Standard PRC-024-1 — Generator Frequency and Voltage Protective Relay Settings

Standard Development Roadmap

This section is maintained by the drafting team during the development of the standard and will be removed when the standard becomes effective.

Development Steps Completed:

1. SAR posted for comment (April 20-May 21, 2007).
2. Revised SAR and response to comments posted.
3. Revised SAR and response to comments approved by SC (June 14, 2007).
4. SDT appointed on (August 18, 2007).
5. Initial draft of PRC-024-1 was posted for a 45 day formal comment period (February 17 April 2, 2009).
6. Draft 2 of PRC-024-1 was posted for a 45 day concurrent comment and ballot period from June 15 - August 1, 2011.
7. Draft 3 of PRC-024-1 was posted for a 30 day concurrent comment and successive ballot period from February 29 - March 29, 2012.
8. Draft 4 of PRC-024-1 was posted for a 30 day concurrent comment and successive ballot period from September 28 - October 31, 2012.
9. Draft 5 of PRC-024-1 was posted for a 30 day concurrent comment and successive ballot period from December 12, 2012 - January 11, 2013.
9.10. Draft 6 of PRC-024-1 was posted for a 30 day concurrent comment and successive ballot period from January 25 through February 28, 2013.

Proposed Action Plan and Description of Current Draft:

This is the sixth seventh draft of the standard and includes Time Horizons, Data Retention, Violation Risk Factors, and Violation Severity Levels. This sixth posting is for a 3010-day comment and successiverecirculation ballot period.

Future Development Plan:

Anticipated Actions	Anticipated Date
1. Develop respenses to comments and develop sixth version draft standard.	Jantary 2013

Draft 76
Date: March 14January 17, 2013

Standard PRC-024-1 — Generator Frequency and Voltage Protective Relay Settings

2. Post respense to comments and conduct successive ballot.	February 2013
3. Develop respenses to ballot comments.	Mareh 2013
4. Post respenses to comments and conduct recireulation ballot.	April 2013
5. BOT adoption.	May 2013
6. File with regulatory authorities.	June 2013

Draft 76

Standard PRC-024-1 — Generator Frequency and Voltage Protective Relay Settings

Definitions of Terms Used in Standard

This section includes all newly defined or revised terms used in the proposed standard. Terms already defined in the Reliability Standards Glossary of Terms are not repeated here. New or revised definitions listed below become approved when the proposed standard is approved. When the standard becomes effective, these defined terms will be removed from the individual standard and added to the Glossary.

None

Draft 76

A. Introduction

1. Title: Generator Frequency and Voltage Protective Relay Settings

2. Number: PRC-024-1
3. Purpose: Ensure Generator Owners set their generator protective relays such that generating units remain connected during defined frequency and voltage excursions.
4. Applicability:
4.1. Generator Owner
5. Effective Date:
5.1. In those jurisdictions where regulatory approval is required:
5.1.1 By the first day of the first calendar quarter, two calendar years following applicable regulatory approval, or as otherwise made effective pursuant to the laws applicable to such ERO governmental authorities, each Generator Owner shall have verified at least 40 percent of its Facilities are fully compliant with Requirements R1, R2, R3, and R4.
5.1.2 By the first day of the first calendar quarter, three calendar years following applicable regulatory approval, or as otherwise made effective pursuant to the laws applicable to such ERO governmental authorities, each Generator Owner shall have verified at least 60 percent of its Facilities are fully compliant with Requirements R1, R2, R3, and R4.
5.1.3 By the first day of the first calendar quarter, four calendar years following applicable regulatory approval, or as otherwise made effective pursuant to the laws applicable to such ERO governmental authorities, each Generator Owner shall have verified at least 80 percent of its Facilities are fully compliant with Requirements R1, R2, R3, and R4.
5.1.4 By the first day of the first calendar quarter, five calendar years following applicable regulatory approval, or as otherwise made effective pursuant to the laws applicable to such ERO governmental authorities, each Generator Owner shall have verified 100 percent of its Facilities are fully compliant with Requirements R1, R2, R3, and R4.
5.2. In those jurisdictions where regulatory approval is not required:
5.2.1 By the first day of the first calendar quarter, two calendar years following Board of Trustees approval, each Generator Owner shall have verified at least 40 percent of its Facilities are fully compliant with Requirements R1, R2, R3, and R4.
5.2.2 By the first day of the first calendar quarter, three calendar years following Board of Trustees approval, each Generator Owner shall have verified at least 60 percent of its Facilities are fully compliant with Requirements R1, R2, R3, and R4.
5.2.3 By the first day of the first calendar quarter, four calendar years following Board of Trustees approval, each Generator Owner shall have verified at least 80 percent of its Facilities are fully compliant with Requirements R1, R2, R3, and R4.
5.2.4 By the first day of the first calendar quarter, five calendar years following Board of Trustees approval, each Generator Owner shall have verified 100 percent of its Facilities are fully compliant with Requirements R1, R2, R3, and R4.

B. Requirements

R1. Each Generator Owner that has generator frequency protective relaying ${ }^{1}$ activated to trip its applicable generating unit(s) shall set its protective relaying such that the generator frequency protective relaying does not trip the applicable generating unit(s) within the "no trip zone" of PRC-024 Attachment 1, subject to the following exceptions: [Violation Risk Factor: Medium] [Time Horizon: Long-term Planning]

- Generating unit(s) may trip if the protective functions (such as out-of-step functions or loss-of-field functions) operate due to an impending or actual loss of synchronism or ${ }_{2}$ for asynchronous generating units, due to instability in power conversion control equipment.
- Generating unit(s) may trip if clearing a system fault necessitates disconnecting (a) generating unit(s).
- Generating unit(s) may trip within a portion of the "no trip zone" of PRC-024 Attachment 1 for documented and communicated regulatory or equipment limitations in accordance with Requirement R3.
R2. Each Generator Owner that has generator voltage protective relaying ${ }^{1+4}$ activated to trip its applicable generating unit(s) shall set its protective relaying such that the generator voltage protective relaying does not trip the applicable generating unit(s) as a result of a voltage excursion (at the point of interconnection ${ }^{2}$) caused by an event on the transmission system external to the generating plant that remains within the "no trip zone" of PRC-024 Attachment 2. If the Transmission Planner allows less stringent voltage relay settings than those required to meet PRC-024 Attachment 2, then the Generator Owner shall set its protective relaying within the voltage recovery characteristics of a location-specific Transmission Planner's study. Requirement R2 is subject to the following exceptions: [Violation Risk Factor: Medium] [Time Horizon: Long-term Planning]
- Generating unit(s) may trip in accordance with a Special Protection System (SPS) or Remedial Action Scheme (RAS).
- Generating unit(s) may trip if clearing a system fault necessitates disconnecting (a) generating unit(s).

[^0]
Draft 76

Standard PRC-024-1 — Generator Frequency and Voltage Protective Relay Settings

- Generating unit(s) may trip by action of protective functions (such as out-of-step functions or loss-of-field functions) that operate due to an impending or actual loss of synchronism or, for asynchronous generating units, due to instability in power conversion control equipment.
- Generating unit(s) may trip within a portion of the "no trip zone" of PRC-024 Attachment 2 for documented and communicated regulatory or equipment limitations in accordance with Requirement R3.
R3. Each Generator Owner shall document each known regulatory or equipment limitation ${ }^{3}$ that prevents an applicable generating unit with generator frequency or voltage protective relays from meeting the relay setting criteria in Requirements R1 or R2 including (but not limited to) study results, experience from an actual event, or manufacturer's advice.
[Violation Risk Factor: Lower] [Time Horizon: Long-term Planning]
3.1. The Generator Owner shall communicate the documented regulatory or equipment limitation, or the removal of a previously documented regulatory or equipment limitation, to its Planning Coordinator and Transmission Planner within 30 calendar days of any of the following:
- Identification of a regulatory or equipment limitation.
- Repair of the equipment causing the limitation that removes the limitation.
- Replacement of the equipment causing the limitation with equipment that removes the limitation.
- Creation or adjustment of an equipment limitation caused by consumption of the cumulative turbine life-time frequency excursion allowance.

R4. Each Generator Owner shall provide its applicable generator protection trip settings associated with Requirements R1 and R2 to the Planning Coordinator or Transmission Planner that models the associated unit within 60 calendar days of receipt of a written request for the data and within 60 calendar days of any change to those previously requested trip settings unless directed by the requesting Planning Coordinator or Transmission Planner that the reporting of relay setting changes is not required. [Violation Risk Factor: Lower] [Time Horizon: Operations Planning]

C. Measures

M1. Each Generator Owner shall have evidence that generator frequency protective relays have been set in accordance with Requirement R1 such as dated setting sheets, calibration sheets or other documentation.

[^1]
Draft 76

Standard PRC-024-1 — Generator Frequency and Voltage Protective Relay Settings

M2. Each Generator Owner shall have evidence that generator voltage protective relays have been set in accordance with Requirement R2 such as dated setting sheets, voltage-time curves, calibration sheets, coordination plots, dynamic simulation studies or other documentation.

M3. Each Generator Owner shall have evidence that it has documented and communicated any known regulatory or equipment limitations (excluding limitations noted in footnote 3) that resulted in an exception to Requirements R1 or R2 in accordance with Requirement R3 such as a dated email or letter that contains such documentation as study results, experience from an actual event, or manufacturer's advicesory.

M4. Each Generator Owner shall have evidence that it communicated applicable generator protective relay trip settings in accordance with Requirement R4, such as dated e-mails, correspondence or other evidence and copies of any requests it has received for that information.

D. Compliance

1. Compliance Monitoring Process

1.1. Compliance Enforcement Authority

The Regional Entity shall serve as the Compliance Enforcement Authority (CEA) unless the applicable entity is owned, operated, or controlled by the Regional Entity. In such cases, the ERO or a Regional Entity approved by FERC or other applicable governmental authority shall serve as the CEA.

1.2. Data Retention

The following evidence retention periods identify the period of time an entity is required to retain specific evidence to demonstrate compliance. For instances where the evidence retention period specified below is shorter than the time since the last audit, the Compliance Enforcement Authority may ask an entity to provide other evidence to show that it was compliant for the full time period since the last audit.

The Generator Owner shall retain evidence of compliance with Requirement R1 through R4, Meastres M1 through M4; for 3 years or until the next audit, whichever is longer.

If a Generator Owner is found non-compliant, the Generator Owner shall keep information related to the non-compliance until mitigation is complete and approved for the time period specified above, whichever is longer.

The Compliance Enforcement Authority shall keep the last audit records and all requested and submitted subsequent audit records.

1.3. Compliance Monitoring and Assessment Processes

Compliance Audit

Standard PRC-024-1 — Generator Frequency and Voltage Protective Relay Settings
Self-Certification
Spot Checking
Compliance Investigation
Self-Reporting
Complaint

1.4. Additional Compliance Information

None

Draft 76
2. Violation Severity Levels

R \#	Lower VSL	Moderate VSL	High VSL	Severe VSL
R1	N/A	N/A	N/A	The Generator Owner that has frequency protection activated to trip a generating unit, has ne documented and commmicated regulatory or equipment limitation per Requirement R3 and failed to set its generator frequency protective relaying so that it does not trip within the criteria listed in Requirement R1 unless there is a documented and communicated regulatory or equipment limitation per Requirement R3.
R2	N/A	N/A	N/A	The Generator Owner with voltage protective relaying activated to trip a generating unit, has no documented and eommenieated regulatory or equipment limitation per Requirement R3 and-failed to set its voltage protective relaying so that it does not trip as a result of a voltage excursion at the point of interconnection, caused by an event external to the plant per the criteria specified in Requirement R2 unless there is a documented and communicated regulatory or equipment limitation per Requirement R3.

Draft 76

Date: March 14January 17, 2013

R \#	Lower VSL	Moderate VSL	High VSL	Severe VSL

Draft 76

E. Regional Variances

None
F. Associated Documents

None

Version History

Version	Date	Action	Change Tracking

G. References

1. "The Technical Justification for the New WECC Voltage Ride-Through (VRT) Standard, A White Paper Developed by the Wind Generation Task Force (WGTF)," dated June 13, 2007, a guideline approved by WECC Technical Studies Subcommittee.

PRC-024 - Attachment 1
 OFF NOMINAL FREQUENCY CAPABILITY CURVE

Curve Data Points:
Eastern Interconnection

High Frequency Duration	Low Frequency Duration		
Frequency (Hz)	Time (Sec)	Frequency (Hz)	Time (sec)
≥ 61.8	Instantaneous trip	≤ 57.8	Instantaneous trip
≥ 60.5	$10^{\left(90.935-1.45713^{+7}\right)}$	≤ 59.5	$10^{\left(1.7373^{7} 7-100.116\right)}$
<60.5	Continuous operation	>59.5	Continuous operation

Standard PRC-024-1 — Generator Frequency and Voltage Protective Relay Settings

Western Interconnection

High Frequency Duration		Low Frequency Duration	
Frequency (Hz)	Time (Sec)	Frequency (Hz)	Time (sec)
≥ 61.7	Instantaneous trip	≤ 57.0	Instantaneous trip
≥ 61.6	30	≤ 57.3	0.75
≥ 60.6	180	≤ 57.8	7.5
<60.6	Continuous operation	≤ 58.4	30
		≤ 59.4	180
		>59.4	Continuous operation

Quebec Interconnection

High Frequency Duration	Low Frequency Duration	
Frequency (Hz)	Time (Sec)	Frequency (Hz)
>66.0	Instantaneous trip	<55.5
≥ 63.0	5	≤ 56.5
≥ 61.5	90	≤ 57.0
≥ 60.6	660	≤ 57.5
<60.6	Continuous operation	≤ 58.5
		≤ 59.4

ERCOT Interconnection

High Frequency Duration		Low Frequency Duration	
Frequency (Hz)	Time (Sec)	Frequency (Hz)	

PRC-024- Attachment 2

Ride Through Duration:

High Voltage Ride Through Duration	Low Voltage Ride Through Duration		
Voltage (pu)	Time (sec)	Voltage (pu)	Time (sec)
≥ 1.200	Instantaneous trip	<0.45	0.15
≥ 1.175	0.20	<0.65	0.30
≥ 1.15	0.50	<0.75	2.00
≥ 1.10	1.00	<0.90	3.00

Voltage Ride-Through Curve Clarifications

Curve Details:

1. The per unit voltage base for these curves is the nominal operating voltage specified by the Transmission Planner in the analysis of the reliability of the Interconnected Transmission Systems at the point of interconnection to the Bulk Electric System (BES).
2. The curves depicted were derived based on three-phase transmission system zone 1 faults with Normal Clearing not exceeding 9 cycles. The curves apply to voltage excursions regardless of the type of initiating event.
3. The envelope within the curves represents the cumulative voltage duration at the point of interconnection with the BES. For example, if the voltage first exceeds 1.15 pu at 0.3 seconds after a fault, does not exceed 1.2 pu voltage, and returns below 1.15 pu at 0.4 seconds, then the cumulative time the voltage is above 1.15 pu voltage is 0.1 seconds and is within the no trip zone of the curve.
4. The curves depicted assume system frequency is 60 Hertz. When evaluating Volts/Hertz protection, you may adjust the magnitude of the high voltage curve in proportion to deviations of frequency below 60 Hz .
5. Voltages in the curve assume minimum fundamental frequency phase-to-ground or phase-to-phase voltage for the low voltage duration curve and the greater of maximum RMS or crest phase-to-phase voltage for the high voltage duration curve.

Evaluating Protective Relay Settings:

1. Use either the following assumptions or loading conditions that are believed to be the most probable for the unit under study to evaluate voltage protection relay setting calculations on the static case for steady state initial conditions:
a. All of the units connected to the same transformer are online and operating.
b. All of the units are at full nameplate real-power output.
c. Power factor is 0.95 lagging (i.e. supplying reactive power to the system) as measured at the generator terminals.
d. The automatic voltage regulator is in automatic voltage control mode.
2. Evaluate voltage protection relay settings assuming that additional installed generating plant reactive support equipment (such as static VAr compensators, synchronous condensers, or capacitors) is available and operating normally.
3. Evaluate voltage protection relay settings accounting for the actual tap settings of transformers between the generator terminals and the point of interconnection.

[^0]: ${ }^{1}$ Each Generator Owner is not required to have frequency or voltage protective relaying (including but not limited to frequency and voltage protective functions for discrete relays, volts per hertz relays evaluated at nominal frequency, multi-function protective devices or protective functions within control systems that directly trip or provide tripping signals to the generator based on frequency or voltage inputs) installed or activated on its unit.
 ${ }^{2}$ For the purposes of this standard, point of interconnection means the transmission (high voltage) side of the generator step-up or collector transformer.

[^1]: ${ }^{3}$ Excludes limitations that are caused by the setting capability of the generator frequency and voltage protective relays themselves but does not exclude limitations originating in the equipment that they protect.

