGC. Later that day, a more permanent remedy was implemented, and the alarm text statement 
was shortened to 72 characters while still allowing 5 digits in the MW value fields.   
 
PRIOR TO BUILD: LARGE CHANGE IN PII FROM XXXX TO XXXX MW. SELECT ACCEPT TO ALLOW PII TO 
UPDATE. (79 characters) 
 
AFTER BUILD: LARGE CHANGE IN PII FROM XXXXX TO XXXXX MW. SELECT ACCEPT TO ALLOW PII TO UPDATE. 
(81 characters) 
 
CURRENT: LARGE CHANGE IN PII FROM XXXXX TO XXXXX MW. SELECT ACCEPT TO UPDATE PII. (72 
characters) 
 
Corrective Actions 

A script was written to parse alarm format strings to see the theoretical limit for string max length to 
determine if any other alarms have text lengths that exceed the local array character limit.  
 
The process was modified by the group that programs and tests AGC modifications. Prior to an update 
occurring, there will be fields in the system used to track control center work to prove that the code was 
tested. The coder name, tester name, and test evidence that proves the successful test are required.  
 
Lesson Learned 

 No matter how small the change is, validate changes in a test environment first. This requires using 
a thorough test script for the changes. 

 A completed software testing process is critical to guarantee that products meet their requirements. 
In general, the process has four components: 

 Test Scope: to define test environment requirements and setup, features/functions that need 
to be tested, documentations to refer and produce as output, approval workflows, etc. 

 Test Design: to design test cases that are necessary to validate the system/functions/features 
being built, against its requirements. Typically, regression testing and incremental testing are 
necessary 

 Test Execution: to execute tests in many different ways 

 Test Closure: to consider the exit criteria for signaling completion of the test cycle and readiness 
for a release 
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 After implementing a code change at a control center, allow it to have enough time to determine 
that no adverse condition has been introduced prior putting that center in control (operate parallel) 
and prior to attempting to implement the change on the other control center. 

 Buffer overflows must be avoided by maintaining a high degree of correctness in code that performs 
buffer management. It has also long been recommended to avoid standard library functions that 
are not bounds checked. Well-written and tested abstract data type libraries that centralize and 
automatically perform buffer management, including bounds checking, can reduce the occurrence 
and impact of buffer overflows. 

 
NERC’s goal with publishing lessons learned is to provide industry with technical and understandable 
information that assists them with maintaining the reliability of the bulk power system. NERC is asking 
entities who have taken action on this lesson learned to respond to the short survey provided in the link 
below. 
 
Click here for: Lesson Learned Comment Form 
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