A Virtual Simulator Instructor for Training System Operators

Dr. Robin Podmore
robin@incsys.com

President, IncSys
Outline

• Why is a Virtual Simulator Instructor (VSI) useful?
• What is an expert system operator?
• How does an expert operator make decisions?
• Capturing knowledge of expert operators and trainers.
• Certifying veterans as system operators.
• Future enhancements.

“This material is based upon work supported by the Department of Energy [National Energy Technology Laboratory] under Award Number(s) DE-OE0000488.”
Applications for a VSI

• Definition: Training Objectives are accomplished without presence of a human instructor.

• SMEs can focus on Analysis, Design, Development and Evaluation – independent of student population.

• VSI handles Implementation – and is scalable to a large student population.
What is an Expert System Operator?
Situational Awareness

- Perceiving of environmental elements with respect to time and/or space.
- Comprehension of their meaning.
- Projecting their status after some variable has changed; e.g. time, or an event.
Situational Awareness

• **WHAT:** Perception of environmental elements with respect to time and/or space.

• **SO WHAT:** The comprehension of their meaning.

• **NOW WHAT:** The projection of their status after some variable has changed; e.g. time, or an event.
Levels of Expertise
Dreyfus and Dreyfus 1986

- **Stage 1 Novice** – Explicit rules susceptible to context and nuance
- **Stage 2 Advanced Beginner** – Nuance and context begin to be recognized and incorporated
- **Stage 3 Competence** - Transition from calculated effort to intuitive solutions
- **Stage 4 Proficiency** – Scenarios are now being recognized as whole parts, some analysis and conscious choice remains
- **Stage 5 Expertise** – Complete contexts are recognized and performance is fluid and unselfconscious.
Novices vs Experts

Novice Pattern

- Read
- Analyze
- Explore
- Plan
- Implement
- Verify

Expert Pattern
Expert Operator Decision Model
Naturalistic Decision Making

• Typical industry training doesn’t match the way *people think*. Effective training for critical decision making must be *informed* by cognitive theories and models.

• **Naturalistic Decision Making** (NDM) is an area of cognitive science that describes how experienced individuals and teams perform in real-time, mission-critical environments.

• First NDM conference held in 1989
Example Applications of NDM

- Health Care – Surgeons, Nurses
- Command and Control
- Aviation
- Business and Industrial Applications
- Process Control
- Material Requirements Planning
- Nuclear Power Plant Emergencies
- Naval Officers in Littoral Environments
- Skilled Fighter Pilots
- Australian Rifle Team
Decision Making Challenges

- Competing Goals
- Multiple Players
- Dynamic Settings
- Time Stress
- High Task Loading
- Uncertainty
- Organizational Factors
- High Stakes
Usability Tests at Pacific Northwest National Laboratories

- Control Group with Tabular Contingency Analysis.
- Experimental Group with Graphical Contingency Analysis.
- TEST 1: Test with Seven Individual Operators
- TEST 2: Instructor lead NERC CEH Class of 16 Operators
- Recorded interview on the thought process used by each operator.
- Performance of each operator evaluated using Cues, Patterns and Actions.
- Identified desire for faster cycle times.
Capturing Knowledge of Expert Operators and Trainers
Tacit and Explicit Knowledge

• Tacit Knowledge
 – We know more than we tell.
 – Not documented
 – Intuition, Blink, Think Fast - Think Slow.
 – Slow transfer from master to apprentice.

• Explicit Knowledge
 – Documented, repeatable.

• Simulation > Spiral of Knowledge Transfer
 – Implicit knowledge of master documented as explicit library of scenarios and solutions.
 – Implicit knowledge of student develops as student studies scenarios – adapts to own situation.
PALCO Scenario Developers

- RCs and TOPs: AEP, CAISO, CETAC, ERCOT, MISO, PJM, SERC, WECC.
- Training Suppliers: APTC, Blue Water, GTS, IncSys, OESNA, QTS, SOS.
- Developed at level of enabling objectives and terminal objectives.
- Based on hypothetical scenarios on hypothetical system.
- Process started 2001 and is still going.
PALCO Scenarios and NERC TOP Exam Contents

• Coordinate the re-synchronization of transmission at preplanned locations.
• Coordinate voltage reduction as requested or directed.
• Develop and execute corrective actions when equipment ratings or operating limits are exceeded.
• Implement a plan for restoring the system to a safe operating condition following a forced outage.
• Direct actions to return the system to a secure state following a major system disturbance.
• Shed load for system reliability.
• Identify and take action when partial or full system islanding occurs.
Virtual Simulator Instructor Modes

• Presenter - FLASH Tutorials
• Demonstrator – Narrated Screen shots
• Director – “Driving with directions”
• Facilitator – “Flying on mission”
VSI Applications

 – More than NERC 2000 operators provided with CEH.
• Training of Iraq Ministry of Electricity Real-time Engineers.
 – Reliability improved from 2008 to 2011.
• Power4Vets – recruiting, training, certifying and placing veterans as system operators.
 – 39 veterans certified.
Lonnie Bush Story

A Navy Nuclear trained First Class Petty Officer (E-6) with over 7 years of experience. Stationed aboard the USS Dwight D. Eisenhower (CVN-69), home ported out of Norfolk, VA. He started Power4Vets on 14 November 2011 and landed a job with AEP in Ohio as a System Control Center Operator in July 2012.

“Quote from Lonnie Bush”

“The Power4Vets program was more hope that I can ever have imagined”

- Lonnie Bush (U.S. Navy)

Mike Anderson – AEP, Supervisor of Transmission and Real Time Operations

The Power4Vets trained veterans that we have hired has helped us close the gap in our training process by 2-4 years and putting veterans into Operator Positions rapidly. Hiring a Power4Vets graduates have proven to be a huge SUCCESS for AEP. We want more veterans like Robert Epps, Robert Grubs and Lonnie Bush.
Future Enhancements
Future Enhancements

- Video recording of actual instructors and speech to text transcription for presentation mode.
- Ability to work with Custom Models.
- Extend simulation to cover cascading outages.
- Capture knowledge from recorded student conversations.
- Challenger mode with levels of difficulty.
- Evaluator mode using NERC RSI
- Massive On-Line Grid Games – 100s of students controlling an entire region – hosted on cloud.
RAILBELT System Map

FAIRBANKS

GOLDEN VALLEY ELEC. ASSOC.

CHUGACH ELECTRIC ASSOC.

ANCHORAGE MLP

ANCHORAGE ELECTRIC ASSOC.
RAILBELT Scenarios

- Developed by Mark Sickles – retired CEA System Operator.
 - Teeland RAS
 - Kenai Island Avalanche
 - Beluga Generation Bus Fault
 - System Restoration
 - Beluga - Pt. McKenzie Line Faults
 - International Bus Fault with Stuck Tie Breaker.
 - Pt. McKenzie Transformer Fault
- Used to train 320 SERC operators in 2012, 2013.
Scenario Format

- Learning Objectives
- Time
- Event Description
- Situational Awareness
- Expected Actions
- Expected Notifications
- Common Mistakes
- Scenario Options – Complicating Factors
- Safety Issues
Summary

• Industry has shared knowledge capture for the Generic PALCO system.

• Opportunity exists to share knowledge capture for system specific simulations.

• Barriers:
 – System operators are reluctant to use planning models for simulator training.
 – TOPs are reluctant to share breaker oriented models.

• Solution – Model factory to build models for specific drills.
Disclaimer

- Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."