Project 2007-12 Frequency Response

Related Files

Status:

A recirculation ballot for BAL-003-1 closed on December 21, 2012 with a quorum of 86.19% and 76.53% approval. The standard will be presented to the NERC Board of Trustees for adoption at its February meeting.

Purpose/Industry Need:

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. Failure to maintain frequency can disrupt the operation of equipment and initiate disconnection of power plant equipment to prevent them from being damaged, which could lead to wide-spread blackouts. There is evidence of continuing decline in Frequency Response in the three Interconnections over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard would set a minimum Frequency Response obligation for each Balancing Authority, provide a uniform calculation of Frequency Response and Frequency Bias Settings that transition to values closer to natural Frequency Response, and encourage coordinated AGC operation.

Draft	Action	Dates	Results	Consideration of Comments
Draft 4				
BAL-003-1 Clean 92\| Redline to Last Posting 93				
Attachment A Clean 94\| Redline to Last Posting 95	Recirculation Ballot	$12 / 12 / 12$	$\begin{gathered} \text { Summary } \\ 118 \end{gathered}$	
Implementation Plan Clean 96\| Redline to Last Posting 97	Info 117 Vote>>	$\begin{gathered} 12 / 21 / 12 \\ \text { (closed) } \end{gathered}$	Full Record 119	
Supporting Materials:				
Procedure Clean 98\| Redline to I act Postins 09				

ERCOT 112				
Quebec Interconnection 113				
Excel 97-2003 Version				
Multiple BA Interconnection (Eastern \& Western) 114				
ERCOT 115				
Quebec Interconnection 116				
Draft 3	Successive Ballot and NonBinding Poll		Summary 87	
BAL-003-1 Clean 59\| Redline to Last Posting 60		$10 / 26 / 12$	Full Record 88	
	Updated Info 84	$11 / 06 / 12$		
	Info 85	(Closed)	Non-binding Poll Results	
Attachment A Clean 61			89	
Implementation Plan Clean 62\| Redline to Last Posting 63				
Supporting Materials:	Comment			
Procedure 64	Period	10/05/12		
Background Document 65	Info 86 Submit	$11 / 06 / 12$ (Closed)	Received 90	$\begin{aligned} & \text { of Comments } \\ & 91 \end{aligned}$
BAL-003-0.1b 66	Comments>>			
Unofficial Comment Form (Word) 67 Updated 10/16/12)				

Excel 97-2003 Version Multiple BA Interconnection (Eastern \& Western) 81 ERCOT 82 Quebec Interconnection 83				
Frequency Response Technical Conferences Unofficial Comment Form (Word) 56	Informal Comment Info 57 Submit Comments>>	$\begin{gathered} 05 / 30 / 12 \\ - \\ 06 / 15 / 12 \\ \text { (closed) } \end{gathered}$	Comments Received 58	
Draft 2 BAL-003-1 Clean 27\| Redline to Last Posting 28 Attachment A	Initial Ballot and Non-Binding Poll of VRFs and VSLs Vote>> Info 48	$\begin{gathered} 11 / 30 / 11 \\ - \\ 12 / 09 / 11 \\ \text { (closed) } \end{gathered}$	Summary 51 Full Record 52 Non-Binding Poll Results 53	
Attachment B Clean 30 Implementation Plan Clean 31\| Redline to Last Posting 32	Formal Comment Period Info 49 Submit Comments>>	$\begin{gathered} 10 / 25 / 11 \\ - \\ 12 / 09 / 11 \\ \text { (closed) } \end{gathered}$	Comments Received 54	Consideration of Comments 55
Supporting Materials: Background Document	Join Ballot Pool Initial and NonRindino	$\begin{gathered} 10 / 25 / 11 \\ - \\ 11 / 72 / 11 \\ \hline \end{gathered}$		

	Info 14 Submit Nomination>>	(closed)		
Draft 3 Frequency Response SAR Draft SAR Version 39	Comment Period Info 10 Submit Comments>>	$\begin{gathered} 02 / 08 / 07 \\ - \\ 03 / 09 / 07 \\ \text { (closed) } \end{gathered}$	Comments Received 11	Consideration of Comments 12
Draft 2 Frequency Response SAR Draft SAR Version 25	Comment Period Info 6 Submit Comments>>	$\begin{gathered} \text { 04/04/06 } \\ - \\ \text { 05/03/06 } \\ \text { (closed) } \end{gathered}$	Comments Received 7	Consideration of Comments 8
Draft 1 Draft SAR Version 11 White Paper 2		$\begin{gathered} 01 / 17 / 05 \\ - \\ 02 / 17 / 05 \\ \text { (closed) } \end{gathered}$	Comments Received 3	Consideration of Comments 4

Standard Authorization Request Form

Title of Proposed Standard	Frequency Response
Request Date	$4 / 7 / 04$

SAR Requestor Information	SAR Type (Put an 'x' in front of one of these selections)			
Name Don McInnis	x	New Standard		
Primary Contact Don McInnis	\square	Revision to existing Standard		
Telephone (305) 442-5272 Fax	\square	Withdrawal of existing Standard		
E-mail	don_mcinnis@fpl.com	\square		Urgent Action
:---				

Purpose/Industry Need (Provide one or two sentences)

In regard to frequency response, one shortcoming of the recommendations in policy today is that there is no guidance regarding how much governor response (in MW) is required at the 5% droop rate. This has led to confusion among plant operators and turbine-generator manufacturers alike, and has led to confusion among CA and Generation Operators as to their responsibilities and obligations.

This SAR is suggested to ensure frequency of Interconnection remains above underfrequency load shedding setpoints during transient period following the sudden loss of generation on the Interconnection.

Reliability Functions
The Standard will Apply to the Following Functions (Check box for each one that applies by
double clicking the grey boxes.)

X	Reliability Authority	Ensures the reliability of the bulk transmission system within its Reliability Authority area. This is the highest reliability authority.
®	Balancing Authority	Integrates resource plans ahead of time, and maintains load-interchangeresource balance within its metered boundary and supports system frequency in real time
\square	Interchange Authority	Authorizes valid and balanced Interchange Schedules
\square	Planning Authority	Plans the bulk electric system
\square	Resource Planner	Develops a long-term (>1year) plan for the resource adequacy of specific loads within a Planning Authority area.
\square	Transmission Planner	Develops a long-term (>1 year) plan for the reliability of transmission systems within its portion of the Planning Authority area.
\square	Transmission Service Provider	Provides transmission services to qualified market participants under applicable transmission service agreements
\square	Transmission Owner	Owns transmission facilities
\square	Transmission Operator	Operates and maintains the transmission facilities, and executes switching orders
\square	Distribution Provider	Provides and operates the "wires" between the transmission system and the customer
\square	Generator Owner	Owns and maintains generation unit(s)
\boxtimes	Generator Operator	Operates generation unit(s) and performs the functions of supplying energy and Interconnected Operations Services
\square	PurchasingSelling Entity	The function of purchasing or selling energy, capacity and all necessary Interconnected Operations Services as required
\square	Market Operator	Integrates energy, capacity, balancing, and transmission resources to achieve an economic, reliability-constrained dispatch.
\square	Load-Serving Entity	Secures energy and transmission (and related generation services) to serve the end user

Reliability and Market Interface Principles

	s.)
区	1. Interconnected bulk electric systems shall be planned and operated in a coordinated manner to perform reliably under normal and abnormal conditions as defined in the NERC Standards.
\square	2. The frequency and voltage of interconnected bulk electric systems shall be control within defined limits through the balancing of real and reactive power supply and d
\square	3. Information necessary for the planning and operation of interconnected bulk electric systems shall be made available to those entities responsible for planning and operating the systems reliably.
\square	4. Plans for emergency operation and system restoration of interconnected bulk electric systems shall be developed, coordinated, maintained and implemented.
\square	5. Facilities for communication, monitoring and control shall be provided, used and maintained for the reliability of interconnected bulk electric systems.
	6. Personnel responsible for planning and operating interconnected bulk electric systems shall be trained, qualified and have the responsibility and authority to implement actions.
区	7. The security of the interconnected bulk electric systems shall be assessed maintained on a wide area basis.
Does the proposed Standard comply with all of the following Market Interface Principles? (Select 'yes' or 'no' from the drop-down box by double clicking the grey area.)	
1. The planning and operation of bulk electric systems shall recognize that reliability is an essential requirement of a robust North American economy. Yes	
An Organization Standard shall not give any market participant an unfair competitive advantage.Yes	
3. An Organization Standard shall neither mandate nor prohibit any specific market structure. Yes	
4. An Organization Standard shall not preclude market solutions to achieving compliance with that Standard. Yes	
	An Organization Standard shall not require the public disclosure of commercially sensitive information. All market participants shall have equal opportunity to access commercially nonsensitive information that is required for compliance with reliability standards. Yes

Detailed Description (Provide enough detail so that an independent entity familiar with the industry could draft, modify, or withdraw a Standard based on this description.)
This proposed standard would coordinate with and complement the Load and Balancing SAR, which addresses Interconnection frequency control from 10 minutes and longer, by addressing the requirements for control during the seconds timeframe. Ideally, an integrated set of performance-based "balancing standards" should be in place that monitors the entire spectrum of the adequacy component of reliability. Figure 1 depicts the interrelationships of the set of "Balancing" standards, which ultimately checks that Control Areas have and deploy adequate resources to maintain reliability.
Seconds Minutes Hours Days

Figure 1 Interrelationships of "Balancing" Standards

The Control Performance Standards (CPS1 and CPS2) are well-defined and generally accepted by the Industry. The Disturbance Control Standard (DCS) measures deployment of reserves for specific events. This SAR is proposed to develop a standard to measure sub-minute responses to changes in frequency and to set minimum acceptable responses to system these events.

A Frequency Response Standard should address the following issues:

- There must be a minimum response for each event (rate, amount, and duration). Reliance on average response could result in all areas being short at the same time (similar to the short-term excursions seen with CPS1). The amount (depth of response) should not be under-emphasized.
- The measurement selected must be accurate and, to the extent practical, easy to implement.
- The requirements must integrate with and be consistent with the assumptions used in setting the BAAL limits within the Load and Balancing Standard (if and as ultimately adopted)
- A method of allocation must be developed
- The standard should not preclude market solutions (e.g. allow purchasing of response as long as deliverability and restoration criteria can be met). There must be a means for sale/purchase of frequency response as for any other quantity.

Related Standards

Standard No.	Explanation
300	Address frequency control during the transient period of 1-30 seconds currently not covered by the Balance Resource and Demand Standard

Related SARs

SAR ID	Explanation

Regional Differences

Region	Explanation
ECAR	
ERCOT	
FRCC	
MAAC	
MAIN	
MAPP	
NPCC	
SERC	
SPP	
WECC	

Related NERC Operating Policies or Planning Standards

ID	Explanation
Planning	The planning standards address the requirement for generator
Standards	governors. This proposed standard broadens the concept to
III Section	include not only governors but other equipment including load
C Generation	
Control and	
trotection responds to frequency.	

\square
\square
\square

NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL
Princeton Forrestal Village, 116-390 Village Boulevard, Princeton, New Jersey 08540-5731

Frequency Response Standard Whitepaper

April 6, 2004
Prepared by the Frequency Task Force of the NERC Resources Subcommittee
PREFACE 3
INTRODUCTION 3
Background 3
CURRENT SITUATION 6
EASTERN InTERCONNECTION 6
Western Interconnection 6
Texas Interconnection 7
IS THERE A PROBLEM? 8
Analysis of a Load Only Response 11
Secondary Impacts 13
CURRENT REQUIREMENTS 14
ISN'T EXISTING POLICY SUFFICIENT? 14
COMMENTS TO THE FIRST PROPOSED FREQUENCY RESPONSE STANDARD 15
FREQUENCY RESPONSE STANDARD CONSIDERATIONS 16
InTRODUCTION 16
IssuES- 16
REFERENCES 17
ACRONYMS, TERMS AND DEFINITIONS 19

PREFACE

Frequency response as used in this paper is defined as an automatic and sustained change in the power consumption or output of a device that occurs within $5-30$ seconds of and is in a direction to oppose a change in the Interconnection frequency. Frequency response as so defined is declining within the Eastern and Western Interconnections when it should be increasing because of increasing load and the associated increase in generation. Frequency Response within the Texas Interconnection has been statistically constant.

The NERC Resources subcommittee posted a Frequency Response Standard for comment in 2001. The comments received against the standard centered on 1) those not understanding the metric and 2) those questioning the need for a standard.

The intent of this paper is to create an understanding of the need for a standard and the technical and economic drivers motivating its development

INTRODUCTION

The NERC Resources subcommittee drafted this paper to document the need for a frequency response standard. Provided in this paper are statistical background data showing how the frequency response of the Interconnections has declined along with an analysis of the technical and economic drivers that have contributed to the decline. Further, the paper attempts to refute through examples and simulation the arguments that this decline in the response is not a reliability issue. Instead, the paper will demonstrate that both the Western and Eastern Interconnections run a strong risk of under-frequency action if a standard is not adopted that establishes minimum levels of frequency response. The Union for the Coordination for the Transmission of Electricity (a European Standards Group) has already adopted a standard addressing the same technical issues raised within this paper. While the primary focus of the paper is the impact to each Interconnection as a whole, the need for primary frequency response also is a major consideration in islanding situations.

Background

Each Control Area's contribution to frequency support is provided by the natural response of its generators and load to frequency variations. Figure 1 depicts a typical frequency excursion caused by a loss of a large generator on an Interconnection. Frequency Response is typically comprised of two components:
"Load rejection" or the reduction in the power consumption by motors that slow down in response to a decline in frequency. This is reflected in the general slope of the line from Points A-C. Load response to a change in frequency can vary anywhere from no response from equipment like computers to 1.5 times for some motor loads. Load response occurs directly or with minimal lag as the frequency changes. In addition,

Control Areas may use "high set" interruptible loads that disconnect on a pre-determined trigger frequency.
"Generator response" or a change in the output of a generating unit due to inertia and the movement of its governor valves. Governor response from properly tuned units occurs in the $3-10$ second timeframe and is responsible for the bottoming of frequency at Point C and the partial recovery of frequency to Point B.

Figure 1 Typical Frequency Excursion
All else being constant, frequency will not recover to its scheduled value (typically 60 Hz) unless the Control Area that lost the resource replaces it.

The turn around in frequency from points C to B attributable to unit governor response has markedly declined and at times is non-existent in the Eastern Interconnection. The line from points C to D is shifting down and becoming horizontal. This means that on many occasions the only frequency response in the East is coming solely from load response. This critical fact is important since as will be discussed later in the paper. The changing nature of loads means that there will be markedly less load response available in the future. Therefore, reliance on load as the sole support to arrest the frequency can lead to a decline in the reliability of the grid.

One of the fundamental obligations of a Control Area as stated the Control Area Criteria of the NERC Operating Manual is the provision of frequency support. Once this support is produced it is the purpose and the intent of the frequency bias component of the ACE

1/17/2005

equation to ensure that this response is not withdrawn after the initial transient period or through AGC action.

Ideally, an integrated set of performance-based "balancing standards" should be in place that monitors the entire spectrum of the Adequacy component of Reliability. Figure 2 shows the interrelationships of the set of "Balancing" standards, which ultimately checks that Control Areas have and deploy adequate resources to maintain reliability.

Seconds Minutes Hours Days
Proposed FRS

DCS

Figure 2 Interrelationships of "Balancing" Standards

The Control Performance Standards (CPS1 and CPS2) are well-defined and generally accepted by the Industry. The Disturbance Control Standard (DCS) measures deployment of reserves for specific events. This paper focuses on a proposed standard to measure sub-minute responses to changes in frequency. This sub-minute response is commonly called Governor Response (if viewed at the generator level) and Primary Frequency Control or Frequency Response (from a Control Area perspective).). The resource pyramid diagram below shows the same concept in a different fashion.

Response Time

Seconds

Seconds to Minutes

10 to 15 minutes

30 minutes

Hourly

Note: Frequency Response is actually a negative value i.e. as frequency drops a generator's output should increase. When discussing Frequency Response, people generally talk about the raw numbers (i.e. $50 \mathrm{MW} / 0.1 \mathrm{~Hz}$); the (-) sign is assumed. This should be kept in mind when reading this paper.

CURRENT SITUATION

Eastern Interconnection

Technical papers (Ingleson and Nagle) and analysis (Bourque) point to a continued decline in Eastern Interconnection Frequency Response. Figure 3 is a summary of this work.

Figure 3 Trend in Eastern Interconnection Frequency Response

The plot shows an annual decline of slightly over $70 \mathrm{MW} / 0.1 \mathrm{~Hz}$. This nine-year trend reflects an 18% decline in frequency response while load and generation grew nearly 20\% over the same period. Frequency response should have increased proportionally with generation and load.

Western Interconnection

Figure 4 Trend in Western Interconnection Frequency Response
Figure 4 shows a proportionally similar decline in the Western Interconnection's Frequency Response. The graph represents response to events 25 milliHz or larger. There were a few data points available for prior years that put the West's response in the order of $1650 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994. This would be consistent with a decline of 20MW/year. Again, response should be increasing with increasing load and generation.

Texas Interconnection

The trend in the Texas Interconnection frequency response has been statistically flat. Figure 5 is a different representation of response over an 8-year period (1995-2002). The plot is a "box and whisker" graph. The rectangle or bar for each year represents the range of the "middle 50% " of observed events. The average value is the horizontal line within the year's rectangle. The "whiskers" attached to each box represent the upper and lower "quartiles". The asterisk in 1999 is an "outlier" or rare events. The plots represent 65 "medium sized" events over this period.

Comparing the Texas Interconnection Frequency Response to the other Interconnections is a challenge. This is because ERCOT has two groups of "high set" interruptible load. The first group trips at 59.8 Hz , the second at 59.7 Hz . Customers in the Texas Interconnection choose to participate in this and ERCOT uses it as a supplement to governor response. Once disconnected, the load provides no other assistance to frequency control such as inertial response. Additionally, this interruptible load provides no response to high frequency events.

Figure 5 ERCOT Frequency Response 1995-2002

IS THERE A PROBLEM?

Those arguing against the need for a standard contend that the decline in the frequency response illustrated above is not a significant reliability problem. The argument put forward against a standard is that even if frequency response is declining there is so much margin in the system that reliability i.e. loss of load from under- frequency is not impacted. The calculation to demonstrate this argument is straightforward. The first significant amount of under-frequency load shedding in the Eastern Interconnection is set at $59.70 \mathrm{~Hz}^{1}$. The current level of frequency response of the Eastern Interconnection is taken as $3100 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Therefore an under-frequency decline to 59.7 Hz would require a generation loss of 9300 MW . This is well beyond any generation loss that has ever occurred except in an islanded situation. Furthermore, at the current rate of decline of $70 \mathrm{MW} / \mathrm{yr}$, as shown in figure 3 it will be thirty-four years before the response level declines to a level where a loss of even 2400 MW becomes a problem with respect to potential under-frequency load shedding.

As a starting point, this paper will show that the above logic is based on at least three incorrect assumptions.

The first assumption is that the Interconnection frequency starts at 60 Hz . An examination of Eastern Interconnection frequency statistics shows significant periods when the

[^0]Interconnection frequency is operating at or below 59.98 Hz . If 59.98 Hz is used to determine how long before the loss of 2400 MW causes an under-frequency the result reduces to 25 years. This is still beyond the range of concern.

The second and most critical assumption is that the frequency response will be $3100 \mathrm{MW} / 0.1 \mathrm{~Hz}$. This is representative of the average frequency response within the Eastern Interconnection. However, the standard (or average) deviation of responses is \pm $1870 \mathrm{MW} / 0.1 \mathrm{~Hz}$; giving a range of responses from 4970 to $1230 \mathrm{MW} / 0.1 \mathrm{~Hz}$. If the lower response of $1230 \mathrm{MW} / 0.1 \mathrm{~Hz}$ is used in the calculation then, even today, a loss of 2400Mw has significant potential to cause under-frequency load shedding to occur. The fact that an under-frequency event has not happened yet is only coincidence. The multiple unit trips that have approached 2400MW have, fortunately, occurred when there was good response available.

A third assumption that is believed to be unfounded but is harder to disprove explicitly is, namely that the decline in frequency response will continue at a rate of only
$70 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Many drivers are contributing to the response decline. Among these are:

- Steam turbine generators operating on "sliding pressure" or "boiler-follower" control and/or with "valves wide-open" (VWO) operation.
- Blocked governors on nuclear units for licensing reasons.
- Less heavy manufacturing in North America (proportionally fewer large motor loads and a reduction in "load rejection").
- Variable-speed drives on motors that do not provide the traditional "load rejection".
- A larger proportion of combine cycle units being installed on the system. Combined-cycle units when operating at full output operate in temperature control mode. When the frequency declines, there is a drop in combustion air volume that results from the slowing of compressor speed. This drop in combustion air volume can cause a reduction in the unit output. Figure 6 is a graph of the output of a combine cycle unit responding to a frequency decline.

Figure 6 Combustion Turbine Response to Frequency Change

The blue line in Figure 6 is frequency and the red is MW output of the generators. The oval envelops the Frequency Response time window. For a change in frequency of -0.83%, the station lost 2.5% of machine output. If the plant provided 5\% droop, its output should have increased 6.6 MW with the frequency event. The drop in output implies a POSITIVE Frequency Response characteristic.

While this is one specific model of combined-cycle unit, the graph is illustrative of this class of unit. As more of this class of unit comes on line, not only may there be no response but the response may actually decline as the frequency declines. This is of particular concern during Interconnection valley periods when these units may potentially make up a large proportion of the on-line generation. It is noteworthy that this phenomenon in the form of deloading or outright tripping after no more than one or two seconds of good response was a contributing factor in the Malaysia blackout in 1996 (Mansour 2003). Combinedcycle units can be tuned to provide correct frequency response; however, the operators need to be educated to the problem or have contractual or financial obligations and incentives to ensure that their units meet the requirements.

- Deregulation has resulted in a large increase in reserve-sharing groups. In the past, many Control Areas carried full reserves for their individual largest contingency and some for multiple contingencies. De-regulation and competitive
pressures have ended both of these practices. The majority of Control Areas have formed into Reserve Sharing Groups and each now carries its proportional share of the largest contingency.

While some of the above trends have slowed, the rate of decline has not been linear. In four out of the eight years examined, the frequency response decline has been over 100MW/0.1Hz.

Analysis of a Load Only Response

Currently, the wide variation of frequency response tends to be a self-correcting problem. During high load periods when units are operating at full output, the frequency response is available from the load. In light load periods when there is less load response, the online units are at less than full output and produce governor response. Without a standard in place, however, there is no guarantee that unit response will continue. What happens if it does not? A simple calculation provides the answer.

The Eastern Interconnection peaks at 600,000 MW and remains at loads of $200,000 \mathrm{MW}$ and below for roughly 20% of the time. At best, motor and other similar types of loads respond on a linear basis as the frequency declines. In other words a 1% change in frequency, equivalent to 0.6 Hz , produces a 1% change in load. A drop in the Interconnection frequency that reaches the first step of underfrequency load shedding, 59.7 Hz , represents a 0.5% change in frequency and therefore would produce only a 0.5% change in load or 1000 MW . There are roughly 16-22 single generators of this size or larger within the Eastern Interconnection. Without unit or other equivalent frequency support, a single unit trip could potentially cause the Eastern Interconnection to drop firm load.

1/17/2005

The following simulation results show the response of the Eastern Interconnection under two scenarios. The load level analyzed is 280,000MW or about the load on 4/23/03 when there was a loss of 2500 MW on the system. Figure 7 shows the response of the system assuming there had only been load response available. The model assumes a linear decline of load with frequency as stated above. At 59.5 Hz , the simulation drops 7% of the load by under-frequency load shedding.

Figure 7 Simulation Assuming no Governor Response

Figure 8 shows the same system conditions and assumptions except that there is 1000MW of generator governor reserves.

Figure 8 Simulation with 1000 MW of Governor Reserves

The impact of the governor response even though only half of the unit loss is sufficient to maintain the frequency above the under frequency tripping point.

Without a frequency response standard there is no assurance that unit response will be available in any of the Interconnections. Current economics will continue to drive most units to operate at maximum output. Presently, system operating conditions are counterbalancing and the problem is self-correcting. As pointed out above, combinedcycle units are an increasing proportion of the generation. What incentive is there for other, newer technologies to incorporate frequency response if no requirement (i.e. a standard) exists to define adequacy?

Secondary Impacts

There are many secondary effects from having an unknown and uncontrolled frequency response. Among these are:

- System oscillations may not be damped and may actually be aggravated. Recent testing of governor response in the Western Interconnection (Pereira) shows that existing models using an expected 5% governor droop are overly optimistic.
Calculations indicate only 40% of expected response was obtained. As a result,
oscillations persist for roughly twice as long as models predict, and they are substantially stronger.
- Some areas may be incapable of "self restoration" during islanding and black-start conditions.
- Without a measure or requirement, market forces will likely continue to drive a decline in performance.
- Stability transfer limits will be incorrect if assumptions about frequency response are wrong.
- There is no way to tell whether the decline in response is spread among all Control Areas or whether there are regions with little or no response (and therefore not able to provide support to the Interconnection during disturbances or "self start" during restoration).

CURRENT REQUIREMENTS

This section highlights the current requirements and good practices regarding Frequency Response.

The NERC Control Area Criteria document outlines the fundamental obligations of the operation of the grid. In particular, it states:

The CONTROL AREA shall operate generation or have the necessary contracts to operate generation to... Provide its frequency bias obligations.

Policy 1 has several guides (suggested good practices) regarding governors:

- Generating units with nameplate ratings of 10 MW or greater should be equipped with governors operational for Frequency Response unless restricted by regulatory mandates.
- Turbine governors and HVDC controls, where applicable, should respond to system frequency deviation, unless there is a temporary operating problem.
- All turbine generators equipped with governors should be capable of providing immediate and sustained response to abnormal frequency excursions. Governors should provide a 5\% droop characteristic. Governors should, as a minimum, be fully responsive to frequency deviations exceeding $\pm 0.036 \mathrm{~Hz}$.
- Turbine control systems that provide adjustable limits to governor valve movement (valve position limit or equivalent) should not restrict travel more than necessary to coordinate boiler and turbine response characteristics.

ISN'T EXISTING POLICY SUFFICIENT?

Current NERC policy, as seen above, has no "requirements" for primary frequency response. Policy 1C deals primarily with Bias, which relates more to determining regulation and Secondary Frequency Control, rather than Frequency Response. The
portions of Policy 1C regarding governors are "guides" and carry no force. This may partially explain why Frequency Response is declining. Mandatory requirements for governors, even if adopted, do not guarantee that the unit would not be operated at wideopen valves and, therefore, have no response for an under-frequency condition. In other words, both responsiveness and depth of response must be assured.

COMMENTS TO THE FIRST PROPOSED FREQUENCY RESPONSE STANDARD

A Frequency Response Standard was proposed in mid 2001 in conjunction with approval of the current version of Policy 1. Table 1 summarizes the comments received.

Summary Comment	Respondents
"Wordsmithing" or clarification or minor modification comments	62
Governor requirement needs more definition (what is a "governor" on a combined cycle unit) and should be consistent with Planning Standards.	1
In favor of a standard	3
Measure should be tested before implementation	2
Add a requirement for common set points for under-frequency load shedding so that one CONTROL AREA won't drag another one down,	1
"Loss of load" risk should not be the basis for establishing the standard.	1
There does not appear to be sufficient evidence on hand at this time to warrant rigorous Standards and possible non- compliance penalties.	1
Not sure using one-minute data will measure what's needed.	1

Table 1 Summary of Comments to Policy 1C
The Balancing SAR task force posed questions to the Industry on the need for a Frequency Response Measure (FRM) that would likely mirror the FRS suggested by the Resources Subcommittee. The NERC Director of Standards returned the proposal because of concerns raised by the Industry. A closer look at the responses reveals that the Industry was not so much opposed to the standard as they were looking for information and clarification of the requirements. Table 2 summarizes the responses.

Summary Comment	Respondents
Difficulty measuring	6
Didn't understand measure	1
Only if Generation governors required in "interconnection standard"	1
More work needed in definition	1
In favor	6
Should hold sub-entities (generators, LSEs) accountable	6

Current guides requiring generators to respond are adequate	2
Eliminate the Frequency Response Measure	1

Table 2 Summary of Comments Received on a Frequency Response Measure

FREQUENCY RESPONSE STANDARD CONSIDERATIONS

Introduction

A frequency response standard must explain clearly what is to be measured and why. This will help with the design of the process and provide direction on how it should evolve. Logical goals and considerations for a FRS include:

- Benchmark and track performance (both Control Area and Interconnection).
- Maintain historic levels of reliability (or some other level justified by an in-depth analysis).
- Be performance-based rather than commodity-based.
o This is similar to CPS where impact on interconnection frequency is measured rather than requiring a target set-aside of regulating resources.
o Specifically measuring Frequency Response allows more flexibility in meeting the needs of the Interconnection and Region (a target spinning reserve amount does not ensure Frequency Response)
o Rather than telling entities how to meet the standard, let the Industry and markets find innovative solutions.
- Be "tunable", thereby providing a means to adjust the standards as information allows.
- Be empirically valid (results statistically provable).
- Be objectively calculated.
- Be consistent and verifiable in application by all parties.
- Enable simple compliance monitoring.
- Be consistent with direction of the Industry (i.e. FERC RTO rule, IOSITF, etc.).

Issues

A Frequency Response Standard should address the following issues:

- There must be a minimum response for each event (rate, amount, and duration) such that the problems described above do not occur. Reliance on average response could result in all areas being short at the same time (similar to the short-term excursions seen with CPS1). The amount (depth of response) should not be under-emphasized. One shortcoming of the recommendations in policy today is that there is no guidance regarding how much governor response (in MW) is required at the 5\% droop rate. This has led to confusion among plant operators and turbine-generator manufacturers alike, and has resulted in an objectionable lack of response from some units when the

1/17/2005

boiler controls are suppressed out of legitimate fear of tripping the unit on a frequency change.

- The measurement selected must be accurate and, to the extent practical, easy to implement.
- The requirements must integrate with and be consistent with the assumptions used in setting the BAAL limits within the Load and Balancing Standard (if and as ultimately adopted)
- A method of allocation must be developed
- The standard should not preclude market solutions (e.g. allow purchasing of response as long as deliverability and restoration criteria can be met).There must be a means for sale/purchase of frequency response as for any other quantity.

REFERENCES

Bourque, E., Frequency Response Data provided to the NERC Resources subcommittee.
Cohn, N., Control of Generation and Power Flow on Interconnected Power Systems, John Wiley and Sons, 1961.

Comments to posting of Policy 1 (Policy1-Version2-0601-comments1.doc)
EPRI Report TR-101080, Impacts of Governor Response Changes on the Security of North American Interconnections, October 1992.

Ingleson, J., Nagle, M., "Decline of Eastern Interconnection Frequency Response", Prepared for the Fault and Disturbance Conference at Georgia Tech, May, 1999.

NERC Policy 1, Generation Control and Performance.
NERC Frequency Response Characteristic Survey Training Document.

NERC Resources Subcommittee Minutes.
NERC Training Resource Working Group Understand and Calculate Frequency Response".

NERC "Interconnected Operations Services Reference Document".

Pereira, L., "NEW THERMAL TURBINE GOVERNOR MODELING FOR THE WECC", Presentation dated August 27, 2002.
"WSCC FRR SURVEYS CONDUCTED" (Rev. November 21, 2001) Report by WECC Performance Work Group (PWG).

Mansour, Yakout. Correspondence with investigator of the 1996 Malaysian blackout..

ACRONYMS, TERMS AND DEFINITIONS

ACE - Area Control Error: ACE is the algebraic sum of the net scheduled and net actual interchange and a bias term based on the difference between scheduled and actual system frequency. This parameter is used to determine a Control Area's control performance with respects to its impact on system frequency.

CPS - Control Performance Standard: CPS defines a standard of minimum control performance. Each Control Area is to have the best operation above this minimum that can be achieved within the bounds of reasonable economic and physical limitations. Each Control Area shall monitor its performance on a continuous basis against two standards: CPS1 and CPS2.

CPS1 - Control Performance Standard 1: Over a (running) year, the average of the clock-minute averages of a Control Area's ACE times the clock minute average frequency error shall be less than a specific limit. This limit is a constant derived from a target frequency bound reviewed and set as necessary by the NERC Resources Subcommittee.
CPS2 - Control Performance Standard 2: The average ACE for each of six ten-minute periods during the hour (i.e., 10, 20, 30, 40, 50 and 60 minutes after the hour) must be within L_{10} at least 90% of the time during each calendar month.

DCS - Disturbance Control Standard: The standard used to monitor a Control Area's ability to recover from a disturbance.

ERCOT - Electric Reliability Council of Texas: One of the ten NERC regional coordinating councils.

FRC - Frequency Response Characteristic: For any change in generation/load balance in an interconnection, a frequency change occurs. FRC defines how any system (Control Area) responds to this change during any imbalance resulting from a sudden loss of load or generation. System frequency does not usually return to its pre-disturbance level until the Control Area experiencing the imbalance corrects its imbalance.

FRS - Frequency Response Standard.

IOS - Interconnected Operating Services: IOS are the elemental 'reliability building blocks’ from generation (and sometimes load) necessary to maintain bulk electric system reliability, (sometimes referred to as ancillary services, such as regulation, load following, contingency reserves, Frequency Response, reactive power supply, and black-start capability).

LSE- Load Serving Entity.
NAESB - North American Energy Standards Board.

Frequency Response Standard Whitepaper 1/17/2005

SAR - Standards Authorization Request.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?
\boxtimes YesNo

If no, please explain in the space provided below.

Comments

Question 2: Do you agree with the scope and applicability of the proposed standard?

\boxtimes YesNo

If no, please explain in the space provided below.

Comments

Scope:
The scope of the proposed standard is appropriate. However, the reliability requirements would be better addressed by a comprehensive review that considers the adequacy of existing reliability standards.

Applicability:
The applicability of the proposed standard is understood to be Reliability Authorities, Balancing Authorities, and Generator Operators. However, substantial questions remain as to how the responsibilities implied in the proposed standard will be equitably distributed.

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
\boxtimes Yes
No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

The reliability requirements provided in the proposed standard would be better addressed by a comprehensive review that considers the adequacy of the existing reliability standards (i.e., 300 Balance Resources and Demand)

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
® No

If yes, please share those comments in the space provided below.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
Individual Commenter Information \\
(Complete this page for comments from one organization or individual.)
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{Name: Les Pereira} \\
\hline \multicolumn{3}{|l|}{Organization: Northern California Power Agency} \\
\hline \multicolumn{3}{|l|}{Telephone: 916-781-4218} \\
\hline \multicolumn{3}{|l|}{Email: les@ncpa.com} \\
\hline NERC Region \& \& Registered Ballot Body Segment \\
\hline \multirow[t]{9}{*}{ERCOT
ECAR
FRCC
MAAC
MAIN
MAPP
NPCC
SERC
SPP

WECC
\square NA - Not Applicable} \& \square \& 1 - Transmission Owners

\hline \& \square \& 2 - RTOs, ISOs, Regional Reliability Councils

\hline \& \square \& 3 - Load-serving Entities

\hline \& \square \& 4 - Transmission-dependent Utilities

\hline \& \square \& 5 - Electric Generators

\hline \& \square \& 6 - Electricity Brokers, Aggregators, and Marketers

\hline \& \square \& 7 - Large Electricity End Users

\hline \& \square \& 8 - Small Electricity End Users

\hline \& \square \& 9 - Federal, State, Provincial Regulatory or other Government Entities

\hline
\end{tabular}

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?Yes
No

If no, please explain in the space provided below.

Comments

Question 2: Do you agree with the scope and applicability of the proposed standard?
$\mathrm{x} \square$

If no, please explain in the space provided below.
The scope needs to be expanded - see detailed comments in a following section - based on extensive modeling and validation work in WECC.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?Yes
\qquad No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

A new SAR will be more prescriptive, however there is also need for other related sections in NERC Operating Policy and Planning that need to be modified - see other comments below.

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

If yes, please share those comments in the space provided below.
Two statements are made in the SAR:

1. The purpose of the proposed SAR is to ensure that frequency of the Interconnection remains above underfrequency load shedding setpoints during the transient period following the sudden loss of generation on the Interconnection.
2. Furthermore, it is stated that " In regard to frequency response, one shortcoming of the recommendations in policy today is that there is no guidance regarding how much governor response (in MW) is required at the 5\% droop rate."

The first is a calculated number and depends not only on the amount of generation tripped, but also the total generation in the Whole Interconnection at the time of trip. Obviously two very different answers will be obtained : one with the Interconnection intact (normal operation) and the second when islanded. Both affect reliability.

The second issue has been thoroughly investigated in the WECC and a new Thermal Governor modeling approach has been implemented in the WECC after system tests, an exhaustive modeling validation effort and obtaining data from the generator owners. This has been documented in two IEEE Transaction papers described below. These papers present the development of a new turbinegovernor modeling approach in WECC that correctly represents thermal units that have demonstrated unresponsive characteristics such as "base loaded" units operated with limiters, or partially responsive units with MW-load-controllers. The May $18^{\text {th }} 2001$ system trip test for 1250 MW performed with all AGCs off indicated that only about 40% of the governors effectively responded in the real system. If all the governors were responsive the calculated generation pickup for governors with a 5% droop for a 0.1 Hz frequency deviation would be 3185 MW instead of 1250 MW. The new modeling approach has been extensively validated against recordings from three WECC system tests and several large disturbances, and has been approved for use in all operation and planning studies in the WECC. The second paper describes the steps being taken to obtain validated data for the new governor models.

The work done by WECC indicate clearly that we do not get the required 5\% droop from all units as required by NERC. The modeling approach taken was to model the governors in planning and operating studies exactly as they are being actually operated. Enforcement/compliance of the 5\% droop is a separate issue and must be addressed by operating policies.

Obviously, the SAR touches upon only part of the problem, but it is a good start and should be expanded. It also needs to be cross-referenced with other areas such as the 5% droop requirement, an effective spinning reserves policy that actually works (see the
papers), and the effect on 'governor' powerflow and voltage stability analysis as a result of "unresponsive" governors.

The white paper referred by the SAR only touches upon the WECC effort and seems to miss the whole point of the modeling and validation work by the Governor Modeling Task Force in WECC - and what we have achieved in WECC to address realistic modeling of unresponsive governors in the real system.

1. "A New Thermal Governor Modeling Approach in the WECC"
by L. Pereira, J. Undrill, D. Kosterev, D. Davies, S. Patterson, IEEE Trans. Power Systems, vol. 18, Issue.2, pp. 819-829, May 2003. (IEEE 2004 prize paper). Presented at Toronto IEEE PES, July 2003.
2. "New Thermal Governor Model Selection and Validation in the WECC"
by Les Pereira, Dmitry Kosterev, Donald Davies, and Shawn Patterson - IEEE TPWRS Vol.19, No.1, pp 517-523, February 2004. Presented at Denver IEEE PES, July 2004.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)	
Group Name:	New York Independent System Operator
Lead Contact:	Mike Calimano
Contact Organization:	NYISO
Contact Segment:	2
Contact Telephone:	$518-356-6129$
Contact Email:	mcalimano@nyiso.com

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

No
If no, please explain in the space provided below.

Comments

We agree in general that there is a reliability need to have frequency response, particularly during disturbances, islanding and restoration. The standard should provide the process for a technically sound calculation of frequency response and bias (both fixed and variable).

Any new standards on frequency response need not and should not be onerous by finding BAs noncompliant with response less than average or below some un-validated norms. There may be valid reasons why a BA is below observed norms in response. For example, the BA may meet most of its obligations with schedules or its native load may be non-responsive.

If performance is significantly less than an Interconnection norm, the standard should not trigger an automatic non-compliance. In these situations the BA should perform an internal review/assessment that ensures governors are working as designed, that the BA knows which resources are frequency responsive (so the information can be included in restoration plans), whether governors can be put in more responsive modes during disturbances, etc.

When required, the validation of governor performance could be achieved either through online monitoring in an EMS or periodic testing (both methods should be explained in a reference document to support the standard).

The standard should acknowledge that some units might not provide response under normal operations (e.g. nuclear units operating at full load) and that response is highly variable event-toevent based on simultaneous load changes. The standard should acknowledge the differing Interconnection requirements (smaller Interconnections need greater response).

The standard should also track Interconnection response over time (years) and be reevaluated as performance changes.

Question 2: Do you agree with the scope and applicability of the proposed standard?

Yes® No

If no, please explain in the space provided below.

There is a general need for a standard, but the outcomes and expectations should address the comments raised in question 1 .

While we agree that the standard should not preclude market solutions (e.g. allow purchasing of response as long as deliverability and restoration criteria can be met), we have concerns with the statement: There must be a means for sale/purchase of frequency response as for any other quantity.

It is not clear what is meant by A method of allocation must be developed". Is this an allocation of Interconnection response to BAs, BA allocation to generators or something different?

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
【 No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

If yes, please share those comments in the space provided below.

We appreciate the opportunity to comment and believe there is a need for such a standard. Published studies show frequency response is declining when it should be increasing with load. The main concerns with this decreasing performance are:

There may be areas unable to withstand severe disturbances.
Following a grid separation or collapse, control areas may be unable to fulfill their blackstart and restoration responsibilities, thereby becoming a burden to neighbors.

Because engineering models use theoretical frequency response, they are likely overoptimistic and may misstate grid stability limits.

This standard would allow the industry to determine whether the decline is local or global.
Rather than implementing a complicated infrastructure or process, we would suggest that NERC automate the calculation of frequency response by either:

Asking BAs to save their CPS-source data in a common format so a common tool can be used (MAPP BAs and some others use a common tool that can calculate frequency response with CPS-source data).

Embed the calculation in the NERC ACE-monitoring application.
Refer to our earlier comments the structure of the standard (where lower amounts of BA response trigger an internal assessment rather than automatic assignment of non-compliance). BAs (and ultimately generators) would only be initially non-compliant if their response was low AND the BA failed to perform a reliability assessment in conjunction with its TOP. This default assessment would be at the BA level, but could be on an area basis (likely islanding area or where a TSP has responsibility for frequency responsive and black start ancillary services).

The standard should employ a methodology that not only captures initial response (first few seconds after the event) but also the sustained response until AGC action takes over

Each Interconnection should have the ability to add and further define the standard to meet its needs.

Providing visibility on where and when performance is substandard will likely initiate sufficient action to arrest the decline in performance. Minimum performance standards could be
implemented after the industry has identified what is reasonably achievable and technically justified.

CHANGE
This SAR is proposed to develop a standard to measure sub-minute responses to changes in frequency and to set minimum acceptable responses to system these events.
TO
This SAR is proposed to develop a standard to measure sub-minute responses to changes in frequency and to set minimum acceptable responses to these system events.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?
\boxtimes YesNo

If no, please explain in the space provided below.

Comments

Question 2: Do you agree with the scope and applicability of the proposed standard? \boxtimes Yes

If no, please explain in the space provided below.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
【 No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
\boxtimes Yes
No

If yes, please share those comments in the space provided below.

Given the language in the accompanying White Paper: The standard should not preclude market solutions (e.g. allow purchasing of response as long as deliverability and restoration criteria can be met).There must be a means for sale/purchase of frequency response as for any other quantity. - I believe this Standard should be developed in conjunction with NAESB. The definition, attributes and procurement metrics of the frequency response product will be a critical component of this Standard. Some guidance in defining and developing this service to the bulk interconnected system can be found in the NERC IOS Reference Document. The Standard should build on this previous IOS work.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Individual Commenter Information (Complete this page for comments from one organization or individual.)		
Name:		
Organization:		
Telephone:		
Email:		
NERC Region		Registered Ballot Body Segment
\square ERCOT	\square	1 - Transmission Owners
\square ECAR	\square	2 - RTOs, ISOs, Regional Reliability Councils
\square FRCC	\square	3 - Load-serving Entities
\square MAAC	\square	4 - Transmission-dependent Utilities
\square MAIN	\square	5 - Electric Generators
MAPP \square NPCC	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
\square SPP	\square	8 - Small Electricity End Users
wecc NA - Not Applicable	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.)	
Group Name:	Operating Reliability Working Group (ORWG)
Lead Contact:	Robert Rhodes
Contact Organization:	Southwest Power Pool
Contact Segment:	$\mathbf{1 , 2}$
Contact Telephone:	$501-614-3241$
Contact Email:	rrhodes@spp.org

Additional Member Name	Additional Member Organization	Region*	Segment*
Ron Ciesiel	Southwest Power Pool	SPP	2
Bob Cochran	SPS	SPP	1
Mike Gammon	KCPL	SPP	1
Steve Hillman	WPEK	SPP	1
Allen Klassen	Westar	SPP	1
Bill Nolte	SECI	SPP	1
Robert Rhodes	Southwest Power Pool	SPP	2
Mike Stafford	GRDA	SPP	1

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?
\boxtimes YesNo

If no, please explain in the space provided below.

Comments

A frequency response standard is needed but only within the scope and range of the previously provided guides in Policy 1 such as a design criteria of 5% droop, a 36 mHz deadband with exclusions for nuclear, combined cycle and small generating units.

Question 2: Do you agree with the scope and applicability of the proposed standard? \boxtimes Yes

If no, please explain in the space provided below.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
\boxtimes Yes
No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

We would recommend that this standard be incorporated into the Balance Resource and Demand Standard (Standard 300) or the Version 0 BAL Standard.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
® No

If yes, please share those comments in the space provided below.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)	
Group Name:	California ISO
Lead Contact:	Ed Riley
Contact Organization:	California ISO
Contact Segment:	2
Contact Telephone:	9163514463
Contact Email:	eriley@caiso.com

Additional Member Name	Additional Member Organization	Region*	Segment*
Yuri Makarov	California ISO	WECC	2
Steve McCoy	California ISO	WECC	2

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

X Yes
No

If no, please explain in the space provided below.

Comments

Frequency response provided by speed governors and loads helps to prevent load shedding and generator trips at significant frequency excursions caused by sudden active power mismatches in the systems. Without a sufficient frequency response emerging during the first seconds after a frequency disturbance, there is a danger of further cascading development or frequency instability and system collapse cased by underfrequency generator trips. It has been already noted that insufficient frequency response in some parts of an Interconnection may cause certain temporary redistribution of power flows and reduce stability margins after frequency disturbances that may limit the OTC on critical paths within the Interconnection. It has been also observed that insufficient frequency response may cause a weaker frequency recovery that bears a greater risk of system collapse at subsequent frequency disturbances. Therefore, frequency response is definitely a reliability issue that needs to be addressed by a NERC standard.

Question 2: Do you agree with the scope and applicability of the proposed standard?

X Yes
No

If no, please explain in the space provided below.

Comments

Generally, our answer is yes, but the matter of applicability needs a very careful consideration. The question is whether the proposed standard should be applied to only the reliability and balancing authorities and plant operators, or also to the resource and system planning authorities and generator owners. For example, wind generators do not provide a frequency response, whereas the response from the Combined Cycle units is limited. This is a matter of design as well as the matter of controllability of the primary energy source. If the generation portfolio contains a lot of wind and CC generators, the balancing authority cannot do much to improve its summary frequency response in general terms. Also, if frequency responsive generators in a CA are heavily loaded, would the new standard force the balancing authorities to re-dispatch generation in favor of nonresponsive generation and commit more responsive generation ahead of the non-responsive generation? Another issue is whether the standard should specify the required response in the area or individual responses from generators. Perhaps, NERC should work with NASB to find the right answers before establishing the standard. One possible solution is to establish penalties for noncompliance that would stimulate generator owners to invest in frequency responsive generation. Another possible recommendation could be establishing a market for frequency response. Without resolving these difficult issues, this standard cannot be accepted.

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?Yes
X No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

The new standard should a stand-alone standard because of its potential implications for control areas and the necessity to stage the implementation of the standard in coordination with resolution of the issues discussed above.

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?Yes
X No

If yes, please share those comments in the space provided below.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?
\boxtimes YesNo

If no, please explain in the space provided below.

Comments

TXU Electric Delivery proposes that Frequency Response Guidelines at the NERC level should only be in general terms and require that each Reliability Authority establish a specific Frequency Response Standard with detailed specifications as appropriate for its region.

Question 2: Do you agree with the scope and applicability of the proposed standard? \boxtimes Yes

If no, please explain in the space provided below.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
【 No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
® No

If yes, please share those comments in the space provided below.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)			
Group Name: RTO/ISO Standards Review Committee			
Lead Contact: Karl Tammar			
Contact Organization: NYISO			
Contact Segment: 2			
Contact Telephone: 518-356-6205			
Contact Email: ktammar@nyiso.com			
Additional Member Name	Additional Member Organization	Region*	Segment*
Dale McMaster	AESO	WECC	2
Ed Riley	CAISO	WECC	2
Sam Jones	ERCOT	ERCOT	2
Peter Henderson	IESO	NPCC	2
Peter Brandien	ISO-NE	NPCC	2
Bill Phillips	MISO		2
Karl Tammar	NYISO	NPCC	2
Bruce Balmat	PJM	MAAC	2
Charles Yeung	SPP	SPP	2

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

If no, please explain in the space provided below.

Comments

We agree in general that there is a reliability need to have frequency response, particularly during disturbances, islanding and restoration. The standard should provide the process for a technically sound calculation of frequency response and bias (both fixed and variable).

Any new standards on frequency response need not and should not be onerous by finding BAs noncompliant with response less than average or below some un-validated norms.

If performance is significantly less than an Interconnection norm, the standard should not trigger an automatic non-compliance. In these situations the BA should perform an internal review/assessment that ensures governors are working as designed, that the BA knows which resources are frequency responsive (so the information can be included in restoration plans), whether governors can be triggered to be more responsive during disturbances, etc and satisfy the Interconnection requirement. If the Interconnection requirement is not met within a reasonable timeframe then the BA should be deemed as non-compliant.

When required, the validation of governor performance could be achieved either through online monitoring in an EMS or periodic testing (both methods should be explained in a reference document to support the standard).

The standard should acknowledge that some units might not provide response under normal operations (e.g. nuclear units operating at full load) and that response is highly variable event-toevent based on simultaneous load changes.

The standard should acknowledge the differing Interconnection requirements (smaller Interconnections need greater response).

The standard should also track Interconnection and BA areas response over time (years) and be reevaluated as performance changes.

Question 2: Do you agree with the scope and applicability of the proposed standard?

Yes® No

If no, please explain in the space provided below.

There is a general need for a standard, but the outcomes and expectations should address the comments raised in question 1 .

While we agree that the standard should not preclude market solutions (e.g. allow purchasing of response as long as deliverability and restoration criteria can be met), we have concerns with the statement There must be a means for sale/purchase of frequency response as for any other quantity.

It is not clear what is meant by A method of allocation must be developed" Is this an allocation of Interconnection response to BAs, BA allocation to generators or something different?

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
【 No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Unless the Version 0 (BAL-003-0 - Frequency Response and Bias) can be clarified and brought in line with this proposed standard, it should be stand-alone.

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

If yes, please share those comments in the space provided below.

We appreciate the opportunity to comment and believe there is a need for such a standard.
It needs to be recognized that there are two objectives for governor response, namely, to provide response on an interconnection wide basis to maintain an acceptable frequency and secondly to control frequency in island situations. The former may allow for averaging over an area of the response requirement but the latter may limit the extent of averaging.

Published studies show frequency response is declining when it should be increasing with load. The main concerns with this decreasing performance are:

There may be areas unable to withstand severe disturbances.
Following a grid separation or collapse, control areas may be unable to fulfill their blackstart and restoration responsibilities, thereby becoming a burden to neighbors.

Because engineering models use theoretical frequency response, they are likely over optimistic and may misstate grid stability limits.

This standard would allow the industry to determine whether the decline is local or global.
Rather than implementing a complicated infrastructure or process, we would suggest that NERC automate the calculation of frequency response by either:

Asking BAs to save their CPS-source data in a common format so a common tool can be used (MAPP BAs and some others use a common tool that can calculate frequency response with CPS-source data).

Embed the calculation in the NERC ACE-monitoring application.
Refer to our earlier comments the structure of the standard (where lower amounts of BA response trigger an internal assessment rather than automatic assignment of non-compliance). BAs (and ultimately generators) would only be initially non-compliant if their response was low AND the BA failed to perform a reliability assessment in conjunction with its TOP. Non compliance should be assessed if the BA does not alleviate the deficiency within a reasonable timeframe. This default assessment would be at the BA level, but could be on an area basis (likely islanding area or where a TSP has responsibility for frequency responsive and black start ancillary services).

The standard should employ a methodology that not only captures initial response (first few seconds after the event) but also the sustained response until AGC action takes over

Each Interconnection should have the ability to add and further define the standard to meet its needs.

Providing visibility on where and when performance is substandard will likely initiate sufficient action to arrest the decline in performance. Minimum performance standards could be implemented after the industry has identified what is reasonably achievable and technically justified.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Individual Commenter Information (Complete this page for comments from one organization or individual.)		
Name:		
Organization: Bonneville Power Administration		
Telephone:		
Email:		
NERC Regio		Registered Ballot Body Segment
\square ERCOT	区	1 - Transmission Owners
\square ECAR	\square	2 - RTOs, ISOs, Regional Reliability Councils
\square FRCC	\square	3 - Load-serving Entities
\square MAAC	\square	4 - Transmission-dependent Utilities
MAIN	\square	5 - Electric Generators
MAPP \square NPCC	\square	6 - Electricity Brokers, Aggregators, and Marketers
SERC	\square	7 - Large Electricity End Users
\square SPP	\square	8 - Small Electricity End Users
WECC \square NA - Not Applicable	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.)	
Group Name:	Bonneville Power Administration
Lead Contact:	Bart McManus
Contact Organization:	
Contact Segment:	
Contact Telephone: $(\mathbf{3 6 0} \mathbf{4 1 8 - 2 3 0 9}$ Contact Email: bamcmanus@bpa.gov	

Additional Member Name	Additional Member Organization	Region*	Segment*
Brian Tuck	BPA		
James Randall	BPA		
Francis Halpin	BPA		
Bill Mittlestat	BPA		
James Murphy	BPA		

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

邓 No

If no, please explain in the space provided below.

NERC should not involve itself in the development of these standards and should allow individual interconnections to address frequency response issues independently. For example, the WECC is currently working on standards that will address this concern. They will be tailored to the specific requirements of this interconnection and will provide the best possible solution to the problem.
There may be a need to specify frequency response requirements within some interconnections; however, it is not necessary, or most effective for them to be defined at the NERC level.

Comments

Question 2: Do you agree with the scope and applicability of the proposed standard?

Yes邓 No

If no, please explain in the space provided below.

The main theme that there needs to be a relationship between response and frequency decline is the right approach but requirements would be different from region to region. Standards to manage frequency response should be developed by individual interconnections; not NERC. The scope and applicability should be defined by the needs of the interconnection to provide the most benefit to system wide reliability.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing

 standards as opposed to creating new standards?\No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.
WECC has been working on frequency response standards for a few years and is close to finalizing standards specifically for the WECC interconnection. We do think there is a need for standardization of frequency response (clearly we do since WECC is doing it) BUT this standard should be developed at the Regional Council or Interconnection level and then adopted by NERC as a "Standard" with regional differences. Any new standards concerning frequency response should be developed by the individual interconnections.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

If yes, please share those comments in the space provided below.
Frequency response requirements are likely different for each of the three interconnected regions and a generalized approach will likely not meet WECC needs. The danger here is that a NERCwide approach may not be compatible with the needs of a regional approach. Standards are currently being developed within WECC to address the frequency response concerns of this interconnection. We feel that if the Eastern Interconnection needs a Frequency Response Standard, they should utilize the NERC Frequency Response Standard Whitepaper to draft an Eastern Interconnection-specific Frequency Response Standard.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?
No

If no, please explain in the space provided below.

Comments

Question 2: Do you agree with the scope and applicability of the proposed standard?

Yes

If no, please explain in the space provided below.

Comments

The proposed scope and applicability, to the extent that they are in the given in the SAR, are good.

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?YesNo

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

```
Yes
```

If yes, please share those comments in the space provided below. Please see the attachment <SAR_Comments_RPSchulz.doc>

Comments on SAR Frequency Response

First, I make these comments based on work that I've done principally at American Electric Power Service Corp, before my retirement from there in November 2000, and as founding Chair of the IEEE Task Force on Large Interconnected Power System Response to Generation Governing. These comments are entirely mine, and reflect no views of either body.

Second. It appears that the final standard will differ from any single person's opinions. Thus the specific comments below may not prevail.

Specific Comment 1:

The comment on page 4 of the SAR, "The standard should not preclude market solutions (e.g. allow purchasing of response as long as deliverability and restoration criteria can be met).There must be a means for sale/purchase of frequency response as for any other quantity." is workable only in near-normal operating conditions. But it will fail miserably when there is any islanding condition. An analogy:

Several skydivers agree that reserve parachutes are a very good idea, but don't want to invest in 1 reserve each. So they agree that they'll buy one to share among them, so each will be saved by that spare. This means that they will hold hands until they pull their ripcords.

Sounded good, until they tried it, and the first guy to pull his cord came unhitched, had a failed main 'chute, and the spare was on someone else. Specific Comment 2:

The comment on page 4 of the SAR, "The measurement selected must be accurate and, to the extent practical, easy to implement.' may be met in the Eastern Interconnection by the underway DOE "Eastern Interconnection Phasor Project ' and by the similar WECC measurement systems, commonly called "WAMS". Les Peieira's paper, cited in the White Paper, used the WAMS measurements.

Dick Schulz
Chair, IEEE Task Force on Large Interconnected Power System Response to Generation Governing
433 S. Spring Rd.
Westerville, Ohio 43081-2732
(614) 899-9184 home
(614) 306-8233 cell
r.p.schulz@ieee.org or schulzes@copper.net

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

xYesNo

If no, please explain in the space provided below.

Comments

Yes, I agree there is a reliability need for specifying the quality and quantity of frequency response. There is ample evidence that specifying a droop value or that specifying governors must be in operation will not necessarily result in any useful governor response to a sudden large drop in system frequency. So yes, I think a SAR team should look into this matter. I would suggest the part load can play in arresting frequency decline be included in the scope. I would also suggest that the frequency response needs of the regions will likely vary, so final specific requirements should probably be made at the region level.

Question 2: Do you agree with the scope and applicability of the proposed standard?
\square x Yes

If no, please explain in the space provided below.

Comments

Yes, I agree.

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?YesNo

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

No opinion.

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?xNo

If yes, please share those comments in the space provided below.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)			
Group Name: FRCC Region			
Lead Contact: Eric Senkowicz			
Contact Organization:			
Contact Segment: 2			
Contact Telephone: 813-289-5646			
Contact Email:			
Additional Member Name	Additional Member Organization	Region*	Segment*
Ron Donahey	TEC	FRCC	1
Mark Bennett	GRU	FRCC	3
Steve Wallace	SEC	FRCC	5
Steve McEIhaney	FMPA	FRCC	5
Ted Hobson	JEA	FRCC	1

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

Yes
\ No

If no, please explain in the space provided below.

Comments

The FRCC does not support the development of a Frequency Response Standard at this time. A standard for each Interconnection, although informative would be unenforceable as far as identifying short term, frequency response deficient, entities or areas. As such measurability and compliance by the relevant entities would be all but impossible. As far as an Interconnection allocation program for frequency response, we feel that the "apparent" decline in response is not significant enough to warrant a standard at this time and we would require additional details of how such a plan would be implemented and the potential economic impacts on the Regions that would be associated with that plan.

Question 2: Do you agree with the scope and applicability of the proposed standard?Yes
邓 No

If no, please explain in the space provided below.

Comments

The SAR indicates a measure of frequency response for the Interconnection, as a measure of performance. This would be very difficult to translate to individual entity compliance and thus render the standard applicable to no entities.

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
【 No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
\boxtimes Yes
No

If yes, please share those comments in the space provided below.

At this time the FRCC has the highest frequency settings for load shedding in the Eastern Interconnection (southern part of the Region). Being a peninsula and out of necessity, the Region has developed a well coordinated, under-frequency program for extreme frequency excursions. Ambiguity of the requirements, uncertainty of measurement and the lack of benefit to the Region require that the FRCC to oppose this Standard Authorization Request at this time.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

Yes
\square No

If no, please explain in the space provided below.

Comments

Manitoba Hydro , from a reliability perspective, supports the idea of specifying the quantity and quality of frequency response and incorporating these elements in a Standard. However, the development of this standard should not be rushed since the evidence provided in the Standard Authorization Request form and in the Frequency Response Standard White paper shows that current frequency response and projected frequency response trends do not pose a significant potential for compromising system reliability and for major under-frequency load shedding to occur in the near term.

Also in the section of the white paper which examines "frequency response standard considerations", a broad scope and outline is given, more detail is required especially regarding methods of ensuring compliance.

In paragraph 2, page 9 of the white paper where the current frequency response of the Eastern Interconnection is stated as $3100 \mathrm{MW} / 0.1 \mathrm{~Hz}$ with a standard deviation of $1870 \mathrm{MW} / 0.1 \mathrm{~Hz}$ and the statement is made that "the fact that an under-frequency event has not happened yet is only coincidence" requires much more detailed information regarding the origin and calculations of these numbers before these assumptions can be made. Could it be that instead of a frequency response closer to $1230 \mathrm{MW} / 0.1 \mathrm{~Hz}$ it is actually practically closer to $3100 \mathrm{MW} / 0.1 \mathrm{~Hz}$ or even 4970 MW/ 0.1 Hz most of the time?

One understandable major concern addressed in the white paper is the response of combined-cycle units to frequency decline and the fact that due to a drop in combustion air volume their output may actually decrease with a drop in frequency or even result in unit tripping. Also there was concern with the possibility that larger amounts of these types of units will be installed on the system thereby potentially increasing the decline in frequency response rate from $70 \mathrm{MW} / 0.1 \mathrm{~Hz} / \mathrm{Year}$ (Eastern Interconnection).

It is also mentioned (on page 10) that with proper tuning combined cycle units can provide correct frequency response. Maybe part of the focus should be on finding ways of enforcing the Current Requirements (Page 14) and including specific frequency response requirements for combinedcycle units.

Question 2: Do you agree with the scope and applicability of the proposed standard?

Yes
\square No

If no, please explain in the space provided below.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?

No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

Yes

If yes, please share those comments in the space provided below.

Below are a few general comments on the SAR:
There is general agreement with the statement "reliance on load as the sole support to arrest the frequency can lead to a decline in the reliability of the grid" in paragraph 3, page 4 of the white paper. However enough information is not provided to substantiate statements earlier in the paragraph such as, "the turn around in frequency from points C to B attributable to unit governor response has markedly declined and at times is non-existent in the eastern interconnection" and "the line from points C to D is shifting down and becoming horizontal".

In areas where governor response is limited it may be necessary to explore the necessity of earmarking "high-set" blocks of load, as is practiced in ERCOT, to act as a supplementary to governor response. Although it is anticipated that this approach would probably be much more difficult and challenging to co-ordinate in larger areas.
There should be careful thought put into the system/interconnection performance targets for frequency response. Perhaps the bar should be higher than preventing UFLS for credible generation loss events, i.e., provide a margin above this level. At the same time the standard should not impose unreasonable costs on entities to demonstrate compliance. The performance target should address both total interconnection response and also area or system response (potential islanding) and be very clear how generator operators (or load) obligations are allocated to achieve the performance targets.

NERC should investigate a process to monitor interconnection frequency response to be able to measure performance.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

No
If no, please explain in the space provided below.

Comments

We agree in general that there is a reliability need to have frequency response, in order to maintain interconnection frequency and particularly during disturbances, islanding and restoration. The standard need to address both the system needs as well as island requirements for frequency response.

The standard should provide the process for a technically sound calculation of frequency response and bias.

The standard should acknowledge that some units might not provide response under normal operations (e.g. nuclear units operating at full load) and that load response is highly variable event based on time of day or year.

The standard should acknowledge smaller areas need greater response.
Where BA areas are deficient in meeting the interconnection requirement , they should be allowed a reasonable period of time to take appropriate steps to make corrections before being assessed as non compliant.

The standard should also track area response over time (years) and be reevaluated as performance changes.

Quality should be defined. For generators it should include dead-band, droop characteristics, etc.

Question 2: Do you agree with the scope and applicability of the proposed standard?

Yes
® No

If no, please explain in the space provided below.

While we agree that the standard should not preclude market solutions (e.g. allow purchasing of response as long as deliverability and restoration criteria can be met), we have concerns with the statement There must be a means for sale/purchase of frequency response as for any other quantity. The scope should exclude any reference to a means for sale/purchase of frequency response as it should only address reliability requirements.

It is not clear what is meant by A method of allocation must be developed. Is this an allocation of Interconnection response to BAs, BA allocation to generators or something different?

The requirements should recognize the capabilities and limitations of generators (e.g. nuclear units operating at full load).

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?Yes
\boxtimes No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

If the existing Frequency Response and Bias Standard Version 0 (Bal-003-0) can not be clarified and brought in line with this proposed standard, it should be standalone .

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

No
If yes, please share those comments in the space provided below.

We appreciate the opportunity to comment and believe there is a need for such a standard.
It needs to be recognized that there are two objectives for governor response, namely, to provide response on an interconnection wide basis to maintain an acceptable frequency and secondly to control frequency in island situations. The former may allow for averaging over an area of the response requirement but the latter may limit the extent of averaging.

Published studies show frequency response is declining when it should be increasing with load. The main concerns with this decreasing performance are:

There may be areas unable to withstand severe disturbances.
Following a grid separation or collapse, control areas may be unable to fulfill their blackstart and restoration responsibilities, thereby becoming a burden to neighbors.

Because engineering models use theoretical frequency response, they are likely over optimistic and may misstate grid stability limits.

This standard would allow the industry to determine whether the decline is local or global.
Rather than implementing a complicated infrastructure or process, we would suggest that NERC automate the calculation of frequency response by either:

Asking BAs to save their CPS-source data in a common format so a common tool can be used (MAPP BAs and some others use a common tool that can calculate frequency response with CPS-source data).

Embed the calculation in the NERC ACE-monitoring application.

The standard should employ a methodology that not only captures initial response (first few seconds after the event) but also the sustained response until AGC action takes over

Providing visibility on where and when performance is substandard will likely initiate sufficient action to arrest the decline in performance. Minimum performance standards could be implemented after the industry has identified what is reasonably achievable and technically justified.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?
\boxtimes YesNo

If no, please explain in the space provided below.

Comments

Question 2: Do you agree with the scope and applicability of the proposed standard? \boxtimes Yes

If no, please explain in the space provided below.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
\boxtimes Yes

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Version 0 of BAL-003-0, Frequency Response and Bias; or its successor

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
® No

If yes, please share those comments in the space provided below.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)			
Group Name: MAAC Staff			
Lead Contact: Albert DiCaprio			
Contact Organization: PJM			
Contact Segment: 2			
$\begin{array}{ll}\text { Contact Telephone: } & \text { 610-666-8854 } \\ \text { Contact Email: } & \text { dicapram@pjm.com }\end{array}$			
Additional Member Name	Additional Member Organization	Region*	Segment*
Bruce M. Balmat	PJM	MAAC	2
Joseph D. Willson	PJM	MAAC	2
Mark Kuras	PJM	MAAC	2

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

If no, please explain in the space provided below.

There is a need for governors but not for frequency response.
Governors are needed to resynchronize during restoration. But the need for a short-term frequency response characteristic has been obviated by the pending Version1 Balancing Standard. That standard is designed to ensure that interconnection frequency is never at such a level that the loss of the largest contingency will cause instability or cascading outages. If the system is always in such a state why would the instantaneous response to the loss of a single contingency add to the system reliability?

The SAR has not provided any definitive need.
The SAR has not provided sufficient focus vis-à-vis who is responsible to meet the standard (the generator, the BA, the Load, the RA)

This proposal has not provided any additional information concerning the need for this proposed Standard since the last time (during the Balancing Resources and Demand consensus) that a similar Frequency Response Requirement was overwhelming rejected by those who commented to that proposal.
Transient frequency response has not been the target of any major public concern. The current Version 1 Control Standard proposal provides limits on the frequency excursions that can be controlled by system-operators and their control systems. Relays and other Protection Devices serve to protect those time frames too short for an operator to respond to. What does this standard add?

Comments

This SAR is not clear as to what it really is intended to mandate. Does the requestor want to create a standard for Generator Owners to install governors? Or a standard on Generator Operators for individuals unit governor response? Or a standard for Balancing Authorities for Area response? Or for Reliability Authorities for Regional response? All of these are different requirements and have different effects.

The requestor must be clear as to what is intended. To ensure that frequency doesn't hit a relay limit (as in the Balancing standard?) or is it to address the need for governors when synchronizing?

When does the standard apply? All times (which means that NERC can go to a unit, BA or RA to check that some finite response is available?) Just at times when large events occur (the problem is of course whether or not the outage is near or far from the entity being checked)? Only during test conditions (since a unit under stress - 'valves wide open' has not governor response at that time even though it may have the greatest of responses at other times).

The requestor's intent may be laudable but the description is no where near ready to be considered as 'standard material'.

Question 2: Do you agree with the scope and applicability of the proposed standard?Yes
\boxtimes No

If no, please explain in the space provided below.
Frequency Response characteristics should be dictated by the Reliability entities as part of their respective control services to meet the regional synchronizing requirements as well as the longer duration control standards and of the needs of the interconnection in which they operate.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
【 No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
\boxtimes Yes

If yes, please share those comments in the space provided below.
The SAR requestor has not provided any indication of a reliability problem. Decreasing frequency response is in and of itself not a reliability problem - more evidence is required as to the magnitude of the threat.

Any standard that is proposed, regarding frequency response, should consider both generator and load response. If Load response does provide a significant portion of the frequency response (as some people contend) then that resource must be considered in the proposal. In short the standard must make clear whether it is for interconnection response or for balancing area response or for individual generator response and individual load response.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

X Yes

If no, please explain in the space provided below.

Comments

Question 2: Do you agree with the scope and applicability of the proposed standard?

X YesNo

If no, please explain in the space provided below.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?Yes
X No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

X Yes
No

If yes, please share those comments in the space provided below.
The Standard should define the term "event" in terms of time and frequency deviation. The frequency deviation the event must fall outside the droop deadband.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?
\boxtimes YesNo

If no, please explain in the space provided below.

Comments

Question 2: Do you agree with the scope and applicability of the proposed standard? \boxtimes Yes

If no, please explain in the space provided below.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
【 No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
® No

If yes, please share those comments in the space provided below.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

NoIf no, please explain in the space provided below.

Comments

Trends in Eastern and Western Interconnection Turbine Governor Response and primary frequency response over the past two decades (as documented by EPRI Project RP2473-53 and Decline of Eastern Interconnection Frequency Response by Ingleson and Nagle) as well as trends in frequency error magnitude and variance over the past five years (as documented by the NERC Resources Subcommittee at URL http://www.nerc.com/~filez/rs.html) indicate that significant frequency response degradation is occurring, particularly in the Eastern Interconnection. While not yet a crisis, these trends are indicative of significant changes in design and operational practices on the interconnected electrical systems of North America which, if not managed intelligently, can cause significant degradation in reliability. I strongly urge the industry to support this SAR and begin the process of controlled management before the processes behind these trends reach crisis proportion.

Question 2: Do you agree with the scope and applicability of the proposed standard? \boxtimes Yes

If no, please explain in the space provided below.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing

 standards as opposed to creating new standards?NoIf yes, please identify the location you believe would be the most appropriate for the proposed standard.

The Frequency Response Standard could be included as part of the Balance Resources and Demand Standard.

Comments

Since both the Frequency Response Standard and the Balance Resources and Demand Standard address frequency, they obviously must work together closely. If they are crafted, as originally intended by the Frequency Taskforce, to utilize the same CPS database, there may be savings in administrative overhead in putting them both in the same standard.

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

No

If yes, please share those comments in the space provided below.

I personally believe that the industry will be exposing the interconnected electrical systems of North America to a significant degree of reliability risk if a Frequency Response Standard similar to the one proposed by this SAR is not adopted. This risk can be mitigated somewhat by the turbine governor requirements of Standard MOD-014-1 from the Phase III/IV Standards SAR, if passed. However, the risk can be managed properly (and in the most economical manner) only on an interconnection/balancing authority basis, not on an individual generator basis as required by Standard MOD-014-1.

What is important is that the interconnections maintain sufficient frequency responsive resources to ensure the stability of interconnection frequency under first contingency conditions. The Frequency Response Standard, as proposed, sets requirements for the management and deployment of frequency responsive resources that achieve this goal without unduly interfering with the on going operation of the interconnection. I strongly urge the industry to support this SAR.

RLV

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

NoIf no, please explain in the space provided below.

Comments

Trends in Eastern and Western Interconnection Turbine Governor Response and primary frequency response over the past two decades (as documented by EPRI Project RP2473-53 and Decline of Eastern Interconnection Frequency Response by Ingleson and Nagle) as well as trends in frequency error magnitude and variance over the past five years (as documented by the NERC Resources Subcommittee at URL http://www.nerc.com/~filez/rs.html) indicate that significant frequency response degradation is occurring, particularly in the Eastern Interconnection. While not yet a crisis, these trends are indicative of significant changes in design and operational practices on the interconnected electrical systems of North America which, if not managed intelligently, can cause significant degradation in reliability. We strongly urge the industry to support this SAR and begin the process of controlled management before the processes behind these trends reach crisis proportion.

Question 2: Do you agree with the scope and applicability of the proposed standard? \boxtimes Yes

If no, please explain in the space provided below.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing

 standards as opposed to creating new standards?NoIf yes, please identify the location you believe would be the most appropriate for the proposed standard.

The Frequency Response Standard could be included as part of the Balance Resources and Demand Standard.

Comments

Since both the Frequency Response Standard and the Balance Resources and Demand Standard address frequency, they obviously must work together closely. If they are crafted, as originally intended by the Frequency Taskforce, to utilize the same CPS database, there may be savings in administrative overhead in putting them both in the same standard.

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

No

If yes, please share those comments in the space provided below.

We believe that the industry will be exposing the interconnected electrical systems of North America to a significant degree of reliability risk if a Frequency Response Standard similar to the one proposed by this SAR is not adopted. This risk can be mitigated somewhat by the turbine governor requirements of Standard MOD-014-1 from the Phase III/IV Standards SAR, if passed. However, the risk can be managed properly (and in the most economical manner) only on an interconnection/balancing authority basis, not on an individual generator basis as required by Standard MOD-014-1.

What is important is that the interconnections maintain sufficient frequency responsive resources to ensure the stability of interconnection frequency under first contingency conditions. The Frequency Response Standard, as proposed, sets requirements for the management and deployment of frequency responsive resources that achieve this goal without unduly interfering with the on going operation of the interconnection. We strongly urge the industry to support this SAR.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)	
Group Name:	Midwest Reliability Organization
Lead Contact:	Lawrence R Larson, P E
Contact Organization: Otter Tail Power Company	
Contact Segment:	2
Contact Telephone:	$218 / 739-8572$
Contact Email:	Ilarson@otpco.com

Additional Member Name	Additional Member Organization	Region*	Segment*
Lawrence R Larson, P E	Otter Tail Power Company	MRO	2
Al Boesch	Nebraska Public Power District	MRO	2
Terry Bilke	Midwest ISO	MRO	2
Robert Coish	Manitoba Hydro	MRO	2
Dennis Florom	Lincoln Electric System	MRO	2
Ken Goldsmith	Alliant Energy	MRO	2
Todd Gosnell	Omaha Public Power District	MRO	2
Wayne Guttormson	Saskatchewan Power Corporation	MRO	2
Jim Maenner	WPS Resources	MRO	2
Tom Mielnik	MidAmerican Energy	MRO	2
Darrick Moe	Western Area Power		
Administration	MRO	2	
Joe Knight	Midwest Reliability Organization	MRO	2

[^1]
Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

No
If no, please explain in the space provided below.

Comments

We agree (with qualifications). Any new standards on frequency response need not and should not be onerous (identifying BAs noncompliant with less than average response or some un-validated norms).

The standard should provide the process for a sound calculation of frequency response and bias (both fixed and variable).

There may be valid reasons why a BA is below observed norms in response. It may meet most of its obligations with schedules.

Rather than generate an automatic non-compliance when response is below some benchmark, the standard should require an internal review that ensures governors are working as designed, that the BA knows which resources are frequency responsive (so the information can be included in restoration plans), whether governors can be put in more responsive modes during disturbances, etc.

The standard should have some requirements on generators if the BA is not providing the response outlined in the standard (governors should be working as designed).

The standard should also track Interconnection response over time and identify a target response (different for each Interconnection). NERC or NAESB will want to look at how this is allocated to BAs and generators.

Question 2: Do you agree with the scope and applicability of the proposed standard? \boxtimes Yes

If no, please explain in the space provided below.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
\boxtimes Yes

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Version 0 (BAL-003-0 - Frequency Response and Bias) or its successor is a logical place.
Depending on the outcome of the V1 Balance Resource and Demand standard, it could reside there.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

No

If yes, please share those comments in the space provided below.

We appreciate the opportunity to comment and believe there is a need for such a standard. Published studies show frequency response is declining when it should be increasing with load.

Because there is no process in place to track BA or Interconnection response, we don’t know whether the decline is local or global. Primary concerns with this decreasing performance in primary control:

1. There may be areas unable to withstand severe disturbances.
2. Following a grid separation or collapse, control areas may be unable to fulfill their blackstart and restoration responsibilities, thereby becoming a burden to neighbors.
3. Because engineering models use theoretical frequency response, they are likely overoptimistic and may misstate grid stability limits.

Rather than putting in a complicated infrastructure or process, we would suggest that NERC automate the calculation of frequency response by either:

- Asking BAs to save their CPS-source data in a common format so a common tool can be used (MAPP BAs and some others use a common tool that can calculate frequency response with CPS-source data).
- Embed the calculation in the NERC ACE-monitoring application.

The standard will need to acknowledge the large variability in individual responses at each BA due to coincident load changes and amount and mix of generation. In addition, smaller Interconnections likely need greater response.

Refer to our earlier comments the structure of the standard (where lower amounts of response trigger an internal assessment rather than assessment non-compliance). BAs (and ultimately generators) would only be initially non-compliant if their response was low AND they failed to perform the reliability assessment.

Providing visibility on where and when performance is substandard will likely initiate sufficient action to arrest the decline in performance. Minimum performance standards could be implemented after the industry has identified what is reasonably achievable and technically justified.

The standard should not preclude market solutions to providing frequency response, but such arrangements would need to be looked at closely to be sure they fulfill reliability needs.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

No
If no, please explain in the space provided below.

Comments

Based on the NERC white paper Frequency Response Standard Whitepaper dated April 6, 2004 that was prepared by the Frequency task Force of the NERC Resources Subcommittee, it would appear that the decline in frequency response of both the Eastern and Western Interconnections is a reliability concern. As a transmission provider, however, there is probably little that can be done other than make sure that governor response and load modeling can be made as accurate as reasonably possible in conducting dynamic simulations and be aware of this issue in studying existing as well as new generating facilities. The control area, generation operators and turbinegenerator manufacturers need guidance provided as to their responsibilities and obligations regarding frequency response. Changes in the load characteristics (e.g. fewer large motors, variable speed drives, etc) over time, plus changes in reserve sharing practices brought on by deregulation and competition are and will affect load response to frequency excursions. The type of generation (e.g. combustion turbine units, combined-cycle units) being interconnected to the system as well as the operation of the governors (e.g. blocked or improper settings) and turbines (e.g. sliding pressure, boiler-follower, etc.) of existing generators have a significant effect on the system frequency response.

Question 2: Do you agree with the scope and applicability of the proposed standard?
\boxtimes Yes
No

If no, please explain in the space provided below.

Comments

The Frequency control standard needs to address levels required for reliability, be consistent and verifiable, and be simple to monitor for compliance purposes.

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.
II.B.S1M5, Test results of speed/load governor controls.

Comments

It may be appropriate to include this standard in the Phase III/IV standards that address speed/load governor controls (II.B.S1M5, Test results of speed/load governor controls). The three following customer demand related standards would be helpful in defining load response to frequency excursions:
II.E.S1.M1, Plans for the evaluation and reporting of voltage \& Frequency characteristics of customer demands.

IIE.S1.M2 Documentation or requirements for determining dynamic characteristics of customer demands.
II.E.S1.M3, Customer (dynamic) demand data.

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
® No

If yes, please share those comments in the space provided below.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)			
Group Name: Southern Co. Generation			
Lead Contact: Roman Car			
Contact Organization: Southern Co. Generation			
Contact Segment: 6			
Contact Telephone: 205.257.6027 Contact Email: jrcarter@southernco.com			
Additional Member Name	Additional Member Organization	Region*	Segment*
Roman Carter	Southern Generation	SERC	6
Tony Reed	Southern Generation	SERC	6
Joel Dison	Southern Generation	SERC	6
Lucius Burris	Southern Generation	SERC	6
Lloyd Barnes	Southern Generation	SERC	6
Clifford Shepard	Southern Generation	SERC	6
Terry Crawley	Southern Generation	SERC	5
Roger Green	Southern Generation	SERC	5
Tom Higgins	Southern Generation	SERC	5

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

NoIf no, please explain in the space provided below.

Comments

Trends in Eastern and Western Interconnection Turbine Governor Response and primary frequency response over the past two decades (as documented by EPRI Project RP2473-53 and Decline of Eastern Interconnection Frequency Response by Ingleson and Nagle) as well as trends in frequency error magnitude and variance over the past five years (as documented by the NERC Resources Subcommittee at URL http://www.nerc.com/~filez/rs.html) indicate that frequency response degradation is occurring, particularly in the Eastern Interconnection. While not yet a crisis, these trends are indicative of significant changes in design and operational practices on the interconnected electrical systems of North America which, if not managed intelligently, can cause degradation in reliability. We support this SAR in an effort to begin the process of controlled management before the processes behind these trends reach crisis proportion.

Question 2: Do you agree with the scope and applicability of the proposed standard? \boxtimes Yes

If no, please explain in the space provided below.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing

 standards as opposed to creating new standards?NoIf yes, please identify the location you believe would be the most appropriate for the proposed standard.

The Frequency Response Standard could be included as part of the Balance Resources and Demand Standard.

Comments

Since both the Frequency Response Standard and the Balance Resources and Demand Standard address frequency, they obviously must work together closely. If they are crafted, as originally intended by the Frequency Taskforce, to utilize the same CPS database, there may be savings in administrative overhead in putting them both in the same standard.

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

No
If yes, please share those comments in the space provided below.

It is believed that the industry will be exposing the interconnected electrical systems of North America to a significant degree of reliability risk if a Frequency Response Standard similar to the one proposed by this SAR is not adopted. This risk can be mitigated somewhat by the turbine governor requirements of Standard MOD-014-1 from the Phase III/IV Standards SAR, if passed. However, the risk can be managed properly (and in the most economical manner) on an interconnection/Balancing Authority basis, not on an individual generator basis as required by Standard MOD-014-1.

The governor response in MW for generators is not just dependent on the governor droop and dead-band settings, but on the design of the plant control system (sliding pressure boiler, nuclear pressurized water reactor, etc.). For example, nuclear plant operators must control reactivity changes in the core and generally cannot allow external controls to increase or decrease power levels on demand. This standard should take such factors into account and address frequency \& MW response at the Balancing Authority level, not at the individual generator level.

What is important is that the interconnections maintain sufficient frequency responsive resources to ensure the stability of interconnection frequency under first contingency conditions. The Frequency Response Standard, as proposed, sets requirements for the management and deployment of frequency responsive resources that achieve this goal without unduly interfering with the on going operation of the interconnection. We support this SAR.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)			
Group Name: NPCC CP9, Reliability Standards Working Group			
Lead Contact: Guy V. Zito			
Contact Organization: Northeast Power Coordinating Council			
Contact Segment: 2			
Contact Telephone: 212-840-1070			
Contact Email: gzito@npcc.org			
Additional Member Name	Additional Member Organization	Region*	Segment*
Ralph Rufrano	New York Power Authority	NPCC	1
Kathleen Goodman	ISO-New England	NPCC	2
Al Adamson	New York State Reliability Council	NPCC	2
Bob Pelligrini	United Illuminating	NPCC	1
David Kiguel	Hydro One Networks, (Ontario)	NPCC	1
Peter Lebro	US National Grid	NPCC	1
Roger Champagne	TransEnergie, (Quebec)	NPCC	1
Brian Hogue	NPCC	NPCC	2
Guy Zito	NPCC	NPCC	2
Khaqan Khan	The IESO, (Ontario)	NPCC	2
Michael Potisnak	ISO-NewEngland	NPCC	2
Greg Campoli	New York ISO	NPCC	2

[^2]
Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?
\boxtimes YesNo

If no, please explain in the space provided below.

Comments

Question 2: Do you agree with the scope and applicability of the proposed standard?Yes
\boxtimes No

If no, please explain in the space provided below.
The applicability of this Standard to the LSE should be considered.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
【 No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
\boxtimes Yes

If yes, please share those comments in the space provided below.
CHANGE
This SAR is proposed to develop a standard to measure sub-minute responses to changes in frequency and to set minimum acceptable responses to system these events.
TO
This SAR is proposed to develop a standard to measure sub-minute responses to changes in frequency and to set minimum acceptable responses to these system events.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

No
If no, please explain in the space provided below.

Comments

There is a reliability need but it is not an immediate reliability need for all of the interconnections. The amount of Frequency Response on the Texas Interconnection is close to the minimum acceptable amount, and therefore, there is an immediate need for a FRS on the Texas Interconnection. On the Western Interconnection, the WECC keeps close tabs on Frequency Response and takes immediate action when a problem arises with frequency response on that interconnection. Although there is no immediate need for a Frequency Response Standard on the Western Interconnection at this time, the observed reductions in Frequency Response on that interconnection make this issue an ongoing concern. Finally, there is no current need for a Frequency Response Standard on the Eastern Interconnection because current Frequency Response is adequate. However, it takes significant time to develop an effective standard and put it in place. The Balancing Resources and Demand Standard is entering its fourth year of development with expectations of at least another year before implementation. A Frequency Response Standard would be expected to take a similar period to develop. That means that it will be at least 2010 before a new FRS would be put in place. There is no question that adequate Frequency Response is required for reliability. There is no question that Frequency Response on the Eastern Interconnection is declining. There are two paths of action available; 1) Wait until adequate Frequency Response causes reliability problems and then begin the five year process to develop a standard; 2) Begin development of a FRS and determine the final need for implementation during the five year development process. I would rather have a standard that requires measurement that does not result in enforcement action, and therefore, has no effect on operations, than not have a standard when there are definite reliability problems. It will be much easier to implement a standard for Frequency Response before reliability problems occur than to implement a standard after reliability problems occur. NERC should develop a Frequency Response Standard and continue to investigate the need for the standard during its development.

Question 2: Do you agree with the scope and applicability of the proposed standard?

Y Yes

If no, please explain in the space provided below.

Comments

Planning standards are not enough by themselves. Without continuous measurement, there can be no assurance that those responsible for meeting the reliability need for Frequency Response are fulfilling those responsibilities. Only a Frequency Response Standard that continuously measures response can insure that the response is available when required.

Question 3: Do you believe these standards are more appropriately additions to existing

 standards as opposed to creating new standards?NoIf yes, please identify the location you believe would be the most appropriate for the proposed standard.

Frequency Response is closely related to the Frequency Bias used in the Balancing Resources and Demand Standard and therefore this standard should be included as an addition to that standard. If it is not included in the BRD Standard, a separate standard would require coordination between the two standards. This would make the process of updating the standards more complex.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

If yes, please share those comments in the space provided below.
NERC has the responsibility of maintaining reliability on the North American Interconnections.
NERC cannot perform that function effectively if it waits for reliability problems to become apparent in system operations before it takes actions to address those problems. NERC must be a forward looking organization that anticipates future reliability problems and takes actions to resolve those problems before they affect interconnection reliability.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

No
If no, please explain in the space provided below.

Comments

These are my individual comments as a member of the NERC Resources subcommittee and not those of representing any organization.

There is a reliability need for a light-handed standard that allows us to do a better job of ensuring response is available when required. As some entities might comment, there is adequate response in all interconnections during "system normal" conditions. The problem is what occurs during major disturbances and restoration.

A primary reason the industry needs to do a better job of tracking frequency response is the fact that response is declining when it should actually be increasing with load and generation growth.

The standard should not be structured such that it finds BAs noncompliant if response is below average or if response is low for a given event. Frequency response at the BA level is extremely variable as the measure is mingled with load fluctuation.

The standard should guide a technically sound calculation of response at the BA level and track interconnection performance over time to enable informed decisions.

If a BA performs significantly below an Interconnection norm, the standard should require the BA do an internal assessment of its key generation to verify governors are working as designed and that there will be frequency responsive resources for disturbances and restoration.

If Interconnection response significantly changes over time, the standard should be reevaluated.

Question 2: Do you agree with the scope and applicability of the proposed standard?
\boxtimes YesNo

If no, please explain in the space provided below.
I agree, with some qualification. While the standard shouldn't preclude market solutions, I don't think it must enable a market as the scope implies. A little more clarity on the goals of the standard is needed.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?
\boxtimes Yes

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

It's not a major issue. It appears it should be include in the Version 0 (BAL-003-0 - Frequency Response and Bias).

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?

No
If yes, please share those comments in the space provided below.

Thanks for the opportunity to comment. I hope the SAC puts all comments in perspective. We are in a period where the industry is reluctant to adopt new standards that generate extra work and compliance exposure. The reliability of the Interconnections can benefit with minimal impact to most BAs with a light-handed standard.

Rather than implementing a complicated process, why not embed most of the effort in the NERC ACE-monitoring application? Only those BAs with unusually low response would need to drill down and do an internal assessment to determine their ability to withstand disturbances and whether they have responsive resources for blackstart.

Knowing where and when performance is substandard will likely arrest the decline in performance. Minimum performance standards could be implemented once the industry has identified what is reasonably achievable and technically justified.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{\begin{tabular}{l}
Individual Commenter Information \\
(Complete this page for comments from one organization or individual.)
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{Name: John Horakh - 02-15-2005} \\
\hline \multicolumn{3}{|l|}{Organization: MAAC} \\
\hline \multicolumn{3}{|l|}{Telephone: 609-625-6014} \\
\hline \multicolumn{3}{|l|}{Email: john.horakh@conectiv.com} \\
\hline \multicolumn{2}{|l|}{NERC Region} \& Registered Ballot Body Segment \\
\hline \multirow[t]{9}{*}{ERCOT
ECAR
FRCC

MAAC
MAIN
MAPP
NPCC
SERC
SPP
WECC
NA - Not Applicable} \& \square \& 1 - Transmission Owners

\hline \& X \& 2 - RTOs, ISOs, Regional Reliability Councils

\hline \& \square \& 3 - Load-serving Entities

\hline \& \square \& 4 - Transmission-dependent Utilities

\hline \& \square \& 5 - Electric Generators

\hline \& \square \& 6 - Electricity Brokers, Aggregators, and Marketers

\hline \& \square \& 7 - Large Electricity End Users

\hline \& \square \& 8 - Small Electricity End Users

\hline \& \square \& 9 - Federal, State, Provincial Regulatory or other Government Entities

\hline
\end{tabular}

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity

 of frequency response?$\mathrm{X} \square$ Yes

If no, please explain in the space provided below.

Comments

There may be a reliability need in the near future. The Whitepaper does an excellent job of making that case. For the purpose of commenting on a SAR that has not yet produced a proposed Standard, I can give it the benefit of the doubt and say yes, there is reliability need.

Question 2: Do you agree with the scope and applicability of the proposed standard?

Yes$\mathrm{X} \square$ No

If no, please explain in the space provided below.

Quoted from the SAR (with corrections): This SAR is proposed to develop a standard to measure sub-minute responses to changes in frequency and to set minimum acceptable responses of the system to these events. Also quoted: The measurement selected must be accurate and, to the extent practical, easy to implement. This seems more like a research project than a request for a standard. There is no mention of any possible measurements that might be in the standard. I'm afraid that proceeding with such a vague idea of a measurement will lead the SAR or later Standard to become bogged down with research and field testing even more so than the Balance Load and Demand Standard. And Balance Load and Demand did have definite measurements in mind, thereby not requiring much research, mainly field testing. Come back with a SAR after the research is done, or at least started.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?Yes
$\mathrm{X} \square$ No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Adding this requirement to another standard would only slow down the progress of both.

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
$\mathrm{X} \square$ Yes

If yes, please share those comments in the space provided below.
It appears Frequency Response is an accepted term used for this requirement, and therefore might be difficult to change. However, Frequency Response is not a very good description of the requirement. A term such as Transient Generator and Load Response would be more descriptive.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name: Electric System Operations
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*
Larry Akens	TVA	SERC	1
Mitch Needham	TVA	SERC	1
Chuck Feagans	TVA	SERC	1
Edd Forsythe	TVA	SERC	1

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?
x Yes
No

If no, please explain in the space provided below.

Comments

Question 2: Do you agree with the scope and applicability of the proposed standard?Yes
x No

If no, please explain in the space provided below.
If the purpose is to purchase frequency response, then the Market Operator needs to be includes. Will this be considered an Ancillary Service?

Others that may need to be involved are Transmission Service Provider, Generator Owner, Planning Authority and Resource Planner.

Applicability should include \#2

Comments

Question 3: Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?Yes
x No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
x No

If yes, please share those comments in the space provided below.

Comment Form
 Proposed Frequency Response Standard

This form is to be used to submit comments on the proposed Frequency Response Standard Authorization Request. Comments must be submitted by February 17, 2005. You may submit the completed form by emailing it to: sarcomm@nerc.com with the words "Frequency Response SAR Comments" in the subject line. If you have questions please contact Mark Ladrow at mark.ladrow@nerc.net or by telephone at 609-452-8060.

ALL DATA ON THIS FORM WILL BE TRANSFERRED AUTOMATICALLY TO A DATABASE AND IT IS THEREFORE IMPORTANT TO ADHERE TO THE FOLLOWING REQUIREMENTS:

DO: Do enter text only, with no formatting or styles added. Do use punctuation and capitalization as needed (except quotations). Do use more than one form if responses do not fit in the spaces provided. Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact Email:

Additional Member Name	Additional Member Organization	Region*	Segment*

* If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background Information:

Posted for comments is the first posting of the Frequency Response SAR. The Frequency Task Force of the NERC Resources Subcommittee has identified the transient frequency response characteristics as degrading over time and potentially threatening the reliability of the bulk electric system. This Standard Authorization Request was initiated to address this concern by developing a standard to specify a measuring convention for frequency response and by specifying a minimum required response to system disturbances based on the convention.

The requestor would like to receive industry comments on this SAR and to obtain the input of the industry prior to determining the final scope and requirements of the SAR. Accordingly, we request your comments included on this form, emailed with the subject "Frequency Response SAR Comments" by February 17, 2005.

Question 1: Do you agree there is a reliability need for a specifying the quality and quantity of frequency response?

No
If no, please explain in the space provided below.

Comments

The CPS1 equation is a single equation in two variables, primary (governor) response and secondary response. Two variables require two equations in order to have a unique solution. That second equation does not currently exist and must be the proposed Frequency Response standard that pins down the value of primary (governor) response. Currently, the single CPS1 equation allows any Balancing Authority an infinity of solutions for any given CPS1 value. Accordingly, Balancing Authorities have been tending to reduce expensive primary response and increase cheaper secondary response (AGC, regulation, load following) to achieve a given CPS1 score, which is an average over time. The result has been a halving of system bias in the Eastern Interconnection and the rest of the case made for the standard in the supporting White Paper.

Question 2: Do you agree with the scope and applicability of the proposed standard?

```
Yes
```

If no, please explain in the space provided below.

Comments

Question 3: Do you believe these standards are more appropriately additions to existing

 standards as opposed to creating new standards?】 No

If yes, please identify the location you believe would be the most appropriate for the proposed standard.

Comments

The SAR acknowledges that the proposed Standard not only is complementary to the Balancing Resources and Demand Standard, but also must be coordinated with that Standard. The two standards could be combined. But that is insufficient reason to oppose development of a separate Frequency Response Standard. Moreover, combining the standards would reverse the great progress made in consensus on the Balancing Resources and Demand Standard.

Question 4: Do you have any additional comments regarding the SAR that you believe should be addressed?
® No

If yes, please share those comments in the space provided below.

Background:

The Frequency Response SAR drafting team thanks all commenters who submitted comments on the first draft of the Frequency Response SAR. The SAR was posted for comment from January 17 - February 17, 2005. The SAR drafting team asked stakeholders to provide feedback on the SAR through a special SAR Comment Form. There were 30 sets of comments.

Based on the comments received, the drafting team has revised the SAR and is reposting it for an additional 30-day comment period

In this 'Consideration of Comments' document, stakeholder comments have been organized so that it is easier to see the summary of changes being requested of the SAR. All comments received on the first draft of the Frequency Response SAR can be viewed in their original format at:
ftp://www.nerc.com/pub/sys/all_updl/standards/sar/Frequency_Response_SAR_Comments_02_17_05.pdf
If you feel that your comment has been overlooked, please let us know immediately. Our goal is to give every comment serious consideration in this process! If you feel there has been an error or omission, you can contact the Vice President and Director of Standards, Gerry Cauley at 609-452-8060 or at gerry.cauley@nerc.net. In addition, there is a NERC Reliability Standards Appeals Process. ${ }^{1}$

[^3]
Index to Questions, Comments and Responses:

1. Do you agree there is a reliability need for specifying the quality and quantity of frequency response? .3
2. Do you agree with the scope and applicability of the proposed standard?...................................... 16
3. Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards? 22
4. Do you have any additional comments regarding the SAR that you believe should be addressed? 28

1. Do you agree there is a reliability need for specifying the quality and quantity of frequency response?

Summary Consideration: Most commenters agreed that there is a reliability need to specify the quality and quantity of frequency response.

Commenter	Yes	No	Comment
MAAC Staff (2) Al DiCaprio - MAAC (2) Joe Willson - MAAC (2) Mark Kuras - MAAC (2)		\checkmark	There is a need for governors but not for frequency response. Governors are needed to resynchronize during restoration. But the need for a short-term frequency response characteristic has been obviated by the pending Version1 Balancing Standard. That standard is designed to ensure that interconnection frequency is never at such a level that the loss of the largest contingency will cause instability or cascading outages. If the system is always in such a state why would the instantaneous response to the loss of a single contingency add to the system reliability? The SAR has not provided any definitive need. The SAR has not provided sufficient focus vis-à-vis who is responsible to meet the standard (the generator, the BA, the Load, the RA) This proposal has not provided any additional information concerning the need for this proposed Standard since the last time (during the Balancing Resources and Demand consensus) that a similar Frequency Response Requirement was overwhelming rejected by those who commented to that proposal. Transient frequency response has not been the target of any major public concern. The current Version 1 Control Standard proposal provides limits on the frequency excursions that can be controlled by system-operators and their control systems. Relays and other Protection Devices serve to protect those time frames too short for an operator to respond to. What does this standard add? Comments This SAR is not clear as to what it really is intended to mandate. Does the requestor want to create a standard for Generator Owners to install governors? Or a standard on Generator Operators for individuals unit governor response? Or a standard for Balancing Authorities for Area response? Or for Reliability Authorities for Regional response? All of these are different requirements and have different effects. The requestor must be clear as to what is intended. To ensure that frequency doesn't hit a relay limit (as in the Balancing standard?) or is it to address the need for governors when synchronizing? When does the standard apply? All times (which means that NERC can go to a unit, BA or RA to check that some finite response is available?) Just at times when large events occur (the problem is of course whether or not the outage is near or far from the entity being checked)? Only during test conditions (since a unit under stress - 'valves wide open' has not governor response at that time - even though it may have the greatest of

Commenter	Yes	No	Comment
			responses at other times). The requestor's intent may be laudable but the description is no where near ready to be considered as 'standard material'.
Response: The dra many of the questio agree that the stand revised SAR. While we don't know how purpose of this stan problem. We disagree that th states. The BRD ad Governor Modeling Davies, and Shawn published study, eve As you request, the will be designed such LSEs) if they so cho The standard is not framework to collect The revised SAR cla	am (R ed by eds to ercon pons to co ce R stea ch in on. gh it anda a BA d to orma what is		ces Subcommittee Frequency Task Force) attempted to answer mmenters in the Frequency Response Standard Whitepaper. We ear to who and when it would apply and this is addressed in the ns may have sufficient frequency response for normal operations, sersed and at what point it will pose a reliability risk. A primary formation so informed decisions can be made before there is a es and Demand (BRD) standard is sufficient for all operating te and fully interconnected conditions. Refer to "A New Thermal ECC" by Les Pereira, John Undrill, Dmitry Kosterev, Donald eep in mind that response has continued to decline since the last be increasing with load growth. resses who is required to meet the standard (BA). The standard rror the metrics within its boundaries (evaluate generators and sh a large set of arbitrary requirements, but will establish the make informed engineering decisions. cted.
BPA Bart McManus Brian Tuck James Randall Francis Halpin Bill Mittlestat James Murphy		\checkmark	NERC should not involve itself in the development of these standards and should allow individual interconnections to address frequency response issues independently. For example, the WECC is currently working on standards that will address this concern. They will be tailored to the specific requirements of this interconnection and will provide the best possible solution to the problem. There may be a need to specify frequency response requirements within some interconnections; however, it is not necessary, or most effective for them to be defined at the NERC level.

Response: The Resources Subcommittee Frequency Task Force agrees that frequency response is primarily an Interconnection issue and, as envisioned, the proposed standard would accommodate Interconnection differences both in amounts of response and methodology in calculating response. The standard would identify technical and engineering principles that should be met to calculate and evaluate the amount and distribution of frequency response within each Interconnection. The drafting team believes that stakeholders would prefer the assurance of knowing that NERC is providing oversight to ensure that all Interconnections have a technically sound basis for the development of respective frequency response requirements.

FRCC (2) Linda Campbell Ron Donahey - TEC (1) Mark Bennett - GRU (3) Steve Wallace - SEC (5) S. McElhaney - FMPA (5) Ted Hobson - JEA (1)	\checkmark	The FRCC does not support the development of a Frequency Response Standard at this time. A standard for each Interconnection, although informative would be unenforceable as far as identifying short term, frequency response deficient, entities or areas. As such measurability and compliance by the relevant entities would be all but impossible. As far as an Interconnection allocation program for frequency response, we feel that the "apparent" decline in response is not significant enough to warrant a standard at this time and we would require additional details of how such a plan would be implemented and the potential economic impacts on the Regions that would be

Commenter	Yes	No	Comment
			associated with that plan.
Response: The standard as envisioned does not mandate a specific amount of frequency response. With regard to the "apparent" decline in frequency response, the most widely published report (Ingleson and Nagle, 1999) documented a change in Eastern Interconnection response from $3750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994 to $3390 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1998. The Resources Subcommittee evaluation of 44 events in 2005 showed an average frequency response well below $3000 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Theoretically, response should be increasing over time with increasing load and generation in an Interconnection. One of the primary reasons for the standard is to enable a better analysis of response and also enable informed decisions. As envisioned, the standard will provide a fairly simple methodology to verify compliance.			
ISO/RTO Standards Review Committee (2) K. Tammar - NYISO (2) D. McMaster - AESO (2) Ed Riley - CAISO (2) Sam Jones - ERCOT (2) P. Henderson - IESO (2) P. Brandien - ISO-NE (2) B. Phillips - MISO (2) B. Balmat - PJM (2) C. Yeung - SPP (2)	\checkmark	\checkmark	We agree in general that there is a reliability need to have frequency response, particularly during disturbances, islanding and restoration. The standard should provide the process for a technically sound calculation of frequency response and bias (both fixed and variable). Any new standards on frequency response need not and should not be onerous by finding BAs noncompliant with response less than average or below some un-validated norms. If performance is significantly less than an Interconnection norm, the standard should not trigger an automatic non-compliance. In these situations the BA should perform an internal review/assessment that ensures governors are working as designed, that the BA knows which resources are frequency responsive (so the information can be included in restoration plans), whether governors can be triggered to be more responsive during disturbances, etc and satisfy the Interconnection requirement. If the Interconnection requirement is not met within a reasonable timeframe then the BA should be deemed as non-compliant. When required, the validation of governor performance could be achieved either through online monitoring in an EMS or periodic testing (both methods should be explained in a reference document to support the standard). The standard should acknowledge that some units might not provide response under normal operations (e.g. nuclear units operating at full load) and that response is highly variable event-to-event based on simultaneous load changes. The standard should acknowledge the differing Interconnection requirements (smaller Interconnections need greater response). The standard should also track Interconnection and BA areas response over time (years) and be reevaluated as performance changes.

Response: The Resources Subcommittee Frequency Task Force agrees with these comments as a whole. As envisioned, the standard would not mandate a given amount of response, but would require

Commenter	Yes	No	Comment
an analysis if response were measurably below the norm (this detail has been added to the detailed description in the SAR). There is another standard under development, (Phase III \& IV MOD-027 - Verification and Status of Generator Frequency Response) that requires Generator Owners to verify that their governors are working as designed. The standard would accommodate the simplification ideas you propose, and in fact, if data is saved in a common format, the Resources Subcommittee Frequency Task Force has a tool that could calculate the BA's performance to the standard. The SAR was also changed to reflect the suggestions to accommodate: - Both fixed and variable bias. - Cases where a specific unit (e.g. nuclear) is prohibited from providing frequency response. - Differing Interconnection needs.			
CAISO (2) Ed Riley Yuri Makarov Steve McCoy	\checkmark		Frequency response provided by speed governors and loads helps to prevent load shedding and generator trips at significant frequency excursions caused by sudden active power mismatches in the systems. Without a sufficient frequency response emerging during the first seconds after a frequency disturbance, there is a danger of further cascading development or frequency instability and system collapse cased by underfrequency generator trips. It has been already noted that insufficient frequency response in some parts of an Interconnection may cause certain temporary redistribution of power flows and reduce stability margins after frequency disturbances that may limit the OTC on critical paths within the Interconnection. It has been also observed that insufficient frequency response may cause a weaker frequency recovery that bears a greater risk of system collapse at subsequent frequency disturbances. Therefore, frequency response is definitely a reliability issue that needs to be addressed by a NERC standard.

Response: The Resources Subcommittee Frequency Task Force agrees that there are several issues that must be addressed in the standard or in supporting business practices. As envisioned, the proposed standard would not be prescriptive with regard to "how much" and "where" the response is carried.

Manitoba Hydro (1, 3, 5, 6) Gerald Rheault	\checkmark		Manitoba Hydro, from a reliability perspective, supports the idea of specifying the quantity and quality of frequency response and incorporating these elements in a Standard. However, the development of this standard should not be rushed since the evidence provided in the Standard Authorization Request form and in the Frequency Response Standard White paper shows that current frequency response and projected frequency response trends do not pose a significant potential for compromising system reliability and for major under-frequency load shedding to occur in the near term. Also in the section of the white paper which examines "frequency response standard considerations", a broad scope and outline is given, more detail is required especially regarding methods of ensuring compliance. In paragraph 2, page 9 of the white paper where the current frequency response of the Eastern Interconnection is stated as $3100 \mathrm{MW} / 0.1 \mathrm{~Hz}$ with a standard deviation of $1870 \mathrm{MW} / 0.1 \mathrm{~Hz}$ and the statement is made that "the fact that an under-frequency

Commenter	Yes	No	Comm
			event has not happened yet is only coincidence" requires much more detailed information regarding the origin and calculations of these numbers before these assumptions can be made. Could it be that instead of a frequency response closer to 1230MW/ 0.1 Hz it is actually practically closer to $3100 \mathrm{MW} / 0.1 \mathrm{~Hz}$ or even $4970 \mathrm{MW} / 0.1 \mathrm{~Hz}$ most of the time? One understandable major concern addressed in the white paper is the response of combined-cycle units to frequency decline and the fact that due to a drop in combustion air volume their output may actually decrease with a drop in frequency or even result in unit tripping. Also there was concern with the possibility that larger amounts of these types of units will be installed on the system thereby potentially increasing the decline in frequency response rate from $70 \mathrm{MW} / 0.1 \mathrm{~Hz} / \mathrm{Year}$ (Eastern Interconnection). It is also mentioned (on page 10) that with proper tuning combined cycle units can provide correct frequency response. Maybe part of the focus should be on finding ways of enforcing the Current Requirements (Page 14) and including specific frequency response requirements for combined-cycle units.
Response: The Resources Subcommittee Frequency Task Force agrees that the standard should not rush to a decision on the amount and location of frequency response, but should set the framework for making informed decisions. Frequency response is needed for more than protection against UFLS. Response is also needed during disturbances and restoration. With regard to "current requirements", the Whitepaper listed what existed in NERC Policy, mostly as guides. There is very little in the V0 Standards regarding governors or frequency response. We agree that the standard should not impose unreasonable costs to demonstrate compliance. We agree that frequency response should be monitored both at the BA and Interconnection level. Characterizing how frequency response changes under varying interconnection load and unit commitment conditions will be addressed by a sampling methodology. The drafting team is pursuing the addition of functionality in the "NERC -ACE monitoring application" that will identify generator trips and automate the calculation of Interconnection frequency response. Evidence to date indicates that frequency response declines significantly during light load periods, even though the exact mechanism for this is not well defined. Most of the major frequency excursions experienced in the Eastern Interconnection have occurred during the shoulder period of the year during either the early morning or late evening periods. Regarding the last comment, there currently are no governor or frequency response requirements for generators.			

Commenter	Yes	No	

Commenter	Yes	No	Comment		
$\begin{array}{l}\text { MidAmerican } \\ \text { Darrick Moe - WAPA } \\ \text { Joe Knight - MRO }\end{array}$			$\begin{array}{l}\text { an internal review that ensures governors are working as } \\ \text { designed, that the BA knows which resources are frequency } \\ \text { responsive (so the information can be included in restoration } \\ \text { plans), whether governors can be put in more responsive modes } \\ \text { during disturbances, etc. }\end{array}$		
The standard should have some requirements on generators if					
the BA is not providing the response outlined in the standard					
(governors should be working as designed).				$\}$	The standard should also track Interconnection response over
:---					
time and identify a target response (different for each					
Interconnection). NERC or NAESB will want to look at how this is					
allocated to BAs and generators.					

Response: The Resources Subcommittee Frequency Task Force agrees with these comments as a whole. As envisioned the proposed standard would not mandate a given amount of response, but would require an analysis if response is measurably below the norm. As envisioned the proposed standard is would acknowledge the variability inherent in measuring frequency response and would provide two methods of capturing sufficient samples to make an objective measurement. The standard would not preclude market solutions. The SAR detailed description has been expanded to state that the standard will include a sound calculation for measuring frequency response with consideration of interconnection specifics. Another detail added to the SAR requires generator units with nameplate ratings of 10 MW or greater to be equipped with governors. There is another standard under development, (Phase III \& IV MOD-027 - Verification and Status of Generator Frequency Response) that requires Generator Owners to verify that their governors are working as designed. Finally, the SAR was modified to accommodate both fixed and variable bias.

Southern Company Transmission, Operations, Planning and EMS Divisions (1) Marc Butts Steve Corbin Jim Viikinsalo Jim Griffith Doug McLaughlin Monroe Landrum	\checkmark	Trends in Eastern and Western Interconnection Turbine Governor Response and primary frequency response over the past two decades (as documented by EPRI Project RP2473-53 and Decline of Eastern Interconnection Frequency Response by Ingleson and Nagle) as well as trends in frequency error magnitude and variance over the past five years (as documented by the NERC Resources Subcommittee at URL http://www.nerc.com/~filez/rs.html) indicate that significant frequency response degradation is occurring, particularly in the Eastern Interconnection. While not yet a crisis, these trends are indicative of significant changes in design and operational practices on the interconnected electrical systems of North America which, if not managed intelligently, can cause significant degradation in reliability. We strongly urge the industry to support this SAR and begin the process of controlled management before the processes behind these trends reach crisis proportion.
Response: The Resources Subcommittee Frequency Task Force agrees with these comments.		
New York ISO (2) Mike Calimano	\checkmark	We agree in general that there is a reliability need to have frequency response, particularly during disturbances, islanding and restoration. The standard should provide the process for a technically sound calculation of frequency response and bias (both fixed and variable). Any new standards on frequency response need not and should

Commenter	Yes	No	Comment
			not be onerous by finding BAs noncompliant with response less than average or below some un-validated norms. There may be valid reasons why a BA is below observed norms in response. For example, the BA may meet most of its obligations with schedules or its native load may be non-responsive. If performance is significantly less than an Interconnection norm, the standard should not trigger an automatic non-compliance. In these situations the BA should perform an internal review/assessment that ensures governors are working as designed, that the BA knows which resources are frequency responsive (so the information can be included in restoration plans), whether governors can be put in more responsive modes during disturbances, etc. When required, the validation of governor performance could be achieved either through online monitoring in an EMS or periodic testing (both methods should be explained in a reference document to support the standard). The standard should acknowledge that some units might not provide response under normal operations (e.g. nuclear units operating at full load) and that response is highly variable event-to-event based on simultaneous load changes. The standard should acknowledge the differing Interconnection requirements (smaller Interconnections need greater response). The standard should also track Interconnection response over time (years) and be reevaluated as performance changes.

Response: The Resources Subcommittee Frequency Task Force agrees with these comments as a whole. As envisioned, the standard would not mandate a given amount of response, but would require an analysis if response were measurably below the norm (this detail has been added to the detailed description in the SAR).

There is another standard under development, (Phase III \& IV MOD-027 - Verification and Status of Generator Frequency Response) that requires Generator Owners to verify that their governors are working as designed.
The standard would accommodate the simplification ideas you propose, and in fact, if data is saved in a common format, the Resources Subcommittee Frequency Task Force has a tool that could calculate the BA's performance to the standard.
The SAR was also changed to reflect the suggestions to accommodate:

- Cases where a specific unit (e.g. nuclear) is prohibited from providing frequency response.
- Differing Interconnection needs.

IESO (2)	\checkmark		We agree in general that there is a reliability need to have frequency response, in order to maintain interconnection frequency and particularly during disturbances, islanding and restoration. The standard need to address both the system needs as well as island requirements for frequency response.
The standard should provide the process for a technically sound			

Commenter	Yes		Comment

Commenter	Yes	No	Comment
			governors (e.g. blocked or improper settings) and turbines (e.g. sliding pressure, boiler-follower, etc.) of existing generators have a significant effect on the system frequency response.
Response: The Resources Subcommittee Frequency Task Force agrees with your technical comments in support of this standard. The team also supports the development of the planning "MOD" standards that address frequency response at the generator level.			
NERC Frequency Task Force Raymond L. Vice, Chairman	\checkmark		Trends in Eastern and Western Interconnection Turbine Governor Response and primary frequency response over the past two decades (as documented by EPRI Project RP2473-53 and Decline of Eastern Interconnection Frequency Response by Ingleson and Nagle) as well as trends in frequency error magnitude and variance over the past five years (as documented by the NERC Resources Subcommittee at URL http://www.nerc.com/~filez/rs.html) indicate that significant frequency response degradation is occurring, particularly in the Eastern Interconnection. While not yet a crisis, these trends are indicative of significant changes in design and operational practices on the interconnected electrical systems of North America which, if not managed intelligently, can cause significant degradation in reliability. I strongly urge the industry to support this SAR and begin the process of controlled management before the processes behind these trends reach crisis proportion.
Response: The Resources Subcommittee Frequency Task Force agrees with these comments.			
Robert Blohm	\checkmark		The CPS1 equation is a single equation in two variables, primary (governor) response and secondary response. Two variables require two equations in order to have a unique solution. That second equation does not currently exist and must be the proposed Frequency Response standard that pins down the value of primary (governor) response. Currently, the single CPS1 equation allows any Balancing Authority an infinity of solutions for any given CPS1 value. Accordingly, Balancing Authorities have been tending to reduce expensive primary response and increase cheaper secondary response (AGC, regulation, load following) to achieve a given CPS1 score, which is an average over time. The result has been a halving of system bias in the Eastern
Response: The Resources Subcommittee Frequency Task Force appreciates your comment and your support for the frequency response standard.			
SPP Operating Reliability Working Group Robert Rhodes -SPP (2) Ron Ciesiel - SPP (2) Bob Cochran - SPS (1) Mike Gammon - KCPL (1) Steve Hillman - WPEK (1) Allen Klassen - Westar	\checkmark		A frequency response standard is needed but only within the scope and range of the previously provided guides in Policy 1 such as a design criteria of 5% droop, a 36 mHz deadband with exclusions for nuclear, combined cycle and small generating units.

Commenter	Yes	No	Comment
(1)			
Bill Nolte - SECI (1)			
Mike Stafford - GRDA (1)			

Response: The Resources Subcommittee Frequency Task Force agrees with the comments and has added statements to the detailed description to reflect the comments. However, the SAR is intended to capture the scope of the standard and the specific parameters will be determined by the standard drafting team.

Southern Co. Generation (6) Roman Carter Tony Reed Joel Dison Lucius Burris Lloyd Barnes Clifford Shepard Terry Crawley Roger Green Tom Higgins			

Commenter	Yes	No	

2. Do you agree with the scope and applicability of the proposed standard?

Summary Consideration: Most commenters agreed that the proposed standard should apply to the Reliability Authority (or Reliability Coordinator), Balancing Authority and Generator Operator. With the revisions to the SAR, there are requirements for the Generator Owner to ensure that certain governors meet a minimum set of criteria

There was no consensus amongst commenters on the scope of the proposed standard. The drafting team made extensive changes to try to better define the scope.

Commenter	Yes	No	Comment	
MAAC Staff (2)				
Al DiCaprio - MAAC (2)		\checkmark	Frequency Response characteristics should be dictated by the Reliability entities as part of their respective control services to Joe Willson - MAAC (2) Mark Kuras - MAAC (2)	
meet the regional synchronizing requirements as well as the				
longer duration control standards and of the needs of the				
interconnection in which they operate.				

Commenter	Yes	No	Comment
G. Campoli - NYISO (2)			
Response: The Resources Subcommittee Frequency Task Force will add LSE to the standard's applicability list.		\checkmark	Quoted from the SAR (with corrections): This SAR is proposed to develop a standard to measure sub-minute responses to changes in frequency and to set minimum acceptable responses of the system to these events. Also quoted: The measurement selected must be accurate and, to the extent practical, easy to implement. This seems more like a research project than a request for a standard. There is no mention of any possible John Horakh measurements that might be in the standard. I'm afraid that proceeding with such a vague idea of a measurement will lead the SAR or later Standard to become bogged down with research and field testing even more so than the Balance Load and Demand Standard. And Balance Load and Demand did have definite measurements in mind, thereby not requiring much research, mainly field testing. Come back with a SAR after the research is done, or at least started.

Response: The Resources Subcommittee Frequency Task Force agrees that the whitepaper bears some resemblance to the description for a research project. Many in the industry are concerned with the decline in Frequency Response, while at the same time some are asking how much of a problem is the decline in response. The drafting team's goal is to put the infrastructure and process in place to make informed decisions in the future and to allow the Regions to evaluate the distribution and adequacy of response and take mitigating action if there are areas found to be deficient. The Resources Subcommittee Frequency Task Force disagrees with delaying the standard development. The SAR will define the scope of the standard. The specific detailed requirements and measures will be developed by the standard drafting team.

TVA (1) Kathie Davis Larry Akens Mitch Needham Chuck Feagans Ed Forsythe		If the purpose is to purchase frequency response, then the Market Operator needs to be includes. Will this be considered an Ancillary Service? Others that may need to be involved are Transmission Service Provider, Generator Owner, Planning Authority and Resource Planner. Applicability should include \#2
Response: The Resources Subcommittee Frequency Task Force agrees that others have roles in providing Frequency Response, but have focused on the higher level calculation of response at the balancing authority and Interconnection level. The primary reason for this is that there are about 150 balancing authorities. Only those balancing authorities with sub-normal response need to investigate to the generator level. The NERC 2002 Generating Unit Statistical Brochure identifies 3694 generators of 1 MW or greater. It would be difficult (and unnecessary if the BA has good response) to monitor thousands of generators with this standard. The standard doesn't preclude market solutions, which NAESB may adopt. The Resources Subcommittee Frequency Task Force agrees with the comment to include \#2 in the SAR.		
ISO/RTO Standards Review Committee (2) K. Tammar - NYISO (2) D. McMaster - AESO (2) Ed Riley - CAISO (2) Sam Jones - ERCOT (2)		There is a general need for a standard, but the outcomes and expectations should address the comments raised in question 1 While we agree that the standard should not preclude market solutions (e.g. allow purchasing of response as long as deliverability and restoration criteria can be met), we have concerns with the statement There must be a means for sale/purchase of frequency response as for any other quantity.

Commenter	Yes	No	
P. Henderson - IESO (2)			Comment
P. Brandien - ISO-NE (2)			It clear what is meant by A method of allocation must be developed." Is this an allocation of Interconnection response to BAs, BA allocation to generators or something different?
B. Phillips - MISO (2)			
B. Balmat - PJM (2)			
C. Yeung - SPP (2)			
New York ISO (2)			
Mike Calimano			

Response: The Resources Subcommittee Frequency Task Force agrees with these comments, and has revised the SAR to omit the italicized statements. As envisioned, the proposed standard would not mandate a given amount of frequency response, but would require an analysis if response were measurably below the norm. The standard doesn't preclude market solutions, which NAESB may adopt.

NCPA (4) Les Pereira		\checkmark	The scope needs to be expanded - see detailed comments in a following section - based on extensive modeling and validation work in WECC.

Response: The Resources Subcommittee Frequency Task Force appreciates the significant work that has been done in this area by the WECC and has referenced some of this research in the Whitepaper. We believe the Planning Standards under development (MOD-13 and MOD-27) deal with the governor issues that you outline. As envisioned, this standard will provide improved data into the modeling process.

FRCC (2) Linda Campbell Ron Donahey - TEC (1) Mark Bennett - GRU (3) Steve Wallace - SEC (5) S. McElhaney - FMPA (5) Ted Hobson - JEA (1)	\checkmark	The SAR indicates a measure of frequency response for the Interconnection, as a measure of performance. This would be very difficult to translate to individual entity compliance and thus render the standard applicable to no entities.
Response: The interconn the balancing authority's outside the norm for the to determine the reason		of response is intended as a benchmark and as a validation of mance. The revised SAR indicates that if frequency response is size, BAs and Regions would be required to conduct analyses nce.

$\begin{array}{l}\text { IESO (2) } \\ \text { Pete Henderson }\end{array}$		\checkmark	$\begin{array}{l}\text { The Frequency control standard needs to address levels } \\ \text { required for reliability, be consistent and verifiable, and be } \\ \text { simple to monitor for compliance purposes. }\end{array}$
Response: This is the intent.			
$\begin{array}{l}\text { Progress Energy - } \\ \text { Carolinas (1, 3, 5, 6) } \\ \text { Phil Creech }\end{array}$	\checkmark		$\begin{array}{l}\text { Scope: } \\ \text { The scope of the proposed standard is appropriate. However, } \\ \text { the reliability requirements would be better addressed by a } \\ \text { comprehensive review that considers the adequacy of existing } \\ \text { reliability standards. }\end{array}$
Applicability:			
The applicability of the proposed standard is understood to be			
Reliability Authorities, Balancing Authorities, and Generator			

Commenter	Yes	No	Comment
			Operators. However, substantial questions remain as to how the responsibilities implied in the proposed standard will be equitably distributed.

Response: The Resources Subcommittee Frequency Task Force appreciates your comment. The new standard for verifying generator governor controls will be under field test through part of 2007 and then will be finalized, balloted and then implemented. The implementation plan for MOD-027 includes additional time for entities to become compliant with the requirements. This would mean that any work on this standard could be delayed for several years. With the decline in Eastern Interconnection frequency response, the drafting team thinks it would be unwise to wait for the new standards to be developed and reviewed before developing this standard.
Your questions regarding the applicability of the responsibilities will be better defined during the standard drafting phase of this standard.

Commenter	Yes	No	Comment
TXU Energy Delivery Roy Boyer	\checkmark		Yes, I agree.
Response: The Resources Subcommittee Frequency Task Force agrees with this comment.			
MISO Terry Bilke	\checkmark		I agree, with some qualification. While the standard shouldn't preclude market solutions, I don't think it must enable a market as the scope implies. A little more clarity on the goals of the standard is needed.
Response: The Resources Subcommittee Frequency Task Force agrees with these comments and has removed the reference in the original SAR to market solutions.			
Dick Schulz Chair, IEEE Task Force on Large Interconnected Power System Response to Generation Governing	\checkmark		The proposed scope and applicability, to the extent that they are in the given in the SAR, are good.
Response: The Resources Subcommittee Frequency Task Force agrees with this comment.			
We Energies (3, 4, 5) Howard Rulf	\checkmark		
Manitoba Hydro (1, 3, 5, 6) Gerald Rheault	\checkmark		
Calpine (6) James Stanton	\checkmark		
Alliant Energy (1) Kenneth A. Goldsmith	\checkmark		
MRO (2) Larry Larson - OTTP Al Boesch - NPPD Terry Bilke - MISO R. Coish - MH Dennis Florom - LES K. Goldsmith - Alliant Todd Gosnell - OPPD W. Guttormson - SaskPwr Jim Maenner - WPS Tom Mielnik - MidAmerican Darrick Moe - WAPA Joe Knight - MRO	\checkmark		
Southern Company Transmission, Operations, Planning and	\checkmark		

Commenter	Yes	No	Comment
EMS Divisions (1) Marc Butts Steve Corbin Jim Viikinsalo Jim Griffith Doug McLaughlin Monroe Landrum			
NERC Frequency Task Force Raymond L. Vice, Chairman	\checkmark		
Robert Blohm	\checkmark		
SPP Operating Reliability Working Group Robert Rhodes -SPP (2) Ron Ciesiel - SPP (2) Bob Cochran - SPS (1) Mike Gammon - KCPL (1) Steve Hillman - WPEK (1) Allen Klassen - Westar (1) Bill Nolte - SECI (1) Mike Stafford - GRDA (1)	\checkmark		
Southern Co. Generation (6) Roman Carter Tony Reed Joel Dison Lucius Burris Lloyd Barnes Clifford Shepard Terry Crawley Roger Green Tom Higgins	\checkmark		
New York State Reliability Council (2) Theodore Pappas	\checkmark		
TXU Electric Delivery (1) Travis Besier or Ellis Rankin	\checkmark		

3. Do you believe these standards are more appropriately additions to existing standards as opposed to creating new standards?

Summary Consideration: There was no consensus amongst commenters on this issue. Refinement of this SAR was delayed for a year. During that time other related standards have undergone considerable development, and are on a schedule that would not be improved by the addition of the requirements envisioned with the Frequency Response standard. For these reasons, the drafting team is recommending that the new requirements for Frequency Response be in a new, stand-alone standard.

Commenter	Yes	No	
BPA		\checkmark	$\begin{array}{l}\text { WECC has been working on frequency response } \\ \text { standards for a few years and is close to finalizing } \\ \text { standards specifically for the WECC interconnection. } \\ \text { We do think there is a need for standardization of } \\ \text { Brian Tuck } \\ \text { James Randall } \\ \text { Francis Halpin } \\ \text { Bill Mittlestat } \\ \text { James Murphy }\end{array}$
deing it) BUT this standarly we do since WECC is			
Regional Council or Interconnection leveloped and then			
adopted by NERC as a "Standard" with regional			
differences. Any new standards concerning frequency			
response should be developed by the individual			
interconnections.			

Commenter	Yes	No	
Committee (2) K. Tammar - NYISO (2) D. McMaster - AESO (2) Ed Riley - CAISO (2) Sam Jones - ERCOT (2) P. Henderson - IESO (2) P. Brandien - ISO-NE (2)			
B. Phillips - MISO (2) B. Balmat - PJM (2) C. Yeung - SPP (2)			Response and Bias) can be clarified and brought in line with this proposed standard, it should be stand- alone.
Response: The Resources Subcommittee Frequency Task Force agrees with this comment.			

Commenter	Yes	No	Comment
$\begin{aligned} & \hline \text { Steve Wallace - SEC (5) } \\ & \text { S. McElhaney - FMPA (5) } \\ & \text { Ted Hobson - JEA (1) } \end{aligned}$			
New York ISO (2) Mike Calimano		\checkmark	
New York State Reliability Council (2) Theodore Pappas		\checkmark	
TXU Electric Delivery (1) Travis Besier or Ellis Rankin		\checkmark	
NPCC CP9, Reliability Standards Working Group Guy V. Zito - NPCC (2) Ralph Rufrano - NYPA (1) K. Goodman - ISONE (2) Al Adamson - NYSRC (2) Bob Pelligrini - UI (1) D. Kiguel - Hydro One (1) P. Lebro - Nat'l Grid (1) R. Champagne - TE (1) B. Hogue - NPCC (2) K. Khan - IESO (2) M. Potishnak - ISONE (2) G. Campoli - NYISO (2)		\checkmark	
Progress Energy - Carolinas $(1,3,5,6)$ Phil Creech	\checkmark		The reliability requirements provided in the proposed standard would be better addressed by a comprehensive review that considers the adequacy of the existing reliability standards (i.e., 300 - Balance Resources and Demand)
Response: Frequency Response was consciously left out of the Balance Resources and Demand (BR\&D) standard. We agree that the Frequency Response standard should complement the BR\&D standard and believe it does.			
Energy Mark, Inc. (8) Howard Illian	\checkmark		Frequency Response is closely related to the Frequency Bias used in the Balancing Resources and Demand Standard and therefore this standard should be included as an addition to that standard. If it is not included in the BRD Standard, a separate standard would require coordination between the two standards. This would make the process of updating the standards more complex.
Response: The Resources Subcommittee Frequency Task Force acknowledges that if the frequency response requirements and measures were to be included in another standard that the Balance Resources and Demand standards would be the most likely standard(s). The Resources Subcommittee Frequency Task Force is working with the Balance Resources and Demand standard drafting team to ensure that the efforts of both teams are coordinated.			

Commenter	Yes	No	Comment
Alliant Energy (1) Kenneth A. Goldsmith	\checkmark		Version 0 of BAL-003-0, Frequency Response and Bias; or its successor.

Response: The Balance Resources and Demand standard drafting team has a successor version of Frequency Bias posted for review. The Resources Subcommittee Frequency Task Force is working with the Balance Resources and Demand standard drafting team to ensure that the efforts of both teams are coordinated.

MRO (2)	\checkmark		Version 0 (BAL-003-0 - Frequency Response and Lias) or its successor is a logical place. Depending on Biarson - OTTP Al Boesch - NPPD Terry Bilke - MISO R. Coish - MH standard, it could reside there.
Dennis Florom - LES K. Goldsmith - Alliant Todd Gosnell - OPPD W. Guttormson - SaskPwr Jim Maenner - WPS			
Tom Mielnik - MidAmerican			
Darrick Moe - WAPA			
Joe Knight - MRO			

Response: : The Balance Resources and Demand standard drafting team has a successor version of Frequency Bias posted for review. The Resources Subcommittee Frequency Task Force is working with the Balance Resources and Demand standard drafting team to ensure that the efforts of both teams are coordinated.

Response: The intent is for the Frequency Response Standard to complement the Balance Resources and Demand standards. The Resources Subcommittee Frequency Task Force is working with the Balance Resources and Demand standard drafting team to ensure that the efforts of both teams are coordinated. The 'new' Balance Resources and Demand standards are close to completion and cover related but different topics from those in the proposed Frequency Response SAR. There doesn't seem to be any benefit in stalling the implementation of the new Balance Resources and Demand standards while the technical details of the new Frequency Response standard are developed, tested and then implemented.

| ATC (1)
 Peter Burke | \checkmark | II.B.S1M5, Test results of speed/load governor
 controls. |
| :--- | :--- | :--- | :--- |

Commenter	Yes	No	Comment
			Comments It may be appropriate to include this standard in the Phase III/IV standards that address speed/load governor controls (II.B.S1M5, Test results of speed/load governor controls). The three following customer demand related standards would be helpful in defining load response to frequency excursions: II.E.S1.M1, Plans for the evaluation and reporting of voltage \& Frequency characteristics of customer demands. IIE.S1.M2 Documentation or requirements for determining dynamic characteristics of customer demands. II.E.S1.M3, Customer (dynamic) demand data.
Response: The drafting team will follow the development of the Phase III/IV planning standards under development (MOD-13 and MOD-27) that deal with governors and frequency response to be sure there are no conflicts. The Resources Subcommittee Frequency Task Force believes that a Frequency Response standard could simplify what is proposed in the planning standards if it allowed an on-line calculation of generator response.			
NERC Frequency Task Force Raymond L. Vice, Chairman	\checkmark		The Frequency Response Standard could be included as part of the Balance Resources and Demand Standard. Comments Since both the Frequency Response Standard and the Balance Resources and Demand Standard address frequency, they obviously must work together closely. If they are crafted, as originally intended by the Frequency Taskforce, to utilize the same CPS database, there may be savings in administrative overhead in putting them both in the same standard.
Response: The Resources Subcommittee Frequency Task Force's intent is for the Frequency Response Standard to complement the Balance Resources and Demand standards. The 'new' Balance Resources and Demand standards are close to completion and cover related but different topics from those in the proposed Frequency Response SAR. There doesn't seem to be any benefit in stalling the implementation of the new Balance Resources and Demand standards while the technical details of the new Frequency Response standard are developed, tested and then implemented.			
SPP Operating Reliability Working Group Robert Rhodes -SPP (2) Ron Ciesiel - SPP (2) Bob Cochran - SPS (1) Mike Gammon - KCPL (1) Steve Hillman - WPEK (1) Allen Klassen - Westar (1)	\checkmark		We would recommend that this standard be incorporated into the Balance Resource and Demand Standard (Standard 300) or the Version 0 BAL Standard.

Commenter	Yes	No	Comment
Bill Nolte - SECI (1) Mike Stafford - GRDA (1)			

Response: The Resources Subcommittee Frequency Task Force's intent is for the Frequency Response Standard to complement the Balance Resources and Demand standards. The 'new' Balance Resources and Demand standards are close to completion and cover related but different topics from those in the proposed Frequency Response SAR. There doesn't seem to be any benefit in stalling the implementation of the new Balance Resources and Demand standards while the technical details of the new Frequency Response standard are developed, tested and then implemented.

Southern Co. Generation (6)	\checkmark		The Frequency Response Standard could be included as part of the Balance Resources and Demand Roman Carter Standard.
Tony Reed			Comments Joel Dison Lucius Burris
Sloyd Barnes both the Frequency Response Standard and the			
Clifford Shepard		Salance Resources and Demand Standard address Terry Crawley frequency, they obviously must work together closely. If they are crafted, as originally intended by the	
Roger Green			
Tom Higgins			Frequency Taskforce, to utilize the same CPS database, there may be savings in administrative overhead in putting them both in the same standard.

Response: The Resources Subcommittee Frequency Task Force's intent is for the Frequency Response Standard to complement the Balance Resources and Demand standards. The 'new' Balance Resources and Demand standards are close to completion and cover related but different topics from those in the proposed Frequency Response SAR. There doesn't seem to be any benefit in stalling the implementation of the new Balance Resources and Demand standards while the technical details of the new Frequency Response standard are developed, tested and then implemented.

| MISO
 Terry Bilke | \checkmark | It's not a major issue. It appears it should be include
 in the Version 0 (BAL-003-0 - Frequency Response
 and Bias). |
| :--- | :--- | :--- | :--- |

Response: The Resources Subcommittee Frequency Task Force's intent is for the Frequency Response Standard to complement the Balance Resources and Demand standards. The 'new' Balance Resources and Demand standards are close to completion and cover related but different topics from those in the proposed Frequency Response SAR. There doesn't seem to be any benefit in stalling the implementation of the new Balance Resources and Demand standards while the technical details of the new Frequency Response standard are developed, tested and then implemented.

Dick Schulz Chair, IEEE Task Force on Large Interconnected Power System Response to Generation Governing			No comment.
TXU Energy Delivery Roy Boyer			No opinion.

4. Do you have any additional comments regarding the SAR that you believe should be addressed?

Commenter	Yes	No	Comment
MAAC Staff (2) AI DiCaprio - MAAC (2) Joe Willson - MAAC (2) Mark Kuras - MAAC (2)	\checkmark		The SAR requestor has not provided any indication of a reliability problem. Decreasing frequency response is in and of itself not a reliability problem - more evidence is required as to the magnitude of the threat. Any standard that is proposed, regarding frequency response, should consider both generator and load response. If Load response does provide a significant portion of the frequency response (as some people contend) then that resource must be considered in the proposal. In short the standard must make clear whether it is for interconnection response or for balancing area response or for individual generator response and individual load response.
Response: Most commenters indicated that they feel that there is a reliability-related need for a standard to address Frequency Response. The standard is not intended to establish a large set of arbitrary requirements, but will establish the framework to collect the information to make informed engineering decisions. Additional detail has been added to the SAR's Purpose/Industry Need and the Detailed Description. The revised SAR does not specifically consider load response but does state that the proposed standard will include requirements for the Interconnection response, for the installation of governors and for BAs to operate their automatic generation control function on tie-line frequency bias and for BAs to respond to requests for information on frequency response. The revised SAR does not include requirements for generators to provide response and does not address load response.			
BPA Bart McManus Brian Tuck James Randall Francis Halpin Bill Mittlestat James Murphy	\checkmark		Frequency response requirements are likely different for each of the three interconnected regions and a generalized approach will likely not meet WECC needs. The danger here is that a NERCwide approach may not be compatible with the needs of a regional approach. Standards are currently being developed within WECC to address the frequency response concerns of this interconnection. We feel that if the Eastern Interconnection needs a Frequency Response Standard, they should utilize the NERC Frequency Response Standard Whitepaper to draft an Eastern Interconnection-specific Frequency Response Standard.

Response: The Resources Subcommittee Frequency Task Force agrees that frequency response is primarily an Interconnection issue and the proposed standard accommodates Interconnection differences both in amounts of response and methodology in calculating response. As noted in and earlier response, we would expect some general technical and engineering principles that should be met in order to calculate and evaluate the amount and distribution of frequency response. Additional SAR Detailed Description details have been added.
The drafting team believes that stakeholders would prefer the assurance of knowing that NERC is providing oversight to ensure that all Interconnections have a technically sound basis for the development of respective frequency response requirements.

Manitoba Hydro (1, 3, 5, $6)$ Gerald Rheault	\checkmark		Below are a few general comments on the SAR: There is general agreement with the statement "reliance on load as the sole support to arrest the frequency can lead to a decline in the reliability of the grid" in paragraph 3, page 4 of the white paper. However enough information is not provided to

Commenter	Yes	No	

Commenter	Yes	No	
(2) G. Campoli - NYISO (2)			Comment
Response: The SAR has been revised and no longer includes this phrase.			
Energy Mark, Inc. (8) Howard Illian	\checkmark		NERC has the responsibility of maintaining reliability on the North American Interconnections. NERC cannot perform that function effectively if it waits for reliability problems to become apparent in system operations before it takes actions to address those problems. NERC must be a forward looking organization that anticipates future reliability problems and takes actions to resolve those problems before they affect interconnection reliability.

| Commenter | Yes | No | |
| :--- | :--- | :--- | :--- | :--- |

Commenter	Yes	No	Comment		
		$\begin{array}{l}\text { (where lower amounts of response trigger an internal } \\ \text { assessment rather than assessment non-compliance). BAs (and } \\ \text { ultimately generators) would only be initially non-compliant if } \\ \text { their response was low AND they failed to perform the reliability } \\ \text { assessment. }\end{array}$			
Providing visibility on where and when performance is					
substandard will likely initiate sufficient action to arrest the					
decline in performance. Minimum performance standards could					
be implemented after the industry has identified what is					
reasonably achievable and technically justified.				$\}$	The standard should not preclude market solutions to providing
:---					
frequency response, but such arrangements would need to be					
looked at closely to be sure they fulfill reliability needs.					

Response: The Resources Subcommittee Frequency Task Force agrees with these comments as a whole. As envisioned, the proposed standard would not mandate a given amount of response, but would require an analysis if response were measurably below the norm. The proposed standard would accommodate the simplification ideas you propose, and in fact, if data is saved in a common format, the Resources Subcommittee has a tool that could calculate the BA's performance to the standard.
The Resources Subcommittee Frequency Task Force acknowledges the variability inherent in measuring frequency response. The standard will require capturing sufficient samples to make an objective measurement. The proposed standard does not preclude market solutions.
The new requirements may need to be field tested for a long duration before compliance with the requirements is mandatory. As envisioned, the standard does not mandate a specific amount of response, but requires analysis if response is markedly below the norm. Analysis may identify the need for corrective measures and the standard will accommodate the necessary time to make corrections.
The references to market solutions that were contained in the original SAR have been removed. NAESB may choose to develop associated business practices.

NCPA (4) Les Pereira	\checkmark		Two statements are made in the SAR: 1. The purpose of the proposed SAR is to ensure that frequency of the Interconnection remains above underfrequency load shedding setpoints during the transient period following the sudden loss of generation on the Interconnection. 2. Furthermore, it is stated that " In regard to frequency response, one shortcoming of the recommendations in policy today is that there is no guidance regarding how much governor response (in MW) is required at the 5\% droop rate." The first is a calculated number and depends not only on the amount of generation tripped, but also the total generation in the Whole Interconnection at the time of trip. Obviously two very different answers will be obtained : one with the Interconnection intact (normal operation) and the second when islanded. Both affect reliability. The second issue has been thoroughly investigated in the WECC and a new Thermal Governor modeling approach has

Commenter	Yes	No	Comment
			been implemented in the WECC after system tests, an exhaustive modeling validation effort and obtaining data from the generator owners. This has been documented in two IEEE Transaction papers described below. These papers present the development of a new turbine-governor modeling approach in WECC that correctly represents thermal units that have demonstrated unresponsive characteristics such as "base loaded" units operated with limiters, or partially responsive units with MW-load-controllers. The May $18^{\text {th }} 2001$ system trip test for 1250 MW performed with all AGCs off indicated that only about 40% of the governors effectively responded in the real system. If all the governors were responsive the calculated generation pickup for governors with a 5% droop for a 0.1 Hz frequency deviation would be 3185 MW instead of 1250 MW. The new modeling approach has been extensively validated against recordings from three WECC system tests and several large disturbances, and has been approved for use in all operation and planning studies in the WECC. The second paper describes the steps being taken to obtain validated data for the new governor models. The work done by WECC indicate clearly that we do not get the required 5\% droop from all units as required by NERC. The modeling approach taken was to model the governors in planning and operating studies exactly as they are being actually operated. Enforcement/compliance of the 5\% droop is a separate issue and must be addressed by operating policies. Obviously, the SAR touches upon only part of the problem, but it is a good start and should be expanded. It also needs to be cross-referenced with other areas such as the 5\% droop requirement, an effective spinning reserves policy that actually works (see the papers), and the effect on 'governor' powerflow and voltage stability analysis as a result of "unresponsive" governors. The white paper referred by the SAR only touches upon the WECC effort and seems to miss the whole point of the modeling and validation work by the Governor Modeling Task Force in WECC - and what we have achieved in WECC to address realistic modeling of unresponsive governors in the real system. 1. "A New Thermal Governor Modeling Approach in the WECC" by L. Pereira, J. Undrill, D. Kosterev, D. Davies, S. Patterson, IEEE Trans. Power Systems, vol. 18, Issue.2, pp. 819-829, May 2003. (IEEE 2004 prize paper). Presented at Toronto IEEE PES, July 2003. 2. "New Thermal Governor Model Selection and Validation in the WECC" by Les Pereira, Dmitry

Commenter	Yes	No	Comment
			Kosterev, Donald Davies, and Shawn Patterson - IEEE TPWRS - Vol.19, No.1, pp 517-523, February 2004.
			Presented at Denver IEEE PES, July 2004.

Response: The Resources Subcommittee Frequency Task Force appreciates the significant work that has been done in this area by the WECC and has referenced some of this research in the Whitepaper. We believe the Planning Standards under development (MOD-13 and MOD-27) deal with the detailed governor issues that you have outlined.

The Resources Subcommittee Frequency Task Force appreciates the importance of the modeling effort you mention. This standard is not intended to address the modeling issues, but provides the framework and data needed to support the modeling.

The SAR was modified to include basic governor requirements.

FRCC (2) Linda Campbell Ron Donahey - TEC (1) Mark Bennett - GRU (3) Steve Wallace - SEC (5) S. McElhaney - FMPA (5) Ted Hobson - JEA (1)	\checkmark	At this time the FRCC has the highest frequency settings for load shedding in the Eastern Interconnection (southern part of the Region). Being a peninsula and out of necessity, the Region has developed a well coordinated, under-frequency program for extreme frequency excursions. Ambiguity of the requirements, uncertainty of measurement and the lack of benefit to the Region require that the FRCC to oppose this Standard Authorization Request at this time.
Response: The interconnection measure of response is intended as a benchmark and as a validation of BAs' reported performance.		
Southern Company Transmission, Operations, Planning and EMS Divisions (1) Marc Butts Steve Corbin Jim Viikinsalo Jim Griffith Doug McLaughlin Monroe Landrum	\checkmark	We believe that the industry will be exposing the interconnected electrical systems of North America to a significant degree of reliability risk if a Frequency Response Standard similar to the one proposed by this SAR is not adopted. This risk can be mitigated somewhat by the turbine governor requirements of Standard MOD-014-1 from the Phase III/IV Standards SAR, if passed. However, the risk can be managed properly (and in the most economical manner) only on an interconnection/balancing authority basis, not on an individual generator basis as required by Standard MOD-014-1. What is important is that the interconnections maintain sufficient frequency responsive resources to ensure the stability of interconnection frequency under first contingency conditions. The Frequency Response Standard, as proposed, sets requirements for the management and deployment of frequency responsive resources that achieve this goal without unduly interfering with the on going operation of the interconnection. We strongly urge the industry to support this SAR.
Response: The Resources Subcommittee Frequency Task Force agrees with these comments.		
New York ISO (2) Mike Calimano	\checkmark	We appreciate the opportunity to comment and believe there is a need for such a standard. Published studies show frequency response is declining when it should be increasing with load. The main concerns with this decreasing performance are:

Commenter	Yes	No	Comment
			CHANGE This SAR is proposed to develop a standard to measure subminute responses to changes in frequency and to set minimum acceptable responses to system these events. TO This SAR is proposed to develop a standard to measure subminute responses to changes in frequency and to set minimum acceptable responses to these system events.
Response: The Resources Subcommittee Frequency Task Force agrees with these comments as a whole. The proposed standard does not mandate a given amount of response, but requires an analysis if response is measurably below the norm. The proposed standard accommodates the simplification ideas you propose, and in fact, if data is saved in a common format, the Resources Subcommittee has a tool that will calculate the BA's performance to the standard. The Resources Subcommittee Frequency Task Force has added to the Detailed Description requirements that all balancing authorities shall operate their AGC function on tie-line frequency bias and that all balancing authorities shall perform frequency response characteristics surveys when called for by NERC. The Resources Subcommittee Frequency Task Force agrees with the sub-minute responses comment and has made the change.			
IESO (2) Pete Henderson	\checkmark		We appreciate the opportunity to comment and believe there is a need for such a standard. It needs to be recognized that there are two objectives for governor response, namely, to provide response on an interconnection wide basis to maintain an acceptable frequency and secondly to control frequency in island situations. The former may allow for averaging over an area of the response requirement but the latter may limit the extent of averaging. Published studies show frequency response is declining when it should be increasing with load. The main concerns with this decreasing performance are: There may be areas unable to withstand severe disturbances. Following a grid separation or collapse, control areas may be unable to fulfill their blackstart and restoration responsibilities, thereby becoming a burden to neighbors. Because engineering models use theoretical frequency response, they are likely over optimistic and may misstate grid stability limits.

Commenter	Yes	No	Comment
			This standard would allow the industry to determine whether the decline is local or global. Rather than implementing a complicated infrastructure or process, we would suggest that NERC automate the calculation of frequency response by either: Asking BAs to save their CPS-source data in a common format so a common tool can be used (MAPP BAs and some others use a common tool that can calculate frequency response with CPS-source data). Embed the calculation in the NERC ACE-monitoring application. The standard should employ a methodology that not only captures initial response (first few seconds after the event) but also the sustained response until AGC action takes over Providing visibility on where and when performance is substandard will likely initiate sufficient action to arrest the decline in performance. Minimum performance standards could be implemented after the industry has identified what is reasonably achievable and technically justified.

Response: The Resources Subcommittee Frequency Task Force agrees with these comments. We agree that smaller areas need greater response, and this concept will be applied in establishing the initial target responses for the interconnections (the historic response will bear this out). Under the ERO, interconnections can also establish stricter targets.
The new requirements may need to be field tested for a long duration before compliance with the requirements is mandatory. A long field test with extensive data collection may be needed before justifiable minimum performance standards can be identified.
As envisioned, the standard will measure the response for up to 60 seconds to ensure initial response is not withdrawn.

The references to market solutions that were contained in the original SAR have been removed. NAESB may choose to develop associated business practices.

NERC Frequency Task Force Raymond L. Vice, Chairman	\checkmark		I personally believe that the industry will be exposing the interconnected electrical systems of North America to a significant degree of reliability risk if a Frequency Response Standard similar to the one proposed by this SAR is not adopted. This risk can be mitigated somewhat by the turbine governor requirements of Standard MOD-014-1 from the Phase III/IV Standards SAR, if passed. However, the risk can be managed properly (and in the most economical manner) only on an interconnection/balancing authority basis, not on an individual generator basis as required by Standard MOD-014-1.

Commenter	Yes	No	Comment
			interconnection frequency under first contingency conditions. The Frequency Response Standard, as proposed, sets requirements for the management and deployment of frequency responsive resources that achieve this goal without unduly interfering with the on going operation of the interconnection. I strongly urge the industry to support this SAR.
Response: The Resources Subcommittee Frequency Task Force agrees with these comments.			
Dick Schulz Chair, IEEE Task Force on Large Interconnected Power System Response to Generation Governing			First, I make these comments based on work that I've done principally at American Electric Power Service Corp, before my retirement from there in November 2000, and as founding Chair of the IEEE Task Force on Large Interconnected Power System Response to Generation Governing. These comments are entirely mine, and reflect no views of either body. Second. It appears that the final standard will differ from any single person's opinions. Thus the specific comments below may not prevail. Specific Comment 1: The comment on page 4 of the SAR, "The standard should not preclude market solutions (e.g. allow purchasing of response as long as deliverability and restoration criteria can be met).There must be a means for sale/purchase of frequency response as for any other quantity." is workable only in near-normal operating conditions. But it will fail miserably when there is any islanding condition. An analogy: Several skydivers agree that reserve parachutes are a very good idea, but don't want to invest in 1 reserve each. So they agree that they'll buy one to share among them, so each will be saved by that spare. This means that they will hold hands until they pull their ripcords. Sounded good, until they tried it, and the first guy to pull his cord came unhitched, had a failed main 'chute, and the spare was on someone else. Specific Comment 2: The comment on page 4 of the SAR, "The measurement selected must be accurate and, to the extent practical, easy to implement.' may be met in the Eastern Interconnection by the underway DOE "Eastern Interconnection Phasor Project ' and by the similar WECC measurement systems, commonly called "WAMS". Les Peieira's paper, cited in the White Paper, used the WAMS measurements.
Response: The Resources Subcommittee Frequency Task Force appreciates the comments. The proposed standard does not preclude market solutions. The SAR's intent is to define the proposed standard's scope, the actual detail that you recommend will be developed during the standard drafting phase. The phasor projects in both the Eastern and Western Interconnections may indeed be a source of accurate and time stamped frequency data for this standard's application.			

Commenter	Yes	No	Comment
Southern Co. Generation (6) Roman Carter Tony Reed Joel Dison Lucius Burris Lloyd Barnes Clifford Shepard Terry Crawley Roger Green Tom Higgins	\checkmark		It is believed that the industry will be exposing the interconnected electrical systems of North America to a significant degree of reliability risk if a Frequency Response Standard similar to the one proposed by this SAR is not adopted. This risk can be mitigated somewhat by the turbine governor requirements of Standard MOD-014-1 from the Phase III/IV Standards SAR, if passed. However, the risk can be managed properly (and in the most economical manner) on an interconnection/Balancing Authority basis, not on an individual generator basis as required by Standard MOD-014-1. The governor response in MW for generators is not just dependent on the governor droop and dead-band settings, but on the design of the plant control system (sliding pressure boiler, nuclear pressurized water reactor, etc.). For example, nuclear plant operators must control reactivity changes in the core and generally cannot allow external controls to increase or decrease power levels on demand. This standard should take such factors into account and address frequency \& MW response at the Balancing Authority level, not at the individual generator level. What is important is that the interconnections maintain sufficient frequency responsive resources to ensure the stability of interconnection frequency under first contingency conditions. The Frequency Response Standard, as proposed, sets requirements for the management and deployment of frequency responsive resources that achieve this goal without unduly interfering with the on going operation of the interconnection. We support this SAR.
Response: The Resources Subcommittee Frequency Task Force appreciates and supports your comments. As envisioned, the standard will measure response at the Interconnection and Balancing Authority level. Only when a Balancing Authority's response measurably below the norm is additional analysis involved.			
MISO Terry Bilke	\checkmark		Thanks for the opportunity to comment. I hope the SAC puts all comments in perspective. We are in a period where the industry is reluctant to adopt new standards that generate extra work and compliance exposure. The reliability of the Interconnections can benefit with minimal impact to most BAs with a light-handed standard. Rather than implementing a complicated process, why not embed most of the effort in the NERC ACE-monitoring application? Only those BAs with unusually low response would need to drill down and do an internal assessment to determine their ability to withstand disturbances and whether they have responsive resources for blackstart. Knowing where and when performance is substandard will likely arrest the decline in performance. Minimum performance standards could be implemented once the industry has identified

Commenter	Yes	No	Comment
			what is reasonably achievable and technically justified.
Response: The Resources Subcommittee Frequency Task Force agrees with these comments.			
New York State Reliability Council (2) Theodore Pappas	\checkmark		The Standard should define the term "event" in terms of time and frequency deviation. The frequency deviation the event must fall outside the droop deadband.
Response: Response: The Resources Subcommittee Frequency Task Force agrees that there should be clear criteria set for identifying events that will be used in calculating frequency response. The SAR was revised to indicate that the standard will require governors to provide droop characteristics within a specified range (to be determined during standard drafting). At this point, the Resources Subcommittee Frequency Task Force recommends each interconnection set a target excursion size that is used for selection of samples and recommends that the target be at least equal to the traditional 36 mHz deadband.			
CAISO (2) Ed Riley Yuri Makarov Steve McCoy		\checkmark	
TXU Electric Delivery (1) Travis Besier or Ellis Rankin		\checkmark	
Progress Energy Carolinas (1, 3, 5, 6) Phil Creech		\checkmark	
TXU Energy Delivery Roy Boyer		\checkmark	
Robert Blohm		\checkmark	
SPP Operating Reliability Working Group Robert Rhodes -SPP (2) Ron Ciesiel - SPP (2) Bob Cochran - SPS (1) Mike Gammon - KCPL (1) Steve Hillman - WPEK (1) Allen Klassen - Westar (1) Bill Nolte - SECI (1) Mike Stafford - GRDA (1)		\checkmark	
ATC (1) Peter Burke		\checkmark	
Southern Company Transmission, Operations, Planning and			

Commenter	Yes	No			
EMS Divisions (1) Marc Butts Steve Corbin Jim Viikinsalo Jim Griffith Doug McLaughlin Monroe Landrum					
TVA (1) Kathie Davis Larry Akens Mitch Needham Chuck Feagans					
Ed Forsythe				\quad	
---:					
Alliant Energy (1) Kenneth A. Goldsmith					
We Energies (3, 4, 5) Howard Rulf					

Standard Authorization Request Form

Title of Proposed Standard	Frequency Response, version 1
Request Date	$4 / 1 / 06$

| SAR Requestor Information | SAR Type (Put an 'x' in front of one of
 these selections) | |
| :--- | :--- | :--- | :--- |
| Name Don McInnis
 (Terry Bilke as substitute for Mr.
 McInnis) | x | New Standard |
| Primary Contact Terry Bilke | \square | Revision to existing Standard |
| Telephone (317) 249-5463 | \square | Withdrawal of existing Standard |
| Fax \quad (317) $249-5994$ | | |

Purpose/Industry Need (Provide one or two sentences)

There is evidence of continuing decline in frequency response in the three Interconnections over the past 10 years, while it should be increasing with increasing load and generation. The Interconnections may have sufficient frequency response for normal operations, however, it is not known how this response is dispersed or at what point it will pose a reliability risk. The proposed standard's intent is to ensure frequency of the Interconnections remains above under-frequency load shedding setpoints during transient period following the sudden loss of generation on the Interconnections. By addressing the requirements for control during the "seconds" timeframe, this proposed standard coordinates with and complements the Balance Resources and Demand standards, which addresses Interconnection frequency control generally 5 minutes and longer. (The whitepaper submitted with the original Frequency Response SAR provides the rationale and justification for this standard.)

Reliability Functions
The Standard will Apply to the Following Functions（Check box for each one that applies by
double clicking the grey boxes．）

区	Reliability Authority	Ensures the reliability of the bulk transmission system within its Reliability Authority area．This is the highest reliability authority．
【	Balancing Authority	Integrates resource plans ahead of time，and maintains load－interchange－ resource balance within its metered boundary and supports system frequency in real time
\square	Interchange Authority	Authorizes valid and balanced Interchange Schedules
\square	Planning Authority	Plans the bulk electric system
\square	Resource Planner	Develops a long－term（＞1year）plan for the resource adequacy of specific loads within a Planning Authority area．
\square	Transmission Planner	Develops a long－term（＞1 year）plan for the reliability of transmission systems within its portion of the Planning Authority area．
\square	Transmission Service Provider	Provides transmission services to qualified market participants under applicable transmission service agreements
\square	Transmission Owner	Owns transmission facilities
\square	Transmission Operator	Operates and maintains the transmission facilities，and executes switching orders
\square	Distribution Provider	Provides and operates the＂wires＂between the transmission system and the customer
マ	Generator Owner	Owns and maintains generation unit（s）
\square	Generator Operator	Operates generation unit（s）and performs the functions of supplying energy and Interconnected Operations Services
\square	Purchasing－ Selling Entity	The function of purchasing or selling energy，capacity and all necessary Interconnected Operations Services as required
\square	Market Operator	Integrates energy，capacity，balancing，and transmission resources to achieve an economic，reliability－constrained dispatch．
区	Load－Serving Entity	Secures energy and transmission（and related generation services）to serve the end user

Reliability and Market Interface Principles

Applicable Reliability Principles（Check boxes for all that apply by double clicking the grey boxes．）	
区	1．Interconnected bulk electric systems shall be planned and operated in a coordinated manner to perform reliably under normal and abnormal conditions as defined in the N Standards．
区	2．The frequency and volta within defined limits throug
\square	3．Information necessary for the planning and operation of interconnected bulk electric systems shall be made available to those entities responsible for planning and operating the systems reliably．
	4．Plans for emergency operation and system restoratio systems shall be developed，coordinated，maintaine
	5．Facilities for communication，monitoring and control shall be provided，used and maintained for the reliability of interconnected bulk electric systems．
\square	6．Personnel responsible for planning and operating interconnected bulk electric systems shall be trained，qualified and have the responsibility and authority to implement actions．
区	7．The security of the interconnected bulk electric s maintained on a wide area basis．
Does the proposed Standard comply with all of the following Market Interface Principles？（Select＇yes＇or＇no＇from the drop－down box by double clicking the grey area．）	
1．The planning and operation of bulk electric systems shall recognize that reliability is an essential requirement of a robust North American economy．Yes	
An Organization Standard shall not give any market participant an unfair competitive advantage．Yes	
3．An Organization Standard shall neither mandate nor prohibit any specific market structure．Yes	
4．An Organization Standard shall not preclude market solutions to achieving compliance with that Standard．Yes	
	An Organization Standard shall not require the public disclosure of commercially sensitive information．All market participants shall have equal opportunity to access commercially non－ sensitive information that is required for compliance with reliability standards．Yes

Detailed Description (Provide enough detail so that an independent entity familiar with the industry could draft, modify, or withdraw a Standard based on this description.)

The proposed standard will require or provide the following:
o A technically-sound calculation and report of Balancing Authority and Interconnection frequency response.
o Flexibility to meet specific needs of each Interconnection.
o Will require Balancing Authority and Regional analysis if response is measurably below the Interconnection norm.

0 An objective measure of the Balancing Authority's and Interconnection's sub-minute response to changes in frequency.
o The standard will accommodate both fixed and variable bias.

O Will not mandate a given amount of frequency response, but will provide long-term Interconnection target levels for average response to frequency excursions, performance below which triggers Balancing Authority and Regional Reliability Organizations evaluation and analysis.

- Reasonable time to make corrections, if analysis show a Balancing Authority needs additional frequency response.
o Balancing Authorities to operate their automatic generation control function on tie-line frequency bias.
o Balancing Authorities to perform frequency response characteristic surveys when called for by NERC.
o Generator owners to equip generating units with nameplate ratings of 10 MW or greater, with a governor capable of providing immediate and sustained response to frequency deviations.
- Governors shall provide droop characteristics within a specified range (to be determined during standard drafting.
- Governors shall, as a minimum, respond to frequency deviations with a deadband not to exceed a specific limit (to be determined during standard drafting).

0 Generator owners seeking exception to the governor requirements to provide specific information (to be determined during standard drafting) to their Balancing Authority and Regional Reliability Organization.

Related Standards

Standard No.	Explanation
BAL-001-0 through BAL- $006-0$	Balancing Standards, version 0
Balance Resources and Demand draft standards	Balancing Resources and Demand BAL-007 through BAL-012 draft standards, are in standards development process
MOD-013-0	The proposed standard would enable better input data to the modeling standards.

Related SARs

SAR ID	Explanation
MOD-027	Verification and Status of Generator Frequency Response. The proposed standard would provide a mechanism to validate compliance with MOD-027. The proposed standard could also provide a means to achieve MOD-027 (if the Balancing Authority implements on on-line measurement of generator frequency using SCADA data).

Regional Differences

Region	Explanation
ECAR	
ERCOT	Single Balancing Authority Interconnections calculate Frequency Response based on the change in generation (or load) rather than Tie-Line deviation (ERCOT).
FRCC	
MAAC	
MAIN	
MAPP	
NPCC	
SERC	
SPP	
WECC	

North American Electric Reliability Council

TO: REGISTERED BALLOT BODY
Ladies and Gentlemen:

Announcement
 Comment Periods, Ballot Pool, and Drafting Team Self-nominations Open April 4

The Standards Authorization Committee (SAC) announces the following standards actions:
Reliability Standards Process Manual Posted for 45-day Comment Period (April 4-May 18, 2006)
The Reliability Standards Process Manual was revised to align with NERC's electric reliability organization application and to make modifications based on 'lessons learned'. Several of the changes are to 'basic tenets' and, in accordance with the latest version of the Reliability Standards Process Manual, must go through a full review and approval process. Please use the comment form to provide comments on the changes to the manual.

One of the proposed changes to the reliability standards process is to move the responsibility for development of compliance information from standard drafting teams to the compliance program. The proposed Compliance Elements Development Process and an associated comment form are posted for review and comment.

Nominations for Reliability Standards Process Manual Drafting Team Open (April 4-18, 2006)

The SAC is soliciting drafting team members to respond to stakeholder comments on the proposed changes to the Reliability Standards Process Manual. If you are interested in volunteering for this drafting team, please submit the nomination form by April 18, 2006.

Ballot Pool for Reliability Standards Process Manual Open (April 4)
A ballot pool has been created in anticipation of voting on the proposed changes to the Reliability Standards Procedure Manual. The ballot pool is available for any ballot body member to join until the respective ballot is opened.

Two Phase III \& IV Standards Posted for 30-day Comment Period (April 4-May 3, 2006) Two of the Phase III \& IV standards were revised based on stakeholder comments and are being re-posted for a fourth comment period. Please use the comment form to provide comments on these two standards:

PRC-002-1 Define Regional Disturbance Monitoring and Reporting Requirements requires regions to establish requirements for installation of disturbance monitoring equipment and reporting of disturbance data to facilitate analyses of events.

PRC-018-1 Disturbance Monitoring Equipment Installation and Data Reporting requires entities to install Disturbance Monitoring Equipment and report disturbance data to facilitate analyses of events.

A New Jersey Nonprofit Corporation

REGISTERED BALLOT BODY

April 4, 2006
Page Two

One SAR Posted for 30-day Comment Period (April 4-May 3, 2006)

A revised SAR for Frequency Response is posted for a 30 -day comment period. The SAR proposes adding requirements to ensure frequency of the Interconnections remains above underfrequency load shedding set points during transient periods following the sudden loss of generation. Please use the comment form to provide comments on this SAR.

Standards Development Process

The NERC posting and balloting procedures are described in the Reliability Standards Process Manual, which contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate.

Please send questions to Maureen Long at maureen.long@nerc.net, or call 813-468-5998.
Sincerely,
Maareen E. Long
Maureen E. Long
Standards Process Manager

cc: Registered Ballot Body Registered Users
 Standards Group
 NERC Roster

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Baj Agrawal		
Organization: Arizona Public Service Co.		
Telephone: 602-371-6386		
E-mail: bagrawal@apsc.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	区	1 - Transmission Owners
	\square	2 - RTOs, ISOs, Regional Reliability Councils
	\square	3 - Load-serving Entities
	\square	4-Transmission-dependent Utilities
	区	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.) Group Name: Lead Contact: Contact Organization: Contact Segment: Contact Telephone: Contact E-mail:			
Additional Member Name	Additional Member Organization	Region*	Segment*

[^4]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\square Yes

Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?Yes
\boxtimes No
The requirements on individual generator are unnecessary. The requirements should be on a group of generators in a control area to achieve a desired response. Thus, one could have some generators which are being operated as non responsive and the others which are responding well to offset for those which are not responsive.

Additionally, the 10 MW size requirements are too restrictive and unnecessary. It should be plant based and should apply to plants of 100 MW or more aggregate capacity. In any realistic scenario, the smaller plants are not expected to contribute much to frequency response and hence subjecting them to frequency response requirements is uneconomic.

Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?YesNo
Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?YesNo
Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

Yes
\boxtimes No
Most of the frequency recovery happens in first 30 seconds. Thus anything more than 30 seconds is unnecessary. It is also seen that the response of a unit varies greatly within that 30 seconds period. Thus, it is very important that the measured response be the average response over the 30 seconds period and not be the response at 30 seconds.

Comments:
6. Do you have other comments on the SAR?

Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Anita Lee		
Organization: AESO - Alberta Electric System Operator		
Telephone: 4035392497		
E-mail: anita.lee@aeso.ca		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1 - Transmission Owners
	区	2 - RTOs, ISOs, Regional Reliability Councils
	\square	3 - Load-serving Entities
	\square	4-Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8-Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.) Group Name: Lead Contact: Contact Organization: Contact Segment: Contact Telephone: Contact E-mail:			
Additional Member Name	Additional Member Organization	Region*	Segment*

*If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\boxtimes Yes
Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?Yes
\boxtimes No
The purpose is definitely suggested for under frequency conditions. However, when specifying that the generators shall have governors with droop etc... the role of the governor is for both high and low frequency conditions and not just underfrequency FRR. In a market environment it is very possible that not every generator will provide FRR services. Thus, the governor and governor deadband should be a requirement to interconnect to a power system. Generators that provide FRR shall have responsive governor and prime mover.

The standard is based on balancing area response which will include generators and in some jurisdications will include load. So is the intent that whatever load is considered, additional FRR resources such as generators are used to provide the required FRR?

What about load as FRR providers? Some industrial facilities are capable to dynamically vary the load of the facility to frequency (ie virtual governor). The standard should apply to FRR providers which can be generators and loads.

We agree that generator owners have an obligation to have working governors or provide explanations why not. The "10 MW" requirement should be evaluated for consistency with other standards. This should not hold up the progress of the SAR, but should be evaluated by the ultimate standard drafting team. Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?
\boxtimes Yes
\boxtimes No
The Generator Operator may also have some responsibilities, such as the selection of control modes.

We're not sure what the LSE can do regarding the standard. They cannot control response from load. The exception may be coordination of frequency response with UFLS.

Planners may have some responsibilities with regard to new interconnections and also using observed frequency response in models as opposed to theoretical response. Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?
\boxtimes YesNo
There should be a safeguard in place, such that if frequency performance declines, the industry reverts to the 1% minimum. Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?
\boxtimes Yes
No
Sixty seconds is a reasonable balance to capture the period prior to AGC response. Comments:
6. Do you have other comments on the SAR?

No Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name:		
Organization:		
Telephone:		
E-mail:		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1 - Transmission Owners
	区	2 - RTOs, ISOs, Regional Reliability Councils
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8-Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

[^5]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\square Yes
No
No - The intent of this SAR is unclear which highlights that this issue requires additional studies and investigation. In the future, it may be beneficial to develop a standard after a reliabliity issue is identified, and a specific standard can be developed and implemented to address the issue.
Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?
\square Yes
\boxtimes No
The proposed requirements nor the White Paper adequately make the case that there is a need for a frequency response standard at this time. However, it is recommended that the subject be further investigated. The analysis should evaulate if a frequency response standard that addresses the three major short term frequency control components (inertial response, governor response, and automatic generation control) are required. The report writers should include a broad range of participants including (at least) 3 OEM's (original equipment manufacturers) representing steam, gas and hydro generation control. Some specific issues that should be addressed are:
3. Inertial Response: Evaluate historical changes in the inertial response of the electric grid as a result of changing power equipment designs and types of load. For example, the addition of new industrial and aero-derivative turbinegenerators have lower inertia-power ratios than tranditonal nuclear/fossil units and, in addition, they are not base loaded (as a result of more efficient dispatching and improved power plant controls).
4. Governor Response: Evaulate generation governor performance as a result of newer, more configurable prime mover controls. Digital controls provide increased plant reliability, however, this may be at the expense of decreased governor response. For example, the use of main steam pressure controls on steam units and low NOx controls on gas turbines may produce unexpected droop output responses.
5. Automatic Generation Control (AGC): Perform a control area survey to determine if there is sufficient regulation capacity within control areas to maintain generation and load balance. Include a review of incentives and
penalties for generators to respond accurately and reliably to AGC signals. Comments:
6. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?

Q YesNo
If required. Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?YesNo
Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

Yes
\boxtimes No
This question is not clear. AGC control pulses generation every 5 seconds, therefore, the measurement should be based on the amount of time it takes to restore the generation load balance. Comments:
6. Do you have other comments on the SAR?

Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name:		
Organization:		
Telephone:		
E-mail:		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1-Transmission Owners
	\square	2 - RTOs, ISOs, Regional Reliability Councils
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8-Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

Group Name: PJM - Corporate Development Division			
Lead Contact: Albert	Albert DiCaprio		
Contact Organization: PJ M	PJ M		
Contact Segment: 2			
Contact Telephone: 610-6	610-666-8854		
Contact E-mail: dicap	dicapram@PJM.com		
Additional Member Name	Additional Member Organization	Region*	Segment*
Joseph D. Willson	PJM	RFC	2
Mark Kuras	PJM	RFC	2

[^6]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\square Yes
\boxtimes No
The Resources Subcommittee in a response to the first draft states "A primary purpose of this standard is to collect information so informed decisions can be made before there is a problem. " It is clear from that reply that the Resources Subcommittee wishes to undertake an analysis of the system and needs to collect additional information. This data collection effort may be laudable but it does not rise to the level of being a federally enforced mandatory standard. What if later on the 'data' were to show there is no problem, then there will be a need to rescind the standard and repay those who were non-compliant to a data collection effort.

In their response to the first draft, the Resources Subcommittee cite a WECC study. But they have no similar study for the East. The Resources Subcommittee still has not shown that the decrease in sub-minute response is either (1) a problem or (2) nothing more than an indication that a larger system has more inertia and therefore less response that the smaller system in the past.

This SAR, with its present theoretical focus, posits the BA as the responsible entity for governor response. Even those who agreed with the first posting that Frequency Response is an important issue - stated that a standard cannot define fixed norms (MRO, NYISO, IESO(2)). The BA is not responsible to instantaneous response -at best it can establish a capacity obligation but it can't guarantee continuous response.

Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?
\boxtimes No
The SAR is still not clear about what is to be developed in the standard. Of the ten bulleted items several seem to show a misunderstanding between a sub-minute frequency response obligation and Automatic Generation control. The RS must make clear what it wants to do. Sub-minute frequency response occurs with or without frequency bias; sub-minute frequency response is not helped or hurt by having AGC. This is a major problem with the proposal. It is not clear and it is not definitive.

Item 1 indicates the standard will be a Report
Item 2 states the standard will be flexible (that is mandated in the Process Manual)

Item 3 seems to indicate that non-compliance will be met with a requirement to analyze the incident (if this is standard is so important why isn't every event critical?)

Item 5 is the most unusual - the standard will not mandate a response but will provide "LONG-TERM" targets (how is it that a sub-minute response gets translated into a long-term target?)

Item 6 is to mandate AGC. This is not related to sub-minute frequency response.

Item 7 is to mandate a post-incident survey. Again this is a good idea but it a data collection mandate - it is not a frequency response standard. The RS has the tools to collect that information today, without the need to resort to mandatory penalties.

Item 10 will allow generators to seek exceptions (which means that the RS will allow a generator to opt out and still require the BA to comply. In the absurd case that all generators opt out (let's say the BA has only nuclear units) then according to the RS, the BA is held non-compliant. This is just not a good idea.

In summary: \#1 is a calculation and report on response but no measure of performance; \#3 requires a BA and the RRO to perform an analysis if response is measurable (by what amount) below the norm (which is a constantly moving value); \#4 is the only possibility for true standard; \#9 generators must have governors is more a certification issue than a BA standard. Three of the bullets are not requirements (\#2, \#5, and \#10). Two of the bullets are already in other standards while two of the bullets duplicate each other. The SAR team needs to better describe exactly what is being proposed to be in the standard so that the industry can evaluate the proposal. The industry does not need to get involved in a research project. Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?
\boxtimes No
This question would require an assumption of what the standard would be. If the standard is to provide sub-minute frequency response, then the only entity should be the generator owner.

Comments:

4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their
natural response, but less than 1% of peak, if the response is above an acceptable target?Yes
\boxtimes No
The RS again is avoiding the issue of what sub-minute frequency response it MUST mandate. The 1% is related to the frequency bias setting (basically a long term average response). The BRD deals with the longer term issue of frequency response - this standard was designed for the shorter-term response.

If the RS is willing to accept under-biased systems then it would seem to be going against conventional wisdom, and should explain why it would even consider such an idea. If the real intent of this frequency SAR is to establish a minimum frequency response value then the SAR needs to state that.

Perhaps the SAR should establish a minimum 1 minute response for every generator (if they can't provide it they are obligated to contract for it from another unit) and maybe a 1 minute average over a week, month, or year if a longer term value is needed. However, since the SAR authors state the problem is sub-minute response, it is suggested that the long term response is better be addressed by the BRD standard.
In addition the SAR does not adequately address the load portion of the frequency response. The standard seems to presuppose the solution is having governors.
Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

Yes
\boxtimes No
Unsure as to what is being suggested here. The SAR drafters need to be specific about what requirements are needed and how they will be measured. The details contained in the white paper are supporting information but they do not define the standard that is being proposed. Comments:
6. Do you have other comments on the SAR?

Please be clear about the terminology. Frequency response comes in many flavors - sub-minute; several minutes; and hours. The RS seems to touch on all of them in this proposal.

Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name:		
Organization:		
Telephone:		
E-mail:		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1-Transmission Owners
	\square	2 - RTOs, ISOs, Regional Reliability Councils
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8-Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.)			
Group Name: Midw	Midwest Reliability Organization (MRO)		
Lead Contact: Terry	Terry Bilke		
Contact Organization: Midw	Midwest ISO		
Contact Segment: 2	2		
Contact Telephone: 317-2	317-249-5463		
Contact E-mail: tbilke	tbilke@midwestiso.org		
Additional Member Name	Additional Member Organization	Region*	Segment*
Al Boesch	NPPD	MRO	2
Robert Coish	MHEB	MRO	2
Dennis Florom	LES	MRO	2
Ken Goldsmith	ALT	MRO	2
Todd Gosnell	OPPD	MRO	2
Wayne Guttormson	SPC	MRO	2
Darrick Moe, Chair	WAPA	MRO	2
Tom Mielnik	MEC	MRO	2
Pam Oreschnick	XEL	MRO	2
Dick Pursley	GRE	MRO	2
Dave Rudolph	BEPC	MRO	2
Jim Maenner	WPS	MRO	2
Joe Knight, Secretary	MRO	MRO	2
27 Additional MRO Members	Companies Not Named Above	MRO	2

[^7]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\boxtimes Yes
Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?
\boxtimes YesNo
In particular we agree that generator owners have an obligation to have working governors or provide explanations why not. The 10 MW requirement should be evaluated for consistency with other standards. This should not hold up the progress of the SAR, but should be evaluated by the ultimate standard drafting team. Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?

Q YesNo
The Generator Operator may also have some responsibilities, such as the selection of control modes.

We're not sure what the LSE can do regarding the standard. They cannot control response from load. The exception may be coordination of frequency response with UFLS.

Planners may have some responsibilities with regard to new interconnections and also using observed frequency response in models as opposed to theoretical response. Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their
natural response, but less than 1% of peak, if the response is above an acceptable target?
\boxtimes YesNo
There should be a safeguard in place, such that if frequency performance declines, the industry reverts to the 1% minimum. Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

Q Yes
No
This is a significant issue, because if the governor system withdraws the unit's support prior to the recovery of frequency, this does have a problematic impact. A period of at least 60 seconds should be considered, and 60 seconds may not be adequate as often frequency recovery of the interconnection extends beyond the initial 60 seconds. Comments:
6. Do you have other comments on the SAR?

Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Ron Falsetti		
Organization: IESO		
Telephone: 905-855-6187		
E-mail: ron.falsetti@ieso.ca		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1 - Transmission Owners
	区	2 - RTOs, ISOs, Regional Reliability Councils
	\square	3 - Load-serving Entities
	\square	4- Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.) Group Name: Lead Contact: Contact Organization: Contact Segment: Contact Telephone: Contact E-mail:			
Additional Member Name	Additional Member Organization	Region*	Segment*

[^8]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\boxtimes Yes
\boxtimes No
Yes, with respect to the responses to the IESO's comments. However, the revised SAR appears to get somewhat mixed up between sub-minute frequency response performance with a longer term (> 1 minute) performance, and lacks clarity on what the proposed standard is intended to stipulate.

Is the proposed standard intended to stipulate:
(a) a minimum frequency response performance level with which to determine if follow-up analysis is to be conducted, or,
(b) requirements for calculating, measuring, reporting and analyzing frequency response, or,
(c) both, in addition to,
(d) requirements for generators to be equipped with governors and if so, the target to be responding to?

If (a) is not specified in the standard, we see a difficulty in stipulating the threshold for (b) and the target for (d).

From the SDT's response to our previous comments ("The new requirements may need to be field tested for an extended duration before compliance with the requirements becomes mandatory. A long field test with extensive data collection may be needed before justifiable minimum performance standards can be identified"). It is our belief the standard is intended to stipulate (b) only. We see this as a necessary first step. However, it may then beg the question of the need of having a standard to develop the basis for a future standard. Might there not be other alternatives to achieve (b) such as by means of a request from the standing committees or NERC to the BAs and the regions to compile this information? Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?
\boxtimes No
The intent of some of the requirements is again unclear to the IESO, for example.
(i) Does Bullet \#2 mean the flexibility in the calculation and reporting process or in the target/minimum frequency response level?
(ii) Assuming Bullet \#4 a requirement, and one which relates to the minimum level of frequency response, how is this requirement stipulated at this time while data collection and follow-up analysis are to be proposed as standard requirements and field testing has yet to commence? Same comment applies to Bullet \#9.
(iii) Bullet \#6 appears to go beyond the sub-minute time frame. Further, we are unable to understand the leading sentence "Will not mandate a given amount of frequency response". We feel it is important that if poor frequency response performance in the sub-minute time frame is to be assessed and improved, specific target which may well be the minimum amount of frequency recovery would need to be stipulated.
(iv) Bullet \#7 also appears to be beyond the sub-minute time frame, which is to mandate AGC but which should be covered by other BAL standards.
(v) Bullets \#8 and \#1 appear to be the main requirements for the proposed standard that are achievable at this time.
(vi) As mentioned in (ii) above, we are unable to visualize how the range and target of response be stipulated in the standard before Bullets \#1 and \#8 are implemented.
(v) If generators are allowed to seek exception, the standard should provide some basic premise that bounds the exception cases rather than leaving the door wide open and the decision solely to the judgment of the BAs and RROs. Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?
\square Yes
\boxtimes No
Not having a good handle on what the standard is intended to achieve and stipulate, we are unable to comment on whom the standard should apply to. Among the ones included in the question, we are unclear on the role of the RC in requiring anyone to install devices or take actions to improve frequency response in day to day operation.

Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?

இ No
(i) The question seems to get the sub-minute and longer-term targets intertwined. We are unclear on which "standard be provided an incentive". Is it the proposed sub-minute standard which has yet to be determined or the current standard on Bias? If it is the former, then this question seems a bit premature as we don't even know what the performance target for subminute response should be. If it's the latter, then the issue belongs to other BAL standards.

Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

No
This should cover the entire spectrum of immediate response before AGC kicks in. Comments:
6. Do you have other comments on the SAR?
(i) The SAR does not address the load portion of the frequency response but it indicates that the standard would apply to the LSEs as well. Please clarify or eliminate LSE from the Reliability Function check list.
(ii) We feel that the SAR needs to be very clear on what the proposed standard is intended and what will be included. Conducting calculation, measuring and report on frequency excursion events followed by analysis would help to ascertain whether or not poor performance exists. However, the determination of poor performance also relies on having a minimally acceptable level to gauge. If the standard is to provide requirements for calculation, reporting and conducting analysis only, then there needs to be some general guideline on the threshold for reporting and analyzing, which in turn begs the question of should this "guideline" be included as the initial standard, whose compliance would not be enforced until sufficient experience has been gained and field test conducted, with possible revision as experience and field test so suggest. Absent a minimum performance level, the requirements for governor setting would be difficult to determine. Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Howard F. Illian		
Organization: Energy Mark, Inc.		
Telephone: 847-913-5491		
E-mail: howard.illian@energymark.com		
NERC Region		Registered Ballot Body Segment
ERCOT FRCC MRO NPCC RFC SERC SPP WECC NA - Not Applicable	\square	1 - Transmission Owners
	\square	2 - RTOs, ISOs, Regional Reliability Councils
	\square	3 - Load-serving Entities
	\square	4-Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	区	8-Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.) Group Name: Lead Contact: Contact Organization: Contact Segment: Contact Telephone: Contact E-mail:			
Additional Member Name	Additional Member Organization	Region*	Segment*

[^9]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\square Yes
No
There is an expectation apparent in the first set of responses that indicates that the drafting team believes they have more knowledge of the solutions that will be required than the final standard will contain. The two greatest areas of insufficient understanding lie in the measurement of Frequency Response at less than the full interconnection level and the effect of the standard as envisioned on markets. These two problems are addressed in the comments to later questions in this comment form. Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?
\boxtimes No
Requirements that apply to individual generators cannot be implemented as indicated in the standard without failing to comply with Market Interface Principle 2. Frequency Response (Governor Response) have economic costs associated with standing ready to supply. These costs have been documented in EPRI Reports on Ancillary Services. If any generator is given an exception to not provide a response, that generator will also be given a market advantage resulting from the savings they will receive by not providing a response. The SAR as currently written will create a market advantage for all generators below 10 MW and all generators that are given an exception to the governor response requirement. The alternatives to these generator requirements are either not have a competitive market and decide the provision of frequency response administratively (the old VIU method), or determine who provides frequency response through a competitive market process. Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?
\boxtimes Yes
No

The requirements applicable to the Generator Owner and Load-serving Entity may only include requirements for measurement processes, not necessairly requirements to provide any frequency response. Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?
\boxtimes Yes
There is a minimum frequency response below which the interconnection will be less reliable than acceptable. We currently do not know what this value is but we do know that a value exists. We also know that this value is less than the 1% of peak load specificed in the current standards. A standard that arbitrairly requires a 1% of peak load response without a technical justification based on reliability cannot be called a reliabiltiy standard. However, even though we do not know the minimum frequency response below which the interconnection will be less reliable than acceptable, we can perform the work necessary to estimate a reasonable value for a minimum frequency response and assign responsibility for that response among the Balancing Authorities on an interconnection. A Frequency Response Standard without this characteristic cannot maintain reliability of the interconnection. Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

```
Z Yes
No
```

There are two issues associated with this question. The first is that the change in instantaneous frequency be limited to within a range that limits the risk of a cascading outage on the interconnection. The second is that each generation technology provides a different response characteristic within the first minute after a sudden frequency excursion. Work performed at NIPSCo and published by IEEE indicated that a measurement interval of one to two minutes worked well for the measurement of frequency response. Without specific knowledge of the nature of the individual responses that make up the sustained frequency response to an excursion, it may be difficult to justify the selection of a measurement interval shorter than one-minute that might put some generation technologies at a disadvantage with respect to the measurement method. This is a subject that the drafting team should technically evaluate before including a specific measurement period in the standard. Comments:
6. Do you have other comments on the SAR?

The current measurement methods for determining individual Balancing Authority Frequency Response may not be reliable. This is because the current measurement methods only capture a small sample of the frequency responses provided limited to only several minutes per year. The metering methods we currently use on the interconnection can shed some light on this problem. Since the each BA measures its Tie Line Error with common metering with adjancent BAs, the sum of the Tie Line Errors over the total interconnection must equal zero at all times. Each tie line has a positive error for one BA and a negative error of equal value to the other BA that the tie line connects. If the errors must sum to zero, then the change in errors must also sum to zero between any two points in time. Since the Frequency on an interconnection is the same throughtout the interconnection at any point in time for the purpose of the frequency response measurement, the change in frequency between two points in time must also be the same throughout the interconnection. Therefore, the change in tie-line error divided by the change in frequency must indicate a total frequency response for the interconnection as measured by the sum of the individual BA frequency responses must be equal to zero. In other words, there is a BA or a set of BAs that cause each frequency response on the interconnection. Only knowledge of the distribution of individual frequency responses among BAs will provide the necessary information to determine whether or not the frequency response indicated by current measurement methods will maintain adequate reliablity. It may not be the average frequency response to large events that indicates interconnection reliability, but the distribution of frequency responses among BAs including both the positive and negative responses. Therefore, the measurement methods included in the standard should have the goal of
capturing the distribution of both positive and negative frequency responses over the entire range of frequency operation should be a goal of standard.
The measurement methods suggested will not accomplish this goal.
Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name:		
Organization: Southern Company Transmission		
Telephone:		
E-mail:		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	区	1 - Transmission Owners
	\square	2 - RTOs, ISOs, Regional Reliability Councils
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.)			
Group Name: South	Southern Company Transmission		
Lead Contact: Marc	Marc Butts		
Contact Organization: Sout	Southern Company Services (SCS)		
Contact Segment:			
Contact Telephone:			
Contact E-mail:			
Additional Member Name	Additional Member Organization	Region*	Segment*
Raymond Vice	SCS Bulk Power Operations	SERC	1
Jim Busbin	SCS Bulk Power Operations	SERC	1
Roman Carter	SCS Bulk Power Operations	SERC	1
J T Wood	SCS Bulk Power Operations	SERC	1
Jim Viikinsalo	SCS Bulk Power Operations	SERC	1

*If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\boxtimes YesNo
Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?

Q YesNo
Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?
\boxtimes YesNo
Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?
\boxtimes Yes
\square No
The 1\% minimum frequency bias is obsolete and does not take into account the changes in interconnection frequency response over recent years. If not modified, it will lead to increased frequency oscillations within the interconnections and needless maneuvering of generating assets with associated wear and tear on these assets.

Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

Yes
\boxtimes No
AGC response begins within only a few seconds after the disturbance with a maximum ramp rate achieved within three to five minutes. Governor response and load frequency response typically peak within 30 seconds. There is some logic to monitoring governor respone for sustainability past its initial peak, but we have not seen anything about that in this SAR.

Comments:
6. Do you have other comments on the SAR?

In our opinion, this SAR, or one like it, is required to ensure that the primary frequency response of the interconnections and the BAs do not deteriorate to a point where 1) the interconnection can not adequately respond to major generator trips (including potential multiple contingencies which, though rare, do happen) and 2) primary frequency response of the BAs is inadequate to support islanding during severe local disturbances, thus allowing local disturbances to cascade into regional or interconnection wide disturbances. Primary frequency response is declining in at least the Eastern and Western Interconnections. WECC has taken a proactive approach to addressing this problem, but there is no similar work being done in the Eastern Interconnection. This SAR, or one like it, is needed to take the best practices in the industry, wherever they may be found, and utilize them to protect the interconnections from disturbances that could be avoided if we take action now rather than waiting until the problems actually occur.

Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR．Comments must be submitted by May 3，2006．You must submit the completed form by emailing it to sarcomm＠nerc．com with the words＂Frequency Response＂in the subject line．If you have questions please contact Maureen Long at maureen．long＠nerc．net or 813－468－5998．

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE．

DO：Do enter text only，with no formatting or styles added．
Do use punctuation and capitalization as needed（except quotations）．
Do use more than one form if responses do not fit in the spaces provided．
Do submit any formatted text or markups in a separate WORD file．

DO NOT：Do not insert tabs or paragraph returns in any data field．
Do not use numbering or bullets in any data field．
Do not use quotation marks in any data field．
Do not submit a response in an unprotected copy of this form．

I ndividual Commenter I nformation （Complete this page for comments from one organization or individual．）		
Name：Jeff Baker		
Organization：Duke Energy Midwest		
Telephone：513－287－3368		
E－mail：jeff．baker＠duke－energy．com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA－Not Applicable	区	1 －Transmission Owners
	\square	2 －RTOs，ISOs，Regional Reliability Councils
	区	3 －Load－serving Entities
	\square	4－Transmission－dependent Utilities
	\square	5 －Electric Generators
	区	6 －Electricity Brokers，Aggregators，and Marketers
	\square	7 －Large Electricity End Users
	\square	8 －Small Electricity End Users
	\square	9 －Federal，State，Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.)			
Group Name: N/A			
Lead Contact:			
Contact Organization:			
Contact Segment:			
Contact Telephone:			
Contact E-mail:			
Additional Member Name	Additional Member Organization	Region*	Segment*

[^10]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\square Yes
Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?Yes
\boxtimes No
Not totally, I need to understand more of what would be reuired to meet the obligation of Generator owners to equip generating units with nameplate ratings of 10 MW or greater, with a governor capable of providing immediate and sustained response to frequency deviations. Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?

Q YesNo
Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?
\boxtimes Yes
\square No
I believe that an incentive should be included in the standard Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

YesNo
I did not provide an answer but believe that this is a decision that could be made over time and not necessarily with the inception of the standard.. Comments:
6. Do you have other comments on the SAR?

I believe we have to address the frequency issue, but feel that it can be developed over time proactivly. Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name:		
Organization:		
Telephone:		
E-mail:		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1-Transmission Owners
	\square	2 - RTOs, ISOs, Regional Reliability Councils
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8-Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.)			
Group Name: WEC	WECC Reliability Coordination Subcommittee		
Lead Contact: Terr	Terry Baker		
Contact Organization: WEC	WECC		
Contact Segment: 2	2		
Contact Telephone: 970-2	970-229-5341		
Contact E-mail: bake	bakert@prpa.org		
Additional Member Name	Additional Member Organization	Region*	Segment*
Nancy Bellows	WACM	WECC	1
Tom Botello	SCE	WECC	1
Rich Cornelius	RDRC	WECC	2
Robert Johnson	PSC	WECC	1
Bert Peters	APS	WECC	1
Greg Tillitson	CMRC	WECC	2

[^11]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\square YesNo
Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?YesNo
Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?Yes
No
The WECC RCS believes that although this SAR is applicable to the WECC Reliability Authority (RA), it is not applicable to the WECC Reliability Coordinator (RC). Surveys, etc. will be performed after-the-fact, not during real-time. Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?YesNo
Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

YesNo
Comments:
6. Do you have other comments on the SAR?

Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR．Comments must be submitted by May 3，2006．You must submit the completed form by emailing it to sarcomm＠nerc．com with the words＂Frequency Response＂in the subject line．If you have questions please contact Maureen Long at maureen．long＠nerc．net or 813－468－5998．

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE．

DO：Do enter text only，with no formatting or styles added．
Do use punctuation and capitalization as needed（except quotations）．
Do use more than one form if responses do not fit in the spaces provided．
Do submit any formatted text or markups in a separate WORD file．

DO NOT：Do not insert tabs or paragraph returns in any data field．
Do not use numbering or bullets in any data field．
Do not use quotation marks in any data field．
Do not submit a response in an unprotected copy of this form．

I ndividual Commenter I nformation （Complete this page for comments from one organization or individual．）		
Name：		
Organization：		
Telephone：		
E－mail：		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA－Not Applicable	区	1 －Transmission Owners
	\square	2 －RTOs，ISOs，Regional Reliability Councils
	区	3 －Load－serving Entities
	\square	4 －Transmission－dependent Utilities
	区	5 －Electric Generators
	区	6 －Electricity Brokers，Aggregators，and Marketers
	\square	7 －Large Electricity End Users
	\square	8－Small Electricity End Users
	\square	9 －Federal，State，Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.)			
Group Name: BPA			
Lead Contact: Bart	Bart McManus		
Contact Organization: BPA	BPA		
Contact Segment: 1,3,5,	1,3,5,6		
Contact Telephone: 360-	360-418-2309		
Contact E-mail: bam	bamcmanus@bpa.gov		
Additional Member Name	Additional Member Organization	Region*	Segment*
John Anasis			
Lynn Aspaas			
Mike Viles			

[^12]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\boxtimes Yes
We are still concerned with a NERC standard countering some aspects of the standard we are in the process of drafting in WECC, so will continue to be active on the drafting team to insure it does not adversely impact the WECC standard. Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?
\boxtimes No
RE: bullet 2: Instead of flexibility to meet interconnection needs, each interconnection should have its own requirements on frequency response, this is due to the unique frequency response of each interconnection.
re bullet 4: This Standard will need to measure frequency response for the duration of the frequency deviation. Measuring it until frequency recovers will overlap with the Balance Resources and Demand standard slightly, but will give much better results than simply going out a few minutes.
re bullet 6: Target levels should be BA specific to insure there is not an incentive to lean on other BA's. How will the target levels be calculated?
Re bullet 7: BAs must be free to operate their automatic generation control in any method they desire. The tie-line frequency bias is used for compliance monitoring, but must not be a requirement for the actual automatic generation control algorithm. Recommend this be modified to state: Balancing Authorities will calculate an Area Control Error for monitoring purposes using tie-line frequency bias.
re bullet 8: WECC should call FRC surveys for WECC instead of NERC.
re bullet 9: Recommend generating unit nameplate of 10 MW plus multi-unit installations of 10 MW or greater be required to have a governor(s) capable of providing immediate and sustained response to frequency deviations.
Re bullets 9 and 10: Currently wind generation does not have governor response capability. Due to the amount of wind integration planned in the next decade, new installations should have a requirement for frequency responsive units. Historically, requirements have provided incentive for
manufacturers to modify machine design (low-voltage ride-through capability, voltage control capability) to meet the requirements.
Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?
\boxtimes YesNo
The only portion we can think of that would applicable to the Load-serving entity is for the load-serving entity to report their underfrequency load shedding settings. We believe LSEs should be removed as applicable entities. Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?
\boxtimes Yes
\boxtimes No
The standard should not provide an incentive, but the standard should provide a methodology that would allow a Balancing Authority to calculate a bias based on their natural response, provided that response is above an acceptable target. Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?
```
Yes
```

\boxtimes No
The standard should measure out to when the frequency recovers. This could be up to the 15 minute DCS limit. AGC control may or may not kick in within 60 seconds depending on deadbands, etc. However, generators on setpoint control may hold for between 10 and 60 seconds then drop back off prior to AGC pulses reaching the generator. In order to see the full response of a BA it is necessary to see data for the full event rather than just the first minute. Rather than overlapping the BRD standard, this will work hand-in-hand with this standard. Comments:
6. Do you have other comments on the SAR?

Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR．Comments must be submitted by May 3，2006．You must submit the completed form by emailing it to sarcomm＠nerc．com with the words＂Frequency Response＂in the subject line．If you have questions please contact Maureen Long at maureen．long＠nerc．net or 813－468－5998．

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE．

DO：Do enter text only，with no formatting or styles added．
Do use punctuation and capitalization as needed（except quotations）．
Do use more than one form if responses do not fit in the spaces provided．
Do submit any formatted text or markups in a separate WORD file．

DO NOT：Do not insert tabs or paragraph returns in any data field．
Do not use numbering or bullets in any data field．
Do not use quotation marks in any data field．
Do not submit a response in an unprotected copy of this form．

I ndividual Commenter I nformation （Complete this page for comments from one organization or individual．）		
Name：Tom Pruitt		
Organization：Duke Energy Carolinas		
Telephone：704－382－4676		
E－mail：tvpruitt＠duke－energy．com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA－Not Applicable	区	1 －Transmission Owners
	\square	2 －RTOs，ISOs，Regional Reliability Councils
	区	3 －Load－serving Entities
	\square	4－Transmission－dependent Utilities
	区	5 －Electric Generators
	区	6 －Electricity Brokers，Aggregators，and Marketers
	\square	7 －Large Electricity End Users
	\square	8 －Small Electricity End Users
	\square	9 －Federal，State，Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.) Group Name: Lead Contact: Contact Organization: Contact Segment: Contact Telephone: Contact E-mail:			
Additional Member Name	Additional Member Organization	Region*	Segment*

[^13]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\square Yes
Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?
\boxtimes Yes
\boxtimes No
Generally, yes, but more clarity is desired on a number of points, e.g., who decides which generators will be granted exemptions - the BA or the RRO; who sets the criteria - BA or RRO. In addition, I think some of the proposed requirements may conflict with each other as details are driven out; if a number of a BA's generators applied for and were granted exemptions from governor response, the (anticipated) 5\% droop range may need to be adjusted for the generators which do provide governor response for the BA.

Governor response is not the only equipment consideration at the plant/unit. Plant/unit control systems also should be operated so that the desired unit response will occur and be sustained. Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?
\boxtimes Yes
\square No
However, the standard applies to each entity in different ways. The lion's share of responsibility lies with the BA to insure that the aggregate of the Gen Owners responses provide the response needed. Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their
natural response, but less than 1% of peak, if the response is above an acceptable target?
\boxtimes YesNo
Calculation of each BA's bias should be based on a rigorous analysis which demonstrates that the BA can provide the expected response, regardless of peak load. This is consistent with the proposed requirements - 'technicallysound calculation and report of frequency response' and 'Will not mandate a given amount of frequency response'. Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

Q Yes
At least. Based on the words in the SAR Purpose statement, 'this proposed standard coordinates with and complements the Balance Resources and Demand standards, which addresses Interconnection frequency control generally 5 minutes and longer', it seems that this standard should cover out to the 5 minute mark of an event. AGC actions will commence at the first scan cylcle or two after the event (5-15 secs), but the actual generation response may not settle out for several minutes, depending on the type and amount of generation on AGC at the time. Comments:
6. Do you have other comments on the SAR?

Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

Group Comments (Complete this page if comments are from a group.) Group Name: Lead Contact: Contact Organization: Contact Segment: Contact Telephone: Contact E-mail:			
Additional Member Name	Additional Member Organization	Region*	Segment*

[^14]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\boxtimes Yes
Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?Yes
\boxtimes No
The SAR identifies Load-Serving Entities as a function that will be affected by any requirements that are developed from this SAR. Question three, on this comment form, goes one step further and asked the industry if the proposed standard would be applicable to Load-Serving Entities. ATC was unable to determine from the detailed description section any requirements that would apply to a Load-Serving Entity. With that being said ATC suggests that language be added to the SAR that would require the Load-Serving Entities to be responsible for procurement of adequate frequency response.

ATC found bullet number six lacks a clear description of the standard that could be developed. ATC recommends that this bullet be rewritten to better inform the industry of the type of standard the SAR requestor wants developed. Is the SAR requestor requesting a standard that will not mandate frequency response, but instead recommend a frequency response? ATC, in general, feels that standards should require something not make recommendation. or, Is the SAR requestor requesting that a standard be develop that would set long-term Interconnection target levels and then require the industry to meet those target-levels? ATC is in support of a standard that would require entities to set long-term target levels and require other entities to meet the determined target levels. ATC is not in support of a standard that requires functions to set long-term target levels but not require other entities to meet those levels. Lastly, this bullet should clearly identify who are the responsible entities.

ATC is concerned that Generator Owners could be allowed to categories the same generating units differently. A Generator Owner that aggregates their units for purposes of determining a voltage schedule (VAR-001-1) should then
not be allowed to individualize their units for this standard to escape under the nameplate rating of 10 MW . Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?

Q YesNo
Please see comment in questions two about the Load-serving Entity. Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?
\boxtimes YesNo
Although ATC is in support of this recommendation, we feel that it should be classified as an "allowable exemption" not an "incentive". Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

Q Yes
No
Comments:
6. Do you have other comments on the SAR?

Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name:		
Organization: NERC Resources Subcommittee		
Telephone:		
E-mail:		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1-Transmission Owners
	\square	2 - RTOs, ISOs, Regional Reliability Councils
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

*If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\boxtimes Yes
Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?
\boxtimes YesNo
Re Bullet 7 - BAs must be free to operate their automatic generation control in any method they desire. The tie-line frequeency bias is used for complinace monitoring, but should not be a requirement for the actual automatic generation algorithm. Recommend this be modified to state : Balancing authorities will calculate an Area Control Error for compliance reporting purposes using tie-line frequency bias. Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?
\boxtimes YesNo
The proposed standards may apply to LSEs when demand side resources are utilized for frequency control, but will not apply to many of the LSEs. There may also be cases where Generator Operators have obligations under the standard. Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?
\boxtimes YesNo

The 1\% minimum frequency bias should be evaluated to take into account the reliability requirements of the interconnections. frequency response over recent years. We suggest that the minimum bias be addressed during the development of the Frequency Response Standard. It is unclear what the word "incentive" means above.

Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

区 Yes
\boxtimes No
AGC response begins within only a few seconds after the disturbance with a maximum ramp rate achieved within three to five minutes. Governor response and load frequency response typically peak within 30 seconds. There is logic to monitoring governor respone for sustainability past its initial peak and this should be investigated during standard development.

Comments:
6. Do you have other comments on the SAR?

In our opinion, this SAR, or one like it, is required to ensure that the primary frequency response of the interconnections and the BAs do not deteriorate to a point where 1) the interconnection can not adequately respond to major generator trips (including potential multiple contingencies which, though rare, do happen) and 2) primary frequency response of the BAs is inadequate to support islanding during severe local disturbances, thus allowing local disturbances to cascade into regional or interconnection wide disturbances. Primary frequency response is declining in all Interconnections, Eastern, Western and ERCOT. WECC and ERCOT have taken a proactive approach to addressing this problem, but there is no similar work being done in the Eastern Interconnection. This SAR, or one like it, is needed.

Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Bruce Sembrick		
Organization: Tri-State Generation and Transmission Association		
Telephone: 303 254-3675		
E-mail: bsembrick@tristategt.org		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	区	1 - Transmission Owners
	\square	2 - RTOs, ISOs, Regional Reliability Councils
	\square	3 - Load-serving Entities
	\square	4-Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.) Group Name: Lead Contact: Contact Organization: Contact Segment: Contact Telephone: Contact E-mail:			
Additional Member Name	Additional Member Organization	Region*	Segment*

[^15]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\square Yes
Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?YesNo
Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?Yes
\boxtimes No
Since the standard is concerned with governor regulated frequency response of generating units that applicability should also apply to the Generator Operator (currently this box is not checked). It will ultimately be the Generator Operators responsibility to ensure frequency responsiveness of the units, e.g. ensuring that the unit is not operating in Valve Wide Open mode. Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?YesNo
Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?

YesNo
Comments:
6. Do you have other comments on the SAR?

Comments:

Please use this form to submit comments on the second draft of the Frequency Response SAR. Comments must be submitted by May 3, 2006. You must submit the completed form by emailing it to sarcomm@nerc.com with the words "Frequency Response" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc.net or 813-468-5998.

ALL DATA ON THIS FORM WI LL BE TRANSFERRED AUTOMATI CALLY TO A DATABASE.

DO: Do enter text only, with no formatting or styles added.
Do use punctuation and capitalization as needed (except quotations).
Do use more than one form if responses do not fit in the spaces provided.
Do submit any formatted text or markups in a separate WORD file.

DO NOT: Do not insert tabs or paragraph returns in any data field.
Do not use numbering or bullets in any data field.
Do not use quotation marks in any data field.
Do not submit a response in an unprotected copy of this form.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name:		
Organization:		
Telephone:		
E-mail:		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	区	1 - Transmission Owners
	\square	2 - RTOs, ISOs, Regional Reliability Councils
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8-Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities

Group Comments (Complete this page if comments are from a group.)			
Group Name: ITCTransmission			
Lead Contact: Jim	Jim Cyrulewski		
Contact Organization: ITCT	ITCTransmission		
Contact Segment: Tran	Transmission Owner		
Contact Telephone: 248-37	248-374-7130		
Contact E-mail: jcyru	jcyrulewski@itctransco.com		
Additional Member Name	Additional Member Organization	Region*	Segment*
Beth Howell	ITCTransmission	RFC	1
Mike Moltane	ITCTransmission	RFC	1
Van Greening	ITCTransmission	RFC	1

[^16]
Background Information

Please review the drafting team's consideration of the comments submitted with the first draft of the Frequency Response SAR and then review the drafting team's conforming changes made to SAR. Because the changes to the SAR were so extensive, there is no 'red line' version to show the changes from the first draft.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree that comments from the first posting of the SAR were adequately addressed?
\boxtimes YesNo
Comments:
2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?
\boxtimes YesNo
However some bullets need further clarification
Bullet 2: The standards process allows for regional differences. What more flexibility is needed?

Bullet 6: Keep this bullet simple by simply stating target levels will be set for BAs and RROs to take actions cited. Also a sub-bullet needs to be added on what are options to get additional frequency response; specifically for the BAs. In particular what can the BAs do if the Generation Owners do not provide adequate response. The BAs don't have generation interconnection agreements, the transmission owners do.

Comments:
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?
\boxtimes YesNo
Also pertains to Generator Operator Comments:
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?

X YesNo
However this requirement still does not address the need for enough frequency response on the system. Comments:
5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to 60 seconds following an excursion?
\qquad Yes
No
Needs to be verified with a field trial. Comments:
6. Do you have other comments on the SAR?

Reliability and Market Interface Principles 3, 5 and 6 should be checked as well.

Comments:

Background:

The Frequency Response SAR Drafting Team thanks all commenters who submitted comments on the first draft of the SAR for Frequency Response. This SAR was posted for a 30-day public comment period from April 4, 2006-May 3, 2006. The SAR DT asked stakeholders to provide feedback on the SAR through a special SAR Comment Form. There were 16 sets of comments, including comments from more than 59 different people from more than 41 companies representing 6 of the 9 Industry Segments as shown in the table on the following pages.

The primary changes to the SAR were made based on comments:

- Clarification on the role of the LSE and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5 and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.

In this 'Consideration of Comments’ document stakeholder comments have been organized so that it is easier to see the responses associated with each question. All comments received on the SAR can be viewed in their original format at:

http://www.nerc.com/~filez/standards/Frequency_Response.html

If you feel that your comment has been overlooked, please let us know immediately. Our goal is to give every comment serious consideration in this process! If you feel there has been an error or omission, you can contact the Vice President and Director of Standards, Gerry Adamski at 609-452-8060 or at gerry.adamski@nerc.net. In addition, there is a NERC Reliability Standards Appeals Process. ${ }^{1}$

Update:

The original SAR on Frequency Response was submitted in large part due to a study that showed a $10+\%$ decline in Eastern Interconnection Frequency Response over a 5 year period, when response should be increasing over time as an Interconnection grows. The drafting team posted a whitepaper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it to be on the order of $2800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ and still trending downward.

[^17]
Decline in Beta Over 5 Year Period

Figure 1 Original Eastern Interconnection Frequency Response Study (Ingleson and Nagle)

Figure 2 Updated Eastern Interconnection Frequency Response (NERC Resources Subcommittee)
Based on these observations, at its June, 2006 meeting, the NERC Operating Committee endorsed developing a frequency response standard that includes the following goals and objectives:

- Improving Interconnection frequency response event cataloging and benchmarking
- Calculating balancing authority frequency response and requiring balancing authorities to analyze those cases where the response is significantly below the norm
- Establishing time limits to complete the analyses
- Tabulating non-responsive generators
- Measuring generator response (including those units on line)
- Including regional participation and review

Unfortunately, the stakeholders who responded to the second draft of the proposed SAR offered a wide range of opinions on what should be in the standard, without a clear consensus. Given this, the drafting team revised the SAR to only require collection of data needed to model frequency response in each of the interconnections. Once frequency response has been modeled and analyzed, the Resources Subcommittee and the industry will be in a better position to recommend specific frequency response targets for each Interconnection.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006.

Commenter	Organization	Industry Segment								
		1	2	3	4	5	6	7	8	9
Ken Goldsmith	ALT		X							
Baj Agrawal	APS	x				x				
Bert Peters	APS	x								
Dave Rudolph	BEPC									
Bart McManus	BPA	x		x		x	x			
John Anasis	BPA	x		x		x	x			
Lynn Aspaas	BPA	x		x		x	x			
Mike Viles	BPA	x		x		x	x			
Greg Tillitson	CMRC		x							
Edwin Thompson	ConEdison	x								
Rhett Trease	Duke (NERC RS)									
Tom Pruitt	Duke Energy Carolinas	x		x		x	x			
Jeffrey T. Baker	Duke Energy Midwest	x		x		x	x			
Howard Illian	Energy Mark, Inc.								X	
Dick Pursley	GRE									
David Kiguel	Hydro One Network	x								
Anita Lee	IESO	X								
Ron Falsetti	IESO (Ontario)		x							
Kathleen Goodman	ISO-New England		x							
Bill Shemley	ISO-New England		X							
Jim Cyrulewski	ITC Transmission	x								
Dennis Florom	LES		X							
Donald Nelson	MA Dept of Energy and Tele.		X							
Tom Mielnik	MEC		X							
Robert Coish	MHEB		X							
Terry Bilke	MISO		X							
Pete Lebro	National Grid	X								
Sydney Niemeyer	NRG Texas LP (NERC RS)									
Alden Briggs	NBSO									
Greg Campoli	New York ISO		x							
James W. Ingleson	New York ISO		x							
Alan Adamson	New York State Rel. Council		X							
Don Badley	NWPP (NERC RS)									
Brian Hogue	NPCC		x							
Guy Zito	NPCC		x							
Alan Boesch	NPPD	X								
Murale Gopinathan	NU		X							

Commenter	Organization	Industry Segment								
		1	2	3	4	5	6	7	8	9
Mark Kuras	PJM		x							
Joe Willson	PJM		X							
Al DiCaprio	PJM		x							
Robert Johnson	PSC	x								
Rich Cornelius	RDRC		X							
Wayne Guttormson	SaskPower	x								
Tom Botello	SCE	x								
Jim Busbin	Southern Company Services	x								
Jim Viikinsalo	Southern Company Services	x								
Marc M. Butts	Southern Company Services	x								
Raymond Vice	Southern Company Services	x								
Roman Carter	Southern Company Services	X								
J.T. Wood	Southern Company Services	x								
Wayne Guttormson	SPC		x							
John Tolo	TEP (NERC RS)									
Roger Champagne	TransEnergie (Quebec)	x								
Bruce Sembeck	Tri-State Generation and Transmission Association, Inc.	X								
Nancy Bellows	WACM	x								
Darrick Moe	WAPA									
Terry Baker	WECC Reliability Coordination Subc.		X							
Jim Maenner	WPS		X							
Pam Oreschnick	XEL		X							

Index to Questions, Comments and Responses

1. Do you agree that comments from the first posting of the SAR were adequately addressed? 7
2. Do you agree with the list of proposed requirements included in the detailed description of the
revised SAR? ... 12
3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator,
Balancing Authority, Generator Owner, and Load-serving Entity? ... 22
4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1\% of peak, if the response is above an acceptable target?
5. Several commenters suggested response should be measured for an extended period after a
frequency excursion, up to the point where automatic generation control (AGC) would take over.
This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure
out to 60 seconds following an excursion? 28
6. Do you have other comments on the SAR? 32

1. Do you agree that comments from the first posting of the SAR were adequately addressed?

Summary Consideration: Most commenters indicated that the SAR drafting team did provide an adequate response to the comments submitted with the first posting of the SAR.

Commenter	Yes	No	Comment
Energy Mark, Inc. (8) Howard F. Illian		\checkmark	There is an expectation apparent in the first set of responses that indicates that the drafting team believes they have more knowledge of the solutions that will be required than the final standard will contain. The two greatest areas of insufficient understanding lie in the measurement of Frequency Response at less than the full interconnection level and the effect of the standard as envisioned on markets. These two problems are addressed in the comments to later questions in this comment form.
Response: There were varying opinions on the scope of the second draft of the SAR. The drafting team revised the scope of the SAR again to focus solely on collection of data needed to model frequency response in each of the interconnections. Once that data is collected and analyzed, a standard can be proposed that includes performance requirements that will motivate entities to operate in ways that keep frequency response within an acceptable range.			
NPCC CP9 Reliability Standards Working Group K. Goodman - ISONE Edwin Thompson - ConEd Pete Lebro - Ngrid Alan Adamson - NYSRC Bill Shemley - ISONE Ron Falsetti - IESO Murale Gopinathan - NU Ralph Rufrano - NYPA R. Champagne - TransÉnergie David Kiguel - Hydro One Greg Campoli - NYISO Jim Ingleson - NYISO Alden Briggs - NBSO Don Nelson - MA Dept. of Tel. and Energy Brian Hogue - NPCC Guy Vito - NPCC			

Commenter
 Yes
 No
 Comment

Response: We agree that there needs to be additional studies and investigation. There were varying opinions on the scope of the second draft of the SAR. The drafting team revised the scope of the SAR again to focus solely on collection of data needed to model frequency response in each of the interconnections. Once that data is collected and analyzed, a standard can be proposed that includes performance requirements that will motivate entities to operate in ways that keep frequency response within an acceptable range.

PJM Corporate Development
Div. (2)

Al DiCaprio
Joseph D. Willson
Mark Kuras

The Resources Subcommittee in a response to the first draft states "A primary purpose of this standard is to collect information so informed decisions can be made before there is a problem." It is clear from that reply that the Resources Subcommittee wishes to undertake an analysis of the system and needs to collect additional information. This data collection effort may be laudable but it does not rise to the level of being a federally enforced mandatory standard. What if later on the 'data' were to show there is no problem, then there will be a need to rescind the standard and repay those who were non-compliant to a data collection effort.
In their response to the first draft, the Resources Subcommittee cite a WECC study. But they have no similar study for the East. The Resources Subcommittee still has not shown that the decrease in sub-minute response is either (1) a problem or (2) nothing more than an indication that a larger system has more inertia and therefore less response that the smaller system in the past.
This SAR, with its present theoretical focus, posits the BA as the responsible entity for governor response. Even those who agreed with the first posting that Frequency Response is an important issue - stated that a standard cannot define fixed norms (MRO, NYISO, IESO (2)). The BA is not responsible to instantaneous response -at best it can establish a capacity obligation but it can't guarantee continuous response.

Response: There were varying opinions on the scope of the second draft of the SAR. The drafting team revised the scope of the SAR again to focus solely on collection of data needed to model frequency response in each of the interconnections. Once that data is collected and analyzed, a standard can be proposed that includes performance requirements that will motivate entities to operate in ways that keep frequency response within an acceptable range.

IESO (2) Ron Falsetti	\checkmark	\checkmark	Yes, with respect to the responses to the IESO's comments. However, the revised SAR appears to get somewhat mixed up between sub-minute frequency response performance with a longer term (> 1 minute) performance, and lacks clarity on what the proposed standard is intended to stipulate. Is the proposed standard intended to stipulate: (a) a minimum frequency response performance level with which to determine if follow-up analysis is to be conducted, or, (b) requirements for calculating, measuring, reporting and analyzing frequency response, or, (c) both, in addition to, (d) requirements for generators to be equipped with governors and if so, the target to be responding to?

Commenter	Yes	No	Comment
			If (a) is not specified in the standard, we see a difficulty in stipulating the threshold for (b) and the target for (d). From the SDT's response to our previous comments ("The new requirements may need to be field tested for an extended duration before compliance with the requirements becomes mandatory. A long field test with extensive data collection may be needed before justifiable minimum performance standards can be identified"). It is our belief the standard is intended to stipulate (b) only. We see this as a necessary first step. However, it may then beg the question of the need of having a standard to develop the basis for a future standard. Might there not be other alternatives to achieve (b) such as by means of a request from the standing committees or NERC to the BAs and the regions to compile this information?
Response: There were varying opinions on the scope of the second draft of the SAR. The drafting team revised the scope of the SAR again to focus solely on collection of data needed to model frequency response within each interconnection. Once that data is collected and analyzed, a standard can be proposed that includes performance requirements that will motivate entities to operate in ways that keep frequency response within an acceptable range.			
BPA (1, 3, 5, 6) Bart McManus John Anasis Lynn Aspaas Mike Viles	\checkmark		We are still concerned with a NERC standard countering some aspects of the standard we are in the process of drafting in WECC, so will continue to be active on the drafting team to insure it does not adversely impact the WECC standard.
Response: We encourage WECC to be actively involved in the drafting of the standard. Note that the drafting team revised the scope of the SAR so that the SAR focuses solely on the collection of data needed to model frequency response in each interconnection. This should not conflict with WECC's work on its frequency response standard.			
ITC Transmission (1) Jim Cyrulewski Beth Howell Mike Moltane Van Greening	\checkmark		
ATC LLC (1) Jason Shaver	\checkmark		
NERC Resources Subcommittee Raymond Vice - SOCO John Tolo - TEP Rhett Trease - Duke Sydney Niemeyer - Texas	\checkmark		

Commenter	Yes	No	
Don Badley - NWPP			
Carlos Martinez - CERTS			
Robert Rhodes - SPP			
Tom Vandervort - NERC			
Terry Bilke - MISO			
Bill Herbsleb - PJM			
Larry Akens - TVA			
Bart MaManus - BPA			
Mike Pitishnak - ISONE			
Gerry Beckerle - Ameren			
IESO (1)			
Anita Lee			
Midwest Reliability Organization	\checkmark		
(2)			
Terry Bilke			
Wayne Guttormson			
Jim Maenner			
Al Boesch - NPPD (2)			
Terry Bilke - MISO (2)			
Bob Coish - MHEB (2)			
Dennis Florom - LES (2)			
Ken Goldsmith - ALT (2)			
Todd Gosnell - OPPD (2)			
W. Guttormson - SPC (2)			
Tom Mielnik - MEC (2)			
Darrick Moe - WAPA (2)			
P. Oreschnick - XEL (2)			
Dick Pursley - GRE (2)			
Dave Rudolph - BEPC (2)			
Joe Knight - MRO (2)			
Southern Company Transm. (1)	\checkmark		
Marc Butts			

Commenter	Yes	No	
Raymond Vice			
Jim Busbin			
Roman Carter			
J.T. Wood			
Jim Viikinsalo			
Southern Company Transm. (1)	\checkmark		
Marc Butts			
Raymond Vice			
Jim Busbin			
Roman Carter			
J.T. Wood			
Jim Viikinsalo			

2. Do you agree with the list of proposed requirements included in the detailed description of the revised SAR?

Summary Consideration: Most commenters disagreed with the proposed requirements included in the second draft of the SAR. The drafting team revised the SAR to focus solely on the collection of data needed to model frequency response in each interconnection. Additional SARs may be proposed in the future to propose requirements for operating in ways that support frequency response.

Commenter	Yes	No	Comment
Arizona Public Service Co. $(1,5)$ Baj Agrawal			The requirements on individual generator are unnecessary. The requirements should be on a group of generators in a control area to achieve a desired response. Thus, one could have some generators which are being operated as non responsive and the others which are responding well to offset for those which are not responsive. Additionally, the 10 MW size requirements are too restrictive and unnecessary. It should be plant based and should apply to plants of 100 MW or more aggregate capacity. In any realistic scenario, the smaller plants are not expected to contribute much to frequency response and hence subjecting them to frequency response requirements is uneconomic.
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. Once more is known about frequency response, additional SARs may be proposed with specific performance requirements for generators.			
IESO(1) Anita Lee		\checkmark	The purpose is definitely suggested for under frequency conditions. However, when specifying that the generators shall have governors with droop etc... the role of the governor is for both high and low frequency conditions and not just underfrequency FRR. In a market environment it is very possible that not every generator will provide FRR services. Thus, the governor and governor deadband should be a requirement to interconnect to a power system. Generators that provide FRR shall have responsive governor and prime mover. The standard is based on balancing area response which will include generators and in some jurisdications will include load. So is the intent that whatever load is considered, additional FRR resources such as generators are used to provide the required FRR? What about load as FRR providers? Some industrial facilities are capable to dynamically vary the load of the facility to frequency (ie virtual governor). The standard should apply to FRR providers which can be generators and loads. We agree that generator owners have an obligation to have working governors or provide explanations why not. The "10 MW" requirement should be evaluated for consistency with other standards. This should not hold up the progress of the SAR, but should be evaluated by the ultimate standard drafting team.
Response: The SAR drafting team agrees that governors must work for both high and low frequency events. One methodology under discussion would monitor both high and low events. The logic behind capturing low frequency (typically associated with trips of large generators) is that these events are much more common than large loss of load.			

Commenter	Yes	No	Comment
We agree that all generators may not need to provide frequency response. As envisioned, as long as the BA had adequate response, it would have had some flexibility under the proposed standard. Note, however, that the SAR has been revised and no longer includes these performance requirements. The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. Once more is known about frequency response, additional SARs may be proposed with specific performance requirements for generators. As each new standard is developed, greater attention will be paid on the 'applicability'. The threshold of ' 10 MW ' will need to be reviewed from a reliability-related perspective rather than 'consistency across all standards' perspective.			
IESO (2) Ron Falsetti		\checkmark	The intent of some of the requirements is again unclear to the IESO, for example. (i) Does Bullet \#2 mean the flexibility in the calculation and reporting process or in the target/minimum frequency response level? (ii) Assuming Bullet \#4 a requirement, and one which relates to the minimum level of frequency response, how is this requirement stipulated at this time while data collection and follow-up analysis are to be proposed as standard requirements and field testing has yet to commence? Same comment applies to Bullet \#9. (iii) Bullet \#6 appears to go beyond the sub-minute time frame. Further, we are unable to understand the leading sentence "Will not mandate a given amount of frequency response". We feel it is important that if poor frequency response performance in the sub-minute time frame is to be assessed and improved, specific target which may well be the minimum amount of frequency recovery would need to be stipulated. (iv) Bullet \#7 also appears to be beyond the sub-minute time frame, which is to mandate AGC but which should be covered by other BAL standards. (v) Bullets \#8 and \#1 appear to be the main requirements for the proposed standard that are achievable at this time. (vi) As mentioned in (ii) above, we are unable to visualize how the range and target of response be stipulated in the standard before Bullets \#1 and \#8 are implemented. (v) If generators are allowed to seek exception, the standard should provide some basic premise that bounds the exception cases rather than leaving the door wide open and the decision solely to the judgment of the BAs and RROs.
Response: "Flexibility to meet the needs of each Interconnection" was intended to mean some flexibility in calculation (for example ERCOT is interested in "point C" (the extreme) of an event, but this point is not observable and has little value in the East. The WECC has expressed			

Commenter	Yes	No	Comment
concern for extended contribution of response (perhaps out several minutes). As envisioned, there would have been different target levels in			

concern for extended contribution of response (perhaps out several minutes). As envisioned, there would have been different target levels in each Interconnection. Interconnections would have been able to choose to have a tighter target droop setting.

Bullet 4 relates to a statistically-sound measurement of frequency response at both the Interconnection and BA level. The data would have been collected and reported each year of the standard. In effect, the data collection in the first year of the standard would have served as the field test.
"Long term target measure" intended to imply that the BA would be measured on many events over the year and its performance would have been evaluated on the whole, not on single events.

It is true operation of AGC goes beyond the sub-minute window of time. The intent of this bullet was that the bias a BA provides should match its natural frequency response. Just as was originally intended in Policy 1, a BA calculates its natural response in one year and uses those observations to operate in the next year. The drafting team envisioned the same would occur in the originally proposed standard. The establishment of the "12 month basis" either on a calendar year or on a rolling 12 month period like CPS1 would have been determined during standard drafting.

Note, however, that the SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. Once more is known about frequency response, additional SARs may be proposed with specific performance requirements for generators.

NPCC CP9 Reliability Standards Working Group

The proposed requirements nor the White Paper adequately make the case that there is a need for a frequency response standard at this time. However, it is recommended that the subject be further investigated. The analysis should evaulate if a frequency response standard that addresses the three major short term frequency control components (inertial response, governor response, and automatic generation control) are required. The report writers should include a broad range of participants including (at least) 3 OEM's (original equipment manufacturers) representing steam, gas and hydro generation control. Some specific issues that should be addressed are:

1. Inertial Response: Evaluate historical changes in the inertial response of the electric grid as a result of changing power equipment designs and types of load. For example, the addition of new industrial and aero-derivative turbine-generators have lower inertia-power ratios than tranditonal nuclear/fossil units and, in addition, they are not base loaded (as a result of more efficient dispatching and improved power plant controls).
2. Governor Response: Evaulate generation governor performance as a result of newer, more configurable prime mover controls. Digital controls provide increased plant reliability, however, this may be at the expense of decreased governor response. For example, the use of main steam pressure controls on steam units and low NOx controls on gas turbines may

Commenter	Yes	No	Comment
			produce unexpected droop output responses. 3. Automatic Generation Control (AGC): Perform a control area survey to determine if there is sufficient regulation capacity within control areas to maintain generation and load balance. Include a review of incentives and penalties for generators to respond accurately and reliably to AGC signals.

Response:

When the first draft of the SAR was posted for comment, the drafting team asked stakeholders if they felt that there was a reliability-related need for a standard that focuses on frequency response, and most stakeholders indicated there is a reliability-related need for a frequency response standard.

While we don't know the exact amount of frequency response needed for each interconnection, a 12 year decline in response when it is expected to be increasing and without knowledge of where the response is low is a reliability concern.

Failure of generators to follow AGC signals would appear to be either a CPS issue or a business practice.
The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. Once more is known about frequency response, additional standards may be proposed with specific performance requirements for generators. This will allow analyses to focus on the different types of response and should, eventually, facilitate the development of another standard that includes performance requirements aimed at providing a specified amount of frequency response.

Energy Mark, Inc. (8)		\checkmark	Requirements that apply to individual generators cannot be implemented as indicated in the standard without failing to comply with Market Interface Principle 2. Frequency Response

Howard F. Illian

Requirements that apply to individual generators cannot be implemented as indicated in the standard without failing to comply with Market Interface Principle 2. Frequency Response (Governor Response) have economic costs associated with standing ready to supply. These costs have been documented in EPRI Reports on Ancillary Services. If any generator is given an exception to not provide a response, that generator will also be given a market advantage resulting from the savings they will receive by not providing a response. The SAR as currently written will create a market advantage for all generators below 10 MW and all generators that are given an exception to the governor response requirement. The alternatives to these generator requirements are either not have a competitive market and decide the provision of frequency response administratively (the old VIU method), or determine who provides frequency response through a competitive market process.

Response: We appreciate the comments on Market Interface Principle 2. As envisioned the original SAR proposed measuring the approximately 140 Balancing Authorities rather than the roughly 4000 individual generators (NERC 2004 Generating Unit Statistical Brochure). The SAR intended to be indifferent to what entity provides response (whether load, large generator or small generator). It was intended to measure the $B A$, with the expectation that the BA would have had to document exceptions that would have been reviewed by the BA and the Region for reliability implications. As envisioned, the drafting team did not expect owners to install many small generators rather than one larger generator to avoid providing data for the standard.

Commenter	Yes	No	Comment
Note that the SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. Once more is known about frequency response, additional standards may be proposed with specific performance requirements for generators.			
Duke Energy Midwest (1, 3, 6) Jeff Baker		\checkmark	Not totally, I need to understand more of what would be required to meet the obligation of Generator owners to equip generating units with nameplate ratings of 10 MW or greater, with a governor capable of providing immediate and sustained response to frequency deviations.
Response: As envisioned, all generators would have governors that respond to frequency deviations. The BA and the Region would need be aware of exceptions for study purposes. If the BA's performance were significantly below the norm, an analysis and assessment would have been required. Note, however, that the SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. Once more is known about frequency response, additional standards may be proposed with specific performance requirements for generators.			
$\operatorname{BPA}(1,3,5,6)$		\checkmark	RE: bullet 2: Instead of flexibility to meet interconnection needs, each interconnection should have its own requirements on frequency response, this is due to the unique frequency response of each interconnection. re bullet 4: This Standard will need to measure frequency response for the duration of the frequency deviation. Measuring it until frequency recovers will overlap with the Balance Resources and Demand standard slightly, but will give much better results than simply going out a few minutes. re bullet 6: Target levels should be BA specific to insure there is not an incentive to lean on other BA's. How will the target levels be calculated? Re bullet 7: BAs must be free to operate their automatic generation control in any method they desire. The tie-line frequency bias is used for compliance monitoring, but must not be a requirement for the actual automatic generation control algorithm. Recommend this be modified to state: Balancing Authorities will calculate an Area Control Error for monitoring purposes using tie-line frequency bias. re bullet 8: WECC should call FRC surveys for WECC instead of NERC. re bullet 9: Recommend generating unit nameplate of 10 MW plus multi-unit installations of 10 MW or greater be required to have a governor(s) capable of providing immediate and sustained response to frequency deviations. Re bullets 9 and 10: Currently wind generation does not have governor response capability. Due to the amount of wind integration planned in the next decade, new installations should have a requirement for frequency responsive units. Historically, requirements have provided incentive for manufacturers to modify machine design (low-voltage ride-through capability, voltage control capability) to meet the requirements.

Commenter | | Yes | No |
| :--- | :--- | :--- |

Response: We agree - the proposed standard would have assumed that each interconnection had a unique frequency response.
Regarding bullet 4, some thought would have to be given on how to measure over the entire duration of a frequency disturbance (typically up to 15 minutes for a DCS event) and how to remove AGC response from the estimate of frequency response. Suggestions are welcome. However, the Interconnection would be able to define specific requirements.

Regarding bullet 8, WECC has the right to call FRC Surveys for WECC, as does NERC (historically through the NERC OC and Resources subcommittee)

We agree with your comment regarding bullet 9 .
Regarding wind generation, governor response is normally provided by calling on more energy from the prime mover when frequency drops. We are unsure how this would normally be done with wind, unless the goal would be to under-utilize the wind during normal operation and then call for full available energy when the frequency drops. Again, this standard as originally proposed, was intended to measure BA response- as long as the pool of generation within the BA provided adequate response, it would have allowed the BA flexibility on which generators provide that response.

Note, however, that the SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. Once more is known about frequency response, additional standards may be proposed with specific performance requirements for generators. This will allow analyses to focus on the different types of response and should, eventually, facilitate the development of another standard that includes performance requirements aimed at providing a specified amount of frequency response.

ATC LLC (1)
 Jason Shaver

$\checkmark \quad$ The SAR identifies Load-Serving Entities as a function that will be affected by any requirements that are developed from this SAR. Question three, on this comment form, goes one step further and asked the industry if the proposed standard would be applicable to Load-Serving Entities. ATC was unable to determine from the detailed description section any requirements that would apply to a Load-Serving Entity. With that being said ATC suggests that language be added to the SAR that would require the Load-Serving Entities to be responsible for procurement of adequate frequency response.
ATC found bullet number six lacks a clear description of the standard that could be developed. ATC recommends that this bullet be rewritten to better inform the industry of the type of standard the SAR requestor wants developed. Is the SAR requestor requesting a standard that will not mandate frequency response, but instead recommend a frequency response? ATC, in general, feels that standards should require something not make recommendation. or, Is the SAR requestor requesting that a standard be develop that would set long-term Interconnection target levels and then require the industry to meet those targetlevels? ATC is in support of a standard that would require entities to set long-term target levels and require other entities to meet the determined target levels. ATC is not in support

Commenter	Yes	No	Comment
			of a standard that requires functions to set long-term target levels but not require other entities to meet those levels. Lastly, this bullet should clearly identify who are the responsible entities. ATC is concerned that Generator Owners could be allowed to categories the same generating units differently. A Generator Owner that aggregates their units for purposes of determining a voltage schedule (VAR-001-1) should then not be allowed to individualize their units for this standard to escape under the nameplate rating of 10 MW .
Response: We agree that the LSE is the ultimate beneficiary of frequency response. However, since the standard isn't mandating a particular amount of frequency response for individual events, it would seem inappropriate to have the LSE obtain a given amount of frequency response for any specific event.			
As originally proposed, this standard would have been primarily a technical/preparedness standard. Initially, the target levels of frequency response would have been based on observed interconnection history.			
We agree that bullet \# 6 needs additional clarification for it to be understood. The long-term measure was envisioned to be an annual metric, based on a calendar year or on a rolling 12 month basis like CPS1 that captures many events over the year to come up with a composite estimate of performance. It was expected that the standard would allow interconnections to set their own frequency response limits. Absent specific frequency response bounds for an interconnection, the standard would have used recent history. The standard was intended to focus on the frequency response needs of each interconnection, and would have allocated a portion of each interconnection's frequency response responsibility to each of the interconnection's Balancing Authorities.			
Note that the SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. Once more is known about frequency response, additional standards may be proposed with specific performance requirements for generators. This will allow analyses to focus on the different types of response and should, eventually, facilitate the development of another standard that includes performance requirements aimed at providing a specified amount of frequency response.			
PJM Corporate Development Div. (2)		\checkmark	The SAR is still not clear about what is to be developed in the standard. Of the ten bulleted items several seem to show a misunderstanding between a sub-minute frequency response obligation and Automatic Generation control. The RS must make clear what it wants to do. Sub-minute frequency response occurs with or without frequency bias; sub-minute frequency response is not helped or hurt by having AGC. This is a major problem with the proposal. It is not clear and it is not definitive. Item 1 indicates the standard will be a Report Item 2 states the standard will be flexible (that is mandated in the Process Manual) Item 3 seems to indicate that non-compliance will be met with a requirement to analyze the incident (if this is standard is so important why isn't every event critical?) Item 5 is the most unusual - the standard will not mandate a response but will provide

| Commenter | Yes | No | Comment |
| :--- | :--- | :--- | :--- | :--- |

Commenter		No	Commen
Regarding item 10, the SAR was not proposing that generators may opt out of participation. As envisioned, generators were expected to have governors that respond to frequency. Exceptions would have been documented. Nevertheless, the standard would have measured overall BA response. Note, however, that the SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. Once more is known about frequency response, additional standards may be proposed with specific performance requirements for generators. This will allow analyses to focus on the different types of response and should, eventually, facilitate the development of another standard that includes performance requirements aimed at providing a specified amount of frequency response.			
Duke Energy Carolinas (1, 3, 5, 6) Tom Pruitt			Generally, yes, but more clarity is desired on a number of points, e.g., who decides which generators will be granted exemptions - the BA or the RRO; who sets the criteria - BA or RRO. In addition, I think some of the proposed requirements may conflict with each other as details are driven out; if a number of a BA's generators applied for and were granted exemptions from governor response, the (anticipated) 5% droop range may need to be adjusted for the generators which do provide governor response for the BA. Governor response is not the only equipment consideration at the plant/unit. Plant/unit control systems also should be operated so that the desired unit response will occur and be sustained.
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. Once more is known about frequency response, additional standards may be proposed with specific performance requirements for generators. This will allow analyses to focus on the different types of response and should, eventually, facilitate the development of another standard that includes performance requirements aimed at providing a specified amount of frequency response.			
NERC Resources Subcommittee	\checkmark		Re Bullet 7 - BAs must be free to operate their automatic generation control in any method they desire. The tie-line frequeency bias is used for complinace monitoring, but should not be a requirement for the actual automatic generation algorithm. Recommend this be modified to state : Balancing authorities will calculate an Area Control Error for compliance reporting purposes using tie-line frequency bias.
Response: Based on comments, the Resources Subcommittee recommends this requirement more appropriately belongs in the AGC standard. The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. Once more is known about frequency response, additional standards may be proposed with specific performance requirements for generators. This will allow analyses to focus on the different types of response and should, eventually, facilitate the development of another standard that includes performance requirements aimed at providing a specified amount of frequency response.			
ITC Transmission (1) Jim Cyrulewski	\checkmark		However some bullets need further clarification Bullet 2: The standards process allows for regional differences. What more flexibility is needed?

Commenter	Yes	No	Comment
Beth Howell Mike Moltane Van Greening			Bullet 6: Keep this bullet simple by simply stating target levels will be set for BAs and RROs to take actions cited. Also a sub-bullet needs to be added on what are options to get additional frequency response; specifically for the BAs. In particular what can the BAs do if the Generation Owners do not provide adequate response. The BAs don't have generation interconnection agreements, the transmission owners do.
Response: As originally envision there might be more than one aut We agree that transmission owne practices" provisions. The SAR was revised and will ad known about frequency response allow analyses to focus on the dif performance requirements aimed	have		differences would have been at the Interconnection level. For example, it was envisioned that that could be used by a BA to calculate response. nection agreements that provide leverage to get generators to perform through "good utility llection of data needed to model frequency response in each interconnection. Once more is dards may be proposed with specific performance requirements for generators. This will sponse and should, eventually, facilitate the development of another standard that includes pecified amount of frequency response.
Midwest Reliability Organization (2)	\checkmark		In particular we agree that generator owners have an obligation to have working governors or provide explanations why not. The 10 MW requirement should be evaluated for consistency with other standards. This should not hold up the progress of the SAR, but should be evaluated by the ultimate standard drafting team.
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. Once more is known about frequency response, additional standards may be proposed with specific performance requirements for generators. This will allow analyses to focus on the different types of response and should, eventually, facilitate the development of another standard that includes performance requirements aimed at providing a specified amount of frequency response. With respect to the 10 MW threshold - As each new standard is developed, greater attention will be paid on the 'applicability'. The threshold of '10 MW' will need to be reviewed from a reliability-related perspective rather than 'consistency across all standards' perspective.			
Southern Company Transm. (1)	\checkmark		

3. Do you agree that the proposed standard(s) would be applicable to the Reliability Coordinator, Balancing Authority, Generator Owner, and Load-serving Entity?

Summary Consideration: Although most commenters agreed with the proposed applicability, the drafting team has reduced the scope of the proposed standard, and the proposed applicability has been changed. The revised SAR shows that, in addition to the functional entities listed above, the Generator Operator may have some requirements in the proposed standard.

Commenter	Yes	No	Comment
Tri-State G\&T (1) Bruce Sembeck		\checkmark	Since the standard is concerned with governor regulated frequency response of generating units that applicability should also apply to the Generator Operator (currently this box is not checked). It will ultimately be the Generator Operators responsibility to ensure frequency responsiveness of the units, e.g. ensuring that the unit is not operating in Valve Wide Open mode.
Response: Note that the SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. We will include generator operator as an applicable entity.			
PJM Corporate Development Div. (2)		\checkmark	This question would require an assumption of what the standard would be. If the standard is to provide sub-minute frequency response, then the only entity should be the generator owner.
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection.			
IESO. (2) Ron Falsetti		\checkmark	Not having a good handle on what the standard is intended to achieve and stipulate, we are unable to comment on whom the standard should apply to. Among the ones included in the question, we are unclear on the role of the $R C$ in requiring anyone to install devices or take actions to improve frequency response in day to day operation.
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. We expect the Reliability Coordinator's role to be limited (most likely only alerting other Reliability Coordinators of generation or load events causing significant frequency excursions)			
Duke Energy Midwest (1, 3, 6) Jeff Baker		\checkmark	
IESO (1) Anita Lee	\checkmark	\checkmark	The Generator Operator may also have some responsibilities, such as the selection of control modes. We're not sure what the LSE can do regarding the standard. They cannot control response from load. The exception may be coordination of frequency response with UFLS. Planners may have some responsibilities with regard to new interconnections and also using observed frequency response in models as opposed to theoretical response.

Commenter	Yes	No	Comment
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. The LSE does need to provide some of this data and is listed as an applicable entity in the revised SAR.			
$\operatorname{BPA}(1,3,5,6)$	\checkmark	\checkmark	The only portion we can think of that would applicable to the Load-serving entity is for the load-serving entity to report their underfrequency load shedding settings. We believe LSEs should be removed as applicable entities.
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. The LSE does need to provide some of this data and is listed as an applicable entity in the revised SAR.			
Duke Energy Carolinas (1, 3, 5, 6) Tom Pruitt	\checkmark		However, the standard applies to each entity in different ways. The lion's share of responsibility lies with the BA to insure that the aggregate of the Gen Owners responses provide the response needed.
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection.			
WECC Reliability Coordination Subc.	\checkmark		The only portion we can think of that would applicable to the Load-serving entity is for the load-serving entity to report their underfrequency load shedding settings. We believe LSEs should be removed as applicable entities.
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. The Load-serving Entity does need to provide some of this data and is listed as an applicable entity in the revised SAR.			
ATC LLC (1) Jason Shaver	\checkmark		Please see comment in questions two about the Load-serving Entity.
Response: Please see the response to your comment on question 2.			
Midwest Reliability Organization (2)	\checkmark		The Generator Operator may also have some responsibilities, such as the selection of control modes. We're not sure what the LSE can do regarding the standard. They cannot control response from load. The exception may be coordination of frequency response with UFLS. Planners may have some responsibilities with regard to new interconnections and also using observed frequency response in models as opposed to theoretical response.
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. The Load-serving Entity does need to provide some of this data and is listed as an applicable entity in the revised SAR.			
NERC Resources Subcommittee	\checkmark		The proposed standards may apply to LSEs when demand side resources are utilized for frequency control, but will not apply to many of the LSEs. There may also be cases where Generator Operators have obligations under the standard.
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. The Load-serving Entity does need to provide some of this data and is listed as an applicable entity in the revised SAR.			
Energy Mark, Inc. (8)	\checkmark		The requirements applicable to the Generator Owner and Load-serving Entity may only

Commenter	Yes	No	
Howard F. Illian			Comment include requirements for measurement processes, not necessairly requirements to provide any frequency response.
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. The Load-serving Entity does need to provide some of this data and is listed as an applicable entity in the revised SAR.			
NPCC CP9 Reliability Standards Working Group	\checkmark		If required.
Response: Thank you.			
ITC Transmission (1) Jim Cyrulewski Beth Howell Mike Moltane Van Greening			Also pertains to Generator Operator.
Response: The SAR was revised and will address only the collection of data needed to model frequency response in each interconnection. In the revised SAR, the Generator Operator is responsible for providing data when the BA's performance is below an Interconnection target.			
Southern Company Transm. (1)	\checkmark		

4. The current standard on Bias requires a Balancing Authority to carry a minimum bias equal to 1% of peak load. As an example, in the Eastern Interconnection, this value is double current natural frequency response. Should the standard provide an incentive, such that a Balancing Authority can use a bias equal to their natural response, but less than 1% of peak, if the response is above an acceptable target?

Summary Consideration: While most commenters supported this suggestion, there was not consensus on the scope of the proposed requirements, and the drafting team revised the SAR to focus solely on collecting data needed to model frequency response in each of the interconnections. The drafting team will forward these comments to the Director of Standards Development so that they can be addressed by the Balance Resources and Demand standard drafting team or another drafting team. This shall serve as a summary response to all comments provided.

Commenter	Yes	No	Comment
IESO. (2) Ron Falsetti		\checkmark	(i) The question seems to get the sub-minute and longer-term targets intertwined. We are unclear on which "standard be provided an incentive". Is it the proposed sub-minute standard which has yet to be determined or the current standard on Bias? If it is the former, then this question seems a bit premature as we don't even know what the performance target for sub-minute response should be. If it's the latter, then the issue belongs to other BAL standards.
		\checkmark	The RS again is avoiding the issue of what sub-minute frequency response it MUST mandate. The 1\% is related to the frequency bias setting (basically a long term average response). The BRD deals with the longer term issue of frequency response - this standard was designed for the shorter-term response. If the RS is willing to accept under-biased systems then it would seem to be going against conventional wisdom, and should explain why it would even consider such an idea. If the real intent of this frequency SAR is to establish a minimum frequency response value then the SAR needs to state that. Perhaps the SAR should establish a minimum 1 minute response for every generator (if they can't provide it they are obligated to contract for it from another unit) and maybe a 1 minute average over a week, month, or year if a longer term value is needed. However, since the SAR authors state the problem is sub-minute response, it is suggested that the long term response is better be addressed by the BRD standard. In addition the SAR does not adequately address the load portion of the frequency response. The standard seems to presuppose the solution is having governors.
BPA (1, 3, 5, 6)			

Commenter	Yes	No	Comment
Southern Company Transm. (1)	\checkmark		The 1\% minimum frequency bias is obsolete and does not take into account the changes in interconnection frequency response over recent years. If not modified, it will lead to increased frequency oscillations within the interconnections and needless maneuvering of generating assets with associated wear and tear on these assets.
IESO(1) Anita Lee	\checkmark		There should be a safeguard in place, such that if frequency performance declines, the industry reverts to the 1% minimum.
Midwest Reliability Organization (2)	\checkmark		There should be a safeguard in place, such that if frequency performance declines, the industry reverts to the 1% minimum.
Energy Mark, Inc. (8) Howard F. Illian	\checkmark		There is a minimum frequency response below which the interconnection will be less reliable than acceptable. We currently do not know what this value is but we do know that a value exists. We also know that this value is less than the 1% of peak load specificed in the current standards. A standard that arbitrairly requires a 1% of peak load response without a technical justification based on reliability cannot be called a reliabiltiy standard. However, even though we do not know the minimum frequency response below which the interconnection will be less reliable than acceptable, we can perform the work necessary to estimate a reasonable value for a minimum frequency response and assign responsibility for that response among the Balancing Authorities on an interconnection. A Frequency Response Standard without this characteristic cannot maintain reliability of the interconnection.
Duke Energy Midwest (1, 3, 6) Jeff Baker	\checkmark		I believe that an incentive should be included in the standard.
Duke Energy Carolinas (1, 3, 5, 6) Tom Pruitt	\checkmark		Calculation of each BA's bias should be based on a rigorous analysis which demonstrates that the BA can provide the expected response, regardless of peak load. This is consistent with the proposed requirements - 'technically-sound calculation and report of frequency response' and 'Will not mandate a given amount of frequency response'.
ATC LLC (1) Jason Shaver	\checkmark		Although ATC is in support of this recommendation, we feel that it should be classified as an "allowable exemption" not an "incentive".
NERC Resources Subcommittee	\checkmark		The 1\% minimum frequency bias should be evaluated to take into account the reliability requirements of the interconnections. frequency response over recent years. We suggest that the minimum bias be addressed during the development of the Frequency Response Standard. It is unclear what the word "incentive" means above.
ITC Transmission (1) Jim Cyrulewski Beth Howell	\checkmark		However this requirement still does not address the need for enough frequency response on the system.

Commenter	Yes	No	
Mike Moltane Van Greening			

5. Several commenters suggested response should be measured for an extended period after a frequency excursion, up to the point where automatic generation control (AGC) would take over. This was to ensure initial response wasn't withdrawn prematurely. Should the standard measure out to $\mathbf{6 0}$ seconds following an excursion?

Summary Consideration: There was not consensus on the scope of the proposed requirements, and the drafting team revised the SAR to focus solely on collecting data needed to model frequency response in each of the interconnections. The drafting team modified the SAR to specify that data will be collected to measure response over a period up to 5 minutes. This window may be reduced during the standard drafting phase. This should provide sufficient data to analyze frequency response and should help identify the window of time where frequency response appears to be masked by Automatic Generation Control action.

Commenter	Yes	No	Comment
Duke Energy Midwest (1, 3, 6) Jeff Baker			I did not provide an answer but believe that this is a decision that could be made over time and not necessarily with the inception of the standard.
Response: We agree.			
Arizona Public Service Co. $(1,5)$ Baj Agrawal		\checkmark	Most of the frequency recovery happens in first 30 seconds. Thus anything more than 30 seconds is unnecessary. It is also seen that the response of a unit varies greatly within that 30 seconds period. Thus, it is very important that the measured response be the average response over the 30 seconds period and not be the response at 30 seconds.
Response: We agree that frequency response should be measured over a period of time (as opposed to a measure for a single event).			
Southern Company Transm. (1)		\checkmark	AGC response begins within only a few seconds after the disturbance with a maximum ramp rate achieved within three to five minutes. Governor response and load frequency response typically peak within 30 seconds. There is some logic to monitoring governor respone for sustainability past its initial peak, but we have not seen anything about that in this SAR.
Response: There was no consensus on this matter. The drafting team modified the SAR to specify that data will be collected to measure response over a period up to 5 minutes. This should provide sufficient data to analyze frequency response and should help identify the window of time where frequency response appears to be masked by AGC action.			
		\checkmark	The standard should measure out to when the frequency recovers. This could be up to the 15 minute DCS limit. AGC control may or may not kick in within 60 seconds depending on deadbands, etc. However, generators on setpoint control may hold for between 10 and 60 seconds then drop back off prior to AGC pulses reaching the generator. In order to see the full response of a BA it is necessary to see data for the full event rather than just the first minute. Rather than overlapping the BRD standard, this will work hand-in-hand with this standard.
Response: There was no consensus on this matter. The drafting team modified the SAR to specify that data will be collected to measure response over a period up to 5 minutes. This should provide sufficient data to analyze frequency response and should help identify the window			

Commenter	Yes	No	Comment
of time where frequency response appears to be masked by AGC action.			
NPCC CP9 Reliability Standards Working Group		\checkmark	This question is not clear. AGC control pulses generation every 5 seconds, therefore, the measurement should be based on the amount of time it takes to restore the generation load balance.
Response: In general, following a unit trip, frequency will not recover until the contingent BA has replaced the energy that was lost. This typically takes up to 15 minutes. Unless over-biased, a non-contingent BA will not contribute AGC response to a frequency event.			
PJM Corporate Development Div. (2)		\checkmark	Unsure as to what is being suggested here. The SAR drafters need to be specific about what requirements are needed and how they will be measured. The details contained in the white paper are supporting information but they do not define the standard that is being proposed.
Response: There was no consensus on the scope of the proposed requirements, and the drafting team revised the SAR to focus solely on collecting data needed to model frequency response in each of the interconnections.			
NERC Resources Subcommittee	\checkmark	\checkmark	AGC response begins within only a few seconds after the disturbance with a maximum ramp rate achieved within three to five minutes. Governor response and load frequency response typically peak within 30 seconds. There is logic to monitoring governor response for sustainability past its initial peak and this should be investigated during standard development.
Response: We agree with this comment. The drafting team modified the SAR to specify that data will be collected to measure response over a period up to 5 minutes. This should provide sufficient data to analyze frequency response and should help identify the window of time where frequency response appears to be masked by AGC action.			
IESO(1) Anita Lee	\checkmark		Sixty seconds is a reasonable balance to capture the period prior to AGC response.
Response: Agree - However, several commenters indicated there may be value in analyzing response for several minutes and the drafting team modified the SAR to specify that data will be collected to measure response over a period up to 5 minutes. This should provide sufficient data to analyze frequency response and should help identify the window of time where frequency response appears to be masked by AGC action.			
IESO. (2) Ron Falsetti	\checkmark		This should cover the entire spectrum of immediate response before AGC kicks in.
Response: Agree However, several commenters indicated there may be value in analyzing response for several minutes and the drafting team modified the SAR to specify that data will be collected to measure response over a period up to 5 minutes. This should provide sufficient data to analyze frequency response and should help identify the window of time where frequency response appears to be masked by AGC action.			
Energy Mark, Inc. (8) Howard F. Illian	\checkmark		There are two issues associated with this question. The first is that the change in instantaneous frequency be limited to within a range that limits the risk of a cascading outage on the interconnection. The second is that each generation technology provides a different response characteristic within the first minute after a sudden frequency excursion. Work

Commenter	Yes	No	Comment
			performed at NIPSCo and published by IEEE indicated that a measurement interval of one to two minutes worked well for the measurement of frequency response. Without specific knowledge of the nature of the individual responses that make up the sustained frequency response to an excursion, it may be difficult to justify the selection of a measurement interval shorter than one-minute that might put some generation technologies at a disadvantage with respect to the measurement method. This is a subject that the drafting team should technically evaluate before including a specific measurement period in the standard.
Response: Several commenters indicated there may be value in analyzing response for several minutes and the drafting team modified the SAR to specify that data will be collected to measure response over a period up to 5 minutes. This should provide sufficient data to analyze frequency response and should help identify the window of time where frequency response appears to be masked by AGC action.			
Duke Energy Carolinas (1, 3, 5, 6) Tom Pruitt	\checkmark		At least. Based on the words in the SAR Purpose statement, 'this proposed standard coordinates with and complements the Balance Resources and Demand standards, which addresses Interconnection frequency control generally 5 minutes and longer', it seems that this standard should cover out to the 5 minute mark of an event. AGC actions will commence at the first scan cylcle or two after the event ($5-15$ secs), but the actual generation response may not settle out for several minutes, depending on the type and amount of generation on AGC at the time.
Response: Several commenters indicated there may be value in analyzing response for several minutes and the drafting team modified the SAR to specify that data will be collected to measure response over a period up to 5 minutes. This should provide sufficient data to analyze frequency response and should help identify the window of time where frequency response appears to be masked by AGC action.			
Midwest Reliability Organization (2)	\checkmark		This is a significant issue, because if the governor system withdraws the unit's support prior to the recovery of frequency, this does have a problematic impact. A period of at least 60 seconds should be considered, and 60 seconds may not be adequate as often frequency recovery of the interconnection extends beyond the initial 60 seconds.
Response: Several commenters indicated there may be value in analyzing response for several minutes and the drafting team modified the SAR to specify that data will be collected to measure response over a period up to 5 minutes. This should provide sufficient data to analyze frequency response and should help identify the window of time where frequency response appears to be masked by AGC action.			
ITC Transmission (1) Jim Cyrulewski Beth Howell Mike Moltane Van Greening	\checkmark		Needs to be verified with a field trial.
Response: Several commenters indicated there may be value in analyzing response for several minutes and the drafting team modified the SAR to specify that data will be collected to measure response over a period up to 5 minutes. This should provide sufficient data to analyze frequency response and should help identify the window of time where frequency response appears to be masked by AGC action. Note that the			

Commenter	Yes	No	Comment
drafting team modified the scope of the entire SAR to focus solely on collecting data needed to model frequency response in each of the interconnections.			
ATC LLC (1) Jason Shaver	\checkmark		

6. Do you have other comments on the SAR?

Commenter	Comment
ITC Transmission (1) Jim Cyrulewski Beth Howell Mike Moltane Van Greening	Reliability and Market Interface Principles 3, 5 and 6 should be checked as well.
Response: We made this change.	
PJM Corporate Development Div. (2)	Please be clear about the terminology. Frequency response comes in many flavors - sub-minute; several minutes; and hours. The RS seems to touch on all of them in this proposal.
Response: There was no consensus on the scope of the proposed requirements, and the drafting team revised the SAR to focus solely on collecting data needed to model frequency response in each of the interconnections. The data collection will include data to model and analyze frequency response up to five minutes.	
Southern Company Transm. (1)	In our opinion, this SAR, or one like it, is required to ensure that the primary frequency response of the interconnections and the BAs do not deteriorate to a point where 1) the interconnection can not adequately respond to major generator trips (including potential multiple contingencies which, though rare, do happen) and 2) primary frequency response of the BAs is inadequate to support islanding during severe local disturbances, thus allowing local disturbances to cascade into regional or interconnection wide disturbances. Primary frequency response is declining in at least the Eastern and Western Interconnections. WECC has taken a proactive approach to addressing this problem, but there is no similar work being done in the Eastern Interconnection. This SAR, or one like it, is needed to take the best practices in the industry, wherever they may be found, and utilize them to protect the interconnections from disturbances that could be avoided if we take action now rather than waiting until the problems actually occur.
Response: There was no consensus on the scope of the proposed requirements, and the drafting team revised the SAR to focus solely on collecting data needed to model frequency response in each of the interconnections. Your support is very much appreciated.	
IESO. (2) Ron Falsetti	(i) The SAR does not address the load portion of the frequency response but it indicates that the standard would apply to the LSEs as well. Please clarify or eliminate LSE from the Reliability Function check list. (ii) We feel that the SAR needs to be very clear on what the proposed standard is intended and what will be included. Conducting calculation, measuring and report on frequency excursion events followed by analysis would help to ascertain whether or not poor performance exists. However, the determination of poor performance also relies on having a minimally acceptable level to gauge. If the standard is to provide requirements for calculation, reporting and conducting analysis only, then there

Commenter

Comment

needs to be some general guideline on the threshold for reporting and analyzing, which in turn begs the question of should this "guideline" be included as the initial standard, whose compliance would not be enforced until sufficient experience has been gained and field test conducted, with possible revision as experience and field test so suggest. Absent a minimum performance level, the requirements for governor setting would be difficult to determine.

Response: There was no consensus on the scope of the proposed requirements, and the drafting team revised the SAR to focus solely on collecting data needed to model frequency response in each of the interconnections. The Load-serving Entity will need to provide some of the data needed to model frequency response.

Energy Mark, Inc. (8)
Howard F. Illian

The current measurement methods for determining individual Balancing Authority Frequency Response may not be reliable. This is because the current measurement methods only capture a small sample of the frequency responses provided limited to only several minutes per year. The metering methods we currently use on the interconnection can shed some light on this problem. Since the each BA measures its Tie Line Error with common metering with adjancent BAs, the sum of the Tie Line Errors over the total interconnection must equal zero at all times. Each tie line has a positive error for one BA and a negative error of equal value to the other BA that the tie line connects. If the errors must sum to zero, then the change in errors must also sum to zero between any two points in time. Since the Frequency on an interconnection is the same throughtout the interconnection at any point in time for the purpose of the frequency response measurement, the change in frequency between two points in time must also be the same throughout the interconnection. Therefore, the change in tie-line error divided by the change in frequency must indicate a total frequency response for the interconnection as measured by the sum of the individual BA frequency responses must be equal to zero. In other words, there is a BA or a set of BAs that cause each frequency response on the interconnection. Only knowledge of the distribution of individual frequency responses among BAs will provide the necessary information to determine whether or not the frequency response indicated by current measurement methods will maintain adequate reliablity. It may not be the average frequency response to large events that indicates interconnection reliability, but the distribution of frequency responses among BAs including both the positive and negative responses. Therefore, the measurement methods included in the standard should have the goal of capturing the distribution of both positive and negative frequency responses over the entire range of frequency operation should be a goal of standard. The measurement methods suggested will not accomplish this goal.

Response: We agree with the concerns on errors induced in the measurement process. The standard will be designed to capture enough events to provide a statistically-sound estimate of Balancing Authority response. We also agree that the distribution of responses needs to be considered.

Duke Energy Midwest $(1,3,6)$ Jeff Baker	I believe we have to address the frequency issue, but feel that it can be developed over time proactivly.

Response: The revised SAR focuses solely on the collection of data needed to model frequency response. The data can be analyzed and additional standards can be developed that build on the results of those analyses. This supports your suggestion that the standard(s) be

Commenter	Comment
developed proactively over time.	In our opinion, this SAR, or one like it, is required to ensure that the primary frequency response of the interconnections and the BAs do not deteriorate to a point where 1) the interconnection can not adequately respond to major generator trips (including potential multiple contingencies which, though rare, do happen) and 2) primary frequency response of the BAs is inadequate to support islanding during severe local disturbances, thus allowing local disturbances to cascade into regional or interconnection wide disturbances. Primary frequency response is declining in all Interconnections, Eastern, Western and ERCOT. WECC and ERCOT have taken a proactive approach to addressing this problem, but there is no similar work being done in the Eastern Interconnection. This SAR, or one like it, is needed.
Response: There was no consensus on the scope of the proposed requirements, and the drafting team revised the SAR to focus solely on collecting data needed to model frequency response in each of the interconnections. Your support is very much appreciated.	

Standard Authorization Request Form

Title of Proposed Standard	Frequency Response Draft 3
Revised: $12 / 06 / 06$	

SAR Requestor Information	SAR Type (Put an 'x' in front of one of these selections)		
Name Terry Bilke	x	New Standard	
Primary Contact Terry Bilke	\square	Revision to existing Standard	
Telephone Fax	(317) 249-5463 (317) 249-5994	\square	Withdrawal of existing Standard
E-mail	tbilke@midwestiso.org	\square	Urgent Action

Purpose/Industry Need

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. The proposed standard's intent is to collect data needed to accurately model existing Frequency Response. There is evidence of continuing decline in Frequency Response in the three Interconnections over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be modeled, and the reasons for the decline in Frequency Response can be identified. Once the reasons for the decline in Frequency Response are confirmed, requirements can be written to control Frequency Response to within defined reliability parameters.

Reliability Functions
The Standard will Apply to the Following Functions（Check box for each one that applies by
double clicking the grey boxes．）

区	Reliability Coordinator	Responsible for the real－time operating reliability of its Reliability Coordinator Area in coordination with its neighboring Reliability Coordinator＇s wide area view．
区	Balancing Authority	Integrates resource plans ahead of time，and maintains load－interchange－ resource balance within its metered boundary and supports system frequency in real time
\square	Interchange Authority	Ensures communication of interchange transactions for reliability evaluation purposes and coordinates implementation of valid and balanced interchange schedules between Balancing Authority Areas．
\square	Planning Coordinator	Assesses the longer－term reliability of its Planning Coordinator Area．
\square	Resource Planner	Develops a long－term（＞1year）plan for the resource adequacy of specific loads within its portion of a Planning Coordinator Area．
\square	Transmission Planner	Develops a（＞one year）plan for the reliability of the interconnected Bulk Electric System within its portion of the Planning Coordinator Area．
\square	Transmission Service Provider	Administers the transmission tariff and provides transmission services under applicable transmission service agreements（e．g．，the pro forma tariff）．
\square	Transmission Owner	Owns and maintains transmission facilities．
\square	Transmission Operator	Ensures the real－time operating reliability of the transmission assets within a Transmission Operator Area．
\square	Distribution Provider	Delivers electrical energy to the End－use customer．
®	Generator Owner	Owns and maintains generation facilities．
®	Generator Operator	Operates generation unit（s）to provide real and reactive power．
\square	Purchasing－ Selling Entity	Purchases or sells energy，capacity，and necessary reliability－related services as required．
\square	Market Operator	Interface point for reliability functions with commercial functions．
区	Load－Serving Entity	Secures energy and transmission service（and related reliability－related services）to serve the End－use Customer．

Reliability and Market Interface Principles

	s．）
®	1．Interconnected bulk electric systems shall be planned and operated in a coordinated manner to perform reliably under normal and abnormal conditions as defined in the NERC Standards．
区	2．The frequency and voltage of intercher within defined limits through the
区	3．Information necessary for the planning and operation of interconnected bulk electric systems shall be made available to those entities responsible for planning and operating the systems reliably．
\square	4．Plans for emergency operation and system restoration of interconnected bulk electric systems shall be developed，coordinated，maintained and implemented．
区	5．Facilities for communication，monitoring and control shall be provided，used and maintained for the reliability of interconnected bulk electric systems．
®	6．Personnel responsible for planning and operating interconnected bulk electric systems shall be trained，qualified and have the responsibility and authority to implement actions．
区	7．The security of the interconnected bulk electric systems shall be assessed maintained on a wide area basis．
Does the proposed Standard comply with all of the following Market Interface Principles？（Select＇yes＇or＇no＇from the drop－down box by double clicking the grey area．）	
1．The planning and operation of bulk electric systems shall recognize that reliability is an essential requirement of a robust North American economy．Yes	
An Organization Standard shall not give any market participant an unfair competitive advantage．Yes	
3．An Organization Standard shall neither mandate nor prohibit any specific market structure．Yes	
4．An Organization Standard shall not preclude market solutions to achieving compliance with that Standard．Yes	
	An Organization Standard shall not require the public disclosure of commercially sensitive information．All market participants shall have equal opportunity to access commercially non－ sensitive information that is required for compliance with reliability standards．Yes

Detailed Description (Provide enough detail so that an independent entity familiar with the industry could draft, modify, or withdraw a Standard based on this description.) The proposed technical/preparedness standard will require or provide the following:

1. Each Balancing Authority shall collect and provide data [scan rate tie deviation and frequency for up to 5* minutes per event] needed to model its sub-minute Frequency Response to loss of large generating units and load.
2. Each Balancing Authority shall report each loss of generation or load greater than the respective Interconnection reporting threshold to its Reliability Coordinator.
3. Each Reliability Coordinator shall relay Frequency Response Standard (FRS) event information to other Reliability Coordinators in its Interconnection. The Interconnection Time Monitor will maintain a log of $F R S$ events.
4. NERC shall annually post a list of $F R S$ events. These events shall be used by Balancing Authorities to calculate and report their annual Frequency Response and Bias.
5. NERC, in conjunction with the respective Regions, shall establish a Target Frequency Response for each Interconnection. Absent an agreement, the observed Frequency Response in the first year of the FRS shall be used as a target.
6. Balancing Authorities with less than [75\%]* of their share of Target Frequency Response shall provide generation-level data to their Region for use by Transmission Planners and Planning Coordinators.
a. Each Generator Operator that operates a generator larger than [10 MW]*, shall provide data to its Balancing Authority, as required in item 6, to support this standard and for use in developing models of Frequency Response in the associated Interconnection.
b. Load Serving Entities shall provide data, as required in item 6, to their BA and Region to support the standard.
*These values are representative and will be refined based on stakeholder input during the standard drafting phase.

Related Standards

Standard No.	Explanation
BAL-001-0 through BAL- $006-0$	Balancing Standards, version 0
Balance Resources and Demand draft standards	Balancing Resources and Demand BAL-007 through BAL-011 draft standards, are in standards development process
MOD-013-0	The proposed standard would enable better input data to the

	modeling standards.

Related SARs

SAR ID	Explanation
Frequency Response SAR, version 0	Original Frequency Response SAR
MOD-027	Verification and Status of Generator Frequency Response. The proposed standard would provide a mechanism to validate compliance with MOD-027. The proposed standard could also provide a means to achieve MOD-027 (if the Balancing Authority implements on on-line measurement of generator frequency using SCADA data).

Regional Differences

Region	Explanation
ECAR	
ERCOT	Single Balancing Authority Interconnections calculate Frequency Response based on the change in generation (or load) rather than Tie-Line deviation (ERCOT).
FRCC	
MAAC	
MAIN	
MAPP	
NPCC	
SERC	
SPP	
WECC	

February 8, 2007

TO: REGISTERED BALLOT BODY

Ladies and Gentlemen:

Announcement: Comment Periods Open for three SARs

System Restoration and Blackstart SAR (February 8-March 9, 2007)

The second draft of the System Restoration and Blackstart SAR has been posted for a 30-day comment period from February 8 through March 9, 2007. The SAR calls for the modification of the following standards:

EOP-005 - System Restoration Plans
EOP-006 - Reliability Coordination - System Restoration
EOP-007 - Establish, Maintain, and Document a Regional Blackstart Capability Plan
EOP-009 - Documentation of Blackstart Generating Unit Test Results
This project involves upgrading the overall quality of the four standards; eliminating some gaps in the requirements, ambiguity, and "fill-in-the-blank" components.

The development may include other improvements to the standards deemed appropriate by the drafting team, with the consensus of stakeholders, consistent with establishing high-quality, enforceable, and technically sufficient bulk power system reliability standards.

Please use the comment form to provide comments on this SAR.

Underfrequency Load Shedding SAR (February 8-March 9, 2007)

The second draft of the Underfrequency Load Shedding SAR has been posted for a 30 -day comment period from February 8 through March 9, 2007. The SAR calls for the modification of the following standards:

PRC-006 - Development and Documentation of Regional Reliability Organizations’ Underfrequency Load Shedding Programs

PRC-007 - Assuring Consistency with Regional UFLS Programs
PRC-009 - UFLS Performance Following an Underfrequency Event
This project involves upgrading the overall quality of the four standards; eliminating some gaps in the requirements, ambiguity, and "fill-in-the-blank" components.

The development may include other improvements to the standards deemed appropriate by the drafting team, with the consensus of stakeholders, consistent with establishing high-quality, enforceable, and technically sufficient bulk power system reliability standards.

Please use the comment form to provide comments on this SAR.

Frequency Response SAR (February 8-March 9, 2007)

The third draft of the Frequency Response SAR has been posted for a 30-day comment period from February 8 through March 9, 2007. The SAR calls for the collection of data needed to model each interconnection's frequency response.

Please use the comment form to provide comments on this SAR.

Standards Development Process

The Reliability Standards Development Procedure contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate. If you have any questions, please contact me at 813-468-5998 or maureen.long@nerc.net.

Sincerely,
Maverer F. Lang

cc: Registered Ballot Body Registered Users
 Standards Mailing List
 NERC Roster

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

(Complete	
Inis page for comments from one organization or individual.)	

Group Comments (Complete this page if comments are from a group.)			
Group Name: Bo	Bonneville Power Administration		
Lead Contact: Ba	Bart McManus		
Contact Organization: Bo	Bonneville Power Administration		
Contact Segment: 1	1		
Contact Telephone: 360	360-418-2309		
Contact E-mail: ba	bamcmanus@bpa.gov		
Additional Member Name	Additional Member Organization	Region*	Segment*
James Murphy	Bonneville Power Administration	WECC	1
John Anasis	Bonneville Power Administration	WECC	1
Brenda Anderson	Bonneville Power Administration	WECC	6

*If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional $\mathrm{MW} / 01 . \mathrm{Hz}$.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.
Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities:

Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes YesNo
Comments:
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
\square N
Comments: With the caveat that more data may be collected if the need arises (out to 10 or 15 minutes)
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?Yes
\boxtimes No
Comments: BPA does not believe a field trial is needed for this standard. The standard should be written and implemented with the levels of noncompliance structured around data submittal.
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments: BPA agrees with the necessity of a frequency response standard. BPA highly encourages that this effort be implemented as soon as possible.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc. net or by telephone at 813-468-5998.

Group Comments (Complete this page if comments are from a group.)			
Group Name: PJM	PJM		
Lead Contact: Al	Albert DiCaprio		
Contact Organization: PJ	PJM		
Contact Segment: 2	2		
Contact Telephone: 610	610-666-8854		
Contact E-mail: di	dicapram@pjm.com		
Additional Member Name	Additional Member Organization	Region*	Segment*
Tom Bowe	PJ M	RFC	2
Alicia Daughtery	PJM	RFC	2
Joseph Willson	PJM	RFC	2

[^18] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?Yes
\boxtimes No
Comments: The primary objective of this SAR is to collect data; to analyze the data; and only then to recommend a performance value. The SAR DT insists that collecting data is a Technical Standard. The RSDP states:
"Technical standards...will contain Measures (not measuring - AMD) of physical parameters..." At this point this SAR proposal does not contain such a measure, it does not even assert that the measure is really needed (hence the need to analyze the data).

Page 19 (of 43) of the RSPM states "The drafting team may recommend the scope of the standard be reduced to allow the effort to move forward, while still remaining within the scope of the SAR. Reducing the scope of the SAR is acceptable if the drafting team finds, for instance, THAT ADDITIONAL TECHNICAL RESEARCH IS NEEDED PRIOR TO DEVELOPING (emphasis added) a portion of the standard or issues need to be resolved before consensus can be achieved on a portion of the standard. "The highlighted section applies directly to the scope of this SAR. The SAR Team recognizes work is needed. There is no question about that. The Team should do that work BEFORE proposing a mandatory standard.
PJ M supports the concept of doing such a study, and would encourage NERC to assign a group to do such a study, but PJM does not agree that collecting data rises to the level of a valid NERC reliability standard.
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\square Yes
\boxtimes No
Comments: The proposal as written appears to be headed towards mandating a given unit response. As such there would be an obligation on the Generator Operator - there does not seem to be any requirements that would apply to the Generator Owner unless of course the requestor includes a requirement to install a governor (this has, to date, be an implied obligation just as having a turbine has been an implied obligation). If the requestor does intend to assert an obligation on the Generator Owner to install a governor then the question arises should that be a standard or should that be a part of the Certification of a GO?

It is not clear what the LSE requirements are in this proposal.
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?Yes
\boxtimes No
Comments: As noted above PJM does not consider collecting data in order to decide what a requirement should be as grounds for a standard. Thus the sampling period which is outside of a NERC standard, can be defined in whatever way the group doing the sampling desires.
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\square Yes
No
Comments: There are field trials for standards (which this question is directed) and there are field trials for good ideas. This proposed SAR would seem to fall into the second category; and while posting events is interesting, it does not rate being a NERC standard. Collecting and posting data can be effected without a standard.
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR.
Comments: PJM would also note that the proposal references two distinct parameters the Natural response of a BA; and the natural response of a unit. It is not clear how the requestor intends to link the two parameters. The sum of the units' natural responses will not equal the natural response of the BA. Does the requestor intend to link the two, or to keep them separate? As written it appears that the requestor intends for the BA to be held responsible for an annual measured value. The SAR DT does not recognize that during different times there are different number of units opperating and available to respond. The SAR DT makes no mention of whether or not a BA(?) would have to shed load to maintain such frequency response (for those periods when all units are at full load). The SAR DT makes no mention of distance from an event. An event in NE will effect more response in NE then in Florida - how will that be addressed? PJ M would ask for clarification on what the requestor would intend to mandate.

FERC has recognized the need to include suppliers that use load control - how does this SAR intend to address such 'natural response suppliers'?

As written this proposal becomes an ambiguous standard as it obligates a BA to get data from a generator (as opposed to directly obligating generators to supply the data to the analysis team - this is important from the perspective of who would be noncompliant if the data were not supplied - the BA or the GO?).

PJ M would suggest that NERC create a Frequency Project, budget the project through its members rather then create a standard and risk imposing non-compliance penalities for what potentially could be a non-issue. Deal with this for what it is - a research activity.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

(Complete	
Inis page for comments from one organization or individual.)	

Group Comments (Complete this page if comments are from a group.)			
Group Name: Lead Contact: Contact Organization: Contact Segment: Contact Telephone: Contact E-mail:	vest Power Pool Operating Reliability Galli west Power Pool 614-3344 @spp.org	Vorking Gro	
Additional Member Name	Additional Member Organization	Region*	Segment*
Pete Kuebeck	Oklahoma Gas and Electric	SPP	1
Jim Useldinger	Kansas City Power and Light	SPP	1
Bill Grant	Southwestern Public Service	SPP	1
Jason Atwood	Kelson Energy	SPP	4
Steve Massey	Westar Energy	SPP	5
Mike Crouch	Western Farmers Electric Coop	SPP	1
Dan Boezio	American Electric Power	SPP	1
Wayne Galli	Southwest Power Pool	SPP	10

[^19]
Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes No
Comments: Do not agree with the notion in point 5 regarding the need for a Target Frequency Response for each interconnection at this time. It is beyond the scope of this technical SAR to propose anything other than collection of data to support the study.

Do not agree with point 6 of the description. In order to get a handle on what is really going on, all Balancing Authorities should be required to produce data valid to the study. Also the language in point 6 is poorly worded compared to the right wording in 6 a and 6 b . 6 a and 6 b should be included in the SAR and 6 should be removed.
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?Yes
\boxtimes No
Comments: A standard can not be imposed on the response of load to frequency. Load Serving Entities can only provide data.
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
® No
Comments: The 5 minute time is adaquate, but it lacks substance. Small changes in load and generation due to frequency response are very difficult to separate from normal load changes and AGC action on generation units (as was pointed out). It is important to include in the description of data collection that the 5 minutes should include 1 minute of data prior to a study event and 4 minutes after a study event. It is also important to include a sample rate, such as 4 seconds (obviously, faster samples are better, but may not be practicle).

The SAR, as written, lacks specifics on what data is required to perform a valid study. Some examples of necessary data may include, but are not limited to, AGC pulses, special protection systems, generator MW, tie line MW, frequency, etc.
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes Yes
\square No
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments: The reasoning for this technical standard is based on the perception that the frequency response of the electrical system is declining and a concern that the interconnect's ability to arrest significant system disturbances is slowly being compromised. Although it is not disagreeable that a study be conducted to determine if an actual decline in frequency response is occuring and then to determine cause, it is diagreeable to propose a potential remedy for a problem that may not exist or, dependent on the findings, in inappropriate remedy.

Types of generating units online (e.g., wind generation, combined cycle, etc) and their subsequent loading will have an influence on the frequency response of the system. As long as Balancing Authorities are maintaining their reserve obligations, even large contingencies should be manageable. However, over the years because of the trend to get more out of invested generation resources, it would give the appearance of a decline in frequency response since most frequency degradations are a result of losses of generation and a resultant decline in system frequency and those are what is studied and scrutinized. The August 14, 2003 disturbance was an opportunity to study the frequency response of all on-line generating units due to the frequency event resulting in a high frequency. High frequency is the only event where all on-line generating units will respond.

Proposing the establishment of a Target Frequency Response for the interconnect before concluding if an actual decline in frequency response is occuring and the cause(s) for the decline is finding a solution before defining the problem. Any standards involving frequency response need to also consider the role system reserves play in the interconnect as well as the frequency response of generators and system load to frequency. As long as generating reserve obligations are being met in accordance with current Reliability Standards and Regional Operating Criteria there may not be a need to go further dependent on the outcome of the study proposed by this SAR.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Jason Shaver		
Organization: American Transmission Co.		
Telephone: 2625066885		
E-mail: jshaver@atcllc.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	区	1 - Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^20] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities:

Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?Yes
\boxtimes No
Comments: ATC does not see the need to identify the Load Serving Entity in the Applicability section. The SDT should provide an explanation as to the reasoning behind the selection of Load Serving Entities.
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?Yes
\square No
Comments:
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?YesNo
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc. net or by telephone at 813-468-5998.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^21] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities:

Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes YesNo
Comments:
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
$\square \mathrm{N}$
Comments:
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes YesNo
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter Information (Complete this page for comments from one organization or individual.)		
Name: Michael Gildea		
Organization: Constellation Generation		
Telephone: 410.230.4901		
E-mail: michael.gildea@constellation.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1-Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	区	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^22] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities:

Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?YesNo
Comments:
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?YesNo
Comments:
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?YesNo
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:
Specific to the Requirement 6 a which states:
Each Generator Operator that operates a generator larger than [10 MW]*, shall provide data to its Balancing Authority, as required in item 6, to support this standard and for use in developing models of Frequency Response in the associated Interconnection.

Balancing Authorities may seek Speed Droop characteristics for our generators. Speed Droop is a design characteristic of the steam turbine (or the prime mover's governor response in the case of a combustion turbine or diesel).

Our concern is the only data we may be able to provide would be turbine manufacturer design data. For our older units where turbine control systems have been retrofitted and upgraded with more modern controls, we may not really know the speed droop characteristic of the unit. Collecting performance data to demonstrate the speed droop is extremely difficult if not impossible on a large unit. (Requires the grid connection frequency be allowed to "droop" as the generator is loaded). Hence, as now written, Constellation Generation is not clear how we could comply.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Howard F. Illian		
Organization: Energy Mark, Inc.		
Telephone: 847-913-5491		
E-mail: howard.illian@energymark.org		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1 - Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	区	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^23] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments: At this time information is not available that would provide a sound technical basis for the development of a performance standard. However, with the recent increased interest in Frequency Response, new data and analysis could become available at any time that would change the focus from a technical standard to a performance standard. If new information and analysis becomes available during the development of the technical standard, consideration should be given to how the development of the technical standard could delay the development and implementation of a performance standard. Must the technical standard be completed and approved before work can start on a performance standard?
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
Q Yes
】 No
Comments: I agree that the proposed list includes those entities that would be affected by a technical standard. However, there are many questions that must be resolved before any standard that affects the Generation Owner, Generation Operator or Loadserving Entity can be implemented. These questions relate to how a performance standard can or should be implemented. If there is no reasonable expectation that they would be included in a future performance standard, it would be unreasonable to implement a technical standard that requires these three functional entities to provide data. In a fair market that allows voluntary participation by Generation Owners, Generation Operators and Load-serving Entities, the direct application of a Frequency Response Performance Standard to these entities is not currently possible without creating unreasonable inequities in the market. Any standard applied directly to one generator but not another will create unreasonble inequities in a market. Since each generation technology has different Frequency Response capabilities, only a solution that provides Frequency Response through a market based mechanism can be fairly implimented in a market. Under these conditions, the measurement methods and data collection for a technical standard should only be applied to those entities that would have resposibilities under a performance standard. The correct alternative for collecting data from these entities is to collect it indirectly through the Balancing Authority or Reliability Coordinator that would be directly affected by a performance standard. The inclusion of Generation Owner, Generation Operator, and Load-serving Entity directly in the data collection will lead to the development of data collection systems that will need to be replaced, if and when, a performance standard is developed. This is an inefficient way to develop the technology for a new standard.
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
\boxtimes No
Comments: I agree with the concept of measuring Frequency Response for an extended period after a disturbance, but I do not agree that the reason is related to masking by AGC action. If the Frequency Bias for a Balancing Authority is set to a value that approximates the actual Frequency Response, the AGC action will always provide the correct response for reliable interconnection performance. The Frequency Response should be measured for an extended period after a disturbance to identify entities that are prematurely withdrawing their expected frequency response support from the interconnection. This has been demonstrated for entities that have outer loop control that only includes scheduled deliveries without adjustment for frequency response.
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
Q Yes
\boxtimes No
Comments: This would be a good way to insure that every entity select a similar set of events for calculation of their Frequency Response, but it will not insure conformity of the results. The difficulty with any method for selecting a common set of events is that each of those events is caused by a disturbance within one or more of the Balancing Authorities on the interconnection. Those entities that cause the disturbance will experience a different frequency response than those entities that are responding. The net effect is that the sum of the responses for all of the entities on the interconnection must sum to zero. This means that each entity must eliminate those disturbances for which they are the cause, from the set of disturbances they use to estimate their response. The real advantage is an entity cannot influence the results of the measurement through selection of the events they choose to include in the calculation.
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR.
Comments: One of my concerns is a majority of entities in NERC must agree that there is a need for a standard before the standard process moves forward. This could have undesirable long-term results with respect to the quality of the standards that are developed. This standard provides a good example of this problem. From what I have observed, both the Texas and Western Interconnections have concluded that there is a reliability need for a Frequency Response Standard on their interconnections. Unfortunately, reasonable opposition from the Eastern Interconnection will prevent the development of a common standard for those two interconnections. The only alternative will be for the Texas and Western Interconnections to each develop their own standards for Frequency Response without considering ways of making those two standards similar to each other. If the Eastern Interconnection, after a few years, finds that it needs a Frequency Response Standard, it will then become necessary for a new
standard to be developed that applies to all three interconnections. If each interconnection has a different Frequency Response Standard, it means there is no standard at all, but three different rules for NERC. The next logical step is to develop a common standard for all three interconnections requiring the first two standards developed by the Texas and Western Interconnections separately be modified to conform to a North American Standard on Frequency Response. Combining these three separate needs into a single standard will result in a natural opposition to change by those interconnections that have already implemented an interconnection standard that meets their individual needs. This will make it very difficult to gain the support necessary to enact a common standard for NERC. This multi-step development can only be avoided by having all three interconnections participate and contribute to standards identified and developed by individual interconnections. I believe that NERC needs to find a way to address this problem. If they do not, the standard development and approval process will lead to fractured standards and an unacceptable fractured standard process for NERC. One alternative might be to find a way for all interconnections to participate in the solution of individual interconnection problems as part of the standard development process.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Steve Myers		
Organization: ERCOT		
Telephone: 512-248-3077		
E-mail: smyers@ercot.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1 - Transmission Owners
	区	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^24] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities:

Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes YesNo
Comments:
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
\square No
Comments: This time frame should be sufficient for determination of frequency response. If it is intended that this data should also be useful for evaluating generating unit governor functioning, a longer time may be appropriate.
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes YesNo
Comments: A field trial would be beneficial to ensure that no gaps in the need for data exist. This could relate to whether other data is needed or whether data for a longer time is needed.
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter Information (Complete this page for comments from one organization or individual.)		
Name: Roger Champagne		
Organization: Hydro-Québec TransÉnergie (HQT)		
Telephone: 514 289-2211, X2766		
E-mail: champagne.roger.2@hydro.qc.ca		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	区	1-Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^25] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\boxtimes No
Comments: HQT believe there might be other means than Reliability Standards to accomplish this data collection.
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?Yes
\boxtimes No
Comments: We question the need to include the applicability to the LSEs in this SAR and requests the drafting team to explain the purpose.
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
\boxtimes No
Comments: We requests clarification as to what data and at what periodicity will be collected from the identitified entities.
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes YesNo
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR.
Comments: Being a single Balancing Authority Interconnection, there might be a need for a «regional»difference for the Québec Interconnection when specific value will be established. Same as ERCOT, frequency response will be based on the change in generation (or load) rather than Tie-Line deviation.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Ron Falsetti		
Organization: IESO		
Telephone: 905-855-6187		
E-mail: ron.falsetti@ieso.ca		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1 - Transmission Owners
	区	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^26] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes No
Comments:
We do not agree with the reduced scope of this SAR. It does not require a standard to enable a data collection task(s). Data collection procedures and processes, charged by a standing committee, e.g. the OC, or respective working groups, would be more than sufficient.
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\square Yes
\boxtimes No
Comments:
For the purpose of data collection, assigning responsibility to the Balancing Authority, Generator Operator and Load-serving Entity would suffice.
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes YesNo
Comments:
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?YesNo
Comments: A field test is a must and would definitely provide useful information on the types of event that would necessiate such data collection (The threshold needs to be clarified though - e.g. should it be >10MW loss of generator or some other threshold?), and any specific areas that need to be worked on in order to ensure that all relevant and required data is collected.
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:

While we felt that the previous SAR was unclear on the intent, this SAR has such a reduced scope that the intended task does not require a reliability standard to achieve . A task team charged by a standing committee (the OC), would suffice. The requirements proposed in the SAR can be set as conditions for completing the data collection effort by the task team.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Kathleen Goodman		
Organization: ISO New England		
Telephone: (413) 535-4111		
E-mail: kgoodman@iso-ne.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1 - Transmission Owners
	区	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^27] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities:

Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?Yes
\boxtimes No
Comments: ISO New England does not see a need to include the applicability to the LSEs in this SAR and requests the drafting team to explain this.
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
\boxtimes No
Comments: ISO New England requests clarification as to what data and at what periodicity will be collected.
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes YesNo
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Michael Gammon		
Organization: Kansas City Power \& Light		
Telephone: 816-654-1242		
E-mail: mike.gammon@kcpl.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	区	1 - Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^28] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes No
Comments: Do not agree with the notion in point 5 regarding the need for a Target Frequency Response for each interconnection at this time. It is presumptuous to advance a remedy prior to determining cause of the perceived decline in frequency response. Allow the techincal SAR to perform its function to determine cause. Any appropriate remedy in operating standards should become apparent.

Do not agree with point 6 of the description. In order to get a handle on what is really going on, all Balancing Authorities should be required to produce data valid to the study. Also the language in point 6 is poorly worded compared to the right wording in $6 a$ and $6 b$. $6 a$ and $6 b$ should be included in the SAR and 6 should be removed.
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes Yes
\square No
Comments:
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes No
Comments: The 5 minute time is adaquate, but it lacks substance. Small changes in load and generation due to frequency response are very difficult to separate from normal load changes and AGC action on generation units (as was pointed out). It is important to include in the description of data collection that the 5 minutes should include 1 minute of data prior to a study event and 4 minutes after a study event. It is also important to include a sample rate, such as 4 seconds (obviously, faster samples are better, but may not be practicle).
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR.
Comments: The reasoning for this technical standard is based on the perception that the frequency response of the electrical system is declining and a concern that the interconnect's ability to arrest significant system disturbances is slowly being compromised. Although it is not disagreeable that a study be conducted to determine if an actual decline in frequency response is occuring and then to determine cause, it is diagreeable to propose a potential remedy for a problem that may not exist or, dependent on the findings, in inappropriate remedy.

One reason a decline in frequency response may be perceived occuring is a result of more on-line generating units being fully loaded. That means when a frequency decline occurs there are less units able to respond because they are already loaded. That does not mean the interconnection is at risk. As long as Balancing Authorities are maintaining their reserve obligations, even large contingencies should be manageable. However, over the years because of the trend to get more out of invested generation resources, it would give the appearance of a decline in frequency response since most frequency degradations are a result of losses of generation and a resultant decline in system frequency and those are what is studied and scrutinized. The August 14, 2003 disturbance was an opportunity to study the frequency response of all on-line generating units due to the frequency event resulting in a high frequency. High frequency is the only event where all on-line generating units will respond.

Proposing the establishment of a Target Frequency Response for the interconnect before concluding if an actual decline in frequency response is occuring and the subsequent cause(s) for the decline is finding a solution before defining the problem. Any standards involving frequency response needs to also consider the role system reserves play in the interconnect as well as the frequency response of generators and system load to frequency. As long as generating reserve obligations are being met to meet current Reliability Standards and Regional Operating Criteria there may not be a need to go further dependent on the outcome of the study proposed by this SAR.

Please use this form to submit comments on the third draft of the Frequency Response SAR．Comments must be submitted by March 9，2007．You may submit the completed form by e－mail to sarcomm＠nerc．com with the words＂FR SAR Draft 3＂in the subject line． If you have questions please contact Maureen Long at maureen．long＠nerc．net or by telephone at 813－468－5998．

I ndividual Commenter I nformation （Complete this page for comments from one organization or individual．）		
Name：Robert Coish		
Organization：Manitoba Hydro		
Telephone：204－487－5479		
E－mail：rgcoish＠hydro．mb．ca		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA－Not Applicable	区	1 －Transmission Owners
	\square	2 －RTOs，ISOs
	区	3 －Load－serving Entities
	\square	4 －Transmission－dependent Utilities
	®	5 －Electric Generators
	区	6 －Electricity Brokers，Aggregators，and Marketers
	\square	7 －Large Electricity End Users
	\square	8 －Small Electricity End Users
	\square	9 －Federal，State，Provincial Regulatory or other Government Entities
	\square	10 －Regional Reliability Organizations，Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^29] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities:

Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes YesNo
Comments:
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
\square No
Comments: Ten minutes might be more useful, especially in any areas where it appears to take a long time to settle down after a frequency deviation event. This could be left up to the discretion of operators and balancing authorities in any areas where slow or bumpy returns to normal frequency levels are experienced.
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?YesNo
Comments: Only if field trials are deemed to have very high probability of not causing significant difficulties on overly sensitive network area.
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Alan R Oneal		
Organization: MidAmerican Energy Company		
Telephone: 515-252-6449		
E-mail: aroneal@midamerican.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1 - Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^30] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments: This standard would be a start, at least, at bringing to light where and why response is being lost. It may well be that exposure and peer pressure, as well as the tiered reporting requirements, will keep plant and operations personnel abreast of their obligations for providing reserves of all types.
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes Yes
Comments:
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
\square No
Comments:
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes No
Comments: This is not a new concept. I support institution of the standard as written so a start can be made to identify and, with luck, remediate the decline in frequency response.
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments: I have concern about the "shall"s in the standard, in that there is no apparent enforcement behind the requirements for data submittals. If I'm wrong in
this, then I would be comfortable with the effectiveness possible. If I'm right, what is to be done with an entity which finds it convenient not to report?

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc. net or by telephone at 813-468-5998.

[^31] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities:

Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes YesNo
Comments:
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
\boxtimes No
Comments: Five minutes is acceptable. There may be merit in collecting 15 minutes of data to cover the DCS window. The data should be readily available since the BAs are already examining this data to determine their compliance with the DCS standard. The final decision can be made during the standards drafting phase.
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes YesNo
Comments: This should not be a problem as BAs should already be performing this calculation in the annual determination of their frequency bias.
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name:		
Organization:		
Telephone:		
E-mail:		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1 - Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	区	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)			
Group Name: Lead Contact: Contact Organization: Contact Segment: Contact Telephone: Contact E-mail:	CP9, Reliability Standards Working Zito ast Power Coordinating Council $0-1070$ npcc.org		
Additional Member Name	Additional Member Organization	Region*	Segment*
Ralph Rufrano	New York Power Authority	NPCC	1
Roger Champagne	TransEnergie HydroQuebec	NPCC	1
Ed Thompson	ConEd	NPCC	1
Al Adamson	New York St. Reliability Council	NPCC	10
Kathleen Goodman	ISO-New England	NPCC	2
Bill Shemley	ISO-New England	NPCC	2
Greg Campoli	New York ISO	NPCC	2
Don Nelson	MA Dept. of Tele. and Energy	NPCC	9
Ron Falsetti	The IESO, Ontario	NPCC	2
Bruno Jesus	Hydro One Networks	NPCC	1
Randy McDonald	New Brunswick Sys. Operator	NPCC	2
Guy V. Zito	Northeast Power Coor. Council	NPCC	10
Herb Schrayshuen	National Grid US	NPCC	1
Jerad Barnhart	NStar	NPCC	1

[^32]
Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\boxtimes No
Comments: Many of NPCC's participating members believe there are other means to accomplish this phase of the initiative and that appropriate revisions to existing standard(s) may address the issue determined by the data analysis could be proposed.
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes No
Comments: NPCC participating members question the need to include the applicability to the LSEs in this SAR and requests the drafting team to explain this.
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\square Yes
\boxtimes No
Comments: It is not clear what type of data is going to be collected from this requirement. AGC response is continuous. What is the justification for the specific "five minutes" reffered to? Since AGC control is every 4 seconds, five minutes appears to be too long a period to collect this data. Imposing this requirement will require the installation of local data storage retention facilities \& telemetering equipment that may not be necessary and NPCC participating members would like the drafting team to explain why 5 minutes is necessary.

Also, when requesting data from a generator what is expected scan-rate/exception reporting clarity of the data?
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
【 Yes
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter Information (Complete this page for comments from one organization or individual.)		
Name: Sydney L. Niemeyer		
Organization: NRG Texas, Qualified Scheduling Entity (QSE)		
Telephone: 713-795-6108		
E-mail: sydney.niemeyer@nrgenergy.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1-Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	®	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^33] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities:

Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes YesNo
Comments:
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
\square N
Comments:
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes Yes
\square No
Comments: A field trial may indicate the need for more or different data for the proper calculation of a BAs Frequency Response.
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments: Frequency Response of Resources is vital to the reliability of an interconnection. Large differences between the measured Frequency Response of a BA, its Bias setting and the models of Frequency Response may indicate a reliability risk. Updating the models with accurate Frequency Response data will improve the evaluation of this reliability risk. Please implement this process as soon as possible.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter Information (Complete this page for comments from one organization or individual.)		
Name: Michael Calimano		
Organization: New York Independent System Operator		
Telephone: 518-356-6129		
E-mail: mcalimano@nyiso.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1-Transmission Owners
	区	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^34] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\boxtimes No
Comments: The NYISO is uncertain if this is the appropriate means to require data collection for purposes of developing models. A review should be made to be certain that this proposed scope meets the criteria for a standard.
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes Yes
Comments:
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
\boxtimes No
Comments: It is not clear what type of data is going to be collected from this requirement. AGC response is continuous. What is the justification for the specific "five minutes" reffered to? Since AGC control is every 4 seconds, five minutes appears to be too long a period to collect this data. Imposing this requirement will require the installation of local data storage retention facilities \& telemetering equipment that may not be necessary and NPCC participating members would like the drafting team to explain why 5 minutes is necessary.

Also, when requesting data from a generator what is expected scan-rate/exception reporting clarity of the data?
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
Q Yes
\square No
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc. net or by telephone at 813-468-5998.

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^35] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities:

Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?Yes
\boxtimes No
Comments: Explain the applicability of the SAR to LSEs
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\square Yes
\boxtimes No
Comments: It is not clear what type of data is going to be collected from this requirement. AGC response is continuous. What is the justification for the specific "five minutes" reffered to? Since AGC control is every 4 seconds, five minutes appears to be too long a period to collect this data. Imposing this requirement will require the installation of local data storage retention facilities \& telemetering equipment that may not be necessary.
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes YesNo
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments: The results of the data collection efforts should be used to develop a standard governing frequency response.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc. net or by telephone at 813-468-5998.

Group Comments (Complete this page if comments are from a group.)			
Group Name: Southern Company Transmission			
Lead Contact: Jim Busbin			
Contact Organization: Southern Company Services, Inc.			
Contact Segment:			
Contact Telephone: 205-257-6357 Contact E-mail: jybusbin@southernco.com			
Additional Member Name	Additional Member Organization	Region*	Segment*
Marc Butts	Southern Company Services	SERC	1
J. T. Wood	Southern Company Services	SERC	1
Roman Carter	Southern Company Services	SERC	1
Raymond Vice	Southern Company Services	SERC	1
Jim Viikinsalo	Southern Company Services	SERC	1
Tom Higgins	Southern Company Services	SERC	5
Terry Crawley	Southern Company Services	SERC	5

[^36]
Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments: Frequency response and its dynamic behavior is a complex issue that requires detailed analysis and study to understand. This in turn requires sufficient high quality data be obtained to support the development of models and concepts. The data could be collected voluntarily, but without the force of NERC standards behind it not many people are going to devote the resources required to collect the data. We strongly support this effort.
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes YesNo
Comments:
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes YesNo
Comments:
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes Yes
\square No
Comments: Currently BAs in the Eastern Interconnection have little, if any, way to actually calculate their frequency responses. As a result, most default to the one percent minimum. A good database of disturbance events will provide the information to calculate BA frequency response more accurately while at the same time allowing the NERC OC/RS to determine if the one percent minimum is appropriate in the El today.
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR.
Comments: This SAR starts the process toward understanding frequency behavior, particularly in the Eastern Interconnection. In our opinion this is a necessary first step in determining whether we need frequency response allocations or other measures to ensure the sustained frequency performance that is required for reliable operations.

Wherever possible, the scope and extent of data collection required for generators, their dynamic models including all associated control devices, and any other system data parameters covered under this SAR be limited such that it should not duplicate or exceed system modeling data requirements of any other NERC standard. One important system modeling parameter not emphasized in this SAR is the characteristic behavior of load at each substation (constant power, constant current, etc.), which would seem to have a significant effect on overall frequency response of the interconnected system. It is quite possible that advancements in consumer appliances and electronics, and their proliferation of use, have collectively changed the overall characteristics of system load to a composite state that is significantly different from modeling assumptions made within the previous few years.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Mike Pfeister		
Organization: Salt River Project		
Telephone: 602-236-3970		
E-mail: Mike.Pfeister@srpnet.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	区	1 - Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^37] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes YesNo
Comments: Ultimately there may be some impact to the Planning Coordinator and/or Resource Planner if a frequency response requirement is specified. Could there be an extreme scenario where an entity would have to consider shedding load to meet some frequency reserve criteria?
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes YesNo
Comments:
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes YesNo
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR.
Comments: The SAR includes some requirement language pertaining to generators greater than 10 MW. Old NERC Policy included language requiring frequency responsive governors "unless restricted by regulatory mandates". This makes sense for most nuclear facilities. Another type of restriction on governors involves small hydro units
that are dependent on water order. For this type of unit there truly is no governor response yet the unit capabilities may exceed 10 MWs. Please consider these types of exemptions as work progresses on this SAR and resulting standard.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Ron Beck		
Organization: Southwestern Power Administration		
Telephone: 417-891-2639		
E-mail: ron.beck@swpa.gov		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	区	1-Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^38] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes No
Comments: The scope of this SAR is for data collection, and should not include establishing a Target Frequency Response as stated in Paragraph \#5.
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?Yes
\boxtimes No
Comments: Load serving entities should not be included due to the characteristics of load and frequency. Load Serving Entities should contribute data to determine FRC.
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?Yes
\boxtimes No
Comments: Need more specific information regarding sample rates. The 5 -minutes of frequency response should identify time periods prior to and after the event.
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes YesNo
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR.
Comments: Data collection and FRC assessments should also take into account loss of load, not just loss of generation. If load is lost, causing a high frequency excursion, FRC should be observed on heavily loaded generators.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen.long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: David Lemmons		
Organization: Xcel Energy Services		
Telephone: 303-308-6120		
E-mail: david.f.lemmons@xcelenergy.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	\square	1 - Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	区	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are Group Name: Lead Contact: Contact Organization: Contact Segment: Contact Telephone: Contact E-mail:			
Additional Member Name	Additional Member Organization	Region*	Segment*
Greg Pieper	Xcel Energy	MRO	1
Michael Ibold	Xcel Energy	MRO	3
Steve Beuning	Xcel Energy	MRO	5

[^39] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
இNo
Comments: We agree with the proposed scope except that items 5 and 6 do not deal specifically with data collection and therefore are beyond the scope of the SAR. We are concerned over establishing a Target Frequency Response. This is presumptious in that it advances a proposed remedy before first meeting the intent of the SAR-determining the cause for the percieved decline in frequency response. We support Items 6a. and 6b. if referenced to item 4 as modified as follows: Modify 4 to require generator level reporting when the Frequency Response for a BA is less than [75]* percent of the Previous Years observed Frequency Response. Delete items 5 and 6.
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes Yes
\square No
Comments: To the extent information is needed from these entities, they are appropriate to list. It is possible that the LSE is not required.
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?Yes
\boxtimes No
Comments: Further clarification is needed around the time period for which data will be collected. It important to note that description of the 5 minutes data collection period should include 1 minute before and 4 minutes after the event.
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes Yes
\square No
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR.
Comments: Establishing a Target Frequency Response is premature. It advances a proposed remedy in advance of first meeting the intent of the SAR-determining the cause for the percieved decline in frequency response. It is our view that the percieved decline of frequency response, if that turns out to be the confirmed as a true decline, of itself does not necessarily indicate an significantly increased threat to reliability. As long as generating reserve obligations are being met to meet Reliability Standards and the real time regulating reserves are being carried, also to meet Standards, there may not be a need to go further depending on the outcome of the study proposed by the SAR.

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Brian Thumm		
Organization: ITC Holdings		
Telephone: 248-374-7846		
E-mail: bthumm@itctransco.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	区	1 - Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^40] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities:

Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes YesNo
Comments:
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?Yes
\boxtimes No
Comments: Five minutes of data seems arbitrary. If the collection period were extended to 15 minutes, it would coincide with the Disturbance Control period.
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes YesNo
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: James H. Sorrels, Jr.		
Organization: American Electric Power		
Telephone: (614) 716-2370		
E-mail: jhsorrels@aep.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	区	1 - Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	®	5 - Electric Generators
	区	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^41] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments:
2. The proposed standard would have requirements for the following functional entities:

Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes YesNo
Comments: The role of the load serving entity in item 6 b is unclear.
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
$\square \mathrm{N}$
Comments:
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes YesNo
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:

Please use this form to submit comments on the third draft of the Frequency Response SAR. Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line. If you have questions please contact Maureen Long at maureen. long@nerc. net or by telephone at 813-468-5998.

I ndividual Commenter I nformation (Complete this page for comments from one organization or individual.)		
Name: Richard Kafka		
Organization: Pepco Holdings, Inc.		
Telephone: 301-469-5274		
E-mail: rjkafka@pepcoholdings.com		
NERC Region		Registered Ballot Body Segment
ERCOTFRCCMRONPCCRFCSERCSPPWECCNA - Not Applicable	区	1 - Transmission Owners
	\square	2 - RTOs, ISOs
	\square	3 - Load-serving Entities
	\square	4 - Transmission-dependent Utilities
	\square	5 - Electric Generators
	\square	6 - Electricity Brokers, Aggregators, and Marketers
	\square	7 - Large Electricity End Users
	\square	8 - Small Electricity End Users
	\square	9 - Federal, State, Provincial Regulatory or other Government Entities
	\square	10 - Regional Reliability Organizations, Regional Entities

Group Comments (Complete this page if comments are from a group.)
Group Name:
Lead Contact:
Contact Organization:
Contact Segment:
Contact Telephone:
Contact E-mail:

Additional Member Name	Additional Member Organization	Region*	Segment*

[^42] comments. Regional acronyms and segment numbers are shown on prior page.

Background I nformation:

The original SAR on Frequency Response was submitted in large part due to a study that showed a 10+\% decline in Eastern Interconnection Frequency Response over a 5-year period, when response should be increasing over time as the Interconnection grows. Other Interconnections were observing similar declines. The drafting team posted a white paper along with the SAR to outline the need for a standard.

The NERC Resources Subcommittee recently updated their estimate of Eastern Interconnection Frequency Response and found it still trending downward. Response in 2006 was on the order of $2,800 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (compared to $3,750 \mathrm{MW} / 0.1 \mathrm{~Hz}$ in 1994). Frequency Response for larger events (greater than 35 mHz) in 2006 may be as low as $2,600 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Below is an independently calculated estimate of the trend in Eastern Interconnection Frequency Response provided by the New York ISO. Note: Response is stated in engineering terms ($\mathrm{MW} / \mathrm{mHz}$) as opposed to the traditional MW/01.Hz.

The proposed Frequency Response standard (FRS) is a technical standard. Technical standards are described in the Reliability Standards Development Procedure. The FRS is not proposed to be a performance standard and does not propose a minimum Frequency Response, below which penalties are applied.

Industry commenters agreed there is a reliability need for the FRS. Comments varied on the technical details of the standard. Because of the divergent views on the details of the FRS SAR, the NERC Standards Committee (SC) directed the SAR drafting team to revise the SAR to focus only on the data collection needed to support the development of accurate models of Frequency Response in North America.

The SAR drafting team has tried to meet the Standards Committee's directive with this third version of the SAR.

The Version 3 of the Frequency Response SAR represents the changes requested by the NERC Standards Committee, while still meeting the June 2006 direction of the NERC Operating Committee. Specifically, the Operating Committee endorsed developing a Frequency Response standard that includes the following goals and objectives:

- Improving Interconnection Frequency Response event cataloging and benchmarking.
- Calculating balancing authority Frequency Response and requiring balancing authorities to analyze those cases where the response is significantly below the norm.
- Establishing time limits to complete the analyses.
- Tabulating non-responsive generators.
- Measuring generator response (those units on line).
- Including regional participation and review.

This revised SAR was reviewed and supported by the NERC Resources Subcommittee on December 4, 2006. The major changes between Draft 2 and Draft 3 include:

- Clarification on the role of the Load-serving Entity and Generator Operator.
- Inclusion of the applicability of Reliability Principles 3,5, and 6.
- Reduced the scope to address only the collection of data needed to model Frequency Response in North America.
- Clarified that the data collected to model frequency response over a period of up to 5 minutes per event to help identify the window of time where frequency response appears to be masked by AGC action.

Note that because the changes to the SAR were quite significant, no redline showing the changes from Version 2 to Version 3 will be posted.

Please review the revised SAR and then answer the questions on the following page.
Comments must be submitted by March 9, 2007. You may submit the completed form by e-mail to sarcomm@nerc.com with the words "FR SAR Draft 3" in the subject line.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
\boxtimes Yes
\square No
Comments: Data collection will provide the background for any new performance standard
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
\boxtimes Yes
Comments: In some cases, it is likely that the BA and GOP will have all the information required.
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?
\boxtimes Yes
\square No
Comments:
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?
\boxtimes YesNo
Comments:
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR. Comments:

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

Consideration of Comments on $3^{\text {rd }}$ Posting of Frequency Response SAR

The Frequency Response SAR Requesters thank all commenters who submitted comments on Draft 3 of the Frequency Response SAR. This SAR was posted for a 30-day public comment period from February 8 through March 9, 2007. The requesters asked stakeholders to provide feedback on the standard through a special standard Comment Form. There were 26 sets of comments, including comments from more than 59 different people from 39 companies representing 9 of the 10 Industry Segments as shown in the table on the following pages.

Based on the comments received, the drafting team did not make any changes to the SAR (except to update the descriptions of the Reliability Functions to match the latest version of the Functional Model) and is recommending that the Standards Committee authorize moving this SAR forward to standard drafting.

In this "Consideration of Comments" document stakeholder comments have been organized so that it is easier to see the responses associated with each question. All comments received on the standards can be viewed in their original format at:

http://www.nerc.com/~filez/standards/Frequency Response.html

If you feel that your comment has been overlooked, please let us know immediately. Our goal is to give every comment serious consideration in this process! If you feel there has been an error or omission, you can contact the Director of Standards, Gerry Adamski, at 609-452-8060 or at gerry.adamski@nerc.net. In addition, there is a NERC Reliability Standards Appeals Process. ${ }^{1}$

[^43]The Industry Segments are:
1 - Transmission Owners
2 - RTOs, ISOs
3 - Load-serving Entities
4 - Transmission-dependent Utilities
5 - Electric Generators
6 - Electricity Brokers, Aggregators, and Marketers
7 - Large Electricity End Users
8 - Small Electricity End Users
9 - Federal, State, Provincial Regulatory or other Government Entities
10 - Regional Reliability Organizations, Regional Entities

Commenter		Organization	I ndustry Segment										
		1	2	3	4	5	6	7	8	9	10		
1.	Dan Boezio (G8)		AEP	\checkmark									
2.	Jason Shaver	American Transmission Co.	\checkmark										
3.	Bart McManus	Bonneville Power Administration	\checkmark										
4.	James Murphy	Bonneville Power Administration	\checkmark										
5.	John Anasis	Bonneville Power Administration	\checkmark										
6.	Brenda Anderson	Bonneville Power Administration	\checkmark										
7.	Brent Kingsford	California ISO		\checkmark									
8.	Ed Thompson (G2)	ConEd	\checkmark										
9.	Michael Gildea	Constellation Generation					\checkmark						
10.	Doug Hils (G3)	Duke Energy	\checkmark										
11.	Howard F. Illian	Energy Mark, Inc.								\checkmark			
12.	Steve Myers (G1)	ERCOT		\checkmark									
13.	Bruno Jesus (G2)	Hydro One Networks	\checkmark										
14.	Roger Champagne (G1)	Hydro Québec TransÉnergie	\checkmark										
15.	Ron Falsetti (G1)	IESO		\checkmark									
16.	Kathleen Goodman (G1)	ISO-NE		\checkmark									
17.	Bill Shemley (G2)	ISO-NE		\checkmark									
18.	Brian Thumm (G3)	ITC Transmission	\checkmark										
19.	Jim Cyrulewski (G3)	JDRJC Associates								\checkmark			
20.	Michael Gammon	Kansas City Power \& Light	\checkmark										
21.	Jim Useldinger	KCPL	\checkmark										

Commenter		Organization	I ndustry Segment										
		1	2	3	4	5	6	7	8	9	10		
	(G8)												
22.	Jason Atwood (G8)	Kelson Energy				\checkmark							
23.	Don Nelson (G2)	MA Dept. of Tele. And Energy									\checkmark		
24.	Robert Coish	Manitoba Hydro	\checkmark		\checkmark		\checkmark	\checkmark					
25.	Alan R. Oneal	MidAmerican Energy Co.											
26.	Jason Marshall (G3)	Midwest ISO Stakeholders Standards Collaboration Participants		\checkmark									
27.	Herb Schrayshuen	National Grid	\checkmark										
28.	Randy McDonald (G2)	NBSO		\checkmark									
29.	Guy V. Zito (G2)	NPCC										\checkmark	
30.	Sydney Niemeyer	NRG Texas, Qualified Scheduling Entity					\checkmark						
31.	Jerad Barnhart	NStar	\checkmark										
32.	Mike Calimano (G1)	NYISO		\checkmark									
33.	Greg Campoli (G1)	NYISO		\checkmark									
34.	Ralph Rufrano (G2)	NYPA	\checkmark										
35.	Theodore Papaps	NYSRC										\checkmark	
36.	Al Adamson (G2)	NYSRC										\checkmark	
37.	Pete Kuebeck (G8)	OG\&E	\checkmark										
38.	Al DiCaprio	PJM		\checkmark									
39.	Alicia Daughtery	PJM		\checkmark									
40.	Joseph Willson	PJM		\checkmark									
41.	Tom Bowe	PJM		\checkmark									
42.	Mike Pfeister	Salt River Project	\checkmark										
43.	Jim Busbin (G6)	Southern Company Services, Inc.	\checkmark										
44.	Marc Butts (G6)	Southern Company Services, Inc.	\checkmark										
45.	J.T. Wood (G6)	Southern Company Services, Inc.	\checkmark										
46.	Roman Carter	Southern Company Services, Inc.	\checkmark										
47.	Raymond Vice	Southern Company Services, Inc.	\checkmark										

Commenter		Organization	I ndustry Segment										
		1	2	3	4	5	6	7	8	9	10		
48.	Jim Viikinsalo		Southern Company Services, Inc.	\checkmark									
49.	Tom Higgins	Southern Company Services, Inc.					\checkmark						
50.	Terry Crawley	Southern Company Services, Inc.					\checkmark						
51.	Ron Beck	Southwestern Power Administration	\checkmark										
52.	Bill Grant (G8)	Southwestern Public Service	\checkmark										
53.	Wayne Galli (G8)	SPP										\checkmark	
54.	Steve Massey (G8)	Westar Energy					\checkmark						
55.	Mich Crouch (G8)	Western Farmers	\checkmark										
56.	Greg Pieper	Xcel Energy Services	\checkmark										
57.	Michael Ibold	Xcel Energy Services			\checkmark								
58.	Steve Beuning	Xcel Energy Services					\checkmark						
59.	David Lemmons	Xcel Energy Services						\checkmark					

I - Indicates that individual comments were submitted in addition to comments submitted as part of a group
G1 - IRC Standards Review Committee
G2 - NPCC CP9 Reliability Standards Working Group (NPCC CP9)
G3 - Midwest ISO Stakeholders Standards Collaboration Participants (MISO SSC)
G4 - TVA
G5 - Public Service Commission of SC (PSC of SC)
G6 - Southern Company Transmission (Southern Co)
G7 - MRO
G8 - Southwest Power Pool Operating Reliability Working Group

Index to Questions, Comments, and Responses

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?
2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?
3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?17
4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response? ... 22
5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR.

1. Do you agree with the reduced scope of this SAR - focusing only on the data collection needed to support the development of accurate models of Frequency Response in North America?

Summary Consideration:

The majority of the comments agreed with the reduced scope of the SAR, which now focuses only on the data collection that is needed to support the development of accurate models of Frequency Response in North America. For most of the commenters that did not support the reduced scope, the SAR Drafting Team believes there may be a misunderstanding with respect to the use of the Target Frequency Response. The SAR Drafting Team explained to those commenters that the Target Frequency Response does not set a minimum for any particular Balancing Authority. Rather it sets a benchmark, beyond which additional data is needed from the Balancing Authority.

Question \# 1			
Commenter	Yes	No	Comment
SWPA		\checkmark	The scope of this SAR is for data collection, and should not include establishing a Target Frequency Response as stated in Paragraph \#5.
Response: The SAR Drafting Team appreciates your input, but disagrees with your conclusion. There should always be a purpose for going to the trouble and expense of capturing and analyzing data. The SAR Drafting Team considers the establishment of a Target Frequency Response for each Interconnection as vital for the reliability of the Interconnections and one of the two fundamental reasons why this SAR was initially drafted. The SAR Drafting Team believes there may be a misunderstanding with respect to Target Frequency Response, which does not set a minimum for any particular Balancing Authority. The Target Frequency Response sets a benchmark, beyond which additional data is needed from the Balancing Authority.			
Xcel Energy Services			We agree with the proposed scope except that items 5 and 6 do not deal specifically with data collection and therefore are beyond the scope of the SAR. We are concerned over establishing a Target Frequency Response. This is presumptious in that it advances a proposed remedy before first meeting the intent of the SAR-determining the cause for the percieved decline in frequency response. We support Items 6 a . and 6 b . if referenced to item 4 as modified as follows: Modify 4 to require generator level reporting when the Frequency Response for a BA is less than [75]* percent of the Previous Years observed Frequency Response. Delete items 5 and 6.
Response: In response to your first comment on Paragraph 5, the SAR Drafting Team considers the establishment of a Target Frequency Response for each Interconnection as vital for the reliability of the Interconnections and one of the two fundamental reasons why this SAR was drafted initially. The reason for establishing the target frequency response is to determine the point at which additional data is needed from a given Balancing Authority.			
In response to your comment on Paragraph 6, the SAR Drafting Team does not view the provisions of Paragraph 6 as presumptive or proscriptive, but as a necessary step in identifying and understanding potential frequency response variations within a given Interconnection. No specific action is required by the Balancing Authority or the Generation Owner at this			

Question \#1

> | Commenter | Yes | No | Comment |
| :--- | :--- | :--- | :--- |

point in the process beyond supplying the data needed for NERC to understand why variations in Frequency Response occur in different regions and to determine if further actions are required, via the NERC Reliability Standards Process, to address them.

PJM

The primary objective of this SAR is to collect data; to analyze the data; and only then to recommend a performance value. The SAR DT insists that collecting data is a Technical Standard. The RSDP states:
"Technical standards...will contain Measures (not measuring - AMD) of physical parameters..." At this point this SAR proposal does not contain such a measure, it does not even assert that the measure is really needed (hence the need to analyze the data).

Page 19 (of 43) of the RSPM states "The drafting team may recommend the scope of the standard be reduced to allow the effort to move forward, while still remaining within the scope of the SAR. Reducing the scope of the SAR is acceptable if the drafting team finds, for instance, THAT ADDITIONAL TECHNICAL RESEARCH IS NEEDED PRIOR TO DEVELOPING (emphasis added) a portion of the standard or issues need to be resolved before consensus can be achieved on a portion of the standard. "The highlighted section applies directly to the scope of this SAR. The SAR Team recognizes work is needed. There is no question about that. The Team should do that work BEFORE proposing a mandatory standard.

PJM supports the concept of doing such a study, and would encourage NERC to assign a group to do such a study, but PJM does not agree that collecting data rises to the level of a valid NERC reliability standard.

Response: NERC's Reliability Standards Development Plan: 2007-2009 describes the characteristics of a Reliability

 Standard as follows: " Although reliability standards have a common format and process, several types of reliability standards may exist, each with a different approach to measurement:- Technical standards related to the provision, maintenance, operation, or state of bulk power systems will likely contain measures of physical parameters and will often be technical in nature.
- Performance standards related to the actions of entities providing for or impacting the reliability of the bulk power systems will likely contain measures of the result of such actions, or the nature of the performance of such actions".
Collecting, correlating and analyzing data on a continental scale is not a simple matter. The SAR Drafting Team believes that the scale of this project and the potential importance of the conclusions to be developed per the specifications in Paragraphs 5 and 6 more than warrant the use of the NERC Reliability Standards Process to address them. Directed research can be

Question \#1		
om		Comment
estig		
IESO		We do not agree with the reduced scope of this SAR. It does not require a standard to enable a data collection task(s). Data collection procedures and processes, charged by a standing committee, e.g. the OC, or respective working groups, would be more than sufficient.
Response: The SAR Drafting Team believes that the scale of this project, the ongoing nature, and the potential importance of the conclusions to be developed per the specifications in Paragraphs 5 and 6 more than warrant the use of the NERC Reliability Standards Process to address them. We believe the Standing Committees would play a vital role in evaluating the initial results of the standard.		
SPP ORWG	V	Do not agree with the notion in point 5 regarding the need for a Target Frequency Response for each interconnection at this time. It is beyond the scope of this technical SAR to propose anything other than collection of data to support the study. Do not agree with point 6 of the description. In order to get a handle on what is really going on, all Balancing Authorities should be required to produce data valid to the study. Also the language in point 6 is poorly worded compared to the right wording in 6a and 6 b . 6 a and 6 b should be included in the SAR and 6 should be removed.
Response: The SAR Drafting Team appreciates your input, but disagrees with your conclusion. The SAR Drafting Team considers the establishment of a Target Frequency Response for each Interconnection as vital for the reliability of the Interconnections and one of the two fundamental reasons why this SAR was drafted initially. The reason for establishing the target frequency response is to determine the point at which additional data is needed from a given Balancing Authority.		
With respect to your comment on Paragraph 6, the SAR Drafting Team does not view the provisions of Paragraph 6 as presumptive or proscriptive, but as a necessary step in identifying and understanding potential frequency response variations within a given Interconnection. No specific action is required by the Balancing Authority or the Generation Owner at this point in the process beyond supplying the data needed for NERC to understand why variations in Frequency Response occur in different regions and to determine if further actions are required, via the NERC Reliability Standards Process, to address them. The intent of the Target Frequency Response is to determine the point where additional data is required. The SAR Drafting Team does not recognize the specific wording that you are referring to in Paragraph 6 and request clarification.		
KCPQL	マ	Do not agree with the notion in point 5 regarding the need for a Target Frequency Response for each interconnection at this time. It is presumptuous to advance a remedy prior to determining cause of the perceived decline in frequency response. Allow the techincal SAR to perform its function to determine cause. Any appropriate remedy in operating standards should become apparent. Do not agree with point 6 of the description. In order to get a handle on what is really

Question \#1			
			Comment
			on, all Balancing Authorities should be required to produce data valid to the study.
Response: We appreciate your input, but disagree with your conclusion. The SAR Drafting Team considers the establishment of a Target Frequency Response for each Interconnection as vital for the reliability of the Interconnections and one of the two fundamental reasons why this SAR was drafted initially. The reason for establishing the target frequency response is to determine the point at which additional data is needed from a given Balancing Authority.			
In response to your comment on Paragraph 6, the SAR Drafting Team does not view the provisions of Paragraph 6 as presumptive or proscriptive, but as a necessary step in identifying and understanding potential frequency response variations within a given Interconnection. No specific action is required by the Balancing Authority or the Generation Owner at this point in the process beyond supplying the data needed for NERC to understand why variations in Frequency Response occur in different regions and to determine if further actions are required, via the NERC Reliability Standards Process, to address them. The intent of the Target Frequency Response is to determine the point where additional data is required. The SAR Drafting Team does not recognize the specific wording that you are referring to in Paragraph 6 and request clarification.			
	V	-	HQT believe there might be other means than Reliability Standards to accomplish this data collection.
Response: The SAR Drafting Team agrees that there may be methods other than the use of the NERC Reliability Standards Process to address this issue. However, due to the scale of this project and the potential importance of the conclusions to be developed per the specifications in Paragraphs 5 and 6 , the SAR Drafting Team believes that the use of the NERC Reliability Standards Process is appropriate.			
NPCC CP9			Many of NPCC's participating members believe there are other means to accomplish this phase of the initiative and that appropriate revisions to existing standard(s) may address the issue determined by the data analysis could be proposed.
Response: The SAR Drafting Team agrees that there may be methods other than the use of the NERC Reliability Standards Process to address this issue. However, due to the scale of this project and the potential importance of the conclusions to be developed per the specifications in Paragraphs 5 and 6, the SAR Drafting Team believes that the use of the NERC Reliability Standards Process is appropriate.			
NYISO	-	-	The NYISO is uncertain if this is the appropriate means to require data collection for purposes of developing models. A review should be made to be certain that this proposed scope meets the criteria for a standard.
Response: The SAR Drafting Team agrees that there may be methods other than the use of the NERC Reliability Standards Process to address this issue. However, due to the scale of this project and the potential importance of the conclusions to be developed per the specifications in Paragraphs 5 and 6, the SAR Drafting Team believes that the use of the NERC Reliability Standards Process is appropriate. Note that the NERC Standards Committee and the industry as a whole are currently performing just such a review, as you request, by commenting on this draft SAR.			

Question \#1			
Commenter	Yes	No	Comment
Energy Mark, Inc.	\square		At this time information is not available that would provide a sound technical basis for the development of a performance standard. However, with the recent increased interest in Frequency Response, new data and analysis could become available at any time that would change the focus from a technical standard to a performance standard. If new information and analysis becomes available during the development of the technical standard, consideration should be given to how the development of the technical standard could delay the development and implementation of a performance standard. Must the technical standard be completed and approved before work can start on a performance standard?
Response: The SAR Drafting Team agrees that there may be technical issues which may allow the Standard Drafting Team to accomplish the functional purpose of this SAR differently than anticipated by the SAR Drafting Team. This is allowed for in the NERC Reliability Standards Process Manual, page 19, as noted by PJM above.			
It is anticipated by the SAR Drafting Team that the work set forth in the SAR will aid in determining if a Performance Standard is required and, if so, how the standard should be structured. A SAR for a Frequency Response Performance Standard can be written and submitted to the NERC Standards Committee at any time.			
MidAmerican Energy Co.	\square		This standard would be a start, at least, at bringing to light where and why response is being lost. It may well be that exposure and peer pressure, as well as the tiered reporting requirements, will keep plant and operations personnel abreast of their obligations for providing reserves of all types.
Response: The SAR Drafting Team appreciates your support.			
Southern	\square		Frequency response and its dynamic behavior is a complex issue that requires detailed analysis and study to understand. This in turn requires sufficient high quality data be obtained to support the development of models and concepts. The data could be collected voluntarily, but without the force of NERC standards behind it not many people are going to devote the resources required to collect the data. We strongly support this effort.
Response: The SAR Drafting Team appreciates your support.			
ISO New England	\square		
Bonneville Power Administration	\square		
American Transmission Co.	\square		
CAISO	\square		
ERCOT	\checkmark		

Consideration of Comments on $3^{\text {rd }}$ Posting of Frequency Response SAR

Question \# 1			
Commenter	Yes	No	Comment
Manitoba Hydro	\square		
MISO	\square		
NRG Texas	\square		
NYSRC	\square		
Salt River Project	\square		
American Electric Power	\square		
ITC Transco	\checkmark		

2. The proposed standard would have requirements for the following functional entities: Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-serving Entity. Do you agree that these are the right functional entities for the proposed standard?

Summary Consideration:

The majority of the commenters supported the functional entities for which the proposed standard would be applicable, specifically the Reliability Coordinator, Balancing Authority, Generator Owner, Generator Operator, and Load-Serving Entity. All commenters that responded that they did not agree to the proposed functional entities requested clarification on the applicability to a Load-serving Entity (LSE).
The SAR Drafting Team explained that the LSE functional entity was added in response to stakeholder comments received on the first draft of the SAR. The SAR Drafting Team also explained to commenters that various industry experts estimate that as much as $1 / 3$ of the total Interconnection Frequency Response may be supplied by Load Frequency Response (the other $2 / 3$ is supplied from Turbine Governor Support). Thus information from the LSE concerning the composition and variations of load served within the Interconnection can be critical in understanding total Interconnection Frequency Response.
One commenter suggested that if there is a future performance standard, it would be unreasonable to implement a technical standard that requires functional entities to provide data. The SAR Drafting Team does not see the linkage between requiring data from entities in order to qualify and quantify Frequency Response with the interconnections and NOT including all these entities in a Frequency Response Performance Standard.

Question \#2			
Commenter	Yes	No	Comment
PJM		\boxed{V}	The proposal as written appears to be headed towards mandating a given unit response. As such there would be an obligation on the Generator Operator - there does not seem to be any requirements that would apply to the Generator Owner - unless of course the requestor includes a requirement to install a governor (this has, to date, be an implied obligation just as having a turbine has been an implied obligation). If the requestor does intend to assert an obligation on the Generator Owner to install a governor then the question arises should that be a standard or should that be a part of the Certification of a GO?
Response: The stated purpose of this SAR is to collect and analyze data in order to determine the Frequency Response for			
each Interconnection, recommend a target Frequency Response for each Interconnection and determine the cause of any			
significant variations in Frequency Response within each of the Interconnections.			

Question \#2

$$
\begin{array}{l|l|l|l}
\hline \text { Commenter } & \text { Yes } & \text { No } & \text { Comment } \\
\hline
\end{array}
$$

Governor Support). Thus information from the LSE concerning the composition and variations of load served within the Interconnection can be critical in understanding total Interconnection Frequency Response. The applicability to LSEs was added at the specific request of commenters in a previous version of the SAR.

SWPA		$\boxed{ }$	Load serving entities should not be included due to the characteristics of load and frequency. Load Serving Entities should contribute data to determine FRC.

Response: Various industry experts estimate that as much as $1 / 3$ of the total Interconnection Frequency Response may be supplied by Load Frequency Response (the other $2 / 3$ is supplied from Turbine Governor Support). Thus information from the LSE concerning the composition and variations of load served within the Interconnection can be critical in understanding total Interconnection Frequency Response. The applicability to LSEs was added at the specific request of commenters in a previous version of the SAR. Note that your two statements seem to contradict each other.

NPCC CP9		∇	NPCC participating members question the need to include the applicability to the LSEs in this SAR and requests the drafting team to explain this.

Response: Various industry experts estimate that as much as $1 / 3$ of the total Interconnection Frequency Response may be supplied by Load Frequency Response (the other $2 / 3$ is supplied from Turbine Governor Support). Thus information from the LSE concerning the composition and variations of load served within the Interconnection can be critical in understanding total Interconnection Frequency Response. The applicability to LSEs was added at the specific request of commenters in a previous version of the SAR.

\section*{| NYSRC | | \square | Explain the applicability of the SAR to LSEs. |
| :--- | :--- | :--- | :--- |}

Response: Various industry experts estimate that as much as $1 / 3$ of the total Interconnection Frequency Response may be supplied by Load Frequency Response (the other $2 / 3$ is supplied from Turbine Governor Support). Thus information from the LSE concerning the composition and variations of load served within the Interconnection can be critical in understanding total Interconnection Frequency Response. The applicability to LSEs was added at the specific request of commenters in a previous version of the SAR.

SPP ORWG		$\boxed{ }$	A standard can not be imposed on the response of load to frequency. Load Serving Entities can only provide data.

Response: The SAR Drafting Team agrees that the role of the LSE will primarily be to supply data concerning the composition and variations of load served within the Interconnection. There is nothing in the SAR imposing a response requirement on any of the functional entities.

| Hydro Québec | | $\boxed{ }$ | We question the need to include the applicability to the LSEs in this SAR and requests |
| :--- | :--- | :--- | :--- | TransÉnergie the drafting team to explain the purpose.

Response: Various industry experts estimate that as much as $1 / 3$ of the total Interconnection Frequency Response may be supplied by Load Frequency Response (the other $2 / 3$ is supplied from Turbine Governor Support). Thus information from the LSE concerning the composition and variations of load served within the Interconnection can be critical in understanding total Interconnection Frequency Response. The applicability to LSEs was added at the specific request of commenters in a previous version of the SAR.

Question \#2			
Commenter	Yes	No	Comment
IESO		\checkmark	For the purpose of data collection, assigning responsibility to the Balancing Authority, Generator Operator and Load-serving Entity would suffice.
Response: Most of the data will be collected from the entities you list. However, the SAR Drafting Team believes the other entities included in the SAR have some of the data that is needed for this standard. For example the Generator Owner might have relevant data that may not be available from the Generator Operator.			
ISO New England		\square	ISO New England does not see a need to include the applicability to the LSEs in this SAR and requests the drafting team to explain this.
Response: Various industry experts estimate that as much as $1 / 3$ of the total Interconnection Frequency Response may be supplied by Load Frequency Response (the other $2 / 3$ is supplied from Turbine Governor Support). Thus information from the LSE concerning the composition and variations of load served within the Interconnection can be critical in understanding total Interconnection Frequency Response. The applicability to LSEs was added at the specific request of commenters in a previous version of the SAR.			
American Transmission Co.		\checkmark	ATC does not see the need to identify the Load Serving Entity in the Applicability section. The SDT should provide an explanation as to the reasoning behind the selection of Load Serving Entities.
Response: Various industry experts estimate that as much as $1 / 3$ of the total Interconnection Frequency Response may be supplied by Load Frequency Response (the other $2 / 3$ is supplied from Turbine Governor Support). Thus information from the LSE concerning the composition and variations of load served within the Interconnection can be critical in understanding total Interconnection Frequency Response. The applicability to LSEs was added at the specific request of commenters in a previous version of the SAR.			
Energy Mark, Inc.	\square	\checkmark	I agree that the proposed list includes those entities that would be affected by a technical standard. However, there are many questions that must be resolved before any standard that affects the Generation Owner, Generation Operator or Load-serving Entity can be implemented. These questions relate to how a performance standard can or should be implemented. If there is no reasonable expectation that they would be included in a future performance standard, it would be unreasonable to implement a technical standard that requires these three functional entities to provide data. In a fair market that allows voluntary participation by Generation Owners, Generation Operators and Load-serving Entities, the direct application of a Frequency Response Performance Standard to these entities is not currently possible without creating unreasonable inequities in the market. Any standard applied directly to one generator but not another will create unreasonble inequities in a market. Since each generation technology has different Frequency Response capabilities, only a solution that provides Frequency Response through a market based mechanism can be fairly implimented in a market. Under these conditions, the measurement methods and data collection for a technical standard should only be applied to those entities that would have resposibilities under a

Question \#2			
Commenter	Yes	No	Comment
			performance standard. The correct alternative for collecting data from these entities is to collect it indirectly through the Balancing Authority or Reliability Coordinator that would be directly affected by a performance standard. The inclusion of Generation Owner, Generation Operator, and Load-serving Entity directly in the data collection will lead to the development of data collection systems that will need to be replaced, if and when, a performance standard is developed. This is an inefficient way to develop the technology for a new standard.
Response: The SAR Drafting Team appreciates your input, but disagrees with some of your conclusions.			
The SAR Drafting team does not see the linkage between requiring data from entities in order to qualify and quantify Frequency Response with the interconnections and NOT including all these entities in a Frequency Response Performance Standard.			
Available Frequency Response and its distribution within an Interconnection may require that certain generators be treated differently than others due to their location and electrical characteristics. How this difference is compensated is neither within the scope of this SAR nor within NERC's authority.			
The SAR drafting team agrees with your statement about the data collection being performed in the most efficient manner.			
Salt River Project	\checkmark		Ultimately there may be some impact to the Planning Coordinator and/or Resource Planner if a frequency response requirement is specified. Could there be an extreme scenario where an entity would have to consider shedding load to meet some frequency reserve criteria?
Response: The SAR Drafting Team does not anticipate that the standard resulting from this SAR will contain any requirement for specific Frequency Responses from the Interconnections or the Balancing Authorities. Future standards are beyond the scope of this SAR. The SAR Drafting Team would expect that in any standard (whether dealing with transmission, dynamics or reserves) load shedding only makes sense if the entity cannot withstand the next contingency.			
Xcel Energy Services	\checkmark		To the extent information is needed from these entities, they are appropriate to list. It is possible that the LSE is not required.
Response: Various industry experts estimate that as much as $1 / 3$ of the total Interconnection Frequency Response may be supplied by Load Frequency Response (the other $2 / 3$ is supplied from Turbine Governor Support). Thus information from the LSE concerning the composition and variations of load served within the Interconnection can be critical in understanding total Interconnection Frequency Response. The applicability to LSEs was added at the specific request of commenters in a previous version of the SAR.			
American Electric Power	\checkmark		The role of the load serving entity in item 6b is unclear.
Response: Various industry experts estimate that as much as $1 / 3$ of the total Interconnection Frequency Response may be supplied by Load Frequency Response (the other $2 / 3$ is supplied from Turbine Governor Support). Thus information from the			

Question \#2			
Commenter	Yes	No	Comment
LSE concerning the composition and variations of load served within the Interconnection can be critical in understanding total Interconnection Frequency Response. The applicability to LSEs was added at the specific request of commenters in a previous version of the SAR.			
ERCOT	V		
CAISO	V		
Bonneville Power Administration	V		
KCP\&L	■		
Manitoba Hydro	V		
MidAmerican Energy Co.	V		
MISO	V		
NRG Texas	V		
NYISO	,		
Southern	V		
ITC Transco	\checkmark		

3. The SAR drafting team modified the SAR to clarify that data will be collected to model up to 5 minutes of frequency response. This should help identify the window of time where frequency response appears to be masked by AGC action. Do you agree with this clarification?

Summary Consideration:

Most comments agreed that the clarification helped to identify the window of time when frequency response appears to be masked by AGC action. Several commenters requested more specific information on the sample rates and the specific data that would be collected. The SAR Drafting Team explained that this type of information will be developed in the standard development process and not captured in the SAR. The SAR drafting team agreed to forward these comments to the Director of Standards Development so that they can be addressed by the Frequency Response Standard Drafting Team.

Question \#3			
Commenter	Yes	No	Comment
SWPA		\checkmark	Need more specific information regarding sample rates. The 5-minutes of frequency response should identify time periods prior to and after the event.
Response: The SAR Drafting Team agrees with the comment. Specific information, such as sampling rate and specific data requirements, will be developed in the standard development process and not captured in the SAR. The five minute period was proposed based on comments to a prior version of the SAR. Some commenters were concerned that governors were withdrawing response shortly after the initial excursion. The SAR drafting team will forward these comments to the Director of Standards so that they can be addressed by the Frequency Response Standard Drafting Team. We expect the data sampling rate to be on existing SCADA periodicity.			
SPP ORWG		\checkmark	The 5 minute time is adequate, but it lacks substance. Small changes in load and generation due to frequency response are very difficult to separate from normal load changes and AGC action on generation units (as was pointed out). It is important to include in the description of data collection that the 5 minutes should include 1 minute of data prior to a study event and 4 minutes after a study event. It is also important to include a sample rate, such as 4 seconds (obviously, faster samples are better, but may not be practical). The SAR, as written, lacks specifics on what data is required to perform a valid study. Some examples of necessary data may include, but are not limited to, AGC pulses, special protection systems, generator MW, tie line MW, frequency, etc.
Response: The SAR Drafting Team agrees with the comment. Specific information, such as sampling rate and specific data requirements, will be developed in the standard development process and not captured in the SAR. The five minute period was proposed based on comments to a prior version of the SAR. Some commenters were concerned that governors were withdrawing response shortly after the initial excursion. The SAR drafting team will forward these comments to the Director of Standards so that they can be addressed by the Frequency Response Drafting Team. We expect the data sampling rate to			

Question \#		
Commenter		
be on existing SCADA periodicity		
Xcel Energy Services	V	Further clarification is needed around the time period for which data will be collected important to note that description of the 5 minutes data collection period should includ 1 minute before and 4 minutes after the event.
Response: In response to your first comment, the SAR Drafting Team agrees with the comment. Specific information, such as sampling rate and specific data requirements, will be developed in the standard development process and not captured in the SAR. The five minute period was proposed based on comments to a prior version of the SAR. Some commenters were concerned that governors were withdrawing response shortly after the initial excursion. The SAR drafting team will forward these comments to the Director of Standards so that they can be addressed by the Frequency Response Standard Drafting Team. We expect the data sampling rate to be on existing SCADA periodicity.		
In response to your second comment, the SAR Drafting team agrees that data is required both before and after the contingency to be analyzed.		
ITC Transco		Five minutes of data seems arbitrary. If the collection period were extended to 15 minutes, it would coincide with the Disturbance Control period.
Response: Thank you for your comment. The SAR Drafting Team agrees with the comment. Specific information, such as sampling rate and specific data requirements, will be developed in the standard development process and not in the SAR. The five minute period was proposed based on comments to a prior version of the SAR. Some commenters were concerned that governors were withdrawing response shortly after the initial excursion. The SAR drafting team will forward these comments to the Director of Standards so that they can be addressed by the Frequency Response Drafting Team. We expect the data sampling rate to be on existing SCADA periodicity.		
		As noted above PJM does not consider collecting data in order to decide what a requirement should be as grounds for a standard. Thus the sampling period which is outside of a NERC standard, can be defined in whatever way the group doing the sampling desires.
Response: Specific information, such as sampling rate and specific data requirements, will be developed in the standard development process and not captured in the SAR. The five minute period was proposed based on comments to a prior version of the SAR.		
NYSRC	マ	It is not clear what type of data is going to be collected from this requirement. AGC response is continuous. What is the justification for the specific "five minutes" reffered to? Since AGC control is every 4 seconds, five minutes appears to be too long a period to collect this data. Imposing this requirement will require the installation of local data storage retention facilities \& telemetering equipment that may not be necessary.
Response: The SAR Drafting Team agrees with the comment. Specific information, such as sampling rate and specific data requirements, will be developed in the standard development process and not captured in the SAR. The five minute period was proposed based on comments to a prior version of the SAR. Some commenters were concerned that governors were		

Question \#3			
Commenter	Yes	0	Comment
			reliable interconnection performance. The Frequency Response should be measured for an extended period after a disturbance to identify entities that are prematurely withdrawing their expected frequency response support from the interconnection. This has been demonstrated for entities that have outer loop control that only includes scheduled deliveries without adjustment for frequency response.
Response: The SAR Drafting Team agrees with the comment. Specific information, such as sampling rate and specific data requirements, will be developed in the standard development process and not captured in the SAR. The five minute period was proposed based on comments to a prior version of the SAR. Some commenters were concerned that governors were withdrawing response shortly after the initial excursion. The SAR drafting team will forward these comments to the Director of Standards so that they can be addressed by the Frequency Response Standard Drafting Team. We expect the data sampling rate to be on existing SCADA periodicity.			
Hydro Québec TransÉnergie	\checkmark	\checkmark	We requests clarification as to what data and at what periodicity will be collected from the identified entities.
Response: The SAR Drafting Team agrees with the comment. Specific information, such as sampling rate and specific data requirements, will be developed in the standard development process and not captured in the SAR. The five minute period was proposed based on comments to a prior version of the SAR. Some commenters were concerned that governors were withdrawing response shortly after the initial excursion. The SAR drafting team will forward these comments to the Director of Standards so that they can be addressed by the Frequency Response Standard Drafting Team. We expect the data sampling rate to be on existing SCADA periodicity.			
ISO New England	\checkmark	\checkmark	ISO New England requests clarification as to what data and at what periodicity will be collected.
Response: The SAR Drafting Team agrees with the comment. Specific information, such as sampling rate and specific data requirements, will be developed in the standard development process and not captured in the SAR. The five minute period was proposed based on comments to a prior version of the SAR. Some commenters were concerned that governors were withdrawing response shortly after the initial excursion. The SAR drafting team will forward these comments to the Director of Standards so that they can be addressed by the Frequency Response Standard Drafting Team. We expect the data sampling rate to be on existing SCADA periodicity.			
MISO	\checkmark	\square	Five minutes is acceptable. There may be merit in collecting 15 minutes of data to cover the DCS window. The data should be readily available since the BAs are already examining this data to determine their compliance with the DCS standard. The final decision can be made during the standards drafting phase.
Response: The SAR Drafting Team agrees with the comment. Specific information, such as sampling rate and specific data requirements, will be developed in the standard development process and not captured in the SAR. The five minute period was proposed based on comments to a prior version of the SAR. Some commenters were concerned that governors were withdrawing response shortly after the initial excursion. The SAR drafting team will forward these comments to the Director of Standards so that they can be addressed by the Frequency Response Standard Drafting Team. We expect the data			

| Question \#3 | | | |
| :--- | :--- | :--- | :--- | :--- |
| Commenter | Yes | No | Comment |
| sampling rate to be on existing SCADA periodicity. | | | |

Consideration of Comments on $3^{\text {rd }}$ Posting of Frequency Response SAR

4. Should a field trial be initiated, whereby a set of events for each Interconnection is posted throughout the year, to be used by BAs to calculate their 2007 Frequency Response?

Summary Consideration:

Most commenters indicated that a field trial should be initiated whereby a set of events for each Interconnection is posted throughout the year, to be used by Bias to calculate their 2007 Frequency Response.

Question \#4			
Commenter	Yes	No	Comment
Manitoba Hydro			Only if field trials are deemed to have very high probability of not causing significant difficulties on overly sensitive network area.
Response: The SAR Drafting Team agrees that no field trial should adversely impact the reliability of the Bulk Power System.			
MidAmerican Energy Co.		\checkmark	This is not a new concept. I support institution of the standard as written so a start can be made to identify and, with luck, remediate the decline in frequency response.
Response: Thank you for your support.			
Bonneville Power Administration		V	BPA does not believe a field trial is needed for this standard. The standard should be written and implemented with the levels of noncompliance structured around data submittal.
Response: Thank you for your support.			
PJM		\checkmark	There are field trials for standards (which this question is directed) and there are field trials for good ideas. This proposed SAR would seem to fall into the second category; and while posting events is interesting, it does not rate being a NERC standard. Collecting and posting data can be effected without a standard.
Response: Thank you for your comment.			
NYSRC		\square	
Energy Mark, Inc.	\square	\square	This would be a good way to insure that every entity select a similar set of events for calculation of their Frequency Response, but it will not insure conformity of the results. The difficulty with any method for selecting a common set of events is that each of those events is caused by a disturbance within one or more of the Balancing Authorities on the interconnection. Those entities that cause the disturbance will experience a different frequency response than those entities that are responding. The net effect is that the sum of the responses for all of the entities on the interconnection must sum to zero. This means that each entity must eliminate those disturbances for which they are the cause, from the set of disturbances they use to estimate their response. The real advantage is an entity cannot influence the results of the measurement through selection of the events they choose to include in the calculation.

Question \＃4			
Commenter	Yes	No	Comment
Response：Thank you for your comment．The SAR drafting team will forward these comments to the Director of Standards so that they can be addressed by the Frequency Response Standard Drafting Team．			
MISO	V		This should not be a problem as BAs should already be performing this calculation in the annual determination of their frequency bias．
Response：Thank you for your comment．			
NRG Texas	V		A field trial may indicate the need for more or different data for the proper calculation of a BAs Frequency Response．
Response：Thank you for your comment．			
ERCOT	マ		A field trial would be beneficial to ensure that no gaps in the need for data exist．This could relate to whether other data is needed or whether data for a longer time is needed．
Response：Thank you for your comment．			
IESO	マ		A field test is a must and would definitely provide useful information on the types of event that would necessiate such data collection（The threshold needs to be clarified though－e．g．should it be＞10MW loss of generator or some other threshold？），and any specific areas that need to be worked on in order to ensure that all relevant and required data is collected．
Response：Thank you for your comment．The SAR Drafting Team agrees with the comment．Specific information，such as sampling rate and specific data requirements，will be developed in the standard development process and not in the SAR． The SAR drafting team will forward these comments to the Director of Standards so that they can be addressed by the Frequency Response Standard Drafting Team．We expect the data sampling rate to be on existing SCADA periodicity．			
Southern	マ		Currently BAs in the Eastern Interconnection have little，if any，way to actually calculate their frequency responses．As a result，most default to the one percent minimum．A good database of disturbance events will provide the information to calculate BA frequency response more accurately while at the same time allowing the NERC OC／RS to determine if the one percent minimum is appropriate in the EI today．
Response：Thank you for your comment．			
Hydro Québec TransÉnergie	V		
CAISO	V		
ISO New England	V		
KCP\＆L	－		
NPCC CP9	V		

Question \#4			
Commenter	Yes	No	Comment
NYISO	\checkmark		
SPP ORWG	\checkmark		
Salt River Project	\square		
Xcel Energy Services	\checkmark		
American Electric Power	\square		
ITC Transco	\square		
SWPA	\checkmark		

5. Please provide any other comments (that you have not already provided in response to the first three questions on this form) that you have on the revised SAR.

Question \#5	
Commenter	\quad Comment

effort be implemented as soon as possible.\end{array}\right]\)

Question \#5	
Commenter	If each interconnection has a different Frequency Response Standard, it means there is no standard at all, but three different rules for NERC. The next logical step is to develop a common standard for all three interconnections requiring the first two standards developed by the Texas and Western Interconnections separately be modified to conform to a North American Standard on Frequency Response. Combining these three separate needs into a single standard will result in a natural opposition to change by those interconnections that have already implemented an interconnection standard that meets their individual needs. This will make it very difficult to gain the support necessary to enact a common standard for NERC. This multi-step development can only be avoided by having all three interconnections participate and contribute to standards identified and developed by individual interconnections. I believe that NERC needs to find a way to address this problem. If they do not, the standard development and approval process will lead to fractured standards and an unacceptable fractured standard process for NERC. One alternative might be to find a way for all interconnections to participate in the solution of individual interconnection problems as part of the standard development process.

Question \#5	
Commenter	One reason a decline in frequency response may be perceived occuring is a result of more on-line generating units being fully loaded. That means when a frequency decline occurs there are less units able to respond because they are already loaded. That does not mean the interconnection is at risk. As long as Balancing Authorities are maintaining their reserve obligations, even large contingencies should be manageable. However, over the years because of the trend to get more out of invested generation resources, it would give the appearance of a decline in frequency response since most frequency degradations are a result of losses of generation and a resultant decline in system frequency and those are what is studied and scrutinized. The August 14, 2003 disturbance was an opportunity to study the frequency response of all on-line generating units due to the frequency event resulting in a high frequency. High frequency is the only event where all on-line generating units will respond.
	Proposing the establishment of a Target Frequency Response for the interconnect before concluding if an actual decline in frequency response is occuring and the subsequent cause(s) for the decline is finding a solution before defining the problem. Any standards involving frequency response needs to also consider the role system reserves play in the interconnect as well as the frequency response of generators and system load to frequency. As long as generating reserve obligations are being met to meet current Reliability Standards and Regional Operating Criteria there may not be a need to go further dependent on the outcome of the study proposed by this SAR.
Response: The SAR Drafting Team agrees with you speculations, but strongly believes that actual field data must be	
collected and analyzed to determine the specific processes impacting Frequency Response. It may well be that no further	
action will be required,	
but that is beyond the scope of this SAR.	

Question \#5		\quad Comment
Commenter	Response: The SAR Drafting Team agrees and thanks you for your support.	
Southern	This SAR starts the process toward understanding frequency behavior, particularly in the Eastern Interconnection. In our opinion this is a necessary first step in determining whether we need frequency response allocations or other measures to ensure the sustained frequency performance that is required for reliable operations. Wherever possible, the scope and extent of data collection required for generators, their dynamic models including all associated control devices, and any other system data parameters covered under this SAR be limited such that it should not duplicate or exceed system modeling data requirements of any other NERC standard. One important system modeling parameter not emphasized in this SAR is the characteristic behavior of load at each substation (constant power, constant current, etc.), which would seem to have a significant effect on overall frequency response of the interconnected system. It is quite possible that advancements in consumer appliances and electronics, and their proliferation of use, have collectively changed the overall characteristics of system load to a composite state that is significantly different from modeling assumptions made within the previous few years.	
Response: The SAR Drafting Team agrees and thanks you for your support.		
SPP ORWG	The reasoning for this technical standard is based on the perception that the frequency response of the electrical system is declining and a concern that the interconnect's ability to arrest significant system disturbances is slowly being compromised. Although it is not disagreeable that a study be conducted to determine if an actual decline in frequency response is occuring and then to determine cause, it is diagreeable to propose a potential remedy for a problem that may not exist or, dependent on the findings, in inappropriate remedy.	
Types of generating units online (e.g., wind generation, combined cycle, etc) and their subsequent		
loading will have an influence on the frequency response of the system. As long as Balancing		

Question \#5

Commenter

Comment

consider the role system reserves play in the interconnect as well as the frequency response of generators and system load to frequency. As long as generating reserve obligations are being met in accordance with current Reliability Standards and Regional Operating Criteria there may not be a need to go further dependent on the outcome of the study proposed by this SAR.
Response: The SAR Drafting Team disagrees and believes that a fundamental understanding of frequency response in each of the Interconnections is necessary to ensure reliability of the Bulk Power System. This is particularly important as new, untested technologies are integrated into the Bulk Power System with potentially unanticipated outcomes. Although no follow up Standards may be required after the Frequency Response Standard is developed, there is a potential risk to Interconnection reliability unless we do implement this SAR and Standard and develop a firm understanding of specifically how Frequency Response operates.
It appears that there is a misunderstanding of the Target Frequency Response in that this does not set a minimum for any particular Balancing Authority. The Target Frequency Response sets a benchmark, beyond which additional data is needed from the Balancing Authority.
Salt River Project \quad The SAR includes some requirement language pertaining to generators greater than 10 MW. Old NERC Policy included language requiring frequency responsive governors "unless restricted by regulatory mandates". This makes sense for most nuclear facilities. Another type of restriction on governors involves small hydro units that are dependent on water order. For this type of unit there truly is no governor response yet the unit capabilities may exceed 10 MWs . Please consider these types of exemptions as work progresses on this SAR and resulting standard.
Response: Your comments are good and will be provided to the Standard Drafting Team as it wrestles with the specific details of this project. The SAR does not propose to set a mandatory level of governor response for each generator. The proposed standard requires data and an identification of which generators are not providing response should the Balancing Authority be below the Target Response.
Xcel Energy Services Establishing a Target Frequency Response is premature. It advances a proposed remedy in advance of first meeting the intent of the SAR-determining the cause for the percieved decline in frequency response. It is our view that the percieved decline of frequency response, if that turns out to be the confirmed as a true decline, of itself does not necessarily indicate an significantly increased threat to reliability. As long as generating reserve obligations are being met to meet Reliability Standards and the real time regulating reserves are being carried, also to meet Standards, there may not be a need to go further depending on the outcome of the study proposed by the SAR.
Response: The SAR Drafting Team does not anticipate that a Target Frequency Response will be developed until such time that it can be technically supported as required by the NERC Reliability Standards Process.
PJM
PJM would also note that the proposal references two distinct parameters - the Natural response of a BA; and the natural response of a unit. It is not clear how the requestor intends to link the two parameters. The sum of the units' natural responses will not equal the natural response of the BA.

Question \#5	Comment
Commenter	Does the requestor intend to link the two, or to keep them separate? As written it appears that the requestor intends for the BA to be held responsible for an annual measured value. The SAR DT does not recognize that during different times there are different number of units opperating and available to respond. The SAR DT makes no mention of whether or not a BA(?) would have to shed load to maintain such frequency response (for those periods when all units are at full load). The SAR DT makes no mention of distance from an event. An event in NE will effect more response in NE then in Florida - how will that be addressed? PJM would ask for clarification on what the requestor would intend to mandate.
FERC has recognized the need to include suppliers that use load control - how does this SAR intend to address such 'natural response suppliers'?	
As written this proposal becomes an ambiguous standard as it obligates a BA to get data from a generator (as opposed to directly obligating generators to supply the data to the analysis team - this is important from the perspective of who would be non-compliant if the data were not supplied - the BA or the GO?).	
PJM would suggest that NERC create a Frequency Project, budget the project through its members	
rather then create a standard and risk imposing non-compliance penalities for what potentially could	
be a non-issue. Deal with this for what it is - a research activity.	

Standard Authorization Request Form

Title of Proposed Standard	Frequency Response
Request Date	$11 / 25 / 06$
Revised Date	$06 / 30 / 07$

SAR Requestor Information	SAR Type (Put an 'x' in front of one of these selections)		
Name Terry Bilke	x	New Standard	
Primary Contact Terry Bilke	\square	Revision to existing Standard	
Telephone Fax	(317) $249-5463$ (317) $249-5994$	\square	Withdrawal of existing Standard
E-mail	tbilke@midwestiso.org	\square	Urgent Action

Purpose/Industry Need

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. The proposed standard's intent is to collect data needed to accurately model existing Frequency Response. There is evidence of continuing decline in Frequency Response in the three Interconnections over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be modeled, and the reasons for the decline in Frequency Response can be identified. Once the reasons for the decline in Frequency Response are confirmed, requirements can be written to control Frequency Response to within defined reliability parameters.

Reliability Functions
The Standard will Apply to the Following Functions（Check box for each one that applies by double clicking the grey boxes．）

Q	Reliability Authority	Responsible for the real－time operating reliability of its Reliability Coordinator Area in coordination with its neighboring Reliability Coordinator＇s wide area view．
区	Balancing Authority	Integrates resource plans ahead of time，and maintains load－interchange－ resource balance within a Balancing Authority Area and supports interconnection frequency in real time
\square	Interchange Authority	Ensures communication of interchange transactions for reliability evaluation purposes and coordinates implementation valid and balanced Interchange Schedules between Balancing Authority Areas．
\square	Planning Coordinator	Assesses the longer－term reliability of its Planning Coordinator Area．
\square	Resource Planner	Develops a＞1year plan for the resource adequacy of its specific loads within a Planning Authority area．
\square	Transmission Planner	Develops a＞1 year plan for the reliability of the interconnected Bulk Electric System within its portion of the Planning Coordinator Area．
\square	Transmission Service Provider	Administers the transmission tariff and provides transmission services under applicable transmission service agreements（e．g．，the pro forma tariff）．
\square	Transmission Owner	Owns and maintains transmission facilities
\square	Transmission Operator	Ensures the real－time operating reliability of the transmission assets within a Transmission Operator Area．
\square	Distribution Provider	Delivers electrical energy to the End－use customer．
区	Generator Owner	Owns and maintains generation facilities．
区	Generator Operator	Operates generation unit（s）to provide real and reactive power．
\square	Purchasing－ Selling Entity	Purchases or sells energy，capacity and necessary reliability－related services as required．
\square	Market Operator	Interface point for reliability functions with commercial functions．
区	Load－Serving Entity	Secures energy and transmission service（and reliability－related services）to serve the End－use Customer．

Reliability and Market Interface Principles

Applicable Reliability Principles（Check boxes for all that apply by double clicking the grey boxes．）	
®	1．Interconnected bulk electric systems shall be planned and operated in a coordinated manner to perform reliably under normal and abnormal conditions as defined in the NERC Standards．
区	2．The frequency and voltage of interconnected bulk electric systems shall be controlled within defined limits through the balancing of real and reactive power supply and demand．
®	3．Information necessary for the planning and operation of interconnected bulk electric systems shall be made available to those entities responsible for planning and operating the systems reliably．
\square	4．Plans for emergency operation and system restoration of interconnected bulk electric systems shall be developed，coordinated，maintained and implemented．
区	5．Facilities for communication，monitoring and control shall be provided，used and maintained for the reliability of interconnected bulk electric systems．
®	6．Personnel responsible for planning and operating interconnected bulk electric systems shall be trained，qualified and have the responsibility and authority to implement actions．
区	7．The security of the interconnected bulk electric systems shall be assessed，monitored and maintained on a wide area basis．
\square	8．Bulk power systems shall be protected from malicious physical or cyber attacks．
Does the proposed Standard comply with all of the following Market Interface Principles？（Select＇yes＇or＇no＇from the drop－down box by double clicking the grey area．）	
1．The planning and operation of bulk electric systems shall recognize that reliability is an essential requirement of a robust North American economy．Yes	
2．An Organization Standard shall not give any market participant an unfair competitive advantage．Yes	
3．An Organization Standard shall neither mandate nor prohibit any specific market structure．Yes	
4．An Organization Standard shall not preclude market solutions to achieving compliance with that Standard．Yes	
	An Organization Standard shall not require the public disclosure of commercially sensitive information．All market participants shall have equal opportunity to access commercially non－ sensitive information that is required for compliance with reliability standards．Yes

Detailed Description (Provide enough detail so that an independent entity familiar with the industry could draft, modify, or withdraw a Standard based on this description.) The proposed technical/preparedness standard will require or provide the following:

1. Each Balancing Authority shall collect and provide data [scan rate tie deviation and frequency for up to 5* minutes per event] needed to model its sub-minute Frequency Response to loss of large generating units and load.
2. Each Balancing Authority shall report each loss of generation or load greater than the respective Interconnection reporting threshold to its Reliability Coordinator.
3. Each Reliability Coordinator will relay Frequency Response Standard (FRS) event information to other Reliability Coordinators in its Interconnection. The Interconnection Time Monitor will maintain a log of FRS events.
4. NERC will annually post a list of FRS events. These events will be used by Balancing Authorities to calculate and report their annual Frequency Response and Bias.
5. NERC, in conjunction with the respective Regions, will establish a Target Frequency Response for each Interconnection. Absent an agreement, the observed Frequency Response in the first year of the FRS will be used as a target.
6. Balancing Authorities with less than [75\%]* of their share of Target Frequency Response shall provide generation-level data to their Region for use by Transmission Planners and Planning Coordinators.
a. Each Generator Operator that operates a generator larger than [10 MW]*, shall provide data to its Balancing Authority, as required in item 6, to support this standard and for use in developing models of Frequency Response in the associated Interconnection.
b. Load Serving Entities shall provide data, as required in item 6, to their BA and Region to support the standard.
*These values are representative and will be refined based on stakeholder input during the standard drafting phase.

Related Standards

Standard No.	Explanation
BAL-001-0 through BAL- $006-0$	Balancing Standards, version 0
Balance Resources and Demand draft standards	Balancing Resources and Demand BAL-007 through BAL-012 draft standards, are in standards development process

\square
Related SARs

SAR ID	Explanation
Frequency Response SAR, version 0	Original Frequency Response SAR
MOD-027	Verification and Status of Generator Frequency Response. The proposed standard would provide a mechanism to validate compliance with MOD-027. The proposed standard could also provide a means to achieve MOD-027 (if the Balancing Authority implements on on-line measurement of generator frequency using SCADA data).

Regional Variances

Region	Explanation
ECAR	
ERCOT	Single Balancing Authority Interconnections calculate Frequency Response based on the change in generation (or load) rather than Tie-Line deviation (ERCOT).
FRCC	
MAAC	
MAIN	
MAPP	
NPCC	
SERC	
SPP	
WECC	

Related NERC Operating Policies or Planning Standards

ID	Explanation
MOD-013-0	The proposed standard would enable better input data to the modeling standards.

\square

July 17, 2007

TO: REGISTERED BALLOT BODY

Ladies and Gentlemen:

Announcement: Nomination Periods Open for Five New Drafting Teams

The Standards Committee announces the following standards actions:

Project 2007-04 — Certifying System Operators SAR Drafting Team (July 17-30, 2007)

The Standards Committee is seeking industry experts to serve on the Certifying System Operators SAR Drafting Team. The drafting team will work on the modification of the following standard:
PER-003 - Operating Personnel Credentials

If you are interested in serving on this SAR drafting team, please complete this nomination form and return it to sarcomm@nerc.net by July 30, 2007 with "SO Certification SAR DT" in the subject line. For questions, please contact Linda Clarke at 610-310-7210 or linclrke@msn.com.

Project 2007-05 — Balancing Authority Controls SAR Drafting Team (July 17-30, 2007)

The Standards Committee is seeking industry experts to serve on the Balancing Authority Controls SAR Drafting Team. The drafting team will work on modifications to the following standards:

- BAL-002 - Disturbance Control Performance
- BAL-004 - Time Error Correction
- BAL-005 - Automatic Generation Control
- BAL-006 - Inadvertent Interchange

If you are interested in serving on this SAR drafting team, please complete this nomination form and return it to sarcomm@nerc.net by July 30, 2007 with "BA Controls SAR DT" in the subject line. For questions, please contact Linda Clarke at 610-310-7210 or linclrke@msn.com.

Project 2007-09 — Generator Verification Standard Drafting Team (July 17-30, 2007)

The Standards Committee is seeking industry experts to serve on the Generator Verification Standard Drafting Team. If you are interested in serving on this team, please complete this nomination form and return it to sarcomm@nerc.net with "Gen Verification SDT" in the subject line by July 30, 2007. For questions, please contact David Taylor at 609-651-5089 or david.taylor@nerc.net.

The drafting team will work on finalizing the following Phase III \& IV standards:

REGISTERED BALLOT BODY
July 17, 2007
Page Two

- PRC-019 - Coordination of Generator Voltage Regulator Controls with Unit Capabilities and Protection
- PRC-024 - Generator Performance during Frequency and Voltage Excursions
- MOD-026 - Verification of Models and Data for Generator Excitation System Functions
- MOD-027 - Verification of Generator Unit Frequency Response

The drafting team will also work on revising two existing standards that were not approved by the FERC because of their "fill-in-the-blank" elements:

- MOD-024 - Verification of Generator Gross and Net Real Power Capability
- MOD-025 - Verification of Generator Gross and Net Reactive Power Capability

Project 2007-12 — Frequency Response Standard Drafting Team (July 17-30, 2007)

The Standards Committee is seeking industry experts to serve on the Frequency Response Standard Drafting Team. The drafting team will work to develop a standard that requires entities to provide data so that Frequency Response in each of the Interconnections can be modeled, and the reasons for the decline in Frequency Response can be identified.

If you are interested in serving on this standard drafting team, please complete this nomination form and return it to sarcomm@nerc.net by July 30, 2007 with "FR SDT" in the subject line. For questions, please contact Linda Clarke at 610-310-7210 or linclrke@msn.com.

Project 2007-23 — Violation Severity Levels Drafting Team (July 17-30, 2007)
The Standards Committee is seeking industry experts to serve on the Violation Severity Levels SAR Drafting Team. The drafting team will work to achieve consensus on a set of criteria for assigning Violation Severity Levels, and will work (with other existing drafting teams) to replace "Levels of Non-compliance" with "Violation Severity Levels" in the 83 standards approved by the FERC. FERC directed NERC to replace "Levels of Non-compliance" with "Violation Severity Levels' so that the ERO's Sanctions Guidelines can be used as intended.

If you are interested in serving on this standard drafting team, please complete this nomination form and return it to sarcomm@nerc.net by July 30, 2007 with "VSL DT" in the subject line. For questions please contact Al Calafiore at 678-524-1188 or al.calafiore@nerc.net or Stephen Crutchfield at 609-651-9455 or stephen.crutchfield@nerc.net.

Standards Development Process

The Reliability Standards Development Procedure contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate. If you have any questions, please contact me at 813-468-5998 or maureen.long@nerc.net.

[^44]
Definitions of Terms Used in Standard

This section includes all newly defined or revised terms used in the proposed standard. Terms already defined in the Reliability Standards Glossary of Terms are not repeated here. New or revised definitions listed below become approved when the proposed standard is approved. When the standard becomes effective, these defined terms will be removed from the individual standard and added to the Glossary.

Single Event Frequency Response Data (SEFRD)

The individual sample of event data from a Balancing Authority which represents the change in Net Actual Interchange $\left(\mathrm{NI}_{\mathrm{A}}\right)$, divided by the change in frequency, expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$.

Frequency Response Measure (FRM)

The median of all Single Event Frequency Response Data observations reported annually on FRS Form 1.

Frequency Response Obligation (FRO)

The Balancing Authority's contribution to the total aggregate Frequency Response needed for reliable operation of an Interconnection assigned by the ERO.

Frequency Bias Setting (redline showing proposed changes to approved definition)

A value, (either a fixed or variable Frequency Bias), usually expressed in MW/0.1 Hz, set into a Balancing Authority Area Control Error algorithm-equation that allows the Balancing Authority to contribute its frequency Frequency $£$ Response to the Interconnection.

A. Introduction

Title: Frequency Response and Frequency Bias Setting

Number: BAL-003-1
Purpose: To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored. To schedule and provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting.

Applicability:

1.1. Balancing Authority
1.2. Reserve Sharing Group (where applicable)

Effective Date:

1.3. In those jurisdictions where regulatory approval is required, Requirements R2, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R2 and R3 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
1.4. In those jurisdictions where regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.

B. Requirements

R1. Each Balancing Authority shall achieve a Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO). [Risk Factor:][Time Horizon: Operations Assessment]

R2. Each Balancing Authority shall implement the Frequency Bias Setting (fixed or variable) provided by the ERO into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effective coordinated secondary control, using the results from the calculation methodology detailed in Attachment A. [Risk Factor:][Time Horizon: Operations Planning]

R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Bias, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area. [Risk Factor:][Time Horizon: Real-time Operations]
R4. Each Balancing Authority that is performing Overlap Regulation Service shall increase its Frequency Bias Setting in its ACE calculation by combining the Frequency Bias

Settings for the entire Balancing Authority Area being controlled. [Risk Factor: \mathcal{K} Time Horizon: Operations Planning\}

C. Measures

Measures for each Requirement will be provided in the second posting of the proposed standard.

D. Compliance

1. Compliance Monitoring Process

1.1. Compliance Enforcement Authority

The Regional Entity shall serve as the Compliance Enforcement Authority.

1.2. Compliance Monitoring and Assessment Processes:

Compliance Audits
Self-Certifications
Spot Checking
Compliance Violation Investigations
Self-Reporting
Complaints
Periodic Data Submittals

1.3. Data Retention

Data Retention periods for Requirement R1 through Requirement R4 will be defined in the second posting of the proposed standard.

If a Balancing Authority is found non-compliant, it shall keep information related to the non-compliance until found compliant or for the time period specified above, whichever is longer.
The Compliance Enforcement Authority shall keep the last audit records and all subsequent requested and submitted records.

1.4. Additional Compliance Information

R1 Supplemental Information

Each Balancing Authority shall report its previous year's Frequency Response Measure (FRM) to the ERO on Form 1 by January 10 each year. If the ERO posts the official list of events after December 10, Balancing Authorities will be given 45 days from the date the ERO posts the official list of events to submit their FRS Form 1.

A Balancing Authority may elect to fulfill its Frequency Response Obligation by participating as a member of a Reserve Sharing Group (RSG). If a Balancing

Authority elects to report as an RSG, the total of the participating Balancing Authorities' FRO will be compared to the total of the participating Balancing Authorities' FRM.

R2 Supplemental Information.

Each Balancing Authority shall report its current year requested Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO on FRS-Form 1 by January 10 each year. If the ERO posts the official list of events after December 10, Balancing Authorities will be given 45 days from the date NERC posts the official list of events to submit their FRS Form 1. Once the FRM and Frequency Bias Settings have been validated by the ERO, the ERO will disseminate the Frequency Bias Settings Report for all Balancing Authorities in each Interconnection along with the implementation date.
Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1.

2.0 Violation Severity Levels (To be added later)

R\#	Lower VSL	Medium VSL	High VSL	Severe VSL
R1				
R2				
R3				
R4				

E. Regional Variance

None

F. Associated Documents

Attachment A - Frequency Response Standard Background Document
FRS Form 1
FRS Form 1 Instructions
Field Test Document
G. Version History

Version	Date	Action	Change Tracking
0	April 1, 2005	Effective Date	New
1		Complete Revision under Project 2007-12	Revision

BAL-003 - Attachment A
 Background Document

Introduction

This draft document provides background to explain the requirements in the draft Frequency Response Standard (BAL-003-1). This document will evolve on the basis of Industry comments on the standard and is expected to become Attachment A to the standard.

Requirement 1

R1. Each Balancing Authority shall achieve a Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO).

Frequency Bias Setting vs. Frequency Response

The Frequency Response Measure (FRM) for the upcoming year is based on the same data collected for the Balancing Authorities’ annual Frequency Bias Setting calculation. A final listing of official events to be used in the calculation will be available from NERC by December 10 each year. Once a list is distributed to Balancing Authorities, each BA has one month to assemble its data and calculate the FRM.

The ERO will use the following criteria for the selection of events to be analyzed.

1. At least 25 events will be used for the calculation of FRM. If a year occurs in which there are not 25 events that meet the remaining criteria below, then the most recent 25 events (as defined below) will be used for determination of an entity's compliance with the FRM requirement and storage of SEFRD.
2. Two limits will be used to determine if a frequency event has occurred for the purposes of determining FRM:
a. The frequency at the arresting frequency (Point C) must exceed the frequency deviation event threshold specified for the Interconnection. (As of 2010, the governor deadband setting for the Eastern and Western Interconnections will be assumed to be near or greater than 36 MHz , although there is no stated requirement defined in NERC standards). The Point C value is the minimum of frequency samples within 8 seconds after the start of the rapid change in frequency.
b. The time from the start of the rapid change in frequency until the point at which Frequency has largely stabilized should be less than 18 seconds.
3. Typically, the Point A frequency should be relatively steady and near 60.000 Hz . Point A is computed as an average over the period from -16 seconds to 0 seconds before initial frequency decline.
4. Any indication or evidence of a secondary event occurrence after Point C should be reviewed for inclusion based on having sufficient information to perform a full analysis of the event.
5. Events occurring during periods in which either significant interchange schedule ramping or load ramping is likely, should be excluded if other events are available for measurement purposes.
Additional events included in Frequency Response survey for interconnection analysis: The ERO has the discretion to request a frequency survey for events that differ significantly from criteria 3, 4, or 5. These events will not be included on FRS Form 1 used for calculation of frequency response.

The report will be done via FRS Form 1.
Sliding of the reporting deadline from that found in previous versions of BAL-003 is due to the increased number of samples required and is intended to avoid burdening NERC and the Balancing Authorities with working over holiday periods for no added value to reliability.

Frequency Bias Settings and acceptable Frequency Response are negative numbers by definition. In other words, as frequency drops, the Balancing Authority is expected to contribute MWs to the Interconnection (or take fewer MWs in).

The current BAL-003 has a minimum Frequency Bias Setting (in MW/0.1Hz) that is in absolute terms equal to 1% of the Balancing Authority's projected peak. An early researcher ${ }^{1}$ noted that the ideal state is where the Frequency Bias Setting is exactly equal to natural Frequency Response. Researchers have also noted that over-bias is preferable to under-bias. The current (1% of peak) $/ 0.1 \mathrm{~Hz}$ floor for the Frequency Bias Setting is significantly more negative than most Balancing Authorities’ natural Frequency Response. This can lead to over-control , particularly in the Eastern Interconnection, and force the industry to require too much secondary control resulting in degraded performance and increased operating cost compared to requiring an appropriate balance of primary and secondary control.

Changes to the Frequency Bias Setting that move it closer to the natural Frequency Response will improve the quality and accuracy of ACE and all ACE based systems and measures, including: the CERTS Automatic Frequency Events Identification and Frequency Response Evaluation System; the CPS1 measure; the CPS2 measure; the DCS measure; the BAAL measure; and, AGC Systems in general.

[^45]
Frequency Bias Setting Floor

The FR SDT is proposing a gradual transition to bring Frequency Bias Settings and natural Frequency Response closer. The Frequency Response Field Test Document describes the gradual replacement of a floor by natural Frequency Response for Frequency Bias Setting.

Frequency Response Obligation and Allocation

The SDT is initially proposing that the Interconnection Frequency Response Obligation (FRO) be a discretely administered determination.

For this administered approach each Interconnection will have a target contingency protection criteria based on the largest category C event ($\mathrm{N}-2$). The protection criteria will assure that Point C will not encroach on the first step UFLS.

Under development - The SDT is evaluating a risk based approach to establishing an Interconnection Frequency Response Obligation which can be based on a probability function.

The ERO and the NERC RS will manage the administrative procedure to assign an FRO to each BA for the upcoming year.

Each Balancing Authority will receive a proportional slice of the Interconnection’s Frequency Response Obligation based on (peak generation + peak load)/2. The reasoning for this allocation method is that Balancing Authorities carry differing proportions of load and generation. In fact, some Balancing Authorities have only load with no native generation, while others have only generation with no native load. One of the reasons for using 2010 event data as part of a field trial of the standard is to evaluate the allocation methodology.

Methods of Obtaining Response

A Balancing Authority may elect to fulfill its Frequency Response Obligation by participating as a member of a Reserve Sharing Group.

There are two considerations under the option of meeting compliance by participation in a Reserve Sharing Group (RSG). First, although spinning reserve is not a part of this standard, it should be noted that RSGs typically define the amount of spinning reserve carried by Balancing Authorities. Second, allowing the RSG option addresses the FERC Order No. 693 directive to define methods of obtaining frequency response.

As long as all BAs within the RSG use the same events for calculating FRM, BAs within the RSG may allocate a portion of their FRM to another RSG participant.

The SDT is soliciting comments on methods of obtaining Frequency Response to meet the Order 693 directive (markets, incentive programs, tariff changes, interconnection agreements, innovative technology, resource standard).

Measure and Compliance Information

This will be added in the second posting.

Requirement 2

R2. Each Balancing Authority shall implement the Frequency Bias Setting (fixed or variable) provided by the ERO into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effective coordinated secondary control, using the results from the calculation methodology detailed in Attachment A.

Background and Rationale

The traditional process for implementing new Frequency Bias Settings is for Balancing Authorities to submit their upcoming annual Frequency Bias Setting value by January 1. NERC and the Resources Subcommittee validate Frequency Bias Setting values, perform error checking and use these values to calculate L10 values for CPS2. Once the L10 values are validated, NERC posts the L10 values and sends a letter to Balancing Authorities giving a date on which to implement the new Frequency Bias Settings. This data collection and validation process can take up to two months. It is expected NERC will send out the L10 and Frequency Bias Setting notification generally in February for March 1 implementation.

Measure and Compliance Information

This will be added in the second posting.

Requirement 3

R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Bias, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area.

Background and Rationale

This requirement has existed in NERC Policy 1 and BAL-003 for years. Operating out of Tie Line Bias control can lead to uncoordinated control that may result in unreliable operations.

Measure and Compliance Information

This will be added in the second posting.

Requirement 4

R4. Each Balancing Authority that is performing Overlap Regulation Service shall increase its Frequency Bias Setting in its ACE calculation by combining the Frequency Bias Settings for the entire Balancing Authority Area being controlled.

Background and Rationale

This requirement has existed in NERC Policy 1 and BAL-003 for years. Overlap regulation service provides ACE control for compliance from another BA authority performing the overlap service thus the frequency bias used by the BA purchasing the service needs to be added to the providers frequency bias which will provide the ACE control for the Balancing Authority. Supplemental service is a schedule to provide a portion of the control for another BA using a portion of the ACE which does not require changing the frequency bias.

Measure and Compliance Information

This will be added in the second posting.

A. Introduction

1. Title: Frequency Response and Bias
2. Number: BAL-003-0
3. Purpose:

This standard provides a consistent method for calculating the Frequency Bias component of ACE.
4. Applicability:
4.1. Balancing Authorities
5. Effective Date: April 1, 2005

B. Requirements

R1. Each Balancing Authority shall review its Frequency Bias Settings by January 1 of each year and recalculate its setting to reflect any change in the Frequency Response of the Balancing Authority Area.

R1.1. The Balancing Authority may change its Frequency Bias Setting, and the method used to determine the setting, whenever any of the factors used to determine the current bias value change.
R1.2. Each Balancing Authority shall report its Frequency Bias Setting, and method for determining that setting, to the NERC Operating Committee.
R2. Each Balancing Authority shall establish and maintain a Frequency Bias Setting that is as close as practical to, or greater than, the Balancing Authority's Frequency Response.
Frequency Bias may be calculated several ways:
R2.1. The Balancing Authority may use a fixed Frequency Bias value which is based on a fixed, straight-line function of Tie Line deviation versus Frequency Deviation. The Balancing Authority shall determine the fixed value by observing and averaging the Frequency Response for several Disturbances during on-peak hours.
R2.2. The Balancing Authority may use a variable (linear or non-linear) bias value, which is based on a variable function of Tie Line deviation to Frequency Deviation. The Balancing Authority shall determine the variable frequency bias value by analyzing Frequency Response as it varies with factors such as load, generation, governor characteristics, and frequency.
R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability.
R4. Balancing Authorities that use Dynamic Scheduling or Pseudo-ties for jointly owned units shall reflect their respective share of the unit governor droop response in their respective Frequency Bias Setting.
R4.1. Fixed schedules for Jointly Owned Units mandate that Balancing Authority (A) that contains the Jointly Owned Unit must incorporate the respective share of the unit governor droop response for any Balancing Authorities that have fixed schedules (B and C). See the diagram below.

R4.2. The Balancing Authorities that have a fixed schedule (B and C) but do not contain the Jointly Owned Unit shall not include their share of the governor droop response in their Frequency Bias Setting.

R5. Balancing Authorities that serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of the Balancing Authority's estimated yearly peak demand per 0.1 Hz change.
R5.1. Balancing Authorities that do not serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of its estimated maximum generation level in the coming year per 0.1 Hz change.
R6. A Balancing Authority that is performing Overlap Regulation Service shall increase its Frequency Bias Setting to match the frequency response of the entire area being controlled. A Balancing Authority shall not change its Frequency Bias Setting when performing Supplemental Regulation Service.

C. Measures

M1. Each Balancing Authority shall perform Frequency Response surveys when called for by the Operating Committee to determine the Balancing Authority's response to Interconnection Frequency Deviations.
D. Compliance

Not Specified.

E. Regional Differences

None identified.

Version History

Version	Date	Action	Change Tracking
0	April 1, 2005	Effective Date	New
0	August 8, 2005	Removed "Proposed" from Effective Date	Errata

The information in this Supplemental SAR identifies the modifications to RELIABILITY CORPORATION BAL-003-0 that were originally part of Project 2007-18 - Reliabilitybased Control. The Standards Committee authorized the transfer of this work from Project 2007-18 to Project 2007-12 during its October 13-14, 2010 meeting.

Standard Authorization Request Form

Title of Proposed Standard BAL-003-1 Frequency Response and Frequency Bias Setting Supplemental to SAR dated 30J un2007
SC Approved the transfer of work identified in this SAR from Project 2007-18 to Project 2007-12 during its October 13-14, 2010 meeting.
The supplemental SAR outlining the work that was transferred was accepted by the SC EC on February 2, 2011

SAR Requester Information	SAR Type (Check a box for each one that applies.)	
Name Frequency Response Standard Drafting Team	\square	New Standard
Primary Contact Bill Herbsleb - PJ M	X	Revision to existing Standard
Telephone 610.666.8874 Fax	\square	Withdrawal of existing Standard
E-mail herbslhw@pjm.com	\square	Urgent Action

Purpose (Describe what the standard action will achieve in support of bulk power system reliability.)
To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored to schedule and to provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting.

Industry Need (Provide a justification for the development or revision of the standard, including an assessment of the reliability and market interface impacts of implementing or not implementing the standard action.)
Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. There is evidence of continuing decline in Frequency Response in the three Interconnections over the past 10 years, but no confirmed reason for the apparent decline.

Brief Description (Provide a paragraph that describes the scope of this standard action.)
To provide a minimum Frequency Response Obligation for the Balancing Authority to
achieve, methods to obtain Frequency Response and provide a consistent method for calculating the Frequency Bias Setting for a Balancing Authority. In addition, the standard will specify the optimal periodicity of Frequency Response surveys.
Detailed Description (Provide a description of the proposed project with sufficient details for the standard drafting team to execute the SAR.)

This SAR proposes to retire BAL-003-0 when BAL-003-1 is implemented. Below are excerpts from documents relevant to this SAR.

From FERC Order 693:
369 - With respect to the frequency of frequency response surveys, EEI states that NERC currently conducts an annual frequency response characteristic survey that appears to address the Commission's concern. The Commission disagrees. The surveys that were performed on a yearly basis are not available on NERC's website and the ISO/RTO Council believes that more frequent analysis after large frequency disturbances is appropriate. The Commission understands that the last analysis was performed in 2002. Currently, Measure M1 only requires balancing authorities to perform surveys when requested by the NERC operating committee. As identified in Order No. 672, the Reliability Standards should be based on actual data. Therefore, on further consideration, instead of requiring yearly surveys as proposed in the NOPR, the Commission believes that the frequency of these surveys should be based on the data requirements that will assist the ERO to determine if the balancing authorities are providing adequate and equitable frequency response to disturbances on the Bulk-Power System. Accordingly, we direct the ERO to determine the optimal periodicity of frequency response surveys necessary to ensure that Requirement R2 and other Requirements of the Reliability Standard are being met and to modify Measure M1 based on this determination.

372 - The Commission is not persuaded by the commenters. We conclude that the minimum frequency response needed for Reliable Operation should be defined and methods of obtaining the frequency response identified. In addition to the ERCOT experience, EEI provides an additional example that underscores the Commission's concern in this area with its discussion of the ISO-NE frequency oscillations resulting from the August 14, 2003 blackout. Severe oscillations were observed in the ISO-NE frequency when it separated from the Eastern Interconnection during the August 14, 2003 blackout. The ISO-NE operators acted quickly to reduce the bias setting so as to eliminate the self-induced frequency oscillations before they affected system reliability. This apparent mismatch between the bias and the actual frequency response might have caused the ISO-NE system to cascade if it had not been for the quick actions of its operators. Therefore, we direct the ERO to either modify this Reliability Standard or develop a new Reliability Standard that defines the necessary amount of frequency response needed for Reliable Operation and methods of obtaining and measuring that frequency response is available.

Reliability Functions

The Standard will Apply to the Following Functions (Check box for each one that applies.)

\square	Reliability Assurer	Monitors and evaluates the activities related to planning and operations, and coordinates activities of Responsible Entities to secure the reliability of the bulk power system within a Reliability Assurer Area and adjacent areas.		
\square	Reliability Coordinator	Responsible for the real-time operating reliability of its Reliability Coordinator Area in coordination with its neighboring Reliability Coordinator's wide area view.		
x	Balancing Authority	Integrates resource plans ahead of time, and maintains load- interchange-resource balance within a Balancing Authority Area and supports Interconnection frequency in real time.		
\square	Interchange Authority	Ensures communication of interchange transactions for reliability evaluation purposes and coordinates implementation of valid and balanced interchange schedules between Balancing Authority Areas.		
\square	Planning Coordinator	Assesses the longer-term reliability of its Planning Coordinator Area.		
\square	Resource Planner	Develops a >one year plan for the resource adequacy of its specific loads within its portion of the Planning Coordinator's Area.		
\square	Transmission Owner	Owns and maintains transmission facilities.		
\square	Transmission Operator	Ensures the real-time operating reliability of the transmission assets within a Transmission Operator Area.		
\square	Transmission Planner	Develops a >one year plan for the reliability of the interconnected Bulk Electric System within the Transmission Planner Area.		
\square	Transmission Service Provider	Administers the transmission tariff and provides transmission services under applicable transmission service agreements (e.g., the pro forma tariff).		
\square	Distribution Provider	Delivers electrical energy to the End-use customer.		
\square	Generator Owner	Owns and maintains generation facilities. Generator Operator		Operates generation unit(s) to provide real and reactive power.
:---				
Selling Entity	\quad	Purchases or sells energy, capacity, and necessary reliability-		
:---				
related services as required.				

Reliability and Market Interface Principles

Applicable Reliability Principles (Check box for all that apply.)	
X	1. Interconnected bulk power systems shall be planned and operated in a coordinated manner to perform reliably under normal and abnormal conditions as defined in the NERC Standards.
X	2.The frequency and voltage of interconnected bulk power systems shall be controlled within defined limits through the balancing of real and reactive power supply and demand. X3. Information necessary for the planning and operation of interconnected bulk power systems shall be made available to those entities responsible for planning and operating the systems reliably.
\square	4. Plans for emergency operation and system restoration of interconnected bulk power systems shall be developed, coordinated, maintained and implemented.
X	5. Facilities for communication, monitoring and control shall be provided, used and maintained for the reliability of interconnected bulk power systems.
\square	6. Personnel responsible for planning and operating interconnected bulk power systems shall be trained, qualified, and have the responsibility and authority to implement actions.
X	7.The security of the interconnected bulk power systems shall be assessed, monitored and maintained on a wide area basis. \square8. Bulk power systems shall be protected from malicious physical or cyber attacks. Does the proposed Standard comply with all of the following Market Interface Principles? (Select 'yes' or 'no' from the drop-down box.) 1. A reliability standard shall not give any market participant an unfair competitive advantage. Yes
2. A reliability standard shall neither mandate nor prohibit any specific market structure. Yes	
3. A reliability standard shall not preclude market solutions to achieving compliance with that	
standard. Yes	

Related Standards

Standard No.	Explanation
BAL-001 through BAL- 006	Balancing Standards
Balance Resources and Demand draft standards	Balancing Resources and Demand BAL-007 draft standard is in the Standards Development Process.

Related SARs

SAR ID	Explanation

Regional Variances

Region	Explanation
ERCOT	Single Balancing Authority Interconnections calculate Frequency Response based on the change in generation (or load) rather than Tie-Line deviation.
FRCC	
MRO	
NPCC	
SERC	
RFC	
SPP	
WECC	

Balancing Authority FRS Form 1 Background and Instructions

Subsections

A. Frequency Response Characteristics and their Measurement

1. Frequency Response
2. Response to Internal and External Generation/Load Imbalances
3. Frequency Bias Setting versus Frequency Response
4. Effects of a Disturbance on all Balancing Authorities External to the Contingent Balancing Authority
5. Effects of a Disturbance on the Contingent Balancing Authority
6. Effects of a Disturbance on the Contingent Balancing Authority with a Jointly-Owned Unit
7. Effects of a Disturbance on the Non-Contingent Balancing Authority with a Jointly-Owned Unit

B. FRS Form 1 Instructions

This document includes the purpose and description of the Frequency Response Survey (FRS) Form 1, including specific instructions to complete the survey form.

A. Frequency Response Characteristics and their Measurement

Disturbances can cause frequency to either increase from loss of load or decrease from loss of generation; Frequency Response characteristics should be evaluated for both types of events.

Accurate measurement of Frequency Response for an Interconnection or for individual Balancing Authorities is difficult unless the frequency deviation resulting from a system disturbance is significant. Therefore, it is better to analyze response only when significant frequency deviations occur.

1. Frequency Response - For any change in generation/load balance in the Interconnection, a frequency change occurs. Each Balancing Authority in the Interconnection will respond to this frequency change through:

- A load change resulting from the load's Frequency Response ${ }^{1}$ that acts to arrest frequency changes, and varies with frequency in a continuous and inverse relationship,
- A generation change resulting from governor action that acts to arrest frequency changes, and varies with frequency in a continuous and inverse relationship, and
- A change in energy consumption or production from other devices resulting from the device's control system that acts to arrest frequency changes, and varies with frequency in a continuous and inverse relationship.

[^46]Frequency responsive resources (generation, load, and other devices as above described) produce these responses. The net effect of these actions is the Balancing Authority's response to the frequency change, that is, its Frequency Response. The combined response of all Balancing Authorities in the Interconnection will cause the Interconnection frequency to settle at some value different from the pre-disturbance value and maintain it there. Frequency will remain different until the Balancing Authority with the generation/load imbalance (referred to as the "contingent Balancing Authority") corrects that imbalance, thus returning the Interconnection frequency to its pre-disturbance value.
2. Response to Internal and External Generation/Load Imbalances - Most of a Balancing Authority's Frequency Response will be reflected in a change in its actual net interchange. By monitoring frequency error (the difference between actual and scheduled frequency) and the change in actual interchange in response to the frequency deviation, a Balancing Authority's automatic generation control (AGC) can determine whether the imbalance in load and generation is internal or external to its system. If internal, the Balancing Authority's AGC and/or deployment of Contingency Reserve should gradually correct the imbalance. If external, the Balancing Authority's AGC should allow its frequency responsive resources to continue responding (as allowed by its Frequency Bias Setting contribution in its ACE equation) until the contingent Balancing Authority corrects its imbalance, which should return frequency to its predisturbance value.
3. Frequency Response versus Frequency Bias Setting- If the Balancing Authority's Frequency Bias Setting matches its Frequency Response in its AGC ACE equation, the Balancing Authority's Frequency Bias Setting allowance term would exactly offset the change in tie line flow included in the ACE that results from frequency responsive resource action countering a frequency deviation on the Interconnection. The following sections discuss effects of Frequency Bias Settings on control action. The discussion explains control action by all Balancing Authorities external to the contingent Balancing Authority (the Balancing Authority that experienced the sudden generation/load imbalance) and by the contingent Balancing Authority itself.

While this discussion deals with loss of generation, it applies equally to loss of load, or any sudden contingency resulting in a generation/load mismatch. Each Balancing Authority's Frequency Response will vary with each disturbance because generation and load characteristics change continuously. This discussion also assumes that frequency error from 60 Hz was zero (all ACE values were zero) just prior to the sudden generation/load imbalance.

For further explanation of the ACE equation, refer to the Area Interchange Error Training Document.
4. Effects of a Disturbance on all Balancing Authorities External to the Contingent Balancing Authority - When a loss of generation occurs, Interconnection frequency declines because machine speed must decrease to supply a portion of the energy shortfall from rotating kinetic energy. Initially, rotating kinetic energy from all rotating machines with direct mechanical-toelectrical coupling addresses the entire shortfall by lowering machine speed, and hence frequency, of the Interconnection ${ }^{2}$. Over time, Balancing Authorities' frequency responsive

[^47]resources should respond to frequency error and change energy to stabilize frequency accordingly. This will cause a change in the Balancing Authorities’ actual net interchange. In other words, the Actual Net Interchange $\left(N I_{\mathrm{A}}\right)$ generally should be greater than its value before the contingency for all but the contingent Balancing Authority, and the result should be an increase in flow out of non-contingent Balancing Authorities (or a decrease in flow into noncontingent Balancing Authorities). The resulting tie flow error ($N I_{\mathrm{A}}-N I_{\mathrm{S}}$) will be counted as Inadvertent Interchange.

If Balancing Authorities were using only tie line flow error (i.e., flat tie control ignoring the frequency error), this non-zero ACE would cause their AGC to reduce generation until $N I_{\mathrm{A}}$ was equal to $N I_{S}$; returning their ACE to zero. However, doing this would not help arrest Interconnection frequency decline because the Balancing Authorities would not be helping to temporarily replace some of the generation deficiency in the Interconnection. With the tie-line bias method, the Balancing Authorities’ AGC should allow their frequency responsive resources to continue responding to the frequency deviation until the contingent Balancing Authority replaces the generation it has lost.

For the AGC to allow frequency responsive resource action to continue to support frequency, a frequency bias contribution term is added to the ACE equation to offset the tie flow error. This bias contribution term is equal in magnitude and opposite in direction to the frequency responsive resource action and should ideally be equal to each Balancing Authority's Frequency Response measured in MW/0.1 Hz. Then, when multiplied by the frequency error, ideally the Frequency Bias Setting should exactly be offset by the tie flow error portion of the ACE calculation, allowing continued support of frequency responsive resource action to support system frequency while maintaining ACE at zero.

The ACE equation is then:

$$
A C E=\left(N i_{A}-N i_{S}\right)-10 B\left(f_{A}-f_{S}\right)-I_{M E}
$$

Where:

- The factor 10 converts the Frequency Bias Setting (B) from MW/0.1 Hz to MW/Hz.
- I_{ME} is a meter error correction estimate; this term should normally be very small or zero

NOTE: Frequency Response and Frequency Bias Settings are often referred to as positive values (such as "our bias is $50 \mathrm{MW} / 0.1 \mathrm{~Hz}$ "). Frequency Response and Frequency Bias Settings are actually negative values.

If the Frequency Bias Setting is greater (as an absolute value) than the Balancing Authority's actual Frequency Response, then its AGC will increase generation beyond the primary frequency responsive resource response in order to achieve $\mathrm{ACE}=0$, which further helps arrest the frequency decline, but increases Inadvertent Interchange. Likewise, if the Frequency Bias Setting contribution term is less (as an absolute value) than actual Frequency Response, its AGC will reduce generation in order to achieve $\mathrm{ACE}=0$, thereby reducing the Balancing Authority's contribution to arresting frequency change.
5. Effects of a Disturbance on the Contingent Balancing Authority - In the contingent Balancing Authority where the generation deficiency occurred, most of the replacement power comes from the Interconnection over its tie lines from Frequency Response contributions by other Balancing Authorities in the Interconnection, as allowed by Frequency Bias Settings. A small portion will be made up internally from the contingent Balancing Authority's own frequency responsive resource response. In this case, the change in $N I_{\mathrm{A}}$ for the contingent Balancing Authority is much greater than its Frequency Bias Setting component. Its ACE will be negative (if the loss is generation), and its AGC will begin to increase generation.

$$
\begin{aligned}
& N I_{\mathrm{A}} \text { - drops by the total generation lost less the contingent Balancing Authority's own } \\
& N I_{\mathrm{S}} \text { - does not change }
\end{aligned}
$$

The energy supplied from the Interconnection appears in the contingent Balancing Authority’s inadvertent balance.
6. Effects of a Disturbance on the Contingent Balancing Authority with a Jointly-Owned Unit ${ }^{3}$ - When a generation deficiency occurs within a Balancing Authority on a jointly-owned unit (with dynamically scheduled shares being exported), the effects on the tie line component ($N I_{\mathrm{A}}-$ $N I_{\mathrm{S}}$) of their ACE equation are more complicated. The $N I_{\mathrm{A}}$ drops by the total amount of the generator lost, while the $N I_{\mathrm{S}}$ is reduced only by the dynamic reduction in the shares being exported.
$N I_{\mathrm{A}}$ - drops by the total generation lost less the contingent Balancing Authority's own
frequency responsive resource response
$N I_{\mathrm{S}}$ - decreases by the reduction in dynamic shares being exported

The net effect is that the tie line bias component reflects only the response by the contingent Balancing Authority for its share of the lost generation. Most of the replacement power comes from the Interconnection over its tie lines from Frequency Response contributions by other Balancing Authorities in the Interconnection.
7. Effects of a Disturbance on a Balancing Authority with a Contingent Jointly-Owned Unit ${ }^{4}$ Geographically-Located in an External Balancing Authority - In a Balancing Authority whose generation deficiency occurred on a jointly-owned unit in another Balancing Authority (with dynamically scheduled shares being exported from the other BA), the effects on the tie line component ($N I_{\mathrm{A}}-N I_{\mathrm{S}}$) of their ACE equations are also complicated. The $N I_{\mathrm{A}}$ increases by the Balancing Authority's own Frequency Response, while the $N I_{\mathrm{S}}$ is reduced only by the dynamic reduction in the share the BA is importing from the unit.
$N I_{\mathrm{A}}$ — increases by the Balancing Authority's own frequency responsive resource response
$N I_{\mathrm{S}}$ - decreases by the BA's dynamic share of the jointly-owned unit.
The net effect is that the tie line bias component reflects only the response by the contingent Balancing Authority for its share of the lost generation. Most of the replacement power comes from the Interconnection over its tie lines from Frequency Response contributions of other Balancing Authorities in the Interconnection.

[^48]
B. BAL-003-FRS Form 1 Instructions

Figure 1 - Class ic Frequency Excursion and Recovery
A sample frequency chart is shown in Figure 1 with points A, B, and C labeled. Point A represents the interconnected system frequency immediately before the disturbance. Point B represents the interconnected system frequency at the point immediately after frequency stabilizes due to Frequency Response but before the contingent Balancing Authority takes corrective AGC action. Point C represents the interconnected system frequency at its maximum deviation. All dynamic adjustments as cited bulleted items 4 through 6 needs to be made to NI_{A}.

Balancing Authority FRS Form 1 Background and Instructions

Line-by-line instructions for the survey form follow:

FRS Form 1 Date/Time		Point "A"	nformation	Point "B"	formation	SEFRD	Internal	
Column A	Column B	Corumn C	Column D	Column E	column F	Column G	Column I	Column J
(XXXX Prevailing)	DelFreq	Load	NAI	Load	NAI	(MW/0.1Hz)	Contingency	Unit
$\begin{aligned} & 12 / 20 / 2008 \\ & 2: 12 \end{aligned}$	-0.058	2869.1	-117.0	2861.2	-93.8	-40.2	N	
12/27/2008	-0.006	2553.6	-138.5	2576.9	-110.8	-41.9	N	
$\begin{aligned} & \text { 4:18 } \\ & \text { 1/5/2009 9:26 } \end{aligned}$	0.040	2838.7	-99.2	2857.8	-88.5	26	N	
1/27/2009 0:39	-0.053	2524.7	-94.4	2522.3	-13.8	-153.6	N	

Point A values are averages over the period from -16 seconds to 0 seconds before initial frequency decline.

Point B values are averages over the period from 18 seconds to 52 seconds after the first scan indicating an initial frequency decline

Data Values

The times of events are approximate; your local observations may vary in time due to the proximity to the loss of generation and SCADA scan rates. The time skew of your observations may be several seconds and your data should be reported accordingly.

Similarly, Delta Frequency values are approximate.
Note: The following table shows the data cells for a Generation Only Balancing Authority

Modified Heading for Generation only BA

Notes: Add any necessary notes to the response. Please note that Excel allows a maximum of 256 characters for a cell.
All other data on the survey form is calculated.

Implementation Plan for BAL-003-1 - Frequency Response \& Frequency Bias

Prerequisite Approvals

There are no other reliability standards or Standard Authorization Requests (SARs), in progress or approved, that must be implemented before this standard can be implemented.

Modified Standards

BAL-003-0 Requirements R1, R2, R3, R4 and R6 should be retired when BAL-003-1 becomes effective.
BAL-003-0 Requirement R5 should be retired as outlined in the following table.

For those Balancing Authorities that serve native load:

- May 2011 through December 2011
- January 2012 through December 2012
- January 2013 through December 2013
- January 2014 through December 2014
- January 2015 through
-0.8% of peak/ 0.1 Hz
-0.6% of peak/ 0.1 Hz
-0.4% of peak/ 0.1 Hz
-0.2% of peak/ 0.1 Hz
-0.0% of peak/ 0.1 Hz

For those Balancing Authorities that do not serve native load:

- May 2011 through December 2011 generation/ 0.1 Hz
- January 2012 through December 2012 generation/0.1 Hz
- January 2013 through December 2013 generation/0.1 Hz
- January 2014 through December 2014 generation/0.1 Hz
- January 2015 through generation/0.1 Hz
-0.8% of upcoming years maximum
-0.6% of upcoming years maximum
-0.4% of upcoming years maximum
-0.2% of upcoming years maximum
-0.0% of upcoming years maximum

The FRR drafting team, NERC and the NERC Resources Subcommittee will observe the impact on frequency and will implement a reversion plan should frequency performance decline.

Compliance with Standards

Once this standard becomes effective, the responsible entities identified in the applicability section of the standard must comply with the requirements. These include:

- Balancing Authorities

Proposed Effective Date

Compliance with BAL-003-1 shall be implemented over a two-year period, as follows:

- In those jurisdictions where regulatory approval is required, Requirements R1, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R1, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
- In those jurisdictions where regulatory approval is required, Requirements R2 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R2 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.

Unofficial Comment Form for BAL-003-1 Frequency Response and Frequency Bias Standard

Please DO NOT use this form to submit comments on the $1^{\text {st }}$ draft of BAL-003-1 Frequency Response and Frequency Bias Setting. Comments must be submitted by March 7, 2011. If you have questions please contact Darrel Richardson by email at darrel.richardson@nerc.net or by telephone at 609.613.1848.

Background Information:

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. The proposed standard's intent is to collect data needed to accurately analyze existing Frequency Response, set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be analyzed, and the reasons for the decline in Frequency Response can be identified. Once Frequency Response has been analyzed and confirmed, requirements can be modified to maintain reliability.
The Drafting Team would like to receive industry comments on this standard. Please submit your comments using the electronic form by March 7, 2011.

You do not have to answer all questions. Enter All Comments in Simple Text Format.

Insert a "check" mark in the appropriate boxes by double-clicking the gray areas.

1. The SDT has developed three new terms to be used with this standard.

Single Event Frequency Response Data (SEFRD)
The individual sample of event data from a Balancing Authority which represents the change in Net Actual Interchange (NI_{A}), divided by the change in frequency, expressed in MW/0.1Hz.
Frequency Response Measure (FRM)
The median of all Single Event Frequency Response Data observations reported annually on FRS Form 1.
Frequency Response Obligation (FRO)
The Balancing Authority's contribution to the total aggregate Frequency Response needed for reliable operation of an Interconnection assigned by the ERO.

Do you agree with the proposed definitions in this standard? If not, please explain in the comment area.Yes
\square No
Comments:
2. The SDT has modified the definition for the term Frequency Bias Setting. The new definition is shown below in redline to show the changes proposed.

Frequency Bias Setting
A value, (either a fixed or variable Frequency Bias), usually expressed in MW/0.1 Hz, set into a Balancing Authority Area Control Error algorithm-equation that allows the Balancing Authority to contribute its frequency-Frequency f Response to the Interconnection.

Do you agree with this new definition for Frequency Bias Setting? If not, please explain in the comment area.YesNo
Comments:
3. The proposed purpose statement in the draft standard is:

To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored to schedule. To provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting.

Do you agree with this purpose? If not, please explain in the comment area.Yes
Comments:
4. Requirement 1 identifies a minimum level of Frequency Response.

R1. Each Balancing Authority shall achieve a Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO).

Do you agree with the concept that a Balancing Authority should be required to achieve a minimum level of Frequency Response and the method for measurement? If not, please explain in the comment area.YesNo
Comments:
5. Requirement 2 identifies when the Balancing Authority must implement its Frequency Bias Setting.

R2. Each Balancing Authority shall implement the Frequency Bias Setting (fixed or variable) provided by the ERO into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effective coordinated secondary control, using the results from the calculation methodology detailed in Attachment A.

Do you agree with this implementation? If not, please explain in the comment area.
\square No
Comments:
6. Requirement 3 mandates that a Balancing Authority operate its Automatic Generation Control (AGC) on Tie Line Bias unless it becomes adverse to the integrity of its system.

R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Bias, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area.
Do you agree that a Balancing Authority should operate its AGC on Tie Line Bias unless it becomes adverse to its system? If not, please explain in the comment area below.Yes
\square No
Comments:
7. Do you agree with the proposed Implementation Plan for this standard? If not, please explain in the comment area.
\square No
Comments:
8. This standard proposes to eliminate the 1% minimum Frequency Bias over a period of 4 years as outlined in the Implementation Plan. Do you agree that the elimination of the 1% minimum will bring Frequency Bias closer or equal to natural Frequency Response? If not, please explain in the comment area.Yes
\square No
Comments:
9. Do you agree with the drafting team that this standard should be field tested? If not, please explain in the comment area.

\square No
Comments:
10. Attachment A of the proposed standard describes the criteria for selecting events to be analyzed. Do you agree with the criteria as described in Attached A? If not, please explain in the comment area.No
Comments:
11. The proposed standard has a document attached to it that describes the SDT's reasoning for the Requirements (Attachment A - Frequency Response Background Document). Do you agree with the SDT that this document is useful and provides a clear understanding of the Requirements? If not, please explain in the comment area.YesNo
Comments:
12. The proposed standard requires the use of FRS Form 1 for calculating a Balancing Authority's FRM. Do you agree with the SDT that this is the proper method to calculate its FRM? If not, please explain in the comment area and if possible provide an alternate method to calculate FRM.Yes
Comments:
13. The proposed standard requires the use of FRS Form 1 for calculating a Balancing Authority's Frequency Bias Setting. Do you agree with the SDT that this is the proper method to calculate its Frequency Bias Setting? If not, please explain in the comment area and if possible provide an alternate method to calculate Frequency Bias Setting.
\square No
Comments:
14. The SDT has provided a document (FRS Form 1 Instructions) describing how to use FRS Form 1 for calculating FRM and Frequency Bias Setting. Do you agree with the SDT that this document provides a clear understanding of how to use the form? If not, please explain in the comment area.Yes
No
Comments:
15. The SDT is soliciting comments on methods of obtaining Frequency Response to meet the FERC Order 693 directive. If possible please provide any thoughts you may have on this subject.

Comments:
16. If you are aware of any conflicts between the proposed standard and any regulatory function, rule order, tariff, rate schedule, legislative requirement, or agreement please identify the conflict here.

Comments:
17. Please provide any other comments (that you have not already provided in response to the questions above) that you have on the draft standard BAL-003-1.
Comments:

NERC

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

Frequency Response Standard Field Test Document

February 2011

February 2011

Need for a Field test

To expedite the delivery of a Frequency Response Standard ${ }^{1}$ the draft BAL-003-1 is built upon the traditional annual Frequency Bias Setting calculation. This approach will enable using 2010 event data as a field test of specific aspects of the standard that have never been validated industry-wide. The proposed field test is intended to facilitate the delivery of a technically sound standard as soon as possible. The reasoning and approach for the components of the field test are described below. The field test will be modified if the draft standard changes on the basis of industry comments.

Frequency Bias Setting Floor

BAL-003-1 proposes to bring Frequency Bias Settings closer to Frequency Response. The drafting team proposes to reduce the minimum Frequency Bias Settings over a period of years. The drafting team proposes to establish a new minimum Frequency Bias Setting in 2011 (-0.8\% of peak $/ 0.1 \mathrm{~Hz}$, compared to the present -1% of peak $/ 0.1 \mathrm{~Hz}$). The drafting team, NERC and the Resources Subcommittee will observe the impact on frequency and will implement a reversion plan as necessary.

Impact on other Balancing Standards

Changes in Frequency Bias Settings may have secondary impacts on calculated performance in other balancing standards. For example, with a reduced bias, L10 values tighten. The drafting team will evaluate the impact on other balancing standards.

Evaluating Other Options

The drafting team is evaluating other approaches to evaluate risk and performance obligation. This evaluation will be done in parallel during the field test period using the same underlying data and other data (such as ACE) that will be available without additional effort on the part of Balancing Authorities.

Confirm Calculation and Allocation Methodologies

While the general principles of Frequency Response are understood by Balancing Authorities, there has never been a common methodology for measuring and analyzing Frequency Response. The drafting team will evaluate the following aspects of the standard during the field test:

- The measurement methodology for Balancing Authorities with large amounts of nonconforming load. This is because the impact of non conforming load on NI_{A} for a small Balancing Authority can be an order of magnitude greater than the Balancing Authority's Frequency Response. The drafting team will solicit volunteer Balancing Authorities to test a

[^49]secondary measure that may be superior for measuring Frequency Response in these situations.

- The validity of the measurement methodology for the full spectrum of Balancing Authorities (fixed vs. variable Frequency Bias Settings, large vs. small, load-only, generation-only).
- The variability of calculated Frequency Response (load’s Frequency Response, governor response, plus Frequency Response from other technologies).
- Evaluate the event-selection criteria (differences in starting and settling frequency).

NORTH AMERICAN ELECTRIC

Standards Announcement

Project 2007-12 Frequency Response
 Comment Period Open February 4 - March 7, 2011

Now available at: http://www.nerc.com/filez/standards/Frequency Response.html

Formal 30-day Comment Period Open through 8 p.m. on March 7, 2011

BAL-003-1 - Frequency Response and Frequency Bias Setting, and associated documents including the required Form 1, Instructions for Form 1, Attachment A, proposal for a field test, and implementation plan have been posted for a 30-day formal comment period.

Instructions

Please use this electronic form to submit comments. If you experience any difficulties in using the electronic form, please contact Monica Benson at monica.benson@nerc.net. An off-line, unofficial copy of the comment form is posted on the project page: http://www.nerc.com/filez/standards/Frequency_Response.html

Next Steps

The drafting team will consider all comments and determine whether to make additional changes to the standard. The team will post its response to comments and, if changes are made to the standard and supporting documents, submit the revised documents for quality review prior to the next posting.

Project Background

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. The proposed standard's intent is to collect data needed to accurately analyze existing Frequency Response, set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be analyzed, and the reasons for the decline in Frequency Response can be identified. Once Frequency Response has been analyzed and confirmed, requirements can be modified to maintain reliability.

Standards Process

The Standard Processes Manual contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate.

For more information or assistance, please contact Monica Benson, Standards Process Administrator, at monica.benson@nerc.net or at 609.452.8060.

Individual or group. (36 Responses) Name (21 Responses) Organization (21 Responses) Group Name (15 Responses) Lead Contact (15 Responses) Question 1 (31 Responses) Question 1 Comments (36 Responses) Question 2 (31 Responses) Question 2 Comments (36 Responses) Question 3 (33 Responses)
Question 3 Comments (36 Responses) Question 4 (33 Responses) Question 4 Comments (36 Responses) Question 5 (30 Responses) Question 5 Comments (36 Responses) Question 6 (33 Responses) Question 6 Comments (36 Responses) Question 7 (29 Responses) Question 7 Comments (36 Responses)

Group
Arizona Public Service Company
Janet Smith
Yes
Yes
Yes
Yes
What is meant by discretely administered determination, under the heading "Frequency Obligation and Allocation" of
Attachment A? Please explain.
Yes
Yes
As long as Appendix 1 interpretation remains in effect for WECC Auto Time Error Payback. WECC BAs operate in Tie-
Line and Time.
AZPS has a few questions: 1) has frequency performance been affected by the on-going RBC field trial, 2) what steps
will be taken to isolate this field trial from the effects of the RBC field trial, 3) will the frequency bias reduction to 0.8\% of
peak load include a CPS2 grace-period for thos BAs not involved in the RBC field trial?
Individual
Joe O'Brien
NIPSCO
Yes
No
Frequency Bias and Frequency Response are not the same thing and that may be why "F" \& "R" were not capitalized
in the present definition. I think the word "secondary" should appear per R2 finishing something like this: "to contribute
to secondary (non-immediate)Interconnection frequency control.", removing Frequency Response altogether. (I do
understand that you are bringing the FR and Bias closer together).
No
Yes, "Interconnection frequency", small "f".
No

Yes and no, similar to BAL-002 I think this should read "Each Balancing Authority or Reserve Sharing Group shall,
With so many BA's I believe the RSGs will be play a big role in this compliance ... This comment applies to only R1,
Yes
I guess the ERO will calculate the Bias, interesting.
No
Yes, It was proposed that AGC be replaced by Automatic Resource Control (ARC) in the standards but did not pass.
The SDT may want to monitor this related effort.
No
"Effective Date" section at the top of the Standard does not match the Implementation plan; I think there is an R4
missing in the second part of 1.3. In the implementation plan add RSG to "Compliance with the Standards" 5 year
phase-in on removing the 1\% is a good idea
Individual
John Canavan
NorthWestern Energy
Yes
Yes
Yes
Yes
No
A Balancing Authority's frequency response is based upon a "median" value calculated from analyzing multiple events.
Frequency response during some of these events is better than others, depending on the system conditions at the time
and the amount system loading and unloaded generation online at the time of the event. Given these circumstances a
BA's actual response could vary by event (better or worse than median), thus compliance measurement per event to a
frequency response obligation based on the median response (over multiple events) could put BA's in non-compliant
situations unjustly.
Yes

Yes

No
Comment 9: I agree that each BA should be required to provide a minimum level of Frequency Response to provide for its share of the total Frequency Response required for interconnection reliability. Comment 10: I also agree with the methods used to measure SEFRD subject to my comments on FRS Form 1. Comment 11: I do not agree that the method suggested for setting the FRO will achieve the desired goal of maintaining interconnection reliability. The measurement method offered only evaluates the supply of Frequency Response. It does not evaluate the demand (need) for Frequency Response. Since frequency error is the difference between the demand and supply any effective measure for maintaining reliability due to frequency error must include both the demand and supply parts of this balance. As a consequence, the method will be blind to changes (good or bad) in the demand for Frequency Response. Changes in the demand for Frequency Response will require subsequent changes in the supply for Frequency Response that this standard fails to address until the following year and leaves the interconnection at risk for unreliable operation. Comment 12: The requirements associated with Frequency Response as defined in this standard will not assure interconnection reliability. Frequency Response is a two part service. The first part of this service is the rate at which energy is supplied in proportion to frequency error. This first part is commonly represented as the Frequency Response and the corresponding Frequency Bias Setting. The second part of the service is the amount of capacity that the BA stands ready to supply at this stated proportion in response to frequency error. Failure to effectively specify and measure the amount of capacity that the BA stands ready to supply at the stated proportion could put the interconnection at reliability risk when the required amount of capacity is not included in the operating plan.
No
Comment 13: I agree that the BA shall implement the Frequency Bias Setting provided by the ERO into it Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effective coordinated secondary control. Comment 14: I do not agree that the results from the calculation methodology detailed in Attachment A will provide the correct Frequency Bias Setting. My comments on the calculation methodology are included elsewhere in my comments on Attachment A and FRS Form 1.
No
Comment 15: Requirement 3 as written is unenforceable because it is too difficult to define "unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area." Comment 16: What if operation out of Tie line Bias control does not have an Adverse Reliability Impact on the Balancing Authority's Area, but does have an Adverse Reliability Impact on another BA? Comment 17: A document follows that provides an initial starting justification for the elimination of this Requirement. See following "Requirements for AGC Operation, January 25, 2011."
Requirements for AGC Operation, January 25, 2011 Introduction: As of the date of these comments there are two requirements in the NERC Standards that address the operation of AGC. The first is in BAL-003-0.1b - Frequency Response and Bias, Requirement R3. R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability. The second is in BAL-005-0.1b - Automatic Generation Control, Requirement R7. R7. The Balancing Authority shall operate AGC continuously unless such operation adversely impacts the reliability of the Interconnection. If AGC has become inoperative, the Balancing Authority shall use manual control to adjust generation to maintain the Net Scheduled Interchange. These requirements are misdirected and, for compliance purposes, they are difficult to measure effectively. This paper provides the technical basis for replacing these requirements with new requirements that will not only achieve the intent of these requirements, but do so in a more effective and measurable manner. Background: Automatic Generation Control (AGC) is a computer control system contained in the Control Center EMS that performs a number of critical functions related to the balancing function necessary to maintain frequency and associated reliability. Among the functions it performs are: 1) the collection of telemetered and local data useful for determining the appropriate control actions, 2) the calculation of Area Control Error (ACE), 3) determination of desired control actions that should be sent to those resources available for automatic dispatch, and 4) sending the actual control signals to implement that dispatch. Most AGC Systems have three basic modes of operation, 1) Tie-line Frequency Bias, 2) Constant Net Interchange and 3) Constant Frequency. The ACE Equation is the basis for all three modes of operation. In the Tie-line Frequency Bias mode, all of the ACE Equation is used as an input to control action determination. In the Constant Net Interchange mode, only the Tie-line Error portion of the ACE Equation is used as an input to control action determination. The Constant Net Interchange mode would normally be used when there is no information available to indicate interconnection frequency. In the Constant Frequency mode, only the Frequency Bias portion of the ACE Equation is used as an input to control action determination. The Constant Frequency mode of operation would be used when the Tie-line Error is known to be misleading, inaccurate or unavailable. It is also used when there are no tie-lines in service as in the case of a single BA interconnection or during islanded operation. AGC Systems have been used in the industry since before the development of digital computers. Initially AGC Systems did little more than send instructions to generators based on evaluation of the ACE Equation. They have become more sophisticated since their inception and implement greater complexity in their evaluations of appropriate dispatch actions to the point that they include forecasting, reliability and economics within their algorithms. Modern AGC Systems determine control actions based on the collection of much more data than is included in the ACE Equation. This additional data includes: short-term load forecasts and forecast error estimates as influenced by weather; individual
non-conforming load forecasts and forecast error; forecast interchange transaction information; generating unit ramp and response rates; generating unit economic operating points including valve position; generating unit incremental economic costs including start-up and maintenance; Hydro unit river flow limits as related to the operation of other units on the same waterway; energy storage capabilities and available energy; Inadvertent Interchange energy account balances; time error; and current control performance scores. As AGC Systems have evolved, the control mode in which they are operating, Tie-line Frequency Bias, Constant Net Interchange, or Constant Frequency, provides less and less information about the control actions that they implement. In a modern AGC System the control mode provides little information about how control actions are being determined and implemented. In fact, only someone experienced in AGC programming and implementation would have the knowledge necessary to determine whether or not an AGC System is providing reasonable control actions or control actions consistent with Tie-line Frequency Bias Control. Even someone with the necessary experience observing the operation of a modern AGC System for a short period of time will be incapable of determining whether or not that system is providing effective or adequate control. Therefore, neither of the two requirements is effectively enforceable from a practical point of view. Perspective: A couple of examples are offered to add perspective to the problem. Example 1: R3 includes the requirement, "Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability." There are three conditions when operation on Tie-line Frequency Bias control may be adverse to the system or Interconnection reliability. 1. The first is when the Tie-line Error data used in the ACE Equation is incorrect. The ACE Equation will be incorrect when there are errors in the Actual or Scheduled Tie-line flow values. This condition will occur when there is telemetry failure of one or more tielines, when there is an unidentified scheduling error, or when there is a separation that causes a tie-line metering point to be located on a separate island due to interconnection separation or islanding. Telemetry failure will be indicated by the quality bits associated with the Tie-line telemetry. If AGC is disabled to identify a scheduling error, there should be an operating log entry. If AGC is disabled because of a separation, there will also be a log entry. 2. The second is when the actual frequency is determined to be incorrect. If measured frequency is incorrect, this condition should be indicated by an operating log entry and transfer to the redundant frequency device to provide measured frequency. When the actual frequency fails, this condition will be indicated by the quality bits associated with the measured frequency value and transfer to the redundant frequency device to provide measured frequency. 3. The third is when operation of AGC would provide control different from the desired control to address some emergency condition in the BA or elsewhere on the interconnection. If the operation of AGC would be adverse to system or Interconnection reliability and is disabled for this reason, this condition should be indicated by an operating log entry. In all cases, there should be a record of the reason for the use of other than Tie-line Frequency Bias control and records indicating the reason for the use of other control modes. In all cases, other than the third indicated above, an error in the value of ACE is the reason for not using Tie-line Bias Control and the quality bits for ACE or ACE component data should provide a reasonable explanation for the condition. The third case occurs with such infrequency that there should be no need for a special rule to address this condition. Example 2: R7 includes the requirement, "...If AGC has become inoperative, the Balancing Authority shall use manual control to adjust generation to maintain the Net Scheduled Interchange." Cases have been observed of an AGC System that does not perform as well as the manual dispatch used when the AGC System is inoperative. If a BA has a CPS1 score of 120% when using AGC and a CPS1 score of 125% when performing manual dispatch, should that BA be penalized for not having its AGC continuously operating? What is the goal? Is the goal to operate on AGC regardless of the result or is the goal to operate in a manner that provides the best measured control? Alternatives: Since these requirements are not effectively measurable or enforceable, can a requirement or requirements be written to provide an equivalent to the intent of the old requirements addressing AGC operation? The industry has three alternatives to address this issue: 1. Retain requirements that are directed at the AGC System understanding that they are effectively not measureable or enforceable. 2. Eliminate requirements that are directed at the AGC System with the understanding that they were not contributing to reliability. 3. Determine an alternative method to evaluate, measure and enforce a requirement that will achieve a goal similar to the goal originally intended by the implementation of the AGC System requirements. Elimination of the requirement is an appropriate solution. However, if it is determined that a replacement measure is required, then the solution to this problem lies with the third alternative above. Solution: There is already a requirement that effectively enforces the intent of the above requirements. Instead of requiring the BA to control in a particular manner, CPS1, BAAL and DCS require the BA to achieve specific results with their control actions. All three measures require the BA to calculate ACE using Tie-line Frequency Bias for determination of their Reporting ACE. The requirements specify that at least 50% of the data must be valid for the one-minute average data to be included in the measures. The requirements for redundant frequency measurement devices assure that the BA will have the actual frequency data available to perform the necessary calculations. The data retention requirements specify the data they must retain to demonstrate that their control achieved the stated goals. Finally, this approach is consistent with the White House Executive Order on Improving Regulation and Regulatory Review in Section 1(b)(4) stating that regulatory agencies must: "to the extent feasible, specify performance objectives, rather than specifying the behavior or manner of compliance that the regulated entities must adopt;..."
No
Comment 18: The Proposed Effective Date in the implementation plan is inconsistent with the Effective Data in the Draft Standard. Comment 19: The completion of the implementation plan does not occur until 2015. This lengthy plan stems from a standard that only measures reliability annually and provides only an annual window for changing parameters such as Minimum Frequency Response. Alternative methods that measure reliability more frequently could me implemented with a shorter implementation plan.

Frequency Bias Setting A value, (either a fixed or variable Frequency Bias), usually expressed in MW/0.1 Hz, set into a Balancing Authority Area Control Error algorithm equation that allows the Balancing Authority to contribute its frequency Frequency rResponse to the Interconnection. Comments: Not sure the word "allows" is the right word. Perhaps use something in terms of preventing withdrawal of Primary Frequency Response with words like "...equation that prevents the withdrawal of the Balancing Authority's Primary Frequency Response to the Interconnection." Yes

No
Comments: Proposed Standard Comment 1: BAL-003-1, Requirement R1. The requirement should be made less prescriptive by removing references to Attachment A and FRS Form 1. The responsible entity should understand the fundamental and basic requirement - to achieve a Frequency Response Measure. Where the methodology is specified or how the BA is supposed to achieve it should be a matter of compliance and/or implementation and not a part of the basic requirement. Proposed language is as follows: Each Balancing Authority shall achieve a Frequency Response Measure (FRM) that is equal to or more negative than its Frequency Response Obligation (FRO).
No
Comments: Comment 2: BAL-003-1, Requirement R2. The requirement should be made less prescriptive by removing references to the calculation methodology and Attachment A. The responsible entity should understand the fundamental and basic requirement - to implement the Frequency Bias Setting into its Areas Control Error calculation. Proposed language is as follows: Each Balancing Authority shall implement the Frequency Bias Setting (fixed or variable) provided by the ERO into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effective coordinated secondary control. Comment 3: BAL-003-1, Requirement R2 and Section 1.4 Additional Compliance Information. The SDT should consider whether or not the ERO has compliance obligations pursuant to the obligations mentioned in the proposed Standard. Requirement R2, states that the ERO should provide the BA with the Frequency Bias Setting and the specified date to begin the calculation. The R1 Supplemental Information section states that the ERO is obligated to post the official list of events. The R2 Supplemental Information section states that the ERO is obligated to validate the FRM and Frequency Bias Settings and disseminate the Frequency Bias Settings Report along with the implementation date. These obligations should be confirmed and properly incorporated into Standard if appropriate.
No
Comments: Agree only to the extent that an accurate frequency measurement is available to the BA . If not frequency measurement is available, then that should be considered an adverse condition and thus TLB is not appropriate. In other words, one small BA maintaining TLB may not cause the condition in the Glossary definition of Adverse Reliability Impact but it is still not appropriate for them to stay on TLB.
Yes
We did not want to vote on Question 7, but clicked 'yes' in error.
Individual
Bryan Taggart
Westar Energy
No
For FRM, why is median used rather than average? The method in the standard for dsetermining FRM needs to allow for excluding some events due to non-conforming loads, scan rates, intermittent resources, large interchange ramps, etc that may cause the actual response during the 16 seconds to actually be opposite of the expected response.
No
We propose the following: A value, (either a fixed or variable), expressed in MW/0.1 Hz, set into a Balancing Authority Area Control Error equation that allows the Balancing Authority to contribute its SECONDARY Frequency Response to the Interconnection.
Yes
No
The lagging measure is a concern. The ERO should be required to provide an updated proposed/possible list of frequency events monthly so BA's can determine their FRM through out the year so corrective action can be taken if needed. Prior year events should be excluded (just to get to 25 events). This could result in begin non-compliant twice for the same events.
Yes

Yes

Yes
Yes, if field testing validates the standard.

definition should be: The Balancing Authority's annual median frequency response as assigned by the ERO (or NERC). The word "contribution" should be considered to be replaced with "the balancing authority piece of the total....." The standard does not explain who will determine the value of each BA's FRO nor the method used to determine the FRO value. Should the definition of Frequency Response Measure be a median or mean value?
No
We suggest the following changes to the definition: 1. Delete the word "usually" 2. Replace "set into" with "as part of". 3. Replace the remainder of the sentence following "Area Control Error equation" with "that influences its Automatic Generation Control (AGC) to provide its frequency response while Interconnection frequency is not at its scheduled value" - (The frequency bias does not allow a BA to contribute its frequency response to the Interconnection. The frequency bias term only affects the AGC response of the BA, which is part of its frequency response usually minutes after the initial event and is dependent upon generation units being on AGC control and capable of responding.) 4. The suggested changes would result in the following definition: A value, (either a fixed or variable Frequency Bias), expressed in MW/0.1 hertz as part of a Balancing Authority's Area Control Error (ACE) equation that influences its Automatic Generation Control (AGC) to provide its frequency response while Interconnection frequency is not at its scheduled value.
No
The proposed purpose statement as provided in this question is not the same as the purpose statement for BAL-003-1 as posted on the Project 2007-12 page of the NERC website. The posted purpose on the NERC website is: To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored. To schedule and provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting. The version posted in the question appears to correct errors in the last sentence of the purpose statement given in the project page. We do not agree with the purpose statement as posted on the project page. In addition, we suggest the following edits to what appears to be a corrected purpose statement as provided in this question: To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations due to contingencies on the interconnected BES and supporting frequency until the frequency is restored to schedule. To provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting. As NERC/FERC has differentiated Frequency Response from Frequency Regulation, the standards addressing Frequency Response should clearly be related to unplanned contingencies occurring on the interconnected BES.

The concept seems reasonable but since the measure of compliance (FRM) is determined only after the 25 events are identified; it is a lagging indicator. The BA may have to ensure it measures all frequency excursions and develops its own leading indicator to ensure compliance following year end. A sample CPS bounds report should be considered, perhaps based on 2010 numbers, to demonstrate how FRM submitted would translate to FRO frequency bias settings and how it will affect the L10 values
No
It is not clear what the methodology (should be method) is in Attachment A. Is the frequency bias setting the BA's prior year FRM with a minimum value being a percentage of estimated yearly peak load or upcoming year maximum generation? What does "provided by the ERO" mean? Perhaps it should be verified or approved by the ERO (NERC).
No
BAL-003-0, Requirement 3 requires operation of AGC on Tie Line Frequency Bias. BAL-005-0.1b, Requirement 6 requires the BA to compare total Net Interchange to total Net Scheduled Interchange plus Frequency Bias obligation to determine the Balancing Authority's ACE. We suggest that Requirement 3 be restated to "shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless" Tie Line bias is the (Ia-Is) term and frequency bias is the -10B(Fa-Fs) term. This should be coordinated with BARCSDT modifications to BAL-005.
No
The implementation plan has specific dates for reducing the bias settings currently defined in Requirement 5 over several years. Perhaps these dates should not be specific but tied to months following regulatory approval. Attachment A should be modified to match what is in the proposed standard. The values currently shown as percent "of peak/0.1 Hz " should be changed to percent of estimated yearly peak demand per 0.1 Hz change. For BAs that do not serve native load, percent "of upcoming years maximum generation/ 0.1 Hz should be changed to percent of its estimated maximum generation level in the coming year/ 0.1 Hz change
Group
Progress Energy
James Eckelkamp
No
The proposed definition for SEFRD assumes that there is no change in the Net Scheduled Interchange (NIS) as a result of the event. However, a dynamic schedule for load or generation based on data obtained with a two second scan rate will impact the NIS, and therefore the corresponding load or generation response will offset the change to NIA. Therefore, the definition of SEFRD should replace "NIA" with "change in NIA minus NIS".

No
A bias, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the interconnection, and prevent response withdrawal through secondary control systems. The changes suggested are to clarify that biasing of the ACE equation "allow[s]" primary frequency response to continue beyond the initial event window by accounting for it in the ACE input to secondary control systems (i.e. AGC). It's important to note that Primary Frequency Response will occur no matter what the Bias value is set to in the ACE equation, and biasing "supports" the response until the frequency is restored".

Yes

No
Progress Energy believes the Eastern Interconnection does not have the same issues with frequency experienced in the other two interconnections, and that load response is significant enough in the interconnection to arrest and stabilize frequency as long as BAs do not withdraw that effect (accurate biasing of the ACE equation). We also believe this standard should reference standrd PRC-024 related to accurate relay settings to allow out of bounds operations related to frequency and voltage deviations.
Yes
Yes
No
We agree with the graduated implementation for the FRO portion of the standard, but feel NERC needs to losen the minimum frequency bias requirement immediately so that it matches the newly required frequency response. There are also other areas within the EMS the besides BA's frequency bias that should be addressed such as secondary frequency response systems that should also be included in this standard. Additionally, if the industry was truly concerned with matching bias values to actual response, they would swich to variable frequency bias. Variable bias requires additional up front work along with general maintenance, but it truly is the best way to accurately bias the ACE equation.
Individual
JC Culberson
ERCOT
No
The definition of SEFRD will not work as described for a single BA Interconnection. There is no change in NI for frequency deviations. Similarly, the definition assumes all response is provided by change in Interchange and does not really reflect the frequency response of a contingent BA. Either the definition needs to be changed to accommodate single BA Interconnections (such as ERCOT and Hydro Quebec), or regional variances for them need to be written by the SDT. A BA's frequency response is composed of load frequency response, governor response, and, for BAs external to the resource loss, change in Net Interchange. Some approximation may be achieved by recognizing that the magnitude of frequency deviation is attenuated by load frequency response and governor response (or frequency activated demand response to reduce load). The definition of FRM specifies the median of all SEFRD observations reported annually. What is the technical basis for selecting the median rather than the mean? The definition of FRO raises questions. The discretely administered determination of FRO described in the draft Attachment A sets too stringent a requirement; particularly for the smaller Interconnections which may also have large size generation resources just as do the larger Interconnections. To "assure that Point C will not encroach on the first step UFLS" is significantly more stringent than existing and historical performance for those smaller Interconnections. Such assurance will assuredly prove to be very expensive. In fact, we question the need to define FRM and FRO since they can easily be stipulated in the standard requirements. Having them defined and added to the ever-growing NERC glossary creates unnecessary work to maintain the glossary, unless these terms are used by other NERC standards for which consistent meaning need to be established. For example, R1 can easily be reworded as: "R1: Each Balancing Authority shall achieve a median of all Single Event Frequency Response Data observations reported annually on FRS Form 1 that is equal to or more negative than its contribution obligation to the total aggregate Frequency Response needed for reliable operation of an Interconnection assigned by the ERO." Similar wording changes can be made to the FRS Form 1 to eliminate the need to define these two terms. Further, the Attachment A states that the SDT is evaluating a risk based approach to establishing an Interconnection Frequency Response Obligation which can be based on a probability function. If the N-2 criteria is established, it will be unlikely to be possible to change that if the new approach is viewed as a reduction in required performance. As an example, in the ERCOT Interconnection, it is recognized that the present level of required frequency responsive reserve cannot in all scenarios assure that Point C will not encroach the first step of UFLS. The system conditions that exist for the encroachment to occur represent a small likelihood and would require the $\mathrm{N}-2$ contingency to occur on something like the minimum hour of the minimum load day of the year. It has occurred one time in the history of ERCOT. Thus, it is less than once in ten years based upon actual history. The cost of precluding such an event would be astronomical.

No
The definition appears to be accurate, but where is "fixed" and "variable" Frequency Bias defined in the context of these requirements? Should it be Frequency Bias Setting, instead? "Fixed" seems to be straightforward, but what is "variable"? How often must Frequency Bias Setting change in order to be considered to be "variable"?
No
If this is really intended to be a Field Trial, it should be written as such and the standard should not be developed or promulgated until the Field Trial has accomplished its purpose and the performance criteria and measures have been determined. We request that the results of the Field Trial should be published and discussed BEFORE any changes are made. The standard should be put into place later; it is premature at this time. Since this is to be a data gathering process to be used to determine appropriate performance parameters, the purpose statement of the Field Trial should be changed to read as follows: To determine require sufficient Frequency Response arranged by from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by responding to and arresting frequency deviations and supporting frequency until the frequency is restored to schedule. To identify and establish provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting and Frequency Response Obligation. We should not write the new standard and its requirements until this Field Trial work has been accomplished; to do so possibly would result in difficulty changing the standard requirements based upon Field Trial results. Further, while we do not have any issue with the general intent of the scope statement, we have a difficulty seeing the BA being the only entity held responsible for maintaining interconnection frequency and arresting frequency deviations. When there is a sudden and sizable change to system resource or demand, the first response to a frequency deviation caused by this change would be the generators' governors. This will provide a mitigating effect for the immediate seconds up to minutes. The frequency bias setting will then kick in to supplement the mitigation need. The governors are owned by the Generator Owners; the BAs do not own these facilities and hence can do little to address frequency response during this initial period. To hold only the BA responsible for maintaining interconnection frequency and arresting frequency deviations would be inappropriate. The industry needs to have a discussion to determine who should be held responsible for providing governor responses immediately following an event, and by what mechanism, and for implementing additional measures thereafter. We suggest that BAL-003 development be withheld until this discussion takes place and a decision is made on who and how the governor response shall be provided.
No
The SRC agrees that a Frequency Response of some minimum level for each Interconnection should be achieved. However, the measure as described does not apply to all Interconnections. It does not apply to single BA Interconnections such as ERCOT and Hydro Quebec. This requirement should be added later-not included now; and it should clarify what the BA must do and what the response providers must do. BAs do not own and operate the resources. An entity which does own or operate the resources may also be registered as a BA, but an entity which does not own or operate resources may also be registered as a BA. Therefore, it is important to detail what a BA must do and also to detail what the resource owner or operator must do. The resource owner may be registered as a GO or a TO or even a DP. The resource operator may be registered as a GOP, a TOP, or a LSE. The BA must establish an operations plan, using data provided to it by the resource owners and or operators, that will meet the performance requirements. The BA must then deploy the proper amount of response through AGC or verbal instructions to supplement the automatic responses that the resources will provide, must calculate the actual responses after-the-fact, and report the performance as required. The resources must, as standards already provide, comply with the deployments and instructions provided by the BA. However, if an entity which is functioning as a BA does not own its resources, nor does it directly operate those resources, the BA cannot ensure the achievement. The standard must not create an organizational or contractual arrangement that dictates how the compliance is provided. It should state what must be done, not how. If entities choose to write and enter into such arrangements, that should be permissible, but not required. Specific to R1, the wording does not correspond to the figures shown in the FRS (Form 1) in that the FRM (the median) is -14.5 whereas the FRO is -15.8 . The FRO is more negative than the FRM, which does not seem to correspond to what's stipulated in R1 (FRM to be equal or more negative than its FRO).
No
It is not clear how the ERO uses the FRM to determine the required Frequency Bias Settings. It should not be necessary for the ERO to do the determination for all the Interconnections. There are already in place methods for this by the existing ERCOT and WECC Interconnections. The SRC suggests that the ERO may not be the appropriate technical entity. The ERO may be the appropriate entity to serve as the receiver of the forms and analyze results for the Eastern Interconnection, but existing processes are already in place elsewhere. It should be sufficient that those processes continue and submit copies of Form 1 to the ERO. This may also be appropriate for Hydro Quebec. In addition, whichever entity determines the Frequency Bias Setting must provide implementation time for the BAs to implement the settings. The proposed language says only that the BA shall implement it on the date specified, but it doesn't address the need for that date to include some implementation time.

No

Single BA Interconnections do not operate on Tie Line Bias. The requirement should be modified to accommodate this or regional variances should be written by the SDT to address existing differences. In addition this requirement, as written, does not provide for momentary cessation of AGC for any reason, nor for reasonable system maintenance, repair, or updates. As written, it seems to sav that anv duration of operation off Tie Line Bias is unacceptable and, thus.

would be a violation.	
No	
What is the technical basis for the phase-out schedule? Making the standard requirements effective earlier than the schedule shown could result in the unintended consequence of non-compliance enforcement for performance that is caused by the change rather than by the non-performance of the functional entity. Also, the effective dates given in the Implementation differ from those in the draft standard. Different requirement numbers are expressed in each. Some of the implementation steps (retiring R5 of BAL-003-0) presented in the implementation plan start as early as May 2011. We do not believe that the BAL-003-1 standard will be approved by the industry or the NERC BoT at that time and that does not even take into account regulatory approval (or 12 months after BoT adoption in those jurisdictions where no regulatory approval is required). How can a standard begins to phase out while the successor standard is not anywhere near becoming effective? If the SDT wants to propose a gradual replacement of the current R5, we would suggest that the phase-out steps be tied to the date that the standard becomes effective.	
Individual	
Howard Rulf	
We Energies	
No	
For Frequency Response Measure, the drafting team should consider using average rather than median. Because median is literally the middle value, a Balancing Authority could have 12 really bad Single Event Frequency Response Data points and still comply. Average values would prevent this from happening. Should FRM be clear that it includes at least 25 events in the definition? While that can be garnered from Attachment A, it is not specified in the Form 1 instructions. We are concerned that the regulators may argue that 25 events do not apply because an attachment is not part of the standard.	
No	
Given that frequency response is "contributed" long before AGC has an impact, "contribute" should probably be changed to "maintain." The goal is to ensure AGC does not withdraw frequency response and that it is maintained while frequency is depressed. We are not sure if Frequency Response has a precise enough definition and it is part of the definition of Frequency Bias Setting. The current NERC Glossary definition of Frequency Response really just reflects how it is measured, it does not define Frequency Response. Frequency Response is the dynamic real power response of load, generation, and other devices to a perturbation in frequency. The drafting team should also consider resolving the definition of Frequency Bias. Is it needed? It is often confused with Frequency Bias Setting and is often used interchangeably with Frequency Response even though the meanings are slightly different.	
No	
In general, we don't have significant issues with a standard that attempts to establish a minimum Frequency Response performance level. However, we caution the drafting team that the minimum level established needs to be determined based on an extensive data analysis, field trial data, the Frequency Response Initiative Work Plan that NERC filed in response to the Commission's September 23 technical conference, and the plan outlined in NERC's October 25, 2010 compliance filing.	
No	
In general, we don't have significant issues with a standard that attempts to establish a minimum frequency response performance level. However, we caution the drafting team that the minimum level established needs to be determined based on an extensive data analysis, field trial data, the Frequency Response Initiative Work Plan that NERC filed in response to the Commission's September 23 technical conference, and the plan outline in NERC's October 25, 2010 compliance filing.	
No	
Flexibility established in the date is better than the existing currently defined date in the standards. It is better to allow the ERO to specify the date to allow some flexibility in implementation. It appears that the responsibility for identifying Frequency Bias Setting is being removed from the Balancing Authority. There is an implied obligation that the ERO will determine the Frequency Bias Setting but it is not stated explicitly. Thus, we are left wondering who has the responsibility for determining the Frequency Bias Setting. Frequency Response of the interconnection is constantly changing. As a result, the Frequency Bias Setting will never match the Frequency Response exactly. It is better to over-bias than under-bias to prevent withdrawal of frequency response by AGC. Historically, the 1% floor for frequency bias setting was chosen to ensure that BAs are always over-biased. The standard needs to allow some margin in the frequency bias setting to ensure that the bias setting is over-biased.	
Yes	
No	
	e agree with the pla will take several yea ange 'BAL-003-0 R should be phased ou auencv bias settino

accomplished through the field trial? The implementation plan makes no mention of a field trial. It should. Please change all BAL-003-0 to BAL-003-0.1b
Group
Midwest ISO Standards Collaborators
Jason Marshall
No
For Frequency Response Measure, the drafting team should consider using average rather than median. Because median is literally the middle value, a Balancing Authority could have 12 really bad Single Event Frequency Response Data and still comply. Average values would prevent this from happening. Should FRM be clear that it includes at least 25 events in the definition? While that can be garnered from Attachment A, it is not specified in the Form 1 instructions. We are concerned that the regulators may argue that 25 events do not apply because an attachment is not part of the standard.
No
Given that frequency response is "contributed" long before AGC has an impact, "contribute" should probably be changed to "maintain". The goal is to ensure AGC does not withdraw frequency response and that it is maintained while frequency is depressed. We are not sure if Frequency Response has a precise enough definition and it is part of the definition of Frequency Bias Setting. The definition of Frequency Response really just reflects how it is measured. It does not define what it really is which is the dynamic response of load, generation, and other frequency responsive devices to a perturbation in frequency. The drafting team should also consider resolving the definition of Frequency Bias. Is it needed? It is often confused with Frequency Bias Setting and is often used interchangeably with Frequency Response even though the meanings are slightly different.
No
In general, we don't have significant issues with a standard that attempts to establish a minimum Frequency Response performance level. However, we caution the drafting team that the minimum level established needs to be determined based on an extensive data analysis based on the field trial, based on the Frequency Response Initiative Work Plan that NERC filed in response to the Commission's September 23 technical conference and based on the plan outlined in NERC's October 25, 2010 compliance filing.
No
In general, we don't have significant issues with a standard that attempts to establish a minimum frequency response performance level. However, we caution the drafting team that the minimum level established needs to be determined based on an extensive data analysis based on the field trial, based on the Frequency Response Initiative Work Plan that NERC filed in response to the Commission's September 23 technical conference and based on the plan outline in NERC's October 25, 2010 compliance filing.
No
Flexibility established in the date is better than the existing currently defined date in the standards. It is better to allow the ERO to specify the date to allow some flexibility in implementation. It appears that the responsible for identifying Frequency Bias Setting is being removed from the Balancing Authority. There is an implied obligation that the ERO will determine the Frequency Bias Setting but it is not stated explicitly. Thus, we are left wondering who has the responsibility for determining the Frequency Bias Setting. Frequency Response of the interconnection is constantly changing. As a result, the Frequency Bias Setting will never match the Frequency Response exactly. It is better to overbias than underbias to prevent withdrawal of frequency response by AGC. Historically, the 1% floor for frequency bias setting was chosen to ensure that BAs are always over-biased. The standard needs to allow some margin in the frequency bias setting to ensure that the bias setting is overbiased.
Yes

No
We agree with the plan to phase out BAL-003-0.1b R5 over a period of years rather than abruptly terminate it because it will take several years to assess the impact. We recommend a wording change to the implementation plan. Please change 'BAL-003-0 Requirement 5 should be retired as outlined in the following table," to "BAL-003-0.1b Requirement 5 should be phased out by reducing the minimum frequency bias setting per the table." It is not clear if the minimum frequency bias setting can be modified without modifying the existing BAL-003-0.1b standard. Is this being accomplished through the field trial? The implementation plan makes no mention of a field trial. It should. Please change all BAL-003-0 to BAL-003-0.1b.
Group
FirstEnergy
Sam Ciccone
Yes
For the definition of FRM, we are not clear as to the rationale for choosing the median value instead of the mean. Yes
Although we support the definition, we suggest the word "contribute" be changed to "maintain".

between the separate versions of the standard. Rather than create and prolong this type of situation over a 4 year time period, BPA asks that BAL-003-0 be retired in its entirety and that the contents of BAL-003-1 be expanded to also include R5, as specified in BAL-003-0. This change resolves the identified issues while also ensuring that all requirements of BAL-005 are in effect, as originally intended. The Implementation Plan for BAL-003-1 also includes a proposal to modify the specified limiting percentage of Native Load on a sliding scale over a 4 year time period. BAL-003-3 R5, as approved, explicitly specifies 1% as a minimum value for monthly average Frequency Bias Setting. As such, changing this value results in a change in the requirement itself. Instead of being done through an Implementation Plan, these types of changes should be made as specific modifications to the requirement in question. To resolve this issue, BPA asks that the sliding scale specified for percentage of peak load specified in the Implementation Plan be incorporated directly into BAL-003-1 as a part of the specified text of R5. This change meets the intended goal of applying a sliding scale to this value over time while assuring that the underlying change is implemented as a change to the requirement through the Standards Development Process.

Individual

Thad Ness
American Electric Power
Yes

No
If "the proposed standard's intent is to collect data needed to accurately analyze existing Frequency Response, set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation", it appears the current and stated definition is precluding the process for determination of the Frequency Bias Setting itself. I believe it is too early to state in definition the frequency bias setting to be based on $M W / 0.1 \mathrm{~Hz}$, when this appears to be more of the expected response. Using the word usually does not appear to be defining anything. To eventually get to an acceptable performance measure with reliability basis the project needs to be expanded to also address associated governor droop issues, which inherently affect response. When the current definition references using "either a fixed or variable Frequency Bias", it does not state whether or not to be applied in the calculation to either load or generation. The current Standard uses 1\% of yearly estimated peak demand for BAs that serve load, when the actual load at time of disturbance could be greatly different. Response is more directly related to the amount of Generation on-line and active AGC within the BA at time of trip. MW/0.1 Hz states more of expected result of response than defining Frequency Bias Setting.
No
AEP believes the statement should read "To require sufficient Frequency Response from governors and AGC of Generators within the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored to schedule.To provide consistent methods for measuring Frequency Response from governors and AGC of Generators within the Balancing Authority for determining the overall Frequency Bias Setting threshold. Since Generators are directly responsible for response, applicability must be added to Generator Operators.
No
Between the definition and the requirement in Attachment A, it is unclear if FRM is a reliability-supported, performancebased measure, or instead, if it is a calculated number based on previous performance. As written, it is unclear if this is a performance-based requirement, or simply a calculation that should be utilized in some way. In any event, the requirement needs to be re-written to clarify its intent.
No
It appears this standard deviates from past practice for calculating frequency bias. It is unclear how this might affect the CPS Bounds L10 calculation.
Yes

No
It is unprecedented that an implementation plan would require following some (but not all) requirement(s) within multiple versions of the same standard. This would make following the standard very difficult. Having to piece together multiple documents into a coherent requirement would be very difficult to achieve. There needs to be a definitive start and stop date for each version, rather than a phase in and phase out across multiple versions. We disagree with setting preselected dates beginning months away. Timing should be driven by applicable regulatory approval, as opposed to dates which appear to be arbitrarily selected. Going from 100% of the load-based, frequency bias calculation to 0% is unclear without correlating it to something else being phased in over time. It is very hard to follow how BAL-003-0 R5 relates to BAL-003-1. More work needs to be done by the SDT to explain how these relate to one another.

Individual

Greg Rowland
Duke Energy

No
The definition of SEFRD would conflict with any alternative measurement of frequency response. The SEFRD makes no provision for the impacts of generation loss experienced by a contingent BA, impacts of non-conforming loads, or impacts of schedule ramps. The FRM also makes no such provisions. The resulting FRM for a BA experiencing one or more of these impacts for one or more SEFRDs will be skewed and completely miss the intended measurement of the BA's response to frequency excursions. In addition, as it is not yet clear how provision of Frequency Response by one BA to meet a portion of another BA's requirement would be achieved, Duke Energy cannot say that a simple measure of the NIA against the frequency deviation will capture the net of the response desired. Regarding the definition of FRO, the industry should agree on the methodology which would be used for the ERO to determine the response desired for the Interconnection that is used for allocation of the FRO, and not leave it as a parameter subject to change outside of the standards process. The definition is only acceptable if the assignment by the ERO is based upon a methodology supported by the industry and subject to change only through the standards process.
No
Duke Energy would suggest not using "Frequency Bias" in the definition of "Frequency Bias Setting". In addition, Duke Energy would like to point out that ACE does not allow Frequency Response; response will occur with or without the ACE equation. The Frequency Bias Setting is needed so that the AGC does not negate what may be provided in frequency response. The bias component of ACE provides the feedback so that a BA may sustain the intended amount of response with secondary control as long as Actual Frequency deviates from Scheduled Frequency. Duke Energy would suggest the following: "A fixed or variable value usually expressed in MW/0.1 Hz, set into a Balancing Authority Area Control Error equation to bias the control of resources so that Interconnection frequency is driven toward the Scheduled Frequency."
Yes
No
Duke Energy agrees that a BA should be required to achieve a minimum level of Frequency Response, however Duke Energy believes the method for measurement needs improvement - please see comments to 1 and 2 above. Duke Energy agrees with the concept that a Balancing Authority should be required to achieve a minimum level of Frequency Response however the method for measurement should also allow exclusion of certain events, such as when the frequency deviation is associated with the BA's contingent loss of generation, or when an event is coincident with a significant change in ramped interchange. It is not clear how the FRO will be determined - Duke Energy believes that the industry should agree on the methodology which would be used for the ERO to determine the response desired for the Interconnection and how the allocation for the FRO would be determined for each Balancing Authority. The calculation of FRO allocation (in Attachment 1) is not clear on whether the peak load and generation data used is historic data or forecasted data. It is also not clear how the assignment of the FRO would accommodate a mid-year change in Balancing Authority size or other attribute that could change the calculated response. Duke Energy questions if a BA providing better response than its allocated FRO in any year should be held to achieving that in the following year - Duke Energy believes that should be the decision of the BA if it chooses to achieve more than the minimum requirement applied to others.
No
Duke Energy believes that this needs to be restated. Will the ERO perform the calculations to determine each BA's Bias? Will the ERO provide ample time between publication of the settings and the date of implementation? If effective coordinated secondary control is desired, other related operational parameters (e.g., L10) need to be set at the same time. Since measurement and reporting of operational performance is primarily on a monthly basis (e.g., CPS1/CPS2), the implementation date should be on or near the first of a month, but during normal working hours (so that adequate support personnel are available).
No
Duke Energy agrees to the simple statement posed in the question; however, the requirement goes beyond that by using a defined term, Adverse Reliability Impact, which has a relatively narrow focus on extreme conditions. If a single BA lost a significant amount of its tie-line telemetry or its frequency sources, cascading outages and/or grid separation would not necessarily be imminent but it would be imprudent to remain in Tie Line Bias mode. Go back to the original language for the requirement - "Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability."
No
Duke Energy does not agree with having prescribed dates for the gradual reduction of the minimum Frequency Bias Setting, as the implementation may drive significant issues which could delay, or halt the implementation at a certain level. It is not clear what process would be used to give the "go-ahead" to move to the next level (agree?).

Group

SPP Standards Development
Robert Rhodes
No
In the past tie line flow changes that did not have the expected response for the qiven frequency deviation have been
excluded from the determination of Frequency Bias. It appears that this exclusion does not carry forth in the determination of Frequency Response Measure. Therefore, non-conforming loads, intermittent resources and other events/issues within a Balancing Authority could very well mask its natural frequency repsonse thereby setting the Balancing Authority's Frequency Bias and its Frequency Response Obligation incorrectly. Then the Balancing Authority is obligated to respond and will be measured for compliance against an incorrect value. This being the case, we can support the definition of Single Event Frequency Response Data but have reservations about Frequency Response Measure and Frequency Response Obligation.
No
We would suggest inserting 'secondary' in front of Frequency Response at the end of the sentence and delete 'Frequency Bias' following 'variable' at the beginning of the sentence.
Yes

Yes

No
We would suggest ending the sentence at the second ERO, deleting the phrase '...to ensure effective coordinated secondary control, using the results from the calculation methodology detailed in Attachment A.' This phrase is more of an explanation of why this is being done rather than a part of an actual requirement.
Yes
Yes

Individual
LeRoy Patterson
Patterson Consulting, Inc.
No
SEFRD: From the definition, it is not clear whether SEFRD is a Balancing Authority's 1) data collected for each frequency event, 2) calculated Frequency Response for a selected event, 3) Net Actual Interchange divided by the change in frequency for a selected event, or 4) some combination of these interpretations. If the SDT determines that adjustments to Net Actual Interchange should be made such as adjustments for joint-owned generation and nonconforming loads as suggested in the field test document, then since this definition requires Frequency Response to be determined from Net Actual Interchange, this definition would require changing to allow those adjustments. I suggest defining SEFRD as "The individual sample of event data from a Balancing Authority that is necessary to calculate its Frequency Response on FRS Form 1, expressed in MW/0.1Hz." FRM: This definition and its calculation in FRS Form 1 do not match. FRS Form 1 calculates FRM as "The median of Single Event Frequency Response Data observations reported annually on FRS Form 1 [for events external to the Balancing Authority]." (Brackets added for emphasis.) The FRS Form 1 calculation appears more appropriate based on data collected, since data are not reported and calculations are not adjusted to compensate for contingencies within the Balancing Authority. Regardless, the difference between definition and calculation makes it impossible for a Balancing Authority to know the expected performance measure. FRO: The definition should be changed to remove the opposing concepts of performance and obligation. For example: FRO is defined to be "The Balancing Authority's contribution to the total aggregate Frequency Response..." FRM, not FRO, is the Balancing Authority's contribution toward the aggregated Frequency Response. FRO is "The Balancing Authority's allocation of the interconnection's required Frequency Response..." or "The Balancing Authority's required Frequency Response needed for reliable operation of an Interconnection ..." Yes

No
The purpose should not expect Frequency Response to maintain frequency beyond a few minutes, perhaps 15 minutes for example. This purpose statement suggests the requirements will be "...to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and support frequency until the frequency is restored to schedule..." The phrase "until the frequency is restored to schedule" is problematic since regulation must bring frequency to schedule. Frequency Response, and the associated requirements, should not be expected to substitute for poor regulation beyond the first few minutes.
No
Requiring a Balancing Authority to provide Frequency Response and measuring that Frequency Response consistently, is critical to maintaining reliability. The requirement is long overdue and the concept is a good one. The method for measurement in FRS Form 1 is not consistent with the definition of FRM. The desired "averaging" of input data over specific time ranges by the Balancing Authority as it completes FRS Form 1 appears only in the background and instructions for FRS Form 1. Since this "instruction" document will not be a part of the standard, it is not obvious that Balancing Authoritv's will be compelled to provide consistent data. Therefore, the standard will fail to achieve the
stated purpose of providing "...consistent methods for measuring Frequency Response...". Attachment A, other than the section providing guidance regarding event selection, appears to be explanatory, contextual, and instructional in content. These aspects are important, but should not be requirements. Attachment A should include only the event selection process and calculations associated with requirements, including an explanation of what is necessary if variable Frequency Bias Settings are implemented. If other "requirements" are included in Attachment A, they should be moved to the standard. FRS Form 1 should be an attachment to the standard as this form contains and performs the required calculations. The remaining information in Attachment A should become either a standalone (technical) document, or be combined with information such as "FRS Form 1 Background and Instructions" and renamed. As further clarification regarding the ambiguity identified in the previous paragraph, Attachment A could be interpreted as additional requirements on the Balancing Authority, ERO, or both. The language and scope is not sufficiently clear to identify whether statements are informative or requirements. This lack of clarity makes it impossible for entities to identify requirements, acquire appropriate tools and resources related to requirements, and to provide suitable performance to meet requirements. For example, the statement "A final listing of official events to be used in the calculation will be available from NERC by December 10 each year." may be intended as a requirement rather than a statement suggesting a typical schedule. Further, if the previous statement is a typical schedule, then the statement "The ERO will use the following criteria for the selection of events to be analyzed." could be interpreted as merely the typical process to be used, but not a binding one.
No
The concept of requiring a Balancing Authority to implement its Frequency Bias Setting at a specific time and using a specific calculation is meaningful. This requirement is not clearly worded, however. If the intent of Requirement 2 is to identify "...when the Balancing Authority must implement its Frequency Bias Setting..." the requirement should stop after "...on the date specified by the ERO." The remaining portion of the requirement explains the need for the requirement and should be moved to supporting material. Attachment A does not have a "calculation methodology" associated with the Frequency Bias Setting unless the language describing historical practice and the benefits of moving a Frequency Bias Setting closer to a Balancing Authority's natural Frequency Response are intended to constitute a "calculation methodology." FRS Form 1 has the "calculation methodology" of using the minimum (since the value is negative) of last year's FRM, next year's FRO, and percentage of next year's peak load or generation. Attachment A does not mention this methodology and the requirement does not mention FRS Form 1. The clause "..., using the results from the calculation methodology detailed in Attachment A." appears to place an obscure requirement on the ERO since the ERO is the entity providing the Frequency Bias Setting to be implemented by the Balancing Authority. If the ERO is intended to use the value from FRS Form 1, after verifying data and calculations, then state that expectation explicitly and clearly. Otherwise, the ERO could set Frequency Bias Settings in another manner after observing the Form 1 values. The requirement for the ERO to provide a Frequency Bias Setting to each Balancing Authority begs the question of how variable bias will be implemented. Historically, the Balancing Authority implements its algorithm with oversight from NERC (Resources Subcommittee). The manner and expectation for providing data and algorithms related to variable bias are inadequate.
No
While this requirement is in the existing standard, it places a significant reporting burden on a Balancing Authority to demonstrate compliance during audits for little reliability gain. In addition for single Balancing Authority interconnections, operating in this AGC mode is functionally equivalent to operating in flat frequency mode. This may cause some interconnections to seek a variance, just to avoid compliance complications. Perhaps this requirement could be replaced with a requirement for Balancing Authorities to contribute to frequency performance as well as balance commitments and resources, or to calculate the ACE it uses to report in other standards in a specific manner. As written, it could be interpreted to create a violation when AGC suspends or is offline.
No
The implementation plan should address implementing these requirements at the same time for all Balancing Authorities within an interconnection, regardless of regulatory approvals. The present implementation plan will require some Balancing Authorities within an interconnection to operate to the new standard while other Balancing Authorities operate to the old standard if multiple regulatory jurisdictions exist as they do within two interconnections. This could lead to uncoordinated and unreliable operation within an interconnection.
Group
IRC Standards Review Committee
Albert DiCaprio
No
The definition of SEFRD will not work as described for a single BA Interconnection. There is no change in NI for frequency deviations. Similarly, the definition assumes all response is provided by change in Interchange and does not really reflect the frequency response of a contingent BA. Either the definition needs to be changed to accommodate single BA Interconnections (such as ERCOT and Hydro Quebec), or regional variances for them need to be written by the SDT. A BA's frequency response is composed of load frequency response, governor response, and, for BAs external to the resource loss, change in Net Interchange. Some approximation may be achieved by recognizing that the magnitude of frequency deviation is attenuated by load frequency response and governor response (or frequency activated demand response to reduce load). The definition of FRM specifies the median of all SEFRD observations
reported annually. What is the technical basis for selecting the median rather than the mean? The definition of FRO raises questions. The discretely administered determination of FRO described in the draft Attachment A sets too stringent a requirement; particularly for the smaller Interconnections which may also have large size generation resources just as do the larger Interconnections. To "assure that Point C will not encroach on the first step UFLS" is significantly more stringent than existing and historical performance for those smaller Interconnections. Such assurance will assuredly prove to be very expensive. In fact, we question the need to define FRM and FRO since they can easily be stipulated in the standard requirements. Having them defined and added to the ever-growing NERC glossary creates unnecessary work to maintain the glossary, unless these terms are used by other NERC standards for which consistent meaning need to be established. For example, R1 can easily be reworded as: "R1: Each Balancing Authority shall achieve a median of all Single Event Frequency Response Data observations reported annually on FRS Form 1 that is equal to or more negative than its contribution obligation to the total aggregate Frequency Response needed for reliable operation of an Interconnection assigned by the ERO." Similar wording changes can be made to the FRS Form 1 to eliminate the need to define these two terms. Further, the Attachment A states that the SDT is evaluating a risk based approach to establishing an Interconnection Frequency Response Obligation which can be based on a probability function. If the $\mathrm{N}-2$ criteria is established, it will be unlikely to be possible to change that if the new approach is viewed as a reduction in required performance. As an example, in the ERCOT Interconnection, it is recognized that the present level of required frequency responsive reserve cannot in all scenarios assure that Point C will not encroach the first step of UFLS. The system conditions that exist for the encroachment to occur represent a small likelihood and would require the $\mathrm{N}-2$ contingency to occur on something like the minimum hour of the minimum load day of the year. It has occurred one time in the history of ERCOT. Thus, it is less than once in ten years based upon actual history. The cost of precluding such an event would be astronomical.
No
The definition appears to be accurate, but where is "fixed" and "variable" Frequency Bias defined in the context of these requirements? Should it be Frequency Bias Setting, instead? "Fixed" seems to be straightforward, but what is "variable"? How often must Frequency Bias Setting change in order to be considered to be "variable"?
No
If this is really intended to be a Field Trial, it should be written as such and the standard should not be developed or promulgated until the Field Trial has accomplished its purpose and the performance criteria and measures have been determined. We request that the results of the Field Trial should be published and discussed BEFORE any changes are made. The standard should be put into place later; it is premature at this time. Since this is to be a data gathering process to be used to determine appropriate performance parameters, the purpose statement of the Field Trial should be changed to read as follows: To determine require sufficient Frequency Response arranged by from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by responding to and arresting frequency deviations and supporting frequency until the frequency is restored to schedule. To identify and establish provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting and Frequency Response Obligation. We should not write the new standard and its requirements until this Field Trial work has been accomplished; to do so possibly would result in difficulty changing the standard requirements based upon Field Trial results. Further, while we do not have any issue with the general intent of the scope statement, we have a difficulty seeing the BA being the only entity held responsible for maintaining interconnection frequency and arresting frequency deviations. When there is a sudden and sizable change to system resource or demand, the first response to a frequency deviation caused by this change would be the generators' governors. This will provide a mitigating effect for the immediate seconds up to minutes. The frequency bias setting will then kick in to supplement the mitigation need. The governors are owned by the Generator Owners; the BAs do not own these facilities and hence can do little to address frequency response during this initial period. To hold only the BA responsible for maintaining interconnection frequency and arresting frequency deviations would be inappropriate. The industry needs to have a discussion to determine who should be held responsible for providing governor responses immediately following an event, and by what mechanism, and for implementing additional measures thereafter. We suggest that BAL-003 development be withheld until this discussion takes place and a decision is made on who and how the governor response shall be provided.
No
The SRC agrees that a Frequency Response of some minimum level for each Interconnection should be achieved. However, the measure as described does not apply to all Interconnections. It does not apply to single BA Interconnections such as ERCOT and Hydro Quebec. This requirement should be added later-not included now; and it should clarify what the BA must do and what the response providers must do. BAs do not own and operate the resources. An entity which does own or operate the resources may also be registered as a BA, but an entity which does not own or operate resources may also be registered as a BA. Therefore, it is important to detail what a BA must do and also to detail what the resource owner or operator must do. The resource owner may be registered as a GO or a TO or even a DP. The resource operator may be registered as a GOP, a TOP, or a LSE. The BA must establish an operations plan, using data provided to it by the resource owners and or operators, that will meet the performance requirements. The BA must then deploy the proper amount of response through AGC or verbal instructions to supplement the automatic responses that the resources will provide, must calculate the actual responses after-the-fact, and report the performance as required. The resources must, as standards already provide, comply with the deployments and instructions provided by the BA. However, if an entity which is functioning as a BA does not own its resources, nor does it directly operate those resources, the BA cannot ensure the achievement. The standard must not
create an organizational or contractual arrangement that dictates how the compliance is provided. It should state what must be done, not how. If entities choose to write and enter into such arrangements, that should be permissible, but not required. Specific to R1, the wording does not correspond to the figures shown in the FRS (Form 1) in that the FRM (the median) is -14.5 whereas the FRO is -15.8 . The FRO is more negative than the FRM, which does not seem to correspond to what's stipulated in R1 (FRM to be equal or more negative than its FRO).
No
It is not clear how the ERO uses the FRM to determine the required Frequency Bias Settings. Please clarify. Also, it should not be necessary for the ERO to do the determination for all the Interconnections. There are already in place methods for this by the existing ERCOT and WECC Interconnections. The SRC suggests that the ERO may not be the appropriate technical entity. The ERO may be the appropriate entity to serve as the receiver of the forms and analyze results for the Eastern Interconnection, but existing processes are already in place elsewhere. It should be sufficient that those processes continue and submit copies of Form 1 to the ERO. This may also be appropriate for Hydro Quebec. In addition, whichever entity determines the Frequency Bias Setting must provide implementation time for the BAs to implement the settings. The proposed language says only that the BA shall implement it on the date specified, but it doesn't address the need for that date to include some implementation time.
No
Single BA Interconnections do not operate on Tie Line Bias. The requirement should be modified to accommodate this or regional variances should be written by the SDT to address existing differences. In addition this requirement, as written, does not provide for momentary cessation of AGC for any reason, nor for reasonable system maintenance, repair, or updates. As written, it seems to say that any duration of operation off Tie Line Bias is unacceptable and, thus, would be a violation.
No
What is the technical basis for the phase-out schedule? Making the standard requirements effective earlier than the schedule shown could result in the unintended consequence of non-compliance enforcement for performance that is caused by the change rather than by the non-performance of the functional entity. Also, the effective dates given in the Implementation differ from those in the draft standard. Different requirement numbers are expressed in each. Some of the implementation steps (retiring R5 of BAL-003-0) presented in the implementation plan start as early as May 2011.
We do not believe that the BAL-003-1 standard will be approved by the industry or the NERC BoT at that time and that does not even take into account regulatory approval (or 12 months after BoT adoption in those jurisdictions where no regulatory approval is required). How can a standard begins to phase out while the successor standard is not anywhere near becoming effective? If the SDT wants to propose a gradual replacement of the current R5, we would suggest that the phase-out steps be tied to the date that the standard becomes effective.
Individual
RoLynda Shumpert
South Carolina Electric and Gas
No
We suggest the SDT consider defining SEFRD as: The calculated frequency response by a Balancing Authority for a specific frequency excursion event as identified by the ERO (or NERC). As a comment, how frequency response is calculated needs to be defined and may not always be the Net Actual Interchange (NIa) divided by the change in frequency expressed in hertz. For example, the Nla may need to be adjusted for known generation and load changes that do not represent frequency response for the period being measured such as known generation and load ramp changes. Change in frequency needs to be more specific, such as the frequency difference between B and A measured at B. If Frequency Response Obligation (FRO) is a targeted value, then perhaps the definition should be: The Balancing Authority's annual median frequency response as assigned by the ERO (or NERC). The word "contribution" should be considered to be replaced with "the balancing authority piece of the total....." The review team is concerned that the FRO and FRM definitions do not contain enough clarity as to how the BAs will be held accountable. Also, the definitions do not explain who will determine the value of each BA's FRO and the method used to determine the FRO value. Should the definition of Frequency Response Measure be a median or mean value? May need to clarify what FRS stands for.
We suggest the following changes to the definition: 1. Delete "Frequency Bias" in the parenthetical expression ("Frequency Bias" should not be used to define Frequency Bias) 2. Delete the word "usually" 3. Replace "set into" with "as part of" as defined in BAL-001. 4. Replace the remainder of the sentence following "Area Control Error equation" with "that influences its Automatic Generation Control (AGC) to provide its frequency response while Interconnection frequency is not at its scheduled value" - (The frequency bias does not allow a BA to contribute its frequency response to the Interconnection. The frequency bias term only affects the AGC response of the BA, which is part of its frequency response usually minutes after the initial event and is dependent upon generation units being on AGC control and capable of responding.) 5 . The suggested changes would result in the following definition" A value, fixed or variable, expressed in MW/0.1 hertz as part of a Balancing Authority's Area Control Error (ACE) equation that influences its Automatic Generation Control (AGC) to provide its frequency response while Interconnection frequency is not at its scheduled value.
Yes

	No
The concept seems reasonable but since the measure of compliance (FRM) is determined only after the 25 events are identified; it is a lagging indicator. The BA may have to ensure it measures all frequency excursions and develops its own leading indicator to ensure compliance following year end. A sample CPS bounds report should be considered, perhaps based on 2010 numbers, to demonstrate how FRM submitted would translate to FRO frequency bias settings and how it will affect the L10 values.	
No	
It is not clear what the methodology (should be method) is in Attachment A. Is the frequency bias setting the BA's prior year FRM with a minimum value being a percentage of estimated yearly peak load or upcoming year maximum generation? What does "provided by the ERO" mean? Perhaps it should be verified or approved by the ERO (NERC). We suggest defining the date as by the end of the first business day following the deadline for Frequency Bias Setting implementation.	
No	
BAL-003-0, Requirement 3 requires operation of AGC on Tie Line Frequency Bias. BAL-005-0.1b, Requirement 6 requires the BA to compare total Net Interchange to total Net Scheduled Interchange plus Frequency Bias obligation to determine the Balancing Authority's ACE. We suggest that Requirement 3 be restated to "shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless" Tie Line bias is the (Ia-Is) term and frequency bias is the -10 B (Fa-Fs) term. This should be coordinated with BARCSDT modifications to BAL-005.	
No	
The implementation plan has specific dates for reducing the bias settings currently defined in Requirement 5 over several years. Perhaps these dates should not be specific but tied to months following regulatory approval. Attachment A should be modified to match what is in the proposed standard. The values currently shown as percent "of peak/0.1 Hz " should be changed to percent of estimated yearly peak demand per 0.1 Hz change. For BAs that do not serve native load, percent "of upcoming years maximum generation $/ 0.1 \mathrm{~Hz}$ should be changed to percent of its estimated maximum generation level in the coming year/ 0.1 Hz change.	
Group	
ENBALA Power Networks	
Rob Coulbeck	
Yes	
No	
: ENBALA would modify the above as follows: A value, (either a fixed or variable Frequency Bias), usually expressed in MW/0.1 Hz, set into a Balancing Authority Area Control Error algorithm equation that allows the Balancing Authority AGC System to ignore the export or import caused by the Primary Frequency Response.	
Yes	
ENBALA strongly agrees that a Frequency Response standard is necessary to ensure reliable operation of the bulk power system. We fully support all efforts to understand the declining trend, and the development of accurate models, of Frequency Response in each Interconnection.	
Yes	
ENBALA does believe that a BA should be responsible for a minimum level of Frequency Response as calculated on Form 1 and reflected in its FRO. Furthermore, we feel that additional data collected on the frequency nadir, such as the metric suggested in the recent Lawrence Berkeley National Laboratory of nadir-based frequency response, would be useful in assessing the current inertial response capabilities and level of risk for under-frequency load shedding.	
Yes	
Yes	
Yes	
Individual	
Todd Bennett	
Associated Electric Cooperative, Inc.	
No	
1) SEFRD - I had to read this definition several times because "The individual sample of event data" is actually an internally calculated value derived from a set of event sample data, and not really a "sample" value at all. So, I believe the SEFRD definition needs further work. 2) FRM is defined by undefined terms "FRS" and "FRS Form 1". 3) FRO fine 4) FRS - "Frequency Response Survey"	
	No

1) SEFRD - I had to read this definition several times because "The individual sample of event data" is actually an internally calculated value derived from a set of event sample data, and not really a "sample" value at all. So, I believe the SEFRD definition needs further work.

response to such deviation would be the generators' governors. This will provide a mitigating effect for the immediate seconds up to minutes. The frequency bias setting will then kick in to supplement the mitigation need. To hold only the BA responsible for maintaining interconnection frequency arresting frequency deviations would be only part of the solution. The industry needs to have a discussion to determine who should be held responsible for providing governor responses, and by what mechanism. We suggest that BAL-003 development be withheld until this discussion takes place and a decision is made on who and how the governor response shall be provided.
Yes
We agree with the BA being one of the responsible entities to achieve a minimum level of FR, and the method of measurement. However, R1 does not correspond to the figures shown in the FRS (Form 1) in that the FRM (the median) is -14.5 whereas the FRO is -15.8 . The FRO is more negative than the FRM, which does not seem to correspond to what's stipulated in R1 (FRM to be equal or more negative than its FRO).

Yes

Yes

No
We have a difficulty understanding the basis for some of the dates in the implementation plan. Some of the implementation steps (retiring R5 of BAL-003-0) start as early as May 2011. We do not believe that the BAL-003-1 standard will be approved by the industry or the NERC BoT at that time and that does not even take into account regulatory approval (or 12 months after BoT adoption in those jurisdictions where no regulatory approval is required). How can a standard begins to phase out while the successor standard is not anywhere near becoming effective? If the SDT wants to propose a gradual replacement of the current R5, we would suggest that the phase-out steps be tied to the date that the standard becomes effective.

Individual

Alice Ireland
Xcel Energy

Group
SERC OC Standards Review Group
Gerald Beckerle

No
We suggest the SDT consider defining SEFRD as: The calculated frequency response by a Balancing Authority for a specific frequency excursion event as identified by the ERO (or NERC). As a comment, how frequency response is calculated needs to be defined and may not always be the Net Actual Interchange (NIa) divided by the change in frequency expressed in hertz. For example, the Nla may need to be adjusted for known generation and load changes that do not represent frequency response for the period being measured such as known generation and load ramp changes. Change in frequency needs to be more specific, such as the frequency difference between B and A measured at B. If Frequency Response Obligation (FRO) is a targeted value, then perhaps the definition should be: The Balancing Authority's annual median frequency response as assigned by the ERO (or NERC). The word "contribution" should be considered to be replaced with "the balancing authority piece of the total....." The review team is concerned that the FRO and FRM definitions do not contain enough clarity as to how the BAs will be held accountable. Also, the definitions do not explain who will determine the value of each BA's FRO and the method used to determine the FRO value. Should the definition of Frequency Response Measure be a median or mean value? No
We suggest the following changes to the definition: 1. Delete "Frequency Bias" in the parenthetical expression ("Frequency Bias" should not be used to define Frequency Bias) 2. Delete the word "usually" 3. Replace "set into" with "as part of" as defined in BAL-001. 4. Replace the remainder of the sentence following "Area Control Error equation" with "that influences its Automatic Generation Control (AGC) to provide its frequency response while Interconnection frequency is not at its scheduled value" - (The frequency bias does not allow a BA to contribute its frequency response to the Interconnection. The frequency bias term only affects the AGC response of the BA, which is usually minutes after the initial event and is dependent upon generation units being on AGC control and capable of responding.) 5. The suggested changes would result in the following definition" A value, fixed or variable, expressed in MW/O.1 hertz as part of a Balancing Authority's Area Control Error (ACE) equation that influences its Automatic Generation Control

(AGC) to continue to provide its frequency response while Interconnection frequency is not at its scheduled value.	
	Yes
No	
The concept seems reasonable but since the measure of compliance (FRM) is determined only after the 25 events are identified; it is a lagging indicator. The BA may have to ensure it measures all frequency excursions and develops its own leading indicator to ensure compliance following year end. A sample CPS bounds report should be considered, perhaps based on 2010 numbers, to demonstrate how FRM submitted would translate to FRO frequency bias settings and how it will affect the L10 values.	
No	
It is not clear what the methodology (should be method) is in Attachment A. Is the frequency bias setting the BA's prior year FRM with a minimum value being a percentage of estimated yearly peak load or upcoming year maximum generation? What does "provided by the ERO" mean? Perhaps it should be verified or approved by the ERO (NERC).	
No	
BAL-003-0, Requirement 3 requires operation of AGC on Tie Line Frequency Bias. BAL-005-0.1b, Requirement 6 requires the BA to compare total Net Interchange to total Net Scheduled Interchange plus Frequency Bias obligation to determine the Balancing Authority's ACE. We suggest that Requirement 3 be restated to "shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless" Tie Line bias is the (Ia-Is) term and frequency bias is the -10B(Fa-Fs) term. This should be coordinated with BARCSDT modifications to BAL-005.	
The implementation plan has specific dates for reducing the bias settings currently defined in Requirement 5 over several years. Perhaps these dates should not be specific but tied to months following regulatory approval. Attachment A should be modified to match what is in the proposed standard. The values currently shown as percent "of peak/0.1 Hz " should be changed to percent of estimated yearly peak demand per 0.1 Hz change. For BAs that do not serve native load, percent "of upcoming years maximum generation $/ 0.1 \mathrm{~Hz}$ should be changed to percent of its estimated maximum generation level in the coming year/ 0.1 Hz change.	
Group	
Kansas City Power \& Light	
Michael Gammon	
Yes	
Yes	
No	
This purpose statement presumes that each Balancing Authority (BA) will have generation online to meet a predetermined frequency response obligation. There are many small BA's that do not have any generation online and rely on load regulation agreements and energy agreements to provide their energy needs during parts of the year. This purpose statement would not allow a BA to operate without generation online.	
No	
This requirement presumes that each Balancing Authority (BA) will have generation online to meet a predetermined frequency response obligation. There are many small BA's that do not have any generation online and rely on load regulation agreements and energy agreements to provide their energy needs during parts of the year. This requirement would not allow a BA to operate without generation online. Under Requirement 1, item 2a in Attachment A suggests governor deadband as 36 MHz (Megahertz). Suggest what is intended is 36 mHz (millihertz). The Frequency Response Obligation determination for the interconnection as described in Attachment A is a crude method and will result in obligations that will exceed the FRO that is intended. This will result in additional cost to BA's that is unnecessary to achieve the purpose of maintaining sufficient generation online to arrest frequency degradation events caused by loss of generating resources. The current NERC method for calculating a BA's actual frequency response are inaccurate and provide misleading guidance in the actual frequency response of a BA. These methods need considerable improvement before any attempts to hold a BA to an expected level of frequency response as this proposal has stated.	
No	
The Frequency Response Obligation determination for the interconnection as described in Attachment A is a crude method and will result in obligations that will exceed the FRO that is intended. This will result in additional cost to BA's that is unnecessary to achieve the purpose of maintaining sufficient generation online to arrest frequency degradation events caused by loss of generating resources. The current NERC method for calculating a BA's actual frequency response are inaccurate and provide misleading guidance in the actual frequency response of a BA. These methods need considerable improvement before any attempts to hold a BA to an expected level of frequency response as this proposal has stated.	
No	
	The impact of operating in an inappropriate AGC control mode is bigger than the BA's own balancing area. The control of the area affects other BA's around a BA and if enouqh BA's are involved, can affect an interconnection. Recommend

[^50]NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Consideration of Comments

BAL-003-1 - Frequency Response and Frequency Bias Setting Project 2007-12 - $1^{\text {st }}$ Draft

The Frequency Response and Frequency Bias Setting Drafting Team thanks all commenters who submitted comments on the 1st draft of BAL-003-1 - Frequency Response and Frequency Bias Setting. This standard was posted for a 30-day public comment period from

There are a few places where the team missed providing a comment in response to a suggestion - these are highlighted in yellow. In general, the team did a good job of responding! February 4, 2011 through March 7, 2011. The stakeholders were asked to provide feedback on the standards through a special electronic comment form. There were 36 sets of comments, including comments from more than 139 different people from approximately 86 companies representing 10 of the 10 Industry Segments as shown in the table on the following pages.

Based on the comments received the drafting team made the following changes to the proposed Standard:

- Removed the Single Event Frequency Response Data (SEFRD) definition from the standard.
- Modified the definitions for Frequency Response Measure (FRM) and Frequency Response Obligation (FRO).
- Modified the proposed definition of Frequency Bias Setting.
- Modified FRS Form 1 to correct errors, allow for adjustments and provide clarity.
- Separated Attachment A Background Document into two documents; 1) Attachment A - Supporting Document detailing the methodology to be followed for calculations, and 2) Background Document detailing the rational for the development of the requirements.
- Created Attachment B - Process for Adjusting Bias Setting Floor to clarify the methodology to be used in reducing the present 1\% minimum Frequency Bias Setting.
- Added measures, VRFs and VSLs.

There were a couple of minority issues that the team was unable to resolve, including the following:

- A few stakeholders requested the SDT to consider a standard for generators to support the Balancing Authority in achieving the targeted level of Frequency Response. The team stated that this was outside the scope of the industry approved SAR. The SDT further stated that any entity could submit a SAR addressing this issue to the SC for consideration and that the SDT supported this option.
- A couple of comments stated they believed that the standard should support the development of a market for supporting a Balancing Authority in achieving the target Frequency Response. The SDT explained that this standard would provide for the metrics for Frequency Response while the market would define itself. The SDT further stated a market could be created by a region, subregion, ISO, RTO or other entity as appropriate to facilitate compliance however the NERC Reliability Standards do not establish markets.

In this "Consideration of Comments" document stakeholder comments have been organized so that it is easier to see the responses associated with each question. All comments received can be viewed in their original format at:
http://www.nerc.com/filez/standards/Frequency_Response.html
If you feel that your comment has been overlooked, please let us know immediately. Our goal is to give every comment serious consideration in this process! If you feel there has been an error or omission, you can contact the Vice President and Director of Standards, Herb Schrayshuen, at 404-446-2560 or at herb.schrayshuen@nerc.net. In addition, there is a NERC Reliability Standards Appeals Process. ${ }^{1}$

[^51]
Index to Questions, Comments, and Responses

1. The SDT has developed three new terms to be used with this standard.

- Single Event Frequency Response Data (SEFRD) The individual sample of event data from a Balancing Authority which represents the change in Net Actual Interchange (NIA), divided by the change in frequency, expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$.
- Frequency Response Measure (FRM) The median of all Single Event Frequency Response Data observations reported annually on FRS Form 1.
- Frequency Response Obligation (FRO) The Balancing Authority's contribution to the total aggregate Frequency Response needed for reliable operation of an Interconnection assigned by the ERO.

Do you agree with the proposed definitions in this standard? If not, please explain in the comment area?
2. The SDT has modified the definition for the term Frequency Bias Setting. The current definition and revised definition are shown below to show the changes proposed. Do you agree with this new definition for Frequency Bias Setting? If not, please explain in the comment area.25
3. The proposed purpose statement in the draft standard is: To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored to schedule. To provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting. Do you agree with this purpose? If not, please explain in the comment area. 35
4. Requirement 1 identifies a minimum level of Frequency Response. R1. Each Balancing Authority shall achieve a Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO).

Do you agree with the concept that a Balancing Authority should be required to achieve a minimum level of Frequency Response and the method for measurement? If not, please explain in the comment area. 44
5. Requirement 2 identifies when the Balancing Authority must implement its Frequency Bias Setting. R2. Each Balancing Authority shall implement the Frequency Bias Setting (fixed or variable) provided by the ERO into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effective coordinated secondary control, using the results from the calculation methodology detailed in Attachment A.

Do you agree with this implementation? If not, please explain in the comment area.
6. Requirement 3 mandates that a Balancing Authority operate its Automatic Generation Control (AGC) on Tie Line Bias unless it becomes adverse to the integrity of its system.

R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Bias, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area.

Do you agree that a Balancing Authority should operate its AGC on Tie Line Bias unless it becomes
adverse to its system? If not, please explain in the comment area below.................................. 67
7. Do you agree with the proposed Implementation Plan for this standard? If not, please explain in the comment area. 79
8. This standard proposes to eliminate the 1% minimum Frequency Bias over a period of 4 years as outlined in the Implementation Plan. Do you agree that the elimination of the 1% minimum will bring Frequency Bias closer or equal to natural Frequency Response? If not, please explain in the comment area.
9. Do you agree with the drafting team that this standard should be field tested? If not, please explain in the comment area.

99
10. Attachment A of the proposed standard describes the criteria for selecting events to be analyzed. Do you agree with the criteria as described in Attached A? If not, please explain in the comment area.

105
11. The proposed standard has a document attached to it that describes the SDT's reasoning for the Requirements (Attachment A - Frequency Response Background Document). Do you agree with the SDT that this document is useful and provides a clear understanding of the Requirements? If not, please explain in the comment area.
12. The proposed standard requires the use of FRS Form 1 for calculating a Balancing Authority's FRM. Do you agree with the SDT that this is the proper method to calculate its FRM? If not, please explain in the comment area and if possible provide an alternate method to calculate FRM..... .
13. The proposed standard requires the use of FRS Form 1 for calculating a Balancing Authority's Frequency Bias Setting. Do you agree with the SDT that this is the proper method to calculate its Frequency Bias Setting? If not, please explain in the comment area and if possible provide an alternate method to calculate Frequency Bias Setting.
14. The SDT has provided a document (FRS Form 1 Instructions) describing how to use FRS Form 1 for calculating FRM and Frequency Bias Setting. Do you agree with the SDT that this document provides a clear understanding of how to use the form? If not, please explain in the comment area. 142
15. The SDT is soliciting comments on methods of obtaining Frequency Response to meet the FERC Order 693 directive. If possible please provide any thoughts you may have on this subject........ 149
16. If you are aware of any conflicts between the proposed standard and any regulatory function, rule order, tariff, rate schedule, legislative requirement, or agreement please identify the conflict here. 126
17. Please provide any other comments (that you have not already provided in response to the questions above) that you have on the draft standard BAL-003-1 131

NERC

The Industry Segments are:

1 - Transmission Owners
2 - RTOs, ISOs
3 - Load-serving Entities
4 - Transmission-dependent Utilities
5 - Electric Generators
6 - Electricity Brokers, Aggregators, and Marketers
7 - Large Electricity End Users
8-Small Electricity End Users
9 - Federal, State, Provincial Regulatory or other Government Entities
10 - Regional Reliability Organizations, Regional Entities

Group/Individual		Commenter		Organization			Registered Ballot Body Segment									
							1	2	3	4	5	6	7	8	9	10
1.	Group	Guy Zito		Northeast Power Coordinating Council												X
Additional Member			Additional Organization		Region Segment Selection											
	Alan Adamson		New York State Reliability Council, LLC		NPCC	10										
2.	Gregory Campoli		New York Independent System Operator		NPCC	2										
3.	Kurtis Chong		Independent Electricity System Operator		NPCC	2										
4.	Sylvain Clermont		Hydro-Quebec TransEnergie		NPCC	1										
5.	Bohdan M. Dackow		US Power Generating Company (USPG)		NPCC	NA										
	Chris de Graffenried		Consolidated Edison Co. of New York, Inc.		NPCC											
	Gerry Dunbar		Northeast Power Coordinating Council		NPCC	10										
	Brian D. Evans-Mon	geon U	Utility Services		NPCC											
	Mike Garton		Dominion Resources Services, Inc.		NPCC											
	Brian L. Gooder		Ontario Power Generation Incorporated		NPCC											

Group/Individual	Commenter	Organization				Registered Ballot Body Segment									
						1	2	3	4	5	6	7	8	9	10
11. Kathleen Goodman	ISO - New England			NPCC	2										
12. David Kiguel	Hydro One Networks Inc.			NPCC	1										
13. Michael R. Lombardi	i Northeast Utilities			NPCC	1										
14. Randy MacDonald	New Brunswick Power Transmission			NPCC	1										
15. Bruce Metruck	New York Power Authority			NPCC	6										
16. Chantel Haswell	FPL Group, Inc.			NPCC	5										
17. Lee Pedowicz	Northeast Power Coordinating Council			NPCC	10										
18. Robert Pellegrini	The United Illuminating Company			NPCC	1										
19. Saurabh Saksena	National Grid			NPCC	1										
20. Michael Schiavone	National Grid			NPCC	1										
21. Wayne Sipperly	New York Power Authority			NPCC	5										
22. Donald Weaver	New Brunswick System Operator			NPCC	2										
23. Ben Wu	Orange and Rockland Utilities			NPCC	1										
24. Peter Yost	Consolidated Edison Co. of New York, Inc. NPCC 3														
2. Group	Terry L. Blackwell	Santee Cooper				X		X		X	X				
Additional Member Additional Organization Region Segment Selection															
1. S. Tom Abrams	Santee Cooper SERC														
2. Glenn Stephens	Santee Cooper	SERC 1													
3. Rene Free	Santee Cooper	SERC 1													
4. Wayne Ahl	Santee Cooper	SERC 1													
5. Jim Peterson	Santee Cooper SERC														
3. Group	Carol Gerou	MRO's NERC Standards Review Subcommittee													X
Additional Member	Additional Organization		Region Segment Selection												
1. Mahmood Safi	Omaha Public Utility District		MRO	1, 3, 5, 6											
2. Chuck Lawrence	American Transmission Company		MRO	1											
3. Tom Webb	Wisconsin Public Service Corporation		MRO	3, 4, 5, 6											
4. Jason Marshall	Midwest ISO Inc.		MRO	2											
5. Jodi Jenson	Western Area Power Administration		MRO	1,6											
6. Ken Goldsmith	Alliant Energy		MRO	4											
7. Alice Ireland	Xcel Energy		MRO	1, 3, 5, 6											
8. Dave Rudolph	Basin Electric Power Cooperative		MRO	1, 3, 5, 6											

Group/Individual	Commenter	Organization			Registered Ballot Body Segment									
					1	2	3	4	5	6	7	8	9	10
2. Michelle Corley	Cleco		SPP	1, 3, 5										
3. Lisa Duffey	Cleco		SPP	1, 3, 5										
4. Jeff Elting	Nebraska Public Power District		MRO	1, 3, 5										
5. Denney Fales	Kansas City Power \& Light		SPP	1, 3, 5, 6										
6. Louis Guidry	Cleco		SPP	1, 3, 5										
7. Allen Klassen	Westar Energy		SPP	1, 3, 5, 6										
8. Rick Koch	Nebraska Public Power District		MRO	1, 3, 5										
9. Errol Ortego	Louisiana Energy and Power Authority		SPP	10										
10. David Pham	Empire District Electric		SPP	1, 3, 5, 6										
11. Don Schmit	Nebraska Public Power District		MRO	1, 3, 5										
12. John Stephens	City Utililties of Springfield, MO		SPP	1, 4										
13. Bryan Taggart	Westar Energy		SPP	1, 3, 5, 6										
14. Jim Useldinger	Kansas City Power \& Light		SPP	1, 3, 5, 6										
15. Barry Warren	Empire District Electric		SPP	1										
16. Bryn Wilson	Empire District Electric		SPP	1										
9. Group	Albert DiCaprio	IRC Standards Review Committee				X								
Additional Member	Additional Organization Region Segment Selection													
1. Patrick Brown	PJM RFC 2													
2. Matt Goldberg	ISO-NE	NPCC 2												
3. Dan Rochester	IESO N	NPCC 2												
4. Steve Myers	ERCOT	ERCOT 2												
5. Mark Thompson	AESO	WECC 2												
6. Greg Van Pelt	CAISO	WECC 2												
7. Charles Yeung	SPP	SPP 2												
8. Terry Bilke	Midwest ISO	RFC 2												
9. Greg Campoli	NYISO	NPCC 2												
10. Kathleen Goodman	ISO-NE	NPCC 2												
11. Ben Li	IESO N	NPCC 2												
12. Jason Marshall	Midwest ISO P	RFC 2												
13. Don Weaver	NBSO	NPCC 2												
10. Group	Gerald Beckerle	SERC OC Standards Review Group			X		X							

Group/Individual		Commenter		Organization			Registered Ballot Body Segment											
		1	2				3	4	5	6	7	8	9	10				
Additional Member Additional Organization Region Segment Selection																		
1. J	John Neagle			AECI	SERC 1, 3, 5													
2. L	Larry Akens	TVA	SERC 1, 3, 5, 9															
3. C	Chris Adams	EKPC	SERC 3, 5, 9, 1															
4. J	Joel Wise	TVA	SERC 1, 3, 5, 9															
5. R	Ron Wyble	CWLD	SERC 1,5,9															
6. A	Andy Burch	EEI	SERC 1,5															
7. R	Rene' Free	Santee Cooper	SERC 1, 3, 5, 9															
8. G	Glenn Stephens	Santee Cooper	SERC 1, 3, 5, 9															
9. R	Robert Thomasson	BREC	SERC 1, 3, 5, 9															
10. G	Gene Delk	SCE\&G	SERC 1, 3, 5															
11. M	Mike Oatts	Southern	SERC 1, 3, 5															
12. S	Sam Holeman	Duke	SERC 1, 3, 5															
13. M	Marc Butts	Southern	SERC 1, 3, 5															
14. M	Melinda Montgomery	Entergy	SERC 1, 3															
15. R	Ron Carlsen	Southern	SERC 1, 3, 5															
16. T	Tim Hattaway	PowerSouth	SERC 1, 3, 5, 9															
17. J	John Troha	SERC	SERC 10															
11.	Group	Michael Gammon		Kansas City Power \& Light			X		X		X	X						
Additional Member		Additional Organiza	Region Segment Selection															
1. Jennifer Flandermeyer		Kansas City Power \&	SPP		1, 3, 5, 6													
2. Denney Fales		Kansas City Power \& Light SPP 1, 3, 5, 6																
12.	Individual	Janet Smith	Arizona Public Service Company				X		X		X	X						
13.	Individual	Cindy Martin	Southern Company				X		X									
14.	Individual	James Eckelkamp	Progress Energy				X		X		X	X						
15.	Individual	Rob Coulbeck	ENBALA Power Networks															
16.	Individual	Joe O'Brien	NIPSCO				X		X		X	X						
17.	Individual	John Canavan	NorthWestern Energy				X											
18.	Individual	Howard F. Illian	Energy Mark, Inc.											X				
19.	Individual	Si Truc PHAN	Hydro-Quebec TransEnergie				X											

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

Group/Individual		Commenter	Organization	Registered Ballot Body Segment									
				1	2	3	4	5	6	7	8	9	10
20.	Individual	Isaac Read	Beacon Power Corporation						x				
21.	Individual	Bryan Taggart	Westar Energy	x		x		x	x				
22.	Individual	Thomas Washburn	FMPP						x				
23.	Individual	Chris Adams	EKPC	x				x		x	x		
24.	Individual	Kathleen Goodman	ISO New Engand Inc.		x								
25.	Individual	Hao Li	Seattle City Light	x		X	X	X	x				
26.	Individual	Kasia Mihalchuk	Manitoba Hydro	x		X		X	x				
27.	Individual	JC Culberson	ERCOT		x								
28.	Individual	Howard Rulf	We Energies			x	X	x					
29.	Individual	Thad Ness	American Electric Power	x		X		X	x				
30.	Individual	Greg Rowland	Duke Energy	X		x		x	x				
31.	Individual	LeRoy Patterson	Patterson Consulting, Inc.										
32.	Individual	RoLynda Shumpert	South Carolina Electric and Gas	X		X		X	x				
33.	Individual	Todd Bennett	Associated Electric Cooperative, Inc.	X		X		X	X		x		
34.	Individual	Mark Thompson	Alberta Electric System Operator		x								
35.	Individual	Dan Rochester	Independent Electricity System Operator		x								
36.	Individual	Alice Ireland	Xcel Energy	X		X		x	x				

1. The SDT has developed three new terms to be used with this standard.

- Single Event Frequency Response Data (SEFRD) The individual sample of event data from a Balancing Authority which represents the change in Net Actual Interchange (NIA), divided by the change in frequency, expressed in MW/ 0.1 Hz .
- Frequency Response Measure (FRM) The median of all Single Event Frequency Response Data observations reported annually on FRS Form 1.
- Frequency Response Obligation (FRO) The Balancing Authority's contribution to the total aggregate Frequency Response needed for reliable operation of an Interconnection assigned by the ERO.

Do you agree with the proposed definitions in this standard? If not, please explain in the comment area?

Summary Consideration: The majority of the commenters disagreed with the proposed definitions for this standard. The primary concerns cited are the definitions, and the calculations and methodology associated with the definitions, are not clear.

Many commenters expressed concern that the FRM methodology did not allow exclusion of events that, if included, would mask true frequency response. Commenters also indicated that the 'average' and not the 'median' should be used for the FRM calculation. Other observations include inconsistency between the FRM definition and its calculation on FRS Form 1; that proposed language allows the ERO to unilaterally change FRO value; and that definitions seem more focused on the frequency excursion curve point B value and not point C value. Suggestions for improving the standard include making it clear that 25 events are used for determining FRM; that definitions should specify how to calculate each term; and that FRM should take into account nonconforming load.
In response to industry comments, the SDT has deleted the SEFRD definition from the standard; revised the FRO and FRM definitions; and also improved the calculations. With regards to use of the median for calculating FRM, in general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FR SDT have shown the Median to be less influenced by noise in the measurement process. FRS Form 1 has been modified to allow for adjustments to the load and generation. To allay industry concern over the ERO's role, the SDT is evaluating if a modification to the NERC Rules of Procedure to obligate the ERO to perform the tasks specified in the standard is necessary.
In regards to concerns over the frequency excursion curve point B value, the SDT explained that while point B measurements have some data quality challenges to be mastered, point C measurements are not practical at this time for Balancing Authorities in an Interconnection with more than one Balancing Authority. The SDT intends to study point B and point C relationships of each Interconnection with more than one Balancing Authority to address this issue during the field trial.
The SDT has chosen the deterministic approach detailed in Attachment A as the method to use to allocate the Interconnection FRO to the BAs. The SDT is evaluating a probabilistic method during the field trial.

Organization	Yes or No	Question 1 Comment

Organization	Yes or No	
Patterson Consulting, Inc.	No	From the definition, it is not clear whether SEFRD is a Balancing Authority's 1) data collected for each frequency event, 2) calculated Frequency Response for a selected event, 3) Net Actual Interchange divided by the change in frequency for a selected event, or 4) some combination of these interpretations. If the SDT determines that adjustments to Net Actual Interchange should be made such as adjustments for joint-owned generation and nonconforming loads as suggested in the field test document, then since this definition requires Frequency Response to be determined from Net Actual Interchange, this definition would require changing to allow those adjustments. I suggest defining SEFRD as "The individual sample of event data from a Balancing Authority that is necessary to calculate its Frequency Response on FRS Form 1, expressed in MW/O.1Hz."

Organization	Yes or No	Question 1 Comment
		Balancing Authority's annual median frequency response as assigned by the ERO (or NERC). The word "contribution" should be considered to be replaced with "the balancing authority piece of the total....."The review team is concerned that the FRO and FRM definitions do not contain enough clarity as to how the BAs will be held accountable. Also, the definitions do not explain who will determine the value of each BA's FRO and the method used to determine the FRO value.Should the definition of Frequency Response Measure be a median or mean value?
Response: The SDT agrees with your concern regarding the definition of SEFRD. The SDT has removed the definition from the standard. The SDT also agrees with your concern regarding the definition of FRO and has revised the definition to read "The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection." With regards to use of the median for calculating FRM, in general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FR SDT have shown the Median to be less influenced by noise in the measurement process.		
LG\&E and KU Energy	No	We suggest the SDT consider defining SEFRD as: The calculated frequency response by a Balancing Authority for a specific frequency excursion event as identified by the ERO (or NERC). As a comment, how frequency response is calculated needs to be defined and may not always be the Net Actual Interchange (Nla) divided by the change in frequency expressed in hertz. For example, the Nla may need to be adjusted for known generation and load changes that do not represent frequency response for the period being measured such as known generation and load ramp changes. Change in frequency needs to be more specific, such as the frequency difference between two physical locations B and A measured at B. Frequency deviation used in the calculation needs to be the deviation observed by the BA performing the calculation. If Frequency Response Obligation (FRO) is a targeted value, then perhaps the definition should be: The Balancing Authority's annual median frequency response as assigned by the ERO (or NERC). The word "contribution" should be considered to be replaced with "the balancing authority piece of the total....."The standard does not explain who will determine the value of each BA's FRO nor the method used to determine the FRO value. Should the definition of Frequency Response Measure be a median or mean value?

Response: The SDT agrees with your concern regarding the definition of SEFRD. The SDT has removed the definition from the standard.
The SDT also agrees with your concern regarding the definition of FRO and has revised the definition to read "The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection."

With regards to use of the median for calculating FRM, in general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FR SDT have shown the Median to be less influenced by noise in the measurement process.

| Organization | Yes or No | Question 1 Comment |
| :--- | :---: | :--- |$|$| SERC OC Standards Review
 Group | No | We suggest the SDT consider defining SEFRD as: The calculated frequency response by a Balancing
 Authority for a specific frequency excursion event as identified by the ERO (or NERC). As a comment, how
 frequency response is calculated needs to be defined and may not always be the Net Actual Interchange
 (Nla) divided by the change in frequency expressed in hertz. For example, the Nla may need to be adjusted
 for known generation and load changes that do not represent frequency response for the period being
 measured such as known generation and load ramp changes. Change in frequency needs to be more
 specific, such as the frequency difference between B and A measured at B.
 If Frequency Response Obligation (FRO) is a targeted value, then perhaps the definition should be: The
 Balancing Authority's annual median frequency response as assigned by the ERO (or NERC). The word
 "contribution" should be considered to be replaced with "he balancing authority piece of the total...."The
 revew team is concerned that the FRO and FRM definitions do not contain enough clarity as to how the BAs
 will be held accountable.
 Also, the definitions do not explain who will determine the value of each BA's FRO and the method used to
 determine the FRO value.
 Should the definition of Frequency Response Measure be a median or mean value? |
| :--- | :--- | :--- |
| Response: The SDT agrees with your concern regarding the definition of SEFRD. The SDT has removed the definition from the standard. | | |
| The SDT also agrees with your concern regarding the definition of FRO and has revised the definition to read "The Balancing Authority's share of the required | | |
| Frequency Response needed for the reliable operation of an Interconnection." | | |

$\begin{array}{l}$| Organization | Yes or No | Question 1 Comment |
| :--- | :--- | :--- |

\hline\end{array} $\left.\begin{array}{l}\text { "contribution" should be considered to be replaced with "the balancing authority piece of the total...."" } \\
\text { The review team is concerned that the FRO and FRM definitions do not contain enough clarity as to how the } \\
\text { BAs will be held accountable. } \\
\text { Also, the definitions do not explain who will determine the value of each BA's FRO and the method used to } \\
\text { determine the FRO value. } \\
\text { Should the definition of Frequency Response Measure be a median or mean value? May need to clarify what } \\
\text { FRS stands for. }\end{array}\right]$

Organization Yes or No Question 1 Comment that 25 events do not apply because an attachment is not part of the standard. Response: With regards to use of the median for calculating FRM, in general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FR SDT have shown the Median to be less influenced by noise in the measurement process. The SDT has been advised by NERC Legal that an attachment explicitly referenced in a Reliability Standard Requirement is enforceable as part of that Requirement. We Energies No For Frequency Response Measure, the drafting team should consider using average rather than median. Because median is literally the middle value, a Balancing Authority could have 12 really bad Single Event Frequency Response Data points and still comply. Average values would prevent this from happening.Should FRM be clear that it includes at least 25 events in the definition? While that can be garnered from Attachment A, it is not specified in the Form 1 instructions. We are concerned that the regulators may argue that 25 events do not apply because an attachment is not part of the standard.

Response: With regards to use of the median for calculating FRM, in general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FR SDT have shown the Median to be less influenced by noise in the measurement process.

The SDT has been advised by NERC Legal that an attachment explicitly referenced in a Reliability Standard Requirement is enforceable as part of that Requirement.

Westar Energy	No	For FRM, why is median used rather than average? The method in the standard for dsetermining FRM needs to allow for excluding some events due to non- conforming loads, scan rate, intermittent resources, large interchange ramps, etc that may cause the actual response during the 16 seconds to actually be opposite of the expected response.

Response: With regards to use of the median for calculating FRM, in general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FR SDT have shown the Median to be less influenced by noise in the measurement process.
The FRS Form 1 has been modified to allow for adjustments (not exclusions) to the load and generation.

| Bonneville Power Administration \quad No |
| :--- | | FRO definition - BPA feels uncomfortable supporting this standard when the ERO is given a blank check to |
| :--- |
| FRO. The methodology for determining the FRO must be spelled out in detail in order to allow all entities an |
| opportunity to comment on that methodology. |

| Organization | Yes or No | Question 1 Comment |
| :--- | :---: | :--- | :--- |
| necessary. | No | In the past tie line flow changes that did not have the expected response for the given frequency deviation
 have been excluded from the determination of Frequency Bias. It appears that this exclusion does not carry
 forth in the determination of Frequency Response Measure. Therefore, non-conforming loads, intermittent
 resources and other events/issues within a Balancing Authority could very well mask its natural frequency
 repsonse thereby setting the Balancing Authority's Frequency Bias and its Frequency Response Obligation
 incorrectly. Then the Balancing Authority is obligated to respond and will be measured for compliance against
 an incorrect value. This being the case, we can support the definition of Single Event Frequency Response
 Data but have reservations about Frequency Response Measure and Frequency Response Obligation. |

Response: The SDT agrees with your concern regarding the definition of FRO and has revised the definition to read "The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection."
With regards to use of the median for calculating FRM, in general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FR SDT have shown the Median to be less influenced by noise in the measurement process.
The FRS Form 1 has been modified to allow for adjustments (not exclusions) to the load and generation.
Note that based on other stakeholder concerns, the definition of SEFRD has been deleted.

| IRC Standards Review |
| :--- | :--- | :--- |
| Committee |\quad No | The definition of SEFRD will not work as described for a single BA Interconnection. There is no change in NI |
| :--- |
| for frequency deviations. Similarly, the definition assumes all response is provided by change in Interchange |
| and does not really reflect the frequency response of a contingent BA. Either the definition needs to be |
| changed to accommodate single BA Interconnections (such as ERCOT and Hydro Quebec), or regional |
| variances for them need to be written by the SDT. A BA's frequency response is composed of load frequency |
| response, governor response, and, for BAs external to the resource loss, change in Net Interchange. Some |
| approximation may be achieved by reconnizing that the magnitude of frequency deviation is attenuated by |
| load frequency response and governor response (or frequency activated demand response to reduce load). |
| The definition of FRM specifies the median of all SEFRD observations reported annually. What is the |
| technical basis for selecting the median rather than the mean? |
| The definition of FRO raises questions. The discretely administered determination of FRO described in the |
| draft Attachment A sets too stringent a requirement; particularly for the smaller Interconnections which may |
| also have large size generation resources just as do the larger Interconnections. |
| To "assure that Point C will not encroach on the first step UFLS" is significantly more stringent than existing |
| and historical performance for those smaller Interconnections. Such assurance will assuredly prove to be |
| very expensive.In fact, we question the need to define FRM and FRO since they can easily be stipulated in |

Organization	Yes or No	Question 1 Comment

Organization	Yes or No	Question 1 Comment

Organization	Yes or No	Question 1 Comment

evaluating a probabilistic approach during the field trial.

| Progress Energy | No | The proposed definition for SEFRD assumes that there is no change in the Net Scheduled Interchange (NIS)
 as a result of the event. However, a dynamic schedule for load or generation based on data obtained with a
 two second scan rate will impact the NIS, and therefore the corresponding load or generation response will
 offset the change to NIA. Therefore, the definition of SEFRD should replace "NIA" with "change in NIA minus
 NIS". |
| :--- | :---: | :--- | :--- |
| Response: The SDT agrees with your concern regarding the definition of SEFRD. The SDT has removed the definition from the standard. | | |

Response: (1) The SDT thanks you for your affirmative response, however several other stakeholders disagreed with the definition of SEFRD and the drafting team has removed the proposed definition from the revised standard.
$(2,4,5)$ With regards to use of the median for calculating FRM, in general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FR SDT have shown the Median to be less influenced by noise in the measurement process.
(3) The SDT has corrected FRS Form 1.
(6) Research conducted by the Frequency Response Standard Drafting Team (FR SDT) indicated that a Balancing Authority's FRM will converge to a reasonably stable value with 20 to 25 samples. The FR SDT as well as the NERC Frequency Response Initiative is evaluating other methods of FRM. The SDT is not ignoring methods of proven statistical design and the chosen method does require at least 25

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

Organization	Yes or No	Question 1 Comment
samples.		
EKPC	No	These definitions should be revised to include specifics on how to calculate each term. The FRM calculation method should take into account large non-conforming loads. A median will not reflect the true nature of the system.
Response: The SDT does not believe the definition should include the specific calculation and therefore has incorporated the calculation methodology in Attachment A. The FRM calculation, using FRS Form 1, has been modified to now include adjustments. Based on analysis of data the SDT has determined that the median value is the proper method to be used in defining FRM.		
Duke Energy	No	The definition of SEFRD would conflict with any alternative measurement of frequency response. The SEFRD makes no provision for the impacts of generation loss experienced by a contingent $B A$, impacts of nonconforming loads, or impacts of schedule ramps. The FRM also makes no such provisions. The resulting FRM for a BA experiencing one or more of these impacts for one or more SEFRDs will be skewed and completely miss the intended measurement of the BA's response to frequency excursions. In addition, as it is not yet clear how provision of Frequency Response by one BA to meet a portion of another BA's requirement would be achieved, Duke Energy cannot say that a simple measure of the NIA against the frequency deviation will capture the net of the response desired. Regarding the definition of FRO, the industry should agree on the methodology which would be used for the ERO to determine the response desired for the Interconnection that is used for allocation of the FRO, and not leave it as a parameter subject to change outside of the standards process. The definition is only acceptable if the assignment by the ERO is based upon a methodology supported by the industry and subject to change only through the standards process.
Response: The SDT agrees with your concern regarding the definition of SEFRD. The SDT has removed the definition from the standard. The FRS Form 1 has been modified to allow for adjustments (not exclusions) to the load and generation. The methodology that the ERO will use for determining the FRO is now outlined in the new Attachment A. The industry will either accept or reject this methodology in the balloting phase of the standard.		
Associated Electric Cooperative, Inc.	No	1) SEFRD - I had to read this definition several times because "The individual sample of event data" is actually an internally calculated value derived from a set of event sample data, and not really a "sample" value at all. So, I believe the SEFRD definition needs further work.

Organization	Yes or No	
		2) FRM is defined by undefined terms "FRS" and "FRS Form 1".
	3) FRO - fine 4) FRS - "Frequency Response Survey"	

Response: The SDT agrees with your concern regarding the definition of SEFRD. The SDT has removed the definition from the standard.
FRS Form 1 is the name of the form to be used for calculating FRM.

Alberta Electric System Operator	No	The frequency response has 2 aspects: arresting frequency deviation (Point C) and deviation where frequency has settled (Point B). The proposed SEFRD and FRM seem all based on the Point B, however the intention in purpose statement is towards Point C... It is not clear to AESO that these proposed SEFRD and FRM based on settled frequency deviation (Point B) are technically sufficient to address the concern of arresting frequency deviation (Point C).

Response: The SDT recognizes that point C is the primary reliability concern. However, while Point B measurements have some data quality challenges to be mastered, point C measurements are not practical at this time for Balancing Authorities in an Interconnection with more than one Balancing Authority. The SDT intends to study point B and point C relationships of each Interconnection with more than one Balancing Authority to address this issue.
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Independent Electricity System } \\ \text { Operator }\end{array} & \text { No } & \begin{array}{l}\text { We concur with the definitions for SEFRD, FRM and FRO but do not believe that the latter two terms (FRM } \\ \text { and FRO) need to be defined since they can easily be stipulated in the standard requirements. Having them } \\ \text { defined and added to the ever-growing NERC glossary creates unnecessary work to maintain the glossary, }\end{array} \\ \text { unless these terms are used by other NERC standards for which consistent meaning need to be established. } \\ \text { For example, R1 can easily be reworded as:"R1: Each Balancing Authority shall achieve a median of all }\end{array}\right\}$

Response: Several stakeholders indicated concerns with the definition of SEFRD and the team has removed this definition from the revised standard.
The SDT believes that the FRO and FRM definitions will be used in later revisions to the BAL group of standards and therefore is keeping the definitions in the standard so they can be added to the approved NERC Glossary of Terms.

FirstEnergy	Yes	For the definition of FRM, we are not clear as to the rationale for choosing the median value instead of the mean.

Response: The SDT thanks you for your affirmative response and clarifying comment.

Organization

Yes or No

Question 1 Comment

With regards to use of the median for calculating FRM, in general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FR SDT have shown the Median to be less influenced by noise in the measurement process.

Southern Company Yes
Comments: The Frequency Response Measure should be based on either the median or average of all SEFR's as currently defined. Due to the varied nature of frequency responsive resources online it should never be based on meeting response on a single event.

Response: The SDT thanks you for your affirmative response and clarifying comment.
With regards to use of the median for calculating FRM, in general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FR SDT have shown the Median to be less influenced by noise in the measurement process.

Seattle City Light	Yes	
Manitoba Hydro	Yes	
ENBALA Power Networks	Yes	
NIPSCO	Yes	
NorthWestern Energy	Yes	
Kansas City Power \& Light	Yes	
Arizona Public Service Company	Yes	
FMPP	Yes	
American Electric Power		
Northeast Power Coordinating Council		
Response: Please refer to the SDT response to Question 17.		

2. The SDT has modified the definition for the term Frequency Bias Setting. The current definition and revised definition are shown below to show the changes proposed.

Frequency Bias Setting

Current Definition in NERC Glossary: A value, usually expressed in MW/ 0.1 Hz , set into a Balancing Authority ACE algorithm, that allows the Balancing Authority to contribute its frequency response to the Interconnection.

Revised Definition: A value, (either a fixed or variable Frequency Bias), usually expressed in MW/ $0.1 \mathbf{~ H z}$, set into a Balancing Authority Area Control Error equation that allows the Balancing Authority to contribute its Frequency Response to the Interconnection.

Do you agree with this new definition for Frequency Bias Setting? If not, please explain in the comment area.
Summary Consideration: Many of the commenters did not agree with the new definition proposed for Frequency Bias Setting. Several commenters recommend revising the Frequency Bias Setting definition and have offered suggestions for the SDT to consider. In response, the SDT has revised the Frequency Bias Setting definition to better address concerns raised by industry.

The revised definition is:
Frequency Bias Setting: A number, either fixed or variable, usually expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems.

Some commenters also questioned if the definition of Frequency Response also needed to be revised, however in reviewing the current definition of Frequency Response the SDT believes that the current definition is both accurate and appropriate. Concern was also raised regarding what constitutes variable bias. - Fixed bias is a value approved by the ERO whereas variable bias is a methodology for determining the Frequency Bias Setting approved by the ERO.

Organization	Yes or No	Question 2 Comment
Santee Cooper	No	We suggest the following changes to the definition: A value, fixed or variable, expressed in MW/0.1 hertz, as part of a Balancing Authority's Area Control Error (ACE) equation that influences its Automatic Generation Control (AGC) to provide frequency response without secondary control action withdrawing the response.
Response: The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in MW/0.1 Hz , included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems."		
ENBALA Power Networks	No	: ENBALA would modify the above as follows: A value, (either a fixed or variable Frequency Bias), usually

Organization	Yes or No	Question 2 Comment
		expressed in MW/O.1 Hz, set into a Balancing Authority Area Control Error algorithm equation that allows the Balancing Authority AGC System to ignore the export or import caused by the Primary Frequency Response.

Response: The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems."

Westar Energy	No	We propose the following:A value, (either a fixed or variable), expressed in MW/0.1 Hz, set into a Balancing Authority Area Control Error equation that allows the Balancing Authority to contribute its SECONDARY Frequency Response to the Interconnection.

Response: The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems."

EKPC	No	"Frequency Bias" should not be used in the definition."Usually" can be omitted.

Response: The SDT has modified the definition and "frequency bias" is not used in the revised definition. The definition now reads "A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems."

LG\&E and KU Energy	No	We suggest the following changes to the definition: 1. Delete the word "usually"
		2. Replace "set into" with "as part of". 3. Replace the remainder of the sentence following "Area Control Error equation" with "that influences its Automatic Generation Control (AGC) to provide its frequency response while Interconnection frequency is not at its scheduled value" - (The frequency bias does not allow a BA to contribute its frequency response to the Interconnection. The frequency bias term only affects the AGC response of the BA, which is part of its frequency response usually minutes after the initial event and is dependent upon generation units being on AGC control and capable of responding.)
	4. The suggested changes would result in the following definition:A value, (either a fixed or variable Frequency Bias) expressed in MW/0.1 hertz as part of a Balancing Authority's Area Control Efror (ACE) equation that influences its Automatic Generation Control (AGC) to provide its frequency response while Interconnection frequency is not at its scheduled value.	

Response: The SDT did adopt the suggestion to remove, "set into" and replaced this phrase with, "included", however the team did not adopt the suggestion to

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

Organization	Yes or No	Question 2 Comment

delete the word, 'usually' as the inclusion of this word recognizes that there may be rare instances when the Frequency Bias Setting could be expressed in other than MW/0.1 Hz. The SDT did not adopt the third proposed change because it can cause confusion since primary Frequency Response cannot be delivered by AGC.

The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems."

SERC OC Standards Review Group	No	We suggest the following changes to the definition: 1. Delete "Frequency Bias" in the parenthetical expression - ("Frequency Bias" should not be used to define Frequency Bias) 2. Delete the word "usually" 3. Replace "set into" with "as part of" as defined in BAL-001. 4. Replace the remainder of the sentence following "Area Control Error equation" with "that influences its Automatic Generation Control (AGC) to provide its frequency response while Interconnection frequency is not at its scheduled value" - (The frequency bias does not allow a BA to contribute its frequency response to the Interconnection. The frequency bias term only affects the AGC response of the BA, which is usually minutes after the initial event and is dependent upon generation units being on AGC control and capable of responding.) 5. The suggested changes would result in the following definition"A value, fixed or variable, expressed in MW/0.1 hertz as part of a Balancing Authority's Area Control Error (ACE) equation that influences its Automatic Generation Control (AGC) to continue to provide its frequency response while Interconnection frequency is not at its scheduled value.

Response: The SDT has modified the definition and "frequency bias" is not used in the revised definition and the phase, "set into" was replaced with "included". The SDT did not adopt the suggestion to delete the word, "usually' because there may be rare instances when the Frequency Bias Setting is expressed in other than MW/0.1 Hz. The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in MW/ 0.1 Hz , included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems."

Midwest ISO Standards Collaborators	No	Given that frequency response is "contributed" long before AGC has an impact, "contribute" should probably be changed to "maintain". The goal is to ensure AGC does not withdraw frequency response and that it is maintained while frequency is depressed. We are not sure if Frequency Response has a precise enough definition and it is part of the definition of Frequency Bias Setting. The definition of Frequency Response really just reflects how it is measured. It does not define what it really is which is the dynamic response of load, generation, and other frequency responsive devices to a perturbation in frequency.

Organization	Yes or No	Question 2 Comment
		The drafting team should also consider resolving the definition of Frequency Bias. Is it needed? It is often confused with Frequency Bias Setting and is often used interchangeably with Frequency Response even though the meanings are slightly different.

Response: The SDT has modified the definition of Frequency Bias Setting. The definition now reads "A number, either fixed or variable, usually expressed in MW/ 0.1 Hz , included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems." The SDT believes that based on the modified definition, the use of the term "contribution" better describes the action that has taken place.
The SDT has reviewed the current definition of Frequency Response and believes that the current definition is both accurate and appropriate.

We Energies	No	Given that frequency response is "contributed" long before AGC has an impact, "contribute" should probably be changed to "maintain." The goal is to ensure AGC does not withdraw frequency response and that it is maintained while frequency is depressed. We are not sure if Frequency Response has a precise enough definition and it is part of the definition of Frequency Bias Setting. The current NERC Glossary definition of
		Frequency Response really just reflects how it is measured, it does not define Frequency Response. Frequency Response is the dynamic real power response of load, generation, and other devices to a perturbation in frequency.
	The drafting team should also consider resolving the definition of Frequency Bias. Is it needed? It is often confused with Frequency Bias Setting and is often used interchangeably with Frequency Response even though the meanings are slightly different.	

Response: The SDT has modified the definition of Frequency Bias Setting. The definition now reads "A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems." The SDT believes that based on the modified definition, the use of the term "contribution" better describes the action that has taken place.
The SDT has reviewed the current definition of Frequency Response and believes that the current definition is both accurate and appropriate.

SPP Standards Development	No	We would suggest inserting 'secondary' in front of Frequency Response at the end of the sentence and delete 'Frequency Bias' following 'variable' at the beginning of the sentence.

Response: The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems." The SDT believes that the modified definition is more appropriate than the recommended change. The SDT does not believe it is necessary to differentiate between primary and secondary Frequency Response in the definition.

IRC Standards Review	No	The definition appears to be accurate, but where is "fixed" and "variable" Frequency Bias defined in the

Organization	Yes or No	Question 2 Comment
Committee		context of these requirements? Should it be Frequency Bias Setting, instead? "Fixed" seems to be straightforward, but what is "variable"? How often must Frequency Bias Setting change in order to be considered to be "variable"?

Response: The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems."
If the ERO provides the Frequency Bias Setting then it is considered fixed. If the ERO accepts a methodology for determining the Frequency Bias Setting then it is considered variable.

ERCOT	No	The definition appears to be accurate, but where is "fixed" and "variable" Frequency Bias defined in the context of these requirements? Should it be Frequency Bias Setting, instead? "Fixed" seems to be straightforward, but what is "variable"? How often must Frequency Bias Setting change in order to be considered to be "variable"?

Response: The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems."
If the ERO provides the Frequency Bias Setting then it is considered fixed. If the ERO accepts a methodology for determining the Frequency Bias Setting then it is considered variable.

Progress Energy	No	A bias, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the interconnection, and prevent response withdrawal through secondary control systems. The changes suggested are to clarify that biasing of the ACE equation "allow[s]" primary frequency response to continue beyond the initial event window by accounting for it in the ACE input to secondary control systems (i.e. AGC). It's important to note that Primary Frequency Response will occur no matter what the Bias value is set to in the ACE equation, and biasing "supports" the response until the frequency is restored".

Response: The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems." The SDT believes that the revised definition agrees with your comment related to supporting the response until frequency is restored. The SDT also believes that it is impossible to "prevent" withdrawal and that you can only try to discourage withdrawal.

NIPSCO	No	Frequency Bias and Frequency Response are not the same thing and that may be why "F" \& "R" were not

Organization	Yes or No	Question 2 Comment
		capitalized in the present definition. I think the word "secondary" should appear per R2 finishing something like this: "to contribute to secondary (non-immediate)Interconnection frequency control.", removing Frequency Response altogether.(I do understand that you are bringing the FR and Bias closer together).
Response: The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems." The SDT believes that the modified definition is more appropriate than the recommended change. The SDT does not believe it is necessary to differentiate between primary and secondary Frequency Response in the definition.		
Energy Mark, Inc.	No	Comment 7: The definition should be:"A value, (either a fixed or variable Frequency Bias), usually expressed in MW/0.1 Hz, set into a Balancing Authority Area Control Error equation that indicates to the Balancing Authority its contribution of Frequency Response to the Interconnection. Comment 8: The Frequency Bias Setting does not allow or disallow the Frequency Response to be contributed. The BA will contribute its natural Frequency Response to the interconnection through the independent actions of its loads and generators. The only influence that the Frequency Bias Setting has is that it causes the AGC System, and hopefully other outer-loop control systems, to include that natural Frequency Response when developing control actions to implement through AGC in response to BA balancing requirements in a time frame well after the Frequency Response has been provided by the independent actions of its loads and generators.
Response: The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in MW/ 0.1 Hz , included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems." The SDT agrees with comment \#8.		
American Electric Power	No	If "the proposed standard's intent is to collect data needed to accurately analyze existing Frequency Response, set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation", it appears the current and stated definition is precluding the process for determination of the Frequency Bias Setting itself. I believe it is too early to state in definition the frequency bias setting to be based on MW/0.1 Hz, when this appears to be more of the expected response. Using the word usually does not appear to be defining anything. To eventually get to an acceptable performance measure with reliability basis the project needs to be expanded to also address associated

Organization	Yes or No	
		Question 2 Comment
Governor droop issues, which inherently affect response. When the current definition references using "either a fixed or variable Frequency Bias", it does not state whether or not to be applied in the calculation to either load or generation. The current Standard uses 1% of yearly estimated peak demand for BAs that serve load, when the actual load at time of disturbance could be greatly different. Response is more directly related to the amount of Generation on-line and active AGC within the BA at time of trip.MW/O.1 Hz states more of expected result of response than defining Frequency Bias Setting.		

Response: The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems."The " $\mathrm{MW} / 0.1 \mathrm{~Hz}$ " term represents the units of Frequency Bias and is not intended to reference magnitude.
Issues dealing with governor droop are outside of the scope of the industry approved SAR.
The SDT agrees with the last comment which is why the SDT also supports using a variable bias where appropriate.

Duke Energy	No	Duke Energy would suggest not using "Frequency Bias" in the definition of "Frequency Bias Setting". In addition, Duke Energy would like to point out that ACE does not allow Frequency Response; response will occur with or without the ACE equation. The Frequency Bias Setting is needed so that the AGC does not negate what may be provided in frequency response. The bias component of ACE provides the feedback so that a BA may sustain the intended amount of response with secondary control as long as Actual Frequency deviates from Scheduled Frequency. Duke Energy would suggest the following:"A fixed or variable value usually expressed in MW/O.1 Hz, set into a Balancing Authority Area Control Error equation to bias the control of resources so that Interconnection frequency is driven toward the Scheduled Frequency."

Response: The term Frequency Bias has been removed from the definition.
The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems."

Associated Electric Cooperative, Inc.	No	SEFRD - I had to read this definition several times because "The individual sample of event data" is actually an internally calculated value derived from a set of event sample data, and not really a "sample" value at all. So, I believe the SEFRD definition needs further work.

Response: The SDT agrees with your concern regarding the definition of SEFRD. The SDT has removed the definition from the standard.

Organization	Yes or No	Question 2 Comment
MRO's NERC Standards Review Subcommittee	No	
Southern Company	Yes	Frequency Bias SettingA value, (either a fixed or variable Frequency Bias), usually expressed in MW/0.1 Hz, set into a Balancing Authority Area Control Error algorithm equation that allows the Balancing Authority to contribute its frequency Frequency rResponse to the Interconnection. Comments: Not sure the word "allows" is the right word. Perhaps use something in terms of preventing withdrawal of Primary Frequency Response with words like "...equation that prevents the withdrawal of the Balancing Authority's Primary Frequency Response to the Interconnection."

Response: The SDT thanks you for your affirmative response and clarifying comments. The revised definition does not use the word, "allows."
The definition now reads "A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems."

FirstEnergy	Yes	Although we support the definition, we suggest the word "contribute" be changed to "maintain".

Response: The SDT thanks you for your affirmative response and clarifying comments.
The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems." The SDT believes that based on the modified definition, the use of the term "contribution" better describes the action that has taken place.

Patterson Consulting, Inc.	Yes	
Beacon Power Corporation	Yes	
NorthWestern Energy	Yes	
Kansas City Power \& Light	Yes	
Arizona Public Service Company	Yes	
Bonneville Power Administration	Yes	

Organization	Yes or No	Question 2 Comment
Alberta Electric System Operator	Yes	
Independent Electricity System Operator	Yes	
FMPP	Yes	
Seattle City Light	Yes	
Manitoba Hydro	Yes	
South Carolina Electric and Gas		We suggest the following changes to the definition: 1. Delete "Frequency Bias" in the parenthetical expression - ("Frequency Bias" should not be used to define Frequency Bias) 2. Delete the word "usually" 3. Replace "set into" with "as part of" as defined in BAL-001. 4. Replace the remainder of the sentence following "Area Control Error equation" with "that influences its Automatic Generation Control (AGC) to provide its frequency response while Interconnection frequency is not at its scheduled value" - (The frequency bias does not allow a BA to contribute its frequency response to the Interconnection. The frequency bias term only affects the AGC response of the BA, which is part of its frequency response usually minutes after the initial event and is dependent upon generation units being on AGC control and capable of responding.) 5. The suggested changes would result in the following definition"A value, fixed or variable, expressed in MW/O.1 hertz as part of a Balancing Authority's Area Control Error (ACE) equation that influences its Automatic Generation Control (AGC) to provide its frequency response while Interconnection frequency is not at its scheduled value.
Response: The term, "Frequency Bias" was deleted, the phrase, "set into" was replaced with, "included in". The other suggestions were not adopted. The SDT has modified the definition. The definition now reads "A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems." The SDT believes that the modified definition addresses your concerns but provides for additional clarity as to the action that has taken place.		
Northeast Power Coordinating Council		Refer to the response to Question 17.

NERC

Organization

 Yes or No Question 2 CommentResponse: Please refer to the SDT response to Question 17.
3. The proposed purpose statement in the draft standard is: To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored to schedule. To provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting.

Do you agree with this purpose? If not, please explain in the comment area.

Summary Consideration: Several of the commenters agree with the purpose statement of the draft standard as written. Most of the feedback received disagreeing with the purpose statement reflects general comments and suggestions for the SDT to consider. A major concern identified is that the minimum level of Frequency Bias Setting established needs to be determined based on extensive data analysis of field trial results. Some commenters even stated that the standard should not be revised until the field trial is completed, performance criteria and measures determined, and results vetted by industry. Several commenters expressed concern with making the Balancing Authority the only entity responsible for maintaining interconnection frequency and arresting frequency decline; with an observation that the purpose statement presumes that each Balancing Authority must have generation online to meet a predetermined frequency response obligation. It was pointed out that on occasion small Balancing Authorities may not have generation online and instead rely on load regulation and energy agreements to meet their energy needs. Another commenter indicated that since NERC and FERC have differentiated Frequency Response from Frequency Regulation, the standard should only apply to unplanned contingencies that occur.
In response to these general comments the SDT notes that the minimum Frequency Response level used during the field trial uses a deterministic approach and the actual level of Frequency Response required in the final version of the draft standard will be based on field trial results. Issues involving governor droop, dead-band settings, and governor operation are outside the scope of the project's approved SAR. The purpose statement does not mandate generation dispatch for Frequency Response. This standard only prescribes a minimum Frequency Response obligation for reliable BES operation. Each entity must determine how to meet its Frequency Response obligation using existing resources and agreements.
Another commenter noted that the purpose statement addresses several concepts that do not share a common timeframe. In response, the SDT has revised Attachment A to explain the relationship for the different time frames associated with these concepts.

Organization	Yes or No	Question 3 Comment
MRO's NERC Standards Review Subcommittee	No	In general, we don't have significant issues with a standard that attempts to establish a minimum Frequency Response performance level. However, we caution the drafting team that the minimum level established needs to be determined based on an extensive data analysis based on the field trial, based on the Frequency Response Initiative Work Plan that NERC filed in response to the Commission's September 23 technical conference and based on the plan outlined in NERC's October 25, 2010 compliance filing.
Response: The SDT thanks you for your comment. For the field trial, the minimum level of response needed uses a deterministic approach. The actual level of response required may be established in the final version of the standard using field trial information obtained. The project schedule adopted for the development of the BAL-003 standard has been approved by the FERC and includes filing a standard by May, 2012		

Organization	Yes or No	Question 3 Comment

Modifications to this schedule require both NERC and FERC approval.

Midwest ISO Standards Collaborators	No	In general, we don't have significant issues with a standard that attempts to establish a minimum Frequency Response performance level. However, we caution the drafting team that the minimum level established needs to be determined based on an extensive data analysis based on the field trial, based on the Frequency Response Initiative Work Plan that NERC filed in response to the Commission's September 23 technical conference and based on the plan outlined in NERC's October 25, 2010 compliance filing.

Response: The SDT thanks you for your comment. For the field trial, the minimum level of response needed uses a deterministic approach. The actual level of response required may be established in the final version of the standard using field trial information obtained.
The project schedule adopted for the development of the BAL-003 standard has been approved by the FERC and includes filing a standard by May, 2012. Modifications to this schedule require both NERC and FERC approval.

We Energies	No	In general, we don't have significant issues with a standard that attempts to establish a minimum Frequency Response performance level. However, we caution the drafting team that the minimum level established needs to be determined based on an extensive data analysis, field trial data, the Frequency Response Initiative Work Plan that NERC filed in response to the Commission's September 23 technical conference, and the plan outlined in NERC's October 25, 2010 compliance filing.

Response: The SDT thanks you for your comment. For the field trial, the minimum level of response needed uses a deterministic approach. The actual level of response required may be established in the final version of the standard using field trial information obtained.
The project schedule adopted for the development of the BAL-003 standard has been approved by the FERC and includes filing a standard by May, 2012. Modifications to this schedule require both NERC and FERC approval.

LG\&E and KU Energy	No	The proposed purpose statement as provided in this question is not the same as the purpose statement for BAL-003-1 as posted on the Project 2007-12 page of the NERC website. The posted purpose on the NERC website is:To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored. To schedule and provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting. The version posted in the question appears to correct errors in the
last sentence of the purpose statement given in the project page.		
We do not agree with the purpose statement as posted on the project page.In addition, we suggest the		
following edits to what appears to be a corrected purpose statement as provided in this question:To require		
sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within		
predefined bounds by arresting frequency deviations due to contingencies on the interconnected BES and		
supporting frequency until the frequency is restored to schedule. To provide consistent methods for		
measuring Frequency Response and determining the Frequency Bias Setting.		
As NERC/FERC has differentiated Frequency Response from Frequency Regulation, the standards		

Organization	Yes or No	Question 3 Comment
		addressing Frequency Response should clearly be related to unplanned contingencies occurring on the interconnected BES.
Response: The SDT believes adequate Frequency Response is important during both normal and emergency operations however it is easier to measure Frequency Response during a contingency which is why the SDT favors this rationale.		
IRC Standards Review Committee	No	If this is really intended to be a Field Trial, it should be written as such and the standard should not be developed or promulgated until the Field Trial has accomplished its purpose and the performance criteria and measures have been determined. We request that the results of the Field Trial should be published and discussed BEFORE any changes are made. The standard should be put into place later; it is premature at this time. Since this is to be a data gathering process to be used to determine appropriate performance parameters, the purpose statement of the Field Trial should be changed to read as follows:To determine require sufficient Frequency Response arranged by from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by responding to and arresting frequency deviations and supporting frequency until the frequency is restored to schedule. To identify and establish provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting and Frequency Response Obligation.We should not write the new standard and its requirements until this Field Trial work has been accomplished; to do so possibly would result in difficulty changing the standard requirements based upon Field Trial results. Further, while we do not have any issue with the general intent of the scope statement, we have a difficulty seeing the BA being the only entity held responsible for maintaining interconnection frequency and arresting frequency deviations. When there is a sudden and sizable change to system resource or demand, the first response to a frequency deviation caused by this change would be the generators' governors. This will provide a mitigating effect for the immediate seconds up to minutes. The frequency bias setting will then kick in to supplement the mitigation need. The governors are owned by the Generator Owners; the BAs do not own these facilities and hence can do little to address frequency response during this initial period.To hold only the BA responsible for maintaining interconnection frequency and arresting frequency deviations would be inappropriate. The industry needs to have a discussion to determine who should be held responsible for providing governor responses immediately following an event, and by what mechanism, and for implementing additional measures thereafter. We suggest that BAL-003 development be withheld until this discussion takes place and a decision is made on who and how the governor response shall be provided.

Response: The original SAR was for data collection. The SDT developed a supplemental SAR to address the FERC directives.
The project schedule adopted for the development of the BAL-003 standard has been approved by the FERC and includes filing a standard by May, 2012. Modifications to this schedule require both NERC and FERC approval.
This issue concerning the BA being the only entity being held responsible has been discussed and the SDT understands your concern. However, governor droop requirements, dead-band settings and governor operation are outside the scope of the project approved SAR. The SDT believes that the Generator Verification
Organization \mid Yes or No \quad Question 3 Comment
standards will help address these concerns. The SDT encourages entities to develop a SAR to address generators.
The purpose of the standard is to establish a minimum Frequency Response threshold that prevents unreliable BES operation.
This issue concerning the BA being the only entity being held responsible has been discussed and the SDT understands your concern. However, governor droop requirements, dead-band settings and governor operation are outside the scope of the project approved SAR. The SDT believes that the Generator Verification standards will help address these concerns. The SDT encourages entities to develop a SAR to address generators.

ISO New Engand Inc.

No
If this is really intended to be a Field Trial, it should be written as such and the standard should not be developed or promulgated until the Field Trial has accomplished its purpose and the performance criteria and measures have been determined. The standard should be put into place later; it is premature at this time. Since this is to be a data gathering process to be used to determine appropriate performance parameters, the purpose statement of the Field Trial should be changed to read as follows:To determinerequire sufficient Frequency Response arranged by from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by responding to and arresting frequency deviations and supporting frequency until the frequency is restored to schedule. To identify and establishprovide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting and Frequency Response Obligation.We should not write the new standard and its requirements until this Field Trial work has been accomplished; to do so possibly would result in difficulty changing the standard requirements based upon Field Trial results.
Further, while we do not have any issue with the general intent of the scope statement, we have a difficulty seeing the BA being the only entity held responsible for maintaining interconnection frequency and arresting frequency deviations. When there is a sudden and sizable change to system resource or demand, the first response to a frequency deviation caused by this change would be the generators' governors. This will provide a mitigating effect for the immediate seconds up to minutes. The frequency bias setting will then kick in to supplement the mitigation need. The governors are owned by the Generator Owners; the BAs do not own these facilities and hence can do little to address frequency response during this initial period. To hold only the BA responsible for maintaining interconnection frequency and arresting frequency deviations would be inappropriate. The industry needs to have a discussion to determine who should be held responsible for providing governor responses immediately following an event, and by what mechanism, and for implementing additional measures thereafter. We suggest that BAL-003 development be withheld until this discussion takes place and a decision is made on who and how the governor response shall be provided.

Response: The original SAR was for data collection. The SDT developed a supplemental SAR to address the FERC directives.
This issue concerning the BA being the only entity being held responsible has been discussed and the SDT understands your concern. However, governor droop requirements, dead-band settings and governor operation are outside the scope of the project approved SAR. The SDT believes that the Generator Verification standards will help address these concerns. The SDT encourages entities to develop a SAR to address generators.

The project schedule adopted for the development of the BAL-003 standard has been approved by the FERC and includes filing a standard by May, 2012.

Organization	Yes or No	Question 3 Comment

Modifications to this schedule require both NERC and FERC approval.
The purpose of the standard is to establish a minimum Frequency Response threshold that prevents unreliable BES operation.
This issue concerning the BA being the only entity being held responsible has been discussed and the SDT understands your concern. However, governor droop requirements, dead-band settings and governor operation are outside the scope of the project approved SAR. The SDT believes that the Generator Verification standards will help address these concerns. The SDT encourages entities to develop a SAR to address generators.

ERCOT	No	If this is really intended to be a Field Trial, it should be written as such and the standard should not be developed or promulgated until the Field Trial has accomplished its purpose and the performance criteria and measures have been determined. We request that the results of the Field Trial should be published and discussed BEFORE any changes are made. The standard should be put into place later; it is premature at this time. Since this is to be a data gathering process to be used to determine appropriate performance parameters, the purpose statement of the Field Trial should be changed to read as follows:To determine require sufficient Frequency Response arranged by from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by responding to and arresting frequency deviations and supporting frequency until the frequency is restored to schedule. To identify and establish provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting and Frequency Response Obligation.We should not write the new standard and its requirements until this Field Trial work has been accomplished; to do so possibly would result in difficulty changing the standard requirements based upon Field Trial results.
Further, while we do not have any issue with the general intent of the scope statement, we have a difficulty seeing the BA being the only entity held responsible for maintaining interconnection frequency and arresting frequency deviations. When there is a sudden and sizable change to system resource or demand, the first response to a frequency deviation caused by this change would be the generators' governors. This will provide a mitigating effect for the immediate seconds up to minutes. The frequency bias setting will then kick in to supplement the mitigation need. The governors are owned by the Generator Owners; the BAs do not		
own these facilities and hence can do little to address frequency response during this initial period. To hold		
only the BA responsible for maintaining interconnection frequency and arresting frequency deviations would		
be inappropriate. The industry needs to have a discussion to determine who should be held responsible for		
providing governor responses immediately following an event, and by what mechanism, and for implementing		
additional measures thereafter. We suggest that BAL-003 development be withheld until this discussion takes		
place and a decision is made on who and how the governor response shall be provided.		

Response: The original SAR was for data collection. The SDT developed a supplemental SAR to address the FERC directives.
The project schedule adopted for the development of the BAL-003 standard has been approved by the FERC and includes filing a standard by May, 2012. Modifications to this schedule require both NERC and FERC approval.

Organization	Yes or No	Question 3 Comment

The purpose of the standard is to establish a minimum Frequency Response threshold that prevents unreliable BES operation.
This issue concerning the BA being the only entity being held responsible has been discussed and the SDT understands your concern. However, governor droop requirements, dead-band settings and governor operation are outside the scope of the project approved SAR. The SDT believes that the Generator Verification standards will help address these concerns. The SDT encourages entities to develop a SAR to address generators.

Kansas City Power \& Light No This purpose statement presumes that each Balancing Authority (BA) will have generation online to meet a predetermined frequency response obligation. There are many small BA's that do not have any generation online and rely on load regulation agreements and energy agreements to provide their energy needs during parts of the year. This purpose statement would not allow a BA to operate without generation online. Response: The purpose statement does not mandate generation dispatch for Frequency Response. This standard only prescribes a minimum Frequency Response obligation for reliable BES operations. Each entity must determine how to meet this obligation using existing resources and agreements. NIPSCO No Yes, "Interconnection frequency", small "f". Response: The SDT thanks you for this comment and has corrected the error. American Electric Power No AEP believes the statement should read "To require sufficient Frequency Response from governors and AGC of Generators within the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored to schedule.To provide consistent methods for measuring Frequency Response from governors and AGC of Generators within the Balancing Authority for determining the overall Frequency Bias Setting threshold. Since Generators are directly responsible for response, applicability must be added to Generator Operators.

Response: The drafting team disagrees with this recommendation because the FERC Order 693 requires a technology neutral performance standard for the purpose of providing Frequency Response.
Patterson Consulting, Inc.
No
The purpose should not expect Frequency Response to maintain frequency beyond a few minutes, perhaps 15 minutes for example. This purpose statement suggests the requirements will be "...to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and support frequency until the frequency is restored to schedule..." The phrase "until the frequency is restored to schedule" is problematic since regulation must bring frequency to schedule. Frequency Response, and the associated requirements, should not be expected to substitute for poor regulation beyond the first few minutes.

Response: The focus of the standard is to establish sustainable primary frequency control which can seamlessly coordinate with secondary frequency control for maintaining system frequency.

Organization	Yes or No	
Independent Electricity System Operator	No	We do not have any issue with the general intent of the scope statement, but have a difficulty in seeing the BA being the only entity held responsible for maintaining interconnection frequency and arresting frequency deviations. When there is a sudden and sizable change to system resource or demand, the system frequency will change. The first response to such deviation would be the generators' governors. This will provide a mitigating effect for the immediate seconds up to minutes. The frequency bias setting will then kick in to supplement the mitigation need. To hold only the BA responsible for maintaining interconnection frequency arresting frequency deviations would be only part of the solution. The industry needs to have a discussion to determine who should be held responsible for providing governor responses, and by what mechanism.

Response: The SDT thanks you for your comment. This issue concerning the BA being the only entity being held responsible has been discussed and the SDT understands your concern. However, governor droop requirements, dead-band settings and governor operation are outside the scope of the project approved SAR. The SDT believes that the Generator Verification standards will help address these concerns. The SDT encourages entities to develop a SAR to address generators.

For the field trial, the minimum level of response needed uses a deterministic approach. The actual level of response required may be established in the final version of the standard using field trial information obtained.

The SDT does not agree with your comment concerning withholding the development of a standard addressing Frequency Response. The development of a standard addressing Frequency Response was identified in FERC Order 693. FERC further directed the ERO to finalize a standard addressing Frequency Response in an order in February 2010 within six (6) months which they later granted an extension. The project schedule adopted for the development of the BAL-003 standard has been approved by the FERC and includes filing a standard by May, 2012. Modifications to this schedule would require both NERC and FERC approval.

ENBALA Power Networks	Yes	ENBALA strongly agrees that a Frequency Response standard is necessary to ensure reliable operation of the bulk power system. We fully support all efforts to understand the declining trend, and the development of accurate models, of Frequency Response in each Interconnection.
Response: The SDT thanks you for your affirmative response and clarifying comment.		

NERC

Organization

Response: The SDT thanks you for your affirmative response and clarifying comment.

Alberta Electric System Operator	Yes	The purpose statement mentioned arresting deviation, restored to schedule and frequency bias setting, which are all at different time frames. The AESO suggests that NERC provide some clarification of the relationships for the different time frames.

Response: The SDT thanks you for your affirmative response and clarifying comment.
Refer to Attachment A for clarification of the relationships for the different time frames.

Duke Energy	Yes	
Seattle City Light	Yes	
Santee Cooper	Yes	
FirstEnergy	Yes	
Bonneville Power Administration	Yes	
SPP Standards Development	Yes	
SERC OC Standards Review Group	Yes	
Arizona Public Service Company	Yes	
Southern Company	Yes	
Progress Energy	Yes	
NorthWestern Energy	Yes	
Energy Mark, Inc.	Yes	
Beacon Power Corporation	Yes	

NERC

Organization	Yes or No	
Westar Energy	Yes	
FMPP	Yes	
EKPC	Yes	
South Carolina Electric and Gas	Yes Comment	
Associated Electric Cooperative, Inc.	Yes	
Northeast Power Coordinating Council		Refer to the response to Question 17.
Response: Please refer to the SDT response to Question 17.		

4. Requirement 1 identifies a minimum level of Frequency Response.

R1. Each Balancing Authority shall achieve a Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO).

Do you agree with the concept that a Balancing Authority should be required to achieve a minimum level of Frequency Response and the method for measurement? If not, please explain in the comment area.

Summary Consideration: Most commenters supported the concept however a significant majority did not agree with the method for measurement. In general commenters indicated the sample size of 25 events for determining FRM is too small; insufficient information was provided to address the use of variable bias; the FRM and FRO definitions were unclear with questionable determination methods; and the standard should reference Reserve Sharing Groups. Some commenters also indicated that the measure may not apply to a single BA interconnection; that the draft standard dictated how compliance is provided with respect to Attachment A and FRS Form 1 references; that requirements would not allow a BA to operate without generation online; and expressed concern that the BA may not own and operate resources yet will still have the compliance obligation.
The SDT is currently evaluating a probabilistic method for determining the FRO. After consideration of industry comments, the SDT converted Attachment A into two documents - a calculation methodology included with the standard, and a separate supporting document providing requirement rationale. The SDT revised the definitions for FRO \& FRM; incorporated Reserve Sharing Groups into the draft standard; modified FRS Form 1 to allow for adjustments; and clarified how an entity is to show compliance. The SDT also provided an explanation addressing the use of Variable Bias and provided an administrative procedure for the ERO's FRO determination.

R1. Each Balancing Authority or Reserve Sharing Group (RSG) shall achieve an annual Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each BA or RSG to maintain an adequate level of Frequency Response in the Interconnection.

Organization	Yes or No	Question 4 Comment
Santee Cooper	No	The concept seems reasonable but since the measure of compliance (FRM) is determined only after the 25 events are identified; it is a lagging indicator. The BA may have to ensure it measures all frequency excursions and develops its own leading indicator to ensure compliance following year end.
Response: The SDT agrees that the measure is a lagging indicator and recommends that the list of reportable events be posted on a quarterly basis.		
LG\&E and KU Energy	No	The concept seems reasonable but since the measure of compliance (FRM) is determined only after the 25 events are identified; it is a lagging indicator. The BA may have to ensure it measures all frequency

Organization	Yes or No	Question 4 Comment
		excursions and develops its own leading indicator to ensure compliance following year end. A sample CPS bounds report should be considered, perhaps based on 2010 numbers, to demonstrate how FRM submitted would translate to FRO frequency bias settings and how it will affect the L10 values

Response: The SDT agrees that the measure is a lagging indicator and recommends that the list of reportable events be posted on a quarterly basis.
The SDT will provide samples to illustrate the interaction of FRO, FRM, and frequency bias settings at the conclusion of the field trial.

SERC OC Standards Review Group	No	The concept seems reasonable but since the measure of compliance (FRM) is determined only after the 25 events are identified; it is a lagging indicator. The BA may have to ensure it measures all frequency excursions and develops its own leading indicator to ensure compliance following year end.
A sample CPS bounds report should be considered, perhaps based on 2010 numbers, to demonstrate how		
FRM submitted would translate to FRO frequency bias settings and how it will affect the L10 values.		

Response: The SDT agrees that the measure is a lagging indicator and recommends that the list of reportable events be posted on a quarterly basis.
The SDT will provide samples to illustrate the interaction of FRO, FRM, and frequency bias settings at the conclusion of the field trial.

South Carolina Electric and Gas	No	The concept seems reasonable but since the measure of compliance (FRM) is determined only after the 25 events are identified; it is a lagging indicator. The BA may have to ensure it measures all frequency excursions and develops its own leading indicator to ensure compliance following year end.
A sample CPS bounds report should be considered, perhaps based on 2010 numbers, to demonstrate how		
FRM submitted would translate to FRO frequency bias settings and how it will affect the L10 values.		

Response: The SDT agrees that the measure is a lagging indicator and recommends that the list of reportable events be posted on a quarterly basis.
The SDT will provide samples to illustrate the interaction of FRO, FRM, and frequency bias settings at the conclusion of the field trial.

| MRO's NERC Standards Review
 Subcommittee | No general, we don't have significant issues with a standard that attempts to establish a minimum frequency |
| :--- | :--- | :--- |
| response performance level. However, we caution the drafting team that the minimum level established | |
| needs to be determined based on an extensive data analysis based on the field trial, based on the Frequency | |
| Response Initiative Work Plan that NERC filed in response to the Commission's September 23 technical | |
| conference and based on the plan outline in NERC's October 25,2010 compliance filing. | |

Response: The minimum level of response selected for the field trial uses a deterministic approach. The actual level of response specified in the final version of the draft standard may be based on analysis of data obtained from the field trial.
Organization \quad Yes or No \quad Question 4 Comment

The SDT is using a FERC approved project schedule to develop the BAL-003 standard and includes filing a standard by May, 2012.. Any modification to the project schedule will require both NERC and FERC approval.
The deterministic allocation method does not consider the effects of nonconforming load.

Midwest ISO Standards	No	In general, we don't have significant issues with a standard that attempts to establish a minimum frequency response performance level. However, we caution the drafting team that the minimum level established needs to be determined based on an extensive data analysis based on the field trial, based on the Frequency Response Initiative Work Plan that NERC filed in response to the Commission's September 23 technical conference and based on the plan outline in NERC's October 25, 2010 compliance filing.

Response: The minimum level of response selected for the field trial uses a deterministic approach. The actual level of response specified in the final version of the draft standard may be based on analysis of data obtained from the field trial.
The SDT is using a FERC approved project schedule to develop the BAL-003 standard and includes filing a standard by May, 2012.. Any modification to the project schedule will require both NERC and FERC approval.

We Energies	No	In general, we don't have significant issues with a standard that attempts to establish a minimum frequency response performance level. However, we caution the drafting team that the minimum level established needs to be determined based on an extensive data analysis, field trial data, the Frequency Response Initiative Work Plan that NERC filed in response to the Commission's September 23 technical conference, and the plan outline in NERC's October 25, 2010 compliance filing.

Response: The minimum level of response selected for the field trial uses a deterministic approach. The actual level of response specified in the final version of the draft standard may be based on analysis of data obtained from the field trial.

The SDT is using a FERC approved project schedule to develop the BAL-003 standard and includes filing a standard by May, 2012.. Any modification to the project schedule will require both NERC and FERC approval.

Bonneville Power Administration	No	BPA agrees that there should be a minimum level of Frequency Response, but disagree with the way the measure is obtained in the requirement. o R1 - BPA suggests replacing "achieve" with "calculate". Achieve: indicates it is a performance. o R1 - BPA does not agree with the requirements in Attachment A not being in the standard. These should not be modified without full review and voting by members. o R1 - BPA believes that there should be more description on Variable Bias. What variable bias number should we use: average, minimum, peak for the event? BPA feels that the peak bias of each event would be appropriate.

Response: The SDT believes the intent of the standard is for each BA to "achieve" its Frequency Response Obligation.

Organization	Yes or No	Question 4 Comment

The SDT is not incorporating additional standard requirements by means of Attachment A information however the SDT recognizes the need to convert Attachment A into two documents. The first document will remain part of the standard as Attachment A and describe the calculation methodology utilized. The second document will explain the rationale for the requirements as supplemental standard information.
Variable frequency bias settings are determined by Balancing Authorities using a calculation based on present operating conditions. The SDT agrees Variable Bias requires more description and will review this concern during the field trial.

IRC Standards Review	No	The SRC agrees that a Frequency Response of some minimum level for each Interconnection should be achieved. However, the measure as described does not apply to all Interconnections. It does not apply to Cingle BA Interconnections such as ERCOT and Hydro Quebec.
This requirement should be added later-not included now; and it should clarify what the BA must do and what		
the response providers must do. BAs do not own and operate the resources. An entity which does own or		
operate the resources may also be registered as a BA, but an entity which does not own or operate resources		
may also be registered as a BA. Therefore, it is important to detail what a BA must do and also to detail what		
the resource owner or operator must do. The resource owner may be registered as a GO or a TO or even a		
DP. The resource operator may be registered as a GOP, a TOP, or a LSE. The BA must establish an		
operations plan, using data provided to it by the resource owners and or operators, that will meet the		
performance requirements. The BA must then deploy the proper amount of response through AGC or verbal		
instructions to supplement the automatic responses that the resources will provide, must calculate the actual		
responses after-the-fact, and report the performance as required. The resources must, as standards already		
provide, comply with the deployments and instructions provided by the BA. However, if an entity which is		
functioning as a BA does not own its resources, nor does it directly operate those resources, the BA cannot		
ensure the achievement. The standard must not create an organizational or contractual arrangement that		
dictates how the compliance is provided. It should state what must be done, not how. If entities choose to		
write and enter into such arrangements, that should be permissible, but not required.		
Specific to R1, the wording does not correspond to the figures shown in the FRS (Form 1) in that the FRM		

Response: This standard is intended to apply to all Interconnections. The SDT has modified the definition for FRO to read, "The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection."
The standard does not dictate a particular generation dispatch strategy. The standard only prescribes a minimum obligation. The entity must determine how to meet this minimum obligation.
FRS Form 1 has been revised to allow for adjustments.
ERCOT \quad No \quad The SRC agrees that a Frequency Response of some minimum level for each Interconnection should be achieved. However, the measure as described does not apply to all Interconnections. It does not apply to

Organization	Yes or No	Question 4 Comment
		single BA Interconnections such as ERCOT and Hydro Quebec. This requirement should be added later-not included now; and it should clarify what the BA must do and what the response providers must do. BAs do not own and operate the resources. An entity which does own or operate the resources may also be registered as a BA, but an entity which does not own or operate resources may also be registered as a BA. Therefore, it is important to detail what a BA must do and also to detail what the resource owner or operator must do. The resource owner may be registered as a GO or a TO or even a DP. The resource operator may be registered as a GOP, a TOP, or a LSE. The BA must establish an operations plan, using data provided to it by the resource owners and or operators, that will meet the performance requirements. The BA must then deploy the proper amount of response through AGC or verbal instructions to supplement the automatic responses that the resources will provide, must calculate the actual responses after-the-fact, and report the performance as required. The resources must, as standards already provide, comply with the deployments and instructions provided by the BA. However, if an entity which is functioning as a BA does not own its resources, nor does it directly operate those resources, the BA cannot ensure the achievement. The standard must not create an organizational or contractual arrangement that dictates how the compliance is provided. It should state what must be done, not how. If entities choose to write and enter into such arrangements, that should be permissible, but not required. Specific to R1, the wording does not correspond to the figures shown in the FRS (Form 1) in that the FRM (the median) is -14.5 whereas the FRO is -15.8 . The FRO is more negative than the FRM, which does not seem to correspond to what's stipulated in R1 (FRM to be equal or more negative than its FRO).
Response: This standard is intended to apply to all Interconnections. The SDT has modified the definition for FRO to read, "The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection."		
The standard does not dictate a particular generation dispatch strategy. The standard only prescribes a minimum obligation. The entity must determine how to meet this minimum obligation.		
Kansas City Power \& Light	No	This requirement presumes that each Balancing Authority (BA) will have generation online to meet a predetermined frequency response obligation. There are many small BA's that do not have any generation online and rely on load regulation agreements and energy agreements to provide their energy needs during parts of the year. This requirement would not allow a BA to operate without generation online. Under Requirement 1, item 2a in Attachment A suggests governor deadband as 36MHz (Megahertz). Suggest what is intended is 36 mHz (millihertz). The Frequency Response Obligation determination for the interconnection as described in Attachment A is a crude method and will result in obligations that will exceed the FRO that is intended. This will result in additional cost to BA's that is unnecessary to achieve the purpose of maintaining sufficient generation online to arrest frequency degradation events caused by loss of generating resources.

Organization	Yes or No	Question 4 Comment
		The current NERC method for calculating a BA's actual frequency response are inaccurate and provide misleading guidance in the actual frequency response of a BA. These methods need considerable improvement before any attempts to hold a BA to an expected level of frequency response as this proposal has stated.

Response: The standard does not dictate a particular generation dispatch strategy. The standard only prescribes a minimum obligation. The entity must determine how to meet this minimum obligation.
The SDT has removed the reference to governor deadband.
The minimum level of response selected for the field trial uses a deterministic approach. The actual level of response specified in the final version of the draft standard may be based on analysis of data obtained from the field trial. The SDT is also evaluating a probabilistic method for determining the FRO.
The SDT has modified FRS Form 1 to correctly calculate Frequency Response.

Southern Company	No	Comments: Proposed Standard Comment 1: BAL-003-1, Requirement R1. The requirement should be made less prescriptive by removing references to Attachment A and FRS Form 1. The responsible entity should understand the fundamental and basic requirement - to achieve a Frequency Response Measure. Where the methodology is specified or how the BA is supposed to achieve it should be a matter of compliance and/or implementation and not a part of the basic requirement. Proposed language is as follow: Each Balancing Authority shall achieve a Frequency Response Measure (FRM) that is equal to or more negative than its Frequency Response Obligation (FRO).

Response: The SDT believes that Requirement 1 needs to reference FRS Form 1 in order for the calculation methodology to be consistent for all interconnections and has removed the reference to Attachment A. The SDT has also revised FRS Form 1 to correctly calculate Frequency Response and to allow for adjustments.

Progress Energy	No	Progress Energy believes the Eastern Interconnection does not have the same issues with frequency experienced in the other two interconnections, and that load response is significant enough in the interconnection to arrest and stabilize frequency as long as BAs do not withdraw that effect (accurate biasing of the ACE equation). We also believe this standard should reference standrd PRC-024 related to accurate relay settings to allow out of bounds operations related to frequency and voltage deviations.

Response: Under certain system conditions the response of frequency sensitive load to a frequency excursion may be sufficient to arrest and stabilize frequency following an event. The eastern interconnection may also demonstrate greater stability as compared to the other interconnections. However, frequency stability is not assured to be achieved in this manner for all system conditions, even for the eastern interconnection irrespective of Frequency Bias setting accuracy.
The intent of BAL-003 is independent of PRC-024 intent. Specifically the purpose of BAL-003 is to better match a Balancing Authority's Frequency Bias Setting to its Frequency Response Characteristic, which should also reduce the probability for UFLS activation. The purpose of PRC-024 is to ensure generation remains

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

Organization	Yes or No	Question 4 Comment

connected during a tolerable frequency or voltage excursion. Furthermore, consideration of voltage deviations is outside the scope of the approved project.

NIPSCO	No	Yes and no, similar to BAL-002 I think this should read "Each Balancing Authority or Reserve Sharing Group shall, With so many BA's I believe the RSGs will be play a big role in this compliance ... This comment applies to only R1,
Response: The SDT has revised Requirement R1 to reference Reserve Sharing Groups.		
NorthWestern Energy	No	A Balancing Authority's frequency response is based upon a "median" value calculated from analyzing multiple events. Frequency response during some of these events is better than others, depending on the system conditions at the time and the amount system loading and unloaded generation online at the time of the event. Given these circumstances a BA's actual response could vary by event (better or worse than median), thus compliance measurement per event to a frequency response obligation based on the median response (over multiple events) could put BA's in non-compliant situations unjustly.
Response: The SDT agrees that compliance should not be based on an individual event but based on a series of events.		
Energy Mark, Inc.	No	Comment 9: I agree that each BA should be required to provide a minimum level of Frequency Response to provide for its share of the total Frequency Response required for interconnection reliability. Comment 10: I also agree with the methods used to measure SEFRD subject to my comments on FRS Form 1. Comment 11: I do not agree that the method suggested for setting the FRO will achieve the desired goal of maintaining interconnection reliability. The measurement method offered only evaluates the supply of Frequency Response. It does not evaluate the demand (need) for Frequency Response. Since frequency error is the difference between the demand and supply any effective measure for maintaining reliability due to frequency error must include both the demand and supply parts of this balance. As a consequence, the method will be blind to changes (good or bad) in the demand for Frequency Response. Changes in the demand for Frequency Response will require subsequent changes in the supply for Frequency Response that this standard fails to address until the following year and leaves the interconnection at risk for unreliable operation. Comment 12: The requirements associated with Frequency Response as defined in this standard will not assure interconnection reliability. Frequency Response is a two part service. The first part of this service is the rate at which energy is supplied in proportion to frequency error. This first part is commonly represented as the Frequency Response and the corresponding Frequency Bias Setting. The second part of the service is the amount of capacity that the BA stands ready to supply at this stated proportion in response to frequency error. Failure to effectively specify and measure the amount of capacity that the BA stands ready to supply at the stated proportion could put the interconnection at reliability risk when the required amount of capacity is

Organization	Yes or No	
	Question 4 Comment	
Response: Comment 11 - The FRO provides a target for ensuring robust frequency response is achieved by all Balancing Authorities. Both FRO and FRM values are considered by the algorithm determining the Frequency Bias Setting for the next year. While there is mutual dependence between supply and demand with respect to frequency response, the resultant frequency deviation is more important than the cause as it is the effect on system operations realized that determines the magnitude of control response required for reliability. It is expected robust frequency control will yield smaller frequency deviations during events and in turn require less incremental control response than currently realized for maintaining frequency. Comment 12 - Capacity is an important yet independent consideration. First, responsive robust control is necessary. Next, the Frequency Bias Setting must better approximate the Frequency Response Characteristic for improved control response. Adequate capacity is an implicit assumption for reliable grid operation.		

Hydro-Quebec TransEnergie	No	The proposed method is good to measure frequency response at point "B". However, point "C" is not taken in consideration in this measure. As for the FRO, a N-2 criteria is more stringent for an Interconnection with less units than a large Interconnection. The risk associated with coincidental events is much higher in a large Interconnection. For this reason, we believe that N-1 criteria should be considered for a small Interconnection like Quebec.

Response: The SDT agrees that the size of an Interconnection can make a difference in Frequency Response. This standard is intended to apply to all Interconnections. The SDT has modified the definition for FRO. The definition now reads "The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection." A smaller Interconnection can and should request a variance if needed.

Westar Energy	No	The lagging measure is a concern. The ERO should be required to provide an updated proposed/possible list of frequency events monthly so BA's can determine their FRM through out the year so corrective action can be taken if needed.Prior year events should be excluded (just to get to 25 events). This could result in begin non-compliant twice for the same events.
Response: The SDT recommends posting selected events quarterly to give BAs time to evaluate their compliance. The SDT has evaluated the method for assessing compliance and has determined compliance is best demonstrated on a quarterly basis using a rolling 12 months data period.		
FMPP	No	The proposed Requirement 1 states: Each Balancing Authority shall achieve a Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO).Attachment A states that if a year occurs in which there are not 25 events that meet the remaining criteria below, then the most recent 25 events (as defined below) will be used for determination of an entity's compliance with the FRM requirement and storage of SEFRD. Problem - by using events from last year to determine an entity's compliance with a Requirement for this year puts the entity in double jeopardy for last year's events, which were already used for compliance for last year.

| Organization | Yes or No | Question 4 Comment |
| :--- | :---: | :---: | :---: |
| Response: The SDT recommends posting selected events quarterly to give BAs time to evaluate their compliance. The SDT has evaluated the method for | | | assessing compliance and has determined compliance is best demonstrated on a quarterly basis using a rolling 12 months data period.

EKPC	No	The method for measurement is not detailed. Also, the method indicates a lagging indicator. Hows is the BA to ensure its compliance through the year?

Response: FRS Form 1 now details the measurement method.

An entity can use the Criteria for Selecting Events to confirm compliance during the year. The SDT recommends posting selected events quarterly to give BAs time to evaluate their compliance.

ISO New Engand Inc.	No	We have a difficulty seeing the BA being the only entity held responsible for maintaining interconnection frequency and arresting frequency deviations. When there is a sudden and sizable change to system resource or demand, the first response to a frequency deviation caused by this change would be the generators' governors. This will provide a mitigating effect for the immediate seconds up to minutes. The frequency bias setting will then kick in to supplement the mitigation need. The governors are owned by the Generator Owners; the BAs do not own these facilities and hence can do little to address frequency response during this initial period.

Response: While the SDT has described possible methods for obtaining Frequency Response compliance with this standard, the SDT is not prescribing a particular method for entities to implement. Governor operation is outside the scope of the approved project SAR. Any entity may submit a SAR request to modify or create a standard.

American Electric Power	No	Between the definition and the requirement in Attachment A, it is unclear if FRM is a reliability-supported, performance-based measure, or instead, if it is a calculated number based on previous performance. As written, it is unclear if this is a performance-based requirement, or simply a calculation that should be utilized in some way. In any event, the requirement needs to be re-written to clarify its intent.
Response: The SDT has modified the definition of FRM to read "The median of all the Frequency Response observations reported annually on FRS Form 1." "		
Duke Energy	No	Duke Energy agrees that a BA should be required to achieve a minimum level of Frequency Response, however Duke Energy believes the method for measurement needs improvement - please see comments to 1 and 2 above.Duke Energy agrees with the concept that a Balancing Authority should be required to achieve a minimum level of Frequency Response however the method for measurement should also allow exclusion of certain events, such as when the frequency deviation is associated with the BA's contingent loss of generation, or when an event is coincident with a significant change in ramped interchange. It is not clear how the FRO will be determined - Duke Energy believes that the industry should agree on the methodology which would be used for the ERO to determine the response desired for the Interconnection and

Organization	Yes or No	Question 4 Comment

The FR SDT agrees that mid-year changes need to be addressed and will review this issue during the field trial.
A BA's FRO is not based on the previous year's compliance. FRO is determined using the methodology described in Attachment A.

Patterson Consulting, Inc.	No	Requiring a Balancing Authority to provide Frequency Response and measuring that Frequency Response consistently, is critical to maintaining reliability. The requirement is long overdue and the concept is a good one. The method for measurement in FRS Form 1 is not consistent with the definition of FRM. The desired "averaging" of input data over specific time ranges by the Balancing Authority as it completes FRS Form 1 appears only in the background and instructions for FRS Form 1. Since this "instruction" document will not be a part of the standard, it is not obvious that Balancing Authority's will be compelled to provide consistent data. Therefore, the standard will fail to achieve the stated purpose of providing "...consistent methods for measuring Frequency Response...". Attachment A, other than the section providing guidance regarding event selection, appears to be explanatory, contextual, and instructional in content. These aspects are important, but should not be requirements. Attachment A should include only the event selection process and calculations associated with requirements, including an explanation of what is necessary if variable Frequency Bias Settings are implemented. If other "requirements" are included in Attachment A, they should be moved to the standard. FRS Form 1 should be an attachment to the standard as this form contains and performs the required calculations. The remaining information in Attachment A should become either a standalone (technical) document, or be combined with information such as "FRS Form 1 Background and Instructions" and renamed. As further clarification regarding the ambiguity identified in the previous paragraph, Attachment A

Organization	Yes or No	
		could be interpreted as additional requirements on the Balancing Authority, ERO, or both. The language and scope in not sufficiently clear to identify whether statements are informative or requirements. This lack of clarity makes it impossible for entities to identify requirements, acquire appropriate tools and resources related to requirements, and to provide suitable performance to meet requirements. For example, the
statement "A final listing of official events to be used in the calculation will be available from NERC by		
December 10 each year." may be intended as a requirement rather than a statement suggesting a typical		
schedule. Further, if the previous statement is a typical schedule, then the statement "The ERO will use the		
following criteria for the selection of events to be analyzed." could be interpreted as merely the typical process		
to be used, but not a binding one.		

Response: The SDT has modified FRS Form 1 to allow for adjustments.
The SDT has modified the Attachment A documentation to clarify the calculation methodology.
The SDT has modified the Requirements and added measures to clarify how an entity is to show compliance.

Alberta Electric System Operator	Yes	The AESO agrees that there should be certain minimum requirement(s) of Frequency Response. In Attachment A, it mentioned that it will be based on the protection criteria and Point C, and the FRM is determined based on the settled deviation. The AESO suggests that the SDT describe how the FRM be related with the FRO as they are determined by different time frames. The AESO suggests NERC investigate the measure and method of separate FRM / FRO for different time frames, or provide technical evidence that the proposed FRM / FRO can also address the technical concerns in different time frames.

Response: The FRO is a determined value providing a target for ensuring robust frequency response is achieved by all Balancing Authorities. The FRM is the medium value of observations for the time period. The intent is for FRM to always be equal or more negative than the FRO, signifying robust control resulting in proper frequency response. As such, the determination timeframes does not have to be the same for each value.

Independent Electricity System Operator	Yes	We agree with the BA being one of the responsible entities to achieve a minimum level of FR, and the method of measurement. However, R1 does not correspond to the figures shown in the FRS (Form 1) in that the FRM (the median) is -14.5 whereas the FRO is -15.8 . The FRO is more negative than the FRM, which does not seem to correspond to what's stipulated in R1 (FRM to be equal or more negative than its FRO).
Response: FRS Form 1 has been modified to correct calculations and to allow for adjustments (not exclusions) to the load and generation.		
Arizona Public Service Company	Yes	What is meant by discretely administered determination, under the heading "Frequency Obligation and Allocation" of Attachment A? Please explain.
Response: The SDT has provided an administrative procedure for the ERO to follow in Attachment A.		

Organization	Yes or No	Question 4 Comment		
ENBALA Power Networks	Yes	ENBALA does believe that a BA should be responsible for a minimum level of Frequency Response as calculated on Form 1 and reflected in its FRO. Furthermore, we feel that additional data collected on the frequency nadir, such as the metric suggested in the recent Lawrence Berkeley National Laboratory of nadir- based frequency response, would be useful in assessing the current inertial response capabilities and level of risk for under-frequency load shedding.		
Response: The FRO is a determined value providing a target for ensuring robust frequency response is achieved by all Balancing Authorities. The FRM is the medium value of observations for the time period. The intent is for FRM to always be equal or more negative than the FRO, signifying robust control resulting in proper frequency response. As such, the determination timeframes does not have to be the same for each value.				
Beacon Power Corporation	Yes	The concept of requiring each Balancing Authority to achieve some level of Frequency Response and calculate it consistently is appropriate and necessary.		
Response: The SDT thanks you for your affirmative response and clarifying comment.				
SPP Standards Development	Yes			
Seattle City Light	Yes			
Manitoba Hydro	Yes			
Associated Electric Cooperative, Inc.	Yes			
Northeast Power Coordinating Council				
Response: Please refer to the SDT response to Question 17.				

5. Requirement $\mathbf{2}$ identifies when the Balancing Authority must implement its Frequency Bias Setting.

R2. Each Balancing Authority shall implement the Frequency Bias Setting (fixed or variable) provided by the ERO into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effective coordinated secondary control, using the results from the calculation methodology detailed in Attachment A.

Do you agree with this implementation? If not, please explain in the comment area.
Summary Consideration: The majority of the commenters did not agree with the implementation plan specified in Requirement R2. Many of the comments received echo concerns raised in comments for question 4 such as the Attachment A calculation methodology is not clear; there was insufficient information provided to address the use of variable bias, and FRO determination was questionable. Several commenters were concerned with the role assigned to the ERO, questioning how the ERO will use the FRM to determine the required BA Frequency Bias Setting and if the ERO was the correct entity to perform this action. Commenters also expressed concerns with performing an FRM analysis at the end of the year over the holiday period, suggesting the implementation time should be increased from one month to two months. Some commenters also expressed concern that CPS and L10 compliance may be adversely affected by the requirements proposed for calculating the Frequency Bias Setting.

In response to the comments received from industry, the SDT has revised Attachment A to clarify the calculation methodology; revised Requirement R2 to clarify how an entity implements the Frequency Bias Setting provided by the ERO; and also modified FRS Form 1 to allow for adjustments. Regarding FRO determination, the SDT is using a deterministic approach and also evaluating a probabilistic method. With respect to ERO actions, the SDT is evaluating whether modifications to the NERC Rules of Procedure are necessary to ensure the ERO provides the necessary support. The SDT also will develop a second draft standard attachment, Attachment B, to define the methodology for lowering the minimum Frequency Bias Setting required, including maintaining a safety margin.

R2. Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias.

Organization	Yes or No	Question 5 Comment
Santee Cooper	No	It is not clear what the methodology (should be method) is in Attachment A. Is the frequency bias setting the BA's prior year FRM with a minimum value being a percentage of estimated yearly peak load or upcoming year maximum generation? What does "provided by the ERO" mean? Perhaps it should be verified or approved by the ERO (NERC).

Organization	Yes or No	Question 5 Comment
Response: Attachment A has been revised to clarify the calculation methodology.		
Requirement R2 has been revised for clarity and now reads, "Each Balancing Authority not participating in Overlap Regulation Service shall implement the		
Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure		

LG\&E and KU Energy	No	It is not clear what the methodology (should be method) is in Attachment A. Is the frequency bias setting the BA's prior year FRM with a minimum value being a percentage of estimated yearly peak load or upcoming year maximum generation? What does "provided by the ERO" mean? Perhaps it should be verified or approved by the ERO (NERC).

Response: Attachment A has been revised to clarify the calculation methodology.
Requirement R2 has been revised for clarity and now reads, "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."

SERC OC Standards Review Group	No	It is not clear what the methodology (should be method) is in Attachment A. Is the frequency bias setting the BA's prior year FRM with a minimum value being a percentage of estimated yearly peak load or upcoming year maximum generation? What does "provided by the ERO" mean? Perhaps it should be verified or approved by the ERO (NERC).

Response: Attachment A has been revised to clarify the calculation methodology.
Requirement R2 has been revised for clarity and now reads, "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."

South Carolina Electric and Gas	No	It is not clear what the methodology (should be method) is in Attachment A. Is the frequency bias setting the BA's prior year FRM with a minimum value being a percentage of estimated yearly peak load or upcoming year maximum generation? What does "provided by the ERO" mean? Perhaps it should be verified or approved by the ERO (NERC). We suggest defining the date as by the end of the first business day following the deadline for Frequency Bias Setting implementation.

Response: Attachment A has been revised to clarify the calculation methodology.
Requirement R2 has been revised for clarity and now reads, "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure

Organization	Yes or No	Question 5 Comment

effectively coordinated Tie Line Bias control."
The SDT does not believe the suggestion to define the date is necessary since there is language in the standard stating the ERO will allow sufficient time to implement the Frequency Bias Setting.

MRO's NERC Standards Review	No	Flexibility established in the date is better than the existing currently defined date in the standards. It is better Subcommittee fo allow the ERO to specify the date to allow some flexibility in inplementation. It appears that the responsible for identifying Frequency Bias Setting is being removed from the Balancing Authority. There is an implied obligation that the ERO will determine the Frequency Bias Setting but it is not stated explicitly. Thus, we are left wondering who has the responsibility for determining the Frequency Bias Setting.
Frequency Response of the interconnection is constantly changing. As a result, the Frequency Bias Setting will never match the Frequency Response exactly. It is better to overbias than underbias to prevent withdrawal of frequency response by AGC. Historically, the 1\% floor for frequency bias setting was chosen to ensure that BAs are always over-biased. The standard needs to allow some margin in the frequency bias setting to ensure that the bias setting is overbiased.		

Response: The SDT has modified the language in Requirement R2 to provide further clarity. The Requirement now reads "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."
The SDT agrees that over-bias is better than under-bias and has added Attachment B to define the methodology to lower the minimum Frequency Bias Setting and provide a safety margin.
Midwest ISO Standards No

Collaborators

Flexibility established in the date is better than the existing currently defined date in the standards. It is better to allow the ERO to specify the date to allow some flexibility in implementation. It appears that the responsible for identifying Frequency Bias Setting is being removed from the Balancing Authority. There is an implied obligation that the ERO will determine the Frequency Bias Setting but it is not stated explicitly. Thus, we are left wondering who has the responsibility for determining the Frequency Bias Setting.

Frequency Response of the interconnection is constantly changing. As a result, the Frequency Bias Setting will never match the Frequency Response exactly. It is better to overbias than underbias to prevent withdrawal of frequency response by AGC. Historically, the 1% floor for frequency bias setting was chosen to ensure that BAs are always over-biased. The standard needs to allow some margin in the frequency bias setting to ensure that the bias setting is overbiased.

Response: The SDT has modified the language in Requirement R2 to provide further clarity. The Requirement now reads "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."
The SDT agrees that over-bias is better than under-bias and has added Attachment B to define the methodology to lower the minimum Frequency Bias Setting

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

Organization	Yes or No	Question 5 Comment
and provide a safety margin.		
We Energies	No	Flexibility established in the date is better than the existing currently defined date in the standards. It is better to allow the ERO to specify the date to allow some flexibility in implementation. It appears that the responsibility for identifying Frequency Bias Setting is being removed from the Balancing Authority. There is an implied obligation that the ERO will determine the Frequency Bias Setting but it is not stated explicitly. Thus, we are left wondering who has the responsibility for determining the Frequency Bias Setting. Frequency Response of the interconnection is constantly changing. As a result, the Frequency Bias Setting will never match the Frequency Response exactly. It is better to over-bias than under-bias to prevent withdrawal of frequency response by AGC. Historically, the 1% floor for frequency bias setting was chosen to ensure that BAs are always over-biased. The standard needs to allow some margin in the frequency bias setting to ensure that the bias setting is over-biased.
Response: The SDT has modified the language in Requirement R2 to provide further clarity. The Requirement now reads "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control." The SDT agrees that over-bias is better than under-bias and has added Attachment B to define the methodology to lower the minimum Frequency Bias Setting and provide a safety margin.		
FirstEnergy	No	We cannot agree at this time since Attachment A of the materials posted do not include sufficient details regarding the calculations used. Furthermore, there is no obligation imposed on the ERO to provide neither a reasonable time frame for implementation of the Frequency Bias Setting nor a requirement for the ERO to follow the methodology detailed in Attachment A. The team should consider adding a requirement for the ERO or clarifying where this obligation is covered in NERC's Rules of Procedure.
Response: Attachment A has been revised to clarify the calculation methodology. The SDT is evaluating if a modification to the NERC Rules of Procedure to obligate the ERO to perform the tasks identified in the standard is necessary.		
Bonneville Power Administration	No	R2-BPA believes that the ERO should not be providing the BA the Frequency Bias Settings for the BA. R2 points to Attachment A as having the calculation methodology, but there is no methodology spelled out in Attachment A, there are simply data requirements, delta frequency that will be included in surveys, tools to be used, etc. The statement 'natural frequency response' is in Attachment A many times, but it is never spelled out. What is meant by this phrase. This differs dramatically depending on when the event occurs due to different generating patterns, different types of load (frequency responsive versus not frequency responsive), etc.

Organization	Yes or No	Question 5 Comment
		The methodology needs to spell out how this will be taken into account when calculating the correct frequency bias. Secondly, how would this be done for variable bias?

Response: Requirement R2 has been revised for clarity and now reads, "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."
Attachment A has been revised to clarify the calculation methodology.
The SDT agrees that over-bias is better than under-bias and has added Attachment B to define the methodology to lower the minimum Frequency Bias Setting and provide a safety margin.
Variable frequency bias settings are determined by Balancing Authorities using a calculation based on present operating conditions. The SDT will provide additional and sufficient direction related to variable bias after review of this issue during the field trial.
The term "natural frequency response" is no longer in Attachment A but it is used in the new Background Document. The SDT believes that this term is describing the response for any individual event and if calculated the statistical summation of multiple events. This term is more a work of art and not science and therefore is not capitalized or defined.

SPP Standards Development	No	We would suggest ending the sentence at the second ERO, deleting the phrase '...to ensure effective coordinated secondary control, using the results from the calculation methodology detailed in Attachment A.' This phrase is more of an explanation of why this is being done rather than a part of an actual requirement.
Response: The SDT believes this language provides additional clarity and should remain as is. The SDT has removed the reference to Attachment A.		

Response: The SDT is not suggesting that the ERO determine the Frequency Bias Settings. The SDT has modified the language in Requirement R2 to clarify the

Organization	Yes or No	Question 5 Comment

role of the ERO. The Requirement now reads "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."

The SDT disagrees that the standard should independently address each Interconnection, and believes it is necessary to have a common methodology applicable to each Interconnection. An entity can request a variance and justify why deviation from the methodology adopted is necessary.
The SDT is evaluating if a modification to the NERC Rules of Procedure to obligate the ERO to perform the tasks identified in the standard is necessary and will also define implementation timing.
ERCOT

It is not clear how the ERO uses the FRM to determine the required Frequency Bias Settings. It should not be necessary for the ERO to do the determination for all the Interconnections. There are already in place methods for this by the existing ERCOT and WECC Interconnections. The SRC suggests that the ERO may not be the appropriate technical entity. The ERO may be the appropriate entity to serve as the receiver of the forms and analyze results for the Eastern Interconnection, but existing processes are already in place elsewhere. It should be sufficient that those processes continue and submit copies of Form 1 to the ERO. This may also be appropriate for Hydro Quebec.

In addition, whichever entity determines the Frequency Bias Setting must provide implementation time for the BAs to implement the settings. The proposed language says only that the BA shall implement it on the date specified, but it doesn't address the need for that date to include some implementation time.

Response: The SDT is not suggesting that the ERO determine the Frequency Bias Settings. The SDT has modified the language in Requirement R2 to clarify the role of the ERO. The Requirement now reads "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."
The SDT disagrees that the standard should independently address each Interconnection, and believes it is necessary to have a common methodology applicable to each Interconnection. An entity can request a variance and justify why deviation from the methodology adopted is necessary.
The SDT is evaluating if a modification to the NERC Rules of Procedure to obligate the ERO to perform the tasks identified in the standard is necessary and will also define implementation timing.

Kansas City Power \& Light	No	The Frequency Response Obligation determination for the interconnection as described in Attachment A is a crude method and will result in obligations that will exceed the FRO that is intended. This will result in additional cost to BA's that is unnecessary to achieve the purpose of maintaining sufficient generation online to arrest frequency degradation events caused by loss of generating resources. The current NERC method for calculating a BA's actual frequency response are inaccurate and provide misleading guidance in the actual frequency response of a BA. These methods need considerable improvement before any attempts to hold a BA to an expected level of frequency response as this proposal

Organization	Yes or No				
	Question 5 Comment				
Response: The minimum level of response selected for the field trial uses a deterministic approach. The actual level of response specified in the final version of the draft standard may be based on analysis of data obtained from the field trial. The SDT is also evaluating a probabilistic method to determine the FRO. FRS Form 1 has been modified to correctly calculate Frequency Response.					
Southern Company	No	Comments: Comment 2: BAL-003-1, Requirement R2. The requirement should be made less prescriptive by removing references to the calculation methodology and Attachment A. The responsible entity should understand the fundamental and basic requirement - to implement the Frequency Bias Setting into its Areas Control Error calculation. Proposed language is as follows: Each Balancing Authority shall implement the Frequency Bias Setting fixed or variable) provided by the ERO into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effective coordinated secondary control. Comment 3: BAL-003-1, Requirement R2 and Section 1.4 Additional Compliance Information. The SDT			
should consider whether or not the ERO has compliance obligations pursuant to the obligations mentioned in					
the proposed Standard. Requirement R2, states that the ERO should provide the BA with the Frequency Bias					
Setting and the specified date to begin the calculation. The R1 Supplemental Information section states that					
the ERO is obligated to post the official list of events. The R2 Supplemental Information section states that					
the ERO is obligated to validate the FRM and Frequency Bias Setting and disseminate the Frequency Bias					
Settings Report along with the implementation date. These obligations should be confirmed and properly					
incorporated into Standard if appropriate.					

Response: The SDT disagrees that the standard should independently address each Interconnection, and believes it is necessary to have a common methodology applicable to each Interconnection. An entity can request a variance and justify why deviation from the methodology adopted is necessary.
The SDT is evaluating if a modification to the NERC Rules of Procedure to obligate the ERO to perform the tasks identified in the standard is necessary and will also define implementation timing.

Energy Mark, Inc.	No	Comment 13: I agree that the BA shall implement the Frequency Bias Setting provided by the ERO into it Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effective coordinated secondary control. Comment 14: I do not agree that the results from the calculation methodology detailed in Attachment A will provide the correct Frequency Bias Setting. My comments on the calculation methodology are included elsewhere in my comments on Attachment A and FRS Form 1.

Response: Comment 13 - The SDT thanks you for your affirmative comment. Note that based on comments from other stakeholders, the language in Requirement R2 was modified to state, "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) "validated" by the ERO, into its Area Control Error (ACE) calculation . . ."

Organization	Yes or No	Question 5 Comment
Comment 14- Please see the SDT response to your Attachment A and FRS Form 1 comments.		
EKPC	No	The method is not clear in Attachment A.
Response: Attachment A has been revised to clarify the calculation methodology.		
Seattle City Light	No	Currently a Balancing Authority has only about one month over holiday periods(December 10 to January 10) to assemble its data and calculate the Frequency Response Measure (FRM). Further, Attachment A requires the ERO to use at least 25 events for the calculation of FRM. Seattle City Light (SCL) believes that one month is insufficient time given the number of events required. So SCL recommends additional time, such as two months or to reduce the number of events to be included in annual reviews.

Response: The SDT recommends posting the selected events on a quarterly basis which should provide ample time for BAs to provide the information.

American Electric Power	No	It appears this standard deviates from past practice for calculating frequency bias. It is unclear how this might affect the CPS Bounds L10 calculation.

Response: The Frequency Bias Setting calculation remains the same. The SDT is only modifying the "minimum Frequency Bias Setting" threshold. The SDT understands reducing the minimum Frequency Bias Setting will affect L10 and ACE values which is why the SDT proposes monitoring these parameters and undoing the modification if adverse results are realized.

Duke Energy	No	Duke Energy believes that this needs to be restated. Will the ERO perform the calculations to determine each BA's Bias? Will the ERO provide ample time between publication of the settings and the date of implementation? If effective coordinated secondary control is desired, other related operational parameters (e.g., L10) need to be set at the same time. Since measurement and reporting of operational performance is primarily on a monthly basis (e.g., CPS1/CPS2), the implementation date should be on or near the first of a month, but during normal working hours (so that adequate support personnel are available).

Response: The SDT is not suggesting that the ERO determine the Frequency Bias Settings. The SDT has modified the language in Requirement R2 to clarify the role of the ERO. The Requirement now reads "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."

The SDT is evaluating if a modification to the NERC Rules of Procedure to obligate the ERO to perform the tasks identified in the standard is necessary and will

Organization	Yes or No	Question 5 Comment
also define implementation timing.		
The SDT understands reducing the minimum Frequency Bias Setting will affect L10 and ACE values which is why the SDT proposes monitoring these parameters and undoing the modification if adverse results are realized.		
The SDT is not proposing to change the methodology presently used to set the timing of the implementation of the Frequency Bias Setting.		
Patterson Consulting, Inc.	No	The concept of requiring a Balancing Authority to implement its Frequency Bias Setting at a specific time and using a specific calculation is meaningful. This requirement is not clearly worded, however. If the intent of Requirement 2 is to identify "...when the Balancing Authority must implement its Frequency Bias Setting..." the requirement should stop after "...on the date specified by the ERO." The remaining portion of the requirement explains the need for the requirement and should be moved to supporting material.
		Attachment A does not have a "calculation methodology" associated with the Frequency Bias Setting unless the language describing historical practice and the benefits of moving a Frequency Bias Setting closer to a Balancing Authority's natural Frequency Response are intended to constitute a "calculation methodology." FRS Form 1 has the "calculation methodology" of using the minimum (since the value is negative) of last year's FRM, next year's FRO, and percentage of next year's peak load or generation. Attachment A does not mention this methodology and the requirement does not mention FRS Form 1. The clause "..., using the results from the calculation methodology detailed in Attachment A." appears to place an obscure requirement on the ERO since the ERO is the entity providing the Frequency Bias Setting to be implemented by the Balancing Authority. If the ERO is intended to use the value from FRS Form 1, after verifying data and calculations, then state that expectation explicitly and clearly. Otherwise, the ERO could set Frequency Bias Settings in another manner after observing the Form 1 values.
		The requirement for the ERO to provide a Frequency Bias Setting to each Balancing Authority begs the question of how variable bias will be implemented. Historically, the Balancing Authority implements its algorithm with oversight from NERC (Resources Subcommittee). The manner and expectation for providing data and algorithms related to variable bias are inadequate.

Response: The SDT has modified the language in Requirement R2 to clarify the role of the ERO. The Requirement now reads "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."
The SDT is evaluating if a modification to the NERC Rules of Procedure to obligate the ERO to perform the tasks identified in the standard is necessary and will also define implementation timing.
Attachment A has been revised to clarify the calculation methodology.
FRS Form 1 has been modified to correctly calculate Frequency Response and to allow for adjustments (not exclusions) to the load and generation.
Variable frequency bias settings are determined by Balancing Authorities using a calculation based on present operating conditions. The SDT will provide
Organization \quad Yes or No \quad Question 5 Comment
additional and sufficient direction related to variable bias after review of this issue during the field trial.

Alberta Electric System Operator	Yes	The AESO suggests that the standard should provide a description on how the ERO would determine the frequency bias setting and the relation to the FRO.

Response: The SDT is not suggesting that the ERO determine the Frequency Bias Settings. The SDT has modified the language in Requirement R2 to clarify the role of the ERO. The Requirement now reads, "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."

The SDT is evaluating if a modification to the NERC Rules of Procedure to obligate the ERO to perform the tasks identified in the standard is necessary and will also define implementation timing.
NIPSCO

Response: The SDT is not suggesting that the ERO determine the Frequency Bias Settings. The SDT has modified the language in Requirement R2 to clarify the role of the ERO. The Requirement now reads, "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."

Manitoba Hydro	Yes	The implementation schedule seems reasonable.
Response: The SDT thanks you for your affirmative response and clarifying comment.		
Westar Energy	Yes	
FMPP	Yes	
Progress Energy	Yes	
ENBALA Power Networks	Yes	
NorthWestern Energy	Yes	
Independent Electricity System Operator	Yes	

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

NERC

Organization	Yes or No	Question 5 Comment
Arizona Public Service Company	Yes	
Northeast Power Coordinating Council		Refer to the response to Question 17.
Response: Please refer to the SDT response to Question 17.		

6. Requirement 3 mandates that a Balancing Authority operate its Automatic Generation Control (AGC) on Tie Line Bias unless it becomes adverse to the integrity of its system.

R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Bias, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area.

Do you agree that a Balancing Authority should operate its AGC on Tie Line Bias unless it becomes adverse to its system? If not, please explain in the comment area below.

Summary Consideration: Approximately half of the comments received agreed that a Balancing Authority should operate its AGC in Tie Line Bias unless an Adverse Reliability Impact occurs. Many of the dissenters were concerned with the apparent conflict with BAL-005.1b Requirement R6, efforts of the Balancing Authority Reliability-based Controls (BARC) SDT with modifying BAL-005, and concern that the draft standard should not dictate an AGC operating control mode. Other commenters indicated the language of Requirement R3 needed to be revised for clarity and that the requirement could place a reporting burden on the Balancing Authorities. It was also noted that a single BA Interconnection does not operate AGC using Tie Line Bias mode.

In response to industry comments received, the SDT has revised Requirement R3 by adding Overlap Regulation Service language and allowing the AGC operating mode to be changed for an Adverse Reliability Impact.

R3. Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area.

Organization	Yes or No	
Santee Cooper	No	QAL-003-0, Requirement 3 requires operation of AGC on Tie Line Frequency Bias. BAL-005-0.1b, Requirement 6 requires the BA to compare total Net Interchange to total Net Scheduled Interchange plus Frequency Bias obligation to determine the Balancing Authority's ACE. We suggest that Requirement 3 be restated to "shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless "Tie Line bias is the (la-Is) term and frequency bias is the -10B(Fa-Fs) term.
Response: Requirement R3 has been revised for clarity and now reads "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."		

Organization	Yes or No	
LG\&E and KU Energy	No	Question 6 Comment
	BAL-003-0, Requirement 3 requires operation of AGC on Tie Line Frequency Bias. BAL-005-0.1b, Requirement 6 requires the BA to compare total Net Interchange to total Net Scheduled Interchange plus Frequency Bias obligation to determine the Balancing Authority's ACE.We suggest that Requirement 3 be restated to "shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless	
......."Tie Line bias is the (la-Is) term and frequency bias is the -10B(Fa-Fs) term.		
This should be coordinated with BARCSDT modifications to BAL-005.		

Response: Requirement R3 has been revised for clarity and now reads "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."
This standard is scheduled to be completed and filed with FERC prior to the BARC standard being completed. The SDT anticipates that work on the BARC standard will take into account the work completed on this standard.

SERC OC Standards Review Group	No	BAL-003-0, Requirement 3 requires operation of AGC on Tie Line Frequency Bias. BAL-005-0.1b, Requirement 6 requires the BA to compare total Net Interchange to total Net Scheduled Interchange plus Frequency Bias obligation to determine the Balancing Authority's ACE.We suggest that Requirement 3 be restated to "shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless
		I....."Tie Line bias is the (Ia-Is) term and frequency bias is the - -10B(Fa-Fs) term. This should be coordinated with BARCSDT modifications to BAL-005.

Response: Requirement R3 has been revised for clarity and now reads "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."
This standard is scheduled to be completed and filed with FERC prior to the BARC standard being completed. The SDT anticipates that work on the BARC standard will take into account the work completed on this standard.

South Carolina Electric and Gas

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

Organization	Yes or No	Question 6 Comment

Impact on the Balancing Authority's Area."
This standard is scheduled to be completed and filed with FERC prior to the BARC standard being completed. The SDT anticipates that work on the BARC standard will take into account the work completed on this standard.

Bonneville Power Administration	No	R3. BPA does not believe this standard should dictate the control mode for AGC. That is better suited to be in BAL-001 and should not be repeated in this standard - the ACE used for reporting is spelled out in BAL-001 R1 and is also discussed in BAL-005 R6. R3 should be removed from this standard, not modified to fit with what is stated in BAL-001 or BAL-005.

Response: This standard is proposed to go into effect prior to implementation of the BARC draft standard. A determination of which reliability standard should specify the AGC control mode used for system operations can be made once development of the BARC draft standard is completed.
Requirement R3 has been revised for clarity and now reads "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."

IRC Standards Review Committee	No	Single BA Interconnections do not operate on Tie Line Bias. The requirement should be modified to accommodate this or regional variances should be written by the SDT to address existing differences. In addition this requirement, as written, does not provide for momentary cessation of AGC for any reason, nor for reasonable system maintenance, repair, or updates. As written, it seems to say that any duration of operation off Tie Line Bias is unacceptable and, thus, would be a violation.

Response: The SDT agrees that a single BA Interconnection does not operate using Tie Line Bias mode. The "Additional Compliance Information" section has been revised to clarify this situation.

The SDT disagrees that the Requirement does not allow for instances of not operating in Tie Line Bias mode. The revised Requirement states "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."

ISO New Engand Inc.
No

Single BA Interconnections do not operate on Tie Line Bias. The requirement should be modified to accommodate this or regional variances should be written by the SDT to address existing differences.
In addition this requirement, as written, does not provide for momentary cessation of AGC for any reason, nor for reasonable system maintenance, repair, or updates. As written, it seems to say that any duration of operation off Tie Line Bias is unacceptable and, thus, would be a violation.

Response: The SDT agrees that a single BA Interconnection does not operate using Tie Line Bias mode. The "Additional Compliance Information" section has been revised to clarify this situation.

Consideration of Comments: Project 2007-12 BAL-003-1-1 $1^{\text {st }}$ Draft

Organization

The SDT disagrees that the Requirement does not allow for instances of not operating in Tie Line Bias mode. The revised Requirement states "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."

ERCOT	No	Single BA Interconnections do not operate on Tie Line Bias. The requirement should be modified to accommodate this or regional variances should be written by the SDT to address existing differences. In addition this requirement, as written, does not provide for momentary cessation of AGC for any reason, nor for reasonable system maintenance, repair, or updates. As written, it seems to say that any duration of operation off Tie Line Bias is unacceptable and, thus, would be a violation.

Response: The SDT agrees that a single BA Interconnection does not operate using Tie Line Bias mode. The "Additional Compliance Information" section has been revised to clarify this situation.
The SDT disagrees that the Requirement does not allow for instances of not operating in Tie Line Bias mode. The revised Requirement states "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."

Kansas City Power \& Light	No	The impact of operating in an inappropriate AGC control mode is bigger than the BA's own balancing area. The control of the area affects other BA's around a BA and if enough BA's are involved, can affect an interconnection. Recommend the requirement be modified to consider the reliability impact on its own balancing area, the balancing areas of adjacent BA's and the interconnection.

Response: The SDT agrees and has modified Requirement R3 to read, "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."

Southern Company	No	Comments: Agree only to the extent that an accurate frequency measurement is available to the BA. If not frequency measurement is available, then that should be considered an adverse condition and thus TLB is not appropriate. In other words, one small BA maintaining TLB may not cause the condition in the Glossary definition of Adverse Reliability Impact but it is still not appropriate for them to stay on TLB.

Response: Requirement R3 has been revised for clarity and now reads "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."
This standard is scheduled to be completed and filed with FERC prior to the BARC standard being completed. The SDT anticipates that work on the BARC standard will take into account the work completed on this standard.

Organization	Yes or No	Question 6 Comment
NIPSCO	No	Yes, It was proposed that AGC be replaced by Automatic Resource Control (ARC) in the standards but did not pass. The SDT may want to monitor this related effort.
Response: The SDT is using approved definitions listed in the NERC Glossary of Terms. Changes to current NERC Glossary of Terms definition language not used in this standard would need to occur as a separate project.		
Energy Mark, Inc.	No	Comment 15: Requirement 3 as written is unenforceable because it is too difficult to define "unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area." Comment 16: What if operation out of Tie line Bias control does not have an Adverse Reliability Impact on the Balancing Authority's Area, but does have an Adverse Reliability Impact on another BA? Comment 17: A document follows that provides an initial starting justification for the elimination of this Requirement. See following "Requirements for AGC Operation, January 25, 2011."Requirements for AGC Operation, January 25, 2011 Introduction:As of the date of these comments there are two requirements in the NERC Standards that address the operation of AGC. - The first is in BAL-003-0.1b - Frequency Response and Bias, Requirement R3.R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability. - The second is in BAL-005-0.1b - Automatic Generation Control, Requirement R7.R7. The Balancing Authority shall operate AGC continuously unless such operation adversely impacts the reliability of the Interconnection. If AGC has become inoperative, the Balancing Authority shall use manual control to adjust generation to maintain the Net Scheduled Interchange. These requirements are misdirected and, for compliance purposes, they are difficult to measure effectively. This paper provides the technical basis for replacing these requirements with new requirements that will not only achieve the intent of these requirements, but do so in a more effective and measurable manner. Background: Automatic Generation Control (AGC) is a computer control system contained in the Control Center EMS that performs a number of critical functions related to the balancing function necessary to maintain frequency and associated reliability. Among the functions it performs are: 1) the collection of telemetered and local data useful for determining the appropriate control actions, 2) the calculation of Area Control Error (ACE), 3) determination of desired control actions that should be sent to those resources available for automatic dispatch, and

Organization	Yes or No	Question 6 Comment
		4) sending the actual control signals to implement that dispatch. Most AGC Systems have three basic modes of operation, 1) Tie-line Frequency Bias, 2) Constant Net Interchange and 3) Constant Frequency. The ACE Equation is the basis for all three modes of operation. - In the Tie-line Frequency Bias mode, all of the ACE Equation is used as an input to control action determination. - In the Constant Net Interchange mode, only the Tie-line Error portion of the ACE Equation is used as an input to control action determination. The Constant Net Interchange mode would normally be used when there is no information available to indicate interconnection frequency. - In the Constant Frequency mode, only the Frequency Bias portion of the ACE Equation is used as an input to control action determination. The Constant Frequency mode of operation would be used when the Tie-line Error is known to be misleading, inaccurate or unavailable. It is also used when there are no tie-lines in service as in the case of a single BA interconnection or during islanded operation.AGC Systems have been used in the industry since before the development of digital computers. Initially AGC Systems did little more than send instructions to generators based on evaluation of the ACE Equation. They have become more sophisticated since their inception and implement greater complexity in their evaluations of appropriate dispatch actions to the point that they include forecasting, reliability and economics within their algorithms. Modern AGC Systems determine control actions based on the collection of much more data than is included in the ACE Equation. This additional data includes: short-term load forecasts and forecast error estimates as influenced by weather; individual non-conforming load forecasts and forecast error; forecast interchange transaction information; generating unit ramp and response rates; generating unit economic operating points including valve position; generating unit incremental economic costs including start-up and maintenance; Hydro unit river flow limits as related to the operation of other units on the same waterway; energy storage capabilities and available energy; Inadvertent Interchange energy account balances; time error; and current control performance scores. As AGC Systems have evolved, the control mode in which they are operating, Tie-line Frequency Bias, Constant Net Interchange, or Constant Frequency, provides less and less information about the control actions that they implement. In a modern AGC System the control mode provides little information about how control actions are being determined and implemented. In fact, only someone experienced in AGC programming and implementation would have the knowledge necessary to determine whether or not an AGC System is providing reasonable control actions or control actions consistent with Tie-line Frequency Bias Control. Even someone with the necessary experience observing the operation of a modern AGC System for

Consideration of Comments: Project 2007-12 BAL-003-1-1 $1^{\text {st }}$ Draft

Organization	Yes or No	Question 6 Comment
		a short period of time will be incapable of determining whether or not that system is providing effective or adequate control. Therefore, neither of the two requirements is effectively enforceable from a practical point of view. Perspective:A couple of examples are offered to add perspective to the problem. Example 1:R3 includes the requirement, "Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability." There are three conditions when operation on Tie-line Frequency Bias control may be adverse to the system or Interconnection reliability. 1. The first is when the Tie-line Error data used in the ACE Equation is incorrect. The ACE Equation will be incorrect when there are errors in the Actual or Scheduled Tie-line flow values. This condition will occur when there is telemetry failure of one or more tie-lines, when there is an unidentified scheduling error, or when there is a separation that causes a tie-line metering point to be located on a separate island due to interconnection separation or islanding. Telemetry failure will be indicated by the quality bits associated with the Tie-line telemetry. If AGC is disabled to identify a scheduling error, there should be an operating log entry. If AGC is disabled because of a separation, there will also be a log entry. 2. The second is when the actual frequency is determined to be incorrect. If measured frequency is incorrect, this condition should be indicated by an operating log entry and transfer to the redundant frequency device to provide measured frequency. When the actual frequency fails, this condition will be indicated by the quality bits associated with the measured frequency value and transfer to the redundant frequency device to provide measured frequency. 3. The third is when operation of AGC would provide control different from the desired control to address some emergency condition in the BA or elsewhere on the interconnection. If the operation of AGC would be adverse to system or Interconnection reliability and is disabled for this reason, this condition should be indicated by an operating log entry.In all cases, there should be a record of the reason for the use of other than Tie-line Frequency Bias control and records indicating the reason for the use of other control modes. In all cases, other than the third indicated above, an error in the value of ACE is the reason for not using Tie-line Bias Control and the quality bits for ACE or ACE component data should provide a reasonable explanation for the condition. The third case occurs with such infrequency that there should be no need for a special rule to address this condition. Example 2:R7 includes the requirement, "...If AGC has become inoperative, the Balancing Authority shall use manual control to adjust generation to maintain the Net Scheduled Interchange." Cases have been observed of an AGC System that does not perform as well as the manual dispatch used when the AGC System is inoperative. If a BA has a CPS1 score of 120% when using AGC and a CPS1 score of 125% when performing manual dispatch, should that BA be penalized for not having its AGC continuously operating? What is the goal? Is the goal to operate on AGC regardless of the result or is the goal to operate in a manner

Organization	Yes or No	Question 6 Comment
		that provides the best measured control? Alternatives:Since these requirements are not effectively measurable or enforceable, can a requirement or requirements be written to provide an equivalent to the intent of the old requirements addressing AGC operation?The industry has three alternatives to address this issue: 1. Retain requirements that are directed at the AGC System understanding that they are effectively not measureable or enforceable. 2. Eliminate requirements that are directed at the AGC System with the understanding that they were not contributing to reliability. 3. Determine an alternative method to evaluate, measure and enforce a requirement that will achieve a goal similar to the goal originally intended by the implementation of the AGC System requirements. Elimination of the requirement is an appropriate solution. However, if it is determined that a replacement measure is required, then the solution to this problem lies with the third alternative above. Solution:There is already a requirement that effectively enforces the intent of the above requirements. Instead of requiring the BA to control in a particular manner, CPS1, BAAL and DCS require the BA to achieve specific results with their control actions. All three measures require the BA to calculate ACE using Tie-line Frequency Bias for determination of their Reporting ACE. The requirements specify that at least 50% of the data must be valid for the one-minute average data to be included in the measures. The requirements for redundant frequency measurement devices assure that the BA will have the actual frequency data available to perform the necessary calculations. The data retention requirements specify the data they must retain to demonstrate that their control achieved the stated goals. Finally, this approach is consistent with the White House Executive Order on Improving Regulation and Regulatory Review in Section 1(b)(4) stating that regulatory agencies must: "to the extent feasible, specify performance objectives, rather than specifying the behavior or manner of compliance that the regulated entities must adopt;..."
Response: Comment 15 \& 16: Requirement R3 has been revised for clarity and now reads "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."		
This standard is scheduled to be completed and filed with FERC prior to the BARC standard being completed. The SDT anticipates that work on the BARC standard will take into account the work completed on this standard.		
Comment 17: The SDT recognizes that from a compliance perspective it can be difficult to ascertain if an Adverse Reliability Impact exists. Nonetheless, the SDT is very concerned with adversely affecting primary Frequency Response when operating without AGC. The SDT believes revised language using NERC glossary defined terms will support proper compliance enforcement. It is expected entities will provide an explanation each time AGC Tie Line Bias mode is not used for		

Organization	Yes or No	Question 6 Comment
the compliance auditor to assess.	No	Tie line bias is calculated using (NAI-NSI) while frequency bias is -10B(FA-FS).
EKPC	Response: Requirement R3 has been revised for clarity and now reads "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."	

Duke Energy	No	Duke Energy agrees to the simple statement posed in the question; however, the requirement goes beyond that by using a defined term, Adverse Reliability Impact, which has a relatively narrow focus on extreme conditions. If a single BA lost a significant amount of its tie-line telemetry or its frequency sources, cascading outages and/or grid separation would not necessarily be imminent but it would be imprudent to remain in Tie Line Bias mode. Go back to the original language for the requirement - "Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability."
Response: The SDT has revised Requirement R3 language and believes the use of NERC glossary defined terms in the Requirement provides necessary clarity for compliance.		
Patterson Consulting, Inc.	No	While this requirement is in the existing standard, it places a significant reporting burden on a Balancing Authority to demonstrate compliance during audits for little reliability gain. In addition for single Balancing Authority interconnections, operating in this AGC mode is functionally equivalent to operating in flat frequency mode. This may cause some interconnections to seek a variance, just to avoid compliance complications. Perhaps this requirement could be replaced with a requirement for Balancing Authorities to contribute to frequency performance as well as balance commitments and resources, or to calculate the ACE it uses to report in other standards in a specific manner. As written, it could be interpreted to create a violation when AGC suspends or is offline.

Response: The SDT has taken into consideration the reporting burden on the Balancing Authority to demonstrate compliance. It is expected that entities will provide an explanation each time AGC Tie Line Bias mode is not used for the compliance auditor to assess.
The SDT agrees that a single BA Interconnection does not operate using Tie Line Bias mode. The "Additional Compliance Information" section has been revised to clarify this situation.
Requirement R3 has been revised for clarity and now reads "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."
This standard is scheduled to be completed and filed with FERC prior to the BARC standard being completed. The SDT anticipates that work on the BARC

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

| Organization | Yes or No | Question 6 Comment |
| :--- | :---: | :--- | :--- |
| standard will take into account the work completed on this standard. | | |
| FirstEnergy | Yes | Although we mostly agree with the requirement, we believe it can be improved. We suggest that the team add
 wording in the requirement to allow for brief periods where meters or communication channels fail and trip the
 AGC off Tie Line Bias. In most areas, if merely one BA trips off bias it would not have an adverse affect on
 BES reliability and furthermore, the BA can take alternative measures for these periods such as manual AGC.
 We suggest the team add wording similar to the second sentence of requirement R7 of BAL-005 which states:
 "If AGC has become inoperative, the Balancing Authority shall use manual control to adjust generation to
 maintain the Net Scheduled Interchange." |

Response: Requirement R3 has been revised for clarity and now reads "Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area."
This standard is scheduled to be completed and filed with FERC prior to the BARC standard being completed. The SDT anticipates that work on the BARC standard will take into account the work completed on this standard.

Arizona Public Service Company	Yes	As long as Appendix 1 interpretation remains in effect for WECC Auto Time Error Payback. WECC BAs operate in Tie-Line and Time.

Response: The SDT thanks you for your affirmative response and clarifying comment.

NERC

Response: The SDT thanks you for your affirmative response and clarifying comment.
When this standard is approved and implemented it will replace all previous standards and interpretations.

Westar Energy	Yes	
FMPP	Yes	
Seattle City Light	Yes	
Manitoba Hydro	Yes	
We Energies	Yes	
American Electric Power	Yes	
SPP Standards Development	Yes	
Midwest ISO Standards Collaborators	Yes	
MRO's NERC Standards Review Subcommittee	Yes	
Alberta Electric System Operator	Yes	
Independent Electricity System Operator	Yes	
NorthWestern Energy	Yes	
Progress Energy	Yes	
ENBALA Power Networks	Yes	
Northeast Power Coordinating Council	Refer to the response to Question 17.	

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

NERC

Organization

Response: Please refer to our response to Question 17.
7. Do you agree with the proposed Implementation Plan for this standard? If not, please explain in the comment area.

Summary Consideration: The majority of the comments received stated that they did not agree with the proposed implementation plan for this standard. The main concerns were that the implementation plan would take several years to fully implement, that adjustment to the Frequency Bias Setting could not occur without first modifying the existing BAL-003-0.1b standard, and a preference for aligning implementation plan effective dates with the regulatory approval date. Several commenters expressed concern regarding the accuracy and clarity of Attachment A and how field testing efforts integrated into the implementation plan. One commenter observed that it would be ideal for the standard to require the use of variable bias.
In response to industry comments the SDT has revised Attachment A for correctness and clarity; changed all references in the standard and associated documents for BAL-003 to read "BAL-003-0.1b"; and removed the table showing the annual reduction schedule for the minimum bias setting. The SDT has provided a revised plan for reducing the minimum Frequency Bias Setting - the ERO will monitor the results of the reductions and make necessary corrections. Details for the reduction plan have been provided as Attachment B to the standard.

Organization	Yes or No	Question 7 Comment
Santee Cooper	No	The implementation plan has specific dates for reducing the bias settings currently defined in Requirement 5 over several years. Perhaps these dates should not be specific but tied to months following regulatory approval. Attachment A should be modified to match what is in the proposed standard. The values currently shown as percent "of peak/ 0.1 Hz " should be changed to percent of estimated yearly peak demand per 0.1 Hz change. For BAs that do not serve native load, percent "of upcoming years maximum generation/ 0.1 Hz should be changed to percent of its estimated maximum generation level in the coming year/ 0.1 Hz change.
Response: The SDT believes that the affect reducing the minimum bias setting will have on frequency, including unintended consequences, will not be observable for meaningful analysis over a short-time interval which is why the implementation plan specifies reducing the bias setting on an annual basis. The SDT deleted the section of the Implementation Plan that referenced "of peak/ 0.1 Hz ".		
LG\&E and KU Energy	No	The implementation plan has specific dates for reducing the bias settings currently defined in Requirement 5 over several years. Perhaps these dates should not be specific but tied to months following regulatory approval. Attachment A should be modified to match what is in the proposed standard. The values currently shown as percent "of peak/0.1 Hz" should be changed to percent of estimated yearly peak demand per 0.1 Hz change. For BAs that do not serve native load, percent "of upcoming years maximum generation/0.1 Hz should be changed to percent of its estimated maximum generation level in the coming year/ 0.1 Hz change

| Organization | Yes or No | Question 7 Comment |
| :--- | :---: | :---: | :---: |
| Response:
 observable for meaningful analysis over a short-time interval.
 The SDT deleted the section of the Implementation Plan that referenced "of peak/0.1 Hz". | | |
| South Carolina Electric and Gas | No | The implementation plan has specific dates for reducing the bias settings currently defined in Requirement 5
 over several years. Perhaps these dates should not be specific but tied to months following regulatory
 approval. Attachment A should be modified to match what is in the proposed standard. The values currently
 shown as percent "of peak/0.1 Hz" should be changed to percent of estimated yearly peak demand per 0.1 Hz
 change. For BAs that do not serve native load, percent "of upcoming years maximum generation/0.1 Hz
 should be changed to percent of its estimated maximum generation level in the coming year/0.1 Hz change. |

Organization	Yes or No	Question 7 Comment
		plan makes no mention of a field trial. It should. Please change all BAL-003-0 to BAL-003-0.1b.
Response: The SDT has changed all references in the implementation plan for BAL-003-1 to read "BAL-003-0.1b." The SDT has removed the table showing the reduction schedule for the minimum bias setting.		
The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.		

We Energies	No

> We agree with the plan to phase out BAL-003-0.1b R5 over a period of years rather than abruptly terminate it because it will take several years to assess the impact. We recommend a wording change to the implementation plan. Please change 'BAL-003-0 Requirement 5 should be retired as outlined in the following table," to "BAL-003-0.1b Requirement 5 should be phased out by reducing the minimum frequency bias setting per the table."It is not clear if the minimum frequency bias setting can be modified without modifying the existing BAL-003-0.1b standard. Is this being accomplished through the field trial? The implementation plan makes no mention of a field trial. It should.Please change all BAL-003-0 to BAL-003-0.1b

Response: The SDT has changed all references in the implementation plan for BAL-003-1 to read "BAL-003-0.1b."
The SDT has removed the table showing the reduction schedule for the minimum bias setting.
The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

FirstEnergy	No	We believe that the implementation plan should include information regarding the field trial and how it fits in with the phase-in implementation. It appears as though the field trial is being conducted based on 2010 data and will be concluded upon completion of the development of the standard but we think this could be clarified. Furthermore, as stated in the process manual, a field test "should include at a minimum the data collection and analysis or field test plan, the implementation schedule, and an expectation for periodic updates of the results." The field test information posted is not clear on the implementation schedule of the field test as well as when and how periodic updates will be available.

Response: The SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

Bonneville Power Administration	No	From a compliance perspective, it is administratively very burdensome to have portions of two different versions of a standard applicable at the same time, as specified in the Implementation Plan for BAL-003-1

Organization	Yes or No	Question 7 Comment
		This type of structure adds an additional layer of complexity to all parts of the compliance administration process, as necessary to distinguish between the separate versions of the standard. Rather than create and prolong this type of situation over a 4 year time period, BPA asks that BAL-003-0 be retired in its entirety and that the contents of BAL-003-1 be expanded to also include R5, as specified in BAL-003-0. This change resolves the identified issues while also ensuring that all requirements of BAL-005 are in effect, as originally intended. The Implementation Plan for BAL-003-1 also includes a proposal to modify the specified limiting percentage of Native Load on a sliding scale over a 4 year time period. BAL-003-3 R5, as approved, explicitly specifies 1% as a minimum value for monthly average Frequency Bias Setting. As such, changing this value results in a change in the requirement itself. Instead of being done through an Implementation Plan, these types of changes should be made as specific modifications to the requirement in question. To resolve this issue, BPA asks that the sliding scale specified for percentage of peak load specified in the Implementation Plan be incorporated directly into BAL-003-1 as a part of the specified text of R5. This change meets the intended goal of applying a sliding scale to this value over time while assuring that the underlying change is implemented as a change to the requirement through the Standards Development Process.

Response: The SDT has added the R5 Requirement back into the proposed standard. The SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary correction. Please refer to Attachment B for reduction plan details.

IRC Standards Review	No	the
Committee		

What is the technical basis for the phase-out schedule? Making the standard requirements effective earlier than the schedule shown could result in the unintended consequence of non-compliance enforcement for performance that is caused by the change rather than by the non-performance of the functional entity
.Also, the effective dates given in the Implementation differ from those in the draft standard. Different requirement numbers are expressed in each.
Some of the implementation steps (retiring R5 of BAL-003-0) presented in the implementation plan start as early as May 2011. We do not believe that the BAL-003-1 standard will be approved by the industry or the NERC BoT at that time and that does not even take into account regulatory approval (or 12 months after BoT adoption in those jurisdictions where no regulatory approval is required).

How can a standard begins to phase out while the successor standard is not anywhere near becoming effective?If the SDT wants to propose a gradual replacement of the current R5, we would suggest that the phase-out steps be tied to the date that the standard becomes effective.

Response: The SDT has removed the table showing the reduction schedule for the minimum bias setting.

Organization	Yes or No	Question 7 Comment

The SDT has corrected the mismatch between effective dates in the implementation plan and the standard.
The SDT has added the R5 Requirement back into the proposed standard. The SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial.
The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely impacted. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

ERCOT	No	What is the technical basis for the phase-out schedule? Making the standard requirements effective earlier than the schedule shown could result in the unintended consequence of non-compliance enforcement for performance that is caused by the change rather than by the non-performance of the functional entity. Also, the effective dates given in the Implementation differ from those in the draft standard. Different requirement numbers are expressed in each.
Some of the implementation steps (retiring R5 of BAL-003-0) presented in the implementation plan start as		
early as May 2011. We do not believe that the BAL-003-1 standard will be approved by the industry or the		
NERC BoT at that time and that does not even take into account regulatory approval (or 12 months after BoT		
adoption in those jurisdictions where no regulatory approval is required). How can a standard begins to phase		
out while the successor standard is not anywhere near becoming effective?		
If the SDT wants to propose a gradual replacement of the current R5, we would suggest that the phase-out		
steps be tied to the date that the standard becomes effective.		

Response: The SDT has removed the table showing the reduction schedule for the minimum bias setting.
The SDT has corrected the mismatch between effective dates in the implementation plan and the standard.
The SDT has added the R5 Requirement back into the proposed standard. The SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial.

The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely impacted.
The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

Kansas City Power \& Light	No	How can hard dates for the phasing out of the current R5 be in the implementation plan for a standard under development? The concept of phasing out R5 and phasing in R2 could be done, however, this would take considerable thought as to how to implement that. This current proposed implementation plan should be carefully reconsidered.

Organization	Yes or No	Question 7 Comment

Response: Thank you for your comments. The SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting.
The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely impacted.

The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

Progress Energy	No	We agree with the graduated implementation for the FRO portion of the standard, but feel NERC needs to loosen the minimum frequency bias requirement immediately so that it matches the newly required frequency response. There are also other areas within the EMS the besides BA's frequency bias that should be addressed such as secondary frequency response systems that should also be included in this standard. Additionally, if the industry was truly concerned with matching bias values to actual response, they would switch to variable frequency bias. Variable bias requires additional up front work along with general maintenance, but it truly is the best way to accurately bias the ACE equation.

Response: The SDT believes that gradually relaxing the present standard is the prudent way to proceed. The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely impacted.
The SDT has revised the plan for reducing the minimum Frequency Bias Setting and is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.
The SDT agrees that use of a variable, non-linear bias setting is the best solution.
We also agree with you that variable, non-linear bias setting would be a superior way to go.

| NIPSCO | No | "Effective Date" section at the top of the Standard does not match the Implementation plan; I think there is an
 R4 missing in the second part of 1.3 . In the implementation plan add RSG to "Compliance with the Standards"
 5 year phase-in on removing the 1\% is a good idea |
| :--- | :---: | :--- | :--- |
| Response: The SDT has corrected the errors noted. The SDT has revised the plan for reducing the minimum Frequency Bias Setting and is proposing another
 method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer
 to Attachment B for reduction plan details. | | |
| Energy Mark, Inc. | No | Comment 18: The Proposed Effective Date in the implementation plan is inconsistent with the Effective Data
 in the Draft Standard.
 Comment 19: The completion of the implementation plan does not occur until 2015. This lengthy plan stems
 from a standard that only measures reliability annually and provides only an annual window for changing |

Organization	Yes or No	Question 7 Comment
		parameters such as Minimum Frequency Response. Alternative methods that measure reliability more frequently could me implemented with a shorter implementation plan.
Response: The SDT has corrected the mismatch between effective dates in the implementation plan and the standard. The SDT believes that gradually relaxing the present standard is the prudent way to proceed. The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely impacted. TThe SDT has revised the plan for reducing the minimum Frequency Bias Setting and is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.		
Beacon Power Corporation	No	Why is it appropriate to delay implementation of this standard for over 12 months after applicable approval? This seems an unnecessary delay considering the intent to operate under a field test. Similarly, delaying implementation of R2 for over 2 years seems unnecessary. Based on the suggested schedule for measuring FRM and implementing Frequency Bias Settings, there may be rationale to implement the standard on the first calendar year following approval. However, delays beyond the beginning of the next calendar year should require conclusive justification.

Response: The SDT believes that the affect reducing the minimum bias setting will have on frequency, including unintended consequences, will not be observable for meaningful analysis over a short-time interval.

The SDT has added the R5 Requirement back into the proposed standard. The SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting.
The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely impacted.
The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.
EKPC
Response: The SDT has revised the plan for reducing the minimum Frequency Bias Setting.
The SDT has removed the table showing the reduction schedule for the minimum bias setting.
The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely
impacted.
The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make
necessary corrections. Please refer to Attachment B for reduction plan details.

Organization	Yes or No	Question 7 Comment
ISO New Engand Inc.	No	We do not agree that a meaningful Implementation Plan can be developed until such time as the data gathering/field testing is completed. Therefore, we believe this Standard may be premature.

Response: The SDT has added the R5 Requirement back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting.
The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting.
The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely impacted.
The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details. The SDT believes the revised plan is doable and prudent.

American Electric Power
No

| Organization | Yes or No | Question 7 Comment |
| :--- | :---: | :--- | :--- |
| | | the next level (agree?). |
| Response: The SDT has added the R5 Requirement back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias
 Setting.
 The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting.
 The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely
 impacted.
 The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make
 necessary corrections. Please refer to Attachment B for reduction plan details. The SDT believes the revised plan is doable and prudent. | | |

Patterson Consulting, Inc.	No	The implementation plan should address implementing these requirements at the same time for all Balancing Authorities within an interconnection, regardless of regulatory approvals. The present implementation plan will require some Balancing Authorities within an interconnection to operate to the new standard while other Balancing Authorities operate to the old standard if multiple regulatory jurisdictions exist as they do within two interconnections. This could lead to uncoordinated and unreliable operation within an interconnection.
Response: The SDT does not believe that staggered implementation will lead to uncoordinated and unreliable operation within an interconnection because these changes affect secondary control. With regards to your comment concerning different "regulatory jurisdictions", this issue is outside the scope of the project approved SAR.		
Independent Electricity System Operator	No	We have a difficulty understanding the basis for some of the dates in the implementation plan.Some of the implementation steps (retiring R5 of BAL-003-0) start as early as May 2011. We do not believe that the BAL-003-1 standard will be approved by the industry or the NERC BoT at that time and that does not even take into account regulatory approval (or 12 months after BoT adoption in those jurisdictions where no regulatory approval is required). How can a standard begins to phase out while the successor standard is not anywhere near becoming effective?If the SDT wants to propose a gradual replacement of the current R5, we would suggest that the phase-out steps be tied to the date that the standard becomes effective.
Response: The SDT has added the R5 Requirement back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely impacted. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make		

\section*{| Organization | Yes or No | Question 7 Comment |
| :--- | :--- | :--- |}

necessary corrections. Please refer to Attachment B for reduction plan details. The SDT believes the revised plan is doable and prudent.

Southern Company	Yes	We did not want to vote on Question 7, but clicked 'yes' in error.

Response: The SDT thanks you for your clarifying comment.

Westar Energy	Yes	Yes, if field testing validates the standard.

Response: The SDT thanks you for your affirmative response and clarifying comment.
SDT has revised the plan for reducing the minimum Frequency Bias Setting.
The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting.
The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely impacted.

The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details. The SDT believes the revised plan is doable and prudent.

Associated Electric Cooperative, Inc.	Yes	
NorthWestern Energy	Yes	
ENBALA Power Networks	Yes	
SPP Standards Development	Yes	
Seattle City Light	Yes	
Manitoba Hydro	Yes	
SERC OC Standards Review Group	The implementation plan has specific dates for reducing the bias settings currently defined in Requirement 5 over several years. Perhaps these dates should not be specific but tied to months following regulatory approval. Attachment A should be modified to match what is in the proposed standard. The values currently shown as percent "of peak/0.1 Hz" should be changed to percent of estimated yearly peak demand per 0.1 Hz change. For BAs that do not serve native load, percent "of upcoming years maximum generation/0.1 Hz should be changed to percent of its estimated maximum generation level in the coming year/0.1 Hz change.	

Organization	Yes or No	Question 7 Comment

Response: The SDT has added the R5 Requirement back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting.
The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting.
The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely impacted.
The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details. The SDT believes the revised plan is doable and prudent.

Attachment A has been revised for clarity.
Arizona Public Service Company

AZPS has a few questions:

1) has frequency performance been affected by the on-going RBC field trial,
2) what steps will be taken to isolate this field trial from the effects of the RBC field trial,
3) will the frequency bias reduction to 0.8% of peak load include a CPS2 grace-period for thos BAs not involved in the RBC field trial?

Response: 1) The Frequency Response SDT cannot respond on RBS field trial matters.
2) This standard is meant to addresses primary control and the settings of the bias which would have an impact on the measures of the RBS field trial. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT believes that it is necessary to observe the affect each decrement to the present standard has during all four seasons to assure reliability is not adversely impacted. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details. The SDT believes the revised plan is doable and prudent.
3) The Frequency Response SDT anticipates the RBC field trial will be concluded when this standard takes effect. The SDT is proposing that standards requirements take effect for all entities within a regulatory jurisdiction at the same time.

Northeast Power Coordinating Council		Refer to the response to Question 17.

Response: Please refer to the SDT response to Question 17.

8. This standard proposes to eliminate the 1\% minimum Frequency Bias over a period of 4 years as outlined in the Implementation Plan. Do you agree that the elimination of the 1\% minimum will bring Frequency Bias closer or equal to natural Frequency Response? If not, please explain in the comment area.

Summary Consideration: Comments received indicate commenters are divided over whether elimination of the 1% minimum will bring Frequency Bias closer or equal to the natural Frequency Response. Many commenters indicated that the Frequency Bias Setting will never match the Frequency Response and that it is far better for reliability to over bias than under bias. Commenters also expressed concern with how the Frequency Response Obligation (FRO) will be calculated; the rationale for the phase out schedule; and the impact this proposal will have on secondary control.

The FR SDT refined language to indicate it is better to have a somewhat over bias condition, provided additional details on how the FRO is calculated, explained the rationale for the phase out schedule proposed; including developing a reasonable, practical and accurate measurement for natural Frequency Response.

Organization	Yes or No	
MRO's NERC Standards Review Subcommittee	No	We do note that the question asks if we disagree with eliminating Frequency Bias over a four year period. The requirement actually applies to Frequency Bias Setting. This is important because there has been confusion in some regulatory filings over the Frequency Response versus Frequency Bias Setting. Our comments below assume that Frequency Bias Setting was intended to be used in the question since it is what is in the BAL-003-0.1b R5.
We do not question the plan to change the minimum Frequency Bias Setting over a period of 4 years per se		
in attempt to optimize AGC response by matching the Frequency Response of the system. However,		
Frequency Response of the interconnection is constantly changing. As a result, the Frequency Bias Setting		
will never match the Frequency Response exactly. It is better to overbias that underbias to prevent		
withdrawal of frequency response by AGC. Historically, the 1\% floor for Frequency Bias Setting was chosen		
to ensure that BAs are always over-biased. The standard needs to allow some margin in the Frequency Bias		
Setting to ensure that the bias setting is overbiased.		

Response: The SDT agrees with your clarification that the 1% minimum applies to the Frequency Bias Setting. We also agree to evaluate the need to be somewhat (as opposed to extremely) over-biased. For example, if a Balancing Authority's observed Frequency Response was . 4% of its annual forecasted peak load then, at a minimum, a value such as $.1 \%$ would be added to the Frequency Bias setting to make it less likely that the Frequency Response will be counteracted by AGC actions.

Midwest ISO Standards Collaborators	No	We do note that the question asks if we disagree with eliminating Frequency Bias over a four year period. The requirement actually applies to Frequency Bias Setting. This is important because there has been confusion in some regulatory filings over the Frequency Response versus Frequency Bias Setting. Our

Organization	Yes or No	
		Question 8 Comment
	comments below assume that Frequency Bias Setting was intended to be used in the question since it is what is in the BAL-003-0.1b R5. We do not question the plan to change the minimum Frequency Bias Setting over a period of 4 years per se in attempt to optimize AGC response by matching the Frequency Response of the system. However, frequency Response of the interconnection is constantly changing. As a result, the Frequency Bias Setting will never match the Frequency Response exactly. It is better to overbias that underbias to prevent withdrawal of frequency response by AGC. Historically, the 1\% floor for Frequency Bias Setting was chosen to ensure that BAs are always over-biased. The standard needs to allow some margin in the Frequency Bias Setting to ensure that the bias setting is overbiased.	

Response: The SDT agrees with your clarification that the 1% minimum applies to the Frequency Bias Setting. We also agree to evaluate the need to be somewhat (as opposed to extremely) over-biased. For example, if a Balancing Authority's observed Frequency Response was $.4 \%$ of its annual forecasted peak load then, at a minimum, a value such as $.1 \%$ would be added to the Frequency Bias setting to make it less likely that the Frequency Response will be counteracted by AGC actions.

We Energies	No	We do note that the question asks if we disagree with eliminating Frequency Bias over a four year period. The requirement actually applies to Frequency Bias Setting. This is important because there has been confusion in some regulatory filings over the Frequency Response versus Frequency Bias Setting. Our comments below assume that Frequency Bias Setting was intended to be used in the question sine it is what is in the BAL-003-0.1b R5.We do not question the plan to change the minimum Frequency Bias Setting over a period of 4 years per se in an attempt to optimize AGC response by matching the Frequency Response of the system. However, frequency Response of the interconnection is constantly changing. As a result, the Frequency Bias Setting will never match the Frequency Response exactly. It is better to over-bias than under-bias to prevent withdrawal of frequency response by AGC. Historically, the 1\% floor for Frequency Bias Setting was chosen to ensure that BAs are always over-biased. The standard needs to allow some margin in the Frequency Bias Setting to ensure that the bias setting is over-biased

Response: The SDT agrees with your clarification that the 1% minimum applies to the Frequency Bias Setting. We also agree to evaluate the need to be somewhat (as opposed to extremely) over-biased. For example, if a Balancing Authority's observed Frequency Response was . 4% of its annual forecasted peak load then, at a minimum, a value such as $.1 \%$ would be added to the Frequency Bias setting to make it less likely that the Frequency Response will be counteracted by AGC actions.

Bonneville Power Administration	No	Until the calculations used for FRO are spelled out and how natural Frequency Response is to be measured, BPA cannot agree that elimination of the 1\% minimum will bring Frequecy Bias closer or equal to natural Frequency Response.
Response: The SDT has provided clarification in Attachment A, Attachment B and the Background Documents.		
IRC Standards Review	No	Please provide the technical basis for the 4-year phase-out schedule.

Organization	Yes or No	
Committee		The SRC suggests that incremental changes should be made and evaluated to determine whether they are indeed beneficial before additional changes are made. Until a standard is defined, it is not appropriate to set an implementation date on the transition.
Also, please clarify that the process is to gather data, analyze that data to determine what has been the actual		
frequency response, and then to determine the Frequency Bias Settings to be closer to or equal to the natural		
frequency response, and is not saying that the next actual frequency response must equal the Frequency		
Bias Setting that the ERO has assigned. There is a subtle difference here that must be clarified in order to		
avoid the unintended consequence of "punishing" an entity for not providing a response equal to the		
Frequency Bias Setting.		

Response: The technical basis for the phase out schedule is to allow time to evaluate how each Frequency Bias Setting change impacts both reliability and control criteria CPS1 and CPS2 performance.
The intent of the Implementation Plan proposed was to evaluate the effectiveness of each setting change before additional refinement to the Frequency Bias Setting is made and incorporated into the AGC algorithm. This has been removed from the Implementation Plan. The SDT has chosen an alternate method for reducing the minimum Frequency Bias Setting.

Standard language is not intended to penalize entities for not providing a response equal to its Frequency Bias Setting. The intent of the standard is to establish a Frequency Response Obligation (FRO) representing the minimum response required for reliable interconnected operations. The Frequency Bias Setting can differ from the determined FRO value as appropriate for reliability for which compliance will only evaluate if the Frequency Bias Setting is refined correctly and implemented in a timely manner.

ERCOT	No	Please provide the technical basis for the 4-year phase-out schedule. The SRC suggests that incremental changes should be made and evaluated to determine whether they are indeed beneficial before additional changes are made. Until a standard is defined, it is not appropriate to set an implementation date on the transition. Also, please clarify that the process is to gather data, analyze that data to determine what has been the actual frequency response, and then to determine the Frequency Bias Settings to be closer to or equal to the natural frequency response, and is not saying that the next actual frequency response must equal the Frequency Bias Setting that the ERO has assigned. There is a subtle difference here that must be clarified in order to avoid the unintended consequence of "punishing" an entity for not providing a response equal to the Frequency Bias Setting.

Response: The technical basis for the phase out schedule is to allow time to evaluate how each Frequency Bias Setting change impacts both reliability and control criteria CPS1 and CPS2 performance.

The intent of the Implementation Plan proposed was to evaluate the effectiveness of each setting change before additional refinement to the Frequency Bias Setting is made and incorporated into the AGC algorithm. This has been removed from the Implementation Plan. The SDT has chosen an alternate method for

[^52]| Organization | Yes or No | Question 8 Comment |
| :--- | :---: | :--- |
| reducing the minimum Frequency Bias Setting.
 Standard language is not intended to penalize entities for not providing a response equal to its Frequency Bias Setting. The intent of the standard is to establish a
 Frequency Response Obligation (FRO) representing the minimum response required for reliable interconnected operations. The Frequency Bias Setting can differ
 from the determined FRO value as appropriate for reliability for which compliance will only evaluate if the Frequency Bias Setting is refined correctly and
 implemented in a timely manner. | | |
| Kansas City Power \& Light | No | Simply eliminating the minimum frequency response and establishing an FRO obligation for each BA will not
 result in a knowledge that a BA has moved closer to its natural frequency response. First, there is an
 underlying assumption that the FRO dictated for the BA will be "matched" by a BA's resources to achieve a
 natural response close the FRO and until improved methods of calculating a BA's actual frequency response
 are developed, there will be no accurate way of determining if a natural response is close to the FRO
 obligation. |

Response: The intent of the first sentence in the comment above is not clear. There is no underlying assumption that natural response will match the frequency response obligation. However, the compliance process will provide a stimulus to the BA to achieve at least that level of frequency response.
The FR SDT is expending considerable effort to develop a reasonably accurate measurement of natural response, and is in the process of choosing among several promising metrics.

NorthWestern Energy	No	Page 2 implies that there is currently too much frequency response based on the 1\% of peak demand method of establishing frequency bias. Even though NWE does not use the 1\% method, NWE feels that the 1\% minimum has been a tried and true method of providing frequency response in the Western Interconnection.
Without the 1\% minimum (and BA's using a natural response less than the 1\%), the total interconnection frequency response would decrease according to research. This would lead to decreased interconnection bias, causing other operational issues, such as lower L10 values and possible CPS2 compliance factors.		

Response: The opening sentence of this comment appears to be a misstatement. The FR SDT believes a gap exists between the natural Frequency Response and the Frequency Bias Settings calculated based on the 1% of peak demand criteria, resulting in excessive and unnecessary regulation occurring that is related to high frequency conditions following DCS events and other circumstances. The FR SDT agrees that a reduction in the 1% of peak demand criteria for the Frequency Bias Setting can adversely affect the overall Interconnection Frequency Bias Setting, L10 values, and possibly CPS 2 compliance also.

Westar Energy	No	The 1\% requirement should be phased out with the implementation of this standard.
Response: control criteria CPS1 and CPS2 performance.		
FMPP	No	There still needs to a floor value; 1% may not be the correct value, but zero is not the correct floor.

| Organization | Yes or No | Question 8 Comment |
| :--- | :---: | :--- | :--- |
| Response: The floor will not be zero. Each Balancing Authority will have a required FRO contribution reflective of the natural Frequency Response in its
 Frequency Bias Setting. | | |
| American Electric Power | No | Please see response to question 7. |

Response: Please see our response to Question 7.

Duke Energy	No	Duke Energy agrees that a gradual reduction (in magnitude) of the minimum as part of the field test is needed to determine what is the "right" amount of response needed, but the changes cannot be done in a vacuum. Duke Energy continues to be concerned with the impact that the changes to the Frequency Bias Setting ("FBS") will have on the bounds guiding secondary control (CPS1, CPS2 and the draft Balancing Authority ACE Limit or "BAAL" currently under a Field Trial under NERC Project 2010-14). Eastern Interconnection Frequency Response: For those not familiar with the work of the FRRSDT or the NERC Resources Subcommittee around Frequency Response, the estimated response for the Eastern Interconnection on average appears to be less than half of the Interconnection's total FBS in magnitude today. If the decision was made to hold Frequency Response at its current level, this standard could result in the FBS being reduced for many, if not most, Balancing Authorities to about half of what it is today. The FRO allocation would eventually drive what the minimum FBS needs to be, with the FBS needing to be greater than or equal to the FRO, or perhaps FRM, in magnitude at a minimum. Estimating the impact: To look further into the secondary control performance implications of BAs using a reduced FBS, Duke Energy took four sample months of clock-minute data for twelve BAs, cut the Interconnection total and each BA's FBS in half, recalculated each BA's clock-minute ACE taking out half of the bias component, and then calculated CPS1, CPS2 and BAAL estimated performance based upon those changes. Recognizing that the secondary control and resulting ACE of the BAs would be different and dependent upon the standards to be met, the results were not intended to estimate what the performance of the BAs would be, but were intended to help indicate where the problem areas existed based upon today's operation measured to a tighter control criteria. Impact on CPS1 and BAAL: The two bounds that are frequency-dependent, CPS1 and the draft BAAL, are cut in half for any given frequency by cutting the FBS in half. For CPS1 the impact of reducing the FBS looked reasonable with the results leaning toward overall improvement in CPS1 for almost half or better of the BAs (5 of 12, 8 of 12, 6 of 12, and 12 of 12) for the given months even with the tighter bounds, but more analysis may be needed. Though CPS1 looks manageable, the sample set did not include small BAs, and some BAs already in the 100-120\% range appeared more at risk. For BAAL the longest duration of ACE exceeding the low or high BAAL stayed the same or got worse in all cases. As with today where the BAAL bounds get wider as frequency gets closer to 60 Hz where the majority of operation occurs, the additional flexibility of operation is offset by the BAAL bounds getting tighter than the CPS2 limits as frequency deviates farther from 60 Hz . With BAAL cut in half for this scenario, compliance will be more challenging and costly to manage to not exceed 30 minutes for any event. One of the

Organization	Yes or No	Question 8 Comment
		unknowns is whether the Frequency Trigger Limit for the BAAL calculation will stay where it's at or be lowered, as the current value was based upon UFLS at 59.82 Hz , rather than today's UFLS of 59.7 Hz . The BARCSDT under NERC Project 2010-14 has more work ahead before any changes can be proposed.Impact on CPS2: Though the industry is not seeing a reliability need to tighten secondary control in normal operation, the industry can't avoid such "tightening" with CPS2 limits directly dependent upon the FBS of the Balancing Authority and total FBS of the Interconnection. For the four months reviewed where CPS2 limits were cut in half, if one looked at the results individually the drop in CPS2 performance across the twelve BAs ranged from 2.6% to $33.8 \%, 4 \%$ to $33.5 \%, 3.8 \%$ to 37.8%, and 3.1% to 35.1%, with a median of $19.4 \%, 18.4 \%, 20.3 \%$ and 18.9% for the four months. Noting that CPS2 performance must be 90% or greater on a monthly basis, improving CPS2 performance by even 10% translates to over 70 hours of operation in a month where additional secondary generation control and other actions may be required. Duke Energy notes also that with less error in the ACE, the results indicate that the distribution of ten-minute events exceeding L10 would move closer toward the 50-50 chance that CPS2 will be forcing control action even though the ACE is in support of the Interconnection frequency (results showing the average moving from $27-34 \%$ to $39-43 \%$ of the ten-minute periods exceeded when in support of Interconnection frequency).Conclusion: Duke Energy does not believe there is a reliability need pushing the industry to tighten secondary control to the degree discussed above simply as a result of reducing the Frequency Bias Setting. If the calculated Frequency Response of the Interconnection stayed at its current level, what would be the justification for tightening the secondary control requirements of CPS1, CPS2 and the proposed BAAL? Duke Energy supports taking more of the error out of the ACE equation by having the FBS closer to the estimated Frequency Response of the Balancing Authority, however, Duke Energy does not believe the result should be a significant increase in secondary control costs to meet the CPS1, CPS2, or draft BAAL requirements.

Response: The SDT appreciates receiving this analysis of the impact Frequency Bias setting can have on secondary control. Please continue to analyze and share this technical data to the extent possible with the SDT. The SDT will perform comparable analyses during the field trial for determining the proper balance between having less "over control" than is perceived with respect to possibly increasing the secondary control cost incurred by individual Balancing Authorities because a smaller Frequency Bias Setting is utilized.

Alberta Electric System Operator	No	The standard seems to propose to replace the 1% minimum frequency bias with the new proposed FRO. The AESO finds it difficult to comment on if it is not clear on how the FRO is determined.

Response: The Frequency Response Obligation is used for determining if there is sufficient primary Frequency Response for reliability. The minimum Frequency Bias Setting to be used in AGC will have a floor value needed to assure reliable control, and can be different than the Frequency Response Obligation.
The SDT has modified Attachment A to provide additional clarity regarding the calculation methodologies.

Independent Electricity System Operator	Yes	We do not have an opinion on the proposed elimination but do have a difficulty understanding the phase-out plan. Please see our comments under Q7, above.

Organization	Yes or No	Question 8 Comment

Response: The FR SDT has created Attachment B to provide clarifying language for the phase-out plan.
Please refer to the SDT response to question \#7.

SPP Standards Development	Yes	While we agree that we think such a change will move the industry in the right direction, we have nothing upon which to base that opinion. On the other hand, the 1% minimum does provide a safety net for the interconnection. Moving away from the minimum requirement over a 4-year period should give us the necessary operating experience to become more confident in our numbers.

Response: The goal of the phase-out plan is to determine the best Frequency Bias Setting floor value to use for reliability that is based on a measured and cautionary approach.

Southern Company	Yes	Comments: Agree only to the extent that the natural Frequency response can be accurately determined.

Response: The FR SDT is investing considerable effort on behalf of industry to develop a reasonable, practical and accurate measurement of natural frequency response and also a process for choosing the best of several promising metrics.

Progress Energy	Yes	We have seen actual system operations harmed by the current, excessive biasing requirement on several occasions.	
Response: The SDT thanks you for your affirmative response and clarifying comment.			
NIPSCO	Yes	Obviously it will bring it closer. The 4 year phase-in is a great idea.	
Response: The SDT thanks you for your affirmative response and clarifying comment..			
Manitoba Hydro	Yes	Yes, the removal of the 1% of projected peak load which has a large window of probability for error should improve BIAS calculations.	
Response: The SDT thanks you for your affirmative response and clarifying comment.			
Patterson Consulting, Inc.	Yes	Moving Frequency Bias Settings closer to natural Frequency Response is critical to improving observation, reporting, and control.	
Response: The SDT thanks you for your affirmative response and clarifying comment.			

Organization	Yes or No	Question 8 Comment
EKPC	Yes	
Energy Mark, Inc.	Yes	
Beacon Power Corporation	Yes	
ENBALA Power Networks	Yes	
SERC OC Standards Review Group	Yes	
FirstEnergy	Yes	
Santee Cooper	Yes	
LG\&E and KU Energy	Yes	
Arizona Public Service Company	Yes	
Seattle City Light	Yes	
ISO New Engand Inc.		With . 4% peak load being a typical actual frequency response lately for Balancing Authorities, the 1% of peak load to $.8 \%$ of peak load transition seems prudent. Perhaps a further reduction to $.6 \%$ may be useful as well, but lesser floors may in effect result in AGC too often canceling out the primary frequency response being provided.
Response: The SDT thanks you for your clarifying comment.		
Associated Electric Cooperative, Inc.		I agree with this emerging standard's recognizing that the arbitrary 1% of peak-load should be refined by being lowered to better reflect each BA's expected frequency response.
Response: The SDT thanks you for your clarifying comment.		
Northeast Power Coordinating Council		Refer to the response to Question 17.

NERC

Organization	Yes or No	Question 8 Comment
Response: Please refer to the SDT response to Question 17.		

9. Do you agree with the drafting team that this standard should be field tested? If not, please explain in the comment area.

Summary Consideration: The majority of the commenters agreed that this standard should be field tested. Most commenters indicated that the implementation plan should include information regarding the field trial and also be coordinated with the field trial schedule. Individual commenters suggested that the field trial is not required if detailed calculations and definitions were provided to entities for implementations and the field trial should not serve as a pre-established standard.
In response to industry feedback received, the SDT is presently field testing the methodologies for calculating FRM and FRO. The reduction of the Frequency Bias Setting is no longer part of the field trial. The SDT has defined a process for the ERO to follow to reduce the minimum Frequency Bias Setting once this proposed standard has been approved.

Organization	Yes or No	Question 9 Comment
FirstEnergy	No	We believe that the implementation plan should include information regarding the field trial and how it fits in with the phase-in implementation. It appears as though the field trial is being conducted based on 2010 data and will be concluded upon completion of the development of the standard but we think this could be clarified. Furthermore, as stated in the process manual, a field test "should include at a minimum the data collection and analysis or field test tplan, the implementation schedule, and an expectation for periodic updates of the results." The field test information posted is not clear on the implementation schedule of the field test as well as when and how periodic updates will be available.

Response: Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

Bonneville Power Administration
No
:---
frequency bias must be spelled out in detail and the definition of natural Frequency Response under multiple
loading conditions must also be detailed. Once these conditions have been adequately met, there will not be
a need for a field trial.

Organization	Yes or No	Question 9 Comment
Please refer to Attachment B for reduction plan details.		
MRO's NERC Standards Review Subcommittee	Yes	The field test is not identified in the implementation plan. It should be.
Response: The SDT thanks you for your affirmative response and clarifying comment. Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary correction. Please refer to Attachment B for reduction plan details. Midwest ISO Standards Collaborators\quad Yes	The field test is not identified in the implementation plan. It should be.	

Response: The SDT thanks you for your affirmative response and clarifying comment.
Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

SPP Standards Development	Yes	Field testing will provide an opportunity to learn as we move forward with the standard. Modifications can be made as experience is gained and knowledge is acquired.

Response: The SDT thanks you for your affirmative response and clarifying comment.
Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary correction. Please refer to Attachment B for reduction plan details.

IRC Standards Review Committee	Yes	A Field Test, sometimes called a Field Trial, is appropriate to identify and establish methods, but it should be a Field Trial, not a pre-established standard. The standard should be put into place later after the technical determinations have been accomplished. The time required for the field test should be taken into account when developing the implementation plan, especially the phase-out plan for R5.

Organization	Yes or No	Question 9 Comment

Response: The SDT thanks you for your affirmative response and clarifying comment.
Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

ERCOT	Yes	A Field Test, sometimes called a Field Trial, is appropriate to identify and establish methods, but it should be a Field Trial, not a pre-established standard. The standard should be put into place later after the technical determinations have been accomplished. The time required for the field test should be taken into account when developing the implementation plan, especially the phase-out plan for R5.

Response: The SDT thanks you for your affirmative response and clarifying comment.
Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

ISO New Engand Inc.	Yes	A Field Test, sometimes called a Field Trial, is appropriate to identify and establish methods, but it should be a Field Trial, not a pre-established standard. The standard should be put into place later after the technical determinations have been accomplished.

Response: The SDT thanks you for your affirmative response and clarifying comment.
Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

Arizona Public Service Company	Yes	What criteria will be used to evaluate the field trial? What constitutes acceptable/non-acceptable results? [see also, comments to question 7]
Response: Please refer to our comments for Question 7.		
Progress Energy	Yes	This plan should be field tested, although it feels as though this is less of a "field test" based on engineering judgement and more of trial and error testing. This problem should be studied to determine what is necessary

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

Organization	Yes or No	Question 9 Comment
	to manage system frequency within desired limits for the worst single contingency during the period of time the system is most vulnerable (minimum load). The result should be spread proportionally to all BAs in the interconnection, and those BAs should respond to and bias their ACE equation by the required value.	
Response: The SDT thanks you for your affirmative response and clarifying comment. Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.		
Attachment A has been revised to clarify the calculation methodology.		
NIPSCO	Yes	Great idea

Response: The SDT thanks you for your affirmative response and clarifying comment.

Westar Energy	Yes	This is a maior change and fiedd testing is required to valid the standard and allow for revisions based on testing results

Response: The SDT thanks you for your affirmative response and clarifying comment.
Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

Manitoba Hydro	Yes	Yes, to ensure the eastern interconnection frequency health does improve with these new methods and if it does each BA will have a more accurate and fair BIAS setting.

Response: The SDT thanks you for your affirmative response and clarifying comment.
Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

American Electric Power	Yes	The changes proposed should be thoroughly tested before any implementation.

Organization	Yes or No	Question 9 Comment

Response: The SDT thanks you for your affirmative response and clarifying comment.
Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

Patterson Consulting, Inc.	Yes	A field test will provide valuable refinment and verification of parameters, and should identify unexpected ramifications.

Response: The SDT thanks you for your affirmative response and clarifying comment.
Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

South Carolina Electric and Gas	Yes	We do agree that a field test should take place but more details on the field test would be helpful.
Res		

Response: The SDT thanks you for your affirmative response and clarifying comment.
Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

Independent Electricity System Operator	Yes	The time required for the field test should be taken into account when developing the implementation plan, especially the phase-out plan for R5.

Response: The SDT thanks you for your affirmative response and clarifying comment.
Requirement R5 has been inserted back into the proposed standard. SDT has revised the plan for reducing the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table showing the reduction schedule for the minimum bias setting. The SDT is proposing another method for reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reduction and make necessary corrections. Please refer to Attachment B for reduction plan details.

NERC

Organization	Yes or No	
LG\&E and KU Energy	Yes	
SERC OC Standards Review Group	Yes Comment	
Kansas City Power \& Light	Yes	
Southern Company	Yes	
ENBALA Power Networks	Yes	
NorthWestern Energy	Yes	
Energy Mark, Inc.	Yes	
FMPP	Yes	
EKPC	Yes	
We Energies	Yes	
Alberta Electric System Operator	Yes	
Duke Energy	Yes	
Seattle City Light	Refer to the response to Question 17.	
Northeast Power Coordinating Council		
Response: Please refer to our response to Question 17.		

10. Attachment A of the proposed standard describes the criteria for selecting events to be analyzed. Do you agree with the criteria as described in Attached A? If not, please explain in the comment area.

Summary Consideration: Comments received indicate the majority of commenters agree with having criteria for selecting events to be analyzed and requested clarification on the rationale for the criteria proposed. Research performed by the FRR SDT indicates analysis using 25 events and mean frequency data values will result in stable, consistent results.
Many commenters also expressed concern that the selection criteria was too stringent; that criteria language would omit selection of events worth reviewing; that Balancing Authorities should have flexibility in choosing which event data is selected and also have ability to modify submitted data for ensuring accuracy; and that using event data from the prior year could create double jeopardy. The intent for frequency values selected is to ensure most generators responsive to the interconnection will experience a governor response. The FRR SDT also agrees that interconnection subject matter experts and Balancing Authorities require the flexibility to select noteworthy events of interest, flexibility to identify which events to include or exclude for analysis, and allowance for modifying data for quality and other relevant concerns. The FRR SDT also believes that in those years where 25 acceptable events do not exist, stability and consistency concerns outweigh any adverse impacts from utilizing a few events from the previous year for analysis and that actual impact on current year results will be negligible.
After reviewing comments, the FRR SDT has revised Attachment A language for clarity. The team separated the rationale into a separate document and also revised Form-1.

Organization	Yes or No	
Santee Cooper	No	In Attachment A, item 2.b. states that "The time from the start of the rapid change in frequency until the point at which Frequency has largely stabilized should be less than 18 seconds." It appears that this statement was to ensure that frequency is rapidly decaying; however, frequency could continue to decay beyond 18 seconds and should still be considered an event. Item 3 states that point A is calculated as "an average" is this considered to be an average of all samples or selected samples. Also, we would like to know how the different thresholds for the interconnections were determined. We are also concerned with how the threshold would affect compliance to the standard if it was ever required to be measured on an event basis, particularly those events close to the threshold dead-band settings. Words such as "assumed" should be avoided. Please explain how the number of 25 events was determined for the list of frequency events and explain how those events will be distributed throughout the year (i.e., on and off-peak, and seasonal).

Organization	Yes or No	Question 10 Comment
		Events that meet the selection criteria should be posted by the ERO on a monthly basis. This will allow BAs to evaluate their performance throughout the year.

Response: The intent for using the words "largely stabilized" in the sentence provides desired flexibility for selecting events for analysis. For example, if frequency drops from 60 Hz to 59.94 Hz in 6 seconds and then continues to decay to 59.935 Hz over the next 20 seconds; then this event would be selected for analysis.
With respect to point A, all available samples for the time window specified are averaged. The number of samples obtained for averaging will be determined by the Balancing Authority's EMS scan rate.
Each Interconnection threshold will be determined by subject matter experts who have knowledge of the historical events being analyzed, CERTS research and field trial results. It is not the intent of this standard to seek compliance on a per event basis especially since data quality issues make this type of analysis difficult to validate.
Analysis of metrics being considered by the SDT shows the median or mean frequency data analyzed will converge to a stable state using only 20 event samples obtained for the year being reviewed. The SDT expects the sample set to include seasonal, on-peak, and off-peak events that satisfy the selection criteria specified.
The SDT proposes posting event data on a quarterly basis so Balancing Authorities can periodically analyze data during the year.
Attachment A has been divided into two separate documents; a revised Attachment A containing the calculation methodology and a Background Document explaining the development rationale for the standard's requirements and measures.

Bonneville Power Administration	No	BPA does not agree with the criteria described in the attachment. 36 mHz is not a large enough deviation to adequately measure frequency response. There is no need to go to that small of a deviation in order to insure that 25 events are found over the course of a year.

Response: The FR SDT will consult with WECC subject matter experts to refine the frequency deviation selection criteria for the western interconnection. Keep in mind the selection threshold will be adjusted over time, as supported by evidence, to ensure reasonable selection criteria is utilized.

| SPP Standards Development | No | While Criteria 5 allows for the ERO to exclude 'non-conforming' SEFRD points there isn't a mechanism
 provided that instructs us on how to exclude those points in FRS Form 1.
 Would we be required to reach out for an additional point to get us back to 25 if a point is excluded? Who
 excludes the point in question? Is it the BA or is it the ERO? Will the ERO have sufficient knowledge to
 exclude the point in question?
 In Critieria 2.a. the first sentence should read "The frequency deviation (Point A minus Point C) must
 exceed...". Also, 36 MHz should be 36 mHz. |
| :--- | :--- | :--- | :--- | :--- |
| Response: The SDT has developed a new version of FRS Form 1, and it clarifies the process of how a Balancing Authority excludes an event. The ERO will not | | |

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

Organization	Yes or No	Question 10 Comment
exclude events. The Balancing Authority would not be required to replace an excluded event with another event since analysis of metrics being considered by the SDT shows the median or mean frequency data analyzed will converge to a stable state using only 20 event samples obtained for the year being reviewed. Analysis also shows that the median value is more consistent than the mean value when the sample set includes data for an event that otherwise should have been excluded from the analysis. The SDT thanks you for catching the typographical error referencing 36 mHz . The SDT has revised Attachment A and this value is no longer referenced.		
IRC Standards Review Committee	No	The criteria for events selection are acceptable, but the criteria stated in Attachment A for performance required by the FRO is too stringent. Criteria requiring avoidance of Point C encroachment on step 1 of the UFLS program is more stringent than proven performance that now exists. To make this change will be very costly and will not provide for a commensurate increase in reliability.
Response: FRO values have not yet been selected. The intent is to choose FRO values that are necessary for the reliability of each interconnection.		

Response: The intent is to choose among the largest frequency deviation events to obtain a meaningful sample set for analysis accuracy. The FR SDT is open to suggestions to refine the selection criteria for each interconnection. A balance needs to be established between having an inadequate sample resulting in less computational accuracy versus having a sample that is not representative of actual response occurring for the larger frequency deviation events of concern.

Progress Energy	No	It should be explicitly stated that point C must be outside the standard frequency deviation deadband referenced from 60.0 Hz , not a deviation of more than the frequency deviation deadband from the pre- disturbance frequency. Most of the new electronic govenors operate with a 60 Hz center instead of changes in frequency relative to the current value.

Organization	Yes or No	
		Additionally, the first limit under number 2 should be 36 mHz, not 36 MHz as they are a factor of $10 \wedge 9$ different. Lastly, the event selection criteria listed in Attachment A uses the frequency as measured at Point C to qualify an event, in an effort to ensure that the deviation exceeds the governor deadband. However, Point C is an instantaneous point which will differ in value within the interconnect based on how close the loss of generation is to the measuring point due to the elasticity of frequency across the interconnect during the inertial response. Therefore, local readings by the BA should be allowed to exempt a specific event if the local frequency did not exceed 36 mHz.

Response: It is expected that the selection criteria will yield events with Point C that clearly exceed the generator governor deadband and result in a response action. While the distance between the measuring point and the loss of generation location will cause different Point C (and other) frequency values being measured at different system locations, the variation in Point C frequency values among the different locations will not be significant for most events or most Balancing Authorities. Keep in mind each Balancing Authority will use its EMS local frequency data for determining sample points A and B. The FR SDT anticipates selecting events that will not require the Balancing Authority to exclude events because of local frequency values measured. The FR SDT will consider high local frequency as a possible selection criteria exclusion factor in the next revision of Form 1.

NorthWestern Energy	No	Should state "The Point C value is the minimum of frequency samples and should be within 8 seconds after the start of the rapid change". NWE feels some instances could be more than 8 seconds and "should" would allow for this if it occurred.
Response: information. changing "shall" language to give subject matter experts more flexibility with selecting events.		
Hydro-Quebec TransEnergie	No	The criteria to determine what should be considered as a frequency event should be defined by Interconnection. For example, HQT has no dead band on governors; therefore the 36 mHz is not applicable. If more than 25 events occurred within a year, will they all be selected or only a set of 25 will be? Who will perform this selection and base on what criteria.
Response		
events will be chosen by subject matter experts for that interconnection.		

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

Organization	Yes or No	Question 10 Comment
		year then those second half of the year events are used in the next year, it could cause an inappropriate violation. BA's need the ability to exclude some events based on measure issues with specific events including scan rates, unusual intermittent resource changes, non-conforming load, unusual ramping of load or interchange during the event.

Response: Based on comments received from industry, the SDT proposes posting event data on a quarterly basis so Balancing Authorities can periodically analyze data during the year.
Generally, each Balancing Authority will have 25 acceptable events occur each calendar year. Using a few events from the preceding year is not expected to adversely affect accuracy of analysis results. The SDT is re-evaluating exclusionary criteria and is also developing a process to permit reasonable adjustments to an event for atypical circumstances.

| FMPP | No | Attachment A states that if a year occurs in which there are not 25 events that meet the remaining criteria
 below, then the most recent 25 events (as defined below) will be used for determination of an entity's
 compliance with the FRM requirement and storage of SEFRD.
 Problem - by using events from last year to determine an entity's compliance with a Requirement for this year
 puts the entity in double jeopardy for last year's events, which were already used for compliance for last year.
 Attachment A states that events occurring during periods in which either significant interchange schedule
 ramping or load ramping is likely, should be excluded if other events are available for measurement purposes.
 Questions - What is significant?How can the ERO determine significant interchange schedule ramping is
 likely?Likely for how many BAs?It would be better to define significant and let the BA exclude any events that
 meet this definition, since each BA will be ramping differently. Since SEFRD is defined as the individual
 sample of event data from a Balancing Authority which represents the change in Net Actual Interchange
 (NIA), divided by the change in frequency, expressed in MW/O.1Hz, whenever a BA includes an event with a
 "significant" change in NIA due to a large interchange schedule ramp, the FRM is totally skewed, and should
 not be included. If other events are available means that if other events are not available then an entity's
 compliance is going to be based on an event or events that has been skewed for the BA by significant
 interchange schedule ramp. |
| :--- | :--- | :--- | :--- | :--- |

Organization	Yes or No	Question 10 Comment
American Electric Power	No	Attachment A only appears to be attempting to address the frequency bias setting for AGC portion of overall frequency response without addressing the governor response portion issue. Attachment A still tries to Generator Operator levels. WECC has stated through previously submitted comments from its three extensive validation result tests on
frequency response with respect to 5\% droop for a 0.1 Hz frequency deviation that actual response would be		
2.5 times greater if the proper governor response actually occurred. The studies also showed only 40\% of the		
governors effectively responded. Extensive test result studies such as WECC's should not be ignored.		
Attachment A criteria does not address the lack of frequency response from contributing factors associated		
with actual governor response, impact of droop setting, amount of BA generation actually on-line at time of		
event, maximum loading of generation and amount of BA imported interchange to meet load.		

Organization	Yes or No	Question 10 Comment
		previous statement is a typical schedule, then the statement "The ERO will use the following criteria for the selection of events to be analyzed." could be interpreted as merely the typical process to be used, but not a binding one. In short, the purpose and intention of Attachment A is not communicated unambiguously.

Response: Item 3 was intended as guidance to give subject matter experts flexibility in choosing the best possible events for analysis. The SDT recognizes that in some years valid but less than ideal events from a selection criteria perspective may be chosen for analysis. The SDT will improve document clarity and also consider if it is prudent to make selection criteria hard or soft requirements.

Attachment A has been divided into two separate documents; a revised Attachment A containing calculation methodology and a Background document explaining the development rationale for the standard requirements and measures.

Xcel Energy	No	1) Using 25 events is likely excessive in the Western Interconnection. Several of the past few years have had less than 10 events. Given the extent to which generation is built and resource profiles change, projecting 25 events will include events in the bias calculation that are less reflective of the current generation profile and skew our bias results.
2) Calculating point A as "...an average over the period from -16 second to 0 seconds" for any event that		
meets the criteria set in Attachment A means that Point A will likely be within 1-2 mHz of 60 Hz, regardless of		
starting system conditions. This can cause data to be skewed, as the response will appear to be less if the		
frequency immediately before the event is further from 60 Hz than the average. Further, it requires additional		
data. If there is some corrupted data in the 16 seconds prior to the event, it may be required to throw out		
event data. The 16 seconds prior to the event is not useful data.		
3) Point 5 addresses excluding events "...in which significant interchange schedule ramping or load ramping is		
likely..." Not only are the FRO and FRM definitions too vague, they require analysis of real time generation		
and load ramping that may not be realistic. Attachment A should likely include specific criteria for removing		
events, including lack of reasonable data and, as described here, significant schedule or load ramping, where		
"significant" is defined.		

Organization	Yes or No	Question 10 Comment
		distributed throughout the year (i.e., on and off-peak, and seasonal).The criteria in Attachment A should include how and where the arresting frequency is measured
Response: The SDT thanks you for your affirmative response and clarifying comments. The magnitude of the frequency change and the initial frequency values identified were selected to ensure that most generators responsive to the interconnection will exceed the governor frequency dead band limits. It is not the intent of this standard to seek compliance on a per event basis especially since data quality issues make this type of analysis difficult to validate. Analysis of metrics being considered by the SDT shows the median or mean frequency data analyzed will converge to a stable state using only 20 event samples obtained for the year being reviewed. The SDT expects the sample set to include seasonal, on-peak, and off-peak events that satisfy the selection criteria specified. Generally, subject matter experts will use high speed frequency recorder data to select events for analysis. Technology is now available that allows cross- checking data at multiple locations for the same event.		
SERC Oc Standards Review Group	Yes	While we agree with the basic process, we would like to know how the different thresholds for the interconnections were determined. The review team is also concerned with how the threshold would affect compliance to the standard if it was ever required to be measured on an event basis, particularly those events close to the threshold dead-band settings. Words such as "assumed" should be avoided. Please explain how the number of 25 events was determined for the list of frequency events and explain how those events will be distributed throughout the year (i.e., on and off-peak, and seasonal).

Response: The SDT thanks you for your affirmative response and clarifying comment.

The magnitude of the frequency change and the initial frequency values identified were selected to ensure that most generators responsive to the interconnection will exceed the governor frequency dead band limits.
It is not the intent of this standard to seek compliance on a per event basis especially since data quality issues make this type of analysis difficult to validate.
Analysis of metrics being considered by the FR SDT shows the median or mean frequency data analyzed will converge to a stable state using only 20 event samples obtained for the year being reviewed. The FR SDT expects the sample set to include seasonal, on-peak, and off-peak events that satisfy the selection criteria specified.

South Carolina Electric and Gas	Yes	While we agree with the basic process, we would like to know how the different thresholds for the interconnections were determined. The review team is also concerned with how the threshold would affect compliance to the standard if it was ever required to be measured on an event basis, particularly those events close to the threshold dead-band settings. Words such as "assumed" should be avoided. Please explain how the number of 25 events was determined for the list of frequency events and explain how those events will be distributed throughout the year (i.e., on and off-peak, and seasonal).

Organization	Yes or No	Question 10 Comment

Response: The SDT thanks you for your affirmative response and clarifying comment.
The magnitude of the frequency change and the initial frequency values identified were selected to ensure that most generators responsive to the interconnection will exceed the governor frequency dead band limits.
It is not the intent of this standard to seek compliance on a per event basis especially since data quality issues make this type of analysis difficult to validate.
Analysis of metrics being considered by the FR SDT shows the median or mean frequency data analyzed will converge to a stable state using only 20 event samples obtained for the year being reviewed. The FR SDT expects the sample set to include seasonal, on-peak, and off-peak events that satisfy the selection criteria specified.
Arizona Public Service Company \quad Yes \quad AZPS would recommend using a lesser number of events and more severe events in the calculation.

Response: The SDT thanks you for your affirmative response and clarifying comment.
A balance needs to be established between having an inadequate sample resulting in less computational accuracy versus having a sample that is not representative of actual response occurring for the larger frequency deviation events of concern.

NIPSCO	Yes	Pretty good

Response: The SDT thanks you for your affirmative response and clarifying comment.

EKPC	Yes	Please provide detailed information on the 25 events that will be chosen for the event.

Response: The SDT thanks you for your affirmative response and clarifying comment.
Attachment A has been revised to include an improved detailed description of the criteria selection process.
The magnitude of the frequency change and the initial frequency values identified were selected to ensure that most generators responsive to the interconnection will exceed the governor frequency dead band limits.

It is not the intent of this standard to seek compliance on a per event basis especially since data quality issues make this type of analysis difficult to validate.
Analysis of metrics being considered by the FR SDT shows the median or mean frequency data analyzed will converge to a stable state using only 20 event samples obtained for the year being reviewed. The FR SDT expects the sample set to include seasonal, on-peak, and off-peak events that satisfy the selection criteria specified.

Manitoba Hydro	Yes	Yes, 25 events should be sufficient to determine the FRM, while not overburdening the resources performing the analysis.

Organization

Response: The SDT thanks you for your affirmative response and clarifying comment.

Duke Energy	Yes	
Seattle City Light	Yes	
We Energies	Yes	
Energy Mark, Inc.	Yes	
ENBALA Power Networks	Yes	
Kansas City Power \& Light	Yes	
Midwest ISO Standards Collaborators	Yes	
FirstEnergy	Yes	
MRO's NERC Standards Review Subcommittee	Yes	
Alberta Electric System Operator		AESO suggests that the criteria should also consider including some frequency events where the BA has controlled separation from a region. In the case of Alberta, the frequency deviation is larger than most regional frequency deviations and provides a better measure on Frequency Response. Would the proposed standard permit for BA's to choose these events for inclusion in the determination of the frequency response?

Response: This is not a common occurrence. Very few Balancing Authorities operate in this manner. The expectation is events will be selected by the Balancing Authorities. The Balancing Authority may exclude events from consideration for specific conditions such as data quality issues.

Northeast Power Coordinating
 Council

Refer to the response to Question 17.

Response: Please refer to the SDT response to Question 17.

11. The proposed standard has a document attached to it that describes the SDT's reasoning for the Requirements (Attachment A - Frequency Response Background Document). Do you agree with the SDT that this document is useful and provides a clear understanding of the Requirements? If not, please explain in the comment area.

Summary Consideration: Several of the commenters did not agree that the Attachment A - Frequency Response Background document in its current form was useful and provided a clear understanding of the Requirements. In general most commenters indicated that Attachment A required correction, greater clarity and did not adequately explain the calculation methodology. The SDT has split Attachment A into two separate documents, revised Attachment A to better explain the calculation methodology, and improved the document's clarity. The SDT also revised FRS Form 1 and the background document for clarity. Several commenters stated Requirement R2 needed additional explanation so the SDT revised Requirement R2. Several commenters also expressed concern the standard was not well defined as drafted so Requirement R5 was inserted back into the draft standard to resolve this concern. Another concern identified that language appeared to give the ERO a blank check to make changes to the standard without an industry vote. Other commenters requested a better explanation for how FRO is determined and why the median value is considered a reliable statistical measure for calculating FRM.

R2. Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control.

R5. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is at least equal to one of the following:

- The maximum percentage of the Balancing Authority Area's estimated yearly Peak Demand within its metered boundary per 0.1 Hz change as specified by the ERO in accordance with Attachment B.
- The minimum percentage of the Balancing Authority Area's estimated yearly peak generation for a generation-only Balancing Authority per 0.1 Hz change as specified by the ERO in accordance with Attachment B.

Organization	Yes or No	Question 11 Comment
MRO's NERC Standards Review Subcommittee	No	Overall, we agree that the document is helpful. However, we do believe additional explanation is necessary for Requirement 2. It appears that the eresponsibility for identifying Frequency Bias Setting is being removed from the Balancing Authority. There is an implied obligation that the ERO will determine the Frequency Bias

Organization	Yes or No	Question 11 Comment
		Setting but it is not stated explicitly. Thus, we are left wondering who has the responsibility for determining the Frequency Bias Setting. On page 3 in the last paragraph of the Frequency Response Obligation and Allocation section, we suggest expanding the explanation of why Frequency Response Obligation is based on (peak generation + peak load)/2. This will result in less responsibility of Frequency Response today for a generator only control area than there currently is. Since load does respond to frequency, we are not suggesting this is wrong. We think it simply needs to be expanded upon in the explanation. Does load contribute the same amount as generation? If not, perhaps the ratio of gen and load response to total response should be reflected in the calculation.
Response: The SDT is not suggesting that the ERO determine the Frequency Bias Settings. The SDT has modified the language in Requirement R2 to provide further clarity as to the role of the ERO. The Requirement now reads "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."		
The SDT believes that there is presently no obligation on the generator only BA and that the proposed FRO will place an obligation on the generator only BA. The SDT has modified Attachment A to provide additional clarity concerning the calculation methodology.		
The SDT believes that this is a methodology that is technologically neutral and provides an FRO allocation across all geographic areas.		
Midwest ISO Standards Collaborators	No	Overall, we agree that the document is helpful. However, we do believe additional explanation is necessary for Requirement 2. It appears that the responsibility for identifying Frequency Bias Setting is being removed from the Balancing Authority. There is an implied obligation that the ERO will determine the Frequency Bias Setting but it is not stated explicitly. Thus, we are left wondering who has the responsibility for determining the Frequency Bias Setting. On page 3 in the last paragraph of the Frequency Response Obligation and Allocation section, we suggest expanding the explanation of why Frequency Response Obligation is based on (peak generation + peak load)/2. This will result in less responsibility of Frequency Response today for a generator only control area than there currently is. Since load does respond to frequency, we are not suggesting this is wrong. We think it simply needs to be expanded upon in the explanation. Does load contribute the same amount as generation? If not, perhaps the ratio of gen and load response to total response should be reflected in the calculation.

Response: The SDT is not suggesting that the ERO determine the Frequency Bias Settings. The SDT has modified the language in Requirement R2 to provide further clarity as to the role of the ERO. The Requirement now reads "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."

The SDT believes that there is presently no obligation on the generator only BA and that the proposed FRO will place an obligation on the generator only BA. The

Organization
Yes or No
SDT has modified Attachment A to provide additional clarity concerning the calculation methodology.
The SDT believes that this is a methodology that is technologically neutral and provides an FRO allocation across all geographic areas.

We Energies	No	Overall, we agree that the document is helpful. However, we do believe additional explanation is necessary for Requirement 2. It appears that the responsibility for identifying Frequency Bias Setting is being removed from the Balancing Authority. There is an implied obligation that the ERO will determine the Frequency Bias Setting but it is not stated explicitly. Thus, we are left wondering who has the responsibility for determining the Frequency Bias Setting.

Response: The SDT is not suggesting that the ERO determine the Frequency Bias Settings. The SDT has modified the language in Requirement R2 to provide further clarity as to the role of the ERO. The Requirement now reads "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."

FirstEnergy	No	We believe that more work is needed on this document and the requirements to provide for more clarity.
Response: The SDT has modified the Background Document to provide additional clarity concerning the reasoning behind the proposed requirements.		
Bonneville Power Administration	No	Overall comment: Attachment A does not adequately spell out the methodology that is to be used to determine the correct frequency bias for a Balancing Authority. In order for this standard to go forward, the methodology must be explicitly spelled out and moved into the standard, not attached as a background document that can be changed without vote. o Frequency Bias Setting vs. Frequency Response o RAS events should not be excluded. These events are designed to not have response on the system, even though there may be some primary response. o Paragraph 1 - "each BA has one month" conflicts with the standard that says prior to January 10th or 45 days (1.4 Additional Compliance Information). o 2.a - BPA is assuming the Drafting Team meant 36 mHz .36 mHz is very small and can be achieve during normal frequency deviations. Point C "within 8 seconds" must be moved to 10 to 12 second range in order to work in WECC. o 2.b - Why so far back on the - 16 seconds? o Third from the last paragraph - BPA cannot support a standard that isn't well defined, doesn't adequately spell out the methodology behind the requirements and essentially gives the ERO a blank check to make

Organization	Yes or No	Question 11 Comment
		changes to the standard without a vote. o Second to last paragraph -If you have a poor responding BA control less than they are currently the better responding BA will respond more due to the lower interconnection frequency. This will punish the BAs that have good response and reward those that have poor response, depending on the methodology used to calculate correct frequency bias terms. o Frequency Bias Setting Floor - BPA cannot support a standard that isn't well defined and essentially gives the ERO a blank check to make changes to the standard without a vote. o Frequency Response Obligation and Allocation - BPA cannot support a standard that isn't well defined and essentially gives the ERO a blank check for assigning an FRO to each BA. If this is the method for defining FRO, then it should be included in the requirements section of the standard. However, this section does not spell out how the FRO will be calculated other than that it will be based on the (peak generation + peak load)/2. The full methodology for calculating the FRO must be detailed and put in the standard.
Response: The SDT has modified Attachment A and the Background Document to provide additional clarity concerning the calculation methodology and the reasoning behind the proposed requirements. The SDT has been advised by NERC Legal that an attachment explicitly referenced in a Reliability Standard Requirement is enforceable as part of that Requirement.		
The SDT has modified the FRS Form 1 to allow for adjustments. Any adjustment will have to be justified.		
You are correct concerning the 36 mHZ and this has been corrected. The SDT is only using this to provide a minimum value for selection of events.		
The SDT has analyzed several different time periods for the Point A , Point B and Point C values. The SDT has chosen the time periods based on this analysis as detailed in Attachment A and FRS Form 1.		
The SDT is proposing to use -16 seconds in order to account for varying AGC scan rates to obtain an average.		
The SDT does not believe that there is any requirement presently in place that identifies good or poor responding BAs. The SDT further believes that a BA that is providing proper Frequency Response recognizes the importance and will continue to provide the necessary Frequency Response. Those BAs that are not providing adequate and sustained Frequency Response will be identified through the measure.		
The SDT disagrees with your comment that this proposed standard gives the ERO a "blank check" to modify the standard. The proposed standard is attempting to bring the Frequency Bias Setting and the natural Frequency Response closer together and not attempting to set a floor.		
The SDT has modified Attachment A to provide additional clarity concerning the calculation methodologies. The SDT has been advised by NERC Legal that an attachment explicitly referenced in a Reliability Standard Requirement is enforceable as part of that Requirement.		
SPP Standards Development	No	While we agree that Attachment A is useful, it hasn't quite got to the point where it clearly helps us understand the requirements as well as the calculations and other determinations that must accompany the standard.

Organization	Yes or No	Question 11 Comment

Response: The SDT recognizes this and has responded by revising FRS Form 1 and splitting Attachment A into two documents to better clarify the calculation methodology and the reasoning for the requirements.

IRC Standards Review Committee	No	Attachment A is useful, but it does not provide a clear understanding of all topics and issues. This is evidenced by the questions and comments the SRC is submitting.

Response: The SDT recognizes this and have responded by revising FRS Form 1 and splitting Attachment A into two documents to better clarify the calculation methodology and the reasoning for the requirements.

ERCOT	No	Attachment A is useful, but it does not provide a clear understanding of all topics and issues. This is evidenced by the questions and comments the SRC is submitting.
Response: The SDT recognizes this and have responded by revising FRS Form 1 and splitting Attachment A into two documents to better clarify the calculation methodology and the reasoning for the requirements.		
Southern Company	No	We did not want to vote on question 11 - clicked 'NO' in error Comments: Attachment A Comment 1: The initial draft of BAL-003 - Attachment A provides a range of valuable background details and historical information about Frequency Response. However, all of this information is not pertinent to the BAs ability to understand and comply with the Standard. The SDT should consider utilizing the Standards Processes Manual (page 39) which provides a detailed description of various alternatives to an attached supporting document. Document types include References, Guidance, Supplements, Training Material, Procedures, and White Papers. Comment 2: The Standards Processes Manual (page 39) makes clear that supporting "documents may explain or facilitate implementation of the standards but do not themselves contain mandatory requirements subject to compliance review." Draft BAL-003 - Attachment A may be in contradiction to the Manual because it suggests mandatory requirements for the BA. Refer to page one where a statement provides that the BA must, within one month after receiving a listing of official events, assemble its data and calculate a Frequency Response Measure. This obligation is not stated in BAL-003 or the proposed BAL-o03-1. The Manual explains that any mandatory requirements must be incorporated into the standardin the standards development process. The SDT should first evaluate whether or not this is a requirement and second, if alternative language may alleviate confusion.

Response: Attachment A has been split in to two documents. Attachment A now provides the calculation methodology to be used for the standard and a new document titled, "Frequency Response Standard Background Document", that explains the reasoning for the requirements.
The SDT has been advised by NERC Legal that an attachment explicitly referenced in a Reliability Standard Requirement is enforceable as part of that

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

Organization	Yes or No	Question 11 Comment
Requirement.		
Progress Energy	No	While the attachment provided insite into the distribution of the FRO for each BA, it lacks clarity on whether the interconnection FRO is based on the largest category C event that occurred, or if this event is based on a study. Additionally, if the event is from actual data, what happens if the interconnection is shown to need less response than it currently has due to the response of frequency dependent loads. What happens to BAs that "have only load with no native generation" if they do not meet their FRO? Are they going to be required to meet their FRO through load managmenet schemes?
Response: Attachment A has been split in to two documents. Attachment A now provides the calculation methodology to be used for the standard and a new document titled, "Frequency Response Standard Background Document", that explains the reasoning for the requirements. These documents have also been revised for clarity.		
The SDT believes that a BA that is providing proper Frequency Response recognizes the importance and will continue to provide the necessary Frequency Response. Those BAs that are not providing adequate and sustained Frequency Response will be identified through the measure. The FRO is and will be determined based on the methodology detailed in Attachment A.		
If A BA does not meet the Requirements then it will be found noncompliant. The proposed standard is setting a minimum Frequency Response but not prescribing a method to meet the requirements. However, the SDT has identified methods of obtaining Frequency Response in the standard.		
NorthWestern Energy	No	A Balancing Authority's frequency response is based upon a "median" value calculated from analyzing multiple events. Frequency response during some of these events is better than others, depending on the system conditions at the time and the amount system loading and unloaded generation online at the time of the event. Given these circumstances a BA's actual response could vary by event (better or worse than median), thus compliance measurement per event to a frequency response obligation based on the median response (over multiple events) could put BA's in non-compliant situations unjustly.
Response: The SDT, in consultation with the NERC Frequency Response Initiative, has performed empirical studies that demonstrate the median is more resilient to data quality problems and statistical outliers.		
Energy Mark, Inc.	No	Comment 20: The document is useful, but it needs a number of modifications to provide a clear understanding of the Requirements.Frequency Bias Setting vs. Frequency Response Section: Comment 21: In bullet 1 the use of the word "storage" is unclear. Comment 22: In bullet 3, The two boxes indicating that the Point A and Point B values are averages should also indicate that the averaging periods for these calculations vary with the scan rate used to collect the data. The correct averaging periods were presented in a table from the NERC Reference Document Understand

Organization	Yes or No	Question 11 Comment
		and Calculating Frequency Response developed by Frequency Response Standard Drafting Team. These scan values used for averaging should be included in the instructions.Frequency Response Obligation and Allocation Section: Comment 23: In the second paragraph of this section there is no supporting analysis that indicates the level of reliability that the selection of "the largest category C event ($\mathrm{N}-2$)." Without such analysis, there is no way to determine the level of reliability that will be supported by this "target contingency protection criteria." A reliability criterion that supports an unknown level of reliability is no reliability criteria at all. Comment 24: In paragraph four of this section, determination of the "administrative procedure to assign an FRO to each BA for the upcoming year" is removed from the stakeholders and given to the ERO and the NERC RS to determine. This is unacceptable in a stakeholder driven process without more information about how this determination will be made. Comment 25: In paragraph five of this section, an initial method is offered to determine the proportion of total Frequency Response that each BA will use as their FRO. This method is not influenced by the need for Frequency Response in any manner. It therefore, creates perverse incentives for BAs attempting to make decisions concerning Frequency Response and fails to meet the requirement that "A reliability standard shall neither mandate nor prohibit any specific market structure." This is explained in greater detail later in my comments in response to Questions 16 and 17.Methods of Obtaining Response Section: Comment 26: In the first paragraph, it is suggested that the Frequency Response Obligation could be fulfilled by participating in Reserve Sharing Group (RSG). RSGs were created because of the "non-coincident" nature of the need for Contingency Reserve among BAs. In creating RSGs, all of the BAs in the RSG could reduce the amount of Contingency Reserve that they individually held while still meeting the reliability requirements associated with recovering from disturbances. The savings achieved by reducing individual reserve and sharing reserves provided strong economic incentives to support the infrastructure to create, manage and operate these RSGs. Unlike Contingency Reserves, Frequency Responsive Reserves are always needed on a "coincident" basis because the frequency is the same throughout the interconnection. The strong economic incentives associated with the supply of Contingency Reserves by RSGs do not exist when considering the "coincident" need for Frequency Responsive Reserves. At best, there is only a small reduction in need for reserves on an event by event basis and that small effect is significantly reduced when the averaging period for event measurement is extended over time as the draft standard suggests, one year average measurement period for Frequency Response. Comment 27: In the second paragraph, it is suggested that the problem of obtaining Frequency Response be passed to the RSGs rather than addressing it directly in this standard or in other standards under development. In the distant past, the term "spinning reserve" was weakly related to the amount of Frequency Responsive reserve available. However, in current NERC standards there is no defined relationship between "spinning reserve" and Frequency Responsive Reserve. Therefore, there is no reason to pass this problem to RSGs. However, if an RSG, after investigating the provision of Frequency Response chose to address the problem, there should be no objection to an RSG taking responsibility of its members' Frequency Response

Organization	Yes or No	
		Question 11 Comment
	Obligations in a manner similar to a single BA. Comment 28: In the third paragraph, it is suggested that "as long as all BAs within the RSG use the same events for calculating FRM, BAs within the RSG may allocate a portion of their FRM to another RSG participant." When one considers that there are expected to be over 25 events in the annual calculation, the probability that all BAs in a RSG will have the data available for the same 25 events should be expected to be small, especilly for large RSGs. Does selection of events for the RSG members in a manner to insure the same 25 events offer an opportunity to bias the sample?	

Response: Comment 20 - Attachment A has been split into two documents. Attachment A now provides the calculation methodology to be used for the standard and a new document titled, "Frequency Response Standard Background Document", that explains the reasoning behind the requirements. These documents have also been revised to provide clarity.
Comment 21 - The SDT has removed the reference to "storage" from the documents.
Comment 22 - The SDT agrees and has included averaging periods based on AGC scan rates.
Comment 23 - The SDT agrees that further development is needed in this area, and will review this issue during the field trial and provide more definitive analyses.
Comment 24 - The SDT has revised Attachment A to clarify the calculation methodology.
Comment 25 - The NERC Reliability Standards do not necessarily dictate "how" Requirements are satisfied. A market can be created by a region, sub-region, ISO, RTO or other entities as appropriate to facilitate compliance however the NERC Reliability Standards do not establish markets.
Comments $26 \& 27 \& 28$ - The SDT appreciates these observations and has taken these comments under consideration including modifying the standard regarding RSGs.

FMPP	No	It is useful, but Attachment A is not clear.

Response: Attachment A has been split into two documents. Attachment A now provides the calculation methodology to be used for the standard and a new document titled, "Frequency Response Standard Background Document", that explains the reasoning for the requirements. These documents have also been revised for clarity.

American Electric Power	No	As stated earlier, attempting to follow requirement(s) within multiple versions of the same standard would be very difficult. In addition, more examples should be provided.

Response: Requirement R5 has been inserted back into this version of the draft standard and should eliminate the concern of trying to operate using multiple versions of the same standard. This standard will replace all versions of BAL-003 currently in effect.
The SDT has also revised Attachment A and FRS Form 1 to provide clarity.

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

Organization	Yes or No	
Duke Energy	No	Question 11 Comment
		Attachment A is useful, however R2 of the standard references a "calculation methodology detailed in Attachment A" and it isn't clear to us what part of Attachment A is the methodology. Also, in Attachment A the term "Interconnection Frequency Response Obligation" is used, but the definition of FRO says it's a BA value, so that's inconsistent. Overall, we agree that the document is helpful; however, we do believe additional explanation is necessary for Requirement 2. It appears that the responsibility for identifying Frequency Bias Setting is being removed from the Balancing Authority. There is an implied obligation that the ERO will determine the Frequency Bias Setting but it is not stated explicitly. Under the proposed standard, who has the responsibility for determining the Frequency Bias Setting?

Response: The SDT has also revised Attachment A and FRS Form 1 to provide clarity.
The SDT is not suggesting that the ERO determine the Frequency Bias Settings. The SDT has modified the language in Requirement R2 to provide further clarity as to the role of the ERO. The Requirement now reads "Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control."

Patterson Consulting, Inc.
No

The historical, contextual, and instruction information is valuable and needs to be associated with this standard. This material should not be included in Attacment A, though, as described in previous responses. In addition, there are inconsistent use of definitions and terms in the document that should be corrected.

Response: Attachment A has been split into two documents. Attachment A now provides the calculation methodology to be used for the standard and a new document titled, Frequency Response Standard Background Document", that explains the reasoning for the requirements. These documents have also been revised to provide clarity.

South Carolina Electric and Gas	Yes	It would be helpful to have a heading to transition from the criteria section to the reasoning section. Also, the title of attachment A should include "Frequency Response" before "Background Document."

Response: The SDT thanks you for your affirmative response and clarifying comment.
Attachment A has been split into two documents. Attachment A now provides the calculation methodology to be used for the standard and a new document, titled, "Frequency Response Standard Background Document", that explains the reasoning for the requirements. These documents have also been revised to provide clarity.

NIPSCO	Yes	Not sure if all the requirements need to be explained, we'll wait for future postings.

Organization

Response: The SDT thanks you for your affirmative response and clarifying comment.
Attachment A has been split into two documents. Attachment A now provides the calculation methodology to be used for the standard and a new document, titled, "Frequency Response Standard Background Document", that explains the reasoning for the requirements. These documents have also been revised to provide clarity.

Westar Energy	Yes	The attachment should be updated as the proposed standard is revised and the standard becomes effective and field test results are available. The typical frequency response curve with points A, B and C should be included and therefore part of the standard.

Response: The SDT thanks you for your affirmative response and clarifying comment.
Attachment A has been split into two documents. Attachment A now provides the calculation methodology to be used for the standard and a new document, titled, "Frequency Response Standard Background Document", that explains the reasoning for the requirements. These documents have also been revised to provide clarity. The SDT will evaluate and determine if additional modifications are necessary prior to posting for industry approval.
The frequency curve points A, B and C are identified in FRS Form 1 and therefore are part of this standard.

Manitoba Hydro	Yes	While Attachment A is useful, it could be improved by adding a graph to better illustrate Point A and C and the 4 second data sampling rate.

Response: The SDT thanks you for your affirmative response and clarifying comment.
Attachment A has been split into two documents. Attachment A now provides the calculation methodology to be used for the standard and a new document, titled, "Frequency Response Standard Background Document", that explains the reasoning for the requirements. These documents have also been revised to provide clarity.

Seattle City Light	Yes	
EKPC	Yes	
ENBALA Power Networks	Yes	
SERC OC Standards Review Group	Yes	
Kansas City Power \& Light	Yes	

Organization	Yes or No	
Independent Electricity System Operator	Yes	
Santee Cooper	Yes	
LG\&E and KU Energy	Yes	
Arizona Public Service Company		AZPS agrees it is useful, however, more clarity of how the FRO is determined and how the FRO differs from the FRM.

Response: The SDT thanks you for your comment.
Attachment A has been split into two documents. Attachment A now provides the calculation methodology to be used for the standard and a new document, titled, "Frequency Response Standard Background Document", that explains the reasoning for the requirements. These documents have also been revised to provide clarity.
The FRO is the minimum amount of Frequency Response needed to comply with this standard. The FRM is the measure of the Frequency response provided during an event.

| Alberta Electric System Operator | AESO suggests that this document should provide a clear description and discussion of the concerns,
 response measures at different aspects or time frames of frequency response (inertial response, governor
 response, AGC response; arresting deviation and settled deviation), and should provide technical evidence or
 reasons why the proposed standard can address the related concerns. |
| :--- | :--- | :--- |

Response: The SDT thanks you for your clarifying comment.
Attachment A has been split into two documents. Attachment A now provides the calculation methodology to be used for the standard and a new document, titled, "Frequency Response Standard Background Document", that explains the reasoning for the requirements. These documents have also been revised to provide clarity.

| ISO New Engand Inc. | Attachment A is useful, but it does not provide a clear understanding of all topics and issues. |
| :--- | :--- | :--- |

Response: The SDT thanks you for your clarifying comment.
Attachment A has been split into two documents. Attachment A now provides the calculation methodology to be used for the standard and a new document, titled, "Frequency Response Standard Background Document", that explains the reasoning for the requirements. These documents have also been revised to provide clarity.

NERC

Organization	Yes or No	Question 11 Comment
Northeast Power Coordinating Council		Refer to the response to Question 17.
Response: Please refer to our response to Question 17.		

Abstract

12. The proposed standard requires the use of FRS Form 1 for calculating a Balancing Authority's FRM. Do you agree with the SDT that this is the proper method to calculate its FRM? If not, please explain in the comment area and if possible provide an alternate method to calculate FRM.

Summary Consideration: Several of the commenters agreed that the calculation in FRS Form 1 is the proper method for calculating the FRM. Many commenters expressed concern that the FRM calculation method was simplistic, did not capture all contributing factors, and that use of the median value may result in a determination of noncompliance for otherwise compliant conditions. Regarding FRS Form 1, many calculation errors were identified and several commenters indicated that the information provided was neither clear nor complete. There was general consensus for conducting a field trial during which consideration of other statistical methods will be evaluated by the SDT. A few commenters believe that the 1% of peak formula currently in use should be maintained. Another comment indicated that certain events including contingent Balancing Authority events should not be used for the calculation. One commenter indicated more study is needed to determine how to account for energy flowing across a Balancing Authority's Area since this flow could affect frequency response. Concern was also expressed indicating there is not a reliability basis or replacement for addressing the AGC Frequency Response phase out approach for Requirement R5.
In response to industry comments the SDT has revised FRS Form 1 (including calculations) to allow for adjustments to the calculations. The SDT affirms that the median is the preferred measure for eliminating statistical outliers which have a tendency to skew analysis results. Other statistical methods will be considered by the SDT during the field trial. The SDT agrees there needs to be a floor Frequency Response Setting threshold however the current 1\% of peak of peak load/generation threshold is causing many Balancing Authorities to over bias, causing unnecessary ACE and frequency undulations. The drafting team is proposing a phased approach for reducing the Frequency Bias Setting value to less than 1\% of peak load/generation for Balancing Authorities with actual Frequency Response is currently less than this value. This approach is detailed in Attachment B.

Organization	Yes or No	
Bonneville Power Administration	No	RAS events and Contingent BA events shouldn't be used in the calculation. The FRS Form 1 has a basic flaw that needs correction. For Balancing Authorities that have frequency response wheeled across them by other BAs for foxample, with BPA, any contingency that occurs in the south will have frequency response from BCHydro wheeled across it) and the associated losses will show as less frequency response by the BA that is being wheeled across. BPA recommends that the generation and load be measured, primarily generation, in order to find the frequency response of the BA. Since few, if any, BAs directly measure their total load, the calculated load will have the same issue due to the responses wheeling across the BA (load is generally calculated as total generation minus total interchange). Therefore, more study needs to be done to determine how to account for the energy flowing across a BA.

Response: The drafting team has taken the suggestion to exclude RAS events for frequency response analysis and will study this further should there be a need to incorporate more events to perform frequency response analysis.
Organization Yes or No \quad Question 12 Comment

The method of analyzing a BA response is formed on a net metered basis to obtain the BA response. The response is not summed across intermediate BAs for loss consideration and ultimate delivery of energy. In the case of Bias the deviation from present metering is an indication of response and load change within the $B A$ as noted in the response. Frequency response could be calculated by measuring each generator and load bus change but then there are distribution losses reflected in the numbers. The generally accepted method presently assumes that change in loss for the frequency response MW delivery is not significant when delivered by many sources.

SPP Standards Development \quad No \quad We do not necessarily agree that it does. Please see our response to Question 1.For the 2010 survey NERC provided the Points A and Points B for the listed events in the provided spreadsheet. FRS Form 1 does not contain that information, only the delta frequency. Please include the Point A and Point B frequencies for the SEFRD events in FRS Form 1.

Response: Please refer to our response for Question 1. The drafting team has revised FRS Form 1 and Points A and B values are calculated in FRS Form 2 and shown in FRS Form 1. These values will differ for each BA based on readings at the BAs location rather than a specific location in the interconnection.

IRC Standards Review Committee	No	It is one method, but not necessarily the only proper method. Not all existing methods need to be replaced. The SRC suggests scan data could be used so that different metrics can be evaluated.

Response: The drafting team agrees with the IRC Standards Review committee conclusion that the field trial evaluation will support the proper selection of the metric utilized. The SDT believes there is a need for a common methodology for evaluating Frequency Response.

ERCOT	No	It is one method, but not necessarily the only proper method. Not all existing methods need to be replaced. The SRC suggests scan data could be used so that different metrics can be evaluated.

Response: The drafting team agrees with the IRC Standards Review committee conclusion that the field trial evaluation will support the proper selection of the metric utilized. The SDT believes there is a need for a common methodology for evaluating Frequency Response.

ISO New Engand Inc.	No	It is one method, but not necessarily the only proper method.
Response: The drafting team agrees with the IRC Standards Review committee conclusion that the field trial evaluation will support the proper selection of the metric utilized. The SDT believes there is a need for a common methodology for evaluating Frequency Response.		
Kansas City Power \& Light	No	This method is too simplistic and does not take into account normal statistical variations in metering accuracy and resolution for generation and tie-lines, does not take into account the natural variations of generation due to mechanical variations, and does not take into account the impact of load control actions on generation. Without taking these variations into account, the outcome is the wild calculation results that have been seen in the current submiscions by BA's that should be an indication that the method needs considerable work to be considered useful.

Organization	Yes or No	Question 12 Comment
Response: The drafting team disagrees that the method needs to address SCADA support concerns cited. There should be a documented reason for each error		

Progress Energy

Response: The drafting team agrees that calculated frequency response varies from event to event. This is because there are multiple Balancing Authorities interconnected and each BA has a small frequency response contribution compared to the variation in its load and generation experienced at any given moment. This is why the drafting team is proposing to use the median value of events selected during the year as a measure of "average" response. The median is the preferred measure to eliminate population statistical outliers which have tendency to skew results.
The SDT agrees the Interconnections possess sufficient frequency response.
The drafting team is proposing testing using a bias setting value of less than 1% for BAs with frequency response that is less than the 1% value currently calculated in order to better match the natural response. The drafting team agrees there needs to be a floor threshold however the current 1% threshold is causing many BAs to over-bias, resulting in ACE and frequency undulations.
Please identify the research indicating control problems would occur using a minimum bias setting that is less than 1%.

Organization	Yes or No	\quad Question 12 Comment
The SDT agrees bias setting changes may impact CPS compliance calculation which is why the drafting team is proposing field testing using small, incremental changes to the bias setting. fesearch by Nathan Cohn (Control of Generation and Power Flow on Interconnected Systems) indicates improved AGC and		
frequency performance can be realized by better matching bias setting to frequency response; which should improve CPS compliance.		

Organization	Yes or No	Question 12 Comment

Response: Comments 29,31, 32, 33, 34 and 35 - FRS Form 1 has been revised and corrected
Comments 30 - FRS Form 1 has been extensively revised and instructions for its use have be clarified.
Comment 36 - The SDT is evaluating several calculation methodologies. The SDT will propose the most suitable method in its final draft of this standard.

American Electric Power	No	The FRS Form 1 is actually calculating prior performance results from identified events to determine future measure. The calculation method to determine a BA's FRM still is not capturing all contributing factors that occur in real time and have an impact at time of event occurrence to determine frequency response performance to be measured. The calculation method and FRM needs to be more complete to include all of these contributing factors such as magnitude of actual generation on line at time of occurrence that is capable of governor \& AGC response, actual generator loading, scheduled interchange imports to balance or meet load demand, etc. The calculation method and FRM also needs to be more dynamic to allow inclusion of these variable contributing factors to be able set proper measure and identify lack of performance to actually address the issue, if there truly is one. There needs to be some form of measure at the actual generator level. Measuring a BA's aggregate response will not address contributing generators having negative governor or AGC frequency response, and puts the entire burden on the BA when the performance issue to be resolved is more at generator level. There appears to be no reliability basis or replacement for addressing the AGC frequency response phase out approach for R5 implementation plan. Without a reliability results based study to support this approach, it appears on the surface that there is the potential to lose some of the AGC part of response. Variable energy resources that are non-responsive must also be addressed in the overall calculation and measure. Because the electric industry has evolved with unbundling of generation/transmission and implementation of energy markets, there needs to be an ancillary service component for frequency response to address the factor of independent players that impact the lack of or negative frequency response issue. When impacting entities have financial factors that conflict with reliability intent, the reliability performance process can be compromised and made more difficult to achieve.

Response: FRS Form 1 has been revised.

The dynamic measure as suggested implies the BA should have a dynamic response incorporated into its frequency bias setting as a variable component.
The SDT believes that the current 1% of peak of peak load/generation threshold is causing many Balancing Authorities to over bias, causing unnecessary ACE and frequency undulations. The drafting team is proposing a phased approach for reducing the Frequency Bias Setting value to less than 1% of peak load/generation for Balancing Authorities with actual Frequency Response that is currently less than this value. This approach is detailed in Attachment B.

The drafting team welcomes the initiative of companies to offer a NAESB solution for ancillary services which is beyond the scope of this SAR.

Organization	Yes or No	Question 12 Comment
Duke Energy	No	Other factors need to be considered and incorporated in the calculation. See comments to 1 and 2 above
Response: Please see our response to Questions 1 and 2. FRS Form 1 has been revised and the drafting team will list specific reasons for revisions and event exclusion.		
Patterson Consulting, Inc.	Yes	Pending modifications based on results from the field test and subsequent operation under the new standard, FRS Form 1 is a good start for calculating a Balancing Authority's Frequency Response Measurement and Frequency Bias Setting.
Response: We thank you for your affirmative response and clarifying comment. FRS Form 1 has been revised.		
South Carolina Electric and Gas	Yes	The form must have clear instructions on its use and meanings of the terms.FRS Form 1 and Instructions should be included as an attachment to the BAL-003-1 standard.
Response: We thank you for your affirmative response and clarifying comment. FRS Form 1 has been revised.		
Santee Cooper	Yes	The form must have clear instructions on its use and meanings of the terms. The form should include the ability to take into account changes in metered non-conforming loads.
Response: We thank you for your affirmative response and clarifying comment. FRS Form 1 has been revised to allow for adjustments such as non-conforming load.		
LG\&E and KU Energy	Yes	The form must have clear instructions on its use and meanings of the terms.
Response: We thank you for your affirmative response and clarifying comment. FRS Form 1 has been revised.		
FirstEnergy	Yes	Although the method seems acceptable in theory, the results of the field test will be needed to validate the methodology.
Response: We thank you for your affirmative response and clarifying comment.		

Organization	Yes or No	Question 12 Comment
SERC OC Standards Review Group	Yes	The form must have clear instructions on its use and meanings of the terms.
Response: We thank you for your affirmative response and clarifying comment. FRS Form 1 has been revised.		
ENBALA Power Networks	Yes	ENBALA also believes that including an additional metric, such as the metric suggested in the recent Lawrence Berkeley National Laboratory of a nadir-based frequency response, would be useful in assessing the current inertial response capabilities and level of risk for under-frequency load shedding.
Response: We thank you for your affirmative response and clarifying comment. The SDT will consider your suggestion during the field trial.		
NIPSCO	Yes	Seems straightforward compared to other methods
Response: We thank you for your affirmative response and clarifying comment.		
EKPC	Yes	The form should include clear instructions for use and clear definitions for terms.

Response: We thank you for your affirmative response and clarifying comment.
FRS Form 1 has been revised.

| Manitoba Hydro | Yes | Although it can be difficult for some events to determine the NIA and load values for the A \& B points(due to
 significant signal variations), this is still the best known method at this time. |
| :--- | :---: | :--- | :--- |
| Response: We thank you for your affirmative response and clarifying comment.
 FRS Form 1 has been revised. | | |
| Seattle City Light | Yes | |
| We Energies | Yes | |
| Westar Energy | Yes | |

Organization	Yes or No	Question 12 Comment
FMPP	Yes	
Arizona Public Service Company	Yes	
Midwest ISO Standards Collaborators	Yes	
Independent Electricity System Operator	Yes	
MRO's NERC Standards Review Subcommittee	Yes	
Alberta Electric System Operator		The standard uses median of multiple SEFRD for the calculation of FRM, which is a reasonable method. The AESO suggests NERC considers the alternative "zero-cross linear regression" method for the FRM calculation. The key difference of "zero-cross linear regression" is that it puts more weight on events with bigger frequency deviation. As the standard is to address the concerns related with large frequency error that could cause UFLS, the more weight put on larger events seems more reasonable.

Abstract

13. The proposed standard requires the use of FRS Form 1 for calculating a Balancing Authority's Frequency Bias Setting. Do you agree with the SDT that this is the proper method to calculate its Frequency Bias Setting? If not, please explain in the comment area and if possible provide an alternate method to calculate Frequency Bias Setting.

Summary Consideration: Many of the commenters agreed with requiring the use of FRS Form 1 for calculating a Balancing Authority's Frequency Bias Setting. Most commenters agreed with the concept but expressed concern that FRS Form 1 had errors, incorrect calculations, did not provide consideration for variable bias, and instructions were vague. Some commenters indicated that the methodology was too simplistic and use of the median value is not an adequate approach. Comments were also received suggesting the current 1\% of peak methodology is a proven method that should be maintained and each Balancing Authority should be allowed to determine its Frequency Bias Setting. One commenter suggested the FRO value should not be considered when determining the Frequency Bias Setting. Another commenter suggested gradually lowering the Frequency Bias Setting floor threshold over several years to assess the associated reliability impacts. The SDT agrees and implemented this approach. Initially the FRM will be computed to 0.8% of the Balancing Authority's forecasted peak load or generation. A recommendation was provided to estimate the Frequency Bias Setting using a linear slope approach with a least square fit method. The SDT will assess this method as part of the field trial. Observations provided include field testing must validate the methodology and that the methodology should include two measures (AGC and interchange) for identifying lack of frequency response.
In response to industry comments the SDT has revised FRS Form 1 to allow adjustments for known variables that will impact the measure. One commenter noted that Requirement R2 states that the ERO will provide the Frequency Bias Setting for each Balancing Authority whereas FRS Form 1 specifies a calculation to obtain a value which the ERO is not required to review or use. The SDT has modified the requirement to address this process reporting and implementation concern.

Organization	Yes or No	
Bonneville Power Administration	No	BPA thinks that the Form can be used as a tool, but the results shouldn't be the required Frequency Bias setting. Each individual BA should be allowed to set their own. Also, this shows no consideration for variable bias. Variable bias changes greatly during a contingency and this should be considered. Please see comments to number 12.
Response: The SDT agrees that measurement of individual generator's performance would produce a more accurate measure of Primary Frequency Control and that the SDT had not considered losses within a BA's system due to frequency response of other BA's frequency response flowing through their system. This		
could indeed have some effect on the accuracy of the measure when using Interchange Actual for the measure. The SDT agrees that variable bias, based on real		
time conditions (up and down headroom) of on line generators and other frequency responsive devices, will produce the most accurate value for the bias setting		
if the BA implements a program that will accurately estimate Primary Frequency Control from each of its generators or other frequency responsive devices and		
account for load dampening. Form 1 could still be used as a confirmation of general performance and to consistently measure every BA to the same events for		
comparison to the Interconnection's performance as a whole. If the BA were willing to measure performance of each generator and other frequency responsive		
devices to the same list of events as an additional measure, this could be used in the field trial to determine the magnitude of the measurement error of Form 1.		

Organization	Yes or No	Question 13 Comment
The SDT would like to move the industry to accept the use of variable bias as the superior method for setting the Bias in the ACE equation as long as the BA meets its minimum FRO and that the variable bias result matches actual Primary Frequency Control performance within some tolerance. A BA should not be		

SPP Standards Development	No	We do not necessarily agree that it does. Please see our response to Question 1.Given the disclaimers on page 7 of the FRS Form 1 instructions under Data Values, do the BAs have the discretion to change data in Form 1 if it doesn't match the data they recorded on their system?

Response: FRS Form 1 has been revised to allow adjustments for known variables that will impact the measure. The field trial will validate the accuracy of the measure and identify problems using Interchange Actual. The BA can adjust the $t(0)$ event time to align with their frequency data but they should not change their data. Adjustments should be made in the columns provided in the revised FRS Form 1.

IRC Standards Review Committee	No	It appears to be one acceptable method, but not all the calculations done through the use of the form are clearly described. Further, it says that the Frequency Bias Setting will be based upon the FRM, but it doesn't say how that will be done.

Response: FRS Form 1 has been revised to be clearer. Initially the FRM will be compared to 0.8% of the BA's forecasted peak load or generation. The Bias setting will be based on the larger value. BA's will continue to be able to use a variable bias.

ERCOT	No	It appears to be one acceptable method, but not all the calculations done through the use of the form are clearly described. Further, it says that the Frequency Bias Setting will be based upon the FRM, but it doesn't say how that will be done.

Response: FRS Form 1 has been revised to be clearer. Initially the FRM will be compared to 0.8% of the BA's forecasted peak load or generation. The Bias setting will be based on the larger value. BA's will continue to be able to use a variable bias.

Kansas City Power \& Light	No	This method is too simplistic and does not take into account normal statistical variations in metering accuracy and resolution for generation and tie-lines, does not take into account the natural variations of generation due to mechanical variations, and does not take into account the impact of load control actions on generation. Without taking these variations into account, the outcome is the wild calculation results that have been seen in the current submissions by BA's that should be an indication that the method needs considerable work to be considered useful.

Response: When the BA's bias setting closely matches natural Primary Frequency Control, L10 and CPS1 and CPS2 will more accurately measure the BA's ACE impact on the Interconnection's frequency. This may also cause greater difficulty maintaining CPS1 and CPS2 compliance. The sample size of identified events is intended to address BA performance variability concerns.
FRS Form 1 has been revised to account for known variables that will impact the measure. The SDT believes that when actual BA Primary Frequency Control

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

| Organization | Yes or No | Question 13 Comment |
| :--- | :---: | :---: | :---: |
| improves, the measure will be more consistent and useful. | | |
| Progress Energy | No | The FRO should not be part of the determination of the bias setting unless you are actually going to respond
 by the FRO value. BAs should be trying to get their FRC $<=$ FRO, but not biasing by the FRO. The bias has
 no effect on the FRC. Progress Energy also think the $\%$ of projected peak requirement should be removed
 now. |

Response: The SDT agrees that the \% of projected peak requirement has been contributing to Secondary Frequency Control problems and has determined that a phased-in approach is the preferred method of eliminating this requirement. The FRO is not intended to be the BA's bias setting unless the BA's actual Primary Frequency Control is equal to the BA's FRO and meets the minimum of the 0.8% of the BA's forecasted Peak Load or Generation.

NIPSCO	No	Not sure, It appears that the FR is about $1 / 2$ of the freq bias in the East Int. I think that the bias could be brought down gradually over several years while monitoring system frequency for reliability.

Response: The SDT agrees and the standard has been modified to reflect your concern.

NorthWestern Energy	No	Page 2 implies that there is currently too much frequency response based on the 1\% of peak demand method of establishing frequency bias. Even though NWE does not use the 1\% method, NWE feels that the 1% minimum has been a tried and true method of providing frequency response in the Western
Interconnection. Without the 1\% minimum (and BA's using a natural response less than the 1\%), the total		
interconnection frequency response would decrease according to research. This would lead to decreased		
interconnection bias, causing other operational issues, such as lower L10 values and possible CPS2		
compliance factors. A Balancing Authority's frequency response is based upon a "median" value calculated		
from analyzing multiple events. Frequency response during some of these events is better than others,		
depending on the system conditions at the time and the amount system loading and unloaded generation		
online at the time of the event. Given these circumstances a BA's actual response could vary by event (better		
or worse than median), thus compliance measurement per event to a frequency response obligation based on		
the median response (over multiple events) could put BA's in non-compliant situations unjustly.		

Response: The drafting team agrees that calculated frequency response varies from event to event. This is because there are multiple Balancing Authorities interconnected and each BA has a small frequency response contribution compared to the variation in its load and generation experienced at any given moment. This is why the drafting team is proposing to use the median value of events selected during the year as a measure of "average" response. The median is the preferred measure to eliminate population statistical outliers which have tendency to skew results.

The SDT agrees the Interconnections possess sufficient frequency response.
The drafting team is proposing testing using a bias setting value of less than 1% for BAs with frequency response that is less than the 1% value currently calculated in order to better match the natural response. The drafting team agrees there needs to be a floor threshold however the current 1% threshold is

Organization	Yes or No	Question 13 Comment

causing many BAs to over-bias, resulting in ACE and frequency undulations.
Please identify the research indicating control problems would occur using a minimum bias setting that is less than 1%.
The SDT agrees bias setting changes may impact CPS compliance calculation which is why the drafting team is proposing field testing using small, incremental changes to the bias setting. Research by Nathan Cohn (Control of Generation and Power Flow on Interconnected Systems) indicates improved AGC and frequency performance can be realized by better matching bias setting to frequency response; which should improve CPS compliance.
The SDT agrees bias setting changes may impact CPS compliance calculation which is why the drafting team is proposing field testing using small, incremental changes to the bias setting. Research by Nathan Cohn (Control of Generation and Power Flow on Interconnected Systems) indicates improved AGC and frequency performance can be realized by better matching bias setting to frequency response; which should improve CPS compliance.
The SDT fails to see the implication that there is too much frequency response based on the 1% of peak demand method of establishing frequency bias. The bias setting will not increase or decrease Primary Frequency Control. It will only impact the measure of ACE and the resulting Secondary Control of the BA. The 1\% minimum requirement was appropriate in the past when BA's Primary Frequency Control was nearly equal to 1% of the forecasted peak load or peak generation. Form 1 and this revision to BAL-003 would still require that the Bias setting in the ACE equation be equal to or greater than the natural Primary Frequency Control of the BA with a minimum value of 0.8% of the BA's forecasted peak load or peak generation. When the BA's bias setting closely matches natural Primary Frequency Control, L10 and CPS1 and CPS2 will more accurately measure the BA's ACE impact on the Interconnection's frequency. This may also cause greater difficulty maintaining CPS1 and CPS2 compliance. The sample size of identified events is intended to address BA performance variability concerns. The field trial results should prove if this is a correct assumption.

Energy Mark, Inc.
No

Comment 37: My initial comments associated with calculation of the Frequency Bias Setting are included in my comments $3,4,5,6,30,31,32,33,34$ and 36.
Comment 38: The determination of the Frequency Bias Setting using a median or mean value provides an incorrect weighting of the individual SEFRD measurements to correctly determine the Frequency Bias Setting. The Frequency Bias Setting as used in the ACE Equation represents a linear function of Frequency Response to frequency error. The best estimate of the Frequency Bias Setting from this SEFRD data is the slope of the line through the origin using a least-squares fit. Any other method of determining the Frequency Bias Setting will improperly weight the individual data points contribution to the error thus providing a poorer estimate of the true value of Frequency Response.

Response: Comment 37 - Please refer to our response to the comments noted.
Comment 38 - Once events have been identified and data collected the SDT can and will use multiple methods of determining the best selection of a bias setting for BA's using a fixed bias. The SDT will include your recommended method as one that is considered.

FMPP	No	It would be better to define significant and let the BA exclude any events that meet this definition, since each BA will be ramping differently. Since SEFRD is defined as the individual sample of event data from a Balancing Authority which represents the change in Net Actual Interchange (NIA), divided by the change in frequency, expressed in MW/O.1Hz, whenever a BA includes an event with a "significant" change in NIA due

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

Organization	Yes or No	Question 13 Comment
		to a large interchange schedule ramp, the FRM is totally skewed, and should not be included. If other events are available means that if other events are not available then an entity's compliance is going to be based on an event or events that has been skewed for the BA by significant interchange schedule ramp.

Response: FRS Form 1 has been revised to account for known variables that will impact the measure. The SDT believes that when actual BA Primary Frequency Control improves, the measure will be more consistent and useful. Using identified events and measuring every BA's performance during these events will provide comparison of all BA's performance to the Interconnection's performance as a whole.

American Electric Power	No	There should be two measures to identify lack of frequency response: A calculation and measure for the AGC part of frequency response based on actual load and generation on line at time of occurrence that is variably adjusted and measured, while also accounting for interchange imports to balance. Today's frequency bias setting does not really address the governor response issue. There also needs to be some form of generator governor response calculation and measure that starts with a base foundation of droop setting/relative
governor response and is adjusted accordingly. As WECC appears to have shown in its studies, there would		
be excessive governor response based on current droop setting if governors responded as they are expected.		
This could be an indicator that governor response measure should only be a percentage of this droop, which		
protects the generator. Different types of generators and their characteristics must also be factored in.Since		
there does not appear to be a performance issue with the Standards involving CPS, we do not believe the		
CPS Bounds L10 values should be reduced.		

Response: FRS Form 1 has been revised to account for identified variables in measuring Primary Frequency Control. The SDT agrees that measuring generator governor response and Primary Frequency Control would be beneficial for determining proper delivery of frequency response. The SDT also agrees that generator governor and droop settings will impact Primary Frequency Control but this concern is outside the scope of this project and a separate SAR will be required to address governor settings. The SDT is not aware of any WECC studies indicating excessive governor response based on current droop settings if governors responded as they are expected. The industry nominal droop setting is 5% and this level of performance should limit transmission flows across specific elements unless the planning process does not account for this flow during contingencies. If Primary Frequency Control is not evenly distributed across the Interconnection or there is not participation in Primary Frequency Control by all generators with sufficient regulation margin, elements of the transmission system can become overloaded during a contingency. The SDT believes that when the Bias setting in the BA's ACE equation closely matches the Primary Frequency Control of the BA, then the ACE will accurately measure the BA's impact on Interconnection frequency through the CPS 1 and CPS 2 measures. If a BA has very low Primary Frequency Control and resulting lower Bias setting, the L10 value will change also.

Duke Energy	No	Other factors need to be considered and incorporated in the calculation. See comments to 1 and 2 above.
Response: FRS Form 1 has been revised to account for known variables.		
Patterson Consulting, Inc.	Yes	Requirement 2 states that the ERO will provide the Frequency Bias Setting for each Balancing Authority. While FRS Form 1 makes a calculation, the requirement does not require the ERO to review or use the FRS Form 1 value. Otherwise, pending modifications based on results from the field test and subsequent operation

Organization	Yes or No	Question 13 Comment
		under the new standard, FRS Form 1 is a good start for calculating a Balancing Authority's Frequency Response Measurement and Frequency Bias Setting.
Response: The SDT has modified the requirement to address the reporting and implementation process of the bias setting.		
South Carolina Electric and Gas	Yes	The form must have clear instructions on its use and meanings of the terms. FRS Form 1 and Instructions should be included as an attachment to the BAL-003-1 standard.
Response: The SDT agrees and has revised Form 1 with instructions to provide clarity in using the form.		
Santee Cooper	Yes	The form must have clear instructions on its use and meanings of the terms.
Response: The SDT agrees and has revised Form 1 with instructions to provide clarity in using the form.		
MRO's NERC Standards Review Subcommittee	Yes	We agree that using Points A and B is correct and the calculations in the spreadsheet are correct.
Response: Thank you for your comment.		
LG\&E and KU Energy	Yes	The form must have clear instructions on its use and meanings of the terms.
Response: The SDT agrees and has revised Form 1 with instructions to provide clarity in using the form.		
Midwest ISO Standards Collaborators	Yes	We agree that using Points A and B is correct and the calculations in the spreadsheet are correct.
Response: Thank you for your comment.		
FirstEnergy	Yes	Although the method seems acceptable in theory, the results of the field test will be needed to validate the methodology.
Response: The SDT agrees. The field test will utilize the method to test the measure.		
SERC OC Standards Review Group	Yes	The form must have clear instructions on its use and meanings of the terms.
Response: The SDT agrees and has revised Form 1 with instructions to provide clarity in using the form.		

NERC

Organization	Yes or No	Question 13 Comment
EKPC	Yes	The form should include clear instructions for use and clear definitions for terms.
Response: The SDT agrees and has revised Form 1 and included instructions to provide clarity in using the form.		
We Energies	Yes	
Seattle City Light	Yes	
Manitoba Hydro	Yes	
Independent Electricity System Operator	Yes	
Arizona Public Service Company	Yes	
ENBALA Power Networks	Yes	
Westar Energy	Yes	
Alberta Electric System Operator	The AESO finds it difficult to comment as it is not clear how the FRO is determined.	
Response: The revised instructions clarify the method for determining the FRO.		
Northeast Power Coordinating Council	Refer to the response to Question 17.	
Response: Please refer to our response for Question 17.		

14. The SDT has provided a document (FRS Form 1 Instructions) describing how to use FRS Form 1 for calculating FRM and Frequency Bias Setting. Do you agree with the SDT that this document provides a clear understanding of how to use the form? If not, please explain in the comment area.

Summary Consideration: Several of the commenters did not agree that FRS Form 1 instructions provide a clear understanding of how to use the form. The majority of commenters indicated that the instructions were incomplete, unclear, required better definitions, lacked variable bias information, technically incomplete and mainly provided background information. In response to industry comments the SDT has revised FRS Form 1 instructions and removed the background information.

Organization	Yes or No	Question 14 Comment
MRO's NERC Standards Review Subcommittee	No	On page 5 and 6 , graphics appear to be missing. This document really provides no instructions but rather explanations and background material for measuring frequency events. Instructions would be more along the lines of step 1: Enter date in box, etc.
Response: The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.		
Midwest ISO Standards Collaborators	No	On page 5 and 6, graphics appear to be missing. This document really provides no instructions but rather explanations and background material for measuring frequency events. Instructions would be more along the lines of step 1: Enter date in box, etc.
Response: The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.		
FirstEnergy	No	On page 5 and 6 , graphics appear to be missing. This document really provides no instructions but rather explanations and background material for measuring frequency events. Instructions would be more along the lines of step 1: Enter date in box, etc.
Response: The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.		
We Energies	No	On page 5 and 6 , graphics appear to be missing. This document really provides no instructions but rather explanations and background material for measuring frequency events. Instructions would be more along the lines of step 1: Enter date in box, etc.
Response: The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.		
LG\&E and KU Energy	No	We believe the FRS form 1 instructions should be improved by better defining the terms used and improving the overall layout of the form. The document provided should be corrected so that all figures are viewable

Organization	Yes or No	Question 14 Comment
Response: The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.		
SERC OC Standards Review Group	No	We believe the FRS form 1 instructions should be improved by better defining the terms used and improving the overall layout of the form. Fiqure 1 in Section B of the FRS Form 1 Instructions document should be corrected so that it is viewable.
Response: The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.		
South Carolina Electric and Gas	No	We believe the FRS form 1 instructions should be improved by better defining the terms used and improving the overall layout of the form. The document provided should be corrected so that all figures are viewable.
Response: The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.		
Bonneville Power Administration	No	There is no explanation for variable bias. If the suggesting from tab 2 is that a monthly average should be used then this grossly misrepresents the amount of variable bias that is used during a contingency. For example: BPAs monthly average ranges from-150 to -160, but during a contingency it can be in the -400 to 500 range. Figure 1 does not show up so it cannot be determined if BPA agrees with Points A, B and C. Averaging the pre and post data with 16 seconds and 34 seconds, respectively, will cause the calculations to be skewed with some generator response, some tertiary response, etc. We do agree, if Figure 1 appears, that this does spell out how to use the form, BPA just has issues with the data to be provided.
Response: Variable frequency bias settings are determined by Balancing Authorities using a calculation based on present operating conditions. The SDT is aware of the extraneous influences in Net Actual Interchange values, and intends to select a sampling interval and an aggregation technique to minimize these influences. We apologize for the exclusion of Figure 1. The SDT has removed this figure from the revised instructions and has modified the FRS Form 1 and including instructions within the form to provide clarity in using the spreadsheet.		
SPP Standards Development	No	This document provides valuable background information regarding frequency deviations but lacks the specific line-by-line Form 1 instructions as mentioned at the top of page 7 . We need those details, what goes in each column, how do we determine which values to use, etc. This would tend to minimize any confusion that currently exists regarding completing the form. One specific item we'd like to see provided in the instructions, as well as changed in Form 1, is carrying the Frequency Bias Setting value (Cell L32) out to two decimals. The current limitation of one decimal has caused confusion in past surveys.

Response: The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.

Organization	Yes or No	Question 14 Comment
IRC Standards Review Committee	No	The document explains much of the FRS Form 1, but not all, as commented previously.
Response: The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.		
ERCOT	No	The document explains much of the FRS Form 1, but not all, as commented previously.
Response: The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.		
Progress Energy	No	The forms clarity can only truly be found by reverse engineering the formulas within each of the cells.
Response: The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.		
ENBALA Power Networks	No	The FRS Form 1 Instructions that was downloaded from the supporting website seemed to be missing information on page 5 . We found that the accompanying FRS Form 1 (excel document) was more useful than the actual instruction document in providing detail on the required calculation for the Bias Setting.
Response: The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.		
Energy Mark, Inc.	No	Comment 39: The following comments apply to Balancing Authority FRS Form 1 Background and Instructions.Section A: Comment 40: The last sentence in the second paragraph should be modified to read, "Therefore, it is better to analyze response only when significant frequency deviations occur until better measurement methods can be developed to overcome these difficulties."Section A, Subsection 1, Frequency Response: Comment 41: The words "continuous and inverse relationship" should be changed to "bidirectional, continuous and inverse relationship" in all three bullets. Frequency Response that is not provided bidirectionally will be rapidly depleted by oscillating frequency events. Comment 42: If a BA has "non-bidirectional step-function Frequency Response" to frequency, it must also have sufficient continuous frequency response to restore frequency, frequency response, and frequency responsive reserves (margins) following the use of the "non-bidirectional step-function Frequency Response." Therefore, the Frequency Response of primary interest for this standard is a subset of the Frequency Response defined in the NERC Glossary. Comment 43: Simulations and actual experience on the interconnections have demonstrated that step function Frequency Responses can result in frequency instability and oscillations when they are not effectively coordinated with bidirectional, continuous and inverse Frequency Response. Therefore, it is imperative that the standard differentiate this bidirectional, continuous and inverse Base Frequency Response from other

$\left.\begin{array}{|l|l|l|}\hline \text { Organization } & \text { Yes or No } & \\ \hline & \begin{array}{l}\text { Supplemental Frequency Responses that can be applied under restricted conditions to supplement it.Section } \\ \text { A, Subsection 2, Response to Internal and External Generation/Load Imbalances: } \\ \text { Comment 44: Most AGC Systems use the Frequency Bias Setting in conjunction with the frequency deviation } \\ \text { to determine whether an imbalance in load and generation is internal or external to the BA. This can only be } \\ \text { done effectively when the Frequency Bias Setting matches the internal Frequency Response of the BA. } \\ \text { Unless the minimum Frequency Bias Setting requirements are modified to allow this matching to be } \\ \text { implemented, the most AGC Systems will be unable to perform as indicated in this subsection. Section A, } \\ \text { Subsection 4, Effects of a Disturbance on all Balancing Authorities...: } \\ \text { Comment 45: The description should be modified as follows; "When a loss of generation occurs, }\end{array} \\ & \begin{array}{l}\text { Interconnection frequency declines because machine speed must decrease to supply the energy shortfall } \\ \text { from rotating kinetic energy. Initially, rotating kinetic energy from all rotating machines with direct mechanical- } \\ \text { to-electrical coupling addresses the entire shorffall by lowering machine speed, and hence frequenc, of the } \\ \text { Interconnectiont.* Initially, an amount of kinetic energy equal to the power (generation) lost will be withdrawn } \\ \text { from the stored energy in rotating machines with direct mechanical-to-electrical coupling throughout the } \\ \text { Interconnection. As the mechanical speeds are reduced, Interconnection frequency decreases proportionally. } \\ \text { Comment 46: The term Inadvertent Interchange is not correctly used at the end of the first paragraph. Tie }\end{array} \\ \text { flow error indicates power. Inadvertent Interchange indicates energy (power integrated over an hour). A }\end{array}\right\}$

Organization	Yes or No	Question 14 Comment
		replacement power provided to the Contingent BA from the interconnection. The initial amount of replacement power supplied to the Contingent BA is unaffected by the Frequency Bias Settings. The Frequency Bias Settings will only affect how quickly the replacement power is withdrawn after the frequency is arrested and stabilizes. The risk is that the replacement power will be withdrawn before the Contingent BA or RSG can replace it. Comment 49: The two boxes indicating that the Point A and Point B values are averages should also indicate that the averaging periods for these calculations vary with the scan rate used to collect the data. The correct averaging periods were presented in Definitions of Frequency Values for Frequency Response Calculation in NERC Reference Document - Understand and Calculating Frequency Response.

Response: Comments 39 through 48: The SDT has removed the FRS Form 1 Background Document from this standard and therefore your comments concerning language within this document are not incorporated in this version.
Comment 49: The SDT created FRS Form 2 to address your comments. In addition, the SDT has extensively modified the instructions for the use of these forms to provide additional clarity.

EKPC	No	The form should include clear instructions for use and clear definitions for terms. All figures within the document should be viewable. More examples for various situations (non-conforming loads) should be included.

Response: The SDT has removed the FRS Form 1 Background Document from this standard and therefore your comments concerning figures within this document are not incorporated in this version.
The SDT has modified the FRS Form 1 and included detailed instructions within the form to provide clarity in using the form.

| American Electric Power | No | The FRO value and calculation formula assigned by the ERO is not totally clear. The survey form should
 indicate the complete formula used by the ERO. It appears to be missing. |
| :--- | :---: | :--- | :--- |
| Response: The information you are referencing is now included in Attachment A. The SDT has also modified the FRS Form 1 and included detailed instructions
 to provide clarity in using the form. | | |
| Duke Energy | No | The form does not recognize the impacts noted in the comment to 1 above. The form does show a column
 that appears to allow for exclusion of contingent BA events, but it is not clear how that is accomplished, nor
 how doing so matches the definitions currently proposed. Duke Energy agrees with the SERC OC comments
 "We believe the FRS form 1 instructions should be improved by better defining the terms used and improving
 the overall layout of the form. The document provided should be corrected so that all figures are viewable."
 The form does not provide much in the way of instructions. |

Organization

Response: The SDT has removed the FRS Form 1 Background Document from this standard and therefore your comments concerning figures within this document are not incorporated in this version.
The SDT has also modified the FRS Form 1 and included detailed instructions within the form to provide clarity in using the form.

Santee Cooper	Yes	The instructions should include how to take into account changes in metered non-conforming loads.

Response: The SDT thanks you for your affirmative response and clarifying comment. The SDT has modified FRS Form 1 to allow for adjustments such as nonconforming load.

The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.

NIPSCO	Yes	We didn't read it but the form looks good.

Response: The SDT thanks you for your affirmative response and clarifying comment.
The SDT has modified the FRS Form 1 and included instructions to provide clarity in using the form.

| Patterson Consulting, Inc. | Yes | There are inaccuracies that should be corrected, but the document is useful and valuable. The desired
 "averaging" of scan-cycle data included in FRS Form 1 Background and Instructions should be made
 mandatory to |
| :--- | :--- | :--- | mandatory to achieve the standard's purpose of providing consistent measurement methods.

Response: The SDT thanks you for your affirmative response and clarifying comment.
The SDT created FRS Form 2 to address the averaging issue identified in your comment. In addition, the SDT has extensively modified the instructions for the use of these forms to provide additional clarity. The SDT has also modified the FRS Form 1, correcting errors in the calculations.

FMPP	Yes	
Seattle City Light	Yes	
Manitoba Hydro	Yes	
NorthWestern Energy	Yes	
Independent Electricity System Operator	Yes	

NERC

Organization	Yes or No	
Kansas City Power \& Light	Yes	
Arizona Public Service Company	Yes	
Northeast Power Coordinating Council		Refer to the response to Question 17.
Response: Please refer to our response to Question 17.		

15. The SDT is soliciting comments on methods of obtaining Frequency Response to meet the FERC Order 693 directive. If possible please provide any thoughts you may have on this subject.

Summary Consideration: Stakeholders provided the suggestions shown below as possible methods of obtaining Frequency Response to meet the FERC Order 693 directive:

1. Develop requirements applicable to the Generator Owner.
2. Address droop, dead band settings and governor operation.
3. Corroborate with manufacturers to address load demand response.
4. Use generator output as a primary input for calculating Frequency Response
5. Define ways Reserve Sharing Groups can assist Balancing Authorities in providing Frequency Response.
6. Write standard requirements based on performance needs.
7. Establish demand response as an ancillary service providing frequency response.
8. Do not apply the standard to entities that do not have generation resources.
9. Create a primary frequency market.
10. Keep the 1% method currently in use.
11. Ensure generators provide appropriate governor response and merchant generation contracts include a Frequency Response obligation.
12. Develop a specific continent wide Frequency Response definition.
13. Provide a customer compensated pre-emptive load shedding program.

In response to industry comments the SDT delivered to NERC staff the recommendation for collaboration between the ERO and manufacturers regarding load demand response. The SDT has specified in the latest draft standard other methods for a BA to obtain Frequency Response. The SDT will examine, during the field trial, the possibility of transferring Frequency Response between BAs.

Organization	Yes or No	Question 15 Comment
Santee Cooper		The SDT should consider focusing and directing requirements at root causes. Specifically, the SDT should develop requirements that apply to GOs and address droop requirements, deadband settings, governor operation, etc., as well as specific response expectations which are measured and compared to reported

Organization	Yes or No			
		Qettings. Such requirements would likely include exemption criteria to address older existing systems as well as current operating conditions. Newer systems should be developed, however, to meet specific requirements that will ultimately improve or maintain Frequency Response at acceptable levels. Subsequent efforts by the ERO should also consider collaboration with manufacturers to address demand responses associated with loads.		
Response: This issue has been discussed and the SDT understands your concern. However, governor droop requirements, dead-band settings and governor operation are outside the scope of the project approved SAR. The SDT believes that the Generator Verification standards will help address these concerns. The SDT will pass on your suggestion concerning further collaborations between the ERO and manufacturers.				
Bonneville Power Administration	Primarily, frequency response comes from governor control at generators. In order to accurately measure this, the output of generation should be used as one of the primary inputs to the calculation of frequency response. Due to losses, as earlier explained, some BAs could be penalized due to losses associated with other BA frequency response flowing over the BAs' transmission system. This needs to be taken into account when calculating the frequency response of the BAs.			
Response: The SDT does not have adequate information to address this suggestion. An impact study would be the best option for conducting an analysis.				

Organization	Yes or No	
		services. As indicated in our comments under Q2, there is a missing piece to maintaining system frequency and arresting frequency deviation, and that is the generators' governor response. We suggest the SDT conduct an industry discussion on this subject, and determine the entity(ies) responsible for governor actions/setting, the mechanism to provide such a response, and the place for stipulating the necessary standard requirements to enforce compliance for governor actions before further developing this BAL-003-1 standard.

Response: Manual deployment is not quick enough for frequency response. Automatic deployment of other devices could be useful to provide the desired frequency response. The SDT has also specified in the latest draft standard version other methods for a BA to obtain Frequency Response.
Regarding governor response - this issue has been discussed and the SDT understands your concern However, generator droop requirements, dead-band settings and governor operation are outside the scope of the project approved SAR. The SDT believes that the Generator Verification standards will help address these concerns.

ERCOT	Demand Response performing as an ancillary service in which the resources are paid to reduce load upon automatic or manual deployment can provide frequency response. Other devices are available, such as flywheels or storage arrangements, such as battery banks, that can provide fast and sustainable response, could also provide frequency response. The standard must be written around performance requirements and results rather than prescriptive requirements that may have the unintended consequence of stifling innovation and creativity in this area. Within the ERCOT Interconnection and the ERCOT market construct, an ancillary service titled Load acting as a Resource (LaaR) may provide up to 50% of the responsive reserve requirement and provides automatic underfrequency relay activated response to frequency drops. Other market constructs provide for similar services. As indicated in our comments under Q2, there is a missing piece to maintaining system frequency and arresting frequency deviation, and that is the generators' governor response. We suggest the SDT conduct an industry discussion on this subject, and determine the entity(ies) responsible for governor actions/setting, the mechanism to provide such a response, and the place for stipulating the necessary standard requirements to enforce compliance for governor actions before further developing this BAL-003-1 standard.

Response: Manual deployment is not quick enough for frequency response. Automatic deployment of other devices could be useful to provide the desired frequency response. The SDT has also specified in the latest draft standard version other methods for a BA to obtain Frequency Response.
Regarding governor response - this issue has been discussed and the SDT understands your concern However, generator droop requirements, dead-band settings and governor operation are outside the scope of the project approved SAR. The SDT believes that the Generator Verification standards will help address these concerns.

| Organization | Yes or No | Question 15 Comment |
| :--- | :--- | :--- |$|$| Kansas City Power \& Light | | The determination of sufficient frequency response in the interconnection is complex and varies according to
 the ratio of generation online and the load in the interconnection. The calculation of actual frequency
 response is also extremely challenging considering metering accuracy \& resolution, SCADA sample rates,
 statistical variations of load and generation. To accurately assess what is needed and the methods to
 implement such a complex subject will take considerable thoughtfulness, time, testing and engineering
 ingenuity. |
| :--- | :--- | :--- |
| Response: The SDT agrees with your comments and thanks you for your participation. | | |

Organization	Yes or No	Question 15 Comment
Response: RTO or other entities as appropriate to facilitate compliance however the NERC Reliability Standards do not establish markets.		
NIPSCO		We reviewed the related NERC Training Document from 2003 and your proposed method seems like the best approach.

Response: The SDT thanks you for your support.

| NorthWestern Energy | A Balancing Authority's frequency response is based upon a "median" value calculated from analyzing
 multiple events. Frequency response during some of these events is better than others, depending on the
 system conditions at the time and the amount system loading and unloaded generation online at the time of
 the event. Given these circumstances a BA's actual response could vary by event (better or worse than
 median), thus compliance measurement per event to a frequency response obligation based on the median
 response (over multiple events) could put BA's in non-compliant situations unjustly. Page 2 implies that there
 is currently too much frequency response based on the 1\% of peak demand method of establishing frequency
 bis. Even though NWE does not use the 1\% method, NWE feels that the 1\% minimum has been a tried and
 true method of providing frequency response in the Western Interconnection.

 Without the 1\% minimum (and BA's using a natural response less than the 1\%), the total interconnection
 frequency response would decrease according to research. This would lead to decreased interconnection
 bias, causing other operational issues, such as lower L10 values and possible CPS2 compliance factors. |
| :--- | :--- | :--- |

Response: The drafting team agrees that there is great variability in calculated frequency response event to event. This is because in a multi-BA Interconnection, a given BA's frequency response contribution is small compared to the variations in load and generation within the BA at any given moment. This is why the drafting team is proposing to use the median value of many events during the year as the measure of "average" response. The median is the preferred measure of by statisticians when dealing with data populations containing outliers.
The SDT agrees the Interconnections possess sufficient frequency response.
The drafting team is proposing a test allowing all BAs with frequency response less than the 1% of peak to use a Frequency Bias Setting set less than 1% of peak to better match the Frequency Bias setting to the natural response. The drafting team agrees a floor threshold needs to be maintained however the current 1% of peak requirement is causing many BAs to over-bias, causing undulations in ACE and frequency.
The SDT would appreciate it if you could identify the research indicating control problems would be realized if the minimum bias setting was set less than 1%.
The SDT also agrees CPS compliance scoring may be affected which is why the drafting team proposes testing using incremental changes to the Frequency Bias Setting. Research by Nathan Cohn (Control of Generation and Power Flow on Interconnected Systems) implies that better matching of the Frequency Bias Setting to the system Frequency Response Characteristic will improve AGC and frequency performance, and also improve CPS compliance scoring.
The SDT does not agree that there is excessive frequency response because of the 1% of peak demand method for establishing the Frequency Bias Setting. The
Organization
bias setting does not increase or decrease Primary Frequency Control. The bias setting value will only impact the measure of ACE and resulting Secondary
Control. The 1\% of peak minimum threshold was appropriate in the past when BA Primary Frequency Control was nearly equal to 1% of the forecasted peak load
or peak generation. Keep in mind FRS Form 1 and the BAL-003 draft standard still require the ACE Frequency Bias Setting be set equal to or greater than the
Frequency Response Characteristic with an initial minimum value of 0.8% of the BA forecasted peak load or peak generation. When the BA Frequency Bias
Setting better matches the Frequency Response Characteristic, L10 and CPS1 and CPS2 will more accurately measure the BA's ACE impact on Interconnection
frequency. This may result in lower CPS1 and CPS2 compliance scoring than currently realized.
The sample size of selected events used for analysis in intended to minimize the concern about variability of performance observed on an event-to-event basis so
that the BA can realize a consistent reference measure when performing analysis.

Energy Mark, Inc.

> Comment 50: In those regions of North America where energy is supplied through markets, Frequency Response should be defined as an additional Ancillary Service and acquired through these Ancillary Service Markets. Attempts to acquire Frequency Response through methods external to the Ancillary Service markets will contribute to market inefficiencies since these external methods must affect the capacity available to the Ancillary Service markets. Use of out-of-market methods would oppose the very reasons that electric energy markets were created in the first place.
> Comment 51: BAs not participating in formal RTOs or ISOs could obtain Frequency Response by insuring that their owned generation is providing appropriate Governor Response to the BA and that contracts will merchant generation are modified to include the provision of Frequency Response in the merchant contracts. It may be appropriate to request guidance from regulatory agencies encouraging the renogiation efforts required to modify existing merchant generator contracts.
> Comment 52: Whether Frequency Response is obtained through Ancillary Service Markets, merchant generator contracts or owned generation, specific continent wide definitions for Frequency Response should be developed to provide guidance and consistency in these diverse circumstances. NERC should be taking the lead on developing the necessary continent wide definitions or policies for Frequency Response.

Response: Comments 50 \& 51: The NERC Reliability Standards do not necessarily dictate "how" Requirements are satisfied. A market can be created by a region, sub-region, ISO, RTO or other entities as appropriate to facilitate compliance however the NERC Reliability Standards do not establish markets.
Comment 52: The SDT will forward this comment to NERC staff.

| Beacon Power Corporation | Beacon Power is a manufacturer and merchant developer of an innovative advanced energy storage
 technology that uses flywheels. Beacon Power's technology operates by using flywheels to rapidly recycle
 energy from the grid in order to follow moment-by-moment changes in frequency nearly instantaneously. The
 following characteristics of Beacon's technology support the use of this technology for frequency response on
 the electric grid. ấ' Responds to local frequency change in less than 1 second; full response in less than 4 |
| :--- | :--- | :--- |
| | seconds â' State of the art electronic control - accurate response. No dead-band required, but could be
 incorporated if beneficial - Inherently modular - Can be distributed around the grid. With distributed local |

Organization	Yes or No	Question 15 Comment
		response to frequency, less likely to be limited by congestion, and ensures islanded portions of the grid maintain frequency response. The ability of Beacon Power's flywheels to quickly and precisely respond to frequency events on the grid makes this technology an ideal source of frequency response. The fast response provided can aid in arresting rapid frequency decline on the system, which can assist in preventing the frequency nadir from encroaching on the first step of Under Frequency Load Shedding. Because of its modular design, flywheels can be built and positioned throughout the grid to provide a diversified frequency response, ensuring adequate response during events that cause the grid to separate into islands. Any standards developed by NERC must allow energy storage and should be inclusive of all technologies able to provide frequency response. Storage resources that provide frequency response should be allowed to recover their costs as a wholesale transmission facility subject to FERC's jurisdiction. Storage facilities do not generate electricity and operate only to enhance the reliability of transmission service. Given that there is no open-market for frequency response, there are no concerns of cross-subsidization or competitive concerns. This will address the FERC Order 693 directive to develop a method of obtaining frequency response, and will improve the overall reliability of the interconnections. Beacon agrees with the approach of mandating Balancing Authority response. However, the SDT should go further to define performance requirements for different tiers of frequency response, for example full response in 5 seconds maintained until 15 seconds, and full response in 15 seconds maintained until 90 seconds (numbers are for example only, the SDT would determine the appropriate values), so that Balancing Authorities can be confident when acquiring new sources that demonstrate those performance characteristics. The use of Reserve Sharing Groups (as detailed in Attachment A) to provide a means of sharing Frequency Response seems unnecessary. Since Frequency Response is contributed to the entire interconnection, ignoring any propagation delays, any Balancing Authorities within an interconnection can share Frequency Response if a consistent method of measuring and allocating it can be determined. However, since all online sources of Frequency Response will contribute based on the change in frequency, this sharing of Frequency Response will not improve interconnection performance. It will only allow Balancing Authorities with too few sources to meet NERC requirements. Hence, sharing arrangements would only improve frequency performance if it results in more frequency responsive sources being online during an event. Additionally, due to the geographical differences of the Balancing Authorities within the Reserve Sharing Groups, their use is not conducive to a diversified interconnection frequency response.

Response: Frequency Response required by the Standard fully satisfies the reliability needs of each Interconnection.
Since these are new Requirements, existing RSG agreements most likely do not address Frequency Response. The SDT is just offering this as a suggestion that needs to be vetted. The SDT has also specified in the latest draft standard version other methods for a BA to obtain Frequency Response.

| Westar Energy | RSG and Spinning Reserve today is SECONDARY response. How does FERC see the RSG (or RTO
 markets) providing PRIMARY frequency response? Allowing the RSG option does not "address the 693 |
| :--- | :--- | :--- |

Organization	Yes or No	Question 15 Comment
		directive", only dumps it on the RSG with no direction. Using frequency responsive loads seems impractical based on the small frequency deviation levels required. What customer would be ok with dropping load when frequency drops to 59.964 or 59.92, etc.

Response: Since these are new Requirements, existing RSG agreements most likely do not address Frequency Response. The SDT is just offering this as a suggestion that needs to be vetted. The SDT has also specified in the latest draft standard version other methods for a BA to obtain Frequency Response. Customers are not required to provide frequency responsive load for reliability however this is an options entities may wish to explore.

ISO New England Inc.
As indicated previously in our comments, there is missing piece to maintaining system frequency and arresting frequency deviation, and that is the generators' governor response. This standard appears to incorrectly assume that the BAs have the resources/ability to provide (primary) Frequency Response, and this is simply not the case. The BAs do not necessarily own facilities which can provide this service.

Response: The SDT is responding to a FERC directive to "...define methods of obtaining Frequency Response..." The SDT has also specified in the latest draft standard version other methods for a BA to obtain Frequency Response.
Regarding governor response - this issue has been discussed and the SDT understands your concern. However, governor droop requirements, dead-band settings and governor operation are outside the scope of the project approved SAR. The SDT believes that the Generator Verification standards will help address these concerns.

Independent Electricity System Operator

As indicated in our comments under Q2, there is missing piece to maintaining system frequency and arresting frequency deviation, and that is the generators' governor response. We suggest the SDT conduct an industry discussion on this piece, and determine the entity responsible for governor actions/setting, the mechanism to provide such a response, and the place for stipulating the necessary standard requirements to enforce compliance for governor actions before further developing this BAL-003-1 standard.

Response: The NERC Reliability Standards do not dictate how Requirements are satisfied.
The SDT believes each Interconnection possesses sufficient frequency response.
Regarding governor response - this issue has been discussed and the SDT understands your concern. However, governor droop requirements, dead-band settings and governor operation are outside the scope of the project approved SAR. The SDT believes that the Generator Verification standards will help address these concerns.

Duke Energy	

The efforts to develop the MOD-025/026 standards and the associated work to determine actual and predicted generator response will do much to identify the response available and provide ways to plan for and validate the response needed and supplied. ERCOT has demonstrated effective use of Load Acting as a Resource (LAAR - essentially customer compensated pre-emptive load shedding). Exploration of similar applications of this in other interconnections is warranted.

Organization	Yes or No	Question 15 Comment
Response: The NERC Reliability Standards do not necessarily dictate "how" Requirements are satisfied. A market can be created by a region, sub-region, ISO, RTO or other entities as appropriate to facilitate compliance however the NERC Reliability Standards do not establish markets.		
Patterson Consulting, Inc.		The SDT has taken the correct approach in mandating Balancing Authority response. Balancing Authorities should be able to acquire that response from various sources to create a suitable portfolio to meet the required performance. The industry may benefit if the SDT defined required performance characteristics for Frequency Response from a technical perspective, such as initial response in less than 2-8 seconds, maximum response in less than 2-40 seconds, continuous (or not) response, etc. (These values are examples and should be determined by the SDT.) Once the market and industry understand expectations, existing or new technologies with those characteristics become possible sources. Then, it is just a matter of adjusting tariffs (compensation) to incent implementation. If Frequency Response is allowed to be shared between Balancing Authorities, the SDT must create requirements to address such issues as deliverability, measurement, and suitable electrical diversity throughout the interconnection.
Response: The SDT agrees with your comment. However, keep in mind that the SDT is responding to a FERC directive to "...define methods of obtaining Frequency Response..." The SDT has also specified in the latest draft standard version other methods for a BA to obtain Frequency Response. The SDT is evaluating several averaging time periods during the field trial. The SDT will select the averaging time period that provides the most accurate results.		
Alberta Electric System Operator		Frequency Response has different aspects and time frames (inertia, governor and AGC response), the method of obtaining Frequency Response should respect these different aspects and time frames.
Response: The SDT is responding to a FERC directive to "...define methods of obtaining Frequency Response..." The SDT has also specified in the latest draft standard version other methods for a BA to obtain Frequency Response.		
FirstEnergy		See our responses to Question 4.
Response: Please refer to our response to Question 4.		
Northeast Power Coordinating Council		Refer to the response to Question 17.
Response: Please refer to our response to Question 17.		

Abstract

16. If you are aware of any conflicts between the proposed standard and any regulatory function, rule order, tariff, rate schedule, legislative requirement, or agreement please identify the conflict here.

Summary Consideration: Most of the commenters responding to this question provided a response but did not identify any conflicts. A couple of the commenters felt that there may be a conflict with both the FERC Order 693 and the FERC March 18, 2010 order. Another commenter felt that the requirements could impact CPS performance and that using events from the prior evaluation period could create the possibility of double jeopardy.
The SDT explained that the comment concerning the "..scheduled periodicity of Frequency Response surveys..." being the only issue needing to be addressed at this time was not correct. The SDT stated that in the December 16, 2010 FERC Order Accepting NERC's Compliance Filing the Commission states in par 12 "...NERC's proposed action plan demonstrates a commitment to develop requirements for minimum levels of frequency response needed for Reliable Operation consistent with the Commission's directives in Order No. 693." The SDT believes that this clearly states that the directives from FERC Order 693 are to be addressed.
Concerning the comment that the requirements could impact CPS performance the SDT explained that it believes that the large gap commonly found between natural frequency response and the frequency bias settings deployed based on 1% of peak load was resulting in excessive and unnecessary regulation and was related to high frequency following DCS events and in other circumstances as well. The SDT agreed that the reduction of the 1% of peak load floor for the frequency bias setting can affect the total interconnection frequency bias setting, L10 values, and possibly CPS 2 compliance as well. The SDT further explained that it put Requirement R5 back in the proposed standard with a process for reducing the minimum to provide for monitoring the system to ensure reliable operation.
With regards to the comment concerning the possibility for double jeopardy the SDT responded that the SDT expected each year to normally have enough frequency events to avoid double jeopardy, but there was a need to have a backup plan in case a year does not yield sufficient frequency events.

Organization	Yes or No	
FirstEnergy		We are not aware of any conflicts at this time.
Response: The SDT thanks you for your participation.		
IRC Standards Review Committee	This proposed Field Trial and standard MAY conflict with Order 693 and the March 18, 2010 Order that state:Specifically, the Commission stated: As the Commission noted in the NOPR and in our response to FirstEnergy, Requirement R2 of this Reliability Standard states that " [e]ach Balancing Authority shall establish and maintain a Frequency Bias Setting that is as close as practical to, or greater than, the Balancing Authority's Frequency Response." The Commission believes that the achievement of this Requirement is fundamental to the tie line bias control schemes that have been in use to assist in balancing generation and load in the Interconnections for many years.	

Organization	Yes or No	Question 16 Comment
		Further, in Order No. 693 the Commission concluded: We understand that the present Reliability Standard sets the required frequency response of the balancing authorities to be approximately one percent or greater by requiring that the frequency bias shall not be less than one percent and that the frequency bias be as close as practical to, or greater than, the actual frequency response. March 18 Order concludesAccordingly, to assure that NERC proceeds expeditiously, the Commission is setting a compliance deadline of six months from the date of issuance of this order for the development of modifications to Reliability Standard BAL-003-0 that comply with the Commission's directives as set forth in Order No. 693 to define the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other requirements of the Reliability Standard are being met and the necessary amount of frequency response needed for reliable operation. May 13, 2010 Order for a Technical Conference statedThus, we direct that NERC submit, within 30 days after the technical conference, a proposed schedule that includes firm deadlines for completing studies, analyses needed to develop a frequency response requirement, and for submission of a modified Reliability Standard that is responsive to the Commission directives in Order No. 693 pertaining to Reliability Standard BAL-003-0. In short the Orders only ask for the BAL-003 to be revised to provide a schedule for the Frequency Response surveys. We may question whether the subjective 25 events per year is the same as a scheduled periodicity, but the point here is that that is the only mandate that is needed immediately. The only other requirement is that NERC file a schedule for completing its studies. Note that is not something that is for a standard it is something for a NERC filing.
Response: The SDT disagrees with your comment concerning the ".. scheduled periodicity of Frequency Response surveys..." being the only issue needing to be addressed at this time. In the December 16, 2010 FERC Order Accepting NERC's Compliance Filing the Commission states in par 12 "...NERC's proposed action plan demonstrates a commitment to develop requirements for minimum levels of frequency response needed for Reliable Operation consistent with the Commission's directives in Order No. 693." This clearly states that the directives from FERC Order 693 are to be addressed.		
ERCOT		This proposed Field Trial and standard MAY conflict with Order 693 and the March 18, 2010 Order that state:Specifically, the Commission stated: As the Commission noted in the NOPR and in our response to FirstEnergy, Requirement R2 of this Reliability Standard states that "[e]ach Balancing Authority shall establish and maintain a Frequency Bias Setting that is as close as practical to, or greater than, the Balancing Authority's Frequency Response." The Commission believes that the achievement of this Requirement is fundamental to the tie line bias control schemes that have been in use to assist in balancing generation and load in the Interconnections for many years. Further, in Order No. 693 the Commission concluded: We understand that the present Reliability Standard sets the required frequency response of the balancing authorities to be approximately one percent or greater by requiring that the frequency bias shall not be less than one percent and that the frequency bias be as close as practical to, or greater than, the actual frequency response. March 18 Order concludesAccordingly, to assure that NERC proceeds expeditiously, the Commission is setting a compliance deadline of six months from the date of issuance of this order for the development of modifications to Reliability Standard BAL-003-0 that comply with the Commission's directives

Organization	Yes or No	Question 16 Comment
		as set forth in Order No. 693 to define the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other requirements of the Reliability Standard are being met and the necessary amount of frequency response needed for reliable operation. May 13, 2010 Order for a Technical Conference statedThus, we direct that NERC submit, within 30 days after the technical conference, a proposed schedule that includes firm deadlines for completing studies, analyses needed to develop a frequency response requirement, and for submission of a modified Reliability Standard that is responsive to the Commission directives in Order No. 693 pertaining to Reliability Standard BAL-003-0. In short the Orders only ask for the BAL-003 to be revised to provide a schedule for the Frequency Response surveys. We may question whether the subjective 25 events per year is the same as a scheduled periodicity, but the point here is that that is the only mandate that is needed immediately. The only other requirement is that NERC file a schedule for completing its studies. Note that is not something that is for a standard it is something for a NERC filing.
Response: The SDT disagrees with your comment concerning the ".. scheduled periodicity of Frequency Response surveys..." being the only issue needing to be addressed at this time. In the December 16, 2010 FERC Order Accepting NERC's Compliance Filing the Commission states in par 12 "...NERC's proposed action plan demonstrates a commitment to develop requirements for minimum levels of frequency response needed for Reliable Operation consistent with the Commission's directives in Order No. 693." This clearly states that the directives from FERC Order 693 are to be addressed.		
Arizona Public Service Company		AZPS would like clarity if Interpretations of BAL-003-0 will be part of BAL-003-1.
Response: This standard will replace all existing BA-003's and incorporates any approved interpretation.		
Energy Mark, Inc.		Comment 53: In Comment 25 I indicated that the suggested allocation method fails to meet the requirement that "A reliability standard shall neither mandate nor prohibit any specific market structure." My comments here support that contention. The allocation method is not influenced by demand for frequency response. As a consequence, only one side of a fair market is represented. Markets are effective because: 1. Markets are voluntary allowing the demand side of the market to choose to not create the need to acquire a product or service. 2. Markets select the lowest cost product or service from competing offers to supply the product or service demanded. When the allocation method is blind to the demand for the product or service it eliminates the most efficient market designs from consideration, and therefore, mandates a market design that only looks at the supply side of the market. Comment 54: Selecting an allocation method for Frequency Response that considers both the supply and demand sides of the market for Frequency Response would enable the implementation of a much more efficient market design. Such an allocation method would allow demand side reductions in the need for Frequency Response to compete with supply side increases in the need for Frequency Response allowing for

Organization	Yes or No	Question 16 Comment
		the creation of the most efficient markets in this Ancillary Service.
Response: The SDT acknowledges your concerns but your market-related suggestions are outside the scope of the industry approved SAR.		
FMPP		NERC Relablity Standards Conflict - by using events from last year to determine an entity's compliance with a Requirement for this year puts the entity in double jeopardy for last year's events, which were already used for compliance for last year.
Response: The SDT agrees that a standard should not place an entity in double jeopardy. The SDT expects that each year will normally have enough frequency events to avoid double jeopardy, but it needs to have a backup plan in case a year does not yield sufficient frequency events.		
American Electric Power		This Standard has the potential to affect Standards involving CPS performance with respect to the calculated CPS Bounds L10 if relative.
Response: The SDT believes that the large gap commonly found between natural frequency response and the frequency bias settings deployed based on 1% of peak load is resulting in excessive and unnecessary regulation and is related to high frequency following DCS events and in other circumstances as well. You are correct in asserting that the reduction of the 1% of peak load floor for the frequency bias setting can affect the total interconnection frequency bias setting, L10 values, and possibly CPS 2 compliance as well. The SDT has put Requirement R5 back in the proposed standard. The SDT has modified the plan for reduction of the minimum Frequency Bias Setting. The plan is no longer tied to the Field Trial. The SDT has removed the table reflecting the reduction of the minimum bias setting. The SDT is proposing a method of reducing the minimum Frequency Bias Setting in which the ERO will monitor the results of the reductions and adjusting them accordingly in an effort to bring the Frequency Bias Setting closer to natural Frequency Response. Please refer to Attachment B for details of this reduction plan.		
Northeast Power Coordinating Council		Refer to the response to Question 17.
Response: Please refer to our response to Question 17.		
Patterson Consulting, Inc.		None.
Kansas City Power \& Light		No other comments.

17. Please provide any other comments (that you have not already provided in response to the questions above) that you

 have on the draft standard BAL-003-1.> Summary Consideration: Several commenters indicated that the supplemental compliance information and attachment sections created additional standard requirements. In response to this concern these documents have been revised. If a requirement states that the entity must perform in accordnace with Attachment X, then Attachment X is an extension of that requirement and the performance identified in the attachment is mandatory and enforceable.
> Several commenters expressed concern that the Balancing Authority may not have the necessary means to effectively manage Frequency Response and recommended that the SDT consider establishing a standard for generators to support the Balancing Authorities achieve the necessary level of Frequency Response. The SDT explained that this standard will provide the metrics for Frequency Response while the market will define itself.
> Commenters also stated that insufficient detail has been provided for evaluating the appropriateness of the methodology used for determining FRO. They indicated that the standard needed more details on how the FRO is calculated and allocated among the Balancing Authorities. The SDT made significant modifications to Attachment A - Supporting Document which details the methodology used to determine the calculations.
> Commenters indicated that the plan to annually reduce the floor percentage for the Frequency Bias Settings may adversely impact reliability. In response to this concern the Implementation Plan no longer outlines the Frequency Bias Setting reduction plan initially proposed. Attachment B sets forth the procedure for reducing the Frequency Bias Setting floor threshold.
> Another commenter stated that emphasis should be placed on the Frequency Excursion Curve Point C value and not other values because the Point C value is critical for reliability. A request was also received to correlate the frequency response for the Point B value timeframe window with the timeframe window for the Point C value. The SDT committed to reviewing this relationship during the field trial.

> One commenter asked how to attain or schedule Frequency Response from another Balancing Authority if it is a market resource. The SDT responded that the standard simply provides reliability metrics. Industry determines which markets and independent solutions could be developed.
> A comment was received requesting clarification of the NERC glossary term "native load" mentioned in the Implementation Plan. Instead of providing clarification, this term has been removed from the Implementation Plan.

> Twenty-five additional industry comments have been received regarding the draft BAL-003-1 standard as noted in the following table.

Organization	
Northeast Power Coordinating Council	It is not clear from either Form 1 or its instructions whether the supplied frequency deviation for an event should be used without modification, or if it should be overwritten with a value computed from the Balancing Authority's data source (or if

Organization	Question 17 Comment
	there is an option, to use the lesser value, for example). Clearly express which frequency deviation value to use. The load sensitivity calculation is an important Balancing Authority Area value to compute accurately for modeling purposes. As proposed, it would use the same computational technique as that used for frequency bias sampling calculations. To yield a useful result, load values would need to have "convergence characteristics" similar to that found in the actual net interchange values used for frequency bias sampling. While experience has shown that the average or median values of the frequency bias samples computed for most Balancing Authorities will converge with about 20 samples, a similar outcome for load sensitivity calculations might not occur. Frequency bias samples rely on the measured actual net interchange values that are sampled at the AGC scan rate, and the actual net interchange tends to be a rather stable value because AGC and operator actions usually keep the actual net interchange close to a scheduled value. The total net system load may have greater volatility and may be trending in a particular direction much more often than actual net interchange. Also, the load calculation typically relies on adding the sum of the generation within the Balancing Authority to the actual net interchange. The generation values may have a slower scan rate, longer data latency periods, and smaller generators might not be telemetered, with hourly scheduled values or manually entered values being used instead. These differences can contribute to a very different convergence characteristic than that found for actual net interchange. Simply put, the load sensitivity calculation needs validation. The Form 1 instructions mention a generation only Balancing Authority form to be filled in. It is not shown on the spreadsheet provided, and it is not clear what data should be entered, though it seems like it would still be actual net interchange.Form 1 contains an entry form for a single Balancing Authority Interconnection, however, it is not referenced in the Form 1 instructions.Section A of the Form 1 instructions contains excellent background material that explains why this effort is important. However, section B needs a careful review so that the instructions are thorough and unambiguous. The information on variable bias calculations seems sparse, and the requirements for variable bias should be reviewed thoroughly with those Balancing Authorities that are familiar with the nuances and challenges of determining an appropriate variable bias.If BIAS is set equal to response, about 50% of the time, AGC will cancel out the primary response; the BIAS, therefore, should be slightly higher than the natural response but clearly 1% is too large. The game plan to continually reduce the floor percentage for frequency bias settings needs to be reconsidered. With . 4% peak load being a typical actual frequency response lately for Balancing Authorities, the 1% of peak load to $.8 \%$ of peak load transition seems prudent. Perhaps a further reduction to $.6 \%$ may be useful as well, but lesser floors may in effect result in AGC too often canceling out the primary frequency response being provided. While the 16 to 52 second sampling window for point B computations seem to be a reasonable initial guess for the metric, preliminary studies by the Frequency Responsive Reserve Standard Drafting Team (FRRSDT) indicate that AGC contributions from fast acting hydro generators will be included in the samples. As those same studies were not conclusive, perhaps the initial years of this standard could require the provision of scan rate data from 30 seconds before to 60 seconds after the start of the frequency decline for each event. While this significantly increases the volume of data to be provided, it would allow the FRRSDT to determine the best sampling intervals to be used. Perhaps a point B sampling interval of 15 to 30 seconds would filter out most of the fast acting AGC, but more data/analysis is needed to determine the best sampling interval to be sure that the primary response data is not being corrupted by this fast acting AGC response.To support Balancing Authorities in achieving the targeted level of frequency response, a standard for generators is needed as well, as they are historically the largest source of discretionary frequency response. The standard could give a Balancing Authority the right to waive these requirements should they pursue other sources of frequency

Organization	
Question 17 Comment	
	response, such as ERCOT's "load acting as a resource (LAAR)" efforts.
	Point C values are the more important reliability metric. Since point C metrics are challenged with data quality issues on a
	Balancing Authority and generator level, an effort should be made to correlate the required frequency response in the point B
	While Attachment A mentions that N-2 category C events will be used to determine the frequency response obligation on an interconnection level, there is insufficient detail provided at this time to evaluate the appropriateness of the obligations selected. Efforts in this area for the frequency model developed by the Reliability-Based Control Standard Drafting Team (and now the BARCSDT) for HQTE may shed some insight into this process.

Response: The SDT agrees that clearer instructions are needed in Form 1. This has been addressed in the revised form. The SDT also agrees that there may be limited benefit from measuring the load response of a BA due to data fidelity and resolution. An attempt to measure a BA's load response was included for the field trial to determine its value and was not used in the BA's frequency response measure. It is believed that some BA's with generation data that is on a similar scan rate as their Interchange data may find that it accurately measures their load dampening. The field trial will determine if it is useful or not. The SDT agrees that the 16 to 52 second sampling window may include some fast acting AGC. The field trial will determine if this sampling period should be reduced. Form 1 has been revised to include a minimum data set that starts 30 seconds before the event and ends not earlier than 60 seconds after the event to help identify the overall best averaging periods. The SDT also agrees that the use of LaaRs in ERCOT is a great backup to Primary Frequency Control but would also like to point out that this response only responds in one direction and does not provide bidirectional frequency stability for the moment to moment changes in frequency. Once utilized, it takes hours to restore the service for the next contingency. During this time, the BA and Interconnection depends on Primary Frequency Control from other sources that are continuous and bidirectional as long as headroom is available. The SDT agrees that Point C Primary Frequency Control is critical for preventing UFLS and will use the field trial results to determine if the Point B measure of performance can be correlated to Point C performance. Thank you for your comments.
Regarding governor response - this issue concerning generators has been discussed by the SDT. The SDT understands your concern. However, governor droop requirements, dead-band settings, and governor operation is outside of the industry approved SAR. The SDT believes that the Generator Verification standards will help address these concerns.
The $\mathrm{N}-2$ criteria is being evaluated during the field trial.
ISO New Engand Inc.
It is not clear from either Form 1 or its instructions whether the supplied frequency deviation for an event should be used without modification, or if it should be overwritten with a value computed from the Balancing Authority's data source (or if there is an option, to use the lesser value, for example). Clearly express which frequency deviation value to use.
2. The load sensitivity calculation is an important Balancing Authority Area value to compute accurately for modeling purposes. As proposed, it would use the same computational technique as that used for frequency bias sampling calculations. To yield a useful result, load values would need to have "convergence characteristics" similar to that found in the actual net interchange values used for frequency bias sampling. While experience has shown that the average or median values of the frequency bias samples computed for most Balancing Authorities will converge with about 20 samples, a similar outcome for load sensitivity calculations might not occur. Frequency bias samples rely on the measured actual net
interchange values that are sampled at the AGC scan rate, and the actual net interchange tends to be a rather stable value because AGC and operator actions usually keep the actual net interchange close to a scheduled value. The total net system load may have greater volatility and may be trending in a particular direction much more often than actual net interchange. Also, the load calculation typically relies on adding the sum of the generation within the Balancing Authority to the actual net interchange. The generation values may have a slower scan rate, longer data latency periods, and smaller generators might not be telemetered, with hourly scheduled values or manually entered values being used instead. These differences can contribute to a very different convergence characteristic than that found for actual net interchange. Simply put, the load sensitivity calculation needs validation. The Form 1 instructions mention a generation only Balancing Authority form to be filled in. It is not shown on the spreadsheet provided, and it is not clear what data should be entered, though it seems like it would still be actual net interchange.Form 1 contains an entry form for a single Balancing Authority Interconnection, however, it is not referenced in the Form 1 instructions. Section A of the Form 1 instructions contains excellent background material that explains why this effort is important. However, section B needs a careful review so that the instructions are thorough and unambiguous. The information on variable bias calculations seems sparse, and the requirements for variable bias should be reviewed thoroughly with those Balancing Authorities that are familiar with the nuances and challenges of determining an appropriate variable bias.If BIAS is set equal to response, about 50% of the time, AGC will cancel out the primary response; the BIAS, therefore, should be slightly higher than the natural response but clearly 1% is too large. The game plan to continually reduce the floor percentage for frequency bias settings needs to be reconsidered. With $.4 \%$ peak load being a typical actual frequency response lately for Balancing Authorities, the 1\% of peak load to $.8 \%$ of peak load transition seems prudent. Perhaps a further reduction to $.6 \%$ may be useful as well, but lesser floors may in effect result in AGC too often canceling out the primary frequency response being provided.

While the 16 to 52 second sampling window for point B computations seem to be a reasonable initial guess for the metric, preliminary studies by the Frequency Responsive Reserve Standard Drafting Team (FRRSDT) indicate that AGC contributions from fast acting hydro generators will be included in the samples. As those same studies were not conclusive, perhaps the initial years of this standard could require the provision of scan rate data from 30 seconds before to 60 seconds after the start of the frequency decline for each event. While this significantly increases the volume of data to be provided, it would allow the FRRSDT to determine the best sampling intervals to be used. Perhaps a point B sampling interval of 15 to 30 seconds would filter out most of the fast acting AGC, but more data/analysis is needed to determine the best sampling interval to be sure that the primary response data is not being corrupted by this fast acting AGC response.
To support Balancing Authorities in achieving the targeted level of frequency response, a standard for generators is needed as well, as they are historically the largest source of discretionary frequency response. The standard could give a Balancing Authority the right to waive these requirements should they pursue other sources of frequency response, such as ERCOT's "load acting as a resource (LAAR)" efforts.
Point C values are the more important reliability metric. Since point C metrics are challenged with data quality issues on a Balancing Authority and generator level, an effort should be made to correlate the required frequency response in the point B time window with that needed in the point C time window (perhaps using rules of thumb, such as 100% of load's frequency response and 30% of generator's frequency response occurs in time for point C). While Attachment A mentions that $\mathrm{n}-2$ category C events will be used to determine the frequency response obligation on an interconnection level, there is insufficient detail provided at this time to evaluate the appropriateness of the obligations selected. Efforts in this area for the

[^53]| Organization | Question 17 Comment |
| :---: | :---: |
| | frequency model developed by the Reliability-Based Control Standard Drafting Team (and now the BARCSDT) for HQTE may shed some insight into this process. |
| Response: The SDT agrees that clearer instructions are needed in Form 1. This has been addressed in the revised form. The SDT also agrees that there may be limited benefit from measuring the load response of a BA due to data fidelity and resolution. An attempt to measure a BA's load response was included for the field trial to determine its value and was not used in the BA's frequency response measure. It is believed that some BA's with generation data that is on a similar scan rate as their Interchange data may find that it accurately measures their load dampening. The field trial will determine if it is useful or not. The SDT agrees that the 16 to 52 second sampling window may include some fast acting AGC. The field trial will determine if this sampling period should be reduced. Form 1 has been revised to include a minimum data set that starts 30 seconds before the event and ends not earlier than 60 seconds after the event to help identify the overall best averaging periods. The SDT also agrees that the use of LaaRs in ERCOT is a great backup to Primary Frequency Control but would also like to point out that this response only responds in one direction and does not provide bidirectional frequency stability for the moment to moment changes in frequency. Once utilized, it takes hours to restore the service for the next contingency. During this time, the BA and Interconnection depends on Primary Frequency Control from other sources that are continuous and bidirectional as long as headroom is available. The SDT agrees that Point C Primary Frequency Control is critical for preventing UFLS and will use the field trial results to determine if the Point B measure of performance can be correlated to Point C performance. Thank you for your comments. | |
| Santee Cooper | Again, we believe that the SDT should consided or prior years' data. We are concerned with how the total frequency response obligation of an interconnection will be determined since this will ultimately determine each BA's FRO. We believe more detail should be presented on this issue. We appreciate the time and the work performed by the standard drafting team on this standard that we feel is a necessary component for reliable operation of the Interconnections. |
| Response: The SDT does not understand the intent of the first sentence in your comment.. The next posting will be more explicit in the method for determining the FRO. | |
| MRO's NERC Standards Review Subcommittee | We feel the Reserve Sharing Group should be removed from the applicability section as it's not included in any requirement. |
| Response: The SDT has modified the proposed standard to better reflect the RSG responsibility in providing Frequency Response. | |
| Xcel Energy | We feel Reserve Sharing Group should be removed from the applicability section since it is not included in any of the requirements. Additionally, the documents are not clear as to how there is a field trial included in the proposal. |

Organization Question 17 Comment

Response: The SDT has modified the proposed standard to better reflect the RSG responsibility in providing Frequency Response.

LG\&E and KU Energy	We are concerned that, in attachment A, the generation/load split in determining FRO may not be the most equitable method for allocation. In general, we feel that Attachment A needs additional clarity, i.e., is the split based on forecasted or prior years' data.We are concerned with how the total frequency response obligation of an interconnection will be determined since this will ultimately determine each BA's FRO. We believe more detail should be presented on this issue.Please make sure enhanced frequency response from load is examined as an economical source of frequency response per FERC requirements in Order 693 paragraphs 336 and 375.
	The SDT has not addressed how the requirements of the proposed standard can be implemented without a market mechanism.All frequency response available in an RTO/ISO ancillary services market should be offered in a non- discriminatory way (possibly on an OASIS).
	The standard needs more detail (not an attachment) on how the Interconnect FRO is allocated to BAs. We further suggest the SDT consider providing detail in Attachment A that the Reliability Coordinator will need to be involved in allocation of the FRO to specific regions or plants within the Reliability Coordinator Area.
	There is a good chance that the proper geographic location of frequency responsive reserves will increase Transfer Path capability when the Transfer Path capability is limited by a loss of generation. This may be the case in the west where loss of two Palo Verde units establishes the California-Oregon Intertie SOL because frequency responsive reserves are carried in the Pacific Northwest, not near Palo Verde. The BAL-OO3-1 standard does not consider this issue.
	Please review the (pk gen+pk load)/2 method described in Attachment A, page 3. We appreciate the time and the work performed by the standard drafting team on this standard that we feel is a necessary component for reliable operation of the Interconnections.

Response: The FRO is based on the forecasted values. The SDT had extensive discussions concerning the generation/load split for determining the BA FRO and believes that the proposed methodology is both reasonably equitable and non-discriminatory.
The SDT recognizes the need to convert Attachment A into two documents. The first document will remain part of the standard as Attachment A and provide greater detail for the calculation methodologies. The second document will explain the rationale for the requirements as supplemental standard information.
This standard provides metrics in which markets and independent solutions can be developed.
This standard provides a minimum requirement of a BA but does not prevent an RC from imposing further restrictions.
All of the methodologies proposed in this standard are being tested during the field trial.

SERC OC Standards Review
Group

The Standard Authorization Request Form references that BAL-003-0 originated as part of Project 2007-18, Reliability-based Control. Actually, it originated in Project 2007-05, Balancing Authority Control.
We are concerned that, in attachment A, the generation/load split in determining FRO may not be the most equitable method

Organization	Question 17 Comment
	for allocation. In general, we feel that Attachment A needs additional clarity, i.e., is the split based on forecasted or prior years' data. We are concerned with how the total frequency response obligation of an interconnection will be determined since this will ultimately determine each BA's FRO. We believe more detail should be presented on this issue. We appreciate the time and the work performed by the standard drafting team on this standard which we feel is a necessary component for reliable operation of the Interconnections."The comments expressed herein represent a consensus of the views of the above named members of the SERC OC Standards Review group only and should not be construed as the position of SERC Reliability Corporation, its board or its officers."
Response: Revisions to BAL-003 were originally part of Project 2007-05, but Project 2007-05 was then merged on July 28, 2010 into Project 2007-18. The SDT recognizes the need to convert Attachment A into two documents. The first document will remain part of the standard as Attachment A and provide greater detail for the calculation methodologies. The second document will explain the rationale for the requirements as supplemental standard information.	
The FRO is based on the forecasted values.	
The methodologies proposed in this standard have been tested during the field trial.	

Organization	Question 17 Comment
versions.	
Bonneville Power Administration	o D1.4 R1 Supplemental Information (first paragraph) - Adds an additional requirement outside of the requirements section. o D1.4 R2 Supplemental Information (first paragraph) - Adds an additional requirement outside of the requirement section. o D1.4 R Supplemental Information (Second paragraph) - Adds an additional requirement outside of the requirements section. This number has nothing to do with frequency response during events. Also, has more to do with R1 than R2.
Response: The Additional Compliance Section has been completely revised and the issues you identified have been removed.	
SPP Standards Development	The reporting requirement in Attachment A under R1 '...each BA has one month to assemble its data and calculate the FRM.' is not consistent with the reporting requirements in D. Compliance, 1.4 of the draft Standard. R4 - We suggest replacing the word 'increase' with 'modify' or 'adjust'. We also suggest deleting Balancing Authority Area and replacing it with combined areas at the end of the sentence. Why is R4 in BAL-003-0 being retired?
Response: The SDT has correct The SDT prefers to use the word suggesting could be interpreted to BAL-003-01.b Requirement R4 is Frequency Bias Settings are calcu (\% of peak load/gen and FRO). T	the error in the wording. crease" to provide clarity that the Frequency Bias Setting should go up when providing this service. Use of the terms you are low for adjustments up or down. longer necessary. This Requirement addresses how to calculate Frequency Bias Settings. This is no longer needed since the ed in FRS Form 1 using Frequency Response associated with the "official" list of events and a couple of "floor or ceiling" limits entire calculation is built into the FRS Form 1 workbook.
IRC Standards Review Committee	The sections of "Additional Compliance Information" in the draft standard seem to create requirements as written. For example, revision of 1.4 for R1 Supplemental Information is suggested to be as follows: Each Balancing Authority or the Interconnection designated entity shall reports its previous year's Frequency Response Measure (FRM) to the ERO on Form 1 by January 10 each year. If the ERO posts the official list of events after December 10, Balancing Authorities or the Interconnection designated entity will be given 45 days from the date the ERO posts the official list of events to submit their FRS Form 1. If aA Balancing Authority may elects to fulfill its Frequency Response Obligation by participating as a member of a Reserve Sharing Group (RSG). If a Balancing Authority elects to report as an RSG, the total of the participating Balancing Authorities' FRO will be compared to the total of the participating Balancing Authorities' FRM. Further, revision of 1.4 for R2 Supplemental Information is suggested to be as follows: Each Balancing Authority or the Interconnection designated entity shall reports its current year requested Frequency Bias

Organization	Question 17 Comment
	Setting and Frequency Bias type (fixed or variable) to the ERO on FRS-Form 1 by January 10 each year. If the ERO posts the official list of events after December 10, Balancing Authorities will be given 45 days from the date the ERONERC posts the official list of events to submit their FRS Form 11. Once the FRM and Frequency Bias Settings have been validated by the ERO, the ERO will disseminate the Frequency Bias Settings Report for all Balancing Authorities in each Interconnection along with the implementation date.Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1. Again, please clarify what qualifies as "variable" Frequency Bias Setting. Also please clarify how the "monthly average Frequency Bias Settings" are to be calculated. Is it a daily or weekly or hourly weighted average, or something else? In Attachment A: What is the "frequency deviation event threshold specified for the Interconnection"? Where is it specified? Please clarify.In Attachment A, 2.b.: Is this intended to be describing Point B? Please clarify.In Attachment A: While the ERO is deciding which events to use, does this mean that, throughout the year, the BA must collect and save all the relevant data for all events so as to have the data ready and available for when the ERO issues the list of events to be reported? In Attachment A, 4.: "Any indication or evidence of a secondary event occurrence after Point C should be reviewed for inclusion based on having sufficient information to perform a full analysis of the event". What meant by "should be reviewed"? Who is to be doing the review? What are the criteria for the review? In the Implementation Plan: "native load" is not defined in the ERCOT Interconnection. Please clarify.
Response: The Additional Compliance Section has been completely revised and the issues you identified have been removed. The Requirement and Measure have been modified to include references to RSGs. Variable frequency bias settings are determined by Balancing Authorities using a calculation based on present operating conditions. The SDT recognizes the need to convert Attachment A into two documents in order to provide further clarity. The first document will remain part of the standard as Attachment A and provide greater detail for the calculation methodologies. The second document will explain the rationale for the requirements as supplemental standard information. The current Reliability Standard BAL-005 cites the data required to be archived. As envisioned, the ERO will post the events to be analyzed on a quarterly basis to allow a BA to review its performance throughout the year. The Implementation Plan no longer references "Native Load". However, this term is defined in the NERC Glossary of Terms.	
ERCOT	The sections of "Additional Compliance Information" in the draft standard seem to create requirements as written. For example, revision of 1.4 for R1 Supplemental Information is suggested to be as follows: Each Balancing Authority or the Interconnection designated entity shall reports its previous year's Frequency Response Measure (FRM) to the ERO on Form

Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

1 by January 10 each year. If the ERO posts the official list of events after December 10, Balancing Authorities or the Interconnection designated entity will be given 45 days from the date the ERO posts the official list of events to submit their FRS Form 1. If aA Balancing Authority may elects to fulfill its Frequency Response Obligation by participating as a member of a Reserve Sharing Group (RSG). If a Balancing Authority elects to report as an RSG, the total of the participating Balancing Authorities' FRO will be compared to the total of the participating Balancing Authorities' FRM. Further, revision of 1.4 for R2 Supplemental Information is suggested to be as follows:Each Balancing Authority or the Interconnection designated entity shall reports its current year requested Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO on FRS-Form 1 by January 10 each year. If the ERO posts the official list of events after December 10, Balancing Authorities will be given 45 days from the date the ERONERC posts the official list of events to submit their FRS Form 11. Once the FRM and Frequency Bias Settings have been validated by the ERO, the ERO will disseminate the Frequency Bias Settings Report for all Balancing Authorities in each Interconnection along with the implementation date.
Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1. Again, please clarify what qualifies as "variable" Frequency Bias Setting. Also please clarify how the "monthly average Frequency Bias Settings" are to be calculated. Is it a daily or weekly or hourly weighted average, or something else? In Attachment A: What is the "frequency deviation event threshold specified for the Interconnection"? Where is it specified? Please clarify.In Attachment A, 2.b.: Is this intended to be describing Point B? Please clarify.In Attachment A: While the ERO is deciding which events to use, does this mean that, throughout the year, the BA must collect and save all the relevant data for all events so as to have the data ready and available for when the ERO issues the list of events to be reported?In Attachment A, 4.: "Any indication or evidence of a secondary event occurrence after Point C should be reviewed for inclusion based on having sufficient information to perform a full analysis of the event". What meant by "should be reviewed"? Who is to be doing the review? What are the criteria for the review?In the Implementation Plan: "native load" is not defined in the ERCOT Interconnection. Please clarify.

Response: The Additional Compliance Section has been completely revised and the issues you identified have been removed.
The Requirement and Measure have been modified to include references to RSGs.
Variable frequency bias settings are determined by Balancing Authorities using a calculation based on present operating conditions.
The SDT recognizes the need to convert Attachment A into two documents in order to provide further clarity. The first document will remain part of the standard as Attachment A and provide greater detail for the calculation methodologies. The second document will explain the rationale for the requirements as supplemental standard information.
The current Reliability Standard BAL-005 cites the data required to be archived.
As envisioned, the ERO will post the events to be analyzed on a quarterly basis to allow a BA to review its performance throughout the year.
The Implementation Plan no longer references "Native Load". However, this term is defined in the NERC Glossary of Terms.
Progress Energy
We believe this standard insufficiently addresses the true nature of the problem; however it does accuratly address the fact

Organization	\quad Question 17 Comment				
	that the current BA minimum frequency bias setting is too large. This standard should also exclude LSE's without generation capacity since this problem both exists and can be solved at the generator level.				
Response: The SDT agrees that the generator level can solve the issues. This standard is addressing directives from FERC Order 693. Any reference to a generator requirement would be outside of the industry approved SAR.					
The LSE is not cited as an applicable entity.		$	$	NIPSCO	We reviewed the number of BAs in the Eastern Interconnection and there are many. We're hoping that compliance to R1 would be covered by the RSGs similar to DCS.
:---	:---				
Response: The SDT added the RSG as a applicable entity to allow a BA an alternative method for complying with this standard.					

Organization	Question 17 Comment
	with respect to reliability and economics. Comment 56: A series of four technical papers were written and offered to the Frequency Response Standard Drafting Team that describe a measurement method for Frequency Response that does not have the detrimental limitations that exist with the Peak Load / Peak Generation Ratio share method suggested in Attachment A. These four paper are:1. Illian, H. F., Frequency Response Risk Measure, Prepared for the Frequency Response Standard Drafting Team, Energy Mark, July 1, 2010 revised September 7, 2010.2. Illian, H. F., Understanding ACE and CPS1, Prepared for the Frequency Response Standard Drafting Team, Energy Mark, September 8, 2010.3. Illian, H. F., Frequency Response Reliability Measure for the Balancing Authority, Prepared for the Frequency Response Standard Drafting Team, Energy Mark, October 11, 2010.4. Illian, H. F., Description of Regressions for Frequency Response Analysis, Prepared for the Frequency Response Standard Drafting Team, Energy Mark, September 21, 2010.PDFs of these papers have been forwarded to supplement these comments and should be addended as part of my comments.

Response: Comment 54 - The SDT understands your concerns and has taken them under consideration during the development of this standard. The SDT will provide technical justification for the methods it proposes within the standard.
Comment 55 - The SDT thanks you for your work in creating the aforementioned papers. The SDT has reviewed these papers and considered them during the development of this standard. Furthermore, the SDT will forward them on to the appropriate NERC personnel.

Hydro-Quebec TransEnergie
The proposed NERC standard (BAL-003) does not take into account the "point C " issue. The proposed requirements are only related to "point B". The proposed NERC standard (BAL-003) validates that the Balancing Authority carries enough Synchronized Reserve and that this reserve is really Frequency Responsive, on average in the most common situations (based on the median). It is an "after-the-fact" evaluation of the performance of the Balancing Authority. However, there is no guaranty that the Balancing Authority will maintain the required Synchronized Reserve either when the load is very low or during peak load periods Real-time Monitoring of the frequency responsive reserve would be a good way to avoid this issue.

Response: The SDT is proposing a more conservative Point B result in order to protect for Point C UFLS.
We encourage real-time monitoring of Frequency Response as a good practice but mandating it is beyond industry approved SAR. Also, the SDT believes that this is being addressed in the development of the Balancing Authority Reliability-based Control standards in Project 2010-14.

Westar Energy

Based on a Category C (N-2) event, what is the approximate Interconnection Frequency Response Obligation for each Interconnection? What is the First Step UFLS for each Interconnection?
Since there is no NERC Standard requirement for what first step UFLS is, what if it changes during the year?
Response: The SDT recognized the need to convert Attachment A into two documents. The first document will remain part of the standard as Attachment A and provide greater detail for the calculation methodologies, including FRO. The second document will explain the rationale for the requirements as supplemental standard information. Table 2 in revised Attachment A shows the FRO for each interconnection and the methodology used to determine this value. The UFLS set point used in the calculation is shown in Table 2 for each Interconnection. These values are intended to protect against frequency reaching the highest UFLS

Question 17 Comment
Organization Question 17 Comment
setting for credible contingencies.
The utilities have the ability to change the UFLS settings during the year. The entities FRO and Frequency Bias Setting would remain the same until it was reviewed by the ERO. Your comment does emphasize the need for the ERO to coordinate these changes across standards but this is outside the scope of this project..

EKPC	EKPC would like to express the importance of considering large non-conforming loads and their effects on smaller BAs.We appreciate the drafting team's effort and dedication to this standard.
Response: The SDT has modified FRS form 1 to allow for adjustments, including non-conforming load.	
We Energies	The FRO and the standard in general focus on Frequency Response for an intact grid. Inadequate consideration is given to unexpected events such as separation, islanding and partial or total BES failure. In these cases, the location of the FR resources is important. For example, if a BA has a contract with an entity that controls load level to satisfy the required FRO, that load may not be within the island created following a disruption to the BES. A complete BES failure may leave a black start island with only load frequency response. Load frequency response is the ultimate dispersed source for this commodity, but may be inadequate as the sole provider under abnormal grid conditions. For better grid security, other dispersed sources of frequency response are desirable. Comment on the NERC Resources Subcommittee Position Paper on Frequency Response (Discussion Draft):EOP-005-2 does not contain requirements for the Balancing Authority in a restoration event involving the use of black start resources. Only Transmission Operators, Generator Operators, Transmission Owners identified in the Transmission Operators restoration plan, and Distribution Providers identified in the Transmission Operators restoration plan have roles in that standard. How will the BA "bring more Frequency Responsive resources to bear" during black start if they have no defined role?

Response: This standard is not meant to be an emergency operations standard. However, this standard could assist an entity in identifying and solving the problem you have mentioned.

The NERC RS Position Paper on Frequency Response is not a product of this standard. It is an information paper requested by the NERC OC. The RS posted the document and received industry comments that were incorporated.

American Electric Power	If a balancing authority loses generation, what happen to the neighboring balancing authority's AGC? If an overall Reserve Sharing Group's performance can possibly be used to meet performance measures, why is the RSG not included in the Standard applicability for such functional entity?

Response: If the Frequency Bias Setting is close to natural Frequency Response, as this standard is proposing, the AGC impacts would be minimal or none. The RSG is listed in the Applicability Section of this standard. The SDT has further modified Requirement R1 to identify the RSG within the requirement.

Organization	Question 17 Comment
Duke Energy	Below are just some of the points that Duke Energy believes need to be discussed further. Relationship to other standards under development: Given the significant implications of this standard to the other balancing- related standards, Duke Energy feels strongly that the Standards Committee should keep the work under Project 2010-14, Balancing Authority Reliability-besed Control, high on the list of standards to be developed. CPS1 and the proposed BAAL are measures that make sense in the long term, as they provide "support to maintain Interconnection Frequency within predefined bounds" and aid in "supporting frequency until the frequency is restored to schedule" as desired in the purpose statement of this standard. Reserve Sharing Group: Duke Energy understands and supports the concept that Frequency Response could be aggregated over a Reserve Sharing Group, however the details need to be addressed in the measures, and in the requirements, which in the current draft only apply to the Balancing Authority.
	Field test: Duke Energy found the implementation plan and field test confusing. The information didn't indicate when the field test would start and end. The implementation plan proposes starting the gradual adjustment of BAL-003-0 R5 in May
	what if the standard hasn't been approved by FERC by then? Shouldn't those dates be tied somehow to the effective date of
BAL-003-1 which is in turn tied to regulatory approval where required? Or is that gradual decrease actually part of the field	
test?	

Organization

Question 17 Comment

Under the proposed definition, the FRM calculation would only consider provision of response from resources external to the BA Area if the "interchange" came in the form of a Pseudo-tie adjustment to Actual Interchange - Dynamic Schedules would not be accounted for. As the use of Pseudo-ties changes load calculations and other data, even the use of them may not make sense compared perhaps to just having a mechanism to move the obligation to the area providing the response, and then determining if the provision of just Frequency Response must absolutely carry into increased secondary control requirements.

Separating primary response from secondary control:
Is it possible for resources in one BA to provide a measure of Frequency Response for another BA, but not result in a change to each BA's Frequency Bias Setting used in the secondary control requirements?

Response: The development of the Balancing Authority Reliability-based Control standards in Project 2010-14 are outside the scope of this SDT, however the need to coordinate development was raised with the Standards Committee and the standards in Project 2010-14 that address "reserves" have been advanced as high priority.
The SDT has modified Requirement R1 and the associated measure to identify the RSG.
In reference to your field trial comment the SDT has modified the Implementation Plan to no longer reference the field test or the reduction of the minimum Frequency Bias Setting. The SDT has developed a process by which the ERO will reduce the minimum Frequency Bias Setting. The procedure used to reduce the Frequency Bias Setting is detailed in Attachment B and is now tied to regulatory approval of this standard.

This standard will provide the metrics for Frequency Response while the market will define itself. The SDT encourages you to work with NAESB to define a market.
The SDT encourages you to open a discussion with the Interchange Subcommittee concerning Frequency Response as a market resource.
The SDT has included language that defines how the RSG is to perform and comply with this standard. The SDT agrees that a Reserve Sharing Group providing a "group frequency response" would not be interchange between the entities within that group. The SDT also agrees that the RSG would be evaluated as if it were a single $B A$.
The SDT has incorporated an improved FRS Form 1 with instructions for its use. The SDT thanks you for your comment concerning Pseudo-tie but, based on the information provided, the SDT is unsure of your question and cannot provide a further response.
With regards to your last comment, the SDT believes that it is possible as long as they are using a dynamic schedule.
Patterson Consulting, Inc.
Requirement 4 is worded incorrectly, although it is taken from the existing standard. Requirement 4 states "Each Balancing Authority that is performing Overlap Regulation Service shall [increase] its Frequency Bias Setting in its ACE calculation by combining the Frequency Bias Settings for the entire Baalancing Authority Area being controlled." (Bracketing added for emphasis.) Considering Frequency Bias Settings are negative numbers, this requirement should have Balancing Authorities "decrease" rather than "increase" their Frequency Bias Settings. For example, the requirement could state "Each Balancing Authority that is performing Overlap Regulation Service shall decrease..." or if "decrease" is undesirable then "Each Balancing Authority that is performing Overlap Regulation Service shall modify..."

Response: The SDT understands your concern with the use of the term "increase" and has replaced this word with "modify". The SDT revised Requirement R4 for additional clarity and it now reads:

Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation to be equivalent to the sum of the Frequency Bias Settings of the participating Balancing Authorities as validated by the ERO or calculate the Frequency Bias Setting based on the entire area being combined and thereby represent the Frequency Response for the combined area being controlled.

Associated Electric Cooperative,

 Inc.
BAL-003-1 draft standard:

Apparent Intent and expectations:

1) I agree with this emerging standard's recognizing that the arbitrary 1\% of peak-load should be refined by being lowered to better reflect each BA's expected frequency response.
2) This emerging standard apparently attempts to address the divesture of generation from loads by utilizing the "(Load + Generation)/2" formula, which seems fair.
3) I'm still struggling with the concept of being able to share in the success of an RSG, but not its failures if your BA was individually successful. Something seems wrong with that approach. However if necessary, AECI will definitely use it to its advantage.
4) I really would have liked to see the Measures that are currently in draft.

Comment on Definitions:

1) SEFRD - I had to read this definition several times because "The individual sample of event data" is actually an internally calculated value derived from a set of event sample data, and not really a "sample" value at all. So, I believe the SEFRD definition needs further work.
2) FRM is defined by undefined terms "FRS" and "FRS Form 1".
3) FRO - fine
4) FRS - "Frequency Response Survey"

Requirements and Requirements Supplement Information1) R1 and R1 Supplemental Information, pp 2, 4
a) I believe these two sections should be combined into one requirement, specifying the basic BA requirement "or, if the BA was within an RSG and elects to report from within that RSG's performance," that RSG's performance requirement.
b) The time-frame for reporting should be another requirement, and with a companion Measurement. (Concerning the timing, the original response timeframe is 31 days, but the if NERC slips past the "normal" December 10 deadline, the

Organization

Question 17 Comment

response time requirement is increased by 50%, to 45 days? Did somebody make a mistake, or was this intentional?)
c) The problem with this requirement is that it relies on each BA to "read" its own frequency-performance, and does not provide a clear system of comparison between BAs for the same frequency event. In other words, the drafting team is trying to impose a nice bright-line objective standard, that is really resting on what is currently a very subjective calculation of SEFRD. . (See item 3, Rx-below)
2) R2 and R2 Supplemental Information pp $2 . .4$
a) See comment 1.b above, concerning reporting time-frame being another requirement
b) I believe every BA should report its monthly average frequency-bias setting, whether fixed-bias or variable-bias. In the case of reporting fixed-bias, the first two months will likely be different from the remaining ten months within the same calendar year.
3) $R x$ - I believe there is a hidden requirement, that the ERO monitor each interconnection's frequency for candidate events, then annually select and provide the top events for FRS Form 1 reporting. That same requirement should dictate that the ERO provide the corresponding A, B, and C times for each FRS Form 1 reportable event, when the survey goes out. I believe this requirement should be spelled-out, in order to improve reporting consistency and make the FRS reporting process a bit more objective.

Response: "Apparent Intent"

Comments 1) \& 2) - The SDT thanks you for your comment.
Comment 3) The SDT added the RSG as a applicable entity to allow a BA an alternative method for complying with this standard. The SDT has included language that defines how the RSG is to perform and comply with this standard.
Comment 4) The SDT purposely left the measures out of the first draft. This was to ensure the focus would be on the requirements themselves. The SDT also recognized that the requirements would probably need revision after receiving industry feedback.
Definitions:
Comment 1) The SDT agrees with your concern regarding the definition of SEFRD. The SDT has removed the definition from the standard.
Comment 2) The term FRS Form 1 is only identifying a form to be used when providing information to the ERO.
Comment 3) The SDT thanks you for your agreement with the definition.
Comment 4) Again, the term FRS is simply pointing to a particular for to be used when providing the information to the ERO.
Requirements:
Comment 1 a) The SDT has revised Requirement R1 to reference an RSG. The Requirement now reads "Each Balancing Authority (BA) or Reserve Sharing Group (RSG) shall achieve an annual Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each BA or RSG to maintain an adequate level of
Organization Question 17 Comment

Frequency Response in the Interconnection."
Comment 1 b) The Additional Compliance Section has been completely revised and the issues you identified have been removed.
Comment 1 c) The revised standard changes the methodology from subjective to directed.
Comment 2 a) The Additional Compliance Section has been completely revised and the issues you identified have been removed. The SDT has corrected the timing issue you have referenced.
Comment 2 b) The SDT disagrees and believes that "fixed" should be reported on a annual basis while "variable" should be reported monthly due to the nature of the calculation.

Comment 3) The SDT believes that Point C is not needed for the methodology being recommended. The revised FRS Form 1 and the new Form 2 provide clarification concerning Point A and Point B.

Alberta Electric System Operator
Is there any relation or coordination between the work of this standard and the effort on "NERC RS Position Paper on Frequency Response" ? The AESO believes these two projects should be coordinated. The AESO has also signed on to comments submitted by the SRC. We see the SRC comments as continent wide and these AESO comments as more Alberta specific.

Response: The NERC RS Position Paper on Frequency Response is not a product of this standard. It is an information paper requested by the NERC OC. The RS posted the document and received industry comments that were incorporated. In addition, some of the Frequency Response SDT membership are also members of the NERC RS.

Please refer to our comments to SRC.

Kansas City Power \& Light		No other comments.

Standard Development Roadmap

This section is maintained by the drafting team during the development of the standard and will be removed when the standard becomes effective.

Development Steps Completed:

1. The Standards Committee approved the SAR for posting on January 13, 2005.
2. The SAR was posted for industry comment from January 17, 2005 through February 17, 2005.
3. Reply comments and a revised SAR were posted for a second industry comment period from April 4, 2006 through May 3, 2006.
4. Reply comments and a revised SAR were posted for a third industry comment period from February 8, 2007 through March 9, 2007.
5. Standards Committee approved moving the project into the standards development phase on July 12, 2007.
6. The Standards Committee appointed the Standard Drafting Team on August 13, 2007.
7. The draft standard was posted for a 30 day formal comment period from February 4, 2011 through March 7, 2011.

Proposed Action Plan and Description of Current Draft:

This is the second posting of the proposed standard and its associated documents for a 45 day formal comment period and a successive 10 day ballot, from October 24, 2011through December 7, 2011.
Future Development Plan:

Anticipated Actions	Anticipated Date
1. Respond to comments submitted within the comment period and with the successive ballot.	December, 2011
2. Conduct a recirculation ballot for ten days.	January, 2012
3. BOT adoption.	March, 2012

Definitions of Terms used in the Standard

Frequency Response Measure (FRM)

The median of all the Frequency Response observations reported annually on FRS Form 1.

Frequency Response Obligation (FRO)

The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection.

Frequency Bias Setting

A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems.

A. Introduction

Title: Frequency Response and Frequency Bias Setting

Number: BAL-003-1
Purpose: To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored. To provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting.

Applicability:
1.1. Balancing Authority
1.2. Reserve Sharing Group (where applicable)

Effective Date:

1.3. In those jurisdictions where regulatory approval is required, Requirements R2, R3 R4 and R5 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R2, R3, R4 and R5 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
1.4. In those jurisdictions where regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.

B. Requirements

R1. Each Balancing Authority (BA) or Reserve Sharing Group (RSG) shall achieve an annual Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each BA or RSG to maintain an adequate level of Frequency Response in the Interconnection. [Risk Factor: Medium][Time Horizon: Operations Assessment]

R2. Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control. [Risk Factor: Medium][Time Horizon: Operations Planning]

R3. Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively
coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority’s Area. [Risk Factor: Medium][Time Horizon: Real-time Operations]
R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation to be equivalent to the sum of the Frequency Bias Settings of the participating Balancing Authorities as validated by the ERO or calculate the Frequency Bias Setting based on the entire area being combined and thereby represent the Frequency Response for the combined area being controlled. [Risk Factor: Medium][Time Horizon: Operations Planning]

R5. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is at least equal to one of the following: [Risk Factor: Medium][Time Horizon: Operations Planning]

- The minimum percentage of the Balancing Authority Area's estimated yearly Peak Demand within its metered boundary per 0.1 Hz change as specified by the ERO in accordance with Attachment B.
- The minimum percentage of the Balancing Authority Area’s estimated yearly peak generation for a generation-only Balancing Authority, per 0.1 Hz change as specified by the ERO in accordance with Attachment B.

C. Measures

M1. The Balancing Authority or Reserve Sharing Group shall have FRS Form 1 with data to show that its FRM is equal to or more negative than FRO to demonstrate compliance with Requirement R1.

M2. The Balancing Authority shall have evidence such as a dated document in hard copy or electronic format showing the ERO validated Frequency Bias Setting was entered into its ACE calculation on the date specified or other evidence to demonstrate compliance with Requirement R2.
M3. The Balancing Authority shall have evidence such as a dated operating log, database or list in hard copy or electronic format or operator interviews supported by other evidence showing the AGC operating mode including explanation when operating in other than Tie Line Bias mode to demonstrate compliance with Requirement R3.

M4. The Balancing Authority shall have evidence such as a dated operating log, database or list in hard copy or electronic format showing when Overlap Regulation Service is provided including Frequency Bias Setting calculation to demonstrate compliance with Requirement R4.

M5. The Balancing Authority shall have evidence such as dated data plus documented formula to support the calculation retained in either hardcopy or electronic format showing the monthly average Frequency Bias Setting or other evidence to demonstrate compliance with Requirement R5.

D. Compliance

1. Compliance Monitoring Process

1.1. Compliance Enforcement Authority

The Regional Entity is the Compliance Enforcement Authority except where the responsible entity works for the Regional Entity. Where the responsible entity works for the Regional Entity, the Regional Entity will establish an agreement with the ERO or another entity approved by the ERO and FERC (i.e. another Regional Entity), to be responsible for compliance enforcement.

1.2. Compliance Monitoring and Assessment Processes:

Compliance Audits
Self-Certifications
Spot Checking
Compliance Violation Investigations
Self-Reporting
Complaints
Periodic Data Submittals

1.3. Data Retention

The Balancing Authority shall retain data or evidence to show compliance with Requirements R1, R2, R3, R4 and R5, Measures M1, M2, M3, M4, and M5 for the current year plus three calendar years unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation.

The Reserve Sharing Group shall retain data or evidence to show compliance with Requirement R1 and Measure M1 for the current year plus three calendar years unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation.

If a Balancing Authority or Reserve Sharing Group is found non-compliant, it shall keep information related to the non-compliance until found compliant or for the time period specified above, whichever is longer.
The Compliance Enforcement Authority shall keep the last audit records and all subsequent requested and submitted records.

1.4. Additional Compliance Information

For Interconnections that are also Balancing Authorities, Tie Line Bias control and Flat Frequency control are equivalent and either is acceptable.

2.0 Violation Severity Levels

R\#	Lower VSL	Medium VSL	High VSL	Severe VSL
R1	The summation of the Balancing Authorities’ FRM within an Interconnection was equal to or more negative than the Interconnection's FRO and the Balancing Authority's, or Reserve Sharing Groups, FRM was less negative than its FRO by more than 1% but by at most 30% or $15 \mathrm{MW} / 0.1$ Hz , whichever one is the greater deviation from its FRO	The summation of the Balancing Authorities’ FRM within an Interconnection was equal to or more negative than the Interconnection's FRO and the Balancing Authority's, or Reserve Sharing Groups, FRM was less negative than its FRO by more than 30% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO	The summation of the Balancing Authorities' FRM within an Interconnection did not meet its FRO and the Balancing Authority's, or Reserve Sharing Groups, FRM was less negative than its FRO by more than 1% but by at most 30% or $15 \mathrm{MW} / 0.1$ Hz , whichever one is the greater deviation from its FRO	The summation of the Balancing Authorities’ FRM within an Interconnection did not meet its FRO and the Balancing Authority's, or Reserve Sharing Groups, FRM was less negative than its FRO by more than 30% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO
R2	The Balancing Authority not receiving Overlap Regulation Service failed to implement the validated Frequency Bias Setting value into its ACE calculation on the date specified but did so within 5 calendar days following the date specified by the ERO.	The Balancing Authority not receiving Overlap Regulation Service implemented the validated Frequency Bias Setting value into its ACE calculation in more than 5 calendar days but less than or equal to 15 calendar days following the date specified by the ERO.	The Balancing Authority not receiving Overlap Regulation Service implemented the validated Frequency Bias Setting value into its ACE calculation in more than 15 calendar days but less than or equal to 25 calendar days following the date specified by the ERO.	The Balancing Authority not receiving Overlap Regulation Service did not implement the validated Frequency Bias Setting value into its ACE calculation in more than 25 calendar days following the date specified by the ERO.
R3	N/A	N/A	N/A	The Balancing Authority not receiving Overlap Regulation service failed to operate AGC in Tie Line Bias mode and such operation would not

$\left.\left.\begin{array}{|c|l|l|l|l|}\hline & & & & \begin{array}{l}\text { have had an Adverse } \\ \text { Reliability Impact } \\ \text { on the Balancing } \\ \text { Authority’s Area. }\end{array} \\ \hline \text { R4 } & \begin{array}{l}\text { The Balancing } \\ \text { Authority } \\ \text { incorrectly changed } \\ \text { the Frequency Bias } \\ \text { Setting value used in } \\ \text { its ACE calculation } \\ \text { when providing } \\ \text { Overlap Regulation } \\ \text { Services with } \\ \text { combined footprint } \\ \text { setting-error less } \\ \text { than 5\% of the } \\ \text { correct value. }\end{array} & \begin{array}{l}\text { The Balancing } \\ \text { Authority } \\ \text { incorrectly changed } \\ \text { the Frequency Bias } \\ \text { Setting value used in } \\ \text { its ACE calculation } \\ \text { when providing } \\ \text { Overlap Regulation } \\ \text { Services with } \\ \text { combined footprint } \\ \text { setting-error more } \\ \text { than 5\% but less } \\ \text { than or equal to 15\% } \\ \text { of the correct value. }\end{array} & \begin{array}{l}\text { The Balancing } \\ \text { Authority } \\ \text { incorrectly changed } \\ \text { Setting value used in } \\ \text { its ACE calculation } \\ \text { when providing } \\ \text { Overlap Regulation } \\ \text { Services with } \\ \text { combined footprint } \\ \text { setting-error more } \\ \text { than 15\% but less } \\ \text { than or equal to 25\% } \\ \text { of the correct value. }\end{array} & \begin{array}{l}\text { The Balancing } \\ \text { Authority } \\ \text { incorrectly changed } \\ \text { the Frequency Bias } \\ \text { Setting value used in } \\ \text { its ACE calculation } \\ \text { when providing } \\ \text { Overlap Regulation } \\ \text { Services with } \\ \text { combined footprint } \\ \text { setting-error more } \\ \text { than 25\% of the } \\ \text { correct value. }\end{array} \\ \text { R5 OR }\end{array}\right\} \begin{array}{l}\text { The Balancing } \\ \text { Authority failed to } \\ \text { change the }\end{array}\right\}$

E. Regional Variance

None

F. Associated Documents

Attachment A - Frequency Response Standard Supporting Document

Attachment B - Process for Adjusting Bias Setting Floor
FRS Form 1
FRS Form 2
Frequency Response Standard Background Document
G. Version History

Version	Date	Action	Change Tracking
0	April 1, 2005	Effective Date	New
1		Complete Revision under Project 2007-12	Revision

Standard Development Roadmap

This section is maintained by the drafting team during the development of the standard and will be removed when the standard becomes effective.

Development Steps Completed:

1. The Standards Committee approved the SAR for posting on January 13, 2005.
2. The SAR was posted for industry comment from January 17, 2005 through February 17, 2005.
3. Reply comments and a revised SAR were posted for a second industry comment period from April 4, 2006 through May 3, 2006.
4. Reply comments and a revised SAR were posted for a third industry comment period from February 8, 2007 through March 9, 2007.
5. Standards Committee approved moving the project into the standards development phase on July 12, 2007.
6. The Standards Committee appointed the Standard Drafting Team on August 13, 2007.
7. The draft standard was posted for a 30 day formal comment period from February 4, 2011 through March 7, 2011.

Proposed Action Plan and Description of Current Draft:

This is the second posting of the proposed standard and its associated documents for a 45 day formal comment period and a successive 10 day ballot, from October 2124, 2011through December 57, 2011.

Future Development Plan:

Anticipated Actions	Anticipated Date
1. Respond to comments submitted within the comment period and with the successive ballot.	December, 2011
2. Conduct a recirculation ballot for ten days.	January, 2012
3. BOT adoption.	March, 2012

Definitions of Terms used in the Standard

Single Event Frequency Response Data (SEFRD)

The individual sample of event data from a Balancing Authority which represents the thange in Net Actual Interchange ($\left(\mathrm{NH}_{\mathrm{A}}\right)$, divided by the change in frequency, expressed in MW/0.1Hz.

Frequency Response Measure (FRM)

The median of all the Frequency Response Single Event Frequency Response Data observations reported annually on FRS Form 1.

Frequency Response Obligation (FRO)

The Balancing Authority's share of the required Frequency Response contribution to the total aggregate Frequency Response needed for the reliable operation of an Interconnection-assigned by the ERO.

Frequency Bias Setting

A numbervalue, (either a-fixed or variable-Frequency Bias), usually expressed in MW/0.1 Hz , included inset into a Balancing Authority's Area Control Error equation to account forthat allows the Balancing Authority's Frequency Response contribution to contribute its Frequency Response to the Interconnection, and discourage response withdrawal through secondary control systems.

A. Introduction

Title: Frequency Response and Frequency Bias Setting

Number: BAL-003-1
Purpose: To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored. To schedule and provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting.

Applicability:
1.1. Balancing Authority
1.2. Reserve Sharing Group (where applicable)

Effective Date:

1.3. In those jurisdictions where regulatory approval is required, Requirements R2, R3 and R4 and R5 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R2, and R3, R4 and R5 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
1.4. In those jurisdictions where regulatory approval is required, Requirements R1_of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.

B. Requirements

R1. Each Balancing Authority (BA) or Reserve Sharing Group (RSG) shall achieve an annual Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each BA or RSG to maintain an adequate level of Frequency Response in the Interconnection. [Risk Factor: Medium][Time Horizon: Operations Assessment]

R1.R2. Each Balancing Authority not participating in Overlap Regulation
Service shall implement the Frequency Bias Setting (fixed or variable) validatedprovided by the ERO_{2} into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Biassecondary control, using the results from the caleulation methodology detailed in Attachment A. [Risk Factor: Medium][Time Horizon: Operations Planning]

R2.R3. Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) inem Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area. [Risk Factor: Medium][Time Horizon: Real-time Operations]

R4. Each Balancing Authority that is performing Overlap Regulation Service shall modifyinerease its Frequency Bias Setting in its ACE calculation to be equivalent to the sum of by combining the Frequency Bias Settings of the participating Balancing Authorities as validated by the ERO or calculate the Frequency Bias Setting based on the entire area being combined and thereby represent the Frequency Response for the combinedentire area being controlled. [Risk Factor: Medium][Time Horizon: Operations Planningl

R5. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is at least equal to one of the following: [Risk Factor: Medium][Time Horizon: Operations Planning]

- \quad The minimum percentage of the Balancing Authority Area's estimated yearly Peak Demand within its metered boundary per 0.1 Hz change as specified by the ERO in accordance with Attachment B.
- \quad The minimum percentage of the Balancing Authority Area's estimated yearly peak generation for a generation-only Balancing Authority, per 0.1 Hz change as specified by the ERO in accordance with Attachment B.

C. Measures

Meastres for each Requirement will be provided in the second posting of the proposed standard.

M1. The Balancing Authority or Reserve Sharing Group shall have FRS Form 1 with data to show that its FRM is equal to or more negative than FRO to demonstrate compliance with Requirement R1.

M2. The Balancing Authority shall have evidence such as a dated document in hard copy or electronic format showing the ERO validated Frequency Bias Setting was entered into its ACE calculation on the date specified or other evidence to demonstrate compliance with Requirement R2.

M3. The Balancing Authority shall have evidence such as a dated operating log, database or list in hard copy or electronic format or operator interviews supported by other evidence showing the AGC operating mode including explanation when operating in other than Tie Line Bias mode to demonstrate compliance with Requirement R3.

M4. The Balancing Authority shall have evidence such as a dated operating log, database or list in hard copy or electronic format showing when Overlap Regulation Service is provided including Frequency Bias Setting calculation to demonstrate compliance with Requirement R4.

M1.M5. The Balancing Authority shall have evidence such as dated data plus documented formula to support the calculation retained in either hardcopy or electronic format showing the monthly average Frequency Bias Setting or other evidence to demonstrate compliance with Requirement R5.
D. Compliance

1. Compliance Monitoring Process

1.1. Compliance Enforcement Authority

The Regional Entity is the Compliance Enforcement Authority except where the responsible entity works for the Regional Entity. Where the responsible entity works for the Regional Entity, the Regional Entity will establish an agreement with the ERO or another entity approved by the ERO and FERC (i.e. another Regional Entity), to be responsible for compliance enforcement.Regional Entity shall serve as the Compliance Enforcement Authority.

1.2. Compliance Monitoring and Assessment Processes:

Compliance Audits
Self-Certifications
Spot Checking
Compliance Violation Investigations
Self-Reporting
Complaints
Periodic Data Submittals

1.3. Data Retention

The Balancing Authority shall retain data or evidence to show compliance with Requirements R1, R2, R3, R4 and R5, Measures M1, M2, M3, M4, and M5 for the current year plus three calendar years unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation.

The Reserve Sharing Group shall retain data or evidence to show compliance with Requirement R1 and Measure M1 for the current year plus three calendar years unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation.

If a Balancing Authority or Reserve Sharing Group is found non-compliant, it shall keep information related to the non-compliance until found compliant or for the time period specified above, whichever is longer.
The Compliance Enforcement Authority shall keep the last audit records and all subsequent requested and submitted records.

1.4. Additional Compliance Information

R1 Supplemental Information

Each Balancing Authority shall report its previous year's Frequency Response Measure (FRM) to the ERO on Form 1 by January 10 each year. If the ERO posts the official list of events after December 10, Balancing Authorities will be given 45 days from the date the ERO posts the official list of events to submit their FRS Form 1.

A Balancing Authority may elect to fulfill its Frequency Response Obligation by participating as a member of a Reserve Sharing Group (RSG). If a Balancing Authority elects to report as an RSG, the total of the participating Balancing Authorities' FRO will be compared to the total of the participating Balaneing Authorities' FRM.

R2 Supplemental Information.

Each Balancing Authority shall report its current year requested Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO on FRS-Form 1 by Janmary 10 each year. If the ERO posts the official list of events after December 10, Balancing Authorities will be given 45 days from the date NERG pests the official list of events to submit their FRS Form 1. Once the FRM and Frequency Bias Settings have been validated by the ERO, the ERO will disseminate the Frequeney Bias Settings Report for all Balaneing Authorities in each Interconnection along with the implementation date.

Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1. For Interconnections that are also Balancing Authorities, Tie Line Bias control and Flat Frequency control are equivalent and either is acceptable.

2.0 Violation Severity Levels

R\#	Lower VSL	Medium VSL	High VSL	Severe VSL
R1	The summation of the Balancing Authorities' FRM within an Interconnection was equal to or more negative than the Interconnection's FRO and the Balancing Authority's, or Reserve Sharing Groups, FRM was	The summation of the Balancing Authorities' FRM within an Interconnection was equal to or more negative than the Interconnection's FRO and the Balancing Authority's, or Reserve Sharing Groups, FRM was	The summation of the Balancing Authorities' FRM within an Interconnection did not meet its FRO and the Balancing Authority's, or Reserve Sharing Groups, FRM was less negative than its FRO by more than 1% but by at most	The summation of the Balancing Authorities' FRM within an Interconnection did not meet its FRO and the Balancing Authority's, or Reserve Sharing Groups, FRM was less negative than its FRO by more than 30% or by more

	less negative than its FRO by more than 1% but by at most 30% or 15 MW/0.1 Hz , whichever one is the greater deviation from its FRO	less negative than its FRO by more than 30\% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO	30\% or $15 \mathrm{MW} / 0.1$ Hz , whichever one is the greater deviation from its FRO	$\begin{aligned} & \text { than } 15 \mathrm{MW} / 0.1 \mathrm{~Hz} \\ & \text { whichever is the } \\ & \text { greater deviation } \\ & \text { from its FRO } \end{aligned}$
R2	The Balancing Authority not receiving Overlap Regulation Service failed to implement the validated Frequency Bias Setting value into its ACE calculation on the date specified but did so within 5 calendar days following the date specified by the ERO.	The Balancing Authority not receiving Overlap Regulation Service implemented the validated Frequency Bias Setting value into its ACE calculation in more than 5 calendar days but less than or equal to 15 calendar days following the date specified by the ERO.	The Balancing Authority not receiving Overlap Regulation Service implemented the validated Frequency Bias Setting value into its ACE calculation in more than 15 calendar days but less than or equal to 25 calendar days following the date specified by the ERO.	The Balancing Authority not receiving Overlap Regulation Service did not implement the validated Frequency Bias Setting value into its ACE calculation in more than 25 calendar days following the date specified by the ERO.
R3	N/A	N/A	N/A	The Balancing Authority not receiving Overlap Regulation service failed to operate AGC in Tie Line Bias mode and such operation would not have had an Adverse Reliability Impact on the Balancing Authority's Area.
R4	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with combined footprint	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with combined footprint	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with combined footprint	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with combined footprint

	setting-error less than 5\% of the correct value.	setting-error more than 5% but less than or equal to 15\% of the correct value.	setting-error more than 15% but less than or equal to 25\% of the correct value.	setting-error more than 25% of the correct value. OR The Balancing Authority failed to change the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services.
R5	The absolute value of the Balancing Authorities' calculated monthly average Frequency Bias Setting was less than or equal to 5\% below the minimum specified by the ERO.	The absolute value of the Balancing Authorities' calculated monthly average Frequency Bias Setting was more than 5\% but less than or equal to 15\% below the minimum specified by the ERO.	The absolute value of the Balancing Authorities' calculated monthly average Frequency Bias Setting was more than 15\% but less than or equal to 25\% below the minimum specified by the ERO.	The absolute value of the Balancing Authorities' calculated monthly average Frequency Bias Setting was more than 25\% below the minimum specified by the ERO.

E. Regional Variance

None

F. Associated Documents

Attachment A - Frequency Response Standard Supporting DocumentBackground Document
Attachment B - Process for Adjusting Bias Setting Floor
FRS Form 1
FRS Form 21 Instructions
Frequency Response Standard Background Document
G. Version History

Version	Date	Action	Change Tracking
0	April 1, 2005	Effective Date	New
1		Complete Revision under Project 2007-12	Revision

Attachment A

BAL-003-1 Frequency Response \& Frequency Bias Setting Standard

Supporting Document

Background

This document outlines the ERO process for supporting the Frequency Response Standard (FRS).

Event Selection Criteria

The ERO will use the following criteria to select FRS frequency excursion events for analysis.

1. The evaluation period for performing the annual Frequency Bias Setting and the Frequency Response Measure (FRM) calculation is December 1 of the prior year through November 30 of the current year.
2. The ERO will identify at least 25 frequency excursion events in each Interconnection for calculating the Frequency Bias Setting and the FRM. If the ERO cannot identify in a given evaluation period 25 frequency excursion events satisfying the limits specified in criteria 3 below, then similar acceptable events from the previous evaluation period also satisfying listed criteria will be included with the data set by the ERO for determining FRS compliance.
3. The ERO will use two limits to determine if an acceptable frequency excursion event for determining FRM has occurred:
a. The change in frequency (delta F) and the arresting frequency (Point C) must exceed the excursion threshold values specified for the Interconnection in Table 1 below. Point C is the arrested value of frequency observed within 8 seconds following the start of the excursion.

	Point C		
Interconnection	Delta F	Under Frequency	Over Frequency
East	0.04 Hz	<59.97	>60.03
West	0.05 Hz	<59.97	>60.03
Texas	0.15 Hz	<59.90	>60.10
HQ	0.20 Hz	<59.85	>60.15

Table 1: Interconnection Frequency Excursion Threshold Values
b. The time from the start of the rapid change in frequency until the point at which Frequency has stabilized within a narrow range should be less than 18 seconds.
4. Pre-disturbance frequency should be relatively steady and near 60.000 Hz . The A Value is computed as an average over the period from -16 seconds to 0 seconds before the frequency transient begins to decline.
5. Events that coincide with a second event that does not stabilize before the first scan used in the $B-V a l u e$ will not be considered.
6. Frequency excursion events occurring during periods when large interchange schedule ramping or load change is happening, and frequency excursion events occurring within 5 minutes of the top of the hour, should be excluded from consideration if other acceptable frequency excursion events can be used for analysis.
7. Select the cleanest 2 or 3 frequency excursion events occurring monthly that satisfy selection criteria. If there are not 2 frequency excursion events satisfying selection criteria occurring during the month, then other frequency excursion events from the same season of the year satisfying selection criteria should be considered for use if necessary.

To assist Balancing Authority preparation for complying with this standard, the ERO will provide quarterly posting of candidate frequency excursion events for the current year FRM calculation. The ERO will post the final list of frequency excursion events used for standard compliance by December 15 each year. Balancing Authorities are encouraged to develop scanning tools that identify candidate frequency excursion events so they are ready to access data files when needed.

NOTE: The ERO may use for analysis of Interconnection frequency performance, but not for Balancing Authority Frequency Response, additional frequency excursion events not satisfying the criteria specified.

Frequency Response Obligation (FRO) for the Interconnection

Each Interconnection will establish target contingency protection criteria. The default target listed in Table 2 is based on the largest category C(N-2) event identified. However, this contingency protection criterion includes a safety margin to prevent Point C from encroaching on the interconnection's highest Under Frequency Load Shed (UFLS) step for credible contingencies.

	Eastern	Western	Texas	HQ	
Starting Frequency	60	60	60	60	Hz
*Highest UFLS	59.6	59.5	59.3	58.5	Hz
Contingency Protection Criteria	4500	2740	2750	1700	MW
**Base Obligation	1125	548	229	113	$\mathrm{MW} / 0.1 \mathrm{~Hz}$
With 25\% Safety Margin	1406	685	286	141	$\mathrm{MW} / 0.1 \mathrm{~Hz}$

Table 2: Interconnection Frequency Response Obligations
*The Eastern Interconnection set point listed is a compromise value for the highest UFLS step setting of 59.5 Hz used in the east and the special protection scheme's highest UFLS step setting of 59.7 Hz used in Florida. It is extremely unlikely that an event elsewhere in the Eastern Interconnection would cause the Florida UFLS special protection scheme to "false trip".
**In the Base Obligation measure for Texas, 1150 MW (Load Resources triggered by Under Frequency Relays at 59.70 Hz) was reduced from its Contingency Protection Criteria level of 2750 MW to get 229 MW/0.1 Hz. This was reduced to accurately account for designed response from Load Resources within 30 cycles.

An Interconnection may propose alternate FRO protection criteria to the ERO. The ERO will confirm the proposed alternate FRO protection criteria.

Balancing Authority Frequency Response Obligation (FRO) and Frequency Bias Setting

The ERO will manage the administrative procedure for annually assigning an FRO and Frequency Bias Setting to each Balancing Authority.

For a multiple Balancing Authority interconnection, the Interconnection Frequency Response Obligation is allocated based on either the Balancing Authority Peak Demand or peak generation. Initial FRO allocation will be based on the following method:
$\left[\begin{array}{c}\text { Projected BA Peak Load + BA installed capacity } \\ \text { Projected Interconnection Peak Load + Interco nnection installed ca pacity }\end{array}\right] x$ Interconnection FRO

Each Balancing Authority shall report its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO on FRS Form 1 by January 10 each year. If the ERO posts the official list of events after December 10, Balancing Authorities will be given 30 days from the date the ERO posts the official list of events to submit their FRS Form 1.

Once the ERO validates the data for all Balancing Authorities, the ERO will use FRS Form 1 data to post the following information for each Balancing Authority for the upcoming year:

- Frequency Bias Setting
- Frequency Response Obligation (FRO)

Frequency Bias Setting will be the greater of (in absolute terms) the FRM or the Interconnection minimum (as defined in Attachment B). FRS Form 1 will automatically calculate the Balancing Authority's Bias Settings. Balancing Authorities that provide Overlap Regulation will submit a FRS Form 1 that represents both the provider's and the recipient(s)' footprint. Once the data listed above is fully posted, the ERO will announce the implementation date for changing the Frequency Bias Setting.

Attachment A

BAL-003-1 Frequency Response and Frequency Bias Setting
Supporting Document

Frequency Response Measure (FRM)

The FRM will be computed from Single Event Frequency Response Data (SEFRD), defined as: "the data from an individual event from a Balancing Authority that is used to calculate its Frequency Response, expressed in MW/0.1Hz" as calculated on FRS Form 2. The SEFRD for a typical Balancing Authority in an Interconnection with more than one Balancing Authority is basically the change in its Net Actual Interchange on its tie lines with its adjacent Balancing Authorities divided by the change in Interconnection frequency. (Some Balancing Authorities may choose to apply corrections to their Net Actual Interchange values to account for factors such as nonconforming loads. FRS Form 1 shows the types of adjustments that are allowed.) The ERO will use a standardized sampling interval of 20 to 52 seconds in the computation of SEFRD values.

Assuming data entry is correct FRS Form 1 will automatically calculate the Balancing Authority's FRM for the past 12 months as the median of the SEFRD values. A Balancing Authority electing to report as an RSG or a provider of Overlap Regulation Service will provide an FRS Form 1 for the aggregate of its participants.

Interconnection frequency performance is improved the closer all Balancing Authorities' (BAs') natural Frequency Response is to Frequency Bias Setting (Cohn, 1966).

The BA calculates its natural Frequency Response based on the events in FRS Form 1. The BA will set its Frequency Bias Setting to the greater of (in absolute value):

- Natural Frequency Response
- Interconnection Minimum (initially 1\% of peak in BAL-003-0.1b).

For purposes of calculating the minimum Frequency Bias Setting, a Reserve Sharing Group or a Balancing Authority providing Overlap Regulation will report the projected peak demand and generation of its combined BAs' areas on FRS Form 1.

This attachment outlines the process the ERO is to use for modifying minimum Frequency Bias Settings to better meet reliability needs. The ERO may adjust the Frequency Bias Setting minimum in accordance with this Attachment B.

The ERO will post the minimum Frequency Bias Setting values on the ERO website along with other balancing standard limits.

The initial minimum Frequency Bias Settings are outlined in the following table.

Interconnection	Minimum Frequency Bias Setting (in MW/0.1Hz)
Eastern	0.8% of peak load or generation
Western	0.8% of peak load or generation
Texas	0.8% of peak load or generation
HQ	0.8% of peak load or generation

Table 1. Initial Frequency Bias Setting Minimums
The ERO will annually review Frequency Bias Setting data submitted by BAs. If an Interconnection's total minimum Frequency Bias Setting exceeds (in absolute value) the Interconnection's total natural Frequency Response by more (in absolute value) than 0.2 percentage points (of peak load expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$), the ERO may reduce (in absolute value) the minimum Frequency Bias Setting for BAs within that Interconnection, by 0.1 percentage point to better match that Frequency Bias Setting and natural Frequency Response.

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

I mplementation Plan for BAL-003-1 - Frequency Response \& Frequency Bias Setting Standard

Prerequisite Approvals

There are no other reliability standards or Standard Authorization Requests (SARs), in progress or approved, that must be implemented before this standard can be implemented.

Modified Standards

BAL-003-0.1b should be retired at midnight of the day immediately prior to the Effective Date of BAL-003-1 in the Jurisdiction in which the new standard is becoming effective.

New or Modified Definitions

The following definitions shall become effective when BAL-003-1 Requirements R2, R3, R4 and R5 become effective:

Frequency Response Measure (FRM): The median of all the Frequency Response observations reported annually on FRS Form 1.

Frequency Response Obligation (FRO): The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection.

Frequency Bias Setting: A numbervalue, either fixed or variable, usually expressed in MW/0.1 Hz , included inset into a Balancing Authority's Area Control Error equation to account for algorithm that allows the Balancing Authority's Frequency Response contributionto contribute its frequency response to the Interconnection and discourage withdrawal through secondary control systems.

The existing definition of Frequency Bias Setting should be retired at midnight of the day immediately prior to the Effective Date of BAL-003-1 in the Jurisdiction in which the new standard is becoming effective.

The proposed revised definition for "Frequency Bias Setting" is incorporated in the following NERC approved standards:

- BAL-001-0.1a Real Power Balancing Control Performance
- BAL-004-0 Time Error Correction
- BAL-004-1 Time Error Correction
- BAL-005-0.1b Automatic Generation Control

Compliance with Standards

Once this standard becomes effective, the responsible entities identified in the applicability section of the standard must comply with the requirements. These include:

- Balancing Authorities
- Reserve Sharing Groups

Proposed Effective Date

Compliance with BAL-003-1 shall be implemented over a two-year period, as follows:

- In those jurisdictions where regulatory approval is required, Requirements R2, R3, R4 and R5 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R2, R3, R4 and R5 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
- In those jurisdictions where regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.

Implementation Plan for BAL-003-1 - Frequency Response \& Frequency Bias Setting Standard

Prerequisite Approvals

There are no other reliability standards or Standard Authorization Requests (SARs), in progress or approved, that must be implemented before this standard can be implemented.

Modified Standards

BAL-003-0.1b-Requirements R1, R2, R3, R4 and R6 should be retired midnight of the day immediately prior to the Effective Date of BAL-003-1 in the Jurisdiction in which the new standard is becoming becomes-effective.

BAL-003-0 Re1quirement R5 should be retired as outlined in the following table.
For those Balancing Authorities that serve native load:

- May 2011 through December $2011 \quad-0.8 \%$ of peak 0.1 Hz
- January 2012 through December $2012 \quad 0.6 \%$ of peak 10.1 Hz
- January 2013 through December $2013 \quad-0.4 \%$ of peak $/ 0.1 \mathrm{~Hz}$
- January 2014 through December $2014 \quad-0.2 \%$ of peak 10.1 Hz
- January 2015 through 0.0% of peak $/ 0.1 \mathrm{~Hz}$

For those Balancing Authorities that do not serve native load:

- May 2011 through December $2011 \quad-0.8 \%$ of upcoming years maximum generation/ 0.1 Hz
- January 2012 through December 2012 0.6\% of upcoming years maximum generation $/ 0.1 \mathrm{~Hz}$
- January 2013 through December 2013 -0.4\% of upcoming years maximum generation $/ 0.1 \mathrm{~Hz}$
- January 2014 through December $2014 \quad 0.2 \%$ of upcoming years maximum generation $/ 0.1 \mathrm{~Hz}$
- January 2015 through -0.0\% of upcoming years maximum generation/ 0.1 Hz

The FRR drafting team, NERC and the NERC Resources Subcommittee will observe the impact on frequency and will implement a reversion plan should frequency performance decline.

New or Modified Definitions

The following definitions shall become effective when BAL-003-1 Requirements R2, R3, R4 and R5 become effective:

July 12, 2011
116-390 Village Boulevard, Princeton, New Jersey 08540-5721
Phone: 609.452.8060 • Fax: 609.452.9550 • www.nerc.com

Frequency Response Measure (FRM): The median of all the Frequency Response observations reported annually on FRS Form 1.

Frequency Response Obligation (FRO): The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection.

Frequency Bias Setting: A number, either a fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems.

The existing definition of Frequency Bias Setting should be retired midnight of the day immediately prior to the Effective Date of BAL-003-1 in the Jurisdiction in which the new standard is becoming effective.

The proposed revised definition for "Frequency Bias Setting" is incorporated in the following NERC approved standards:

- BAL-001-0.1a Real Power Balancing Control Performance
- BAL-004-0 Time Error Correction
- BAL-004-1 Time Error Correction
- BAL-005-0.1b Automatic Generation Control

Compliance with Standards

Once this standard becomes effective, the responsible entities identified in the applicability section of the standard must comply with the requirements. These include:

- Balancing Authorities
- Reserve Sharing Groups

Proposed Effective Date

Compliance with BAL-003-1 shall be implemented over a two-year period, as follows:

- In those jurisdictions where regulatory approval is required, Requirements R21, R3, R4 and R 54 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required,
| Requirements R21, R3, R4 and R54 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
- In those jurisdictions where regulatory approval is required, Requirements R1Z of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is
| required, Requirements R $\underline{1 z}$ of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.

NERC

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Frequency Response Standard Background
 Document

October 2011

RELIABILITY | ACCOUNTABILITY

3353 Peachtree Road NE

Atlanta, GA 30326

Table of Contents

Contents

\qquad
Table of Contents 1
\qquadIntroduction3
Background and Rationale by Requirement 3
Requirement 1 3
Background and Rationale 3
Requirement 2 6
Background and Rationale 7
Requirement 3 7
Background and Rationale 7
Requirement 4 8
Background and Rationale 8
Requirement 5 8
Background and Rationale 9
How this Standard Meets the FERC Order 693 Directives 10
FERC Directive 10
Levels of Non-Compliance 10
Determine the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other Requirements of the Reliability Standard are met 10
Define the necessary amount of Frequency Response needed for Reliable Operation for each Balancing Authority with methods of obtaining and measuring that the frequency response is achieved 10
Necessary Amount of Frequency Response 10
Methods of Obtaining Frequency Response 11
Measuring that the Frequency Response is Achieved 11
Going Beyond the Directive 12
Good Practices and Tools 13
Good Practices 13
Tools 14
Field Trial 15

Introduction

This document provides background on the development, testing and implementation of BAL-003-1 - Frequency Response Standard (FRS). The intent is to explain the rationale and considerations for the Requirements and their associated compliance information. The document also provides good practices and tips for Balancing Authorities with regard to Frequency Response.

In Order No. 693, the FERC directed additional changes to BAL-003-0.1b. This document explains how those directives are met by BAL-003-1.

The original Standards Authorization Request (SAR), finalized on June 30, 2007, assumed ${ }_{2}$ assumed the Frequency Response currently available to be adequate in all the North American Interconnections. The goal of the SAR was to update the Standard to make the measurement process more objective and to provide this objective data to Planners and Operators for improved modeling. The improved models will improve understanding of the trends in Frequency Response to determine if reliability limits were being approached. The Standard would also lay the process groundwork for a transition to a performance-based Standard if reliability limits were approached.

This document will be periodically updated by the FRS Drafting Team until the Standard is approved (expected to occur during Springspring of 2012). Once approved, this document will then be maintained and updated by the ERO and the NERC Resources Subcommittee.

Background and Rationale by Requirement

Requirement 1

R1. Each Balancing Authority (BA) or Reserve Sharing Group (RSG) shall achieve an annual Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each BA or RSG to maintain an adequate level of Frequency Response in the Interconnection.

Background and Rationale

R1 is intended to meet the following primary objectives:

- Determine whether a Balancing Authority (BA) has sufficient Frequency Response for reliable operations.
- Provide the feeder information needed to calculate CPS limits and Frequency Bias Settings.
With regard to the first objective, FRS Form 1 and the process in Attachment A provide the method for determining the Interconnections' necessary amount of Frequency Response and allocating it to the Balancing Authorities. The field trial for BAL-003-1 is testing an allocation methodology based on the amount of load and generation in the BA. This is to accommodate the wide spectrum of BAs from generation-only all the way to load-only.

The basic Frequency Response Obligation is based on non-coincident peak load and generation data reported in FERC Form 714 for the previous full calendar year. The basic allocation formula used by NERC is:

$$
\mathrm{FRO}_{B A}=\mathrm{FRO}_{\operatorname{lnt}} \times \frac{\text { Peak Gen }_{B A}+\text { Peak Load }}{\text { Bea }}
$$

Where:

- Peak GenBA is the average of monthly "Output of Generating Plants", FERC Form 714, column f of Part II - Schedule 3.
- Peak LoadBA is the average of "Monthly Peak Demand (MW)", FERC Form 714, column j of Part II - Schedule 3.
- Peak GenInt is the sum of all BAs' in that interconnection reported average monthly peak generation.
- Peak LoadInt is the sum of all BAs in that interconnection reported average monthly peak demand.

Balancing Authorities can approximate their FRO by multiplying their Interconnection's FRO by their share of Interconnection bias.

Balancing Authorities that merge or that transfer load or generation need to notify the ERO of the change in footprint and corresponding changes in allocation such that the net obligation for the Interconnection remains the same.

Note: The methodology for determining the Interconnection's Frequency Response Obligation and allocating it to BAs may change on the basis of field trial results. The drafting team is evaluating a risk-based approach for basing the Interconnection Frequency Response Obligation on an historic probability density of frequency error, and for allocating the obligation on the basis of the Balancing Authority's average annual ACE share of frequency error.

Attachment A proposes the following Interconnection event criteria as a basis to determine an Interconnection's Frequency Response Obligation:

- Largest category C loss-of-resource (N-2) event
- Largest total generating plant with common voltage switchyard
- Largest loss of generation in the interconnection in the last 10 years

Given the fact that the Interconnections currently have sufficient Frequency Response, few BAs should encounter problems meeting R1, particularly with the options the Standard provides with regard to obtaining Frequency Response.

With regard to the second objective above (determining Frequency Bias Settings and CPS limits), Balancing Authorities have been asked to perform annual reviews of their Frequency Bias Settings by measuring their Frequency Response, dating back to Policy 1. This obligation
was carried forward into BAL-003-01.b. While the associated training document provided useful information, it left many of the details to the judgment of the person doing the analysis. The FRS Form 1 and FRS Form 2 provide a consistent, objective process for calculating Frequency Response to develop an annual measure, the FRM.

The FRM will be computed from Single Event Frequency Response Data (SEFRD), defined as: "the data from an individual event from a Balancing Authority that is used to calculate its Frequency Response, expressed in MW/0.1Hz". The SEFRD for a typical Balancing Authority in an Interconnection with more than one Balancing Authority is basically the change its Net Actual Interchange on its tie lines with its adjacent Balancing Authorities divided by the change in Interconnection frequency. (Some Balancing Authorities may choose to apply corrections to their Net Actual Interchange values to account for factors such as nonconforming loads. FRS Form 1 shows the types of adjustments that are allowed.)

A standardized sampling interval of 20 to 52 seconds will be used in the computation of SEFRD values. Microsoft Excel ${ }^{\circledR}$ spreadsheet interfaces for EMS scan rates of 2 through 6 seconds will be provided to support the computation. During the field trial, other sampling intervals will be evaluated as well to determine if another sampling interval is more appropriate.

In an attempt to balance the workload of Balancing Authorities with the need for accuracy in the FRM, the field trial will require at least 25 samples selected during the course of the year to compute the FRM. Research conducted by the Frequency Responsive Reserve Standard Drafting Team (FRSDT) indicated that a Balancing Authority's FRM will converge to a reasonably stable value with 20 to 25 samples. The FRSDT will re-evaluate the required number of samples during the field trial.

The FRSDT also evaluated different approaches for "averaging" individual event observations to compute a technically sound estimate of Frequency Response Measure (FRM). The MW contribution for a single BA in a multi-BA Interconnection is small compared to the minute to minute changes in load, interchange and generation. For example, a 3000 MW BA in the east may only be called on to contribute 10 MW for the loss of a 1000 MW . The 10 MW of governor and load response may easily be masked ay a coincident change in load. Because of this large "noise to signal" ratio, the mean did not prove to be an appropriate measure of true typical performance.

In general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FRSDT has shown the Median to be less influenced by noise in the measurement process and the team has chosen the median as the initial metric for calculating the BAs' Frequency Response Measure. In addition, The FRSDT is evaluating the linear regression as a means to estimate the BA's typical frequency response. This calculation is embedded in FRS Form 1 and will be evaluated during the field trial. Initial review implies that the linear regression tends to skew calculated FRM due to the influence of outliers. The outliers are being evaluated by the FRSDT as they may point to needed improvements in the measurement process or training issues for the BA in question.

In order to support field trial evaluations of sample size, sampling intervals, and aggregation techniques, the FRSDT will be retrieving scan rate data from the Balancing Authorities for each SEFRD. Additional frequency events may also be requested for research purposes, though they will not be included in the FRM computation.

FERC Order No. 693 directed the ERO to define the number of Frequency Response surveys that were conducted each year and to define a necessary amount of Frequency Response. R1 addresses both of these directives:

- There is a single annual survey of at least 25-30 events each year.
- The FRM calculated on FRS Form 1 is compared by the ERO against the FRO determined 12 months earlier (when the last FRS Form 1 was submitted) to verify the Balancing Authority provided its share of Interconnection Frequency Response.

FERC Order No. 693 also directed that the Standard should identify methods for Balancing Authorities to obtain Frequency Response. Requirement R1 allows Balancing Authorities to participate in Reserve Sharing Groups (RSGs) to provide or obtain Frequency Response. These may be the same RSGs that cooperate for BAL-002-0 or may be RSGs that form for the purposes of BAL-003-1.

If BAs participate as an RSG for BAL-003-1, compliance is based on the sum of the participants' performance.

Two other ways that BAs could obtain Frequency Response are through Supplemental Service or Overlap Regulation Service:

- No special action is needed if a BA provides or receives supplemental regulation. If the regulation occurs via Pseudo Tie, the transfer occurs automatically as part of Net Actual Interchange (NIA) and in response to information transferred from recipient to provider.
- If a BA provides overlap regulation, its FRS Form 1 will include the Frequency Bias setting as well as peak load and generation of the combined Balancing Authority Areas. The FRM event data will be calculated on the sum of the provider's and recipient's performance.

In the Violation Severity Levels for Requirement R1, the impact of a BA not having enough frequency response depends on two factors:

- Does the Interconnection have sufficient response?
- How short is the BA in providing its FRO?

The VSL takes these factors into account.

Requirement 2
R2. Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error
(ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control.

Background and Rationale

Attachment A of the Standard discusses the process the ERO will follow to validate the BA's FRS Form 1 data and publish the official Frequency Bias Settings. Historically, it has taken multiple rounds of validation and outreach to confirm each BA's data due to transcription errors, misunderstanding of instructions, and other issues. While BAs historically submit Bias Setting data by January 1, it often takes one or more months to complete the process.

The target is to have BAs submit their data by January 10. The BAs are given 30 days to assemble their data since the BAs are dependent on the ERO to provide them withthem with FRS Form 1, and there may be process delays in distributing the forms since they rely on identification of frequency events through November 30 of the preceding year.

Frequency Bias Settings generally change little from year to year. Given the fact that BAs can encounter staffing or EMS change issues coincident with the date the ERO sets for new Frequency Bias Setting implementation, the standard provides a 24 hour window on each side of the target date.

To recap the annual process:

1. The ERO posts the official list of frequency events to be used for this Standard in early December. The FRS Form 1for each Interconnection will be posted shortly thereafter.
2. The Balancing Authority submits its revised annual Frequency Bias Setting value to NERC by January 10.
3. The ERO and the Resources Subcommittee validate Frequency Bias Setting values, perform error checking, and calculate, validate, and update CPS2 L10 values. This data collection and validation process can take as long as two months.
4. Once the L10 and Frequency Bias Setting values are validated, The ERO posts the values for the upcoming year and also informs the Balancing Authorities of the date on which to implement revised Frequency Bias Setting values. Implementation typically would be on or about March $1^{\text {st }}$ of each year.

Requirement 3
R3. Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area.

Background and Rationale

This requirement serves several functions. The primary reason for operating in Tie Line Bias is so ACE is calculated properly for performance purposes. Even if a BA temporarily operated in manual mode, as long as CPS is properly calculated and the BA met CPS, it is operating reliably.

There are legitimate reasons for taking AGC out of Tie Line Bias or operating manually including:

- Telemetry problems that lead the operator to believe ACE is significantly in error.
- The frequency input to AGC is not reflective of the BA's true frequency (such as if the control center were operating a local generator and disconnected from the Interconnection).
- During restoration (where one BA might be controlling frequency while another to which it is connected is managing interchange between them).
- For training purposes.
- Many AGC systems will automatically switch to an alternate mode if the EMS determines Tie Line Bias control could lead to problems.
- For single BA Interconnections, Flat Frequency and Tie Line Bias are equivalent.

Because it is rare that temporary operation out of Tie Line Bias can lead to reliability problems, the VSLs for this requirement are structured accordingly.

Requirement 4
R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation to be equivalent to the sum of the Frequency Bias Settings of the participating Balancing Authorities as validated by the ERO or calculate the Frequency Bias Setting based on the entire area being combined and thereby represent the Frequency Response for the combined area being controlled.

Background and Rationale

This requirement reflects the operating principles first established by NERC Policy 1 and is similar to Requirement R6 of the approved BAL-003-0.1b standard. Overlap Regulation Service is a method of providing regulation service in which the Balancing Authority providing the regulation service incorporates another Balancing Authority's actual interchange, frequency response, and schedules into the providing Balancing Authority's AGC/ACE equation.

As noted earlier, a BA that is providing Overlap Regulation will report the sum of the Bias Settings in its FRS Form 1. Balancing Authorities receiving Overlap Regulation Service have an ACE and Frequency Bias Setting equal to zero (0).

Requirement 5
R5. In order to ensure adequate control response each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is at least equal to one of the following:

- The minimum percentage of the Balancing Authority Area's estimated yearly Peak Demand within its metered boundary per 0.1 Hz change as specified by the ERO in accordance with Attachment B.
- The minimum percentage of the Balancing Authority Area's estimated yearly peak generation for a generation- only BA, per 0.1 Hz change as specified by the ERO in accordance with Attachment B.

Background and Rationale

BAL-003-0.1b standard requires a minimum Frequency Bias Setting equal in absolute value to one percent of the Balancing Authority's estimated yearly peak demand (or maximum generation level if native load is not served). For most Balancing Authorities this calculated amount of Frequency Bias is significantly greater in absolute value than their actual Frequency Response characteristic (which represents an over-bias condition) resulting in over-control since a larger magnitude response is realized. This is especially true in the Eastern Interconnection where this condition requires excessive secondary frequency control response which degrades overall system performance and increases operating cost as compared to requiring an appropriate balance of primary and secondary frequency control response.

Balancing Authorities were given a minimum Frequency Bias Setting obligation because there had never been a mandatory Frequency Response Obligation. This historic "one percent of peak per 0.1 Hz " obligation, dating back to NERC's predecessor, NAPSIC, was intended to ensure all BAs provide some support to Interconnection frequency.

The ideal system control state exists when the Frequency Bias Setting of the Balancing Authority exactly matches the actual Frequency Response characteristic of the Balancing Authority. If this is not achievable, over-bias is significantly better from a control perspective than under-bias with the caveat that Frequency Bias is set relatively close in magnitude to the Balancing Authority actual Frequency Response characteristic. Setting the Frequency Bias to better approximate the Balancing Authority natural Frequency Response characteristic will improve the quality and accuracy of ACE control, CPS \& DCS and general AGC System control response. This is the technical basis for recommending an adjustment to the long standing " 1% of peak/0.1 Hz" Frequency Bias Setting. Attachment B is intended to bring the Balancing Authorities' Frequency Bias Setting closer to their natural Frequency Response. Attachment B balances the following objectives:

- Bring the Frequency Bias Setting and Frequency Response closer together.
- Ensure there is no negative impact on other Standards (CPS, BAAL and to a lesser extent DCS) by adjustments in the minimum Frequency Bias Setting, by accommodating only minor adjustments.
- Do not allow the Frequency Bias Setting minimum to drop below natural Frequency Response, because under-biasing could affect an Interconnection adversely.

Finally, for BAs using variable bias, FRS Form 1 has a data entry location for the previous year's average monthly bias. The Balancing Authority and the ERO can compare this value to the previous year's Frequency Bias Setting minimum to ensure R5 has been met.

How this Standard Meets the FERC Order 693 Directives

FERC Directive

The following is the relevant paragraph of Order No. 693.
Accordingly, the Commission approves Reliability Standard BAL-003-0 as mandatory and enforceable. In addition, the Commission directs the ERO to develop a modification to BAL-003-0 through the Reliability Standards development process that: (1) includes Levels of Non-Compliance; (2) determines the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other requirements of the Reliability Standard are being met, and to modify Measure M1 based on that determination and (3) defines the necessary amount of Frequency Response needed for Reliable Operation for each balancing authority with methods of obtaining and measuring that the frequency response is achieved.

1. Levels of Non-Compliance

VRFs and VSLs are an equally effective way of assigning compliance elements to the standard.
2. Determine the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other Requirements of the Reliability Standard are met
BAL-003 V0 R2 (the basis of Order No. 693) deals with the calculation of Frequency Bias Setting such that it reflects natural Frequency Response.

The drafting team has determined that a sample size on the order of at least 25-30 events is necessary to have a high confidence in the estimate of a BA's Frequency Response. Selection of the frequency excursion events used for analysis will be done via a method outlined in Attachment A to the Standard.

On average, these events will represent the largest 2-3 "clean" frequency excursions occurring each month.

Since Frequency Bias Setting is an annual obligation, the survey of the at least 25-30 frequency excursion events will occur once each year.
3. Define the necessary amount of Frequency Response needed for Reliable Operation for each Balancing Authority with methods of obtaining and measuring that the frequency response is achieved

Necessary Amount of Frequency Response

The drafting team has proposed the following approach to defining the necessary amount of frequency response. In general, the goal is to avoid triggering the first step of under-frequency load shedding (UFLS) in the given Interconnection for reasonable contingencies expected. The
methodology for determining each Interconnection's and Balancing Authority's obligation is outlined in Attachment A to the Standard.

It should be noted that the standard cannot guarantee that there will never be a triggering of UFLS as the magnitude of "point C" differs throughout an interconnection during a disturbance and there are local areas that see much wider swings in frequency.

The contingency protection criterion is the largest reasonably expected contingency in the Interconnection. This can be based on the largest observed credible contingency in the previous 10 years or the largest Category C event for the Interconnection.

The Safety Margin included addresses the difference between Points B and C and accounts for variables.

For multiple BA interconnections, the Frequency Response Obligation is allocated to BAs based on size. This allocation will be based on the following calculation:

$$
\mathrm{FRO}_{B A}=F R O_{\operatorname{lnt}} \times \frac{\text { Peak Gen }}{\text { PA }}+\text { Peak Load }{ }_{B A}
$$

Methods of Obtaining Frequency Response

The drafting team believes the following are valid methods of obtaining Frequency Response:

- Supplemental regulation.
- Overlap regulation.
- Contractual service (The drafting team has developed an approach to obtain a contractual share of Frequency Response from Adjacent Balancing Authorities. See FRS Form 1). While the final rules with regard to contractual services are being defined, the current expectation is that the ERO and the associated Region(s) should be notified beforehand and that the service be at least 6 months in duration.
- Through a tariff (e.g. Frequency Response and regulation service).
- From generators through an interconnection agreement.
- Contract with an internal resource or loads (The drafting team encourages the development of a NAESB business practice for Frequency Response service for linear (droop) and stepped (e.g. LaaR in Texas) response).

Measuring that the Frequency Response is Achieved

FRS Form 1 and the underlying data retained by the BA will be used for measuring whether Frequency Response was provided. FRS Form 1 will provide the guidance on how to account for and measure Frequency Response.

Going Beyond the Directive
Based on the combined operating experience of the SDT, the drafting team believes each Interconnection has sufficient Frequency Response. If margins decline, there may be a need for additional standards or tools. The drafting team and the Resources Subcommittee are working with the ERO on its Frequency Response Initiative to develop processes and good practices so the Interconnections are prepared. These good practices and tools are described in the following section.

The drafting team is also evaluating a risk-based approach for basing the Interconnection Frequency Response Obligation on an historic probability density of frequency error, and for allocating the obligation on the basis of the Balancing Authority's average annual ACE share of frequency error. This allocation method uses the inverse of the rationale for allocating the CPS1 epsilon requirement by Bias share.

Good Practices

Knowing the quantity and depth of frequency responsive reserves in real time is a possible next step to being better prepared for the next event. The challenge in achieving this is having the knowledge of the capabilities of all sources of frequency response. Presently the primary source of frequency response remains with the generation resources in our fleets. Understanding how each of these sources performs to changes in system frequency and knowing their limitations would improve the BA's ability to measure frequency responsive reserves. Presently there are only guidelines, criteria and protocols in some regions of the industry that identify specific settings and performance expectations of primary frequency response of resources. One method of gaining better understanding of performance is to measure performance during actual events that occur on the system. This approach would only provide feedback for performance during that specific event and would not provide insight into depth of response or other limitations. Repeated measurements will increase confidence in expected performance. NERC modeling standards are in process to be revised that will improve the BA's insight into predicting available frequency responsive reserves. However, knowing how resources are operated, what modes of operation provide sustained primary frequency response and knowing the operating range of this response would give the BA the knowledge to accurately predict frequency response and the amount of frequency responsive reserves available in real time.

Some benefits on several interconnections have been realized by communicating to generation resources (GO) the importance of operating in modes that allow primary frequency response to be sustained by the control systems of the resource. Other improvements in implementation of primary frequency response have been achieved through improved settings on turbine governors through the elimination of "step" frequency response with the simultaneous reduction in governor dead-band settings. Improvements in the full AGC control loop of the
generating resource, which accounts for the expected primary frequency response, have improved the delivery of quality primary frequency response while minimizing secondary control actions of generators. Some of these actions can provide quick improvement in delivery of primary frequency response.

Once primary frequency response sources are known the BA could calculate available reserves that are frequency responsive. Planning for these reserves during normal and emergency operations could be developed and added to the normal planning process.

Tools
Single generating resource primary frequency response performance evaluation tools for steam turbine, combustion turbine (simple cycle or combined cycle) and for intermittent resources are available at the following link.
http://texasre.org/standards rules/standardsdev/rsc/sar003/Pages/Default.aspx.
These tools and the regional standard associated with them are in their final stages of development in the Texas region.

These tools will be posted on the NERC website.

Field Trial

This section is a summary of the Field Trial activities that have been or will be conducted by the ERO, the Resources Subcommittee and the FRS Drafting Team.

1. The NERC BA recommendation (alert) and observations.V
2. The NERC governor recommendation (alert) and observations.V
3. The 2011 bias calculation \vee
4. Evaluate measurement methodologyv
5. Serve as initial training for BAsV
6. Evaluate median, mean, regression and possibly other measures V
7. Evaluate sample size (to address the directive of frequency of surveys) \vee
8. Evaluate impact of inclusion/exclusion of internal contingencies \vee
9. Improve FRS Form 1 V
10. Create supporting process for FRS Form 1 V
11. For Interconnection benchmarking (proving adequacy of frequency response)
12. Evaluating trend
13. Test process for developing candidate list for FRS Form 1
14. 2012 bias calculation
15. Further refinement of items in 2011 bias calculation
16. Test the FRO allocation methodology
17. Test approach for handling variable bias
18. Evaluate 12 month vs. 24 month rolling average approach to performance
19. Evaluate reduction in bias setting floor below 1% (initially 0.8% in 2012) to evaluate impact on frequency and calculated CPS and BAAL performance.
20. Evaluate effectiveness of administrative process to support the standard.
21. Evaluate a risk-based approach for basing the Interconnection Frequency Response Obligation on an historic probability density of frequency error, and for allocating the obligation on the basis of the Balancing Authority's average annual ACE share of frequency error.
Body content goes here. Body content goes here. Body content goes here. Body content goes here.

A. Introduction

1. Title: Frequency Response and Bias
2. Number: BAL-003-0.1b
3. Purpose: This standard provides a consistent method for calculating the Frequency Bias component of ACE.
4. Applicability:
4.1. Balancing Authorities.
5. Effective Date: Immediately after approval of applicable regulatory authorities.

B. Requirements

R1. Each Balancing Authority shall review its Frequency Bias Settings by January 1 of each year and recalculate its setting to reflect any change in the Frequency Response of the Balancing Authority Area.

R1.1. The Balancing Authority may change its Frequency Bias Setting, and the method used to determine the setting, whenever any of the factors used to determine the current bias value change.

R1.2. Each Balancing Authority shall report its Frequency Bias Setting, and method for determining that setting, to the NERC Operating Committee.

R2. Each Balancing Authority shall establish and maintain a Frequency Bias Setting that is as close as practical to, or greater than, the Balancing Authority's Frequency Response.
Frequency Bias may be calculated several ways:
R2.1. The Balancing Authority may use a fixed Frequency Bias value which is based on a fixed, straight-line function of Tie Line deviation versus Frequency Deviation. The Balancing Authority shall determine the fixed value by observing and averaging the Frequency Response for several Disturbances during on-peak hours.

R2.2. The Balancing Authority may use a variable (linear or non-linear) bias value, which is based on a variable function of Tie Line deviation to Frequency Deviation. The Balancing Authority shall determine the variable frequency bias value by analyzing Frequency Response as it varies with factors such as load, generation, governor characteristics, and frequency.

R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability.

R4. Balancing Authorities that use Dynamic Scheduling or Pseudo-ties for jointly owned units shall reflect their respective share of the unit governor droop response in their respective Frequency Bias Setting.

R4.1. Fixed schedules for Jointly Owned Units mandate that Balancing Authority (A) that contains the Jointly Owned Unit must incorporate the respective share of the unit governor droop response for any Balancing Authorities that have fixed schedules (B and C). See the diagram below.

R4.2. The Balancing Authorities that have a fixed schedule (B and C) but do not contain the Jointly Owned Unit shall not include their share of the governor droop response in their Frequency Bias Setting.

R5. Balancing Authorities that serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of the Balancing Authority's estimated yearly peak demand per 0.1 Hz change.

R5.1. Balancing Authorities that do not serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of its estimated maximum generation level in the coming year per 0.1 Hz change.

R6. A Balancing Authority that is performing Overlap Regulation Service shall increase its Frequency Bias Setting to match the frequency response of the entire area being controlled. A Balancing Authority shall not change its Frequency Bias Setting when performing Supplemental Regulation Service.

C. Measures

M1. Each Balancing Authority shall perform Frequency Response surveys when called for by the Operating Committee to determine the Balancing Authority's response to Interconnection Frequency Deviations.
D. Compliance

Not Specified.

E. Regional Differences

None identified.

F. Associated Documents

1. Appendix 1 - Interpretation of Requirement R3 (October 23, 2007).
2. Appendix 2 - Interpretation of Requirements R2, R2.2, R5, and R5.1 (February 12, 2008).

Version History

Version	Date	Action	Change Tracking
0	April 1, 2005	Effective Date	New
0	August 8, 2005	Removed "Proposed" from Effective Date	Errata
0	March 16, 2007	FERC Approval — Order 693	New

0a	December 19, 2007	Added Appendix 1 — Interpretation of R3 approved by BOT on October 23, 2007	Addition
0a	July 21, 2008	FERC Approval of Interpretation of R3	Addition
0b	February 12, 2008	Added Appendix 2 — Interpretation of R2, R2.2, R5, and R5.1 approved by BOT on February 12, 2008	Addition
0.1b	January 16, 2008	Section F: added "1."; changed hyphen to "en dash." Changed font style for "Appendix 1" to Arial; updated version number to "0.1b"	Errata
0.1b	October 29, 2008	BOT approved errata changes	Errata
0.1a	May 13, 2009	FERC Approved errata changes - version changed to 0.1a (Interpretation of R2, R2.2, R5, and R5.1 not yet approved)	Errata
0.1b	May 21, 2009	FERC Approved Interpretation of R2, R2.2, R5, and R5.1	Addition

Appendix 1

Interpretation of Requirement 3

Request: Does the WECC Automatic Time Error Control Procedure (WATEC) violate Requirement 3 of BAL-003-0?

Interpretation:

Requirement 3 of BAL-003-0 - Frequency Response and Bias deals with Balancing Authorities using Tie-Line Frequency Bias as the normal mode of automatic generation control.

BAL-003-0

R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability.

- Tie-Line Frequency Bias is one of the three foundational control modes available in a Balancing Authority's energy management system. (The other two are flat-tie and flat-frequency.) Many Balancing Authorities layer other control objectives on top of their basic control mode, such as automatic inadvertent payback, CPS optimization, time control (in single BA Interconnections).
- As long as Tie-Line Frequency Bias is the underlying control mode and CPS1 is measured and reported on the associated ACE equation, there is no violation of BAL-003-0 Requirement 3 :

$$
\mathrm{ACE}=\left(\mathrm{NI}_{\mathrm{A}}-\mathrm{NI}_{\mathrm{S}}\right)-10 \mathrm{~B}\left(\mathrm{~F}_{\mathrm{A}}-\mathrm{F}_{\mathrm{S}}\right)-\mathrm{I}_{\mathrm{ME}}
$$

Appendix 2

Interpretation of Requirements R2, R2.2, R5, R5.1

Request: ERCOT specifically requests clarification that a Balancing Authority is entitled to use a variable bias value as authorized by Requirement R2.2, even though Requirement 5 seems not to account for the possibility of variable bias settings.

Interpretation:

The consensus of the Resources Subcommittee is that BAL-003-0 - Frequency Response and Bias Requirement R2 does not conflict with BAL-003-0 Requirement R5.

BAL-003-0 - Frequency Response and Bias Requirement 2 requires a Balancing Authority to analyze its response to frequency excursions as a first step in determining its frequency bias setting. The Balancing Authority may then choose a fixed bias (constant through the year) per Requirement 2.1, or a variable bias (varies with load, specific generators, etc.) per Requirement 2.2.

BAL-003-0

R2. Each Balancing Authority shall establish and maintain a Frequency Bias Setting that is as close as practical to, or greater than, the Balancing Authority's Frequency Response. Frequency Bias may be calculated several ways:

R2.1. The Balancing Authority may use a fixed Frequency Bias value which is based on a fixed, straight-line function of Tie Line deviation versus Frequency Deviation. The Balancing Authority shall determine the fixed value by observing and averaging the Frequency Response for several Disturbances during on-peak hours.

R2.2. The Balancing Authority may use a variable (linear or non-linear) bias value, which is based on a variable function of Tie Line deviation to Frequency Deviation. The Balancing Authority shall determine the variable frequency bias value by analyzing Frequency Response as it varies with factors such as load, generation, governor characteristics, and frequency.

BAL-003-0 - Frequency Response and Bias Requirement 5 sets a minimum contribution for all Balancing Authorities toward stabilizing interconnection frequency. The 1% bias setting establishes a minimum level of automatic generation control action to help stabilize frequency following a disturbance. By setting a floor on bias, Requirement 5 also helps ensure a consistent measure of control performance among all Balancing Authorities within a multi-Balancing Authority interconnection. However, ERCOT is a single Balancing Authority interconnection. The bias settings ERCOT uses do produce, on average, the best level of automatic generation control action to meet control performance metrics. The bias value in a single Balancing Authority interconnection does not impact the measure of control performance.

BAL-003-0

R5. Balancing Authorities that serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of the Balancing Authority's estimated yearly peak demand per 0.1 Hz change.
R5.1. Balancing Authorities that do not serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of its estimated maximum generation level in the coming year per 0.1 Hz change.

Unofficial Comment Form
 Frequency Response (Project 2007-12)

Please DO NOT use this form to submit comments. Please use the electronic comment form to submit comments on the first formal posting for Project 2007-12-Frequency Response. The electronic comment form must be completed by December 8, 2011.

2007-12 Project Page

If you have questions please contact Darrel Richardson at darrel.richardson@nerc.net or 609.613.1848.

Background

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be analyzed, and the reasons for the decline in Frequency Response can be identified. The standard would set a minimum Frequency Response obligation for each Balancing Authority, provide a uniform calculation of Frequency Response and Frequency Bias Settings that transition to values closer to natural Frequency Response, and encourage coordinated AGC operation.
The Drafting Team would like to receive industry comments on this standard.

You do not have to answer all questions. Enter all comments in Simple Text Format.

1. The SDT has made minor modifications to the proposed definitions to provide additional clarity. Do you agree that these modifications provide sufficient clarity? If not, please explain in the comment area.YesNo
Comments:
2. The SDT has made minor modifications to the Requirements R1 through R4 to provide additional clarity. Do you agree that these modifications provide sufficient clarity to comply with the standard? If not, please explain in the comment area.Yes
Comments:
3. The SDT has developed VRFs for the proposed Requirements within this standard. Do you agree that these VRFs are appropriately set? If not, please explain in the comment area.Yes
Comments:
4. The SDT has developed Measures for the proposed Requirements within this standard. Do you agree with the proposed Measures in this standard? If not, please explain in the comment area.
```
        Yes
```

\square No
Comments:
5. The SDT has developed VSLs for the proposed Requirements within this standard. Do you agree with these VSLs? If not, please explain in the comment area.Yes
No
Comments:
6. The SDT divided the previously posted "Attachment A - Background Document" into two documents to provide additional clarity. The first document "Attachment A- Supporting Document" which details the methods used to develop the events to be analyzed, the FRO, FRM and Frequency Bias Setting. Do you agree that the revised Attachment A - Supporting Document provides sufficient clarity on the methodologies to be used? If not, please explain in the comment area.YesNo
Comments:
7. The second document "BAL-003-1 Background Document" provides information behind the development of the standard. Do you agree that this new document provides sufficient clarity as to the development of the standard? If not, please explain in the comment area.
\square No
Comments:
8. The SDT has developed a new document titled Attachment B - Process for Adjusting Bias Setting Floor. This document is intended to provide the methodology the ERO will use to reduce the minimum Frequency Bias Setting to become closer to natural Frequency Response. Do you agree that this document provides clear and concise instructions for the ERO to follow? If not, please explain in the comment area.YesNo
Comments:
9. The SDT has provided an additional spreadsheet, FRS Form 2, to assist the Balancing Authority in providing the data needed to comply with the proposed standard. Do you agree that this spreadsheet is useful and the instructions are meaningful? If not, please explain in the comment area.YesNo
Comments:
10. Please provide any other comments (that you have not already provided in response to the questions above) that you have on the draft standard BAL-003-1.
Comments:

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting		
Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
R1. Each Balancing Authority shall review its Frequency Bias Settings by January 1 of each year and recalculate its setting to reflect any change in the Frequency Response of the Balancing Authority Area. R1.1. The Balancing Authority may change its Frequency Bias Setting, and the method used to determine the setting, whenever any of the factors used to determine the current bias value change. R1.2. Each Balancing Authority shall report its Frequency Bias Setting, and method for determining that setting, to the NERC Operating Committee.	This Requirement has been moved into BAL-003-1 Attachment A \& FRS Form 1	Attachment A Each Balancing Authority shall report its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO on FRS Form 1 by January 10 each year. If the ERO posts the official list of events after December 10, Balancing Authorities will be given 30 days from the date the ERO posts the official list of events to submit their FRS Form 1. AND FRS Form 1 Note: Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1.
R2. Each Balancing Authority shall establish and maintain a Frequency	This Requirement	R2. Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting

October 24, 2011 | Mapping of Requirements in Approved BAL-003-0 to Draft 2 of BAL-003-1

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting

Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
Bias Setting that is as close as practical to, or greater than, the Balancing Authority's Frequency Response. Frequency Bias may be calculated several ways: R2.1. The Balancing Authority may use a fixed Frequency Bias value which is based on a fixed, straight-line function of Tie Line deviation versus Frequency Deviation. The Balancing Authority shall determine the fixed value by observing and averaging the Frequency Response for several Disturbances during on-peak hours. R2.2. The Balancing Authority may use a variable (linear or non-linear) bias value, which is based on a variable function of Tie Line deviation to Frequency Deviation. The Balancing Authority shall determine the variable frequency bias value by	is included in BAL-003-1 as described in the Proposed Language Section.	(fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control. AND Attachment A Each Balancing Authority shall report its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO on FRS Form 1 by January 10 each year. If the ERO posts the official list of events after December 10, Balancing Authorities will be given 30 days from the date the ERO posts the official list of events to submit their FRS Form 1. AND FRS Form 1 Note: Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1. AND

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting		
Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
analyzing Frequency Response as it varies with factors such as load, generation, governor characteristics, and frequency.		A portion of this Requirement is being phased out in accordance with the process detailed in Attachment B. This phase out is intended to bring the Frequency Bias Setting closer or equal to the natural Frequency Response.
R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability.	This Requirement has been moved into BAL-003-1 Requirement R3.	R3. Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area. In this instance, the Balancing Authority shall document the reasons for such operation.
R4. Balancing Authorities that use Dynamic Scheduling or Pseudoties for jointly owned units shall reflect their respective share of the unit governor droop response in their respective Frequency Bias Setting. R4.1. Fixed schedules for Jointly Owned Units mandate that Balancing Authority (A) that contains the Jointly Owned Unit must incorporate the respective share of the unit governor droop response for any Balancing	This Requirement has been removed from the BAL-003-1 standard.	This Requirement addresses how to calculate Frequency Bias Settings. This is no longer needed since the Frequency Bias Settings are calculated in FRS Form 1 using Frequency Response associated with the "official" list of events and a couple of "floor or ceiling" limits (\% of peak load/gen and FRO). The entire calculation is built into the FRS Form 1 workbook.

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting		
Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
Authorities that have fixed schedules (B and C). R4.2. The Balancing Authorities that have a fixed schedule (B and C) but do not contain the Jointly Owned Unit shall not include their share of the governor droop response in their Frequency Bias Setting.		
R5. Balancing Authorities that serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of the Balancing Authority's estimated yearly peak demand per 0.1 Hz change. R5.1. Balancing Authorities that do not serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of its estimated maximum generation level in the coming year per 0.1 Hz change.	This Requirement has been moved into BAL-003-1 Requirement R5.	R5. Each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is at least equal to one of the following: - The minimum percentage of the Balancing Authority Area's estimated yearly Peak Demand within its metered boundary per 0.1 Hz change as specified by the ERO in accordance with Attachment B. - The minimum percentage of the Balancing Authority Area's estimated yearly peak generation for a generation-only Balancing Authority, per 0.1 Hz change as specified by the ERO in accordance with Attachment B.
R6. A Balancing Authority that is performing Overlap Regulation Service shall increase its Frequency	This Requirement has been	R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation to be equivalent to the sum of the

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting

Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
Bias Setting to match the frequency response of the entire area being controlled. A Balancing Authority shall not change its Frequency Bias Setting when performing Supplemental Regulation Service.	moved into BAL-003-1	Requirement R4.
Authorities as validated by the ERO or calculate the Frequency Bias Setting based on the entire area being combined and thereby represent the Frequency Response for the combined area being controlled.		

Instructions

Step 1 Enter data in all green cells on the "Data Entry" worksheet.
Step 2 For identified events in column B of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list.
Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list.
Step 4 Save this workbook using the following file name format:NYISO_yyyy_FRS_Form1.xlsx and send a copy of this workbook and all FRS_Form 2 workbooks to NERC. (where NYISO is replaced with your Balancing Authority abbreviation)

Step 5 "Summary" worksheet contains each event's results for your Balancing Authority.
Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1.


```
Instructions
Step 1 Enter data in all green cells on this "Data Entry" worksheet.
Step 2 For identified events in column B, collect data and complete FRS Form 2 for each event in the list.
Step \(3 \quad \begin{aligned} & \text { Pastespecial/Values data from FRS Form } 2 \text { "Form } 1 \text { Summary Data" into "BA Form } 2 \text { Data" } \\ & \text { worksheet of this workbook. Do this for each event inter list }\end{aligned}\) Pastespecialavalues data from FRS Form 2 "Form 1 Summary
worksheet of this workbook. Do this for each event in the list.
Save this workbook using the following file name format:NYISO_yyyy_FRS_Form1.x|sx and send a copy of this workbook and all FRS Form 2 workbooks to NERC. (where NYISO is replaced with you SA name)
Only one set of average periods of evaluation is displayed. Other worksheets for the additional
average periods are hidden verage periods are hidden.
```


-.058	${ }^{23.2}$	Dynamic scredules for join
析	27.7	Nonconforming load (NL)
${ }^{-0.040}$	10.7	Pumped hyd
-0.05252933	5099	Ramping uits (RU)
90053	${ }^{26.89761}$	Xfred frequency Resposse (TFR)
9677	5449	Contingent BA adissment for los of units (CB)
(05027	57024	DSANL
55724	退343	${ }^{\text {DS } 8 \text { Ph }}$
(063805		DSERU
0.0 .557323	56037	DS\& TrR
-0.09999924	${ }^{13.64342}$	DS 8 NL \& Ph
0.052	90855	DS \& NL \& RU
-.0.559976	${ }^{132546}$	Jou DS \& NL \& TFR
-0.0589838	5092	DS \& NL\&CBA
-.0.485006	2230058	DS \& NL\&PH\&RU
-0.0450008	9.47759	DS \& NL \& PH\&TFR
-0.03750229	0.35599	DS \& NL\& PH \& CBA
${ }^{-0.007455061}$	${ }_{2}^{2178702}$	DS \& NL \& PH \& RU \& TFR
-0.0555003	29.38327	
${ }_{-0.08}^{0.004}$	- 4.60131815	NL\&PH
-0.06	-	NL\&ru
${ }_{0}$		NL \& TFR
0.1		
		NL\& $\mathrm{PH} \& \mathrm{RU}$
		NL\&PH\&TRR
N		NL\&PH\&RU\&CBA
		NL\& \& P \& R \& \& Tr \& CBA
		PH\& RU
		PH\&RU\&CBA
		PH \& TFR
		PH \& RU\& $\mathrm{CbA}^{\text {a }}$
		PH \& RU\& $\&$ Tr \& $\&$ Cba
		$\underset{\substack{\text { RU } \& \text { TrR } \\ \text { RU \& CBA }}}{ }$
		RU \& tre \& Cba
		Tre\& CbA

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline sted \& usted \& \& diusted \& nadjusted \& - \& Adiusted \& diusted \& \& Adjusted \& nadjusted \& \& Adjusted \& nadjusted \&

\hline ${ }^{0.00}$ \& 0.00
0.00 \& ${ }_{0}^{0.00}$ \& 0.00
0.00

a \& 0.00
0.00 \& 0.00
0.00
0 \& 0.00
0.00

0 \& 0.00
0.00 \& ${ }_{0}^{0.00}$ \& 0.00
0.00

0 \& ${ }_{0}^{0.00}$ \& ${ }^{0.00}$ \& 0.00
0.00
0 \& ${ }_{0}^{0.000} 0$ \& 0.00
0.00
0

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline ${ }_{0} 0.00$ \& ${ }_{0} 0.00$ \& 0.00 \& ${ }_{0} 0.00$ \& 0.000
0.00 \& ${ }_{0} 0.00$ \& ${ }_{0.00}$ \& 0.000
0.00 \& -0.000 \& ${ }_{0} 0.00$ \& 0.00
0.00 \& 0.00
0.00 \& ${ }_{0}^{0.00}$ \& ${ }_{0}^{0.00}$ \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& -0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline \& \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& ${ }_{0} 0.00$ \& 0.00 \& 0.00 \& 0.00

\hline \& \& 0.00 \& 0.00 \& 00 \& 0.00 \& 0.00 \& 0.00 \& .00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& \& 0.00 \& \& 0.00 \& \& \& 0.00 \& \& \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& \& 0.00 \& \& 0.00 \& \& \& 0.00 \& \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 000 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& -000 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& ${ }_{0.00}$ \& -0.00 \& 0.00 \& 0.00 \& ${ }_{0} 0.00$ \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline \& 0.00
0.00 \& 0.00 \& 0.00 \& 0.000
0.00 \& 0.00
0.00 \& 0.00
0.00 \& 0.000
0.00 \& 0.00
0.00

0 \& 0.000
0.00 \& \& 000 \& \& 0.00 \& 0.00
0.00

\hline \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& 0.00 \& \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& ${ }^{0.00}$

\hline 0.00 \& -0.00 \& 0.00 \& 000 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00
0.00 \& 0.00 \& 0.00 \& ${ }_{0}^{0.00}$ \& -000 \& 0.00 \& ${ }_{0}^{0.00}$ \& ${ }_{0}^{0.00}$ \& ${ }_{0} 0.00$ \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& 0.00 \& 0.00 \& 0.00 \& \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00
0.00 \& 0.00
0.00 \& 0.00
0.00 \& 0.000
0.00 \& 0.00
0.00 \& ${ }_{0}^{0.00}$ \& 0.00
0.00 \& 0.000
0.00 \& 0.00
0.00 \& ${ }_{0}^{0.00}$ \& 0.000
0.00 \& ${ }_{0}^{0.00}$ \& ${ }_{0}^{0.00}$ \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& 0.00

\hline \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& ${ }^{0.00}$

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& ${ }_{0}^{0.00}$ \& O.00
0.000 \& ${ }_{0.00}$ \& 0.00 \& ${ }_{0} 0.00$ \& 0.00 \& \&

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline ${ }^{0.000}$ \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 000 \& 0.00 \& 0.00 \& 0.00

\hline \& 0.00 \& \& 0.00 \& 0.00 \& \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \&

\hline
\end{tabular}

Time
weighted ** average

Minimum FBS* for month	Maximum FBS* for month	average FBS* for month
		-10.0
		-7.0
	-12.0	
	-8.0	
	-27.0	
	-8.7	
	-8.0	
	-8.0	
	-8.2	
	-8.0	
		-8.0
	-12.0	
		-10.4
	Average Annual Bias	

* Frequency Bias Setting (FBS)
** Based on the one minute values used in BAL 001

PasteSpecial/Values the data copied from FRS Form 2 for each event.

Event Number	$\begin{gathered} \text { Date/Time } \\ \text { Central Prevailing } \end{gathered}$	DelFreq	Date	A Point Time	FPointA Hz	A Value Hz	$\mathrm{t}(0)$ Time	C Value Hz		$\begin{gathered} \text { FR B } \\ 12 \text { to } 24 \mathrm{sec} \\ \text { Average } \\ \text { MW } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Value } \mathrm{B} \\ 18 \text { to } 30 \mathrm{sec} \\ \text { Average } \\ \text { Frequency } \\ \hline \end{array}$	$\begin{gathered} \text { FR B } \\ 18 \text { to } 30 \text { sec } \\ \text { Average } \\ \text { MW } \end{gathered}$	Value B 20 to 40 sec Average Frequency	$\begin{gathered} \text { FR B } \\ 20 \text { to } 40 \text { sec } \\ \text { Average } \\ \text { MW } \end{gathered}$		$\begin{gathered} \text { FR B } \\ 18 \text { to } 52 \mathrm{sec} \\ \text { Average } \\ \text { MW } \\ \hline \end{gathered}$	
1	12/3/2010 17:28	-0.044															
2	12/19/2010 23:50	-0.037															
3	1/21/2011 7:36	-0.043															
4	2/16/2011 10:54	-0.042															
5	4/20/2011 6:27	-0.065															
6	4/20/2011 16:34	-0.046															
7	4/22/2011 10:53	-0.05															
8	4/26/2011 20:20	-0.059															
9	4/27/2011 16:36	-0.082															
10	5/12/2011 14:37	-0.051															
11	1/019000 0:00	0															
12	1/0/1900 0:00	0															
13	1/0/1900 0:00	0															
14	1/0/1900 0:00	0															
15	1/0/1900 0:00	0															
16	1/0/1900 0:00	0															
17	1/0/1900 0:00	0															
18	1/0/1900 0:00	0															
19	1/0/1900 0:00	0															
20	1/0/1900 0:00	0															
21	1/0/1900 0:00	0															
22	1/0/1900 0:00	0															
23	1/0/1900 0:00	0															
24	1/0/1900 0:00	0															
25	1/0/1900 0:00	0															
26	1/0/1900 0:00	0															
27	1/0/1900 0:00	0															
28	1/0/1900 0:00	0															
29 30	1/0/1900 0:00	0															
31	1/0/1900 0:00	0															
32	1/0/1900 0:00	0															
33	1/0/1900 0:00	0															
34	1/0/1900 0:00	0															
35	1/0/1900 0:00																
36 37	1/0/1900 0:00	0															
38	1/0/190000:00	0															
39	1/0/1900 0:00	0															
40	1/0/1900 0:00	0															
41 42	1/0/1900 0:00 1/0/1900 0:00	0															

					lue ${ }^{\text {B }}$	to 3	second Ave	ge Per	riod Eval	ation									Value B	20 to 40 s
$\begin{gathered} \text { Initial } \\ \begin{array}{c} \text { Performance } \\ \text { Unadjusted } \\ \text { P.U. } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Sustained } \\ \text { Performance } \end{array} \\ \text { P.U. } \\ \hline \end{gathered}$		BA Load Mw	$\begin{gathered} \text { Bias } \\ \text { Seliting } \\ \text { EPFR } \\ \text { MW } \\ \hline \end{gathered}$	$\underset{\substack{\text { Frequency } \\ H z}}{\text { cher }}$	$\begin{gathered} \text { Net } \\ \text { Actual } \\ \text { Interthange } \\ \text { MN } \end{gathered}$						Contingent BA Lost Leneration Load (-Gen $(+)$ MW	$\begin{gathered} \text { Initial } \\ \begin{array}{c} \text { Performance } \\ \text { Adjusted } \end{array} \\ \text { P.U. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Initial } \\ \text { Performance } \\ \text { Unadjusted } \\ \text { P.U. } \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Sustained } \\ \text { Performance } \end{array} \\ \text { P.U. } \\ \hline \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Baias } \\ \text { Setring } \\ \hline \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { Mw } \\ \hline \end{gathered}$	$\begin{gathered} \text { Bias } \\ \text { Setating } \\ \text { EPRFR } \\ \text { MW } \\ \hline \end{gathered}$	${ }_{\text {Frequency }}^{\mathrm{Hz}}$	

$\begin{gathered} \text { Initial } \\ \text { Performance } \\ \text { Adjusted } \\ \text { P.U. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Intitial } \\ \text { Pefromen } \\ \text { Unadiunted } \\ \text { Up.u. } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Sustained } \\ \text { Performance } \end{array} \\ \quad \text { P.U. } \end{gathered}$		$\begin{aligned} & \text { BA } \\ & \text { Load } \\ & \text { MW } \end{aligned}$	$\begin{gathered} \text { Bias } \\ \text { Setang } \\ \text { EPRFR } \\ \text { EWW } \\ \hline \end{gathered}$	${ }_{\text {Frequency }}^{\text {Hz }}$				$\begin{gathered} \text { Pumped } \\ \text { Hydro } \\ \text { Load (-Ge }(+) \\ M W \end{gathered}$	$\begin{gathered} \text { Ramping } \\ \text { Units } \\ \text { Gen (+) } \\ \hline M W \\ \hline \end{gathered}$	$\begin{aligned} & \text { Transfered } \\ & \text { Trequency } \\ & \text { Ressonse } \\ & \text { Rec (-D) } \mathrm{MW}(+) \end{aligned}$	Contingent BA Lost Generation Load (-) Gen (+) MW	$\begin{gathered} \text { Intitial } \\ \substack{\text { Peformance } \\ \text { Adijusted } \\ \text { P.U. }} \\ \hline \end{gathered}$		\qquad	$\begin{gathered} \text { BA } \\ \text { Beias } \\ \text { Selitity } \\ \text { MWIo.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { Mw } \end{gathered}$	$\begin{aligned} & \text { Bias } \\ & \text { Seteng } \\ & \text { EPRRR } \\ & \text { MW } \\ & \hline \end{aligned}$

Instructions

Step 1 Enter data in all green cells on the "Data Entry" worksheet.
Step 2 For identified events in column B of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list.
Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list
 Balancing Authority abbreviation)

Step 5 "Summary" worksheet contains each event's results for your Balancing Authority.

No
Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1.

Instructions

Step 2 For identified events in column B, collect data and complete FRS Form 2 for each event in the list.
Step 3 PasteSpecial/values data from FRS Form 2 "Form 1 Summary Data" into "BA Form 2 Data" worksheet of this workbook. Do this for each event in the list.

Step 4 Save this workbook using the following file name format:NYISO__yyy_FRS_Form1.x|sx and send a . 2 workhooks tore NERC . whiso is replaced with your BA name)

Only average periods are hidden.

Select Reason(s) for adjustment

Select Reason(s) for adjustment
Reason(s)

N
y

Dynamic schedules for joint-owned units (DS)
Nonconforming load (NL)
Pumped hydro (PH)
Xfred Frequency Response (TFR)
Contingent BA adjustment for loss of units (CBA)
DS \& NL
DS \& PH
DS $\& R U$
DS \& RU
DS \& TFR
DS \& NL \& PH
DS \& NL \& RU
JOU DS \& NL \& TFR
DS \& NL \& CBA
DS \& NL \& PH \& RU
DS \& NL \& PH \& TFR
DS $\&$ NL \& PH \& CBA
DS \& NL \& PH \& RU \& TFR
SS \& NL \& PH \& RU \& CBA
DS \& NL \& PH \& RU \& TFR \& CBA
L \& RU
NL \& TFR
NL \& CBA
NL \& PH \& RU
NL \& PH \& TFR
NL \& PH \& BAA
NL \& PH \& RU \& TFR
LL $\&$ PH \& RU \& CBA
L $\& P H \& R U \& T F R \& C B A ~$
P \& RU
PH \& TFR
PH \& CBA
PH \& RU
PH \& RU \& TFR
PH \& RU \& CBA
PH \& TFR
PH\& CBA
PH \& RU \& TFR
PH \& RU \& CBA
PH \& TFR
PH \& RU \& TFR \& CBA
RU \& TFR
RU \& CBA
TFR \& CBA

	Balancing Authority	ERCO	JOU Dynamic Schedules		Non conforming Load		Pumped Hydro		Ramping Units		Transferred Frequency Response		Contingent BA Adjustment	
Event Number	Date/Time (Central Prevailing)	DelFreq	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	$\begin{array}{c\|} \hline \text { Value B } \\ \text { Adjustment } \\ \hline \end{array}$
1	12/6/2010 11:25	-0.101	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	12/9/2010 17:34	-0.074	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	12/11/2010 23:38	-0.166	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	12/16/2010 15:16	-0.074	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	12/19/2010 2:39	-0.111	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	12/26/2010 8:23	-0.066	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	1/9/2011 18:52	-0.108	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	1/11/2011 6:50	-0.091	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	1/20/2011 0:01	-0.198	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	1/21/2011 3:46	-0.171	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	1/23/2011 14:53	-0.149	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	1-28-11 5:21:00	-0.058	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	1/29/2011 22:29	-0.122	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14	2-1-11 22:28:00	-0.078	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	2-2-11 2:18:00	-0.158	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	2-2-11 5:39:00	-0.125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17	2-2-11 8:24:00	-0.188	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18	2-2-11 10:55:00	-0.190	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19	2-9-11 13:01:00	-0.114	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20	2-15-11 16:40:00	-0.216	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21	2-16-11 9:25:00	-0.197	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22	3-3-11 11:17:00	-0.094	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23	3-14-11 6:09:00	-0.208	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24	3-14-11 7:08:00	-0.127	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	3-16-11 20:45:00	-0.074	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26	3-23-11 14:46:00	-0.063	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	3-24-11 13:59:00	-0.182	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28	3-25-11 16:13:00	-0.172	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29	3-29-11 6:43:00	-0.099	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30	3-31-11 12:21:00	-0.112	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31	4-5-11 22:02:00	-0.090	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
32	4-20-11 13:40:00	-0.145	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
33	4-27-11 23:27:00	-0.133	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
34	5-11-11 14:04:00	-0.121	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	5-16-11 8:06:00	-0.101	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
36	5-19-11 14:08:00	-0.197	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
37	5-23-11 17:34:00	-0.092	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38	5-29-11 22:03:00	-0.118	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39	6-22-11 13:18:00	0.080	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	6-27-11 12:54:00	-0.149	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	4-27-11 23:27:00	-0.133	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Notes:

1) Balancing Authorities making adjustments must retain evidence to verify

Adjustment values are determined from scan-cycle data using Value A and Value B averaging periods. Scan-cycle data must be available if adjustments are made. Adjustments are necessary to improve accuracy of calculations compared to using Net Actual Interchange (contingency size for single BA interconnections) solely. Said differently, unless an adjustment compensates for significant known error, it should not be made. However, as noted in the next item, once a decision to include an adjustment for one or more of the six types is made for one event, the entity must calculate adjustments for that (those) type(s) for all events.
Adjustments are included consistently for all events (e.g. if adjustments for nonconforming load are made for one event, the load must be included for all events, etc.).
2) Dynamic Schedules:

- Values use schedule sign convention.

Adjustments should include only dynamic schedules accounting for joint-owned units. Other dynamic schedules should be ignored.
3) Nonconforming Loads:

- Values must be entered as negative numbers.

4) Pumped Hydro:

- Values for pumping must be entered as negative values.

Values for generating must be entered as positive values.
5) Rampling Units:

Values are entered as positive values.
6) Transferred Frequency Response:

This value is the amount agreed upon between the entities expressed in MW/0.1 Hz. Form 2 will adjust this amount for the frequency deviation experienced (e.g. if an entity agrees to provide $20 \mathrm{MW} / 0.1 \mathrm{~Hz}$ to another entity and a frequency event with a deviation of 50 mHz occurs, the delivering entity should enter +20 in the data column of Form 2 and the receiving entity should enter -20 . The spreadsheet will adjust the SEFRD for each entity by the 10 for this event.)
Values for the entity receiving the response must be entered as a negative number.
Values for the entity delivering the response must be entered as a positive number.
Values between entities must sum to zero.
7) Contingent Balancing Authority Adjustment:

Value for Value A is the pre-contingency generation from the contingent unit(s).
Value for Value B is usually 0 MW , but may be the load that remains on the system that was "netted" out by the now offline generation.

Net Total
Adjustments

ralue B 12 to 24 seconds
0.0

0.0
0.0

Event Number	Date/Time (Central Prevailing)	DelFreq	$\begin{gathered} \hline \text { BA } \\ \text { Time } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { DelFreq } \end{gathered}$	$\begin{aligned} & \hline \text { Value "A" It } \\ & \text { MW Lost } \end{aligned}$	mation Adjustment	Value "B" In MW Lost	nation Adjustment	SEFRD $(\mathrm{MW} / 0.1 \mathrm{~Hz})$	Exclude for data error *	
1	12/6/2010 11:25	-0.101	11:25:50	-0.103	755.1	0.0	0.0	0.0	-735.7	N	
2	12/9/2010 17:34	-0.074	17:34:12	-0.111	753.1	0.0	0.0	0.0	-675.8	N	
3	12/11/2010 23:38	-0.166	23:38:26	-0.185	821.1	0.0	0.0	0.0	-443.5	N	
4	12/16/2010 15:16	-0.074	15:15:58	-0.082	617.1	0.0	0.0	0.0	-755.3	N	2012
5	12/19/2010 2:39	-0.111	2:39:20	-0.112	720.3	0.0	0.0	0.0	-643.2	N	Texas
6	12/26/2010 8:23	-0.066	8:32:02	-0.060	494.4	0.0	0.0	0.0	-828.5	N	ERCO
7	1/9/2011 18:52	-0.108	18:51:58	-0.122	575.2	0.0	0.0	0.0	-472.6	N	Ken McIntyre
8	1/11/2011 6:50	-0.091	6:50:14	-0.097	456.9	0.0	0.0	0.0	-473.4	N	512-248-3969
9	1/20/2011 0:01	-0.198	0:01:52	-0.189	786.1	0.0	0.0	0.0	-415.7	N	kmcintyre@ercot.com
10	1/21/2011 3:46	-0.171	3:46:26	-0.157	650.0	0.0	0.0	0.0	-412.8	N	63453
11	1/23/2011 14:53	-0.149	14:53:18	-0.136	403.7	0.0	0.0	0.0	-297.1	N	75314
12	1-28-11 5:21:00	-0.058	5:21:44	-0.068	311.5	0.0	0.0	0.0	-459.4	N	63783
13	1/29/2011 22:29	-0.122	22:29:28	-0.123	646.2	0.0	113.9	0.0		Y	
14	2-1-11 22:28:00	-0.078	22:27:46	-0.082	459.3	0.0	0.0	0.0	-563.6	N	
15	2-2-11 2:18:00	-0.158	2:18:42	-0.155	716.9	0.0	0.0	0.0	-463.2	N	2011
16	2-2-11 5:39:00	-0.125	5:39:12	-0.114	578.5	0.0	0.0	0.0	-508.2	N	-286
17	2-2-11 8:24:00	-0.188	8:24:28	-0.167	775.3	0.0	0.0	0.0	-463.2	N	
18	2-2-11 10:55:00	-0.190	10:55:38	-0.187	840.9	0.0	0.0	0.0	-448.6	N	Summary Statistics
19	2-9-11 13:01:00	-0.114	13:01:36	-0.105	598.7	0.0	17.3	0.0	-553.2	N	-499.6
20	2-15-11 16:40:00	-0.216	16:40:02	-0.204	770.0	0.0	0.0	0.0	-377.7	N	
21	2-16-11 9:25:00	-0.197	9:25:36	-0.177	569.9	0.0	0.0	0.0	-321.1	N	-33.8
22	3-3-11 11:17:00	-0.094	11:17:34	-0.098	440.5	0.0	0.0	0.0	-449.9	N	
23	3-14-11 6:09:00	-0.208	6:09:32	-0.205	970.7	0.0	0.0	0.0	-473.0	N	
24	3-14-11 7:08:00	-0.127	7:08:12	-0.127	487.0	0.0	0.0	0.0	-383.2	N	
25	3-16-11 20:45:00	-0.074	20:45:06	-0.089	397.6	0.0	0.0	0.0	-447.9	N	
26	3-23-11 14:46:00	-0.063	14:46:46	-0.082	621.2	0.0	0.0	0.0	-753.3	N	
27	3-24-11 13:59:00	-0.182	13:59:06	-0.186	498.3	0.0	0.0	0.0	-268.1	N	
28	3-25-11 16:13:00	-0.172	16:13:26	-0.187	553.4	0.0	66.7	0.0	-260.9	N	-286
29	3-29-11 6:43:00	-0.099	6:43:06	-0.123	742.8	0.0	0.0	0.0	-604.3	N	-556.4
30	3-31-11 12:21:00	-0.112	12:21:24	-0.112	421.0	0.0	0.0	0.0	-375.7	N	
31	4-5-11 22:02:00	-0.090	22:02:04	-0.083	518.5	0.0	0.0	0.0	-622.8	N	-463.2
32	4-20-11 13:40:00	-0.145	13:40:54	-0.162	785.5	0.0	0.0	0.0	-483.9	N	
33	4-27-11 23:27:00	-0.133	23:27:04	-0.132	691.8	0.0	0.0	0.0	-523.2	N	
34	5-11-11 14:04:00	-0.121	14:04:46	-0.126	726.0	0.0	0.0	0.0	-574.0	N	

35	5-16-11 8:06:00	-0.101	8:06:36	-0.110	471.1
36	5-19-11 14:08:00	-0.197	14:07:56	-0.223	995.1
37	5-23-11 17:34:00	-0.092	17:34:38	-0.112	533.3
38	5-29-11 22:03:00	-0.118	22:03:06	-0.133	762.3
39	6-22-11 13:18:00	0.080	13:18:38	0.036	-258.6
40	6-27-11 12:54:00	-0.149	12:54:00	-0.144	661.2
41	7-18-11 9:13:00	-0.097	9:13:14	-0.096	386.3
42	7-18-11 20:50:00	-0.119	20:50:38	-0.133	596.1

Bias Calculation Form Year
Interconnection
Balancing Authority
Contact Name
Contact Phone \#
Contact e-mail
Current Year's Actual Peak
nternal Generating Capacity
Next Year's Projected Peak

Current year

2011 Frequency Response Obligation (FRO)

Average Frequency Response (MW/0.1Hz)

Regression Estimate of Frequency Response (MW/0.1Hz)

Next Year's

2012 Frequency Response Obligation (FRO)

2012 Frequency Bias Setting - (minimum of FRM, next year's FRO, or 0.8% of Projected Peak [Load + Gen]/2)

2011 FRM - Median Frequency Response (MW/0.1Hz)

Value "A" Load	Value "B" Load	
35688.6	35448.9	
34418.4	34067.3	
29590.8	29332.9	
31769.4	31711.5	
30239.7	30095.9	
39597.9	39157.5	
40357.4	40313.0	
48145.5	48119.3	
28998.6	28706.9	
40462.5	40291.4	
31488.8	31381.1	
32641.7	32677.9	
27749.0	27564.7	
51871.7	51739.1	
49441.4	49253.7	
52943.4	52893.3	
52047.5	51826.7	
52733.0	52504.3	
50685.2	50470.3	
31612.4	31207.5	
31135.6	30972.9	
31497.4	31383.3	
26752.6	26452.9	
29065.2	29072.8	
33412.6	33249.3	
38733.6	38264.0	
35353.8	35176.6	
40151.5	39958.5	
31093.9	30933.8	
31970.4	31779.5	
30986.5	30797.5	
41620.0	41377.9	
29943.1	29643.5	
42265.9	42054.1	

$$
\begin{array}{l|l|l|}
30202.7 & 30090.9 & \\
42909.6 & 42474.0 \\
50589.7 & 50477.9 \\
4479.7 & 44399.2 \\
44769.2 & 44674.8 & \\
56971.1 & 56795.9 & \\
45315.0 & 45257.8 & \\
57050.3 & 56857.6 &
\end{array}
$$

-0.058	23.2
-0.066	27.7
-0.040	10.7
-0.05252493	80.660891
-0.07090523	-26.89761
-0.05190677	9.9554492
-0.0580477	3.367024
-0.07557242	36.334427
-0.0563805	0.488253
-0.0573329	2.7580369
-0.0517609	13.643417
-0.04999924	11.100746
-0.052	-19.90685
-0.05599976	12.325464
-0.05849838	0.7501918
-0.04850006	2.2300578
-0.04500008	9.4778593
-0.03750229	0.355309
-0.04750061	2.1707019
-0.05550003	29.382074
-0.047	4.6013813
-0.06	1.5935149
-0.06	52.370908
-0.051	33.947874
-0.1	100

Dynamic schedules for joint-owned units (DS)
Nonconforming load (NL)
Pumped hydro (PH)
Ramping units (RU)
Xfred Frequency Response (TFR)
Contingent BA adjustment for loss of units (CBA)
DS \& NL
DS \& PH
DS \& RU
DS \& TFR
DS \& CBA
DS \& NL \& PH
DS \& NL \& RU
JOU DS \& NL \& TFR
DS \& NL \& CBA
DS \& NL \& PH \& RU
DS \& NL \& PH \& TFR
DS \& NL \& PH \& CBA
DS \& NL \& PH \& RU \& TFR
DS \& NL \& PH \& RU \& CBA
DS \& NL \& PH \& RU \& TFR \& CBA
NL \& PH
NL \& RU
NL \& TFR
NL \& CBA
NL \& PH \& RU
NL \& PH \& TFR
NL \& PH \& BAA
NL \& PH \& RU \& TFR
NL \& PH \& RU \& CBA
NL \& PH \& RU \& TFR \& CBA
PH \& RU
PH \& TFR
PH \& CBA

PH \& RU \& TFR \& CBA
RU \& TFR
RU \& CBA
RU \& TFR \& CBA

DS \& TFR
DS \& CBA
DS \& NL \& PH
DS \& NL \& RU
JOU DS \& NL \& TFR
DS \& NL \& CBA
DS \& NL \& CBA
DS \& NL \& PH \& RU
DS \& NL \& PH \& TFR
DS \& NL \& PH \& CBA
DS \& NL \& PH \& RU \& TFR
DS \& NL \& PH \& RU \& CBA
DS \& NL \& PH \& RU \& TFR \& CBA
NL \& PH
NL \& RU
NL \& TFR
NL \& CBA
NL \& PH \& RU
NL \& PH \& TFR
NL \& PH \& BAA
NL \& PH \& RU \& TFR
NL \& PH \& RU \& CBA
NL \& PH \& RU \& CBA
NL \& PH \& RU \& TFR \& CBA
NL \& PH \& RU \& TFR \& CBA
PH \& TFR
PH \& CBA
PH \& RU \& TFR
PH \& RU \& CB
PH \& TFR
PH \& CBA
$\mathrm{PH} \& \mathrm{RU} \& \mathrm{TFR}$
$\mathrm{PH} \& \mathrm{RU} \& \mathrm{TFR}$
$\mathrm{PH} \& \mathrm{RU} \& \mathrm{CBA}$
$\mathrm{PH} \& \mathrm{TFR}$
$\mathrm{PH} \& \mathrm{CBA}$
PH \& CBA
PH \& RU $\&$ TFR \& CBA
RU \& TFR
RU \& CBA
RU \& TFR \& CBA
TFR \& CBA

 N
y

Nonconforming load (NL)
Pumped hydro (PH)
Ramping units (RU)
Xfred Frequency Response (TFR)
Contingent BA adjusment for loss of units (CBA)
DS \& NL
DS \& PH
DS \& RU
DS \& TFR
DS \& CBA
DS \& NL \& PH
DS \& NL \& RU
Jou ds \& NL \& TFR
DS \& NL \& CBA
DS \& NL \& PH \& RU
DS \& NL \& PH\& TFR
DS \& NL \& PH \& CBA
DS \& NL \& PH \& RU \& TFR
DS \& NL \& PH \& RU \& CBA
DS \& NL \& PH \& RU \& TFR \& CBA
NL \& PH
NL \& RU
NL\& TFR
NL \& CBA
NL \& PH \& RU
NL \& PH \& TFR
NL \& PH\&BAA
NL \& PH \& RU \& TFR
NL \& PH \& RU \& CBA
NL \& PH \& RU \& TFR \& CBA
PH \& RU
PH \& TFR
PH \& CbA
PH\&RU \& TFR
PH \& R \& \& CBA
PH \& TFR
PH \& CBA
PH \& RU \& TFR
PH\&RU\&CBA
PH \& TFR
PH \& CBA
PH \& RU \& TFR \& CBA
RU \& TFR
RU \& CBA
RU \& TFR \& CBA
FR \& CBA

Event Number	ERCO DelFreq	NERC FRS FORM 1							
		$\begin{gathered} \hline \text { BA } \\ \text { Time } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { DelFreq } \\ \hline \end{gathered}$	$\begin{array}{r} \hline 12 \text { to } 24 \\ \text { SEFRD } \end{array}$	$\begin{array}{r} 18 \text { to } 30 \\ \text { SEFRD } \\ \hline \end{array}$	$\begin{gathered} 20 \text { to } 40 \\ \text { SEFRD } \\ \hline \end{gathered}$	$\begin{array}{r} 18 \text { to } 52 \\ \text { SEFRD } \end{array}$	$\begin{array}{r} 20 \text { to } 52 \\ \text { SEFRD } \\ \hline \end{array}$	Exclude for data error *
1	-0.101	11:25:50	-0.101	-736.4	-750.9	-775.5	-795.7	-800.4	N
2	-0.074	17:34:12	-0.105	-682.1	-720.0	-716.6	-703.6	-703.9	N
3	-0.166	23:38:26	-0.200	-445.3	-411.1	-411.6	-415.2	-414.6	N
4	-0.074	15:15:58	-0.085	-757.2	-723.3	-750.8	-794.9	-796.4	N
5	-0.111	2:39:20	-0.126	-653.2	-578.6	-545.3	-550.3	-543.4	N
6	-0.066	8:32:02	-0.054	-833.0	-921.5	-1074.5	-1364.9	-1396.9	N
7	-0.108	18:51:58	-0.111	-476.0	-518.9	-536.4	-532.8	-535.5	N
8	-0.091	6:50:14	-0.095	-473.9	-482.1	-485.8	-499.6	-501.2	N
9	-0.198	0:01:52	-0.198	-417.2	-398.3	-401.9	-399.4	-397.8	N
10	-0.171	3:46:26	-0.164	-413.4	-396.2	-386.3	-381.8	-380.0	N
11	-0.149	14:53:18	-0.145	-298.2	-279.1	-275.3	-272.7	-271.8	N
12	-0.058	5:21:44	-0.065	-459.8	-479.0	-506.4	-564.4	-570.8	N
13	-0.122	22:29:28	-0.124						Y
14	-0.078	22:27:46	-0.079	-564.6	-583.2	-576.1	-589.0	-590.5	N
15	-0.158	2:18:42	-0.154	-463.3	-466.3	-458.4	-453.1	-452.8	N
16	-0.125	5:39:12	-0.115	-508.5	-504.9	-484.2	-471.3	-468.7	N
17	-0.188	8:24:28	-0.179	-464.7	-435.8	-419.7	-419.1	-414.4	N
18	-0.190	10:55:38	-0.185	-448.9	-454.5	-448.4	-444.8	-443.9	N
19	-0.114	13:01:36	-0.111	-560.3	-531.2	-514.4	-518.8	-516.8	N
20	-0.216	16:40:02	-0.200	-379.1	-386.1	-369.7	-359.6	-358.2	N
21	-0.197	9:25:36	-0.175	-321.2	-325.1	-326.0	-324.8	-325.0	N
22	-0.094	11:17:34	-0.096	-450.3	-458.4	-462.9	-467.4	-468.1	N
23	-0.208	6:09:32	-0.206	-473.2	-472.1	-469.7	-467.1	-467.6	N
24	-0.127	7:08:12	-0.128	-383.2	-380.7	-379.7	-382.9	-382.7	N
25	-0.074	20:45:06	-0.079	-455.9	-503.0	-507.2	-542.1	-543.8	N
26	-0.063	14:46:46	-0.065	-807.2	-956.6	-964.2	-990.4	-996.3	N
27	-0.182	13:59:06	-0.176	-268.8	-284.0	-285.7	-280.8	-281.7	N
28	-0.172	16:13:26	-0.180	-261.0	-270.6	-280.8	-288.2	-289.6	N
29	-0.099	6:43:06	-0.101	-630.9	-741.8	-737.6	-743.0	-748.6	N
30	-0.112	12:21:24	-0.111	-375.8	-379.6	-372.4	-378.9	-379.0	N
31	-0.090	22:02:04	-0.084	-628.6	-616.9	-599.8	-587.1	-580.0	N
32	-0.145	13:40:54	-0.149	-486.6	-529.8	-534.3	-540.2	-544.2	N
33	-0.133	23:27:04	-0.131	-524.9	-526.7	-522.4	-522.2	-520.8	N
34	-0.121	14:04:46	-0.119	-577.2	-612.6	-599.1	-599.3	-599.2	N
35	-0.101	8:06:36	-0.107	-427.7	-441.7	-457.1	-463.1	-465.0	N
36	-0.197	14:07:56	-0.207	-449.0	-480.6	-498.7	-502.5	-505.2	N
37	-0.092	17:34:38	-0.103	-476.7	-522.1	-555.2	-578.0	-583.9	N
38	-0.118	22:03:06	-0.123	-574.8	-624.6	-651.2	-643.9	-647.9	N
39	0.080	13:18:38	0.034	-721.6	-762.0	-795.0	-825.6	-831.2	N
40	-0.149	12:54:00	-0.137	-459.8	-484.4	-498.1	-502.3	-504.8	N
41	-0.097	9:13:14	-0.095	-403.4	-405.8	-417.1	-409.7	-410.3	N
42	-0.119	20:50:38	-0.129	-448.2	-464.0	-465.1	-466.1	-467.0	N
				-499.56 -463.19	-517.56 -481.99	-523.18 -497.76	-532.02 -501.63	-533.84 -504.36	
Regres				-33.77	-33.77	-33.77	-33.77	-33.77	
				-286	-286	-286	-286	-286	

| Adjusted | Unadjusted | Adjusted | Unadjusted |
| ---: | ---: | ---: | ---: | ---: |
| 2.57 | 2.57 No Evaluatio | 2.62 | 2.62 No Evaluation |
| 2.36 | 2.36 No Evaluatio | 2.51 | 2.51 No Evaluation |

2.56	2.56 No Evaluatio	2.61	2.61
2.56	No Evaluation		
1.55	1.55 No Evaluatio	1.43	1.43 No Evaluation
2.64	2.64 No Evaluatio	2.53	2.53 No Evaluation
2.25	2.25 No Evaluatio	2.01	2.01 No Evaluation
2.90	2.90 No Evaluatio	3.20	3.20 No Evaluation
1.65	1.65 No Evaluatio	1.81	1.81 No Evaluation

1.65 No Evaluatio	1.81	1.81 No Evaluation

 \(\begin{array}{lll}1.66 \text { No Evaluatio } & 1.69 & 1.69 \text { No Evaluation } \\ 1.45 \text { No Evaluatio } & 1.39 & 1.39 \text { No Evaluation }\end{array}\)
 \(\begin{array}{lll}\text { 1.45 No Evaluatio } & 1.39 & 1.39 \\ \text { 1.44 No Evaluation }\end{array}\)
 1.04 No Evaluatio \(\quad 0.98 \quad 0.98\) No Evaluation
 \(\begin{array}{lll}1.61 \text { No Evaluatio } & 1.67 & 1.67 \text { No Evaluation }\end{array}\)
 1.51 No Evaluatio \(\quad 1.50 \quad 1.50\) No Evaluation
 \(\begin{array}{lll}1.97 \text { No Evaluatio } & 2.04 & 2.04 \text { No Evaluatio }\end{array}\)
 \(\begin{array}{lll}1.62 \text { No Evaluatio } & 1.63 & 1.63 \text { No Evaluation }\end{array}\)
 1.78 No Evaluatio \(\quad 1.76 \quad 1.76\) No Evaluation
 1.62 No Evaluatio \(\quad 1.51 \quad 1.51\) No Evaluation
 \(\begin{array}{lll}1.57 \text { No Evaluatio } & 1.59 & 1.59 \text { No Evaluation }\end{array}\)
 32 No Evaluatio - 1.85 No Evaluatio
 12 No Evaluatio 1.14 1.14 No Evaluation
 1.57 No Evaluatio \(\quad 1.60 \quad 1.60\) No Evaluation
 65 No Evaluatio \(\quad 1.65 \quad 1.65\) No Evaluatio
 . 34 No Evaluatio
 1.57 No Evaluatio \(\quad 1.76 \quad 1.76\) No Evaluation
 .63 No Evaluatio \(\quad 3.34\) 3.34 No Evaluation
 \(\begin{array}{lll} & .94 \text { No Evaluatio } & 0.99 \\ 0.99 & \text { No Evaluation }\end{array}\)
 \(\begin{array}{lll}0.91 \text { No Evaluatio } & 0.958 & 0.95 \text { No Evaluation }\end{array}\)
 31 No Evaluatio - 1.33 1.33 No Evaluation
 218 No Evaluatio 215 215 No Evaluatio
 1.69 No Evaluatio \(\quad 1.85 \quad 1.85\) No Evaluation
 83 No Evaluatio \(\quad 1.84 \quad 1.84\) No Evaluation
 01 No Evaluatio \(\quad 2.14\)
 .49 No Evaluatio \(\quad 1.54 \quad 1.54\) No Evaluation
 1.56 No Evaluatio 1.68 1.68 No Evaluation
 \(\begin{array}{llll}1.66 \text { No Evaluatio } & 1.82 & 1.82 \text { No Evaluation }\end{array}\)
 N Evaluatio \(\quad 2.17 \quad\) No
 61 No Evaluatio \(\quad 1.69 \quad 1.69 \mathrm{NE}\) E Evaluatio
 1.41 No Evaluatio \(\quad 1.42 \quad 1.42\) No Evaluation
 1.56 No Evaluatio \(\quad 1.62 \quad 1.62\) No Evaluation
 | 20 to 40 P.U. Performance | | 18 to 52 P.U. Performance | | 20 to 52 P.U. Performance | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Initial Adjusted | Initial Unadjusted Sustained | Initial Adjusted | Initial Unadjusted Sustained | Initial Adjusted | Initial Unadjusted Sustained |
| 2.71 | 2.71 No Evaluatic | 2.77 | 2.77 No Evaluation | 2.79 | 2.79 No Evaluation |
| 2.50 | 2.50 No Evaluatic | 2.46 | 2.46 No Evaluation | 2.46 | 2.46 No Evaluation |
| 1.44 | 1.44 No Evaluatic | 1.45 | 1.45 No Evaluation | 1.45 | 1.45 No Evaluation |
| 2.61 | 2.61 No Evaluatic | 2.75 | 2.75 No Evaluation | 2.76 | 2.76 No Evaluation |
| 1.90 | 1.90 No Evaluatic | 1.91 | 1.91 No Evaluation | 1.89 | 1.89 No Evaluation |
| 3.67 | 3.67 No Evaluatic | 4.25 | 4.25 No Evaluation | 4.38 | 4.38 No Evaluation |
| 1.87 | 1.87 No Evaluatic | 1.86 | 1.86 No Evaluation | 1.87 | 1.87 No Evaluation |
| 1.70 | 1.70 No Evaluatic | 1.74 | 1.74 No Evaluation | 1.75 | 1.75 No Evaluation |
| 1.40 | 1.40 No Evaluatic | 1.39 | 1.39 No Evaluation | 1.39 | 1.39 No Evaluation |
| 1.35 | 1.35 No Evaluatic | 1.33 | 1.33 No Evaluation | 1.33 | 1.33 No Evaluation |
| 0.96 | 0.96 No Evaluatic | 0.95 | 0.95 No Evaluation | 0.95 | 0.95 No Evaluation |
| 1.76 | 1.76 No Evaluatic | 1.92 | 1.92 No Evaluation | 1.95 | 1.95 No Evaluation |
| 1.28 | 1.28 No Evaluatic | 1.27 | 1.27 No Evaluation | 1.25 | 1.25 No Evaluation |
| 2.01 | 2.01 No Evaluatic | 2.06 | 2.06 No Evaluation | 2.06 | 2.06 No Evaluation |
| 1.60 | 1.60 No Evaluatic | 1.58 | 1.58 No Evaluation | 1.58 | 1.58 No Evaluation |
| 1.69 | 1.69 No Evaluatic | 1.64 | 1.64 No Evaluation | 1.63 | 1.63 No Evaluation |
| 1.46 | 1.46 No Evaluatic | 1.46 | 1.46 No Evaluation | 1.45 | 1.45 No Evaluation |
| 1.57 | 1.57 No Evaluatic | 1.55 | 1.55 No Evaluation | 1.55 | 1.55 No Evaluation |
| 1.78 | 1.78 No Evaluatic | 1.81 | 1.81 No Evaluation | 1.81 | 1.81 No Evaluation |
| 1.29 | 1.29 No Evaluatic | 1.25 | 1.25 No Evaluation | 1.25 | 1.25 No Evaluation |
| 1.14 | 1.14 No Evaluatic | 1.14 | 1.14 No Evaluation | 1.14 | 1.14 No Evaluation |
| 1.62 | 1.62 No Evaluatic | 1.63 | 1.63 No Evaluation | 1.63 | 1.63 No Evaluation |
| 1.64 | 1.64 No Evaluatic | 1.63 | 1.63 No Evaluation | 1.63 | 1.63 No Evaluation |
| 1.33 | 1.33 No Evaluatic | 1.34 | 1.34 No Evaluation | 1.34 | 1.34 No Evaluation |
| 1.77 | 1.77 No Evaluatic | 1.88 | 1.88 No Evaluation | 1.88 | 1.88 No Evaluation |
| 3.37 | 3.37 No Evaluatic | 3.45 | 3.45 No Evaluation | 3.47 | 3.47 No Evaluation |
| 1.00 | 1.00 No Evaluatic | 0.98 | 0.98 No Evaluation | 0.98 | 0.98 No Evaluation |
| 0.98 | 0.98 No Evaluatic | 1.00 | 1.00 No Evaluation | 1.01 | 1.01 No Evaluation |
| 2.57 | 2.57 No Evaluatic | 2.59 | 2.59 No Evaluation | 2.61 | 2.61 No Evaluation |
| 1.30 | 1.30 No Evaluatic | 1.32 | 1.32 No Evaluation | 1.32 | 1.32 No Evaluation |
| 2.10 | 2.10 No Evaluatic | 2.04 | 2.04 No Evaluation | 2.02 | 2.02 No Evaluation |
| 1.87 | 1.87 No Evaluatic | 1.88 | 1.88 No Evaluation | 1.90 | 1.90 No Evaluation |
| 1.83 | 1.83 No Evaluatic | 1.82 | 1.82 No Evaluation | 1.82 | 1.82 No Evaluation |
| 2.09 | 2.09 No Evaluatic | 2.09 | 2.09 No Evaluation | 2.09 | 2.09 No Evaluation |
| 1.60 | 1.60 No Evaluatic | 1.62 | 1.62 No Evaluation | 1.62 | 1.62 No Evaluation |
| 1.74 | 1.74 No Evaluatic | 1.75 | 1.75 No Evaluation | 1.76 | 1.76 No Evaluation |
| 1.93 | 1.93 No Evaluatic | 2.00 | 2.00 No Evaluation | 2.03 | 2.03 No Evaluation |
| 2.27 | 2.27 No Evaluatic | 2.25 | 2.25 No Evaluation | 2.26 | 2.26 No Evaluation |
| 2.77 | 2.77 No Evaluatic | 2.87 | 2.87 No Evaluation | 2.89 | 2.89 No Evaluation |
| 1.74 | 1.74 No Evaluatic | 1.75 | 1.75 No Evaluation | 1.76 | 1.76 No Evaluation |
| 1.46 | 1.46 No Evaluatic | 1.43 | 1.43 No Evaluation | 1.43 | 1.43 No Evaluation |
| 1.63 | 1.63 No Evaluatic | 1.63 | 1.63 No Evaluation | 1.63 | 1.63 No Evaluation |
| 1.82 | 1.82 | 1.85 | 1.85 | 1.85 | 1.85 |

			Time weighted
	Minimum FBS* for month	Maximum FBS* * for month	(BS* for month
Month			-10.0
January		-7.0	
Feburary		-12.0	
March		-8.0	
April		-27.0	
May		-8.7	
June		-8.0	
July		-8.0	
August		-8.2	
September		-8.0	
October			-8.0
November			-12.0
December		-10.4	

* Frequency Bias Setting (FBS)
** Based on the one minute values used in BAL 001

PasteSpecialValues the data copied from FRS Form 2 for each event.
Interconnection Performance

Event	Date/Time Central Prevailing	DelFreq	Date	A Point Time	FPointA Hz	A Value Hz	$\mathrm{t}(0)$ Time	$\begin{gathered} \hline \text { C Value } \\ \mathrm{Hz} \end{gathered}$	Value B 12 to 24 sec Average Frequency	$\begin{gathered} \text { FR B } \\ \text { 12 to } 24 \mathrm{sec} \\ \text { Average } \\ \text { MW } \\ \hline \end{gathered}$	Value B 18 to 30 sec Average Frequency	$\begin{gathered} \text { FR B } \\ 18 \text { to } 30 \text { sec } \\ \text { Average } \\ \text { MW } \end{gathered}$	Value B 20 to 40 sec Average Frequency		Value B 18 to 5 sec Average Frequency	$\begin{gathered} \hline \text { FR B } \\ 18 \text { to } 52 \text { sec } \\ \text { Average } \\ \text { MW } \\ \hline \end{gathered}$	Value B 20 to 52 sec Average Frequency
1	12/6/2010 11:25	-0.101	Monday, December 06, 2010	11:25:50	59.9970	59.9965	11:25:52	59.8100	59.8939	-736.38	59.8959	-750.94	59.9019	-775.46	59.9013	-795.67	59.9019
2	12/9/2010 17:34	-0.074	Thursday, December 09, 2010	17:34:12	59.9930	59.9980	17:34:14	59.8040	59.8866	-682.10	59.8933	-720.02	59.8909	-716.56	59.8908	-703.56	59.8909
3	12/11/2010 23:38	-0.166	Saturday, December 11, 2010	23:38:26	60.0090	60.0061	23:38:28	59.7470	59.8210	-445.26	59.8059	-411.13	59.8078	-411.60	59.8081	-415.20	59.8078
4	12/16/2010 15:16	-0.074	Thursday, December 16, 2010	15:15:58	59.9710	59.9731	15:16:00	59.8110	59.8914	-757.17	59.8877	-723.27	59.8949	-750.84	59.8948	-794.94	59.8949
5	12/19/2010 2:39	-0.111	Sunday, December 19, 2010	2:39:20	59.9930	59.9870	2:39:22	59.8060	59.8750	-653.15	59.8614	-578.56	59.8540	-545.29	59.8554	-550.26	59.8540
6	12/26/2010 8:23	-0.066	Sunday, December 26, 2010	8:32:02	59.9340	59.9443	8:32:04	59.8260	59.8846	-832.97	59.8903	-921.48	59.9048	-1074.55	59.9036	-1364.88	59.9048
7	1/9/2011 18:52	-0.108	Sunday, January 09, 2011	18:51:58	59.9880	59.9880	18:52:00	59.8410	59.8663	-475.95	59.8770	-518.87	59.8805	-536.43	59.8799	-532.79	59.8805
8	1/11/2011 6:50	-0.091	Tuesday, January 11, 2011	6:50:14	59.9780	59.9805	6:50:16	59.8700	59.8840	-473.93	59.8857	-482.14	59.8891	-485.78	59.8888	-499.63	59.8891
9	1/20/2011 0:01	-0.198	Thursday, January 20,2011	0:01:52	60.0170	60.0062	0:01:54	59.7610	59.8171	-417.20	59.8086	-398.27	59.8085	-401.89	59.8092	-399.42	59.8085
10	1/21/2011 3:46	-0.171	Friday, January 21, 2011	3:46:26	60.0440	60.0447	3:46:28	59.8870	59.8873	-413.44	59.8806	-396.16	59.8735	-386.30	59.8743	-381.81	59.8735
11	1/23/2011 14:53	-0.149	Sunday, January 23, 2011	14:53:18	59.9780	59.9999	14:53:20	59.8600	59.8640	-298.19	59.8551	-279.13	59.8512	-275.33	59.8517	-272.72	59.8512
12	1/28/2011 5:21	-0.058	Friday, January 28, 2011	5:21:44	59.9660	59.9734	5:21:46	59.8760	59.9056	-459.82	59.9083	-478.96	59.9174	-506.40	59.9167	-564.36	59.9174
13	1/29/2011 22:29	-0.122	Saturday, January 29,2011	22:29:28	60.0010	59.9997	22:29:30	59.8390	59.8767	-239.96	59.8753	-237.09	59.9174	-244.00	59.9152	1547.87	59.9174
14	2/1/2011 22:28	-0.078	Tuesday, February 01, 2011	22:27:46	59.9690	59.9695	22:27:48	59.8750	59.8880	-564.61	59.8907	-583.21	59.8916	-576.14	59.8914	-588.96	59.8916
15	2/2/2011 2:18	-0.158	Wednesday, February 02, 2011	2:18:42	60.0150	60.0135	2:18:44	59.8410	59.8587	-463.28	59.8597	-466.26	59.8551	-458.39	59.8552	-453.12	59.8551
16	2/2/2011 5:39	-0.125	Wednesday, February 02, 2011	5:39:12	59.9210	59.9233	5:39:14	59.8060	59.8094	-508.54	59.8086	-504.87	59.7994	-484.21	59.8000	-471.29	59.7994
17	2/2/2011 8:24	-0.188	Wednesday, February 02, 2011	8:24:28	60.0360	60.0354	8:24:30	59.8530	59.8680	-464.75	59.8563	-435.76	59.8479	-419.66	59.8497	-419.13	59.8479
18	2/2/2011 10:55	-0.19	Wednesday, February 02, 2011	10:55:38	60.0090	60.0077	10:55:40	59.8020	59.8203	-448.89	59.8227	-454.49	59.8182	-448.43	59.8186	-444.78	59.8182
19	2/9/2011 13:01	-0.114	Wednesday, February 09, 2011	13:01:36	60.0250	60.0224	13:01:38	59.9100	59.9173	-560.29	59.9117	-531.22	59.9086	-514.37	59.9090	-518.79	59.9086
20	2/15/2011 16:40	-0.216	Tuesday, February 15, 2011	16:40:02	60.0300	60.0341	16:40:04	59.7570	59.8303	-379.14	59.8344	-386.14	59.8182	-369.70	59.8191	-359.56	59.8182
21	2/16/2011 9:25	-0.197	Wednesday, February 16, 2011	9:25:36	59.9800	59.9919	9:25:38	59.8000	59.8144	-321.17	59.8166	-325.14	59.8165	-325.96	59.8164	-324.83	59.8165
22	3/3/2011 11:17	-0.094	Thursday, March 03, 2011	11:17:34	59.9710	59.9666	11:17:36	59.8390	59.8687	-450.25	59.8704	-458.40	59.8724	-462.92	59.8723	-467.40	59.8724
23	3/14/2011 6:09	-0.208	Monday, March 14, 2011	6:09:32	60.0280	60.0315	6:09:34	59.7900	59.8263	-473.15	59.8259	-472.10	59.8239	-469.73	59.8237	-467.13	59.8239
24	3/14/2011 7:08	-0.127	Monday, March 14, 2011	7:08:12	60.0120	60.0054	7:08:14	59.8410	59.8783	-383.22	59.8774	-380.67	59.8781	-379.65	59.8781	-382.86	59.8781
25	3/16/2011 20:45	-0.074	Wednesday, March 16, 2011	20:45:06	59.9850	59.9876	20:45:08	59.8660	59.8989	-455.89	59.9086	-503.02	59.9138	-507.23	59.9136	-542.06	59.9138
26	3/23/2011 14:46	-0.063	Wednesday, March 23, 2011	14:46:46	59.9950	59.9897	14:46:48	59.7060	59.9073	-807.19	59.9247	-956.57	59.9272	-964.25	59.9268	-990.42	59.9272
27	3/24/2011 13:59	-0.182	Thursday, March 24, 2011	13:59:06	59.9770	59.9981	13:59:08	59.7990	59.8123	-268.77	59.8224	-283.96	59.8211	-285.69	59.8205	-280.78	59.8211
28	3/25/2011 16:13	-0.172	Friday, March 25, 2011	16:13:26	59.9960	60.0142	16:13:28	59.8130	59.8277	-261.02	59.8344	-270.59	59.8458	-280.76	59.8449	-288.20	59.8458
29	3/29/2011 6:43	-0.099	Tuesday, March 29, 2011	6:43:06	59.9620	59.9635	6:43:08	59.7460	59.8406	-630.95	59.8629	-741.81	59.8641	-737.61	59.8632	-743.02	59.8641
30	3/31/2011 12:21	-0.112	Thursday, March 31, 2011	12:21:24	59.9870	59.9865	12:21:26	59.8600	59.8744	-375.78	59.8756	-379.60	59.8747	-372.38	59.8747	-378.88	59.8747
31	4/5/2011 22:02	-0.09	Tuesday, April 05, 2011	22:02:04	59.9120	59.9182	22:02:06	59.7170	59.8350	-628.65	59.8339	-616.94	59.8286	-599.76	59.8295	-587.13	59.8286
32	4/20/2011 13:40	-0.145	Wednesday, April 20,2011	13:40:54	60.0220	60.0246	13:40:56	59.8240	59.8623	-486.59	59.8759	-529.84	59.8801	-534.28	59.8788	-540.17	59.8801
33	4/27/2011 23:27	-0.133	Wednesday, April 27, 2011	23:27:04	60.0030	60.0075	23:27:06	59.7910	59.8753	-524.88	59.8760	-526.70	59.8746	-522.43	59.8749	-522.21	59.8746
34	5/11/2011 14:04	-0.121	Wednesday, May 11, 2011	14:04:46	60.0175	60.0087	14:04:48	59.8533	59.8822	-577.22	59.8901	-612.63	59.8874	-599.12	59.8875	-599.33	59.8874
35	5/16/2011 8:06	-0.101	Monday, May 16, 2011	8:06:36	60.0020	59.9986	8:06:38	59.8701	59.8883	-427.67	59.8920	-441.67	59.8972	-457.14	59.8967	-463.10	59.8972
36	5/19/2011 14:08	-0.197	Thursday, May 19, 2011	14:07:56	59.9758	59.9756	14:07:58	59.7176	59.7529	-449.01	59.7684	-480.64	59.7784	-498.65	59.7772	-502.47	59.7784
37	5/23/2011 17:34	-0.092	Monday, May 23, 2011	17:34:38	59.9351	59.9352	17:34:40	59.8174	59.8231	-476.74	59.8325	-522.12	59.8431	-555.20	59.8420	-577.96	59.8431
38	5/29/2011 22:03	-0.118	Sunday, May 29, 2011	22:03:06	59.9060	59.9060	22:03:08	59.7480	59.7731	-574.81	59.7834	-624.61	59.7881	-651.17	59.7873	-643.95	59.7881
39	6/22/2011 13:18	0.08	Wednesday, June 22, 2011	13:18:38	60.0130	60.0336	13:18:40	60.0810	60.0697	-721.62	60.0676	-761.98	60.0649	-794.96	60.0652	-825.60	60.0649
40	6/27/2011 12:54	-0.149	Monday, June 27, 2011	12:54:00	59.9770	59.9738	12:54:02	59.8200	59.8297	-459.82	59.8371	-484.44	59.8426	-498.14	59.8419	-502.30	59.8426
41	7/18/2011 9:13	-0.097	Monday, July 18, 2011	9:13:14	59.9570	59.9576	9:13:16	59.8590	59.8619	-403.41	59.8624	-405.78	59.8634	-417.13	59.8632	-409.72	59.8634
42	7/18/2011 20:50	-0.119	Monday, July 18, 2011	20:50:38	60.0070	60.0084	20:50:40	59.8660	59.8751	-448.21	59.8799	-463.99	59.8807	-465.09	59.8804	-466.09	59.8807

	Value A Data		BA Performance									Value B								
$\begin{gathered} \text { FR B } \\ 20 \text { to } 52 \text { sec } \\ \text { Average } \\ \text { MW } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Frequency } \\ & \mathrm{Hz} \end{aligned}$		JOU Dynamic Schedules Imp(-) Exp (+) MW	Non- Conforming Load Load (-) MW	$\begin{gathered} \text { Pumped } \\ \text { Hydro } \\ \text { Load (-) Gen (+) } \\ \text { MW } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ramping } \\ & \text { Units } \\ & \text { Gen (+) } \\ & \text { MW } \\ & \hline \end{aligned}$	Transferred Frequency Response Rec (-) Del (+) MW	Contingent BA Lost Generation Load (-) Gen (+) MW	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW0.1 } \mathrm{Hz} \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { Mw } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Bias } \\ & \text { Setting } \\ & \text { EPFR } \\ & \text { MW } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Frequency } \\ \mathrm{Hz} \end{gathered}$		JOU Dynamic Schedules Imp(-) Exp MW MW	Non- Conforming Load Load (-) MW	$\begin{gathered} \text { Pumped } \\ \text { Hydro } \\ \text { Load (-) Gen (+) } \\ \text { MW } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Ramping } \\ & \text { Units } \\ & \text { Gen (+) } \\ & \text { MW } \end{aligned}$	Transferred Frequency Response Rec (-) Del (+) MW	Contingent BA Lost Generation Load (-) Gen (+) MW	$\begin{gathered} \text { Initial } \\ \text { Performance } \\ \text { Adjusted } \\ \text { P.U. } \\ \hline \end{gathered}$
-800.37	59.9965	755.11	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	35689	22.86	59.8939	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.57
-703.93	59.9980	753.07	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	34418	13.06	59.8866	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.36
-414.61	60.0061	821.10	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	29591	-40.00	59.8210	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.55
-796.39	59.9731	617.09	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	31769	175.50	59.8914	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.64
-543.40	59.9870	720.33	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30240	84.89	59.8750	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.25
-1396.89	59.9443	494.44	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	39598	364.04	59.8846	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.90
-535.46	59.9880	575.22	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	40357	78.37	59.8663	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.65
-501.17	59.9805	456.86	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	48146	127.33	59.8840	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.66
-397.82	60.0062	786.05	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	28999	-40.81	59.8171	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45
-380.03	60.0447	650.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	40462	-292.21	59.8873	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.44
-271.79	59.9999	403.71	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	31489	0.81	59.8640	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.04
-570.77	59.9734	311.47	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	32642	173.86	59.9056	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.61
1653.06	59.9997	646.21	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	27749	1.63	59.8767	113.91	0.00	0.00	0.00	0.00	0.00	0.00	1.51
-590.45	59.9695	459.33	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	51872	199.16	59.8880	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.97
-452.82	60.0135	716.93	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	49441	-88.15	59.8587	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.62
-468.69	59.9233	578.49	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	52943	501.18	59.8094	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.78
-414.43	60.0354	775.26	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	52048	-231.00	59.8680	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.62
-443.88	60.0077	840.89	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	52733	-50.60	59.8203	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.57
-516.81	60.0224	598.69	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	50685	-146.11	59.9173	17.31	0.00	0.00	0.00	0.00	0.00	0.00	1.93
-358.19	60.0341	769.98	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	31612	-222.84	59.8303	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.32
-324.98	59.9919	569.86	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	31136	53.06	59.8144	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.12
-468.08	59.9666	440.45	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	31497	217.94	59.8687	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.57
-467.61	60.0315	970.67	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	26753	-205.69	59.8263	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.65
-382.72	60.0054	486.97	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	29065	-35.10	59.8783	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.34
-543.82	59.9876	397.56	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	33413	80.81	59.8989	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.57
-996.30	59.9897	621.17	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	38734	66.93	59.9073	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.63
-281.72	59.9981	498.31	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	35354	12.24	59.8123	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.94
-289.62	60.0142	553.38	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	40152	-93.05	59.8277	66.73	0.00	0.00	0.00	0.00	0.00	0.00	0.91
-748.57	59.9635	742.82	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	31094	238.34	59.8406	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.11
-378.95	59.9865	421.05	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	31970	88.15	59.8744	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.31
-580.03	59.9182	518.48	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30986	533.83	59.8350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.18
-544.21	60.0246	785.54	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	41620	-160.81	59.8623	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.69
-520.76	60.0075	691.80	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	29943	-48.97	59.8753	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.83
-599.24	60.0087	726.02	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	42266	-56.72	59.8822	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.01
-464.95	59.9986	471.09	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30203	8.97	59.8883	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.49
-505.24	59.9756	995.08	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	42910	159.27	59.7529	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.56
-583.92	59.9352	533.33	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	50590	423.29	59.8231	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.66
-647.86	59.9060	762.32	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	44770	613.83	59.7731	0.01	0.00	0.00	0.00	0.00	0.00	0.00	2.01
-831.17	60.0336	-258.56	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	44769	-219.57	60.0697	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.50
-504.79	59.9738	661.23	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56971	171.41	59.8297	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.61
-410.31	59.9576	386.25	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	45315	276.71	59.8619	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.41
-467.01	60.0084	596.15	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57050	-54.69	59.8751	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.56

												Value B							
JOU Dynamic Schedules $\operatorname{Imp}(-)$ Exp $(+)$ MW	Non- Conforming Load Load (-) MW	$\begin{gathered} \text { Pumped } \\ \text { Hydro } \\ \text { Load (-) Gen (+) } \\ \text { MW } \\ \hline \end{gathered}$	$\begin{gathered} \text { Ramping } \\ \text { Units } \\ \text { Gen (+) } \\ \text { MW } \\ \hline \end{gathered}$	Transferred Frequency Response $\operatorname{Rec}(-) \operatorname{Del}(+)$ MW/0. 1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	$\begin{gathered} \text { Initial } \\ \text { Performance } \\ \text { Adjusted } \\ \text { P.U. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Initial } \\ \text { Performance } \\ \text { Unadjusted } \\ \text { P.U. } \\ \hline \end{gathered}$	Sustained Performance P.U.	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW } \\ \hline \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Bias } \\ & \text { Setting } \\ & \text { EPFR } \\ & \text { MW } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Frequency } \\ \mathrm{H} 7 \end{gathered}$	$\begin{gathered} \text { Net } \\ \text { Actual } \\ \text { Interchange } \\ \text { MW } \\ \hline \end{gathered}$	JOU Dynamic Schedules $\operatorname{Imp(-)}$ Exp (+) MW	Non- Conforming Load Load (-) MW	$\begin{gathered} \text { Pumped } \\ \text { Hydro } \\ \text { Load (-) Gen (+) } \\ \text { MW } \\ \hline \end{gathered}$	$\begin{gathered} \text { Ramping } \\ \text { Units } \\ \text { Gen (+) } \\ \text { MW } \\ \hline \end{gathered}$	Transferred Frequency Response Rec (-) Del (+) MW	Contingent BA Lost Generation Load (-) Gen (+) MW
0.00	0.00	0.00	0.00	0.00	0.00	2.71	2.71	No Evaluation	-653.00	35411	659.53	59.9013	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	2.50	2.50	No Evaluation	-653.00	34097	699.90	59.8908	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.44	1.44	No Evaluation	-653.00	29392	1265.04	59.8081	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	2.61	2.61	No Evaluation	-653.00	31745	714.74	59.8948	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.90	1.90	No Evaluation	-653.00	30120	951.59	59.8554	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	3.67	3.67	No Evaluation	-653.00	39182	672.00	59.9036	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.87	1.87	No Evaluation	-653.00	40236	779.44	59.8799	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.70	1.70	No Evaluation	-653.00	48021	742.04	59.8888	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.40	1.40	No Evaluation	-653.00	28787	1237.73	59.8092	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.35	1.35	No Evaluation	-653.00	40282	807.35	59.8743	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.96	0.96	No Evaluation	-653.00	31481	958.72	59.8517	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.76	1.76	No Evaluation	-653.00	32701	577.01	59.9167	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.28	1.28	No Evaluation	-653.00	27623	792.50	59.9152	338.14	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	2.01	2.01	No Evaluation	-653.00	51712	720.08	59.8914	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.60	1.60	No Evaluation	-653.00	49288	933.79	59.8552	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.69	1.69	No Evaluation	-653.00	52850	1283.44	59.8000	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.46	1.46	No Evaluation	-653.00	51926	978.31	59.8497	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.57	1.57	No Evaluation	-653.00	52612	1174.21	59.8186	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.78	1.78	No Evaluation	-653.00	50612	600.76	59.9090	11.51	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.29	1.29	No Evaluation	-653.00	31368	1142.16	59.8191	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.14	1.14	No Evaluation	-653.00	31009	1194.99	59.8164	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.62	1.62	No Evaluation	-653.00	31439	840.00	59.8723	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.64	1.64	No Evaluation	-653.00	26582	1143.94	59.8237	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	1.33	1.33	No Evaluation	-653.00	29080	802.60	59.8781	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.77	1.77	No Evaluation	-653.00	33252	593.63	59.9136	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	3.37	3.37	No Evaluation	-653.00	38254	487.97	59.9268	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	No Evaluation	-653.00	35226	1151.65	59.8205	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.98	0.98	No Evaluation	-653.00	39984	1040.05	59.8449	67.03	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	2.57	2.57	No Evaluation	-653.00	31035	897.58	59.8632	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.30	1.30	No Evaluation	-653.00	31784	826.94	59.8747	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	2.10	2.10	No Evaluation	-653.00	30850	1098.82	59.8295	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.87	1.87	No Evaluation	-653.00	41450	800.22	59.8788	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.83	1.83	No Evaluation	-653.00	29706	816.25	59.8749	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	2.09	2.09	No Evaluation	-653.00	42114	735.39	59.8875	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.60	1.60	No Evaluation	-653.00	30125	682.81	59.8967	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.74	1.74	No Evaluation	-653.00	42599	1464.07	59.7772	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.93	1.93	No Evaluation	-653.00	50482	1053.60	59.8420	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	2.27	2.27	No Evaluation	-653.00	44483	1380.80	59.7873	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	2.77	2.77	No Evaluation	-653.00	44477	-432.76	60.0652	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.74	1.74	No Evaluation	-653.00	56824	1038.87	59.8419	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.46	1.46	No Evaluation	-653.00	45286	882.15	59.8632	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	1.63	1.63	No Evaluation	-653.00	56879	782.41	59.8804	0.00	0.00	0.00	0.00	0.00	0.00	0.00

$\begin{gathered} \text { Initial } \\ \text { Performance } \\ \text { Adjusted } \\ \text { P.U. } \\ \hline \end{gathered}$	Initial Performance Unadjusted P.U.	Sustained Performance P.U.		$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	$\begin{aligned} & \text { Bias } \\ & \text { Setting } \\ & \text { EPFR } \\ & \text { MW } \\ & \hline \end{aligned}$	Frequency	$\begin{gathered} \text { Net } \\ \text { Actual } \\ \text { Interchange } \\ \text { MW } \\ \hline \end{gathered}$	JOU Dynamic Schedules Imp(-) Exp $(+)$ MW	Non- Conforming Load Load (-) MW	$\begin{gathered} \text { Pumped } \\ \text { Hydro } \\ \text { Load (-) Gen (+) } \\ \text { MW } \end{gathered}$	$\begin{gathered} \text { Ramping } \\ \text { Units } \\ \text { Gen (+) } \\ \text { MW } \\ \hline \end{gathered}$	Transferred Frequency Response Rec (-) Del (+) MW	Contingent BA Lost Generation Load (-) Gen (+) MW	$\begin{gathered} \text { Initial } \\ \text { Performance } \\ \text { Adjusted } \\ \text { P.U. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Initial } \\ \text { Performance } \\ \text { Unadjusted } \\ \text { P.U. } \end{gathered}$	Sustained Performance P.U.	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	$\begin{gathered} \text { Bias } \\ \text { Setting } \\ \text { EPFR } \\ \text { MW } \\ \hline \end{gathered}$
2.77	2.77	No Evaluation	-653.00	35459	644.66	59.9019	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.79	2.79	No Evaluation	-653.00	35470	640.71
2.46	2.46	No Evaluation	-653.00	34110	712.86	59.8909	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.46	2.46	No Evaluation	-653.00	34111	712.54
1.45	1.45	No Evaluation	-653.00	29399	1253.04	59.8078	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	1.45	No Evaluation	-653.00	29403	1254.91
2.75		No Evaluation	-653.00	31742	687.10	59.8949	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.76	2.76	No Evaluation	-653.00	31741	686.42
1.91	1.91	No Evaluation	-653.00	30136	944.31	59.8540	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.89	1.89	No Evaluation	-653.00	30135	953.38
4.25	4.25	No Evaluation	-653.00	39184	629.42	59.9048	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.38	4.38	No Evaluation	-653.00	39186	621.89
1.86	1.86	No Evaluation	-653.00	40276	784.33	59.8805	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.87	1.87	No Evaluation	-653.00	40270	780.53
1.74	1.74	No Evaluation	-653.00	48065	725.92	59.8891	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.75	1.75	No Evaluation	-653.00	48054	724.06
1.39	1.39	No Evaluation	-653.00	28794	1245.78	59.8085	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.39	1.39	No Evaluation	-653.00	28795	1250.69
1.33	1.33	No Evaluation	-653.00	40291	820.96	59.8735	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.33	1.33	No Evaluation	-653.00	40292	825.85
0.95	0.95	No Evaluation	-653.00	31482	968.25	59.8512	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.95	0.95	No Evaluation	-653.00	31484	971.43
1.92	1.92	No Evaluation	-653.00	32711	543.80	59.9174	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.95	1.95	No Evaluation	-653.00	32712	539.30
1.27	1.27	No Evaluation	-653.00	27719	553.96	59.9174	351.29	0.00	0.00	0.00	0.00	0.00	0.00	1.25	1.25	No Evaluation	-653.00	27729	539.30
2.06	2.06	No Evaluation	-653.00	51715	709.23	59.8916	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.06	2.06	No Evaluation	-653.00	51714	707.93
1.58	1.58	No Evaluation	-653.00	49290	945.76	59.8551	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.58	1.58	No Evaluation	-653.00	49291	946.46
1.64	1.64	No Evaluation	-653.00	52861	1306.00	59.7994	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.63	1.63	No Evaluation	-653.00	52865	1310.23
1.46	1.46	No Evaluation	-653.00	51916	981.31	59.8479	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	1.45	No Evaluation	-653.00	51918	992.94
1.55	1.55	No Evaluation	-653.00	52601	1184.47	59.8182	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.55	1.55	No Evaluation	-653.00	52605	1186.92
1.81	1.81	No Evaluation	-653.00	50614	594.23	59.9086	11.16	0.00	0.00	0.00	0.00	0.00	0.00	1.81	1.81	No Evaluation	-653.00	50619	596.92
1.25	1.25	No Evaluation	-653.00	31388	1181.57	59.8182	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.25	1.25	No Evaluation	-653.00	31389	1186.92
1.14	1.14	No Evaluation	-653.00	31019	1198.98	59.8165	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.14	1.14	No Evaluation	-653.00	31020	1198.45
1.63	1.63	No Evaluation	-653.00	31441	834.03	59.8724	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.63	1.63	No Evaluation	-653.00	31443	833.15
1.63	1.63	No Evaluation	-653.00	26588	1151.46	59.8239	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.63	1.63	No Evaluation	-653.00	26598	1150.05
1.34	1.34	No Evaluation	-653.00	29087	795.93	59.8781	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.34	1.34	No Evaluation	-653.00	29088	796.28
1.88	1.88	No Evaluation	-653.00	33258	564.48	59.9138	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.88	1.88	No Evaluation	-653.00	33258	563.11
3.45	3.45	No Evaluation	-653.00	38258	477.78	59.9272	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.47	3.47	No Evaluation	-653.00	38256	475.15
0.98	0.98	No Evaluation	-653.00	35238	1172.13	59.8211	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.98	0.98	No Evaluation	-653.00	35241	1168.10
1.00	1.00	No Evaluation	-653.00	39990	1012.51	59.8458	67.05	0.00	0.00	0.00	0.00	0.00	0.00	1.01	1.01	No Evaluation	-653.00	39989	1006.77
2.59	2.59	No Evaluation	-653.00	31031	893.16	59.8641	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.61	2.61	No Evaluation	-653.00	31035	887.69
1.32	1.32	No Evaluation	-653.00	31775	818.06	59.8747	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.32	1.32	No Evaluation	-653.00	31775	818.17
2.04	2.04	No Evaluation	-653.00	30845	1113.36	59.8286	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.02	2.02	No Evaluation	-653.00	30848	1119.32
1.88	1.88	No Evaluation	-653.00	41460	791.22	59.8801	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.90	1.90	No Evaluation	-653.00	41463	783.22
1.82	1.82	No Evaluation	-653.00	29701	816.61	59.8746	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.82	1.82	No Evaluation	-653.00	29704	818.94
2.09	2.09	No Evaluation	-653.00	42112	734.82	59.8874	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.09	2.09	No Evaluation	-653.00	42113	734.98
1.62	1.62	No Evaluation	-653.00	30134	674.32	59.8972	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.62	1.62	No Evaluation	-653.00	30137	671.54
1.75	1.75	No Evaluation	-653.00	42603	1454.64	59.7784	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.76	1.76	No Evaluation	-653.00	42610	1446.88
2.00	2.00	No Evaluation	-653.00	50486	1031.72	59.8431	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.03	2.03	No Evaluation	-653.00	50488	1024.52
2.25	2.25	No Evaluation	-653.00	44476	1389.08	59.7881	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.26	2.26	No Evaluation	-653.00	44478	1383.98
2.87	2.87	No Evaluation	-653.00	44473	-425.54	60.0649	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.89	2.89	No Evaluation	-653.00	44457	-424.07
1.75	1.75	No Evaluation	-653.00	56831	1032.10	59.8426	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.76	1.76	No Evaluation	-653.00	56833	1027.51
1.43	1.43	No Evaluation	-653.00	45295	893.16	59.8634	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.43	1.43	No Evaluation	-653.00	45297	892.31
1.63	1.63	No Evaluation	-653.00	56883	780.70	59.8807	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.63	1.63	No Evaluation	-653.00	56884	778.99

Instructions

Step 1 Enter data in all green cells on the "Data Entry" worksheet.
Step 2 For identified events in column B of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list.
Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list.
Step 4 Save this workbook using the following file name format:NYISO_yyyy_FRS_Form1.xlsx and send a copy of this workbook and all FRS_Form 2 workbooks to NERC. (where NYISO is replaced with your Balancing Authority abbreviation)

Step 5 "Summary" worksheet contains each event's results for your Balancing Authority.
Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1.

Month	Minimum FBS* for month	Maximum FBS* for month	Time weighted ${ }^{* *}$ average FBS* for month	
January			-10.0	
Feburary			-7.0	
March			-12.0	
April			-8.0	
May			-27.0	
June			-8.7	
July			-8.0	
August			-8.0	
September			-8.2	
October			-8.0	
November			-8.0	
December			-12.0	
			-10.4	Average Annual Bias

* Frequency Bias Setting (FBS)
** Based on the one minute values used in BAL 001

PasteSpecialvalues the data copied from FRS Form 2 for each event.

					lue ${ }^{\text {B }}$	to 3	second Ave	ge Per	riod Eval	ation									Value B	20 to 40 s
$\begin{gathered} \text { Initial } \\ \begin{array}{c} \text { Performance } \\ \text { Unadjusted } \\ \text { P.U. } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Sustained } \\ \text { Performance } \end{array} \\ \text { P.U. } \\ \hline \end{gathered}$		BA Load Mw	$\begin{gathered} \text { Bias } \\ \text { Seliting } \\ \text { EPFR } \\ \text { MW } \\ \hline \end{gathered}$	$\underset{\substack{\text { Frequency } \\ H z}}{\text { cher }}$	$\begin{gathered} \text { Net } \\ \text { Actual } \\ \text { Interthange } \\ \text { MN } \end{gathered}$						Contingent BA Lost Leneration Load (-Gen $(+)$ MW	$\begin{gathered} \text { Initial } \\ \begin{array}{c} \text { Performance } \\ \text { Adjusted } \end{array} \\ \text { P.U. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Initial } \\ \text { Performance } \\ \text { Unadjusted } \\ \text { P.U. } \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Sustained } \\ \text { Performance } \end{array} \\ \text { P.U. } \\ \hline \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Baias } \\ \text { Setring } \\ \hline \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { Mw } \\ \hline \end{gathered}$	$\begin{gathered} \text { Bias } \\ \text { Setating } \\ \text { EPRFR } \\ \text { MW } \\ \hline \end{gathered}$	${ }_{\text {Frequency }}^{\mathrm{Hz}}$	

$\begin{gathered} \text { Initial } \\ \text { Performance } \\ \text { Adjusted } \\ \text { P.U. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Intitial } \\ \text { Pefromen } \\ \text { Unadiunted } \\ \text { Up.u. } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Sustained } \\ \text { Performance } \end{array} \\ \quad \text { P.U. } \end{gathered}$		$\begin{aligned} & \text { BA } \\ & \text { Load } \\ & \text { MW } \end{aligned}$	$\begin{gathered} \text { Bias } \\ \text { Setang } \\ \text { EPRFR } \\ \text { EWW } \\ \hline \end{gathered}$	${ }_{\text {Frequency }}^{\text {Hz }}$				$\begin{gathered} \text { Pumped } \\ \text { Hydro } \\ \text { Load (-Ge }(+) \\ M W \end{gathered}$	$\begin{gathered} \text { Ramping } \\ \text { Units } \\ \text { Gen (+) } \\ \hline M W \\ \hline \end{gathered}$	$\begin{aligned} & \text { Transfered } \\ & \text { Trequency } \\ & \text { Ressonse } \\ & \text { Rec (-D) } \mathrm{MW}(+) \end{aligned}$	Contingent BA Lost Generation Load (-) Gen (+) MW	$\begin{gathered} \text { Intitial } \\ \substack{\text { Peformance } \\ \text { Adijusted } \\ \text { P.U. }} \\ \hline \end{gathered}$		\qquad	$\begin{gathered} \text { BA } \\ \text { Beias } \\ \text { Selitity } \\ \text { MWIo.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { Mw } \end{gathered}$	$\begin{aligned} & \text { Bias } \\ & \text { Seteng } \\ & \text { EPRRR } \\ & \text { MW } \\ & \hline \end{aligned}$

Instructions

Step 1 Enter data in all green cells on the "Data Entry" worksheet.
Step 2 For identified events in column B of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list.
Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list.
Step 4 Save this workbook using the following file name format:NYISO_yyyy_FRS_Form1.xlsx and send a copy of this workbook and all FRS_Form 2 workbooks to NERC. (where NYISO is replaced with your Balancing Authority abbreviation)

Step 5 "Summary" worksheet contains each event's results for your Balancing Authority.
Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1.

z

	Balancing Authority	MувA	NERC FRS FORM 1							
$\underset{\substack{\text { Event } \\ \text { Number }}}{ }$	(Central Preverailing)	Delfreq		Deifeg	$\underset{\substack{12+024 \\ \text { SERD }}}{\text { 24 }}$			$\underset{\substack{18 t 052 \\ \text { SERD }}}{ }$	$\underbrace{}_{\substack{20052 \\ \text { SERD }}}$	${ }_{\substack{\text { Exclude for } \\ \text { data error* }}}^{\text {a }}$
${ }_{2}^{1}$	${ }^{37172011114.48}$	${ }^{-0.111}$		0.000	\#opvo	-DVa	\#Dovoi	${ }^{\text {a }}$	㖪	N
${ }^{3}$	${ }^{\text {3/4,420119001 }}$ 3/12011	${ }_{-0.070}^{-0.055}$	0	${ }^{0.0000}$	¢	$\underset{\text { \#idvo }}{\text { \#iva }}$	\pm	$\substack{\text { \#idvo } \\ \text { \#ivivo }}$	$\underset{\substack{\text { \#Divol } \\ \text { PDVIVO }}}{ }$	N
4	31222011 10:474	${ }_{-0.079}$	0:00:00	${ }^{0.000}$	\#Divo:	\#Divo:	*Divo!	\#Divo!	\#Divo	N
${ }_{6}^{5}$	- 3222201110.50	-0.120	000:00	${ }^{0.0000}$	\#Divo!	\#Divol	\#Divo!	\#idvo!	\#Divo	N
7	411/2011 17:57	${ }_{0}^{0.088}$	0:00:00	${ }^{0.000}$	\#Divo!	\#Divo!	\#DVIV!	\#Divo!	*DVIV:	N
${ }_{9}^{8}$	472820011 17.09	- ${ }_{0}^{0.0 .116}$		0.000 0.000 0		\#odvol \#Divo		\#idvo? \#Divo!	\pm	N
		-0.074	O.00:00	0.000	\#idvol	\pm		\pm	\pm	N
${ }_{12}^{11}$		-	O-0.0:00	0.000 0.000	\#invol	$\underset{\substack{\text { abivol } \\ \text { \#invoi }}}{ }$		\#invol \#Divoi	$\underset{\substack{\text { \#Divoi } \\ \text { \#DVal }}}{ }$	N
${ }^{13}$	6-24-11122:10:000	${ }^{-0.0990}$	0:00:00	0.000	\#Divo:	\#Divo	*Divoi	*ivivo	\#Divo:	N
${ }_{15}^{14}$		$\stackrel{-0.0065}{-0.0061}$	- 0	-						N
${ }_{17}^{16}$	${ }^{7-10-11122217: 00}$	${ }^{-0.091}$	000:00	0.000	\#Divo!	\#DIVIO!	*DIVO!	*DIVO!	\#DDV0!	N
${ }_{18}^{17}$	(1.0.000.00:00	(0.000	0000:000	${ }^{0.000} 0$						Y
${ }_{20}^{19}$	(10.0.000.0.000	${ }^{0.0000}$	O.00:00	0.000						y
${ }_{21}^{21}$	1.0.000000000	0.000	0:00:00	0.000						r
	1.0.000.0.0.00			${ }^{0.0000}$						
${ }_{2}^{24}$		${ }_{0}^{0.0000}$	0.000:00	${ }^{0.0000}$						r
${ }_{26}^{25}$		${ }_{0}^{0.0000}$	O.00:00	${ }^{0.000}$						y
${ }_{28}^{27}$		0.0000	O00000	0.000						y
${ }_{29}^{28}$		${ }^{0.000}$	O-0:000	-0.000						r
${ }_{31}^{30}$	(e)	0.000	O-0:000	0.000 0						y
32	1.0.00 0.00000	${ }_{0} 0.0000$	0:00:00	0.000						r
${ }_{34}^{33}$		${ }^{0.0000}$	O-0.0:00	0.000 0.000						r
${ }_{36}^{35}$		(0.000	O-0:000	0.000 0.000						y
${ }_{38}^{37}$		0.000 0.000 0	(0.0.000	-						r
${ }_{40}^{39}$		a.0.000 0.000	(oumoiol	(o.000						r
${ }_{42}^{41}$	(e)	a 0.0000 0.000	(oumo	(0.0000.0000 0.000						y
	age Frequency Response (MW/0.1Hz) - Median Frequency Response						\#DIV0!			
					${ }^{-33.77}$		${ }_{-33.77}$	$\begin{gathered} \text { \#olvol } \\ -337 \\ \hline \end{gathered}$		

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline dijusted \& adjusted \& \& diusted \& adiusted \& - \& Adiusted \& nadjusted \& \& Adiusted \& Unadiusted \& \& Adiusted \& Unadiusted \&

\hline ${ }_{0}^{0.00}$ \& 0.00
0.00
0 \& ${ }_{\text {o }}^{0.00}$ \& 0.00
0.00

a \& ${ }_{0.00}^{0.00}$ \& 0.00
0.00 \& ${ }_{0}^{0.00}$ \& ${ }^{0.00} 0$ \& 0.00
0.00

0 \& ${ }^{0.000}$ \& (0.00 \& coiol \& \& 0.00
0.00
0 \& 0.00
0.00
0

\hline 0.00 \& 0.00 \& ${ }_{0}^{0.00}$ \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& ${ }_{0}^{0.000}$ \& 0.00 \& 0.00 \& ${ }_{0}^{0.00}$ \& 0.00 \& 0.00 \& 0.00

\hline 0.00
0.00 \& 0.00
0.00
0 \& 0.000 \& -0.00 \& -0.00 \& ${ }_{0}^{0.000}$ \& ${ }_{0}^{0.00}$ \& ${ }_{0}^{0.00}$ \& 0.00
0.00
0 \& -0.00 \& ${ }^{0.000}$ \& 0.00
0.00
0 \& 0.00
0.00 \& ${ }_{0}^{0.000}$ \& -0.00

\hline 0.00 \& 0.00 \& 0,00 \& 0,00 \& 0.00 \& 0.00 \& O00 \& 0,00 \& 0.00 \& \& 0.00 \& 0,00 \& 0.00 \& \& 0.00

\hline 0.00 \& 0.00 \& 000 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& O00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& ${ }_{0}^{0.00}$ \& ${ }_{0} 0.00$ \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& ${ }_{0} 0.00$

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& -00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& O.00 \& 0.00 \& 0.00 \& ${ }^{0.000}$

\hline 0.00 \& 0.00 \& O00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& ${ }_{0}^{0.00}$ \& 0.00 \& 0.00 \& 0.00 \& 000 \& 0.00 \& 0.00 \& 000

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& . 00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& 0.00 \& \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& ${ }^{0.00}$ \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00
0.00 \& 0.00
0.00 \& 0.00 \& ${ }^{0.000}$ \& 0.00
0.00 \& 0.00 \& 0.00 \& ${ }^{0.00}$ \&

\hline 0.00 \& 0.00 \& ${ }^{0.00}$ \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 000 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& ${ }^{0.000}$ \& -0.00 \& ${ }_{0}^{0.000}$ \& ${ }^{0.000}$ \& ${ }^{0.000}$ \& ${ }^{0.000}$ \& ${ }^{0.000}$ \& 0.00 \& 0.000 \& 0.00 \& ${ }_{0.00}^{0.00}$ \& ${ }_{0.00}^{0.00}$

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& \& .00

\hline 0.00 \& 0.00 \& ${ }^{0.00}$ \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& ${ }^{0.00}$ \& 0.00 \& 0.00 \& 0.00

\hline 000 \& 0.00 \& 000 \& 0.00 \& O.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.000 \& 0.00 \& ${ }_{0.00}^{0.00}$ \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00
0.00
0 \& 0.00
0.00
0 \& 0.00 \& 0.00
0.00
0 \& 0.00
0.00 \& 0.00
0.00
0 \& 0.00 \& 0.00
0.00 \& 0.00
0.00 \& 0.00 \& \& \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& ${ }_{0}^{0.00}$ \& 0.00 \& 0.00 \& ${ }_{0} 0.00$ \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& .00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& ${ }^{0.00}$ \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& ${ }_{0} 0.00$ \& 0.00 \& ${ }_{0} 0.00$ \& 0.00 \& ${ }_{0.00}$ \& ${ }_{0} 0.00$ \& ${ }_{0} 0.00$ \& ${ }_{0} 0.00$ \& 0.00 \& ${ }_{0} 0.00$ \& 0.00 \& ${ }_{0} 0.00$ \& ${ }_{0}^{0.00}$ \& 0.00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 00

\hline 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0.00 \& 0.00 \& \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 000

\hline \& \& \& \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \& 0.00 \&

\hline
\end{tabular}

Time
weighted ** average

Minimum FBS* for month	Maximum FBS* for month	average FBS* for month
		-10.0
		-7.0
	-12.0	
	-8.0	
	-27.0	
	-8.7	
	-8.0	
	-8.0	
	-8.2	
	-8.0	
		-8.0
	-12.0	
		-10.4
	Average Annual Bias	

* Frequency Bias Setting (FBS)
** Based on the one minute values used in BAL 001

Event	Date/Time Central Prevailing	Freq	Date	$\underset{\substack{\text { A Point } \\ \text { Time }}}{\text { cen }}$	$\begin{gathered} \text { FPointA } \\ \mathrm{Hz} \end{gathered}$	$\begin{gathered} \text { A Value } \\ \mathrm{Hz} \end{gathered}$	${ }^{(0)}$ Time	$\begin{gathered} \mathrm{C} \text { Value } \\ \mathrm{Hz} \end{gathered}$	$\begin{gathered} \text { Value B } \\ \text { 12to } 2 \text { sec sec } \\ \text { Average } \\ \text { Frequency } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { FR B } \\ \text { 12 to } 24 \text { sec } \\ \text { Average } \\ \text { MW } \end{array}$	$\begin{array}{\|c\|} \hline \text { Value } \mathrm{B} \\ 18 \text { to } 30 \text { sec } \\ \text { Average } \\ \text { Frequency } \\ \hline \end{array}$	$\begin{gathered} \text { FR B } \\ 18 \text { to } 30 \mathrm{sec} \\ \text { Average } \\ \text { MW } \\ \hline \end{gathered}$		$\begin{array}{c\|} \hline \text { FR B } \\ 20 \text { to } 40 \text { sec } \\ \text { Average } \\ \text { MW } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Value } \mathrm{B} \\ \text { Hec to } 2 \text { sec } \\ \text { Average } \\ \text { Frequency } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { FRB } \\ \text { fros to sec } \\ \text { Average } \\ \text { MW } \\ \hline \end{array}$		$\begin{gathered} \text { FR B } \\ 20 \text { to } 52 \text { sec } \\ \text { Average } \\ \text { MW } \end{gathered}$	$\begin{array}{\|c} \text { Frequency } \\ \mathrm{Hz} \end{array}$	$\begin{gathered} \text { Net } \\ \text { Actual } \\ \text { Interchange } \\ \text { MW } \end{gathered}$
1	3/7/2011 11:48	${ }^{-0.111}$																		
2	3/14/2011 9:01	${ }^{-0.055}$																		
3	3/16/2011 16:54	-0.07																		
5	$3 / 22121211110: 47$ $3 / 2212011$	-0.079 -0.12 0																		
5 6	3/22/2011 10:50	${ }_{-0.12}^{-0.113}$																		
7	4/1/2011 17:57	-0.088																		
8	4/28/2011 17:09	${ }^{-0.116}$																		
9 10	5/11/2011 14:04	${ }^{-0.07}$																		
11	5/31/2011 1:58	${ }^{-0.076}$																		
12	6/112011 12:04	${ }^{-0.096}$																		
13	6/24/2011 22:10	-0.09																		
14 15	6/25/2011 $19: 52$	${ }^{-0.085}$																		
16	7/10/2011 22:17	-0.091																		
17 18		0																		
19	1/0/1900 0:00	0																		
20	1/0/1900 0:00	-																		
21	1/0/19900 000	0																		
22 23	1/0/1900 0:00	0																		
24	1/0/1900 0:00	0																		
25	1/0/1900 0:00	0																		
26 27	1/0/1900 0:00	0																		
28	1/0/1900 0:00	0																		
29	1/0/19000000																			
30 31	$1 / 10 / 190000000$ $1 / 01900000$	0																		
32	1/0/1900 0:00	0																		
${ }^{33}$	1/0/1900 0:00	0																		
34 35 34	1/0/190000:00	0																		
36	1/0/1900 0:00	0																		
37	10/1900 0:00	0																		
38 39	1/0/1900 0:00	0																		
${ }_{40}$	1/0/1900 0:000	0																		
41 42	$1 / 0 / 190000000$ $1 / 019000000$	0																		

		Transferred	Contingent						
Pumped $\begin{gathered}\text { Hydro }\end{gathered}$	Ramping	Frequency Response	BA	Inital $\begin{gathered}\text { Intial } \\ \text { Pefiormance }\end{gathered}$	Initial Pefformance	Sustained	SA Bias	BA	Bias Setting
Load (-) Gen (+)	Gen (+)	$\mathrm{Rec}(-) \mathrm{Del}(+)$	Load (-) Gen (+)	Adjusted	Unadiusted		Setting		EPFR
MW	MW	MW	MW	p.u.	p.U.	p.U.	MW/0.1 Hz	Mw	mw

Steps To be completed for each event evaluated.

1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Column A: Date and Time in this format, $\mathrm{mm} / \mathrm{dd} / \mathrm{yy} \mathrm{HH}: \mathrm{MM}: \mathrm{SS}$
Column B: Frequency Hz
Column C: Net Actual Interchange
Column D: Joint Owned Unit dynamic schedule
Column E: Non Conforming Load
Column F: Pumped Hydro
Column G: Ramping units
Column H: Transferred Frequency Response
Column I: Contingent BA Lost load or generatio
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D, E, F, G and H are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign ($+/-$) convention defined in FRS Form 1 .
3 Note: Columns $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are optional data. If you choose not to use these, leave the columns blank. Do not der
4 Data must be at 2 second sample rate for the full 25 minute minimum collection period that starts a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event.
The spreadsheet will work with up to 60 minutes of data. Be sure "Data" worksheet is clear of any old data.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data
5 Once data is in place in the "Data" worksheet, determine when the beginning of the event occurred. This is accomplished by knowing the UTC event time from the master event list.
Convert the UTC event time to your PI data time and then scroll through the Data worksheet column B data of frequency and observe when frequency moves from the normal, pre-event frequency.
This will usually be a single change in frequency of 0.008 to 0.010 Hz more or less. Note the row number in the worksheet that this change occurs. In this sample data spreadsheet this occurs in row 313 of the data.
6 Edit cell "C8" of the "Entry Data" worksheet, change the formula in the cell "C8" to reference the row number identified in step 5 above. In the sample data of this workbook this formula is: "=Data!A313"
If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency of the event on the center vertical grid line of the graph (Red Trend).
7 Determine the end of the event to be evaluated. Use the same rules that are used for DCS only look at frequency instead of ACE. Scroll down the frequency data in column B of the "Data" worksheet until frequency reaches 60 Hz or the pre-disturbance value. Note the row number in the worksheet that this occurs. In this sample data spreadsheet this occurs in row 427
8 Edit cell "C11" of the "Evaluation" worksheet, change the formula in the cell "C11" to reference the row number identified in step 7 above. In the sample data of this workbook this formula is: "=Data! A427"
In cell "R41" of the "Evaluation" spreadsheet, enter the MW value of the unit(s) that tripped (from the Master Event List). This is only necessary for the "Interconnection" evaluation if you're interested. It is not necessary to do this for the BA evaluation but it will provide a comparison of the BA frequency response as compared to the Interconnection frequency response.
10 Use the "copy" button provided to copy the evaluation and event specific data for the "FRS Form 1" of this field trial. This data is summarized in the correct order on worksheet "Form 1 Summary Data" of this workbook. Use PasteSpecial/Values when pasting the data into FRS Form 1 on the appropriate event row.

Steps To be completed once at the initial setup of the evaluation spreadsheet for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Entry Data" worksheet. For example: "NYISO".
C Enter your Balancing Authorities Frequency Response Obligation in cell "B2" of the "Entry Data" worksheet. For example: - $80 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (This value could change annually) The time constant is located in cell "L13" of the "Evaluation" spreadsheet and should be edited for the types of generators in your BA. Presently this time constant is set at 0.35
The higher the value of the time constant, the faster the delivery of frequency response is expected. Setting the TC to 1.0 effectively turns off the delay and instantaneous frequency response will be modeled. Do not set higher than 1.0 This time constant is only used in the "Sustained" evaluation and is not used for the Field Trial evaluation of performance to the FRO
A typical setting for this time constant is 0.08 to 0.15 for hydro units, 0.10 to 0.20 for large steam turbines and 0.20 to 0.40 for combustion turbines.
By observing the slope of your "Interchange Actual" on the "Sustained" Graph, adjust the time constant until the initial slope of the "Target" is similar.
When set appropriately, the "Target" trend on the "Sustained" graph will model what Interchange Actual should have done during the event recovery period based on your minimum FRO,
Note: For ease of use, only the necessary worksheets are displayed. If you are interested in viewing graphs and other hidden worksheets, select the "tab" at the bottom, right click, select unhide and select the worksheet you wish to unhide.

Time (T)	Hz		Jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	$\begin{aligned} & \text { Pumped } \\ & \text { Hydro } \\ & \text { Load (-) Gen (+) } \\ & \text { MW } \end{aligned}$	$\begin{aligned} & \text { Ramping } \\ & \text { Units } \\ & \text { Gen (+) } \end{aligned}$	Transferred Frequency Response $\operatorname{Rec}(-) \operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load
10/12/09 02:12:00	59.98	3669.878	350	-351.361511	0	0	10	15	-103	7500
10/12/09 02:12:02	59.981	3672.385	350	-351.361511	0	0.5	10	15	-103	7500.33
10/12/09 02:12:04	59.98	3669.878	350	-351.361511	0	1	10	15	-103	7500.66
10/12/09 02:12:06	59.981	3672.385	350	-357.94751	0	1.5	10	15	-103	7500.99
10/12/09 02:12:08	59.98	3671.7	350	-357.94751	0	2	10	15	-103	7501.32
10/12/09 02:12:10	59.98	3670.949	350	-357.94751	0	2.5	10	15	-103	7501.65
10/12/09 02:12:12	59.982	3671.698	350	-357.94751	0	3	10	15	-103	7501.98
10/12/09 02:12:14	59.981	3671.548	350	-357.94751	0	3.5	10	15	-103	7502.31
10/12/09 02:12:16	59.979	3672.31	350	-360.234741	0	4	10	15	-103	7502.64
10/12/09 02:12:18	59.981	3672.775	350	-360.234741	0	4.5	10	15	-103	7502.97
10/12/09 02:12:20	59.982	3672.174	350	-360.234741	0	5	10	15	-103	7503.3
10/12/09 02:12:22	59.979	3672.276	350	-360.234741	0	5.5	10	15	-103	7503.63
10/12/09 02:12:24	59.979	3674.263	350	-360.234741	0	6	10	15	-103	7503.96
10/12/09 02:12:26	59.98	3674.508	350	-346.525879	0	6.5	10	15	-103	7504.29
10/12/09 02:12:28	59.98	3673.844	350	-346.525879	0	7	10	15	-103	7504.62
10/12/09 02:12:30	59.983	3675.092	350	-346.525879	0	7.5	10	15	-103	7504.95
10/12/09 02:12:32	59.986	3672.106	350	-346.525879	0	8	10	15	-103	7505.28
10/12/09 02:12:34	59.986	3669.33	350	-346.525879	0	8.5	10	15	-103	7505.61
10/12/09 02:12:36	59.98	3669.168	350	-296.443359	0	9	10	15	-103	7505.94
10/12/09 02:12:38	59.976	3671.5	350	-296.443359	0	9.5	10	15	-103	7506.27
10/12/09 02:12:40	59.975	3673.56	350	-296.443359	0	10	10	15	-103	7506.6
10/12/09 02:12:42	59.979	3673.897	350	-296.443359	0	10.5	10	15	-103	7506.93
10/12/09 02:12:44	59.981	3673.834	350	-296.443359	0	11	10	15	-103	7507.26
10/12/09 02:12:46	59.982	3671.887	350	-341.061157	0	11.5	10	15	-103	7507.59
10/12/09 02:12:48	59.987	3671.635	350	-341.061157	0	12	10	15	-103	7507.92
10/12/09 02:12:50	59.99	3671.22	350	-341.061157	0	12.5	10	15	-103	7508.25
10/12/09 02:12:52	59.993	3671.56	350	-341.061157	0	13	10	15	-103	7508.58
10/12/09 02:12:54	59.994	3671.283	350	-341.061157	0	13.5	10	15	-103	7508.91
10/12/09 02:12:56	59.995	3670.772	350	-322.826294	0	14	10	15	-103	7509.24
10/12/09 02:12:58	59.995	3668.362	350	-322.826294	0	14.5	10	15	-103	7509.57
10/12/09 02:13:00	59.995	3668.129	350	-322.826294	0	15	10	15	-103	7509.9
10/12/09 02:13:02	59.995	3668.245	350	-322.826294	0	15.5	10	15	-103	7510.23
10/12/09 02:13:04	59.995	3669.291	350	-322.826294	0	16	10	15	-103	7510.56
10/12/09 02:13:06	59.994	3670.494	350	-321.544403	0	16.5	10	15	-103	7510.89
10/12/09 02:13:08	59.994	3671.254	350	-321.544403	0	17	10	15	-103	7511.22
10/12/09 02:13:10	59.995	3670.683	350	-321.544403	0	17.5	10	15	-103	7511.55
10/12/09 02:13:12	59.997	3670.156	350	-321.544403	0	18	10	15	-103	7511.88
10/12/09 02:13:14	60.001	3670.212	350	-321.544403	0	18.5	10	15	-103	7512.21
10/12/09 02:13:16	60.002	3670.712	350	-362.136261	0	19	10	15	-103	7512.54
10/12/09 02:13:18	60.001	3670.329	350	-362.136261	0	19.5	10	15	-103	7512.87
10/12/09 02:13:20	60.003	3671.184	350	-362.136261	0	20	10	15	-103	7513.2
10/12/09 02:13:22	60.003	3671.227	350	-362.136261	0	20.5	10	15	-103	7513.53
10/12/09 02:13:24	60.005	3670.267	350	-362.136261	0	21	10	15	-103	7513.86
10/12/09 02:13:26	60.003	3670.19	350	-336.311798	0	21.5	10	15	-103	7514.19

10/12/09 02:13:28	60	3671.092	350	-336.311798	0	22	10	15	-103	7514.52
10/12/09 02:13:30	60.001	3670.249	350	-336.311798	0	22.5	10	15	-103	7514.85
10/12/09 02:13:32	60.003	3670.67	350	-336.311798	0	23	10	15	-103	7515.18
10/12/09 02:13:34	60.004	3669.899	350	-336.311798	0	23.5	10	15	-103	7515.51
10/12/09 02:13:36	60.005	3669.534	350	-316.443054	0	24	10	15	-103	7515.84
10/12/09 02:13:38	60.001	3670.199	350	-316.443054	0	24.5	10	15	-103	7516.17
10/12/09 02:13:40	59.999	3671.628	350	-316.443054	0	25	10	15	-103	7516.5
10/12/09 02:13:42	60.001	3671.123	350	-316.443054	0	25.5	10	15	-103	7516.83
10/12/09 02:13:44	60.004	3671.968	350	-316.443054	0	26	10	15	-103	7517.16
10/12/09 02:13:46	60.004	3671.444	350	-325.464294	0	26.5	10	15	-103	7517.49
10/12/09 02:13:48	60.004	3671.872	350	-325.464294	0	27	10	15	-103	7517.82
10/12/09 02:13:50	60.004	3671.875	350	-325.464294	0	27.5	10	15	-103	7518.15
10/12/09 02:13:52	60.005	3671.066	350	-325.464294	0	28	10	15	-103	7518.48
10/12/09 02:13:54	60.003	3672.873	350	-325.464294	0	28.5	10	15	-103	7518.81
10/12/09 02:13:56	60.002	3673.235	350	-336.614166	0	29	10	15	-103	7519.14
10/12/09 02:13:58	60.003	3673.498	350	-336.614166	0	29.5	10	15	-103	7519.47
10/12/09 02:14:00	60.001	3673.531	350	-336.614166	0	30	10	15	-103	7519.8
10/12/09 02:14:02	59.999	3672.75	350	-336.614166	0	30.5	10	15	-103	7520.13
10/12/09 02:14:04	59.999	3673.186	350	-336.614166	0	31	10	15	-103	7520.46
10/12/09 02:14:06	59.997	3674.322	350	-316.726166	0	31.5	10	15	-103	7520.79
10/12/09 02:14:08	59.998	3673.576	350	-316.726166	0	32	10	15	-103	7521.12
10/12/09 02:14:10	59.996	3673.365	350	-316.726166	0	32.5	10	15	-103	7521.45
10/12/09 02:14:12	59.995	3671.821	350	-316.726166	0	33	10	15	-103	7521.78
10/12/09 02:14:14	59.993	3672.093	350	-316.726166	0	33.5	10	15	-103	7522.11
10/12/09 02:14:16	59.993	3671.998	350	-320.195526	0	34	10	15	-103	7522.44
10/12/09 02:14:18	59.996	3671.568	350	-320.195526	0	34.5	10	15	-103	7522.77
10/12/09 02:14:20	59.999	3671.073	350	-320.195526	0	35	10	15	-103	7523.1
10/12/09 02:14:22	60.001	3670.957	350	-320.195526	0	35.5	10	15	-103	7523.43
10/12/09 02:14:24	60.005	3671.441	350	-320.195526	0	36	10	15	-103	7523.76
10/12/09 02:14:26	60.007	3670.893	350	-341.86615	0	36.5	10	15	-103	7524.09
10/12/09 02:14:28	60.007	3670.162	350	-341.86615	0	37	10	15	-103	7524.42
10/12/09 02:14:30	60.005	3670.513	350	-341.86615	0	37.5	10	15	-103	7524.75
10/12/09 02:14:32	60.002	3670.62	350	-341.86615	0	38	10	15	-103	7525.08
10/12/09 02:14:34	59.999	3672.713	350	-341.86615	0	38.5	10	15	-103	7525.41
10/12/09 02:14:36	59.997	3672.086	350	-348.597839	0	39	10	15	-103	7525.74
10/12/09 02:14:38	59.999	3671.07	350	-348.597839	0	39.5	10	15	-103	7526.07
10/12/09 02:14:40	60.002	3670.826	350	-348.597839	0	40	10	15	-103	7526.4
10/12/09 02:14:42	60.007	3670.823	350	-348.597839	0	40.5	10	15	-103	7526.73
10/12/09 02:14:44	60.01	3671.809	350	-348.597839	0	41	10	15	-103	7527.06
10/12/09 02:14:46	60.011	3673.363	350	-329.085022	0	41.5	10	15	-103	7527.39
10/12/09 02:14:48	60.009	3672.736	350	-329.085022	0	42	10	15	-103	7527.72
10/12/09 02:14:50	60.003	3673.255	350	-329.085022	0	42.5	10	15	-103	7528.05
10/12/09 02:14:52	59.997	3674.415	350	-329.085022	0	43	10	15	-103	7528.38
10/12/09 02:14:54	59.995	3675.426	350	-329.085022	0	43.5	10	15	-103	7528.71
10/12/09 02:14:56	59.994	3674.755	350	-342.418243	0	44	10	15	-103	7529.04
10/12/09 02:14:58	59.994	3674.29	350	-342.418243	0	44.5	10	15	-103	7529.37
10/12/09 02:15:00	60	3675.311	350	-342.418243	0	45	10	15	-103	7529.7
10/12/09 02:15:02	60.001	3675.157	350	-342.418243	0	45.5	10	15	-103	7530.03
10/12/09 02:15:04	59.998	3675.166	350	-342.418243	0	46	10	15	-103	7530.36

10/12/09 02:15:06	59.998	3674.442	350	-338.794647	0	46.5	10	15	-103	7530.69
10/12/09 02:15:08	59.995	3674.319	350	-338.794647	0	47	10	15	-103	7531.02
10/12/09 02:15:10	59.992	3674.906	350	-338.794647	0	47.5	10	15	-103	7531.35
10/12/09 02:15:12	59.986	3676.329	350	-338.794647	0	48	10	15	-103	7531.68
10/12/09 02:15:14	59.986	3676.714	350	-338.794647	0	48.5	10	15	-103	7532.01
10/12/09 02:15:16	59.986	3677.791	350	-335.931	0	49	10	15	-103	7532.34
10/12/09 02:15:18	59.988	3675.972	350	-335.931	0	49.5	10	15	-103	7532.67
10/12/09 02:15:20	59.989	3675.543	350	-335.931	0	50	10	15	-103	7533
10/12/09 02:15:22	59.988	3676.593	350	-335.931	0	50.5	10	15	-103	7533.33
10/12/09 02:15:24	59.987	3676.931	350	-335.931	0	51	10	15	-103	7533.66
10/12/09 02:15:26	59.985	3677.223	350	-339.712402	0	51.5	10	15	-103	7533.99
10/12/09 02:15:28	59.984	3677.067	350	-339.712402	0	52	10	15	-103	7534.32
10/12/09 02:15:30	59.983	3677.361	350	-339.712402	0	52.5	10	15	-103	7534.65
10/12/09 02:15:32	59.982	3678.455	350	-339.712402	0	53	10	15	-103	7534.98
10/12/09 02:15:34	59.984	3679.228	350	-339.712402	0	53.5	10	15	-103	7535.31
10/12/09 02:15:36	59.984	3679.731	350	-332.024658	0	54	10	15	-103	7535.64
10/12/09 02:15:38	59.985	3679.059	350	-332.024658	0	54.5	10	15	-103	7535.97
10/12/09 02:15:40	59.986	3677.627	350	-332.024658	0	55	10	15	-103	7536.3
10/12/09 02:15:42	59.987	3677.482	350	-332.024658	0	55.5	10	15	-103	7536.63
10/12/09 02:15:44	59.99	3676.409	350	-332.024658	0	56	10	15	-103	7536.96
10/12/09 02:15:46	59.99	3677.528	350	-330.759033	0	56.5	10	15	-103	7537.29
10/12/09 02:15:48	59.987	3677.371	350	-330.759033	0	57	10	15	-103	7537.62
10/12/09 02:15:50	59.983	3676.915	350	-330.759033	0	57.5	10	15	-103	7537.95
10/12/09 02:15:52	59.98	3678.086	350	-330.759033	0	58	10	15	-103	7538.28
10/12/09 02:15:54	59.979	3679.233	350	-330.759033	0	58.5	10	15	-103	7538.61
10/12/09 02:15:56	59.983	3680.163	350	-323.419952	0	59	10	15	-103	7538.94
10/12/09 02:15:58	59.987	3679.213	350	-323.419952	0	59.5	10	15	-103	7539.27
10/12/09 02:16:00	59.986	3678.344	350	-323.419952	0	60	10	15	-103	7539.6
10/12/09 02:16:02	59.988	3677.653	350	-323.419952	0	60.5	10	15	-103	7539.93
10/12/09 02:16:04	59.987	3677.678	350	-323.419952	0	61	10	15	-103	7540.26
10/12/09 02:16:06	59.983	3678.951	350	-342.350922	0	61.5	10	15	-103	7540.59
10/12/09 02:16:08	59.978	3679.279	350	-342.350922	0	62	10	15	-103	7540.92
10/12/09 02:16:10	59.979	3678.729	350	-342.350922	0	62.5	10	15	-103	7541.25
10/12/09 02:16:12	59.979	3679.606	350	-342.350922	0	63	10	15	-103	7541.58
10/12/09 02:16:14	59.989	3680.287	350	-342.350922	0	63.5	10	15	-103	7541.91
10/12/09 02:16:16	59.991	3679.026	350	-345.081818	0	64	10	15	-103	7542.24
10/12/09 02:16:18	59.988	3678.813	350	-345.081818	0	64.5	10	15	-103	7542.57
10/12/09 02:16:20	59.983	3678.489	350	-345.081818	0	65	10	15	-103	7542.9
10/12/09 02:16:22	59.989	3678.72	350	-345.081818	0	65.5	10	15	-103	7543.23
10/12/09 02:16:24	59.991	3678.74	350	-345.081818	0	66	10	15	-103	7543.56
10/12/09 02:16:26	59.989	3678.971	350	-346.537384	0	66.5	10	15	-103	7543.89
10/12/09 02:16:28	59.992	3679.39	350	-346.537384	0	67	10	15	-103	7544.22
10/12/09 02:16:30	59.993	3677.063	350	-346.537384	0	67.5	10	15	-103	7544.55
10/12/09 02:16:32	59.995	3678.33	350	-346.537384	0	68	10	15	-103	7544.88
10/12/09 02:16:34	59.996	3678.49	350	-346.537384	0	68.5	10	15	-103	7545.21
10/12/09 02:16:36	59.998	3677.944	350	-342.905762	0	69	10	15	-103	7545.54
10/12/09 02:16:38	59.998	3676.763	350	-342.905762	0	69.5	10	15	-103	7545.87
10/12/09 02:16:40	60	3678.951	350	-342.905762	0	70	10	15	-103	7546.2
10/12/09 02:16:42	59.999	3678.456	350	-342.905762	0	70.5	10	15	-103	7546.53

10/12/09 02:16:44	59.995	3679.148	350	-342.905762	0	71	10	15	-103	7546.86
10/12/09 02:16:46	59.991	3679.903	350	-340.094391	0	71.5	10	15	-103	7547.19
10/12/09 02:16:48	59.992	3680.041	350	-340.094391	0	72	10	15	-103	7547.52
10/12/09 02:16:50	59.995	3678.997	350	-340.094391	0	72.5	10	15	-103	7547.85
10/12/09 02:16:52	59.998	3677.86	350	-340.094391	0	73	10	15	-103	7548.18
10/12/09 02:16:54	60.001	3678.493	350	-340.094391	0	73.5	10	15	-103	7548.51
10/12/09 02:16:56	60.003	3678.267	350	-342.771179	0	74	10	15	-103	7548.84
10/12/09 02:16:58	60.006	3677.686	350	-342.771179	0	74.5	10	15	-103	7549.17
10/12/09 02:17:00	60.009	3677.899	350	-342.771179	0	75	10	15	-103	7549.5
10/12/09 02:17:02	60.009	3678.364	350	-342.771179	0	75.5	10	15	-103	7549.83
10/12/09 02:17:04	60.011	3679.209	350	-342.771179	0	76	10	15	-103	7550.16
10/12/09 02:17:06	60.012	3678.659	350	-342.909912	0	76.5	10	15	-103	7550.49
10/12/09 02:17:08	60.011	3678.653	350	-342.909912	0	77	10	15	-103	7550.82
10/12/09 02:17:10	60.01	3679.057	350	-342.909912	0	77.5	10	15	-103	7551.15
10/12/09 02:17:12	60.008	3679.703	350	-342.909912	0	78	10	15	-103	7551.48
10/12/09 02:17:14	60.007	3680.604	350	-342.909912	0	78.5	10	15	-103	7551.81
10/12/09 02:17:16	60.011	3679.806	350	-343.286011	0	79	10	15	-103	7552.14
10/12/09 02:17:18	60.012	3680.625	350	-343.286011	0	79.5	10	15	-103	7552.47
10/12/09 02:17:20	60.013	3680.263	350	-343.286011	0	80	10	15	-103	7552.8
10/12/09 02:17:22	60.01	3679.851	350	-343.286011	0	80.5	10	15	-103	7553.13
10/12/09 02:17:24	60.01	3679.561	350	-343.286011	0	81	10	15	-103	7553.46
10/12/09 02:17:26	60.007	3679.946	350	-331.852966	0	81.5	10	15	-103	7553.79
10/12/09 02:17:28	60.009	3679.44	350	-331.852966	0	82	10	15	-103	7554.12
10/12/09 02:17:30	60.009	3679.912	350	-331.852966	0	82.5	10	15	-103	7554.45
10/12/09 02:17:32	60.006	3679.517	350	-331.852966	0	83	10	15	-103	7554.78
10/12/09 02:17:34	60.006	3679.888	350	-331.852966	0	83.5	10	15	-103	7555.11
10/12/09 02:17:36	60.009	3679.608	350	-329.98822	0	84	10	15	-103	7555.44
10/12/09 02:17:38	60.009	3679.06	350	-329.98822	0	84.5	10	15	-103	7555.77
10/12/09 02:17:40	60.008	3679.261	350	-329.98822	0	85	10	15	-103	7556.1
10/12/09 02:17:42	60.009	3679.164	350	-329.98822	0	85.5	10	15	-103	7556.43
10/12/09 02:17:44	60.009	3679.025	350	-329.98822	0	86	10	15	-103	7556.76
10/12/09 02:17:46	60.005	3679.152	350	-255.444168	0	86.5	10	15	-103	7557.09
10/12/09 02:17:48	60.004	3678.572	350	-255.444168	0	87	10	15	-103	7557.42
10/12/09 02:17:50	60.001	3678.295	350	-255.444168	0	87.5	10	15	-103	7557.75
10/12/09 02:17:52	59.999	3678.249	350	-255.444168	0	88	10	15	-103	7558.08
10/12/09 02:17:54	59.993	3678.236	350	-255.444168	0	88.5	10	15	-103	7558.41
10/12/09 02:17:56	59.991	3677.83	350	-254.838303	0	89	10	15	-103	7558.74
10/12/09 02:17:58	59.994	3677.955	350	-254.838303	0	89.5	10	15	-103	7559.07
10/12/09 02:18:00	59.992	3677.772	350	-254.838303	0	90	10	15	-103	7559.4
10/12/09 02:18:02	59.994	3676.666	350	-254.838303	0	90.5	10	15	-103	7559.73
10/12/09 02:18:04	59.992	3677.093	350	-254.838303	0	91	10	15	-103	7560.06
10/12/09 02:18:06	59.994	3677.141	350	-257.146973	0	91.5	10	15	-103	7560.39
10/12/09 02:18:08	59.995	3676.401	350	-257.146973	0	92	10	15	-103	7560.72
10/12/09 02:18:10	59.993	3678.516	350	-257.146973	0	92.5	10	15	-103	7561.05
10/12/09 02:18:12	59.99	3679.872	350	-257.146973	0	93	10	15	-103	7561.38
10/12/09 02:18:14	59.99	3680.197	350	-257.146973	0	93.5	10	15	-103	7561.71
10/12/09 02:18:16	59.987	3678.743	350	-262.289368	0	94	10	15	-103	7562.04
10/12/09 02:18:18	59.983	3678.428	350	-262.289368	0	94.5	10	15	-103	7562.37
10/12/09 02:18:20	59.977	3677.921	350	-262.289368	0	95	10	15	-103	7562.7

10/12/09 02:18:22	59.977	3680.254	350	-262.289368	0	95.5	10	15	-103	7563.03
10/12/09 02:18:24	59.989	3682.07	350	-262.289368	0	96	10	15	-103	7563.36
10/12/09 02:18:26	59.995	3681.329	350	-256.647949	0	96.5	10	15	-103	7563.69
10/12/09 02:18:28	59.999	3678.656	350	-256.647949	0	97	10	15	-103	7564.02
10/12/09 02:18:30	59.994	3678.077	350	-256.647949	0	97.5	10	15	-103	7564.35
10/12/09 02:18:32	59.989	3677.78	350	-256.647949	0	98	10	15	-103	7564.68
10/12/09 02:18:34	59.987	3678.427	350	-256.647949	0	98.5	10	15	-103	7565.01
10/12/09 02:18:36	59.986	3678.473	350	-256.307251	0	99	10	15	-103	7565.34
10/12/09 02:18:38	59.984	3678.278	350	-256.307251	0	99.5	10	15	-103	7565.67
10/12/09 02:18:40	59.983	3677.822	350	-256.307251	0	100	10	15	-103	7566
10/12/09 02:18:42	59.985	3676.615	350	-256.307251	0	100.5	10	15	-103	7566.33
10/12/09 02:18:44	59.986	3677.397	350	-256.307251	0	101	10	15	-103	7566.66
10/12/09 02:18:46	59.985	3677.917	350	-249.086395	0	101.5	10	15	-103	7566.99
10/12/09 02:18:48	59.986	3677.95	350	-249.086395	0	102	10	15	-103	7567.32
10/12/09 02:18:50	59.98	3678.617	350	-249.086395	0	102.5	10	15	-103	7567.65
10/12/09 02:18:52	59.981	3678.963	350	-249.086395	0	103	10	15	-103	7567.98
10/12/09 02:18:54	59.981	3681.252	350	-249.086395	0	103.5	10	15	-103	7568.31
10/12/09 02:18:56	59.989	3680.737	350	-253.742477	0	104	10	15	-103	7568.64
10/12/09 02:18:58	59.998	3680.045	350	-253.742477	0	104.5	10	15	-103	7568.97
10/12/09 02:19:00	60.007	3678.161	350	-253.742477	0	105	10	15	-103	7569.3
10/12/09 02:19:02	60.007	3674.076	350	-253.742477	0	105.5	10	15	-103	7569.63
10/12/09 02:19:04	59.997	3676.222	350	-253.742477	0	106	10	15	-103	7569.96
10/12/09 02:19:06	59.986	3676.669	350	-257.421204	0	106.5	10	15	-103	7570.29
10/12/09 02:19:08	59.981	3677.497	350	-257.421204	0	107	10	15	-103	7570.62
10/12/09 02:19:10	59.977	3677.49	350	-257.421204	0	107.5	10	15	-103	7570.95
10/12/09 02:19:12	59.974	3675.186	350	-257.421204	0	108	10	15	-103	7571.28
10/12/09 02:19:14	59.976	3675.437	350	-257.421204	0	108.5	10	15	-103	7571.61
10/12/09 02:19:16	59.974	3680.451	350	-261.73822	0	109	10	15	-103	7571.94
10/12/09 02:19:18	59.974	3682.032	350	-261.73822	0	109.5	10	15	-103	7572.27
10/12/09 02:19:20	59.977	3683.829	350	-261.73822	0	110	10	15	-103	7572.6
10/12/09 02:19:22	59.979	3682.843	350	-261.73822	0	110.5	10	15	-103	7572.93
10/12/09 02:19:24	59.979	3681.108	350	-261.73822	0	111	10	15	-103	7573.26
10/12/09 02:19:26	59.982	3680.566	350	-271.875977	0	111.5	10	15	-103	7573.59
10/12/09 02:19:28	59.984	3678.229	350	-271.875977	0	112	10	15	-103	7573.92
10/12/09 02:19:30	59.987	3676.752	350	-271.875977	0	112.5	10	15	-103	7574.25
10/12/09 02:19:32	59.988	3675.759	350	-271.875977	0	113	10	15	-103	7574.58
10/12/09 02:19:34	59.988	3671.942	350	-271.875977	0	113.5	10	15	-103	7574.91
10/12/09 02:19:36	59.987	3671.166	350	-262.073486	0	114	10	15	-103	7575.24
10/12/09 02:19:38	59.987	3670.476	350	-262.073486	0	114.5	10	15	-103	7575.57
10/12/09 02:19:40	59.987	3670.129	350	-262.073486	0	115	10	15	-103	7575.9
10/12/09 02:19:42	59.985	3671.542	350	-262.073486	0	115.5	10	15	-103	7576.23
10/12/09 02:19:44	59.984	3672.048	350	-262.073486	0	116	10	15	-103	7576.56
10/12/09 02:19:46	59.982	3671.576	350	-260.36441	0	116.5	10	15	-103	7576.89
10/12/09 02:19:48	59.983	3672.104	350	-260.36441	0	117	10	15	-103	7577.22
10/12/09 02:19:50	59.989	3672.414	350	-260.36441	0	117.5	10	15	-103	7577.55
10/12/09 02:19:52	59.989	3671.882	350	-260.36441	0	118	10	15	-103	7577.88
10/12/09 02:19:54	59.988	3671.837	350	-260.36441	0	118.5	10	15	-103	7578.21
10/12/09 02:19:56	59.984	3671.336	350	-352.644379	0	119	10	15	-103	7578.54
10/12/09 02:19:58	59.982	3670.726	350	-352.644379	0	119.5	10	15	-103	7578.87

10/12/09 02:20:00	59.983	3670.372	350	-352.644379	0	120	10	15	-103	7579.2
10/12/09 02:20:02	59.981	3671.364	350	-352.644379	0	120.5	10	15	-103	7579.53
10/12/09 02:20:04	59.982	3671.401	350	-352.644379	0	121	10	15	-103	7579.86
10/12/09 02:20:06	59.983	3672.156	350	-354.89566	0	121.5	10	15	-103	7580.19
10/12/09 02:20:08	59.986	3672.181	350	-354.89566	0	122	10	15	-103	7580.52
10/12/09 02:20:10	59.989	3670.296	350	-354.89566	0	122.5	10	15	-103	7580.85
10/12/09 02:20:12	59.987	3668.071	350	-354.89566	0	123	10	15	-103	7581.18
10/12/09 02:20:14	59.985	3668.59	350	-354.89566	0	123.5	10	15	-103	7581.51
10/12/09 02:20:16	59.98	3669.908	350	-340.46936	0	124	10	15	-103	7581.84
10/12/09 02:20:18	59.98	3670.399	350	-340.46936	0	124.5	10	15	-103	7582.17
10/12/09 02:20:20	59.983	3670.263	350	-340.46936	0	125	10	15	-103	7582.5
10/12/09 02:20:22	59.98	3669.382	350	-340.46936	0	125.5	10	15	-103	7582.83
10/12/09 02:20:24	59.979	3670.102	350	-340.46936	0	126	10	15	-103	7583.16
10/12/09 02:20:26	59.979	3670.438	350	-337.642914	0	126.5	10	15	-103	7583.49
10/12/09 02:20:28	59.981	3671.403	350	-337.642914	0	127	10	15	-103	7583.82
10/12/09 02:20:30	59.981	3672.442	350	-337.642914	0	127.5	10	15	-103	7584.15
10/12/09 02:20:32	59.98	3672.372	350	-337.642914	0	128	10	15	-103	7584.48
10/12/09 02:20:34	59.98	3671.947	350	-337.642914	0	128.5	10	15	-103	7584.81
10/12/09 02:20:36	59.981	3670.938	350	-284.36084	0	129	10	15	-103	7585.14
10/12/09 02:20:38	59.98	3670.705	350	-284.36084	0	129.5	10	15	-103	7585.47
10/12/09 02:20:40	59.98	3670.137	350	-284.36084	0	130	10	15	-103	7585.8
10/12/09 02:20:42	59.977	3669.279	350	-284.36084	0	130.5	10	15	-103	7586.13
10/12/09 02:20:44	59.979	3672.391	350	-284.36084	0	131	10	15	-103	7586.46
10/12/09 02:20:46	59.981	3672.558	350	-260.467987	0	131.5	10	15	-103	7586.79
10/12/09 02:20:48	59.979	3674.052	350	-260.467987	0	132	10	15	-103	7587.12
10/12/09 02:20:50	59.976	3672.626	350	-260.467987	0	132.5	10	15	-103	7587.45
10/12/09 02:20:52	59.977	3671.8	350	-260.467987	0	133	10	15	-103	7587.78
10/12/09 02:20:54	59.972	3673.183	350	-260.467987	0	133.5	10	15	-103	7588.11
10/12/09 02:20:56	59.971	3673.874	350	-253.141541	0	134	10	15	-103	7588.44
10/12/09 02:20:58	59.973	3676.263	350	-253.141541	0	134.5	10	15	-103	7588.77
10/12/09 02:21:00	59.973	3676.623	350	-253.141541	0	135	10	15	-103	7589.1
10/12/09 02:21:02	59.973	3676.87	350	-253.141541	0	135.5	10	15	-103	7589.43
10/12/09 02:21:04	59.974	3676.543	350	-253.141541	0	136	10	15	-103	7589.76
10/12/09 02:21:06	59.971	3675.464	350	-251.929871	0	136.5	10	15	-103	7590.09
10/12/09 02:21:08	59.975	3675.752	350	-251.929871	0	137	10	15	-103	7590.42
10/12/09 02:21:10	59.977	3675.256	350	-251.929871	0	137.5	10	15	-103	7590.75
10/12/09 02:21:12	59.977	3674.87	350	-251.929871	0	138	10	15	-103	7591.08
10/12/09 02:21:14	59.975	3671.277	350	-251.929871	0	138.5	10	15	-103	7591.41
10/12/09 02:21:16	59.976	3671.593	350	-250.674194	0	139	10	15	-103	7591.74
10/12/09 02:21:18	59.98	3670.587	350	-250.674194	0	139.5	10	15	-103	7592.07
10/12/09 02:21:20	59.979	3669.963	350	-250.674194	0	140	10	15	-103	7592.4
10/12/09 02:21:22	59.981	3669.54	350	-250.674194	0	140.5	10	15	-103	7592.73
10/12/09 02:21:24	59.982	3669.497	350	-250.674194	0	141	10	15	-103	7593.06
10/12/09 02:21:26	59.982	3668.706	350	-253.631866	0	141.5	10	15	-103	7593.39
10/12/09 02:21:28	59.982	3667.677	350	-253.631866	0	142	10	15	-103	7593.72
10/12/09 02:21:30	59.982	3666.482	350	-253.631866	0	142.5	10	15	-103	7594.05
10/12/09 02:21:32	59.981	3666.599	350	-253.631866	0	143	10	15	-103	7594.38
10/12/09 02:21:34	59.982	3666.911	350	-253.631866	0	143.5	10	15	-103	7594.71
10/12/09 02:21:36	59.984	3666.442	350	-246.957306	0	144	10	15	-103	7595.04

10/12/09 02:21:38	59.985	3666.405	350	-246.957306	0	144.5	10	15	-103	7595.37
10/12/09 02:21:40	59.987	3667.456	350	-246.957306	0	145	10	15	-103	7595.7
10/12/09 02:21:42	59.989	3666.38	350	-246.957306	0	145.5	10	15	-103	7596.03
10/12/09 02:21:44	59.993	3665.262	350	-246.957306	0	146	10	15	-103	7596.36
10/12/09 02:21:46	59.996	3664.031	350	-254.541779	0	146.5	10	15	-103	7596.69
10/12/09 02:21:48	59.998	3663.825	350	-254.541779	0	147	10	15	-103	7597.02
10/12/09 02:21:50	59.998	3663.229	350	-254.541779	0	147.5	10	15	-103	7597.35
10/12/09 02:21:52	60.004	3662.055	350	-254.541779	0	148	10	15	-103	7597.68
10/12/09 02:21:54	60.007	3661.695	350	-254.541779	0	148.5	10	15	-103	7598.01
10/12/09 02:21:56	60.01	3662.076	350	-256.571594	0	149	10	15	-103	7598.34
10/12/09 02:21:58	60.013	3662.224	350	-256.571594	0	149.5	10	15	-103	7598.67
10/12/09 02:22:00	60.014	3662.959	350	-256.571594	0	150	10	15	-103	7599
10/12/09 02:22:02	60.013	3663.794	350	-256.571594	0	150.5	10	15	-103	7599.33
10/12/09 02:22:04	60.008	3664.139	350	-256.571594	0	151	10	15	-103	7599.66
10/12/09 02:22:06	60.008	3665.278	350	-258.37262	0	151.5	10	15	-103	7599.99
10/12/09 02:22:08	60.01	3664.159	350	-258.37262	0	152	10	15	-103	7600.32
10/12/09 02:22:10	60.019	3663.265	350	-258.37262	0	152.5	10	15	-103	7600.65
10/12/09 02:22:12	60.019	3663.184	350	-258.37262	0	153	10	15	-103	7600.98
10/12/09 02:22:14	60.023	3661.929	350	-258.37262	0	153.5	10	15	-103	7601.31
10/12/09 02:22:16	60.021	3661.512	350	-263.047363	0	154	10	15	-103	7601.64
10/12/09 02:22:18	60.02	3659.172	350	-263.047363	0	154.5	10	15	-103	7601.97
10/12/09 02:22:20	60.021	3658.661	350	-263.047363	0	155	10	15	-103	7602.3
10/12/09 02:22:22	60.021	3656.785	350	-263.047363	0	155.5	10	15	-103	7602.63
10/12/09 02:22:24	60.02	3657.571	350	-263.047363	0	156	10	15	-103	7602.96
10/12/09 02:22:26	60.019	3658.126	350	-260.984375	0	156.5	10	15	-103	7603.29
10/12/09 02:22:28	60.019	3657.71	350	-260.984375	0	157	10	15	-103	7603.62
10/12/09 02:22:30	60.022	3658.015	350	-260.984375	0	157.5	10	15	-103	7603.95
10/12/09 02:22:32	60.025	3660.228	350	-260.984375	0	158	10	15	-103	7604.28
10/12/09 02:22:34	60.025	3659.224	350	-260.984375	0	158.5	10	15	-103	7604.61
10/12/09 02:22:36	60.026	3658.698	350	-261.318329	0	159	10	15	-103	7604.94
10/12/09 02:22:38	60.02	3658.669	350	-261.318329	0	159.5	10	15	-103	7605.27
10/12/09 02:22:40	60.02	3658.155	350	-261.318329	0	160	10	15	-103	7605.6
10/12/09 02:22:42	60.018	3659.13	350	-261.318329	0	160.5	10	15	-103	7605.93
10/12/09 02:22:44	60.018	3659.778	350	-261.318329	0	161	10	15	-103	7606.26
10/12/09 02:22:46	60.02	3660.82	350	-262.1026	0	161.5	10	15	-103	7606.59
10/12/09 02:22:48	60.019	3662.531	350	-262.1026	0	162	10	15	-103	7606.92
10/12/09 02:22:50	60.019	3662.387	350	-262.1026	0	162.5	10	15	-103	7607.25
10/12/09 02:22:52	60.023	3662.079	350	-262.1026	0	163	10	15	-103	7607.58
10/12/09 02:22:54	60.022	3662.39	350	-262.1026	0	163.5	10	15	-103	7607.91
10/12/09 02:22:56	60.022	3662.678	350	-262.71701	0	164	10	15	-103	7608.24
10/12/09 02:22:58	60.025	3663.577	350	-262.71701	0	164.5	10	15	-103	7608.57
10/12/09 02:23:00	60.02	3663.539	350	-262.71701	0	165	10	15	-103	7608.9
10/12/09 02:23:02	60.02	3662.959	350	-262.71701	0	165.5	10	15	-103	7609.23
10/12/09 02:23:04	60.02	3662.552	350	-262.71701	0	166	10	15	-103	7609.56
10/12/09 02:23:06	60.02	3662.543	350	-260.016479	0	166.5	10	15	-103	7609.89
10/12/09 02:23:08	60.02	3663.601	350	-260.016479	0	167	10	15	-103	7610.22
10/12/09 02:23:10	60.021	3663.91	350	-260.016479	0	167.5	10	15	-103	7610.55
10/12/09 02:23:12	60.021	3663.69	350	-260.016479	0	168	10	15	-103	7610.88
10/12/09 02:23:14	60.018	3662.791	350	-260.016479	0	168.5	10	15	-103	7611.21

10/12/09 02:23:16	60.014	3663.396	350	-263.87323	0	169	10	15	-103	7611.54
10/12/09 02:23:18	60.014	3663.698	350	-263.87323	0	169.5	10	15	-103	7611.87
10/12/09 02:23:20	60.014	3664.315	350	-263.87323	0	170	10	15	-103	7612.2
10/12/09 02:23:22	60.013	3665.313	350	-263.87323	0	170.5	10	15	-103	7612.53
10/12/09 02:23:24	60.013	3665.798	350	-263.87323	0	171	10	15	-103	7612.86
10/12/09 02:23:26	60.01	3666.141	350	-264.5979	0	171.5	10	15	-103	7613.19
10/12/09 02:23:28	60.008	3666.726	350	-264.5979	0	172	10	15	-103	7613.52
10/12/09 02:23:30	60.011	3667.677	350	-264.5979	0	172.5	10	15	-103	7613.85
10/12/09 02:23:32	60.011	3667.545	350	-264.5979	0	173	10	15	-103	7614.18
10/12/09 02:23:34	60.012	3666.688	350	-264.5979	0	173.5	10	15	-103	7614.51
10/12/09 02:23:36	60.012	3666.449	350	-262.415924	0	174	10	15	-103	7614.84
10/12/09 02:23:38	60.009	3666.71	350	-262.415924	0	174.5	10	15	-103	7615.17
10/12/09 02:23:40	60.009	3667.696	350	-262.415924	0	175	10	15	-103	7615.5
10/12/09 02:23:42	60.009	3667.398	350	-262.415924	0	175.5	10	15	-103	7615.83
10/12/09 02:23:44	60.009	3667.043	350	-262.415924	0	176	10	15	-103	7616.16
10/12/09 02:23:46	60.005	3666.624	350	-259.685242	0	176.5	10	15	-103	7616.49
10/12/09 02:23:48	60.002	3666.223	350	-259.685242	0	177	10	15	-103	7616.82
10/12/09 02:23:50	59.999	3665.88	350	-259.685242	0	177.5	10	15	-103	7617.15
10/12/09 02:23:52	59.996	3665.403	350	-259.685242	0	178	10	15	-103	7617.48
10/12/09 02:23:54	59.995	3665.802	350	-259.685242	0	178.5	10	15	-103	7617.81
10/12/09 02:23:56	59.997	3665.68	350	-255.911011	0	179	10	15	-103	7618.14
10/12/09 02:23:58	59.998	3665.352	350	-255.911011	0	179.5	10	15	-103	7618.47
10/12/09 02:24:00	59.998	3664.948	350	-255.911011	0	180	10	15	-103	7618.8
10/12/09 02:24:02	59.998	3665.065	350	-255.911011	0	180.5	10	15	-103	7619.13
10/12/09 02:24:04	59.998	3666.133	350	-255.911011	0	181	10	15	-103	7619.46
10/12/09 02:24:06	59.995	3666.64	350	-258.148193	0	181.5	10	15	-103	7619.79
10/12/09 02:24:08	59.995	3666.735	350	-258.148193	0	182	10	15	-103	7620.12
10/12/09 02:24:10	59.992	3667.084	350	-258.148193	0	182.5	10	15	-103	7620.45
10/12/09 02:24:12	59.993	3667.557	350	-258.148193	0	183	10	15	-103	7620.78
10/12/09 02:24:14	59.988	3667.337	350	-258.148193	0	183.5	10	15	-103	7621.11
10/12/09 02:24:16	59.988	3667.853	350	-258.873596	0	184	10	15	-103	7621.44
10/12/09 02:24:18	59.982	3668.116	350	-258.873596	0	184.5	10	15	-103	7621.77
10/12/09 02:24:20	59.982	3668.691	350	-258.873596	0	185	10	15	-103	7622.1
10/12/09 02:24:22	59.982	3669.399	350	-258.873596	0	185.5	10	15	-103	7622.43
10/12/09 02:24:24	59.982	3669.606	350	-258.873596	0	186	10	15	-103	7622.76
10/12/09 02:24:26	59.984	3671.228	350	-249.33757	0	186.5	10	15	-103	7623.09
10/12/09 02:24:28	59.982	3670.25	350	-249.33757	0	187	10	15	-103	7623.42
10/12/09 02:24:30	59.978	3670.265	350	-249.33757	0	187.5	10	15	-103	7623.75
10/12/09 02:24:32	59.978	3671.549	350	-249.33757	0	188	10	15	-103	7624.08
10/12/09 02:24:34	59.976	3673.243	350	-249.33757	0	188.5	10	15	-103	7624.41
10/12/09 02:24:36	59.975	3674.263	350	-258.278168	0	189	10	15	-103	7624.74
10/12/09 02:24:38	59.974	3675.824	350	-258.278168	0	189.5	10	15	-103	7625.07
10/12/09 02:24:40	59.974	3676.418	350	-258.278168	0	190	10	15	-103	7625.4
10/12/09 02:24:42	59.979	3676.306	350	-258.278168	0	190.5	10	15	-103	7625.73
10/12/09 02:24:44	59.98	3674.637	350	-258.278168	0	191	10	15	-103	7626.06
10/12/09 02:24:46	59.981	3675.329	350	-258.406372	0	191.5	10	15	-103	7626.39
10/12/09 02:24:48	59.98	3675.226	350	-258.406372	0	192	10	15	-103	7626.72
10/12/09 02:24:50	59.984	3674.768	350	-258.406372	0	192.5	10	15	-103	7627.05
10/12/09 02:24:52	59.987	3674.399	350	-258.406372	0	193	10	15	-103	7627.38

10/12/09 02:24:54	59.988	3673.514	350	-258.406372	0	193.5	10	15	-103	7627.71
10/12/09 02:24:56	59.988	3673.04	350	-260.538879	0	194	10	15	-103	7628.04
10/12/09 02:24:58	59.99	3672.442	350	-260.538879	0	194.5	10	15	-103	7628.37
10/12/09 02:25:00	59.992	3673.056	350	-260.538879	0	195	10	15	-103	7628.7
10/12/09 02:25:02	59.991	3671.68	350	-260.538879	0	195.5	10	15	-103	7629.03
10/12/09 02:25:04	59.991	3671.493	350	-260.538879	0	196	10	15	-103	7629.36
10/12/09 02:25:06	59.991	3669.53	350	-257.88208	0	196.5	10	15	-103	7629.69
10/12/09 02:25:08	59.993	3670.066	350	-257.88208	0	197	10	15	-103	7630.02
10/12/09 02:25:10	59.993	3670.028	350	-257.88208	0	197.5	10	15	-103	7630.35
10/12/09 02:25:12	59.996	3671.744	350	-257.88208	0	198	10	15	-103	7630.68
10/12/09 02:25:14	60.002	3671.578	350	-257.88208	0	198.5	10	15	-103	7631.01
10/12/09 02:25:16	60.002	3672.625	350	-258.588654	0	199	10	15	-103	7631.34
10/12/09 02:25:18	60.003	3672.674	350	-258.588654	0	199.5	10	15	-103	7631.67
10/12/09 02:25:20	60.004	3673.819	350	-258.588654	0	200	10	15	-103	7632
10/12/09 02:25:22	60.005	3673.25	350	-258.588654	0	200.5	10	15	-103	7632.33
10/12/09 02:25:24	60.004	3673.182	350	-258.588654	0	201	10	15	-103	7632.66
10/12/09 02:25:26	60.002	3673.496	350	-261.906158	0	201.5	10	15	-103	7632.99
10/12/09 02:25:28	60.004	3672.418	350	-261.906158	0	202	10	15	-103	7633.32
10/12/09 02:25:30	60.008	3672.363	350	-261.906158	0	202.5	10	15	-103	7633.65
10/12/09 02:25:32	60.01	3672.217	350	-261.906158	0	203	10	15	-103	7633.98
10/12/09 02:25:34	60.01	3672.261	350	-261.906158	0	203.5	10	15	-103	7634.31
10/12/09 02:25:36	60.01	3673.182	350	-256.747803	0	204	10	15	-103	7634.64
10/12/09 02:25:38	60.011	3673.603	350	-256.747803	0	204.5	10	15	-103	7634.97
10/12/09 02:25:40	60.013	3673.553	350	-256.747803	0	205	10	15	-103	7635.3
10/12/09 02:25:42	60.014	3674.312	350	-256.747803	0	205.5	10	15	-103	7635.63
10/12/09 02:25:44	60.013	3674.537	350	-256.747803	0	206	10	15	-103	7635.96
10/12/09 02:25:46	60.012	3673.813	350	-167.431976	0	206.5	10	15	-103	7636.29
10/12/09 02:25:48	60.011	3673.204	350	-167.431976	0	207	10	15	-103	7636.62
10/12/09 02:25:50	60.011	3672.563	350	-167.431976	0	207.5	10	15	-103	7636.95
10/12/09 02:25:52	60.017	3673.068	350	-167.431976	0	208	10	15	-103	7637.28
10/12/09 02:25:54	60.022	3672.388	350	-167.431976	0	208.5	10	15	-103	7637.61
10/12/09 02:25:56	60.017	3672.52	350	-164.973404	0	209	10	15	-103	7637.94
10/12/09 02:25:58	60.014	3671.25	350	-164.973404	0	209.5	10	15	-103	7638.27
10/12/09 02:26:00	60.013	3671.288	350	-164.973404	0	210	10	15	-103	7638.6
10/12/09 02:26:02	60.014	3672.989	350	-164.973404	0	210.5	10	15	-103	7638.93
10/12/09 02:26:04	60.017	3672.982	350	-164.973404	0	211	10	15	-103	7639.26
10/12/09 02:26:06	60.017	3672.915	350	-157.628082	0	211.5	10	15	-103	7639.59
10/12/09 02:26:08	60.019	3671.952	350	-157.628082	0	212	10	15	-103	7639.92
10/12/09 02:26:10	60.019	3671.193	350	-157.628082	0	212.5	10	15	-103	7640.25
10/12/09 02:26:12	60.019	3671.627	350	-157.628082	0	213	10	15	-103	7640.58
10/12/09 02:26:14	60.027	3671.189	350	-157.628082	0	213.5	10	15	-103	7640.91
10/12/09 02:26:16	60.026	3668.611	350	-155.531708	0	214	10	15	-103	7641.24
10/12/09 02:26:18	60.026	3665.232	350	-155.531708	0	214.5	10	15	-103	7641.57
10/12/09 02:26:20	60.022	3664.495	350	-155.531708	0	215	10	15	-103	7641.9
10/12/09 02:26:22	60.019	3666.062	350	-155.531708	0	215.5	10	15	-103	7642.23
10/12/09 02:26:24	60.017	3666.821	350	-155.531708	0	216	10	15	-103	7642.56
10/12/09 02:26:26	60.019	3666.787	350	-160.447235	0	216.5	10	15	-103	7642.89
10/12/09 02:26:28	60.02	3670.454	350	-160.447235	0	217	10	15	-103	7643.22
10/12/09 02:26:30	60.019	3670.267	350	-160.447235	0	217.5	10	15	-103	7643.55

10/12/09 02:26:32	60.021	3671.668	350	-160.447235	0	218	10	15	-103	7643.88
10/12/09 02:26:34	60.021	3672.493	350	-160.447235	0	218.5	10	15	-103	7644.21
10/12/09 02:26:36	60.021	3672.685	350	-163.958603	0	219	10	15	-103	7644.54
10/12/09 02:26:38	60.019	3672.857	350	-163.958603	0	219.5	10	15	-103	7644.87
10/12/09 02:26:40	60.018	3672.164	350	-163.958603	0	220	10	15	-103	7645.2
10/12/09 02:26:42	60.022	3671.413	350	-163.958603	0	220.5	10	15	-103	7645.53
10/12/09 02:26:44	60.031	3669.983	350	-163.958603	0	221	10	15	-103	7645.86
10/12/09 02:26:46	60.037	3666.467	350	-166.072449	0	221.5	10	15	-103	7646.19
10/12/09 02:26:48	60.037	3663.758	350	-166.072449	0	222	10	15	-103	7646.52
10/12/09 02:26:50	60.036	3661.599	350	-166.072449	0	222.5	10	15	-103	7646.85
10/12/09 02:26:52	60.037	3660.672	350	-166.072449	0	223	10	15	-103	7647.18
10/12/09 02:26:54	60.046	3651.492	350	-166.072449	0	223.5	10	15	-103	7647.51
10/12/09 02:26:56	60.048	3649.19	350	-163.766586	0	224	10	15	-103	7647.84
10/12/09 02:26:58	60.048	3650.025	350	-163.766586	0	224.5	10	15	-103	7648.17
10/12/09 02:27:00	60.043	3648.246	350	-163.766586	0	225	10	15	-103	7648.5
10/12/09 02:27:02	60.041	3649.512	350	-163.766586	0	225.5	10	15	-103	7648.83
10/12/09 02:27:04	60.041	3654.294	350	-163.766586	0	226	10	15	-103	7649.16
10/12/09 02:27:06	60.041	3655.007	350	-165.101685	0	226.5	10	15	-103	7649.49
10/12/09 02:27:08	60.039	3651.874	350	-165.101685	0	227	10	15	-103	7649.82
10/12/09 02:27:10	60.041	3651.059	350	-165.101685	0	227.5	10	15	-103	7650.15
10/12/09 02:27:12	60.043	3649.187	350	-165.101685	0	228	10	15	-103	7650.48
10/12/09 02:27:14	60.045	3648.236	350	-165.101685	0	228.5	10	15	-103	7650.81
10/12/09 02:27:16	60.046	3645.387	350	-165.476395	0	229	10	15	-103	7651.14
10/12/09 02:27:18	60.041	3644.628	350	-165.476395	0	229.5	10	15	-103	7651.47
10/12/09 02:27:20	60.041	3645.446	350	-165.476395	0	230	10	15	-103	7651.8
10/12/09 02:27:22	60.041	3640.682	350	-165.476395	0	230.5	10	15	-103	7652.13
10/12/09 02:27:24	60.039	3641.191	350	-165.476395	0	231	10	15	-103	7652.46
10/12/09 02:27:26	59.978	3659.465	350	-206.459106	0	231.5	10	15	-103	7652.79
10/12/09 02:27:28	59.852	3696.362	350	-206.459106	0	232	10	0	-103	7616
10/12/09 02:27:30	59.836	3734.904	335	-206.459106	0	232.5	10	0	-103	7626
10/12/09 02:27:32	59.869	3734.673	335	-206.459106	0	233	10	0	-103	7632
10/12/09 02:27:34	59.892	3737.157	335	-206.459106	0	233.5	10	0	-103	7632
10/12/09 02:27:36	59.891	3761.25	335	-211.256042	0	234	10	0	-103	7632
10/12/09 02:27:38	59.88	3766.113	335	-211.256042	1	234.5	10	0	-103	7632
10/12/09 02:27:40	59.876	3766.194	335	-211.256042	1	235	10	0	-103	7632
10/12/09 02:27:42	59.875	3768.877	335	-211.256042	1	235.5	10	0	-103	7632
10/12/09 02:27:44	59.883	3769.925	335	-211.256042	1	236	10	0	-103	7632
10/12/09 02:27:46	59.887	3780.621	335	-214.346695	1	236.5	10	0	-103	7632
10/12/09 02:27:48	59.886	3781.592	335	-214.346695	1	237	10	0	-103	7632
10/12/09 02:27:50	59.885	3782.5	335	-214.346695	1	237.5	10	0	-103	7632
10/12/09 02:27:52	59.887	3784.962	335	-214.346695	2	238	10	0	-103	7632
10/12/09 02:27:54	59.888	3784.73	335	-214.346695	3	238.5	10	0	-103	7632
10/12/09 02:27:56	59.89	3784.419	335	-212.172699	4	239	10	0	-103	7632
10/12/09 02:27:58	59.895	3788.072	335	-212.172699	5	239.5	10	0	-103	7632
10/12/09 02:28:00	59.894	3788.328	335	-212.172699	6	240	10	0	-103	7632
10/12/09 02:28:02	59.893	3788.868	335	-212.172699	7	240.5	10	0	-103	7632
10/12/09 02:28:04	59.894	3788.472	335	-212.172699	8	241	10	0	-103	7632
10/12/09 02:28:06	59.894	3792.276	335	-215.598175	9	241.5	10	0	-103	7632
10/12/09 02:28:08	59.891	3793.074	335	-215.598175	10	242	10	0	-103	7632

10/12/09 02:28:10	59.89	3794.374	335	-215.598175	11	242.5	10	0	-103	7632
10/12/09 02:28:12	59.885	3799.428	335	-215.598175	12	243	10	0	-103	7632
10/12/09 02:28:14	59.885	3800.427	335	-215.598175	13	243.5	10	0	-103	7632
10/12/09 02:28:16	59.888	3799.959	335	-218.327255	14	244	10	0	-103	7632
10/12/09 02:28:18	59.887	3803.625	335	-218.327255	15	244.5	10	0	-103	7632
10/12/09 02:28:20	59.888	3802.925	335	-218.327255	16	245	10	0	-103	7632
10/12/09 02:28:22	59.888	3802.951	335	-218.327255	16	245.5	10	0	-103	7632
10/12/09 02:28:24	59.89	3804.388	335	-218.327255	16	246	10	0	-103	7632
10/12/09 02:28:26	59.889	3805.496	335	-217.379425	16	246.5	10	0	-103	7632
10/12/09 02:28:28	59.882	3805.617	335	-217.379425	16	247	10	0	-103	7632
10/12/09 02:28:30	59.873	3809.237	335	-217.379425	16	247.5	10	0	-103	7631
10/12/09 02:28:32	59.857	3811.503	335	-217.379425	16	248	10	0	-103	7625
10/12/09 02:28:34	59.849	3814.862	335	-217.379425	16	248.5	10	0	-103	7623
10/12/09 02:28:36	59.852	3815.889	335	-214.830353	16	249	10	0	-103	7621
10/12/09 02:28:38	59.858	3825.643	335	-214.830353	16	249.5	10	0	-103	7623
10/12/09 02:28:40	59.863	3826.053	335	-214.830353	16	250	10	0	-103	7625
10/12/09 02:28:42	59.866	3826.002	335	-214.830353	16	250.5	10	0	-103	7627
10/12/09 02:28:44	59.865	3827.524	335	-214.830353	16	251	10	0	-103	7628
10/12/09 02:28:46	59.867	3826.753	335	-227.655914	16	251.5	10	0	-103	7628
10/12/09 02:28:48	59.866	3826.783	335	-227.655914	16	252	10	0	-103	7629
10/12/09 02:28:50	59.871	3826.454	335	-227.655914	16	252.5	10	0	-103	7630
10/12/09 02:28:52	59.874	3825.713	335	-227.655914	16	253	10	0	-103	7631
10/12/09 02:28:54	59.879	3823.826	335	-227.655914	16	253.5	10	0	-103	7635
10/12/09 02:28:56	59.88	3822.505	335	-225.018082	16	254	10	0	-103	7638
10/12/09 02:28:58	59.883	3819.081	335	-225.018082	16	254.5	10	0	-103	7639
10/12/09 02:29:00	59.886	3818.055	335	-225.018082	16	255	10	0	-103	7642
10/12/09 02:29:02	59.89	3816.815	335	-225.018082	16	255.5	10	0	-103	7644
10/12/09 02:29:04	59.892	3815.01	335	-225.018082	16	256	10	0	-103	7645
10/12/09 02:29:06	59.889	3813.783	335	-228.365158	16	256.5	10	0	-103	7647
10/12/09 02:29:08	59.893	3811.838	335	-228.365158	16	257	10	0	-103	7648
10/12/09 02:29:10	59.899	3809.652	335	-228.365158	16	257.5	10	0	-103	7649
10/12/09 02:29:12	59.903	3806.972	335	-228.365158	16	258	10	0	-103	7650
10/12/09 02:29:14	59.902	3805.593	335	-228.365158	16	258.5	10	0	-103	7651
10/12/09 02:29:16	59.902	3804.188	335	-234.075333	16	259	10	0	-103	7652
10/12/09 02:29:18	59.904	3796.078	335	-234.075333	16	259.5	10	0	-103	7653
10/12/09 02:29:20	59.907	3793.975	335	-234.075333	16	260	10	0	-103	7654
10/12/09 02:29:22	59.911	3792.169	335	-234.075333	16	260.5	10	0	-103	7655
10/12/09 02:29:24	59.916	3791.502	335	-234.075333	16	261	10	0	-103	7655
10/12/09 02:29:26	59.916	3789.534	335	-228.798157	16	261.5	10	0	-103	7656
10/12/09 02:29:28	59.917	3788.132	335	-228.798157	16	262	10	0	-103	7656
10/12/09 02:29:30	59.918	3784.563	335	-228.798157	16	262.5	10	0	-103	7657
10/12/09 02:29:32	59.92	3783.028	335	-228.798157	16	263	10	0	-103	7657
10/12/09 02:29:34	59.921	3781.701	335	-228.798157	16	263.5	10	0	-103	7658
10/12/09 02:29:36	59.92	3776.358	335	-229.466965	16	264	10	0	-103	7658
10/12/09 02:29:38	59.917	3775.635	335	-229.466965	16	264.5	10	0	-103	7659
10/12/09 02:29:40	59.92	3774.604	335	-229.466965	16	265	10	0	-103	7659
10/12/09 02:29:42	59.921	3773.334	335	-229.466965	16	265.5	10	0	-103	7659
10/12/09 02:29:44	59.923	3773.958	335	-229.466965	16	266	10	0	-103	7660
10/12/09 02:29:46	59.926	3772.722	335	-228.980164	16	266.5	10	0	-103	7660

10/12/09 02:29:48	59.925	3771.67	335	-228.980164	16	267	10	0	-103	7661
10/12/09 02:29:50	59.928	3769.63	335	-228.980164	16	267.5	10	0	-103	7661
10/12/09 02:29:52	59.927	3768.707	335	-228.980164	16	268	10	0	-103	7662
10/12/09 02:29:54	59.932	3767.643	335	-228.980164	16	268.5	10	0	-103	7662
10/12/09 02:29:56	59.927	3767.021	335	-219.975555	16	269	10	0	-103	7663
10/12/09 02:29:58	59.928	3767.408	335	-219.975555	16	269.5	10	0	-103	7663
10/12/09 02:30:00	59.931	3766.788	335	-219.975555	16	270	10	0	-103	7664
10/12/09 02:30:02	59.929	3766.259	335	-219.975555	16	270.5	10	0	-103	7664
10/12/09 02:30:04	59.931	3765.672	335	-219.975555	16	271	10	0	-103	7665
10/12/09 02:30:06	59.933	3766.123	335	-229.089249	16	271.5	10	0	-103	7666
10/12/09 02:30:08	59.937	3764.243	335	-229.089249	16	272	10	0	-103	7666
10/12/09 02:30:10	59.937	3765.105	335	-229.089249	16	272.5	10	0	-103	7667
10/12/09 02:30:12	59.945	3762.935	335	-229.089249	16	273	10	0	-103	7668
10/12/09 02:30:14	59.949	3758.387	335	-229.089249	16	273.5	10	0	-103	7668
10/12/09 02:30:16	59.947	3753.922	335	-229.663269	16	274	10	0	-103	7669
10/12/09 02:30:18	59.942	3749.867	335	-229.663269	16	274.5	10	0	-103	7669
10/12/09 02:30:20	59.941	3746.889	335	-229.663269	16	275	10	0	-103	7670
10/12/09 02:30:22	59.942	3747.875	335	-229.663269	16	275.5	10	0	-103	7670
10/12/09 02:30:24	59.945	3749.593	335	-229.663269	16	276	10	0	-103	7671
10/12/09 02:30:26	59.948	3748.661	335	-229.233856	16	276.5	10	0	-103	7671
10/12/09 02:30:28	59.947	3746.706	335	-229.233856	16	277	10	0	-103	7672
10/12/09 02:30:30	59.949	3749.077	335	-229.233856	16	277.5	10	0	-103	7673
10/12/09 02:30:32	59.951	3742.741	335	-229.233856	16	278	10	0	-103	7673
10/12/09 02:30:34	59.952	3740.259	350	-229.233856	16	278.5	10	0	-103	7673
10/12/09 02:30:36	59.953	3736.139	350	-231.409882	16	279	10	0	-103	7673
10/12/09 02:30:38	59.951	3731.382	350	-231.409882	16	279.5	10	0	-103	7673
10/12/09 02:30:40	59.952	3727.838	350	-231.409882	16	280	10	0	-103	7673
10/12/09 02:30:42	59.952	3725.952	350	-231.409882	16	280.5	10	0	-103	7673
10/12/09 02:30:44	59.952	3722.649	350	-231.409882	16	281	10	0	-103	7673
10/12/09 02:30:46	59.955	3720.578	350	-218.622284	16	281.5	10	0	-103	7673
10/12/09 02:30:48	59.952	3717.996	350	-218.622284	16	282	10	0	-103	7673
10/12/09 02:30:50	59.954	3718.142	350	-218.622284	16	282.5	10	0	-103	7673
10/12/09 02:30:52	59.952	3715.753	350	-218.622284	16	283	10	0	-103	7673
10/12/09 02:30:54	59.953	3713.694	350	-218.622284	16	283.5	10	0	-103	7673
10/12/09 02:30:56	59.953	3713.484	350	-213.535858	16	284	10	0	-103	7673
10/12/09 02:30:58	59.952	3710.848	350	-213.535858	16	284.5	10	0	-103	7673
10/12/09 02:31:00	59.954	3710.81	350	-213.535858	16	285	10	0	-103	7673
10/12/09 02:31:02	59.954	3712.092	350	-213.535858	16	285.5	10	0	-103	7674
10/12/09 02:31:04	59.959	3714.623	350	-213.535858	16	286	10	0	-103	7675
10/12/09 02:31:06	59.957	3715.13	350	-225.651855	16	286.5	10	0	-103	7676
10/12/09 02:31:08	59.956	3716.168	350	-225.651855	16	287	10	0	-103	7677
10/12/09 02:31:10	59.954	3716.461	350	-225.651855	16	287.5	10	0	-103	7678
10/12/09 02:31:12	59.956	3716.98	350	-225.651855	16	288	10	0	-103	7679
10/12/09 02:31:14	59.955	3717.759	350	-225.651855	16	288.5	10	0	-103	7680
10/12/09 02:31:16	59.958	3722.361	350	-212.573639	16	289	10	0	-103	7681
10/12/09 02:31:18	59.961	3721.973	350	-212.573639	16	289.5	10	0	-103	7682
10/12/09 02:31:20	59.962	3722.658	350	-212.573639	16	290	10	0	-103	7684
10/12/09 02:31:22	59.962	3722.267	350	-212.573639	16	290.5	10	0	-103	7685
10/12/09 02:31:24	59.968	3722.278	350	-212.573639	16	291	10	0	-103	7687

10/12/09 02:31:26	59.966	3721.787	350	-219.897293	16	291.5	10	0	-103	7689
10/12/09 02:31:28	59.966	3723.091	350	-219.897293	16	292	10	0	-103	7690
10/12/09 02:31:30	59.968	3723.984	350	-219.897293	16	292.5	10	0	-103	7692
10/12/09 02:31:32	59.97	3723.435	350	-219.897293	16	293	10	0	-103	7692
10/12/09 02:31:34	59.974	3723.893	350	-219.897293	16	293.5	10	0	-103	7693
10/12/09 02:31:36	59.97	3725.403	350	-231.1754	16	294	10	0	-103	7693
10/12/09 02:31:38	59.969	3727.121	350	-231.1754	16	294.5	10	0	-103	7694
10/12/09 02:31:40	59.969	3728.053	350	-231.1754	16	295	10	0	-103	7694
10/12/09 02:31:42	59.97	3731.13	350	-231.1754	16	295.5	10	0	-103	7695
10/12/09 02:31:44	59.971	3732.53	350	-231.1754	16	296	10	0	-103	7695
10/12/09 02:31:46	59.973	3733.327	350	-226.634125	16	296.5	10	0	-103	7695
10/12/09 02:31:48	59.973	3736.535	350	-226.634125	16	297	10	0	-103	7696
10/12/09 02:31:50	59.976	3736.907	350	-226.634125	16	297.5	10	0	-103	7696
10/12/09 02:31:52	59.978	3736.822	350	-226.634125	16	298	10	0	-103	7697
10/12/09 02:31:54	59.978	3738.699	350	-226.634125	16	298.5	10	0	-103	7697
10/12/09 02:31:56	59.976	3739.944	350	-227.255066	16	299	10	0	-103	7697
10/12/09 02:31:58	59.978	3740.877	350	-227.255066	16	299.5	10	0	-103	7698
10/12/09 02:32:00	59.976	3741.794	350	-227.255066	16	300	10	0	-103	7698
10/12/09 02:32:02	59.978	3745.234	350	-227.255066	16	300.5	10	0	-103	7698.33
10/12/09 02:32:04	59.977	3746.608	350	-227.255066	16	301	10	0	-103	7698.66
10/12/09 02:32:06	59.98	3748.3	350	-229.290222	16	301.5	10	0	-103	7698.99
10/12/09 02:32:08	59.982	3750.716	350	-229.290222	16	302	10	0	-103	7699.32
10/12/09 02:32:10	59.981	3751.558	350	-229.290222	16	302.5	10	0	-103	7699.65
10/12/09 02:32:12	59.98	3752.748	350	-229.290222	16	303	10	0	-103	7699.98
10/12/09 02:32:14	59.979	3755.599	350	-229.290222	16	303.5	10	0	-103	7700.31
10/12/09 02:32:16	59.98	3756.407	350	-221.461365	16	304	10	0	-103	7700.64
10/12/09 02:32:18	59.979	3756.975	350	-221.461365	16	304.5	10	0	-103	7700.97
10/12/09 02:32:20	59.983	3760.405	350	-221.461365	16	305	10	0	-103	7701.3
10/12/09 02:32:22	59.983	3760.982	350	-221.461365	16	305.5	10	0	-103	7701.63
10/12/09 02:32:24	59.984	3761.407	350	-221.461365	16	306	10	0	-103	7701.96
10/12/09 02:32:26	59.988	3762.737	350	-241.274368	16	306.5	10	0	-103	7702.29
10/12/09 02:32:28	59.989	3763.212	350	-241.274368	16	307	10	0	-103	7702.62
10/12/09 02:32:30	59.987	3764.958	350	-241.274368	16	307.5	10	0	-103	7702.95
10/12/09 02:32:32	59.987	3766.085	350	-241.274368	16	308	10	0	-103	7703.28
10/12/09 02:32:34	59.991	3766.433	350	-241.274368	16	308.5	10	0	-103	7703.61
10/12/09 02:32:36	59.993	3767.251	350	-243.071854	16	309	10	0	-103	7703.94
10/12/09 02:32:38	59.992	3767.792	350	-243.071854	16	309.5	10	0	-103	7704.27
10/12/09 02:32:40	59.991	3768.634	350	-243.071854	16	310	10	0	-103	7704.6
10/12/09 02:32:42	59.989	3771.146	350	-243.071854	16	310.5	10	0	-103	7704.93
10/12/09 02:32:44	59.986	3772.445	350	-243.071854	16	311	10	0	-103	7705.26
10/12/09 02:32:46	59.983	3773.695	350	-241.670212	16	311.5	10	0	-103	7705.59
10/12/09 02:32:48	59.983	3774.668	350	-241.670212	16	312	10	0	-103	7705.92
10/12/09 02:32:50	59.988	3775.841	350	-241.670212	16	312.5	10	0	-103	7706.25
10/12/09 02:32:52	59.993	3775.363	350	-241.670212	16	313	10	0	-103	7706.58
10/12/09 02:32:54	59.996	3774.866	350	-241.670212	16	313.5	10	0	-103	7706.91
10/12/09 02:32:56	59.998	3775.492	350	-228.149307	16	314	10	0	-103	7707.24
10/12/09 02:32:58	59.999	3776.42	350	-228.149307	16	314.5	10	0	-103	7707.57
10/12/09 02:33:00	60.001	3778.554	350	-228.149307	16	315	10	0	-103	7707.9
10/12/09 02:33:02	59.999	3779.692	350	-228.149307	16	315.5	10	0	-103	7708.23

10/12/09 02:33:04	59.999	3781.256	350	-228.149307	16	316	10	0	-103	7708.56
10/12/09 02:33:06	59.999	3780.595	350	-235.128983	16	316.5	10	0	-103	7708.89
10/12/09 02:33:08	60.002	3783.092	350	-235.128983	16	317	10	0	-103	7709.22
10/12/09 02:33:10	60.005	3783.896	350	-235.128983	16	317.5	10	0	-103	7709.55
10/12/09 02:33:12	60.007	3784.421	350	-235.128983	16	318	10	0	-103	7709.88
10/12/09 02:33:14	60.008	3785.768	350	-235.128983	16	318.5	10	0	-103	7710.21
10/12/09 02:33:16	60.011	3785.463	350	-246.433136	16	319	10	0	-103	7710.54
10/12/09 02:33:18	60.014	3786.85	350	-246.433136	16	319.5	10	0	-103	7710.87
10/12/09 02:33:20	60.017	3786.304	350	-246.433136	16	320	10	0	-103	7711.2
10/12/09 02:33:22	60.019	3787.259	350	-246.433136	16	320.5	10	0	-103	7711.53
10/12/09 02:33:24	60.021	3787.516	350	-246.433136	16	321	10	0	-103	7711.86
10/12/09 02:33:26	60.017	3787.955	350	-236.553543	16	321.5	10	0	-103	7712.19
10/12/09 02:33:28	60.017	3788.03	350	-236.553543	16	322	10	0	-103	7712.52
10/12/09 02:33:30	60.019	3788.607	350	-236.553543	16	322.5	10	0	-103	7712.85
10/12/09 02:33:32	60.023	3789.216	350	-236.553543	16	323	10	0	-103	7713.18
10/12/09 02:33:34	60.024	3787.537	350	-236.553543	16	323.5	10	0	-103	7713.51
10/12/09 02:33:36	60.025	3785.842	350	-230.297562	16	324	10	0	-103	7713.84
10/12/09 02:33:38	60.021	3786.077	350	-230.297562	16	324.5	10	0	-103	7714.17
10/12/09 02:33:40	60.019	3787.93	350	-230.297562	16	325	10	0	-103	7714.5
10/12/09 02:33:42	60.024	3788.76	350	-230.297562	16	325.5	10	0	-103	7714.83
10/12/09 02:33:44	60.024	3786.875	350	-230.297562	16	326	10	0	-103	7715.16
10/12/09 02:33:46	60.021	3786.55	350	-231.175537	16	326.5	10	0	-103	7715.49
10/12/09 02:33:48	60.02	3787.358	350	-231.175537	16	327	10	0	-103	7715.82
10/12/09 02:33:50	60.025	3785.018	350	-231.175537	16	327.5	10	0	-103	7716.15
10/12/09 02:33:52	60.024	3785.614	350	-231.175537	16	328	10	0	-103	7716.48
10/12/09 02:33:54	60.02	3785.949	350	-231.175537	16	328.5	10	0	-103	7716.81
10/12/09 02:33:56	60.02	3785.804	350	-225.61763	16	329	10	0	-103	7717.14
10/12/09 02:33:58	60.022	3786.864	350	-225.61763	16	329.5	10	0	-103	7717.47
10/12/09 02:34:00	60.022	3786.877	350	-225.61763	16	330	10	0	-103	7717.8
10/12/09 02:34:02	60.022	3785.254	350	-225.61763	16	330.5	10	0	-103	7718.13
10/12/09 02:34:04	60.021	3785.726	350	-225.61763	16	331	10	0	-103	7718.46
10/12/09 02:34:06	60.021	3786.347	350	-230.734421	16	331.5	10	0	-103	7718.79
10/12/09 02:34:08	60.023	3785.821	350	-230.734421	16	332	10	0	-103	7719.12
10/12/09 02:34:10	60.023	3785.798	350	-230.734421	16	332.5	10	0	-103	7719.45
10/12/09 02:34:12	60.022	3786.284	350	-230.734421	16	333	10	0	-103	7719.78
10/12/09 02:34:14	60.019	3786.939	350	-230.734421	16	333.5	10	0	-103	7720.11
10/12/09 02:34:16	60.016	3787.627	350	-234.847107	16	334	10	0	-103	7720.44
10/12/09 02:34:18	60.018	3789.444	350	-234.847107	16	334.5	10	0	-103	7720.77
10/12/09 02:34:20	60.018	3789.673	350	-234.847107	16	335	10	0	-103	7721.1
10/12/09 02:34:22	60.018	3789.404	350	-234.847107	16	335.5	10	0	-103	7721.43
10/12/09 02:34:24	60.019	3788.479	350	-234.847107	16	336	10	0	-103	7721.76
10/12/09 02:34:26	60.019	3789.183	350	-228.960922	16	336.5	10	0	-103	7722.09
10/12/09 02:34:28	60.016	3789.369	350	-228.960922	16	337	10	0	-103	7722.42
10/12/09 02:34:30	60.015	3789.005	350	-228.960922	16	337.5	10	0	-103	7722.75
10/12/09 02:34:32	60.016	3788.665	350	-228.960922	16	338	10	0	-103	7723.08
10/12/09 02:34:34	60.014	3788.933	350	-228.960922	16	338.5	10	0	-103	7723.41
10/12/09 02:34:36	60.013	3790.667	350	-231.177917	16	339	10	0	-103	7723.74
10/12/09 02:34:38	60.012	3790.805	350	-231.177917	16	339.5	10	0	-103	7724.07
10/12/09 02:34:40	60.012	3790.411	350	-231.177917	16	340	10	0	-103	7724.4

10/12/09 02:34:42	60.01	3789.769	350	-231.177917	16	340.5	10	0	-103	7724.73
10/12/09 02:34:44	60.007	3791.54	350	-231.177917	16	341	10	0	-103	7725.06
10/12/09 02:34:46	60.007	3792.945	350	-236.489288	16	341.5	10	0	-103	7725.39
10/12/09 02:34:48	60.009	3791.027	350	-236.489288	16	342	10	0	-103	7725.72
10/12/09 02:34:50	60.009	3791.443	350	-236.489288	16	342.5	10	0	-103	7726.05
10/12/09 02:34:52	60.01	3791.426	350	-236.489288	16	343	10	0	-103	7726.38
10/12/09 02:34:54	60.003	3790.603	350	-236.489288	16	343.5	10	0	-103	7726.71
10/12/09 02:34:56	59.999	3790.457	350	-245.038925	16	344	10	0	-103	7727.04
10/12/09 02:34:58	59.995	3790.216	350	-245.038925	16	344.5	10	0	-103	7727.37
10/12/09 02:35:00	59.992	3789.585	350	-245.038925	16	345	10	0	-103	7727.7
10/12/09 02:35:02	59.991	3788.457	350	-245.038925	16	345.5	10	0	-103	7728.03
10/12/09 02:35:04	59.992	3788.105	350	-245.038925	16	346	10	0	-103	7728.36
10/12/09 02:35:06	59.992	3788.057	350	-223.605682	16	346.5	10	0	-103	7728.69
10/12/09 02:35:08	59.988	3788.189	350	-223.605682	16	347	10	0	-103	7729.02
10/12/09 02:35:10	59.986	3788.497	350	-223.605682	16	347.5	10	0	-103	7729.35
10/12/09 02:35:12	59.985	3788.54	350	-223.605682	16	348	10	0	-103	7729.68
10/12/09 02:35:14	59.984	3788.571	350	-223.605682	16	348.5	10	0	-103	7730.01
10/12/09 02:35:16	59.985	3788.101	350	-231.119354	16	349	10	0	-103	7730.34
10/12/09 02:35:18	59.984	3787.133	350	-231.119354	16	349.5	10	0	-103	7730.67
10/12/09 02:35:20	59.982	3786.453	350	-231.119354	16	350	10	0	-103	7731
10/12/09 02:35:22	59.981	3787.732	350	-231.119354	16	350.5	10	0	-103	7731.33
10/12/09 02:35:24	59.982	3788.813	350	-231.119354	16	351	10	0	-103	7731.66
10/12/09 02:35:26	59.979	3789.285	350	-237.20665	16	351.5	10	0	-103	7731.99
10/12/09 02:35:28	59.977	3788.256	350	-237.20665	16	352	10	0	-103	7732.32
10/12/09 02:35:30	59.976	3788.41	350	-237.20665	16	352.5	10	0	-103	7732.65
10/12/09 02:35:32	59.976	3790.467	350	-237.20665	16	353	10	0	-103	7732.98
10/12/09 02:35:34	59.979	3790.665	350	-237.20665	16	353.5	10	0	-103	7733.31
10/12/09 02:35:36	59.982	3790.42	350	-240.516373	16	354	10	0	-103	7733.64
10/12/09 02:35:38	59.978	3789.674	350	-240.516373	16	354.5	10	0	-103	7733.97
10/12/09 02:35:40	59.976	3789.267	350	-240.516373	16	355	10	0	-103	7734.3
10/12/09 02:35:42	59.974	3789.148	350	-240.516373	16	355.5	10	0	-103	7734.63
10/12/09 02:35:44	59.976	3790.43	350	-240.516373	16	356	10	0	-103	7734.96
10/12/09 02:35:46	59.977	3789.914	350	-237.566055	16	356.5	10	0	-103	7735.29
10/12/09 02:35:48	59.977	3786.243	350	-237.566055	16	357	10	0	-103	7735.62
10/12/09 02:35:50	59.975	3787.442	350	-237.566055	16	357.5	10	0	-103	7735.95
10/12/09 02:35:52	59.973	3788.963	350	-237.566055	16	358	10	0	-103	7736.28
10/12/09 02:35:54	59.969	3790.602	350	-237.566055	16	358.5	10	0	-103	7736.61
10/12/09 02:35:56	59.97	3791.877	350	-231.581421	16	359	10	0	-103	7736.94
10/12/09 02:35:58	59.971	3792.911	350	-231.581421	16	359.5	10	0	-103	7737.27
10/12/09 02:36:00	59.973	3792.311	350	-231.581421	16	360	10	0	-103	7737.6
10/12/09 02:36:02	59.978	3789.125	350	-231.581421	16	360.5	10	0	-103	7737.93
10/12/09 02:36:04	59.981	3788.08	350	-231.581421	16	361	10	0	-103	7738.26
10/12/09 02:36:06	59.978	3787.844	350	-235.850845	16	361.5	10	0	-103	7738.59
10/12/09 02:36:08	59.975	3787.135	350	-235.850845	16	362	10	0	-103	7738.92
10/12/09 02:36:10	59.972	3787.164	350	-235.850845	16	362.5	10	0	-103	7739.25
10/12/09 02:36:12	59.976	3786.996	350	-235.850845	16	363	10	0	-103	7739.58
10/12/09 02:36:14	59.975	3787.405	350	-235.850845	16	363.5	10	0	-103	7739.91
10/12/09 02:36:16	59.973	3786.487	350	-233.559982	16	364	10	0	-103	7740.24
10/12/09 02:36:18	59.969	3787.079	350	-233.559982	16	364.5	10	0	-103	7740.57

10/12/09 02:36:20	59.966	3789.214	350	-233.559982	16	365	10	0	-103	7740.9
10/12/09 02:36:22	59.965	3790.512	350	-233.559982	16	365.5	10	0	-103	7741.23
10/12/09 02:36:24	59.966	3791.221	350	-233.559982	16	366	10	0	-103	7741.56
10/12/09 02:36:26	59.969	3792.218	350	-219.009995	16	366.5	10	0	-103	7741.89
10/12/09 02:36:28	59.97	3790.959	350	-219.009995	16	367	10	0	-103	7742.22
10/12/09 02:36:30	59.968	3788.824	350	-219.009995	16	367.5	10	0	-103	7742.55
10/12/09 02:36:32	59.965	3789.026	350	-219.009995	16	368	10	0	-103	7742.88
10/12/09 02:36:34	59.964	3789.167	350	-219.009995	16	368.5	10	0	-103	7743.21
10/12/09 02:36:36	59.97	3787.394	350	-205.338913	16	369	10	0	-103	7743.54
10/12/09 02:36:38	59.972	3785.69	350	-205.338913	16	369.5	10	0	-103	7743.87
10/12/09 02:36:40	59.967	3784.831	350	-205.338913	16	370	10	0	-103	7744.2
10/12/09 02:36:42	59.967	3785.01	350	-205.338913	16	370.5	10	0	-103	7744.53
10/12/09 02:36:44	59.969	3784.32	350	-205.338913	16	371	10	0	-103	7744.86
10/12/09 02:36:46	59.968	3782.809	350	-236.285355	16	371.5	10	0	-103	7745.19
10/12/09 02:36:48	59.969	3782.11	350	-236.285355	16	372	10	0	-103	7745.52
10/12/09 02:36:50	59.967	3779.352	350	-236.285355	16	372.5	10	0	-103	7745.85
10/12/09 02:36:52	59.967	3779.056	350	-236.285355	16	373	10	0	-103	7746.18
10/12/09 02:36:54	59.966	3778.633	350	-236.285355	16	373.5	10	0	-103	7746.51
10/12/09 02:36:56	59.965	3779.212	350	-223.015732	16	374	10	0	-103	7746.84
10/12/09 02:36:58	59.971	3779.335	350	-223.015732	16	374.5	10	0	-103	7747.17
10/12/09 02:37:00	59.967	3776.429	350	-223.015732	16	375	10	0	-103	7747.5
10/12/09 02:37:02	59.965	3775.647	350	-223.015732	16	375.5	10	0	-103	7747.83
10/12/09 02:37:04	59.962	3776.597	350	-223.015732	16	376	10	0	-103	7748.16
10/12/09 02:37:06	59.964	3776.559	350	-223.015732	16	376.5	10	0	-103	7748.49
10/12/09 02:37:08	59.97	3776.023	350	-223.015732	16	377	10	0	-103	7748.82
10/12/09 02:37:10	59.967	3773.17	350	-223.015732	16	377.5	10	0	-103	7749.15
10/12/09 02:37:12	59.969	3771.73	350	-223.015732	16	378	10	0	-103	7749.48
10/12/09 02:37:14	59.968	3768.793	350	-223.015732	16	378.5	10	0	-103	7749.81
10/12/09 02:37:16	59.963	3768.503	350	-223.015732	16	379	10	0	-103	7750.14
10/12/09 02:37:18	59.965	3768.917	350	-223.015732	16	379.5	10	0	-103	7750.47
10/12/09 02:37:20	59.97	3767.366	350	-223.015732	16	380	10	0	-103	7750.8
10/12/09 02:37:22	59.973	3764.786	350	-223.015732	16	380.5	10	0	-103	7751.13
10/12/09 02:37:24	59.968	3760.295	350	-223.015732	16	381	10	0	-103	7751.46
10/12/09 02:37:26	59.965	3759.592	350	-223.015732	16	381.5	10	0	-103	7751.79
10/12/09 02:37:28	59.968	3761.894	350	-223.015732	16	382	10	0	-103	7752.12
10/12/09 02:37:30	59.969	3761.777	350	-223.015732	16	382.5	10	0	-103	7752.45
10/12/09 02:37:32	59.967	3760.583	350	-223.015732	16	383	10	0	-103	7752.78
10/12/09 02:37:34	59.964	3760.157	350	-223.015732	16	383.5	10	0	-103	7753.11
10/12/09 02:37:36	59.966	3759.781	350	-223.015732	16	384	10	0	-103	7753.44
10/12/09 02:37:38	59.979	3759.495	350	-223.015732	16	384.5	10	0	-103	7753.77
10/12/09 02:37:40	59.99	3757.773	350	-223.015732	16	385	10	0	-103	7754.1
10/12/09 02:37:42	59.983	3753.277	350	-223.015732	16	385.5	10	0	-103	7754.43
10/12/09 02:37:44	59.974	3753.087	350	-223.015732	16	386	10	0	-103	7754.76
10/12/09 02:37:46	59.967	3751.637	350	-223.015732	16	386.5	10	0	-103	7755.09
10/12/09 02:37:48	59.965	3753.751	350	-223.015732	16	387	10	0	-103	7755.42
10/12/09 02:37:50	59.962	3758.225	350	-223.015732	16	387.5	10	0	-103	7755.75
10/12/09 02:37:52	59.962	3759.25	350	-223.015732	16	388	10	0	-103	7756.08
10/12/09 02:37:54	59.961	3758.041	350	-223.015732	16	388.5	10	0	-103	7756.41
10/12/09 02:37:56	59.961	3760.965	350	-223.015732	16	389	10	0	-103	7756.74

10/12/09 02:37:58	59.96	3762.022	350	-223.015732	16	389.5	10	0	-103	7757.07
10/12/09 02:38:00	59.963	3763.822	350	-223.015732	16	390	10	0	-103	7757.4
10/12/09 02:38:02	59.959	3763.1	350	-223.015732	16	390.5	10	0	-103	7757.73
10/12/09 02:38:04	59.956	3763.858	350	-223.015732	16	391	10	0	-103	7758.06
10/12/09 02:38:06	59.951	3764.158	350	-223.015732	16	391.5	10	0	-103	7758.39
10/12/09 02:38:08	59.953	3766.127	350	-223.015732	16	392	10	0	-103	7758.72
10/12/09 02:38:10	59.954	3768.339	350	-223.015732	16	392.5	10	0	-103	7759.05
10/12/09 02:38:12	59.957	3767.972	350	-223.015732	16	393	10	0	-103	7759.38
10/12/09 02:38:14	59.956	3767.438	350	-223.015732	16	393.5	10	0	-103	7759.71
10/12/09 02:38:16	59.961	3765.606	350	-223.015732	16	394	10	0	-103	7760.04
10/12/09 02:38:18	59.963	3762.688	350	-223.015732	16	394.5	10	0	-103	7760.37
10/12/09 02:38:20	59.961	3761.57	350	-223.015732	16	395	10	0	-103	7760.7
10/12/09 02:38:22	59.959	3761.92	350	-223.015732	16	395.5	10	0	-103	7761.03
10/12/09 02:38:24	59.963	3759.627	350	-223.015732	16	396	10	0	-103	7761.36
10/12/09 02:38:26	59.963	3758.522	350	-223.015732	16	396.5	10	0	-103	7761.69
10/12/09 02:38:28	59.965	3752.429	350	-223.015732	16	397	10	0	-103	7762.02
10/12/09 02:38:30	59.968	3750.102	350	-223.015732	16	397.5	10	0	-103	7762.35
10/12/09 02:38:32	59.968	3753.83	350	-223.015732	16	398	10	0	-103	7762.68
10/12/09 02:38:34	59.968	3753.51	350	-223.015732	16	398.5	10	0	-103	7763.01
10/12/09 02:38:36	59.97	3753.523	350	-223.015732	16	399	10	0	-103	7763.34
10/12/09 02:38:38	59.973	3752.741	350	-223.015732	16	399.5	10	0	-103	7763.67
10/12/09 02:38:40	59.971	3753.178	350	-223.015732	16	400	10	0	-103	7764
10/12/09 02:38:42	59.965	3752.729	350	-223.015732	16	400.5	10	0	-103	7764.33
10/12/09 02:38:44	59.967	3753.291	350	-223.015732	16	401	10	0	-103	7764.66
10/12/09 02:38:46	59.967	3752.872	350	-223.015732	16	401.5	10	0	-103	7764.99
10/12/09 02:38:48	59.972	3752.359	350	-223.015732	16	402	10	0	-103	7765.32
10/12/09 02:38:50	59.976	3749.398	350	-223.015732	16	402.5	10	0	-103	7765.65
10/12/09 02:38:52	59.975	3747.476	350	-223.015732	16	403	10	0	-103	7765.98
10/12/09 02:38:54	59.969	3740.37	350	-223.015732	16	403.5	10	0	-103	7766.31
10/12/09 02:38:56	59.973	3741.285	350	-223.015732	16	404	10	0	-103	7766.64
10/12/09 02:38:58	59.974	3746.651	350	-223.015732	16	404.5	10	0	-103	7766.97
10/12/09 02:39:00	59.978	3745.738	350	-223.015732	16	405	10	0	-103	7767.3
10/12/09 02:39:02	59.981	3743.351	350	-223.015732	16	405.5	10	0	-103	7767.63
10/12/09 02:39:04	59.981	3741.618	350	-223.015732	16	406	10	0	-103	7767.96
10/12/09 02:39:06	59.981	3740.306	350	-223.015732	16	406.5	10	0	-103	7768.29
10/12/09 02:39:08	59.982	3738.484	350	-223.015732	16	407	10	0	-103	7768.62
10/12/09 02:39:10	59.982	3738.901	350	-223.015732	16	407.5	10	0	-103	7768.95
10/12/09 02:39:12	59.984	3737.404	350	-223.015732	16	408	10	0	-103	7769.28
10/12/09 02:39:14	59.982	3737.273	350	-223.015732	16	408.5	10	0	-103	7769.61
10/12/09 02:39:16	59.981	3736.308	350	-223.015732	16	409	10	0	-103	7769.94
10/12/09 02:39:18	59.979	3736.272	350	-223.015732	16	409.5	10	0	-103	7770.27
10/12/09 02:39:20	59.98	3735.448	350	-223.015732	16	410	10	0	-103	7770.6
10/12/09 02:39:22	59.978	3735.65	350	-223.015732	16	410.5	10	0	-103	7770.93
10/12/09 02:39:24	59.978	3737.541	350	-223.015732	16	411	10	0	-103	7771.26
10/12/09 02:39:26	59.98	3738.012	350	-223.015732	16	411.5	10	0	-103	7771.59
10/12/09 02:39:28	59.981	3736.748	350	-223.015732	16	412	10	0	-103	7771.92
10/12/09 02:39:30	59.98	3736.693	350	-223.015732	16	412.5	10	0	-103	7772.25
10/12/09 02:39:32	59.978	3736.067	350	-223.015732	16	413	10	0	-103	7772.58
10/12/09 02:39:34	59.976	3736.094	350	-223.015732	16	413.5	10	0	-103	7772.91

10/12/09 02:39:36	59.972	3736.575	350	-223.015732	16	414	10	0	-103	7773.24
10/12/09 02:39:38	59.971	3738.571	350	-223.015732	16	414.5	10	0	-103	7773.57
10/12/09 02:39:40	59.969	3738.875	350	-223.015732	16	415	10	0	-103	7773.9
10/12/09 02:39:42	59.974	3738.935	350	-223.015732	16	415.5	10	0	-103	7774.23
10/12/09 02:39:44	59.975	3738.647	350	-223.015732	16	416	10	0	-103	7774.56
10/12/09 02:39:46	59.976	3737.684	350	-223.015732	16	416.5	10	0	-103	7774.89
10/12/09 02:39:48	59.972	3737.382	350	-223.015732	16	417	10	0	-103	7775.22
10/12/09 02:39:50	59.969	3737.892	350	-223.015732	16	417.5	10	0	-103	7775.55
10/12/09 02:39:52	59.971	3740.017	350	-223.015732	16	418	10	0	-103	7775.88
10/12/09 02:39:54	59.974	3740.329	350	-223.015732	16	418.5	10	0	-103	7776.21
10/12/09 02:39:56	59.972	3742.053	350	-223.015732	16	419	10	0	-103	7776.54
10/12/09 02:39:58	59.972	3742.424	350	-223.015732	16	419.5	10	0	-103	7776.87
10/12/09 02:40:00	59.972	3742.524	350	-223.015732	16	420	10	0	-103	7777.2
10/12/09 02:40:02	59.977	3742.245	350	-223.015732	16	420.5	10	0	-103	7777.53
10/12/09 02:40:04	59.982	3741.723	350	-223.015732	16	421	10	0	-103	7777.86
10/12/09 02:40:06	59.978	3740.085	350	-223.015732	16	421.5	10	0	-103	7778.19
10/12/09 02:40:08	59.976	3740.629	350	-223.015732	16	422	10	0	-103	7778.52
10/12/09 02:40:10	59.973	3739.964	350	-223.015732	16	422.5	10	0	-103	7778.85
10/12/09 02:40:12	59.974	3740.775	350	-223.015732	16	423	10	0	-103	7779.18
10/12/09 02:40:14	59.977	3742.833	350	-223.015732	16	423.5	10	0	-103	7779.51
10/12/09 02:40:16	59.977	3741.268	350	-223.015732	16	424	10	0	-103	7779.84
10/12/09 02:40:18	59.978	3739.776	350	-223.015732	16	424.5	10	0	-103	7780.17
10/12/09 02:40:20	59.979	3738.966	350	-223.015732	16	425	10	0	-103	7780.5
10/12/09 02:40:22	59.981	3738.706	350	-223.015732	16	425.5	10	0	-103	7780.83
10/12/09 02:40:24	59.977	3738.879	350	-223.015732	16	426	10	0	-103	7781.16
10/12/09 02:40:26	59.974	3739.86	350	-223.015732	16	426.5	10	0	-103	7781.49
10/12/09 02:40:28	59.971	3738.102	350	-223.015732	16	427	10	0	-103	7781.82
10/12/09 02:40:30	59.971	3738.558	350	-223.015732	16	427.5	10	0	-103	7782.15
10/12/09 02:40:32	59.971	3743.507	350	-223.015732	16	428	10	0	-103	7782.48
10/12/09 02:40:34	59.972	3743.419	350	-223.015732	16	428.5	10	0	-103	7782.81
10/12/09 02:40:36	59.968	3745.251	350	-223.015732	16	429	10	0	-103	7783.14
10/12/09 02:40:38	59.966	3745.744	350	-223.015732	16	429.5	10	0	-103	7783.47
10/12/09 02:40:40	59.966	3747.34	350	-223.015732	16	430	10	0	-103	7783.8
10/12/09 02:40:42	59.971	3750.7	350	-223.015732	16	430.5	10	0	-103	7784.13
10/12/09 02:40:44	59.973	3749.75	350	-223.015732	16	431	10	0	-103	7784.46
10/12/09 02:40:46	59.972	3746.217	350	-223.015732	16	431.5	10	0	-103	7784.79
10/12/09 02:40:48	59.969	3744.683	350	-223.015732	16	432	10	0	-103	7785.12
10/12/09 02:40:50	59.972	3743.745	350	-223.015732	16	432.5	10	0	-103	7785.45
10/12/09 02:40:52	59.974	3743.149	350	-223.015732	16	433	10	0	-103	7785.78
10/12/09 02:40:54	59.973	3740.299	350	-223.015732	16	433.5	10	0	-103	7786.11
10/12/09 02:40:56	59.97	3739.453	350	-223.015732	16	434	10	0	-103	7786.44
10/12/09 02:40:58	59.971	3733.376	350	-223.015732	16	434.5	10	0	-103	7786.77
10/12/09 02:41:00	59.974	3731.83	350	-223.015732	16	435	10	0	-103	7787.1
10/12/09 02:41:02	59.982	3737.583	350	-223.015732	16	435.5	10	0	-103	7787.43
10/12/09 02:41:04	59.985	3736.229	350	-223.015732	16	436	10	0	-103	7787.76
10/12/09 02:41:06	59.985	3734.897	350	-223.015732	16	436.5	10	0	-103	7788.09
10/12/09 02:41:08	59.985	3733.434	350	-223.015732	16	437	10	0	-103	7788.42
10/12/09 02:41:10	59.987	3733.115	350	-223.015732	16	437.5	10	0	-103	7788.75
10/12/09 02:41:12	59.989	3730.51	350	-223.015732	16	438	10	0	-103	7789.08

10/12/09 02:41:14	59.989	3729.18	350	-223.015732	16	438.5	10	0	-103	7789.41
10/12/09 02:41:16	59.986	3725.459	350	-223.015732	16	439	10	0	-103	7789.74
10/12/09 02:41:18	59.987	3724.785	350	-223.015732	16	439.5	10	0	-103	7790.07
10/12/09 02:41:20	59.99	3720.108	350	-223.015732	16	440	10	0	-103	7790.4
10/12/09 02:41:22	59.994	3720.938	350	-223.015732	16	440.5	10	0	-103	7790.73
10/12/09 02:41:24	59.996	3725.661	350	-223.015732	16	441	10	0	-103	7791.06
10/12/09 02:41:26	60.001	3725.677	350	-223.015732	16	441.5	10	0	-103	7791.39
10/12/09 02:41:28	60.003	3727.754	350	-223.015732	16	442	10	0	-103	7791.72
10/12/09 02:41:30	60.004	3727.825	350	-223.015732	16	442.5	10	0	-103	7792.05
10/12/09 02:41:32	60.006	3727.683	350	-223.015732	16	443	10	0	-103	7792.38
10/12/09 02:41:34	60.012	3727.231	350	-223.015732	16	443.5	10	0	-103	7792.71
10/12/09 02:41:36	60.014	3725.012	350	-223.015732	16	444	10	0	-103	7793.04
10/12/09 02:41:38	60.019	3726.446	350	-223.015732	16	444.5	10	0	-103	7793.37
10/12/09 02:41:40	60.021	3726.016	350	-223.015732	16	445	10	0	-103	7793.7
10/12/09 02:41:42	60.025	3719.123	350	-223.015732	16	445.5	10	0	-103	7794.03
10/12/09 02:41:44	60.026	3716.375	350	-223.015732	16	446	10	0	-103	7794.36
10/12/09 02:41:46	60.027	3717.333	350	-223.015732	16	446.5	10	0	-103	7794.69
10/12/09 02:41:48	60.029	3717.56	350	-223.015732	16	447	10	0	-103	7795.02
10/12/09 02:41:50	60.029	3717.142	350	-223.015732	16	447.5	10	0	-103	7795.35
10/12/09 02:41:52	60.037	3715.166	350	-223.015732	16	448	10	0	-103	7795.68
10/12/09 02:41:54	60.036	3713.632	350	-223.015732	16	448.5	10	0	-103	7796.01
10/12/09 02:41:56	60.037	3710.283	350	-223.015732	16	449	10	0	-103	7796.34
10/12/09 02:41:58	60.037	3710.158	350	-223.015732	16	449.5	10	0	-103	7796.67
10/12/09 02:42:00	60.036	3699.356	350	-223.015732	16	450	10	0	-103	7797
10/12/09 02:42:02	60.041	3698.591	350	-223.015732	16	450.5	10	0	-103	7797.33
10/12/09 02:42:04	60.043	3704.591	350	-223.015732	16	451	10	0	-103	7797.66
10/12/09 02:42:06	60.044	3703.275	350	-223.015732	16	451.5	10	0	-103	7797.99
10/12/09 02:42:08	60.043	3702.482	350	-223.015732	16	452	10	0	-103	7798.32
10/12/09 02:42:10	60.046	3701.316	350	-223.015732	16	452.5	10	0	-103	7798.65
10/12/09 02:42:12	60.048	3700.826	350	-223.015732	16	453	10	0	-103	7798.98
10/12/09 02:42:14	60.046	3699.529	350	-223.015732	16	453.5	10	0	-103	7799.31
10/12/09 02:42:16	60.046	3699.726	350	-223.015732	16	454	10	0	-103	7799.64
10/12/09 02:42:18	60.043	3690.1	350	-223.015732	16	454.5	10	0	-103	7799.97
10/12/09 02:42:20	60.043	3690.477	350	-223.015732	16	455	10	0	-103	7800.3
10/12/09 02:42:22	60.044	3696.865	350	-223.015732	16	455.5	10	0	-103	7800.63
10/12/09 02:42:24	60.043	3696.877	350	-223.015732	16	456	10	0	-103	7800.96
10/12/09 02:42:26	60.043	3696.182	350	-223.015732	16	456.5	10	0	-103	7801.29
10/12/09 02:42:28	60.045	3696.541	350	-223.015732	16	457	10	0	-103	7801.62
10/12/09 02:42:30	60.04	3696.968	350	-223.015732	16	457.5	10	0	-103	7801.95
10/12/09 02:42:32	60.041	3698.686	350	-223.015732	16	458	10	0	-103	7802.28
10/12/09 02:42:34	60.039	3699.631	350	-223.015732	16	458.5	10	0	-103	7802.61
10/12/09 02:42:36	60.039	3698.787	350	-223.015732	16	459	10	0	-103	7802.94
10/12/09 02:42:38	60.036	3699.712	350	-223.015732	16	459.5	10	0	-103	7803.27
10/12/09 02:42:40	60.038	3700.106	350	-223.015732	16	460	10	0	-103	7803.6
10/12/09 02:42:42	60.033	3699.968	350	-223.015732	16	460.5	10	0	-103	7803.93
10/12/09 02:42:44	60.034	3701.122	350	-223.015732	16	461	10	0	-103	7804.26
10/12/09 02:42:46	60.037	3701.865	350	-223.015732	16	461.5	10	0	-103	7804.59
10/12/09 02:42:48	60.037	3701.614	350	-223.015732	16	462	10	0	-103	7804.92
10/12/09 02:42:50	60.035	3701.998	350	-223.015732	16	462.5	10	0	-103	7805.25

10/12/09 02:42:52	60.03	3702.913	350	-223.015732	16	463	10	0	-103	7805.58
10/12/09 02:42:54	60.033	3703.909	350	-223.015732	16	463.5	10	0	-103	7805.91
10/12/09 02:42:56	60.036	3705.522	350	-223.015732	16	464	10	0	-103	7806.24
10/12/09 02:42:58	60.033	3704.967	350	-223.015732	16	464.5	10	0	-103	7806.57
10/12/09 02:43:00	60.034	3704.087	350	-223.015732	16	465	10	0	-103	7806.9
10/12/09 02:43:02	60.032	3702.771	350	-223.015732	16	465.5	10	0	-103	7807.23
10/12/09 02:43:04	60.032	3703.706	350	-223.015732	16	466	10	0	-103	7807.56
10/12/09 02:43:06	60.034	3704.905	350	-223.015732	16	466.5	10	0	-103	7807.89
10/12/09 02:43:08	60.033	3705.435	350	-223.015732	16	467	10	0	-103	7808.22
10/12/09 02:43:10	60.037	3704.36	350	-223.015732	16	467.5	10	0	-103	7808.55
10/12/09 02:43:12	60.035	3702.588	350	-223.015732	16	468	10	0	-103	7808.88
10/12/09 02:43:14	60.035	3702.204	350	-223.015732	16	468.5	10	0	-103	7809.21
10/12/09 02:43:16	60.036	3701.942	350	-223.015732	16	469	10	0	-103	7809.54
10/12/09 02:43:18	60.039	3702.25	350	-223.015732	16	469.5	10	0	-103	7809.87
10/12/09 02:43:20	60.037	3703.318	350	-223.015732	16	470	10	0	-103	7810.2
10/12/09 02:43:22	60.039	3702.457	350	-223.015732	16	470.5	10	0	-103	7810.53
10/12/09 02:43:24	60.036	3702.525	350	-223.015732	16	471	10	0	-103	7810.86
10/12/09 02:43:26	60.034	3703.269	350	-223.015732	16	471.5	10	0	-103	7811.19
10/12/09 02:43:28	60.038	3703.844	350	-223.015732	16	472	10	0	-103	7811.52
10/12/09 02:43:30	60.037	3702.865	350	-223.015732	16	472.5	10	0	-103	7811.85
10/12/09 02:43:32	60.037	3702.518	350	-223.015732	16	473	10	0	-103	7812.18
10/12/09 02:43:34	60.037	3702.28	350	-223.015732	16	473.5	10	0	-103	7812.51
10/12/09 02:43:36	60.038	3692.427	350	-223.015732	16	474	10	0	-103	7812.84
10/12/09 02:43:38	60.04	3692.178	350	-223.015732	16	474.5	10	0	-103	7813.17
10/12/09 02:43:40	60.043	3700.276	350	-223.015732	16	475	10	0	-103	7813.5
10/12/09 02:43:42	60.045	3698.755	350	-223.015732	16	475.5	10	0	-103	7813.83
10/12/09 02:43:44	60.045	3697.729	350	-223.015732	16	476	10	0	-103	7814.16
10/12/09 02:43:46	60.042	3696.916	350	-223.015732	16	476.5	10	0	-103	7814.49
10/12/09 02:43:48	60.043	3697.368	350	-223.015732	16	477	10	0	-103	7814.82
10/12/09 02:43:50	60.04	3697.346	350	-223.015732	16	477.5	10	0	-103	7815.15
10/12/09 02:43:52	60.044	3698.429	350	-223.015732	16	478	10	0	-103	7815.48
10/12/09 02:43:54	60.046	3694.763	350	-223.015732	16	478.5	10	0	-103	7815.81
10/12/09 02:43:56	60.042	3693.584	350	-223.015732	16	479	10	0	-103	7816.14
10/12/09 02:43:58	60.034	3693.241	350	-223.015732	16	479.5	10	0	-103	7816.47
10/12/09 02:44:00	60.039	3696.798	350	-223.015732	16	480	10	0	-103	7816.8
10/12/09 02:44:02	60.039	3699.364	350	-223.015732	16	480.5	10	0	-103	7817.13
10/12/09 02:44:04	60.036	3701.791	350	-223.015732	16	481	10	0	-103	7817.46
10/12/09 02:44:06	60.037	3700.708	350	-223.015732	16	481.5	10	0	-103	7817.79
10/12/09 02:44:08	60.034	3700.753	350	-223.015732	16	482	10	0	-103	7818.12
10/12/09 02:44:10	60.033	3702.148	350	-223.015732	16	482.5	10	0	-103	7818.45
10/12/09 02:44:12	60.032	3705.213	350	-223.015732	16	483	10	0	-103	7818.78
10/12/09 02:44:14	60.031	3707.521	350	-223.015732	16	483.5	10	0	-103	7819.11
10/12/09 02:44:16	60.033	3707.287	350	-223.015732	16	484	10	0	-103	7819.44
10/12/09 02:44:18	60.027	3706.988	350	-223.015732	16	484.5	10	0	-103	7819.77
10/12/09 02:44:20	60.031	3707.34	350	-223.015732	16	485	10	0	-103	7820.1
10/12/09 02:44:22	60.032	3707.917	350	-223.015732	16	485.5	10	0	-103	7820.43
10/12/09 02:44:24	60.031	3707.384	350	-223.015732	16	486	10	0	-103	7820.76
10/12/09 02:44:26	60.031	3706.857	350	-223.015732	16	486.5	10	0	-103	7821.09
10/12/09 02:44:28	60.033	3707.615	350	-223.015732	16	487	10	0	-103	7821.42

10/12/09 02:44:30	60.039	3706.823	350	-223.015732	16	487.5	10	0	-103	7821.75
10/12/09 02:44:32	60.039	3703.746	350	-223.015732	16	488	10	0	-103	7822.08
10/12/09 02:44:34	60.038	3701.582	350	-223.015732	16	488.5	10	0	-103	7822.41
10/12/09 02:44:36	60.037	3700.847	350	-223.015732	16	489	10	0	-103	7822.74
10/12/09 02:44:38	60.035	3701.208	350	-223.015732	16	489.5	10	0	-103	7823.07
10/12/09 02:44:40	60.037	3702.212	350	-223.015732	16	490	10	0	-103	7823.4
10/12/09 02:44:42	60.04	3701.686	350	-223.015732	16	490.5	10	0	-103	7823.73
10/12/09 02:44:44	60.042	3700.397	350	-223.015732	16	491	10	0	-103	7824.06
10/12/09 02:44:46	60.035	3699.69	350	-223.015732	16	491.5	10	0	-103	7824.39
10/12/09 02:44:48	60.036	3700.366	350	-223.015732	16	492	10	0	-103	7824.72
10/12/09 02:44:50	60.04	3700.827	350	-223.015732	16	492.5	10	0	-103	7825.05
10/12/09 02:44:52	60.045	3700.662	350	-223.015732	16	493	10	0	-103	7825.38
10/12/09 02:44:54	60.045	3696.935	350	-223.015732	16	493.5	10	0	-103	7825.71
10/12/09 02:44:56	60.048	3695.688	350	-223.015732	16	494	10	0	-103	7826.04
10/12/09 02:44:58	60.042	3695.819	350	-223.015732	16	494.5	10	0	-103	7826.37
10/12/09 02:45:00	60.044	3693.824	350	-223.015732	16	495	10	0	-103	7826.7
10/12/09 02:45:02	60.044	3694.799	350	-223.015732	16	495.5	10	0	-103	7827.03
10/12/09 02:45:04	60.044	3696.897	350	-223.015732	16	496	10	0	-103	7827.36
10/12/09 02:45:06	60.041	3696.023	350	-223.015732	16	496.5	10	0	-103	7827.69
10/12/09 02:45:08	60.04	3697.502	350	-223.015732	16	497	10	0	-103	7828.02
10/12/09 02:45:10	60.04	3698.424	350	-223.015732	16	497.5	10	0	-103	7828.35
10/12/09 02:45:12	60.045	3699.427	350	-223.015732	16	498	10	0	-103	7828.68
10/12/09 02:45:14	60.044	3700.177	350	-223.015732	16	498.5	10	0	-103	7829.01
10/12/09 02:45:16	60.042	3699.806	350	-223.015732	16	499	10	0	-103	7829.34
10/12/09 02:45:18	60.039	3697.577	350	-223.015732	16	499.5	10	0	-103	7829.67
10/12/09 02:45:20	60.042	3697.681	350	-223.015732	16	500	10	0	-103	7830
10/12/09 02:45:22	60.042	3698.507	350	-223.015732	16	500.5	10	0	-103	7830.33
10/12/09 02:45:24	60.041	3698.359	350	-223.015732	16	501	10	0	-103	7830.66
10/12/09 02:45:26	60.038	3698.466	350	-223.015732	16	501.5	10	0	-103	7830.99
10/12/09 02:45:28	60.036	3699.077	350	-223.015732	16	502	10	0	-103	7831.32
10/12/09 02:45:30	60.037	3700.262	350	-223.015732	16	502.5	10	0	-103	7831.65
10/12/09 02:45:32	60.039	3701.592	350	-223.015732	16	503	10	0	-103	7831.98
10/12/09 02:45:34	60.038	3700.902	350	-223.015732	16	503.5	10	0	-103	7832.31
10/12/09 02:45:36	60.04	3700.143	350	-223.015732	16	504	10	0	-103	7832.64
10/12/09 02:45:38	60.039	3700.27	350	-223.015732	16	504.5	10	0	-103	7832.97
10/12/09 02:45:40	60.037	3701.139	350	-223.015732	16	505	10	0	-103	7833.3
10/12/09 02:45:42	60.038	3701.586	350	-223.015732	16	505.5	10	0	-103	7833.63
10/12/09 02:45:44	60.039	3700.264	350	-223.015732	16	506	10	0	-103	7833.96
10/12/09 02:45:46	60.04	3699.458	350	-223.015732	16	506.5	10	0	-103	7834.29
10/12/09 02:45:48	60.037	3699.721	350	-223.015732	16	507	10	0	-103	7834.62
10/12/09 02:45:50	60.037	3700.458	350	-223.015732	16	507.5	10	0	-103	7834.95
10/12/09 02:45:52	60.037	3699.505	350	-223.015732	16	508	10	0	-103	7835.28
10/12/09 02:45:54	60.039	3698.794	350	-223.015732	16	508.5	10	0	-103	7835.61
10/12/09 02:45:56	60.038	3699.216	350	-223.015732	16	509	10	0	-103	7835.94
10/12/09 02:45:58	60.036	3699.4	350	-223.015732	16	509.5	10	0	-103	7836.27
10/12/09 02:46:00	60.035	3700.661	350	-223.015732	16	510	10	0	-103	7836.6
10/12/09 02:46:02	60.033	3702.173	350	-223.015732	16	510.5	10	0	-103	7836.93
10/12/09 02:46:04	60.031	3702.968	350	-223.015732	16	511	10	0	-103	7837.26
10/12/09 02:46:06	60.03	3705.195	350	-223.015732	16	511.5	10	0	-103	7837.59

10/12/09 02:46:08	60.032	3704.952	350	-223.015732	16	512	10	0	-103	7837.92
10/12/09 02:46:10	60.032	3705.775	350	-223.015732	16	512.5	10	0	-103	7838.25
10/12/09 02:46:12	60.037	3705.621	350	-223.015732	16	513	10	0	-103	7838.58
10/12/09 02:46:14	60.042	3703.744	350	-223.015732	16	513.5	10	0	-103	7838.91
10/12/09 02:46:16	60.041	3701.981	350	-223.015732	16	514	10	0	-103	7839.24
10/12/09 02:46:18	60.036	3700.756	350	-223.015732	16	514.5	10	0	-103	7839.57
10/12/09 02:46:20	60.031	3700.747	350	-223.015732	16	515	10	0	-103	7839.9
10/12/09 02:46:22	60.032	3702.213	350	-223.015732	16	515.5	10	0	-103	7840.23
10/12/09 02:46:24	60.031	3705.059	350	-223.015732	16	516	10	0	-103	7840.56
10/12/09 02:46:26	60.034	3705.514	350	-223.015732	16	516.5	10	0	-103	7840.89
10/12/09 02:46:28	60.034	3704.449	350	-223.015732	16	517	10	0	-103	7841.22
10/12/09 02:46:30	60.032	3703.831	350	-223.015732	16	517.5	10	0	-103	7841.55
10/12/09 02:46:32	60.038	3703.62	350	-223.015732	16	518	10	0	-103	7841.88
10/12/09 02:46:34	60.043	3702.795	350	-223.015732	16	518.5	10	0	-103	7842.21
10/12/09 02:46:36	60.044	3701.432	350	-223.015732	16	519	10	0	-103	7842.54
10/12/09 02:46:38	60.042	3697.38	350	-223.015732	16	519.5	10	0	-103	7842.87
10/12/09 02:46:40	60.045	3696.25	350	-223.015732	16	520	10	0	-103	7843.2
10/12/09 02:46:42	60.04	3696.302	350	-223.015732	16	520.5	10	0	-103	7843.53
10/12/09 02:46:44	60.04	3693.518	350	-223.015732	16	521	10	0	-103	7843.86
10/12/09 02:46:46	60.043	3693.577	350	-223.015732	16	521.5	10	0	-103	7844.19
10/12/09 02:46:48	60.043	3695.197	350	-223.015732	16	522	10	0	-103	7844.52
10/12/09 02:46:50	60.041	3695.186	350	-223.015732	16	522.5	10	0	-103	7844.85
10/12/09 02:46:52	60.04	3693.786	350	-223.015732	16	523	10	0	-103	7845.18
10/12/09 02:46:54	60.038	3694.753	350	-223.015732	16	523.5	10	0	-103	7845.51
10/12/09 02:46:56	60.043	3694.926	350	-223.015732	16	524	10	0	-103	7845.84
10/12/09 02:46:58	60.044	3694.938	350	-223.015732	16	524.5	10	0	-103	7846.17
10/12/09 02:47:00	60.042	3694.159	350	-223.015732	16	525	10	0	-103	7846.5
10/12/09 02:47:02	60.036	3691.33	350	-223.015732	16	525.5	10	0	-103	7846.83
10/12/09 02:47:04	60.043	3692.686	350	-223.015732	16	526	10	0	-103	7847.16
10/12/09 02:47:06	60.041	3693.238	350	-223.015732	16	526.5	10	0	-103	7847.49
10/12/09 02:47:08	60.042	3693.39	350	-223.015732	16	527	10	0	-103	7847.82
10/12/09 02:47:10	60.043	3692.357	350	-223.015732	16	527.5	10	0	-103	7848.15
10/12/09 02:47:12	60.043	3690.951	350	-223.015732	16	528	10	0	-103	7848.48
10/12/09 02:47:14	60.036	3690.836	350	-223.015732	16	528.5	10	0	-103	7848.81
10/12/09 02:47:16	60.039	3692.042	350	-223.015732	16	529	10	0	-103	7849.14
10/12/09 02:47:18	60.039	3693.114	350	-223.015732	16	529.5	10	0	-103	7849.47
10/12/09 02:47:20	60.037	3694.117	350	-223.015732	16	530	10	0	-103	7849.8
10/12/09 02:47:22	60.034	3695.258	350	-223.015732	16	530.5	10	0	-103	7850.13
10/12/09 02:47:24	60.035	3695.581	350	-223.015732	16	531	10	0	-103	7850.46
10/12/09 02:47:26	60.035	3695.949	350	-223.015732	16	531.5	10	0	-103	7850.79
10/12/09 02:47:28	60.035	3695.491	350	-223.015732	16	532	10	0	-103	7851.12
10/12/09 02:47:30	60.036	3696.305	350	-223.015732	16	532.5	10	0	-103	7851.45
10/12/09 02:47:32	60.03	3696.486	350	-223.015732	16	533	10	0	-103	7851.78
10/12/09 02:47:34	60.03	3697.336	350	-223.015732	16	533.5	10	0	-103	7852.11
10/12/09 02:47:36	60.03	3699.171	350	-223.015732	16	534	10	0	-103	7852.44
10/12/09 02:47:38	60.031	3699.357	350	-223.015732	16	534.5	10	0	-103	7852.77
10/12/09 02:47:40	60.031	3699.251	350	-223.015732	16	535	10	0	-103	7853.1
10/12/09 02:47:42	60.032	3699.117	350	-223.015732	16	535.5	10	0	-103	7853.43
10/12/09 02:47:44	60.031	3699.105	350	-223.015732	16	536	10	0	-103	7853.76

10/12/09 02:47:46	60.032	3699.126	350	-223.015732	16	536.5	10	0	-103	7854.09
10/12/09 02:47:48	60.032	3698.954	350	-223.015732	16	537	10	0	-103	7854.42
10/12/09 02:47:50	60.032	3698.136	350	-223.015732	16	537.5	10	0	-103	7854.75
10/12/09 02:47:52	60.033	3698.277	350	-223.015732	16	538	10	0	-103	7855.08
10/12/09 02:47:54	60.037	3697.412	350	-223.015732	16	538.5	10	0	-103	7855.41
10/12/09 02:47:56	60.04	3695.94	350	-223.015732	16	539	10	0	-103	7855.74
10/12/09 02:47:58	60.039	3693.736	350	-223.015732	16	539.5	10	0	-103	7856.07
10/12/09 02:48:00	60.042	3693.224	350	-223.015732	16	540	10	0	-103	7856.4
10/12/09 02:48:02	60.036	3691.759	350	-223.015732	16	540.5	10	0	-103	7856.73
10/12/09 02:48:04	60.039	3691.919	350	-223.015732	16	541	10	0	-103	7857.06
10/12/09 02:48:06	60.041	3692.798	350	-223.015732	16	541.5	10	0	-103	7857.39
10/12/09 02:48:08	60.04	3691.582	350	-223.015732	16	542	10	0	-103	7857.72
10/12/09 02:48:10	60.035	3692.374	350	-223.015732	16	542.5	10	0	-103	7858.05
10/12/09 02:48:12	60.036	3693.302	350	-223.015732	16	543	10	0	-103	7858.38
10/12/09 02:48:14	60.038	3694.71	350	-223.015732	16	543.5	10	0	-103	7858.71
10/12/09 02:48:16	60.037	3694.331	350	-223.015732	16	544	10	0	-103	7859.04
10/12/09 02:48:18	60.041	3693.815	350	-223.015732	16	544.5	10	0	-103	7859.37
10/12/09 02:48:20	60.04	3693.617	350	-223.015732	16	545	10	0	-103	7859.7
10/12/09 02:48:22	60.036	3694.324	350	-223.015732	16	545.5	10	0	-103	7860.03
10/12/09 02:48:24	60.033	3694.27	350	-223.015732	16	546	10	0	-103	7860.36
10/12/09 02:48:26	60.034	3694.66	350	-223.015732	16	546.5	10	0	-103	7860.69
10/12/09 02:48:28	60.038	3693.748	350	-223.015732	16	547	10	0	-103	7861.02
10/12/09 02:48:30	60.04	3692.532	350	-223.015732	16	547.5	10	0	-103	7861.35
10/12/09 02:48:32	60.041	3691.445	350	-223.015732	16	548	10	0	-103	7861.68
10/12/09 02:48:34	60.037	3691.012	350	-223.015732	16	548.5	10	0	-103	7862.01
10/12/09 02:48:36	60.037	3691.799	350	-223.015732	16	549	10	0	-103	7862.34
10/12/09 02:48:38	60.036	3693.077	350	-223.015732	16	549.5	10	0	-103	7862.67
10/12/09 02:48:40	60.037	3693.727	350	-223.015732	16	550	10	0	-103	7863
10/12/09 02:48:42	60.038	3693.117	350	-223.015732	16	550.5	10	0	-103	7863.33
10/12/09 02:48:44	60.039	3692.641	350	-223.015732	16	551	10	0	-103	7863.66
10/12/09 02:48:46	60.038	3688.159	350	-223.015732	16	551.5	10	0	-103	7863.99
10/12/09 02:48:48	60.034	3689.02	350	-223.015732	16	552	10	0	-103	7864.32
10/12/09 02:48:50	60.033	3688.208	350	-223.015732	16	552.5	10	0	-103	7864.65
10/12/09 02:48:52	60.031	3690.092	350	-223.015732	16	553	10	0	-103	7864.98
10/12/09 02:48:54	60.034	3693.172	350	-223.015732	16	553.5	10	0	-103	7865.31
10/12/09 02:48:56	60.029	3693.321	350	-223.015732	16	554	10	0	-103	7865.64
10/12/09 02:48:58	60.029	3694.593	350	-223.015732	16	554.5	10	0	-103	7865.97
10/12/09 02:49:00	60.031	3695.225	350	-223.015732	16	555	10	0	-103	7866.3
10/12/09 02:49:02	60.03	3694.609	350	-223.015732	16	555.5	10	0	-103	7866.63
10/12/09 02:49:04	60.03	3693.412	350	-223.015732	16	556	10	0	-103	7866.96
10/12/09 02:49:06	60.026	3693.509	350	-223.015732	16	556.5	10	0	-103	7867.29
10/12/09 02:49:08	60.022	3696.026	350	-223.015732	16	557	10	0	-103	7867.62
10/12/09 02:49:10	60.021	3698.012	350	-223.015732	16	557.5	10	0	-103	7867.95
10/12/09 02:49:12	60.024	3699.062	350	-223.015732	16	558	10	0	-103	7868.28
10/12/09 02:49:14	60.023	3699.414	350	-223.015732	16	558.5	10	0	-103	7868.61
10/12/09 02:49:16	60.02	3698.935	350	-223.015732	16	559	10	0	-103	7868.94
10/12/09 02:49:18	60.021	3700.084	350	-223.015732	16	559.5	10	0	-103	7869.27
10/12/09 02:49:20	60.023	3700.544	350	-223.015732	16	560	10	0	-103	7869.6
10/12/09 02:49:22	60.025	3700.486	350	-223.015732	16	560.5	10	0	-103	7869.93

10/12/09 02:49:24	60.026	3698.596	350	-223.015732	16	561	10	0	-103	7870.26
10/12/09 02:49:26	60.026	3697.961	350	-223.015732	16	561.5	10	0	-103	7870.59
10/12/09 02:49:28	60.025	3699.914	350	-223.015732	16	562	10	0	-103	7870.92
10/12/09 02:49:30	60.024	3700.802	350	-223.015732	16	562.5	10	0	-103	7871.25
10/12/09 02:49:32	60.024	3701.301	350	-223.015732	16	563	10	0	-103	7871.58
10/12/09 02:49:34	60.025	3701.45	350	-223.015732	16	563.5	10	0	-103	7871.91
10/12/09 02:49:36	60.023	3701.349	350	-223.015732	16	564	10	0	-103	7872.24
10/12/09 02:49:38	60.023	3701.094	350	-223.015732	16	564.5	10	0	-103	7872.57
10/12/09 02:49:40	60.022	3701.702	350	-223.015732	16	565	10	0	-103	7872.9
10/12/09 02:49:42	60.026	3702.07	350	-223.015732	16	565.5	10	0	-103	7873.23
10/12/09 02:49:44	60.029	3701.965	350	-223.015732	16	566	10	0	-103	7873.56
10/12/09 02:49:46	60.026	3700.269	350	-223.015732	16	566.5	10	0	-103	7873.89
10/12/09 02:49:48	60.024	3700.241	350	-223.015732	16	567	10	0	-103	7874.22
10/12/09 02:49:50	60.021	3701.09	350	-223.015732	16	567.5	10	0	-103	7874.55
10/12/09 02:49:52	60.025	3701.268	350	-223.015732	16	568	10	0	-103	7874.88
10/12/09 02:49:54	60.025	3701.205	350	-223.015732	16	568.5	10	0	-103	7875.21
10/12/09 02:49:56	60.025	3700.587	350	-223.015732	16	569	10	0	-103	7875.54
10/12/09 02:49:58	60.023	3700.532	350	-223.015732	16	569.5	10	0	-103	7875.87
10/12/09 02:50:00	60.026	3700.177	350	-223.015732	16	570	10	0	-103	7876.2
10/12/09 02:50:02	60.024	3700.295	350	-223.015732	16	570.5	10	0	-103	7876.53
10/12/09 02:50:04	60.022	3700.277	350	-223.015732	16	571	10	0	-103	7876.86
10/12/09 02:50:06	60.023	3700.841	350	-223.015732	16	571.5	10	0	-103	7877.19
10/12/09 02:50:08	60.026	3700.863	350	-223.015732	16	572	10	0	-103	7877.52
10/12/09 02:50:10	60.025	3700.26	350	-223.015732	16	572.5	10	0	-103	7877.85
10/12/09 02:50:12	60.02	3700.052	350	-223.015732	16	573	10	0	-103	7878.18
10/12/09 02:50:14	60.02	3699.926	350	-223.015732	16	573.5	10	0	-103	7878.51
10/12/09 02:50:16	60.019	3700.965	350	-223.015732	16	574	10	0	-103	7878.84
10/12/09 02:50:18	60.015	3702.581	350	-223.015732	16	574.5	10	0	-103	7879.17
10/12/09 02:50:20	60.016	3703.516	350	-223.015732	16	575	10	0	-103	7879.5
10/12/09 02:50:22	60.017	3703.824	350	-223.015732	16	575.5	10	0	-103	7879.83
10/12/09 02:50:24	60.015	3703.672	350	-223.015732	16	576	10	0	-103	7880.16
10/12/09 02:50:26	60.015	3703.689	350	-223.015732	16	576.5	10	0	-103	7880.49
10/12/09 02:50:28	60.017	3703.003	350	-223.015732	16	577	10	0	-103	7880.82
10/12/09 02:50:30	60.017	3702.921	350	-223.015732	16	577.5	10	0	-103	7881.15
10/12/09 02:50:32	60.012	3703	350	-223.015732	16	578	10	0	-103	7881.48
10/12/09 02:50:34	60.01	3703.167	350	-223.015732	16	578.5	10	0	-103	7881.81
10/12/09 02:50:36	60.008	3703.918	350	-223.015732	16	579	10	0	-103	7882.14
10/12/09 02:50:38	60.002	3703.616	350	-223.015732	16	579.5	10	0	-103	7882.47
10/12/09 02:50:40	59.999	3703.775	350	-223.015732	16	580	10	0	-103	7882.8
10/12/09 02:50:42	59.999	3703.751	350	-223.015732	16	580.5	10	0	-103	7883.13
10/12/09 02:50:44	60.002	3701.534	350	-223.015732	16	581	10	0	-103	7883.46
10/12/09 02:50:46	60.003	3700.617	350	-223.015732	16	581.5	10	0	-103	7883.79
10/12/09 02:50:48	60.004	3700.88	350	-223.015732	16	582	10	0	-103	7884.12
10/12/09 02:50:50	60.001	3700.625	350	-223.015732	16	582.5	10	0	-103	7884.45
10/12/09 02:50:52	59.996	3701.389	350	-223.015732	16	583	10	0	-103	7884.78
10/12/09 02:50:54	59.993	3701.737	350	-223.015732	16	583.5	10	0	-103	7885.11
10/12/09 02:50:56	59.992	3700.671	350	-223.015732	16	584	10	0	-103	7885.44
10/12/09 02:50:58	59.989	3700.826	350	-223.015732	16	584.5	10	0	-103	7885.77
10/12/09 02:51:00	59.987	3700.977	350	-223.015732	16	585	10	0	-103	7886.1

10/12/09 02:51:02	59.985	3700.7	350	-223.015732	16	585.5	10	0	-103	7886.43
10/12/09 02:51:04	59.985	3699.854	350	-223.015732	16	586	10	0	-103	7886.76
10/12/09 02:51:06	59.986	3700.237	350	-223.015732	16	586.5	10	0	-103	7887.09
10/12/09 02:51:08	59.984	3700.342	350	-223.015732	16	587	10	0	-103	7887.42
10/12/09 02:51:10	59.981	3700.77	350	-223.015732	16	587.5	10	0	-103	7887.75
10/12/09 02:51:12	59.98	3700.789	350	-223.015732	16	588	10	0	-103	7888.08
10/12/09 02:51:14	59.977	3701.625	350	-223.015732	16	588.5	10	0	-103	7888.41
10/12/09 02:51:16	59.975	3703.166	350	-223.015732	16	589	10	0	-103	7888.74
10/12/09 02:51:18	59.976	3704.187	350	-223.015732	16	589.5	10	0	-103	7889.07
10/12/09 02:51:20	59.972	3704.785	350	-223.015732	16	590	10	0	-103	7889.4
10/12/09 02:51:22	59.974	3705.811	350	-223.015732	16	590.5	10	0	-103	7889.73
10/12/09 02:51:24	59.977	3706.958	350	-223.015732	16	591	10	0	-103	7890.06
10/12/09 02:51:26	59.975	3706.688	350	-223.015732	16	591.5	10	0	-103	7890.39
10/12/09 02:51:28	59.973	3706.543	350	-223.015732	16	592	10	0	-103	7890.72
10/12/09 02:51:30	59.971	3706.257	350	-223.015732	16	592.5	10	0	-103	7891.05
10/12/09 02:51:32	59.971	3707.027	350	-223.015732	16	593	10	0	-103	7891.38
10/12/09 02:51:34	59.976	3710.118	350	-223.015732	16	593.5	10	0	-103	7891.71
10/12/09 02:51:36	59.979	3710.531	350	-223.015732	16	594	10	0	-103	7892.04
10/12/09 02:51:38	59.98	3708.701	350	-223.015732	16	594.5	10	0	-103	7892.37
10/12/09 02:51:40	59.979	3708.018	350	-223.015732	16	595	10	0	-103	7892.7
10/12/09 02:51:42	59.982	3706.942	350	-223.015732	16	595.5	10	0	-103	7893.03
10/12/09 02:51:44	59.982	3706.343	350	-223.015732	16	596	10	0	-103	7893.36
10/12/09 02:51:46	59.983	3706.125	350	-223.015732	16	596.5	10	0	-103	7893.69
10/12/09 02:51:48	59.981	3706.311	350	-223.015732	16	597	10	0	-103	7894.02
10/12/09 02:51:50	59.979	3706.119	350	-223.015732	16	597.5	10	0	-103	7894.35
10/12/09 02:51:52	59.978	3706.19	350	-223.015732	16	598	10	0	-103	7894.68
10/12/09 02:51:54	59.976	3707.721	350	-223.015732	16	598.5	10	0	-103	7895.01
10/12/09 02:51:56	59.978	3709.409	350	-223.015732	16	599	10	0	-103	7895.34
10/12/09 02:51:58	59.977	3708.971	350	-223.015732	16	599.5	10	0	-103	7895.67
10/12/09 02:52:00	59.976	3708.531	350	-223.015732	16	600	10	0	-103	7896
10/12/09 02:52:02	59.978	3708.071	350	-223.015732	16	600.5	10	0	-103	7896.33
10/12/09 02:52:04	59.975	3707.24	350	-223.015732	16	601	10	0	-103	7896.66
10/12/09 02:52:06	59.971	3709.213	350	-223.015732	16	601.5	10	0	-103	7896.99
10/12/09 02:52:08	59.97	3709.961	350	-223.015732	16	602	10	0	-103	7897.32
10/12/09 02:52:10	59.97	3711.75	350	-223.015732	16	602.5	10	0	-103	7897.65
10/12/09 02:52:12	59.971	3711.98	350	-223.015732	16	603	10	0	-103	7897.98
10/12/09 02:52:14	59.99	3710.695	350	-223.015732	16	603.5	10	0	-103	7898.31
10/12/09 02:52:16	59.998	3707.867	350	-223.015732	16	604	10	0	-103	7898.64
10/12/09 02:52:18	59.999	3704.912	350	-223.015732	16	604.5	10	0	-103	7898.97
10/12/09 02:52:20	59.999	3705.639	350	-223.015732	16	605	10	0	-103	7899.3
10/12/09 02:52:22	59.998	3703.787	350	-223.015732	16	605.5	10	0	-103	7899.63
10/12/09 02:52:24	59.999	3703.191	350	-223.015732	16	606	10	0	-103	7899.96
10/12/09 02:52:26	60.003	3702.071	350	-223.015732	16	606.5	10	0	-103	7900.29
10/12/09 02:52:28	60.005	3699.51	350	-223.015732	16	607	10	0	-103	7900.62
10/12/09 02:52:30	60.005	3698.658	350	-223.015732	16	607.5	10	0	-103	7900.95
10/12/09 02:52:32	60.01	3698.137	350	-223.015732	16	608	10	0	-103	7901.28
10/12/09 02:52:34	60.013	3697.882	350	-223.015732	16	608.5	10	0	-103	7901.61
10/12/09 02:52:36	60.02	3698.668	350	-223.015732	16	609	10	0	-103	7901.94
10/12/09 02:52:38	60.022	3698.604	350	-223.015732	16	609.5	10	0	-103	7902.27

10/12/09 02:52:40	60.024	3697.868	350	-223.015732	16	610	10	0	-103	7902.6
10/12/09 02:52:42	60.025	3694.672	350	-223.015732	16	610.5	10	0	-103	7902.93
10/12/09 02:52:44	60.025	3693.912	350	-223.015732	16	611	10	0	-103	7903.26
10/12/09 02:52:46	60.024	3693.418	350	-223.015732	16	611.5	10	0	-103	7903.59
10/12/09 02:52:48	60.023	3688.301	350	-223.015732	16	612	10	0	-103	7903.92
10/12/09 02:52:50	60.029	3688.021	350	-223.015732	16	612.5	10	0	-103	7904.25
10/12/09 02:52:52	60.029	3689.143	350	-223.015732	16	613	10	0	-103	7904.58
10/12/09 02:52:54	60.029	3688.237	350	-223.015732	16	613.5	10	0	-103	7904.91
10/12/09 02:52:56	60.028	3687.878	350	-223.015732	16	614	10	0	-103	7905.24
10/12/09 02:52:58	60.028	3687.026	350	-223.015732	16	614.5	10	0	-103	7905.57
10/12/09 02:53:00	60.031	3686.683	350	-223.015732	16	615	10	0	-103	7905.9
10/12/09 02:53:02	60.032	3685.276	350	-223.015732	16	615.5	10	0	-103	7906.23
10/12/09 02:53:04	60.033	3685.576	350	-223.015732	16	616	10	0	-103	7906.56
10/12/09 02:53:06	60.031	3685.985	350	-223.015732	16	616.5	10	0	-103	7906.89
10/12/09 02:53:08	60.03	3686.418	350	-223.015732	16	617	10	0	-103	7907.22
10/12/09 02:53:10	60.022	3687.159	350	-223.015732	16	617.5	10	0	-103	7907.55
10/12/09 02:53:12	60.021	3687.873	350	-223.015732	16	618	10	0	-103	7907.88
10/12/09 02:53:14	60.019	3688.997	350	-223.015732	16	618.5	10	0	-103	7908.21
10/12/09 02:53:16	60.017	3690.426	350	-223.015732	16	619	10	0	-103	7908.54
10/12/09 02:53:18	60.017	3690.776	350	-223.015732	16	619.5	10	0	-103	7908.87
10/12/09 02:53:20	60.017	3692.715	350	-223.015732	16	620	10	0	-103	7909.2
10/12/09 02:53:22	60.016	3692.578	350	-223.015732	16	620.5	10	0	-103	7909.53
10/12/09 02:53:24	60.015	3692.462	350	-223.015732	16	621	10	0	-103	7909.86
10/12/09 02:53:26	60.015	3693.173	350	-223.015732	16	621.5	10	0	-103	7910.19
10/12/09 02:53:28	60.012	3693.249	350	-223.015732	16	622	10	0	-103	7910.52
10/12/09 02:53:30	60.009	3693.743	350	-223.015732	16	622.5	10	0	-103	7910.85
10/12/09 02:53:32	60.008	3695.124	350	-223.015732	16	623	10	0	-103	7911.18
10/12/09 02:53:34	60.008	3694.681	350	-223.015732	16	623.5	10	0	-103	7911.51
10/12/09 02:53:36	60.005	3694.741	350	-223.015732	16	624	10	0	-103	7911.84
10/12/09 02:53:38	60.005	3694.199	350	-223.015732	16	624.5	10	0	-103	7912.17
10/12/09 02:53:40	60.003	3693.75	350	-223.015732	16	625	10	0	-103	7912.5
10/12/09 02:53:42	59.999	3693.624	350	-223.015732	16	625.5	10	0	-103	7912.83
10/12/09 02:53:44	59.997	3692.806	350	-223.015732	16	626	10	0	-103	7913.16
10/12/09 02:53:46	59.999	3691.15	350	-223.015732	16	626.5	10	0	-103	7913.49
10/12/09 02:53:48	60	3691.407	350	-223.015732	16	627	10	0	-103	7913.82
10/12/09 02:53:50	59.998	3691.077	350	-223.015732	16	627.5	10	0	-103	7914.15
10/12/09 02:53:52	59.995	3690.588	350	-223.015732	16	628	10	0	-103	7914.48
10/12/09 02:53:54	59.994	3689.797	350	-223.015732	16	628.5	10	0	-103	7914.81
10/12/09 02:53:56	59.992	3688.483	350	-223.015732	16	629	10	0	-103	7915.14
10/12/09 02:53:58	59.993	3689.445	350	-223.015732	16	629.5	10	0	-103	7915.47
10/12/09 02:54:00	59.988	3689.553	350	-223.015732	16	630	10	0	-103	7915.8
10/12/09 02:54:02	59.985	3689.525	350	-223.015732	16	630.5	10	0	-103	7916.13
10/12/09 02:54:04	59.986	3689.736	350	-223.015732	16	631	10	0	-103	7916.46
10/12/09 02:54:06	59.988	3688.853	350	-223.015732	16	631.5	10	0	-103	7916.79
10/12/09 02:54:08	59.988	3688.24	350	-223.015732	16	632	10	0	-103	7917.12
10/12/09 02:54:10	59.985	3687.494	350	-223.015732	16	632.5	10	0	-103	7917.45
10/12/09 02:54:12	59.983	3687.475	350	-223.015732	16	633	10	0	-103	7917.78
10/12/09 02:54:14	59.983	3686.707	350	-223.015732	16	633.5	10	0	-103	7918.11
10/12/09 02:54:16	59.985	3685.66	350	-223.015732	16	634	10	0	-103	7918.44

10/12/09 02:54:18	59.986	3684.51	350	-223.015732	16	634.5	10	0	-103	7918.77
10/12/09 02:54:20	59.987	3684.333	350	-223.015732	16	635	10	0	-103	7919.1
10/12/09 02:54:22	59.99	3683.911	350	-223.015732	16	635.5	10	0	-103	7919.43
10/12/09 02:54:24	59.986	3683.735	350	-223.015732	16	636	10	0	-103	7919.76
10/12/09 02:54:26	59.985	3684.208	350	-223.015732	16	636.5	10	0	-103	7920.09
10/12/09 02:54:28	59.984	3683.811	350	-223.015732	16	637	10	0	-103	7920.42
10/12/09 02:54:30	59.983	3683.473	350	-223.015732	16	637.5	10	0	-103	7920.75
10/12/09 02:54:32	59.982	3684.258	350	-223.015732	16	638	10	0	-103	7921.08
10/12/09 02:54:34	59.982	3684.884	350	-223.015732	16	638.5	10	0	-103	7921.41
10/12/09 02:54:36	59.98	3685.092	350	-223.015732	16	639	10	0	-103	7921.74
10/12/09 02:54:38	59.978	3685.654	350	-223.015732	16	639.5	10	0	-103	7922.07
10/12/09 02:54:40	59.977	3685.087	350	-223.015732	16	640	10	0	-103	7922.4
10/12/09 02:54:42	59.975	3685.491	350	-223.015732	16	640.5	10	0	-103	7922.73
10/12/09 02:54:44	59.973	3685.196	350	-223.015732	16	641	10	0	-103	7923.06
10/12/09 02:54:46	59.975	3687.412	350	-223.015732	16	641.5	10	0	-103	7923.39
10/12/09 02:54:48	59.976	3688.417	350	-223.015732	16	642	10	0	-103	7923.72
10/12/09 02:54:50	59.976	3688.599	350	-223.015732	16	642.5	10	0	-103	7924.05
10/12/09 02:54:52	59.979	3687.848	350	-223.015732	16	643	10	0	-103	7924.38
10/12/09 02:54:54	59.982	3686.678	350	-223.015732	16	643.5	10	0	-103	7924.71
10/12/09 02:54:56	59.979	3685.782	350	-223.015732	16	644	10	0	-103	7925.04
10/12/09 02:54:58	59.979	3684.89	350	-223.015732	16	644.5	10	0	-103	7925.37
10/12/09 02:55:00	59.977	3685.143	350	-223.015732	16	645	10	0	-103	7925.7
10/12/09 02:55:02	59.977	3684.549	350	-223.015732	16	645.5	10	0	-103	7926.03
10/12/09 02:55:04	59.978	3684.093	350	-223.015732	16	646	10	0	-103	7926.36
10/12/09 02:55:06	59.978	3684.555	350	-223.015732	16	646.5	10	0	-103	7926.69
10/12/09 02:55:08	59.978	3682.814	350	-223.015732	16	647	10	0	-103	7927.02
10/12/09 02:55:10	59.979	3682.318	350	-223.015732	16	647.5	10	0	-103	7927.35
10/12/09 02:55:12	59.983	3682.366	350	-223.015732	16	648	10	0	-103	7927.68
10/12/09 02:55:14	59.981	3682.647	350	-223.015732	16	648.5	10	0	-103	7928.01
10/12/09 02:55:16	59.98	3682.855	350	-223.015732	16	649	10	0	-103	7928.34
10/12/09 02:55:18	59.978	3683.557	350	-223.015732	16	649.5	10	0	-103	7928.67
10/12/09 02:55:20	59.979	3684.052	350	-223.015732	16	650	10	0	-103	7929
10/12/09 02:55:22	59.978	3684.318	350	-223.015732	16	650.5	10	0	-103	7929.33
10/12/09 02:55:24	59.979	3686.049	350	-223.015732	16	651	10	0	-103	7929.66
10/12/09 02:55:26	59.983	3686.629	350	-223.015732	16	651.5	10	0	-103	7929.99
10/12/09 02:55:28	59.987	3685.286	350	-223.015732	16	652	10	0	-103	7930.32
10/12/09 02:55:30	59.99	3683.415	350	-223.015732	16	652.5	10	0	-103	7930.65
10/12/09 02:55:32	59.992	3682.416	350	-223.015732	16	653	10	0	-103	7930.98
10/12/09 02:55:34	59.993	3681.403	350	-223.015732	16	653.5	10	0	-103	7931.31
10/12/09 02:55:36	59.99	3679.012	350	-223.015732	16	654	10	0	-103	7931.64
10/12/09 02:55:38	59.988	3679.436	350	-223.015732	16	654.5	10	0	-103	7931.97
10/12/09 02:55:40	59.988	3671.761	350	-223.015732	16	655	10	0	-103	7932.3
10/12/09 02:55:42	59.99	3670.717	350	-223.015732	16	655.5	10	0	-103	7932.63
10/12/09 02:55:44	59.993	3670.159	350	-223.015732	16	656	10	0	-103	7932.96
10/12/09 02:55:46	59.994	3679	350	-223.015732	16	656.5	10	0	-103	7933.29
10/12/09 02:55:48	59.993	3680.176	350	-223.015732	16	657	10	0	-103	7933.62
10/12/09 02:55:50	59.994	3681.799	350	-223.015732	16	657.5	10	0	-103	7933.95
10/12/09 02:55:52	59.994	3682.7	350	-223.015732	16	658	10	0	-103	7934.28
10/12/09 02:55:54	59.993	3684.116	350	-223.015732	16	658.5	10	0	-103	7934.61

10/12/09 02:55:56	59.989	3685.03	350	-223.015732	16	659	10	0	-103	7934.94
10/12/09 02:55:58	59.984	3684.878	350	-223.015732	16	659.5	10	0	-103	7935.27
10/12/09 02:56:00	59.986	3684.165	350	-223.015732	16	660	10	0	-103	7935.6
10/12/09 02:56:02	59.985	3684.478	350	-223.015732	16	660.5	10	0	-103	7935.93
10/12/09 02:56:04	59.988	3685.584	350	-223.015732	16	661	10	0	-103	7936.26
10/12/09 02:56:06	59.987	3685.148	350	-223.015732	16	661.5	10	0	-103	7936.59
10/12/09 02:56:08	59.986	3684.587	350	-223.015732	16	662	10	0	-103	7936.92
10/12/09 02:56:10	59.987	3684.976	350	-223.015732	16	662.5	10	0	-103	7937.25
10/12/09 02:56:12	59.985	3683.674	350	-223.015732	16	663	10	0	-103	7937.58
10/12/09 02:56:14	59.982	3684.872	350	-223.015732	16	663.5	10	0	-103	7937.91
10/12/09 02:56:16	59.981	3684.245	350	-223.015732	16	664	10	0	-103	7938.24
10/12/09 02:56:18	59.982	3684.711	350	-223.015732	16	664.5	10	0	-103	7938.57
10/12/09 02:56:20	59.987	3685.589	350	-223.015732	16	665	10	0	-103	7938.9
10/12/09 02:56:22	59.992	3683.736	350	-223.015732	16	665.5	10	0	-103	7939.23
10/12/09 02:56:24	59.997	3682.579	350	-223.015732	16	666	10	0	-103	7939.56
10/12/09 02:56:26	60	3682.234	350	-223.015732	16	666.5	10	0	-103	7939.89
10/12/09 02:56:28	60.003	3682.138	350	-223.015732	16	667	10	0	-103	7940.22
10/12/09 02:56:30	60.003	3682.224	350	-223.015732	16	667.5	10	0	-103	7940.55
10/12/09 02:56:32	60.003	3681.689	350	-223.015732	16	668	10	0	-103	7940.88
10/12/09 02:56:34	60.002	3681.458	350	-223.015732	16	668.5	10	0	-103	7941.21
10/12/09 02:56:36	60.003	3681.65	350	-223.015732	16	669	10	0	-103	7941.54
10/12/09 02:56:38	60.002	3681.013	350	-223.015732	16	669.5	10	0	-103	7941.87
10/12/09 02:56:40	60.003	3680.167	350	-223.015732	16	670	10	0	-103	7942.2
10/12/09 02:56:42	60.004	3679.943	350	-223.015732	16	670.5	10	0	-103	7942.53
10/12/09 02:56:44	60.005	3679.429	350	-223.015732	16	671	10	0	-103	7942.86
10/12/09 02:56:46	60.006	3679.669	350	-223.015732	16	671.5	10	0	-103	7943.19
10/12/09 02:56:48	60.009	3678.981	350	-223.015732	16	672	10	0	-103	7943.52
10/12/09 02:56:50	60.012	3678.267	350	-223.015732	16	672.5	10	0	-103	7943.85
10/12/09 02:56:52	60.017	3676.796	350	-223.015732	16	673	10	0	-103	7944.18
10/12/09 02:56:54	60.021	3676.81	350	-223.015732	16	673.5	10	0	-103	7944.51
10/12/09 02:56:56	60.022	3674.798	350	-223.015732	16	674	10	0	-103	7944.84
10/12/09 02:56:58	60.021	3673.906	350	-223.015732	16	674.5	10	0	-103	7945.17
10/12/09 02:57:00	60.02	3671.145	350	-223.015732	16	675	10	0	-103	7945.5
10/12/09 02:57:02	60.018	3670.51	350	-223.015732	16	675.5	10	0	-103	7945.83
10/12/09 02:57:04	60.021	3673.648	350	-223.015732	16	676	10	0	-103	7946.16
10/12/09 02:57:06	60.02	3673.684	350	-223.015732	16	676.5	10	0	-103	7946.49
10/12/09 02:57:08	60.02	3675.865	350	-223.015732	16	677	10	0	-103	7946.82
10/12/09 02:57:10	60.018	3676.676	350	-223.015732	16	677.5	10	0	-103	7947.15
10/12/09 02:57:12	60.018	3676.404	350	-223.015732	16	678	10	0	-103	7947.48
10/12/09 02:57:14	60.019	3676.437	350	-223.015732	16	678.5	10	0	-103	7947.81
10/12/09 02:57:16	60.019	3677.185	350	-223.015732	16	679	10	0	-103	7948.14
10/12/09 02:57:18	60.018	3677.659	350	-223.015732	16	679.5	10	0	-103	7948.47
10/12/09 02:57:20	60.017	3678.828	350	-223.015732	16	680	10	0	-103	7948.8
10/12/09 02:57:22	60.016	3679.289	350	-223.015732	16	680.5	10	0	-103	7949.13
10/12/09 02:57:24	60.016	3678.915	350	-223.015732	16	681	10	0	-103	7949.46
10/12/09 02:57:26	60.016	3679.276	350	-223.015732	16	681.5	10	0	-103	7949.79
10/12/09 02:57:28	60.015	3678.599	350	-223.015732	16	682	10	0	-103	7950.12
10/12/09 02:57:30	60.014	3678.367	350	-223.015732	16	682.5	10	0	-103	7950.45
10/12/09 02:57:32	60.014	3678.25	350	-223.015732	16	683	10	0	-103	7950.78

10/12/09 02:57:34	60.013	3678.589	350	-223.015732	16	683.5	10	0	-103	7951.11
10/12/09 02:57:36	60.013	3677.251	350	-223.015732	16	684	10	0	-103	7951.44
10/12/09 02:57:38	60.015	3675.698	350	-223.015732	16	684.5	10	0	-103	7951.77
10/12/09 02:57:40	60.017	3674.669	350	-223.015732	16	685	10	0	-103	7952.1
10/12/09 02:57:42	60.016	3674.87	350	-223.015732	16	685.5	10	0	-103	7952.43
10/12/09 02:57:44	60.019	3674.402	350	-223.015732	16	686	10	0	-103	7952.76
10/12/09 02:57:46	60.021	3674.546	350	-223.015732	16	686.5	10	0	-103	7953.09
10/12/09 02:57:48	60.021	3672.969	350	-223.015732	16	687	10	0	-103	7953.42
10/12/09 02:57:50	60.02	3671.914	350	-223.015732	16	687.5	10	0	-103	7953.75
10/12/09 02:57:52	60.022	3671.982	350	-223.015732	16	688	10	0	-103	7954.08
10/12/09 02:57:54	60.024	3670.946	350	-223.015732	16	688.5	10	0	-103	7954.41
10/12/09 02:57:56	60.026	3670.821	350	-223.015732	16	689	10	0	-103	7954.74
10/12/09 02:57:58	60.025	3671.06	350	-223.015732	16	689.5	10	0	-103	7955.07
10/12/09 02:58:00	60.026	3671.539	350	-223.015732	16	690	10	0	-103	7955.4
10/12/09 02:58:02	60.022	3673.794	350	-223.015732	16	690.5	10	0	-103	7955.73
10/12/09 02:58:04	60.021	3674.01	350	-223.015732	16	691	10	0	-103	7956.06
10/12/09 02:58:06	60.022	3675.102	350	-223.015732	16	691.5	10	0	-103	7956.39
10/12/09 02:58:08	60.024	3675.284	350	-223.015732	16	692	10	0	-103	7956.72
10/12/09 02:58:10	60.027	3676.051	350	-223.015732	16	692.5	10	0	-103	7957.05
10/12/09 02:58:12	60.029	3675.704	350	-223.015732	16	693	10	0	-103	7957.38
10/12/09 02:58:14	60.028	3672.583	350	-223.015732	16	693.5	10	0	-103	7957.71
10/12/09 02:58:16	60.028	3671.343	350	-223.015732	16	694	10	0	-103	7958.04
10/12/09 02:58:18	60.032	3670.232	350	-223.015732	16	694.5	10	0	-103	7958.37
10/12/09 02:58:20	60.035	3668.654	350	-223.015732	16	695	10	0	-103	7958.7
10/12/09 02:58:22	60.03	3668.767	350	-223.015732	16	695.5	10	0	-103	7959.03
10/12/09 02:58:24	60.028	3666.312	350	-223.015732	16	696	10	0	-103	7959.36
10/12/09 02:58:26	60.021	3667.322	350	-223.015732	16	696.5	10	0	-103	7959.69
10/12/09 02:58:28	60.021	3657.164	350	-223.015732	16	697	10	0	-103	7960.02
10/12/09 02:58:30	60.024	3657.714	350	-223.015732	16	697.5	10	0	-103	7960.35
10/12/09 02:58:32	60.025	3668.637	350	-223.015732	16	698	10	0	-103	7960.68
10/12/09 02:58:34	60.024	3669.309	350	-223.015732	16	698.5	10	0	-103	7961.01
10/12/09 02:58:36	60.022	3670.112	350	-223.015732	16	699	10	0	-103	7961.34
10/12/09 02:58:38	60.023	3670.735	350	-223.015732	16	699.5	10	0	-103	7961.67
10/12/09 02:58:40	60.021	3671.332	350	-223.015732	16	700	10	0	-103	7962
10/12/09 02:58:42	60.02	3672.095	350	-223.015732	16	700.5	10	0	-103	7962.33
10/12/09 02:58:44	60.02	3672.683	350	-223.015732	16	701	10	0	-103	7962.66
10/12/09 02:58:46	60.02	3673.833	350	-223.015732	16	701.5	10	0	-103	7962.99
10/12/09 02:58:48	60.02	3674.645	350	-223.015732	16	702	10	0	-103	7963.32
10/12/09 02:58:50	60.017	3675.641	350	-223.015732	16	702.5	10	0	-103	7963.65
10/12/09 02:58:52	60.014	3675.971	350	-223.015732	16	703	10	0	-103	7963.98
10/12/09 02:58:54	60.012	3677.009	350	-223.015732	16	703.5	10	0	-103	7964.31
10/12/09 02:58:56	60.01	3678.314	350	-223.015732	16	704	10	0	-103	7964.64
10/12/09 02:58:58	60.011	3679.393	350	-223.015732	16	704.5	10	0	-103	7964.97
10/12/09 02:59:00	60.01	3680.02	350	-223.015732	16	705	10	0	-103	7965.3
10/12/09 02:59:02	60.01	3679.792	350	-223.015732	16	705.5	10	0	-103	7965.63
10/12/09 02:59:04	60.01	3679.597	350	-223.015732	16	706	10	0	-103	7965.96
10/12/09 02:59:06	60.012	3680.315	350	-223.015732	16	706.5	10	0	-103	7966.29
10/12/09 02:59:08	60.012	3680.11	350	-223.015732	16	707	10	0	-103	7966.62
10/12/09 02:59:10	60.013	3679.062	350	-223.015732	16	707.5	10	0	-103	7966.95

10/12/09 02:59:12	60.014	3679.127	350	-223.015732	16	708	10	0	-103	7967.28
10/12/09 02:59:14	60.013	3679.587	350	-223.015732	16	708.5	10	0	-103	7967.61
10/12/09 02:59:16	60.012	3679.637	350	-223.015732	16	709	10	0	-103	7967.94
10/12/09 02:59:18	60.011	3679.02	350	-223.015732	16	709.5	10	0	-103	7968.27
10/12/09 02:59:20	60.01	3678.418	350	-223.015732	16	710	10	0	-103	7968.6
10/12/09 02:59:22	60.008	3679.383	350	-223.015732	16	710.5	10	0	-103	7968.93
10/12/09 02:59:24	60.01	3679.681	350	-223.015732	16	711	10	0	-103	7969.26
10/12/09 02:59:26	60.011	3679.932	350	-223.015732	16	711.5	10	0	-103	7969.59
10/12/09 02:59:28	60.013	3679.138	350	-223.015732	16	712	10	0	-103	7969.92
10/12/09 02:59:30	60.016	3678.469	350	-223.015732	16	712.5	10	0	-103	7970.25
10/12/09 02:59:32	60.018	3678.499	350	-223.015732	16	713	10	0	-103	7970.58
10/12/09 02:59:34	60.019	3678.456	350	-223.015732	16	713.5	10	0	-103	7970.91
10/12/09 02:59:36	60.019	3677.615	350	-223.015732	16	714	10	0	-103	7971.24
10/12/09 02:59:38	60.019	3677.446	350	-223.015732	16	714.5	10	0	-103	7971.57
10/12/09 02:59:40	60.02	3677.431	350	-223.015732	16	715	10	0	-103	7971.9
10/12/09 02:59:42	60.02	3677.451	350	-223.015732	16	715.5	10	0	-103	7972.23
10/12/09 02:59:44	60.018	3677.315	350	-223.015732	16	716	10	0	-103	7972.56
10/12/09 02:59:46	60.018	3678.151	350	-223.015732	16	716.5	10	0	-103	7972.89
10/12/09 02:59:48	60.016	3678.362	350	-223.015732	16	717	10	0	-103	7973.22
10/12/09 02:59:50	60.016	3678.874	350	-223.015732	16	717.5	10	0	-103	7973.55
10/12/09 02:59:52	60.019	3680.771	350	-223.015732	16	718	10	0	-103	7973.88
10/12/09 02:59:54	60.023	3681.058	350	-223.015732	16	718.5	10	0	-103	7974.21
10/12/09 02:59:56	60.022	3680.353	350	-223.015732	16	719	10	0	-103	7974.54
10/12/09 02:59:58	60.018	3679.167	350	-223.015732	16	719.5	10	0	-103	7974.87
10/12/09 03:00:00	60.015	3679.553	350	-223.015732	16	720	10	0	-103	7975.2
10/12/09 03:00:02	60.016	3680.672	350	-223.015732	16	720.5	10	0	-103	7975.53
10/12/09 03:00:04	60.017	3682.73	350	-223.015732	16	721	10	0	-103	7975.86
10/12/09 03:00:06	60.015	3682.714	350	-223.015732	16	721.5	10	0	-103	7976.19
10/12/09 03:00:08	60.01	3681.915	350	-223.015732	16	722	10	0	-103	7976.52
10/12/09 03:00:10	60.004	3682.01	350	-223.015732	16	722.5	10	0	-103	7976.85
10/12/09 03:00:12	59.999	3682.483	350	-223.015732	16	723	10	0	-103	7977.18
10/12/09 03:00:14	59.995	3683.813	350	-223.015732	16	723.5	10	0	-103	7977.51
10/12/09 03:00:16	59.99	3685.306	350	-223.015732	16	724	10	0	-103	7977.84
10/12/09 03:00:18	59.982	3684.846	350	-223.015732	16	724.5	10	0	-103	7978.17
10/12/09 03:00:20	59.974	3684.643	350	-223.015732	16	725	10	0	-103	7978.5
10/12/09 03:00:22	59.97	3687.527	350	-223.015732	16	725.5	10	0	-103	7978.83
10/12/09 03:00:24	59.97	3689.404	350	-223.015732	16	726	10	0	-103	7979.16
10/12/09 03:00:26	59.968	3692.287	350	-223.015732	16	726.5	10	0	-103	7979.49
10/12/09 03:00:28	59.968	3692.966	350	-223.015732	16	727	10	0	-103	7979.82
10/12/09 03:00:30	59.968	3693.793	350	-223.015732	16	727.5	10	0	-103	7980.15
10/12/09 03:00:32	59.972	3694.397	350	-223.015732	16	728	10	0	-103	7980.48
10/12/09 03:00:34	59.967	3694.974	350	-223.015732	16	728.5	10	0	-103	7980.81
10/12/09 03:00:36	59.966	3697.407	350	-223.015732	16	729	10	0	-103	7981.14
10/12/09 03:00:38	59.964	3698.502	350	-223.015732	16	729.5	10	0	-103	7981.47
10/12/09 03:00:40	59.965	3698.617	350	-223.015732	16	730	10	0	-103	7981.8
10/12/09 03:00:42	59.966	3698.992	350	-223.015732	16	730.5	10	0	-103	7982.13
10/12/09 03:00:44	59.963	3699.85	350	-223.015732	16	731	10	0	-103	7982.46
10/12/09 03:00:46	59.963	3702.645	350	-223.015732	16	731.5	10	0	-103	7982.79
10/12/09 03:00:48	59.965	3701.989	350	-223.015732	16	732	10	0	-103	7983.12

10/12/09 03:00:50	59.968	3702.218	350	-223.015732	16	732.5	10	0	-103	7983.45
10/12/09 03:00:52	59.97	3704.023	350	-223.015732	16	733	10	0	-103	7983.78
10/12/09 03:00:54	59.97	3703.365	350	-223.015732	16	733.5	10	0	-103	7984.11
10/12/09 03:00:56	59.97	3702.988	350	-223.015732	16	734	10	0	-103	7984.44
10/12/09 03:00:58	59.973	3703.814	350	-223.015732	16	734.5	10	0	-103	7984.77
10/12/09 03:01:00	59.972	3704.899	350	-223.015732	16	735	10	0	-103	7985.1
10/12/09 03:01:02	59.976	3705.625	350	-223.015732	16	735.5	10	0	-103	7985.43
10/12/09 03:01:04	59.975	3704.293	350	-223.015732	16	736	10	0	-103	7985.76
10/12/09 03:01:06	59.975	3702.094	350	-223.015732	16	736.5	10	0	-103	7986.09
10/12/09 03:01:08	59.977	3701.944	350	-223.015732	16	737	10	0	-103	7986.42
10/12/09 03:01:10	59.976	3703.142	350	-223.015732	16	737.5	10	0	-103	7986.75
10/12/09 03:01:12	59.976	3704.669	350	-223.015732	16	738	10	0	-103	7987.08
10/12/09 03:01:14	59.974	3705.376	350	-223.015732	16	738.5	10	0	-103	7987.41
10/12/09 03:01:16	59.975	3705.662	350	-223.015732	16	739	10	0	-103	7987.74
10/12/09 03:01:18	59.974	3705.855	350	-223.015732	16	739.5	10	0	-103	7988.07
10/12/09 03:01:20	59.974	3706.776	350	-223.015732	16	740	10	0	-103	7988.4
10/12/09 03:01:22	59.976	3707.514	350	-223.015732	16	740.5	10	0	-103	7988.73
10/12/09 03:01:24	59.977	3706.928	350	-223.015732	16	741	10	0	-103	7989.06
10/12/09 03:01:26	59.979	3706.446	350	-223.015732	16	741.5	10	0	-103	7989.39
10/12/09 03:01:28	59.981	3706.335	350	-223.015732	16	742	10	0	-103	7989.72
10/12/09 03:01:30	59.983	3706.771	350	-223.015732	16	742.5	10	0	-103	7990.05
10/12/09 03:01:32	59.985	3705.943	350	-223.015732	16	743	10	0	-103	7990.38
10/12/09 03:01:34	59.983	3704.127	350	-223.015732	16	743.5	10	0	-103	7990.71
10/12/09 03:01:36	59.98	3704.777	350	-223.015732	16	744	10	0	-103	7991.04
10/12/09 03:01:38	59.979	3705.974	350	-223.015732	16	744.5	10	0	-103	7991.37
10/12/09 03:01:40	59.983	3705.968	350	-223.015732	16	745	10	0	-103	7991.7
10/12/09 03:01:42	59.987	3705.356	350	-223.015732	16	745.5	10	0	-103	7992.03
10/12/09 03:01:44	59.986	3704.683	350	-223.015732	16	746	10	0	-103	7992.36
10/12/09 03:01:46	59.984	3703.913	350	-223.015732	16	746.5	10	0	-103	7992.69
10/12/09 03:01:48	59.98	3704.361	350	-223.015732	16	747	10	0	-103	7993.02
10/12/09 03:01:50	59.982	3704.988	350	-223.015732	16	747.5	10	0	-103	7993.35
10/12/09 03:01:52	59.984	3705.05	350	-223.015732	16	748	10	0	-103	7993.68
10/12/09 03:01:54	59.985	3704.893	350	-223.015732	16	748.5	10	0	-103	7994.01
10/12/09 03:01:56	59.987	3703.741	350	-223.015732	16	749	10	0	-103	7994.34
10/12/09 03:01:58	59.989	3701.831	350	-223.015732	16	749.5	10	0	-103	7994.67
10/12/09 03:02:00	59.992	3701.795	350	-223.015732	16	750	10	0	-103	7995
10/12/09 03:02:02	59.996	3700.07	350	-223.015732	16	750.5	10	0	-103	7995.33
10/12/09 03:02:04	59.999	3701.308	350	-223.015732	16	751	10	0	-103	7995.66
10/12/09 03:02:06	59.997	3700.429	350	-223.015732	16	751.5	10	0	-103	7995.99
10/12/09 03:02:08	59.997	3700.913	350	-223.015732	16	752	10	0	-103	7996.32
10/12/09 03:02:10	59.997	3700.541	350	-223.015732	16	752.5	10	0	-103	7996.65
10/12/09 03:02:12	59.997	3699.927	350	-223.015732	16	753	10	0	-103	7996.98
10/12/09 03:02:14	59.996	3700.858	350	-223.015732	16	753.5	10	0	-103	7997.31
10/12/09 03:02:16	59.997	3700.549	350	-223.015732	16	754	10	0	-103	7997.64
10/12/09 03:02:18	59.996	3700.614	350	-223.015732	16	754.5	10	0	-103	7997.97
10/12/09 03:02:20	59.998	3700.224	350	-223.015732	16	755	10	0	-103	7998.3
10/12/09 03:02:22	60.003	3699.5	350	-223.015732	16	755.5	10	0	-103	7998.63
10/12/09 03:02:24	60.009	3698.032	350	-223.015732	16	756	10	0	-103	7998.96
10/12/09 03:02:26	60.01	3697.96	350	-223.015732	16	756.5	10	0	-103	7999.29

10/12/09 03:02:28	60.008	3699.409	350	-223.015732	16	757	10	0	-103	7999.62
10/12/09 03:02:30	60.005	3699.241	350	-223.015732	16	757.5	10	0	-103	7999.95
10/12/09 03:02:32	60.004	3700.738	350	-223.015732	16	758	10	0	-103	8000.28
10/12/09 03:02:34	60.006	3701.11	350	-223.015732	16	758.5	10	0	-103	8000.61
10/12/09 03:02:36	60.003	3701.238	350	-223.015732	16	759	10	0	-103	8000.94
10/12/09 03:02:38	60.001	3699.998	350	-223.015732	16	759.5	10	0	-103	8001.27
10/12/09 03:02:40	60.002	3700.22	350	-223.015732	16	760	10	0	-103	8001.6
10/12/09 03:02:42	60.004	3701.823	350	-223.015732	16	760.5	10	0	-103	8001.93
10/12/09 03:02:44	60.007	3702.554	350	-223.015732	16	761	10	0	-103	8002.26
10/12/09 03:02:46	60.007	3702.276	350	-223.015732	16	761.5	10	0	-103	8002.59
10/12/09 03:02:48	60.008	3701.026	350	-223.015732	16	762	10	0	-103	8002.92
10/12/09 03:02:50	60.008	3701.923	350	-223.015732	16	762.5	10	0	-103	8003.25
10/12/09 03:02:52	60.006	3702.943	350	-223.015732	16	763	10	0	-103	8003.58
10/12/09 03:02:54	60.006	3704.093	350	-223.015732	16	763.5	10	0	-103	8003.91
10/12/09 03:02:56	60.006	3703.96	350	-223.015732	16	764	10	0	-103	8004.24
10/12/09 03:02:58	60.005	3703.819	350	-223.015732	16	764.5	10	0	-103	8004.57
10/12/09 03:03:00	60	3704.455	350	-223.015732	16	765	10	0	-103	8004.9
10/12/09 03:03:02	59.999	3704.346	350	-223.015732	16	765.5	10	0	-103	8005.23
10/12/09 03:03:04	60	3705.329	350	-223.015732	16	766	10	0	-103	8005.56
10/12/09 03:03:06	60	3704.93	350	-223.015732	16	766.5	10	0	-103	8005.89
10/12/09 03:03:08	60.004	3704.405	350	-223.015732	16	767	10	0	-103	8006.22
10/12/09 03:03:10	60.008	3703.675	350	-223.015732	16	767.5	10	0	-103	8006.55
10/12/09 03:03:12	60.013	3702.748	350	-223.015732	16	768	10	0	-103	8006.88
10/12/09 03:03:14	60.015	3702.669	350	-223.015732	16	768.5	10	0	-103	8007.21
10/12/09 03:03:16	60.015	3703.017	350	-223.015732	16	769	10	0	-103	8007.54
10/12/09 03:03:18	60.012	3703.416	350	-223.015732	16	769.5	10	0	-103	8007.87
10/12/09 03:03:20	60.009	3703.297	350	-223.015732	16	770	10	0	-103	8008.2
10/12/09 03:03:22	60.005	3705.189	350	-223.015732	16	770.5	10	0	-103	8008.53
10/12/09 03:03:24	60.008	3705.279	350	-223.015732	16	771	10	0	-103	8008.86
10/12/09 03:03:26	60.011	3704.646	350	-223.015732	16	771.5	10	0	-103	8009.19
10/12/09 03:03:28	60.011	3704.051	350	-223.015732	16	772	10	0	-103	8009.52
10/12/09 03:03:30	60.013	3703.438	350	-223.015732	16	772.5	10	0	-103	8009.85
10/12/09 03:03:32	60.016	3704.255	350	-223.015732	16	773	10	0	-103	8010.18
10/12/09 03:03:34	60.018	3703.708	350	-223.015732	16	773.5	10	0	-103	8010.51
10/12/09 03:03:36	60.018	3703.83	350	-223.015732	16	774	10	0	-103	8010.84
10/12/09 03:03:38	60.019	3704.524	350	-223.015732	16	774.5	10	0	-103	8011.17
10/12/09 03:03:40	60.018	3704.139	350	-223.015732	16	775	10	0	-103	8011.5
10/12/09 03:03:42	60.013	3704.27	350	-223.015732	16	775.5	10	0	-103	8011.83
10/12/09 03:03:44	60.011	3705.429	350	-223.015732	16	776	10	0	-103	8012.16
10/12/09 03:03:46	60.009	3705.942	350	-223.015732	16	776.5	10	0	-103	8012.49
10/12/09 03:03:48	60.009	3705.54	350	-223.015732	16	777	10	0	-103	8012.82
10/12/09 03:03:50	60.008	3705.634	350	-223.015732	16	777.5	10	0	-103	8013.15
10/12/09 03:03:52	60.009	3705.749	350	-223.015732	16	778	10	0	-103	8013.48
10/12/09 03:03:54	60.011	3707.267	350	-223.015732	16	778.5	10	0	-103	8013.81
10/12/09 03:03:56	60.015	3706.945	350	-223.015732	16	779	10	0	-103	8014.14
10/12/09 03:03:58	60.02	3706.63	350	-223.015732	16	779.5	10	0	-103	8014.47
10/12/09 03:04:00	60.021	3705.655	350	-223.015732	16	780	10	0	-103	8014.8
10/12/09 03:04:02	60.018	3703.895	350	-223.015732	16	780.5	10	0	-103	8015.13
10/12/09 03:04:04	60.017	3704.224	350	-223.015732	16	781	10	0	-103	8015.46

10/12/09 03:04:06	60.019	3703.887	350	-223.015732	16	781.5	10	0	-103	8015.79
10/12/09 03:04:08	60.019	3704.648	350	-223.015732	16	782	10	0	-103	8016.12
10/12/09 03:04:10	60.021	3704.795	350	-223.015732	16	782.5	10	0	-103	8016.45
10/12/09 03:04:12	60.022	3704.167	350	-223.015732	16	783	10	0	-103	8016.78
10/12/09 03:04:14	60.025	3702.764	350	-223.015732	16	783.5	10	0	-103	8017.11
10/12/09 03:04:16	60.027	3702.008	350	-223.015732	16	784	10	0	-103	8017.44
10/12/09 03:04:18	60.03	3700.36	350	-223.015732	16	784.5	10	0	-103	8017.77
10/12/09 03:04:20	60.027	3701.063	350	-223.015732	16	785	10	0	-103	8018.1
10/12/09 03:04:22	60.023	3700.34	350	-223.015732	16	785.5	10	0	-103	8018.43
10/12/09 03:04:24	60.021	3699.369	350	-223.015732	16	786	10	0	-103	8018.76
10/12/09 03:04:26	60.023	3701.568	350	-223.015732	16	786.5	10	0	-103	8019.09
10/12/09 03:04:28	60.023	3702.959	350	-223.015732	16	787	10	0	-103	8019.42
10/12/09 03:04:30	60.02	3704.25	350	-223.015732	16	787.5	10	0	-103	8019.75
10/12/09 03:04:32	60.024	3703.621	350	-223.015732	16	788	10	0	-103	8020.08
10/12/09 03:04:34	60.024	3703.374	350	-223.015732	16	788.5	10	0	-103	8020.41
10/12/09 03:04:36	60.022	3703.036	350	-223.015732	16	789	10	0	-103	8020.74
10/12/09 03:04:38	60.022	3703.931	350	-223.015732	16	789.5	10	0	-103	8021.07
10/12/09 03:04:40	60.024	3704.947	350	-223.015732	16	790	10	0	-103	8021.4
10/12/09 03:04:42	60.025	3704.208	350	-223.015732	16	790.5	10	0	-103	8021.73
10/12/09 03:04:44	60.023	3703.541	350	-223.015732	16	791	10	0	-103	8022.06
10/12/09 03:04:46	60.024	3703.16	350	-223.015732	16	791.5	10	0	-103	8022.39
10/12/09 03:04:48	60.02	3703.397	350	-223.015732	16	792	10	0	-103	8022.72
10/12/09 03:04:50	60.018	3704.376	350	-223.015732	16	792.5	10	0	-103	8023.05
10/12/09 03:04:52	60.013	3705.441	350	-223.015732	16	793	10	0	-103	8023.38
10/12/09 03:04:54	60.008	3706.995	350	-223.015732	16	793.5	10	0	-103	8023.71
10/12/09 03:04:56	60.012	3710.072	350	-223.015732	16	794	10	0	-103	8024.04
10/12/09 03:04:58	60.017	3707.971	350	-223.015732	16	794.5	10	0	-103	8024.37
10/12/09 03:05:00	60.019	3707.767	350	-223.015732	16	795	10	0	-103	8024.7
10/12/09 03:05:02	60.019	3707.609	350	-223.015732	16	795.5	10	0	-103	8025.03
10/12/09 03:05:04	60.015	3708.831	350	-223.015732	16	796	10	0	-103	8025.36
10/12/09 03:05:06	60.016	3709.465	350	-223.015732	16	796.5	10	0	-103	8025.69
10/12/09 03:05:08	60.015	3709.813	350	-223.015732	16	797	10	0	-103	8026.02
10/12/09 03:05:10	60.016	3709.817	350	-223.015732	16	797.5	10	0	-103	8026.35
10/12/09 03:05:12	60.014	3709.99	350	-223.015732	16	798	10	0	-103	8026.68
10/12/09 03:05:14	60.016	3709.094	350	-223.015732	16	798.5	10	0	-103	8027.01
10/12/09 03:05:16	60.018	3709.642	350	-223.015732	16	799	10	0	-103	8027.34
10/12/09 03:05:18	60.019	3709.812	350	-223.015732	16	799.5	10	0	-103	8027.67
10/12/09 03:05:20	60.016	3709.933	350	-223.015732	16	800	10	0	-103	8028
10/12/09 03:05:22	60.014	3710.677	350	-223.015732	16	800.5	10	0	-103	8028.33
10/12/09 03:05:24	60.014	3710.591	350	-223.015732	16	801	10	0	-103	8028.66
10/12/09 03:05:26	60.018	3709.354	350	-223.015732	16	801.5	10	0	-103	8028.99
10/12/09 03:05:28	60.022	3707.696	350	-223.015732	16	802	10	0	-103	8029.32
10/12/09 03:05:30	60.023	3707.38	350	-223.015732	16	802.5	10	0	-103	8029.65
10/12/09 03:05:32	60.024	3707.12	350	-223.015732	16	803	10	0	-103	8029.98
10/12/09 03:05:34	60.026	3706.99	350	-223.015732	16	803.5	10	0	-103	8030.31
10/12/09 03:05:36	60.026	3705.848	350	-223.015732	16	804	10	0	-103	8030.64
10/12/09 03:05:38	60.024	3704.185	350	-223.015732	16	804.5	10	0	-103	8030.97
10/12/09 03:05:40	60.022	3704.406	350	-223.015732	16	805	10	0	-103	8031.3
10/12/09 03:05:42	60.02	3704.963	350	-223.015732	16	805.5	10	0	-103	8031.63

10/12/09 03:05:44	60.019	3706.567	350	-223.015732	16	806	10	0	-103	8031.96
10/12/09 03:05:46	60.022	3705.516	350	-223.015732	16	806.5	10	0	-103	8032.29
10/12/09 03:05:48	60.025	3704.869	350	-223.015732	16	807	10	0	-103	8032.62
10/12/09 03:05:50	60.028	3704.428	350	-223.015732	16	807.5	10	0	-103	8032.95
10/12/09 03:05:52	60.03	3704.773	350	-223.015732	16	808	10	0	-103	8033.28
10/12/09 03:05:54	60.031	3703.532	350	-223.015732	16	808.5	10	0	-103	8033.61
10/12/09 03:05:56	60.029	3702.686	350	-223.015732	16	809	10	0	-103	8033.94
10/12/09 03:05:58	60.026	3702.093	350	-223.015732	16	809.5	10	0	-103	8034.27
10/12/09 03:06:00	60.026	3703.169	350	-223.015732	16	810	10	0	-103	8034.6
10/12/09 03:06:02	60.029	3703.676	350	-223.015732	16	810.5	10	0	-103	8034.93
10/12/09 03:06:04	60.03	3701.52	350	-223.015732	16	811	10	0	-103	8035.26
10/12/09 03:06:06	60.033	3700.106	350	-223.015732	16	811.5	10	0	-103	8035.59
10/12/09 03:06:08	60.03	3698.222	350	-223.015732	16	812	10	0	-103	8035.92
10/12/09 03:06:10	60.022	3698.009	350	-223.015732	16	812.5	10	0	-103	8036.25
10/12/09 03:06:12	60.016	3700.28	350	-223.015732	16	813	10	0	-103	8036.58
10/12/09 03:06:14	60.019	3703.192	350	-223.015732	16	813.5	10	0	-103	8036.91
10/12/09 03:06:16	60.03	3703.815	350	-223.015732	16	814	10	0	-103	8037.24
10/12/09 03:06:18	60.028	3701.863	350	-223.015732	16	814.5	10	0	-103	8037.57
10/12/09 03:06:20	60.021	3699.956	350	-223.015732	16	815	10	0	-103	8037.9
10/12/09 03:06:22	60.015	3700.816	350	-223.015732	16	815.5	10	0	-103	8038.23
10/12/09 03:06:24	60.015	3703.802	350	-223.015732	16	816	10	0	-103	8038.56
10/12/09 03:06:26	60.012	3706.943	350	-223.015732	16	816.5	10	0	-103	8038.89
10/12/09 03:06:28	60.011	3708.527	350	-223.015732	16	817	10	0	-103	8039.22
10/12/09 03:06:30	60.014	3707.49	350	-223.015732	16	817.5	10	0	-103	8039.55
10/12/09 03:06:32	60.013	3707.647	350	-223.015732	16	818	10	0	-103	8039.88
10/12/09 03:06:34	60.014	3706.991	350	-223.015732	16	818.5	10	0	-103	8040.21
10/12/09 03:06:36	60.016	3707.495	350	-223.015732	16	819	10	0	-103	8040.54
10/12/09 03:06:38	60.016	3705.584	350	-223.015732	16	819.5	10	0	-103	8040.87
10/12/09 03:06:40	60.015	3705.398	350	-223.015732	16	820	10	0	-103	8041.2
10/12/09 03:06:42	60.013	3707.12	350	-223.015732	16	820.5	10	0	-103	8041.53
10/12/09 03:06:44	60.007	3709.144	350	-223.015732	16	821	10	0	-103	8041.86
10/12/09 03:06:46	59.997	3708.99	350	-223.015732	16	821.5	10	0	-103	8042.19
10/12/09 03:06:48	59.994	3708.291	350	-223.015732	16	822	10	0	-103	8042.52
10/12/09 03:06:50	59.993	3706.193	350	-223.015732	16	822.5	10	0	-103	8042.85
10/12/09 03:06:52	59.99	3707.304	350	-223.015732	16	823	10	0	-103	8043.18
10/12/09 03:06:54	59.993	3707.903	350	-223.015732	16	823.5	10	0	-103	8043.51
10/12/09 03:06:56	59.994	3706.76	350	-223.015732	16	824	10	0	-103	8043.84
10/12/09 03:06:58	59.993	3706.921	350	-223.015732	16	824.5	10	0	-103	8044.17
10/12/09 03:07:00	59.994	3706.683	350	-223.015732	16	825	10	0	-103	8044.5
10/12/09 03:07:02	59.993	3706.888	350	-223.015732	16	825.5	10	0	-103	8044.83
10/12/09 03:07:04	59.996	3704.934	350	-223.015732	16	826	10	0	-103	8045.16
10/12/09 03:07:06	59.988	3705.678	350	-223.015732	16	826.5	10	0	-103	8045.49
10/12/09 03:07:08	59.985	3706.481	350	-223.015732	16	827	10	0	-103	8045.82
10/12/09 03:07:10	59.983	3707.071	350	-223.015732	16	827.5	10	0	-103	8046.15
10/12/09 03:07:12	59.982	3706.696	350	-223.015732	16	828	10	0	-103	8046.48
10/12/09 03:07:14	59.98	3707.479	350	-223.015732	16	828.5	10	0	-103	8046.81
10/12/09 03:07:16	59.977	3708.246	350	-223.015732	16	829	10	0	-103	8047.14
10/12/09 03:07:18	59.981	3709.436	350	-223.015732	16	829.5	10	0	-103	8047.47
10/12/09 03:07:20	59.982	3710.419	350	-223.015732	16	830	10	0	-103	8047.8

10/12/09 03:07:22	59.978	3710.134	350	-223.015732	16	830.5	10	0	-103	8048.13
10/12/09 03:07:24	59.98	3708.708	350	-223.015732	16	831	10	0	-103	8048.46
10/12/09 03:07:26	59.98	3710.024	350	-223.015732	16	831.5	10	0	-103	8048.79
10/12/09 03:07:28	59.977	3709.192	350	-223.015732	16	832	10	0	-103	8049.12
10/12/09 03:07:30	59.98	3708.335	350	-223.015732	16	832.5	10	0	-103	8049.45
10/12/09 03:07:32	59.983	3709.399	350	-223.015732	16	833	10	0	-103	8049.78
10/12/09 03:07:34	59.984	3707.911	350	-223.015732	16	833.5	10	0	-103	8050.11
10/12/09 03:07:36	59.981	3709.004	350	-223.015732	16	834	10	0	-103	8050.44
10/12/09 03:07:38	59.981	3707.638	350	-223.015732	16	834.5	10	0	-103	8050.77
10/12/09 03:07:40	59.98	3709.689	350	-223.015732	16	835	10	0	-103	8051.1
10/12/09 03:07:42	59.981	3708.945	350	-223.015732	16	835.5	10	0	-103	8051.43
10/12/09 03:07:44	59.981	3706.541	350	-223.015732	16	836	10	0	-103	8051.76
10/12/09 03:07:46	59.981	3711.256	350	-223.015732	16	836.5	10	0	-103	8052.09
10/12/09 03:07:48	59.98	3711.362	350	-223.015732	16	837	10	0	-103	8052.42
10/12/09 03:07:50	59.978	3712.303	350	-223.015732	16	837.5	10	0	-103	8052.75
10/12/09 03:07:52	59.978	3712.012	350	-223.015732	16	838	10	0	-103	8053.08
10/12/09 03:07:54	59.979	3711.703	350	-223.015732	16	838.5	10	0	-103	8053.41
10/12/09 03:07:56	59.978	3712.093	350	-223.015732	16	839	10	0	-103	8053.74
10/12/09 03:07:58	59.976	3713.992	350	-223.015732	16					8054.07
10/12/09 03:08:00	59.976	3714.612	350	-223.015732	16					8054.4
10/12/09 03:08:02	59.975	3715.083	350	-223.015732	16					8054.73
10/12/09 03:08:04	59.976	3715.323	350	-223.015732	16					8055.06
10/12/09 03:08:06	59.975	3714.794	350	-223.015732	16					8055.39
10/12/09 03:08:08	59.979	3714.717	350	-223.015732	16					8055.72
10/12/09 03:08:10	59.978	3715.161	350	-223.015732	16					8056.05
10/12/09 03:08:12	59.975	3715.001	350	-223.015732	16					8056.38
10/12/09 03:08:14	59.976	3713.996	350	-223.015732	16					8056.71
10/12/09 03:08:16	59.981	3714.063	350	-223.015732	16					8057.04
10/12/09 03:08:18	59.977	3714.335	350	-223.015732	16					8057.37
10/12/09 03:08:20	59.975	3715.631	350	-223.015732	16					8057.7
10/12/09 03:08:22	59.976	3715.688	350	-223.015732	16					8058.03
10/12/09 03:08:24	59.979	3715.567	350	-223.015732	16					8058.36
10/12/09 03:08:26	59.98	3715.725	350	-223.015732	16					8058.69
10/12/09 03:08:28	59.979	3714.848	350	-223.015732	16					8059.02
10/12/09 03:08:30	59.978	3713.142	350	-223.015732	16					8059.35
10/12/09 03:08:32	59.979	3713.358	350	-223.015732	16					8059.68
10/12/09 03:08:34	59.982	3712.275	350	-223.015732	16					8060.01
10/12/09 03:08:36	59.983	3712.619	350	-223.015732	16					8060.34
10/12/09 03:08:38	59.987	3712.153	350	-223.015732	16					8060.67
10/12/09 03:08:40	59.988	3710.05	350	-223.015732	16					8061
10/12/09 03:08:42	59.984	3709.082	350	-223.015732	16					8061.33
10/12/09 03:08:44	59.98	3710.472	350	-223.015732	16					8061.66
10/12/09 03:08:46	59.979	3710.624	350	-223.015732	16					8061.99
10/12/09 03:08:48	59.98	3710.946	350	-223.015732	16					8062.32
10/12/09 03:08:50	59.979	3710.2	350	-223.015732	16					8062.65
10/12/09 03:08:52	59.978	3710.475	350	-223.015732	16					8062.98
10/12/09 03:08:54	59.975	3709.462	350	-223.015732	16					8063.31
10/12/09 03:08:56	59.979	3710.803	350	-223.015732	16					8063.64
10/12/09 03:08:58	59.982	3709.286	350	-223.015732	16					8063.97

10/12/09 03:09:00	59.983	3710.573	350	-223.015732	16	8064.3
10/12/09 03:09:02	59.983	3709.525	350	-223.015732	16	8064.63
10/12/09 03:09:04	59.985	3708.371	350	-223.015732	16	8064.96
10/12/09 03:09:06	59.99	3708.527	350	-223.015732	16	8065.29
10/12/09 03:09:08	59.987	3706.512	350	-223.015732	16	8065.62
10/12/09 03:09:10	59.984	3707.49	350	-223.015732	16	8065.95
10/12/09 03:09:12	59.976	3708.962	350	-223.015732	16	8066.28
10/12/09 03:09:14	59.979	3709.894	350	-223.015732	16	8066.61
10/12/09 03:09:16	59.985	3712.303	350	-223.015732	16	8066.94
10/12/09 03:09:18	59.983	3711.35	350	-223.015732	16	8067.27
10/12/09 03:09:20	59.979	3711.627	350	-223.015732	16	8067.6
10/12/09 03:09:22	59.981	3712.076	350	-223.015732	16	8067.93
10/12/09 03:09:24	59.978	3712.393	350	-223.015732	16	8068.26
10/12/09 03:09:26	59.975	3712.999	350	-223.015732	16	8068.59
10/12/09 03:09:28	59.978	3713.51	350	-223.015732	16	8068.92
10/12/09 03:09:30	59.989	3716.626	350	-223.015732	16	8069.25
10/12/09 03:09:32	59.999	3715.443	350	-223.015732	16	8069.58
10/12/09 03:09:34	59.994	3712.092	350	-223.015732	16	8069.91
10/12/09 03:09:36	59.989	3713.906	350	-223.015732	16	8070.24
10/12/09 03:09:38	59.986	3714.894	350	-223.015732	16	8070.57
10/12/09 03:09:40	59.984	3714.953	350	-223.015732	16	8070.9
10/12/09 03:09:42	59.983	3716.122	350	-223.015732	16	8071.23
10/12/09 03:09:44	59.982	3716.308	350	-223.015732	16	8071.56
10/12/09 03:09:46	59.98	3715.438	350	-223.015732	16	8071.89
10/12/09 03:09:48	59.99	3714.764	350	-223.015732	16	8072.22
10/12/09 03:09:50	59.995	3714.714	350	-223.015732	16	8072.55
10/12/09 03:09:52	59.995	3715.068	350	-223.015732	16	8072.88
10/12/09 03:09:54	59.99	3715.927	350	-223.015732	16	8073.21
10/12/09 03:09:56	59.989	3715.791	350	-223.015732	16	8073.54
10/12/09 03:09:58	59.991	3716.285	350	-223.015732	16	8073.87
10/12/09 03:10:00	59.996	3715.324	350	-223.015732	16	8074.2
10/12/09 03:10:02	60	3714.46	350	-223.015732	16	8074.53
10/12/09 03:10:04	60.002	3711.708	350	-223.015732	16	8074.86
10/12/09 03:10:06	60.004	3712.698	350	-223.015732	16	8075.19
10/12/09 03:10:08	60.004	3712.851	350	-223.015732	16	8075.52
10/12/09 03:10:10	60.002	3713.362	350	-223.015732	16	8075.85
10/12/09 03:10:12	59.999	3716.641	350	-223.015732	16	8076.18
10/12/09 03:10:14	59.998	3718.292	350	-223.015732	16	8076.51
10/12/09 03:10:16	59.995	3719.079	350	-223.015732	16	8076.84
10/12/09 03:10:18	59.996	3718.233	350	-223.015732	16	8077.17
10/12/09 03:10:20	60.001	3717.815	350	-223.015732	16	8077.5
10/12/09 03:10:22	60.002	3717.889	350	-223.015732	16	8077.83
10/12/09 03:10:24	60.001	3718.56	350	-223.015732	16	8078.16
10/12/09 03:10:26	60.003	3718.195	350	-223.015732	16	8078.49
10/12/09 03:10:28	60.005	3719.021	350	-223.015732	16	8078.82
10/12/09 03:10:30	60.004	3718.821	350	-223.015732	16	8079.15
10/12/09 03:10:32	60.004	3719.897	350	-223.015732	16	8079.48
10/12/09 03:10:34	60.004	3719.299	350	-223.015732	16	8079.81
10/12/09 03:10:36	60.006	3719.643	350	-223.015732	16	8080.14

10/12/09 03:10:38	60.003	3719.527	350	-223.015732	16	8080.47
10/12/09 03:10:40	60.005	3719.731	350	-223.015732	16	8080.8
10/12/09 03:10:42	60.006	3720.279	350	-223.015732	16	8081.13
10/12/09 03:10:44	60.009	3718.58	350	-223.015732	16	8081.46
10/12/09 03:10:46	60.009	3718.976	350	-223.015732	16	8081.79
10/12/09 03:10:48	60.01	3718.982	350	-223.015732	16	8082.12
10/12/09 03:10:50	60.009	3720.034	350	-223.015732	16	8082.45
10/12/09 03:10:52	60.013	3720.609	350	-223.015732	16	8082.78
10/12/09 03:10:54	60.015	3720.811	350	-223.015732	16	8083.11
10/12/09 03:10:56	60.014	3721.239	350	-223.015732	16	8083.44
10/12/09 03:10:58	60.009	3720.38	350	-223.015732	16	8083.77
10/12/09 03:11:00	60.009	3719.447	350	-223.015732	16	8084.1
10/12/09 03:11:02	60.008	3720.807	350	-223.015732	16	8084.43
10/12/09 03:11:04	60.011	3721.272	350	-223.015732	16	8084.76
10/12/09 03:11:06	60.01	3720.592	350	-223.015732	16	8085.09
10/12/09 03:11:08	60.009	3721.245	350	-223.015732	16	8085.42
10/12/09 03:11:10	60.013	3721.594	350	-223.015732	16	8085.75
10/12/09 03:11:12	60.013	3722.176	350	-223.015732	16	8086.08
10/12/09 03:11:14	60.014	3721.999	350	-223.015732	16	8086.41
10/12/09 03:11:16	60.014	3721.646	350	-223.015732	16	8086.74
10/12/09 03:11:18	60.012	3721.678	350	-223.015732	16	8087.07
10/12/09 03:11:20	60.01	3720.86	350	-223.015732	16	8087.4
10/12/09 03:11:22	60.011	3721.645	350	-223.015732	16	8087.73
10/12/09 03:11:24	60.007	3723.816	350	-223.015732	16	8088.06
10/12/09 03:11:26	60.003	3725.07	350	-223.015732	16	8088.39
10/12/09 03:11:28	60.001	3724.656	350	-223.015732	16	8088.72
10/12/09 03:11:30	60	3724.869	350	-223.015732	16	8889.05
10/12/09 03:11:32	59.998	3724.661	350	-223.015732	16	8089.38
10/12/09 03:11:34	59.998	3723.696	350	-223.015732	16	8089.71
10/12/09 03:11:36	59.999	3723.58	350	-223.015732	16	8090.04
10/12/09 03:11:38	60.002	3723.405	350	-223.015732	16	8090.37
10/12/09 03:11:40	60.003	3721.879	350	-223.015732	16	8090.7
10/12/09 03:11:42	60.003	3722.401	350	-223.015732	16	8091.03
10/12/09 03:11:44	59.999	3722.906	350	-223.015732	16	8091.36
10/12/09 03:11:46	59.998	3724.142	350	-223.015732	16	8091.69
10/12/09 03:11:48	60.001	3723.65	350	-223.015732	16	8092.02
10/12/09 03:11:50	59.995	3723.201	350	-223.015732	16	8092.35
10/12/09 03:11:52	59.989	3723.639	350	-223.015732	16	8092.68
10/12/09 03:11:54	59.987	3723.881	350	-223.015732	16	8093.01
10/12/09 03:11:56	59.988	3724.654	350	-223.015732	16	8093.34
10/12/09 03:11:58	59.988	3725.361	350	-223.015732	16	8093.67
10/12/09 03:12:00	59.99	3724.944	350	-223.015732	16	8094

Balancing Authority Frequency Response
Obligation (FRO from FRS Form 1)
-80
Note: See "Instruction" tab for more detailed instructions.

Where "MyBA" = your BA mnemonic

0.562	3800	3788	3776.772	3698.573	3686.210
	3799.4	3789			
	3797．	3789.8	3771	3699.697	
	3796.16	3790.46	3778		
	3794.155	3790	3778.38	3700.821	
	3792	3791．43	3778.6		
	3792.440	3791	377	3701.94	
	3791.48	3792．26	3779.16		
	3789．382	3792.58	377	3773.06	
	3787．092	3792.8	3779.4		
	3786.0	3793.07	3779.6	3704.19	
	3785.6	3793.2	3779.71	370	
	3784.95	3793．3	3779.83	3705.316	
	3783.8	3793．33	3779.	3705．8	
	3782.2	3793．31	379．912	3706.440	
	3780.0	3793．21	3779.9	3707．002	3690.424
	3778.73	3793．22	379．819	3707．564	
	3777.82	3793.12	377	3708.1	
	3777.14	3793．00	\％		
	3776.38	3792.85	3779	3709.250	3691.548
	3775.76	3792.6	3779.7		
	3775.81	3792.4	3779.67	3710	3692.110
	3776.91	3792．19	3779．61	梼	
	3776.98	3791.93	3779.5	3711	3692.672
	3776.942	3791.672	3779.531	3712.060	
	377	379	3779．4	3712.622	3693.234
	3775.656	3791.163	3779．436	3713．184	
	377	379	377	3713.746	
	377	3790.608	3779．321	3714．308	
	377	379	3779．21	3714.870	
		3790．	3779		
	3774．478	3789.7	3779．127		
	377	3789.4	3779．70．	3716.556	
		3789．147			
	3775.105	3788.8	3778.967	3717．680	
	377			3718．242	
	3774．799	3788.3	3778.868	3718.803	
	377	3788.0	3778.8	37	
	3772.979	3787．73		3719.927	
	3770.51	3787.46	3778.6	372.	3697.168
	376	3787.1		3721．051	
	3767.2	3786.72	3778．36	3721.61	
	376	3786.3	3778．21	3722．175	
	376	3785．8	3778.11	3722	
	3770.071	3785.4	3778.01	疗	
	3769.8	3785.0	3777．9	3723．8	
	3769．0	3784.6	3777．8	3724．43	
	3769．04	3784．24	3777．79	3724．93	3699
	3768．66	3783.87	3777.702	3725．5	）699．
	3768.05	3783．43	3777.60	3726.1	3699
	3767.57	3782.98	3777．496	3726.67	3770.259
	3767．176	3782.50	3777．389	3727．23	3700.51
	3767.675	3781.984	3777.29	3727.79	3700.8
	3767.916	3781.437	3777.19	3728.3	3701.1
	3768.270	3780.88	3777．106	3728.91	3700.38
	3768.6	3780.36	3777．023	3729．81	
0.562	3768.329	3779.72	3776.338	3730．043	3701.945
	3769.128	3779.12	3776.862	3730.6	3702.226
0.562	3769．284	3778.534	3776．789	3731.167	3702.50
	3770.142	3777.937	3776.76	3731	
． 562	3770	377	3776.668	3732.291	

0.562	3771.927	3776.124	3776.573	3733.414	3703.631
0.562	3772.087	3775.525	3776.532	3733.976	3703.912
	3772	377	3776.494	3734.538	
	3771	3774.	3776.428		
	3771.481	3773.875	3776.404	3735.662	
	3772.02	73.3	76.35	3736.224	3705.035
		3772.865			
	3773.49	3772.37	3776.312	3737.348	370.597
		3771.98			
	3774.017	3771.48	3776.27	3738.47	3706.159
	2	3771.06			
	3772.67	3770.6	3776.218	3739.5	3700.721
	3772.49	3770.25	3776.1		
	3770.818	3769.85	3776.14	3740.72	3707.283
	3770.6	3769.45	3776.098	3741.282	
	3770.628	3769.08	3776.05	3741.8	3707.845
	377	3768.72	37	3742.406	
	3769.63	3768.36	3775.97	3742	3788.407
	376	3768.0	3775.8	374	
	3768.8	3767.67	3775.84	3744.0	3708.969
	3769.6	3767.37	3775.720	3744	3799.250
	3770.36	3767.05	3775	3745.216	3709.531
	3770.6	3766.776	3775	3745.778	
	3770.8	3766.51	3775.6	3746.3	3710.093
	3770.590	3766.263	3775.635	3746.901	
	3770.61	3766.03	775.5	3747	
	3769.99	3765.822	3775.556	3748.025	3710.936
	3769.223				
	3768.92	3765.40	3775.460	3749.149	3711.498
	376	3765.047	3775.374	3750.273	3712.060
	3770.236		3775.33		
	3770.36	3764.73	3775.301	3751.397	3712.622
	3770.92		377527		
	3770.64	3764.496	3775.237	3752.521	
	3770.12				
	3770.22	3764.31	3775.167	3753.645	
	3770.78				
	3771.6	376	3775.1	3754.769	
	3772.0				
	3772.8	3764	3775.0		
	3772.43				
	3772	3764.02	3775.0	3757.017	
	3772.23		3775.02		
	3771	3764.	374.9		
	3770.48				
	3770.7	3764.0	3774.	375	
	3770.46	3764.0	374.888	376	
	3769.6	3764.0	3774.82	3761.51	
	3771.0	3764.14	3774.76	3762.	
	3774.96	3764.25	3774.75	3763.	
	3776.39	3764.39	3774.77	3764.	
	3773.0	3764.52	3774.77	3765.	
	3769.62	3764.	3774.717		

名
$\begin{array}{lllll}3771.236 & 3770.936 & 3769.330 & 3765.446 & 3732.930 \\ 3772.767 & 3 & \end{array}$ $\begin{array}{lllll}3772.767 & 3771.010 & 37699.345 & 3765.446 .466 & 37332.930 \\ 3733.07\end{array}$ $\begin{array}{llllll} & 3774.322 & 3771.085 & 3769.366 & 3765.446 & 37333.209\end{array}$ $\begin{array}{llllll} & 3775.612 & 3771.159 & 37696.392 & 3765.45466 & 37333.209 \\ 3733.347\end{array}$

0.000	3777.749	3771.1371	37799.491	3765.446
	3733.754			
000	3778.681	3777.434	3769.530	3765.446
3733.887				

 $\begin{array}{llllll}0.000 & 3779.862 & 3771.574 & 3769.614 & 37655.446 & 3734.150 \\ 000 & 3780.893 & 3771.647 & 3769.661 & 3765.446 & 3734.280\end{array}$
 $\begin{array}{lllllll}0.000 & 3783.203 & 3771.784 & 3799.767 & 3755.446 & 3734.536 \\ 0.000 & 3783.905 & 3771.860 & 3769.825 & 3765.446 & 3734.663\end{array}$
 $\begin{array}{llllll}0.000 & 3783.521 & 3771.936 & 3769.881 & 3765.446 & 3734.788 \\ .000 & 3782.433 & 3722.011 & 3769.931 & 3765.446 & 3734.913\end{array}$

.000	3784.626	3777.2147	3770.0271	37555.446	373535.640
.000	3785.111	3772.476	3770.330	3765.446	3755.758

 $\begin{array}{lllllll}\text { Doo } & 3785.985 & 3772.541 & 3770.391 & 3755.446 & 3735.875 \\ \text { 000 } & 3787.673 & 3772.611 & 3770.459 & 3765.446 & 3755.99\end{array}$

 $\begin{array}{llllll} & 375454.436\end{array}$ | | 37645 | | | |
| :--- | :--- | :--- | :--- | :--- |
| 000 | 3784.940 | 3773.071 | 3777.889 | 3765.446 |
| 3736.778 | | | | |

.000	37855.889	3773.230	3777.059	37655.446	37737.102

03788.002	3777.332	3771.180	37555.466	3737.314	
000	3789.825	3773.391	3771.249	3765.446	3777.419

	3771.261 .24	3771.617	37655.466	3737.93	
.000	37922.199	3773.763	3771.692	3765.446	3738.033

000	3790.760	3773.910	3771.910	3765.446	3738.330
00	3791.338	3773.950	3771.980	3765.446	3738.428

000	3791.239	3777.085	3772.255	3765.464
	3738.81			
0700				

 $\begin{array}{lllll}3792943 & 37741.155 & 3772.425 & 3765.446 & 37399.091\end{array}$ $\begin{array}{llllll}0.000 & 3792.943 & 3774.155 & 3772.533 & 3755.446 & 3779.183 \\ 0.000 & 3791.636 & 3774.173 & 372.600 & 3765.446 & 3739.27\end{array}$ $\begin{array}{llllll}0.0000 & 37971.936 & 37744.181 & 37272.666 & 3765.446 & 3746 \\ 37739.366\end{array}$ $\begin{array}{llllll}0.000 & 379.907 & 3774.181 & 3772.667 & 3755.446 & 373.356 \\ 0.000 & 3792.643 & 3774.186 & 3772.736 & 3755.446 & 3739.456\end{array}$ $\begin{array}{lllllll}0.000 & 3793.961 & 3774.194 & 3772.808 & 3765.446 & 3739.546 \\ 0.000 & 3794.257 & 3774.202 & 3772.882 & 3765.446 & 3739.635\end{array}$ $\begin{array}{lllllll}0.000 & 3794.257 & 3774.202 & 3772.882 & 3765.446 & 3739.635 \\ .000 & 3792.770 & 3774.208 & 3772.950 & 3765.446 & 3739.723\end{array}$

3792．644	3774.205	3773.017	376	
	3774.196	3773.081		
3791.865	3774.178	3773．145	3765．446	3739.9
3.175	3774.159			
3793.467	3774.141	3773．280	3765.44	3740.15
92．257	3774.119	3773.343		
3790.630	3774.088	3773.40	3765.446	374
0.973	3774．042	3773.45		
3792.03	3773．994	3773.52	3765.4	374
1.85	3773．954	3773.5		
91．59	3773．914	3773．641	3765.446	3740
182	3773.870	3773.70		
22．86	3773.825	3773.763	3765.46	3740.8
3792.988	3773．780	3773.83		
939．426	3773．733	3773.87	3765.446	3740.98
3784.030	3773.682	3773.96	376	
2.48	3773．616	3773．933	3765.46	3741.13
	3773．550	3773.9		
86．942	3773．480	3774.01	3765.46	3741.25
9，427	3773.41	3774.060	3765.	
791．86	3773．368	3774.116	3765.46	3741.42
3．45	3773．323	3774.178	3765	
4．76	3773.275	3774.243	3765.46	3741
5.62	3773.23	3774．31	3765.	
6．459	3773．201	3774．380	3765.46	3741
6．16	3773.1	3774.4	376	
\％ 08	3773.140	3774.519	65.4	3741
3798.530	3773.11	3774.5	3765.446	
3800.868	3773.083	3774.676	5.46	3742.047
3801.828	3773．06	3774．7		
3802.172	3773．047	3774．844	3765.46	3742
3801.55	3773．032	3774．92	3765	
11.434	3773.014	3775．008	3765.46	3742
9．95	3772.99	3775．08	3765	
8． 434	3772.960	3775．155	3765.46	3742.46
3798．006	3772.926	3775．22	3765	
8．28	3772.892	3775.295	3765.46	3742.6
50	3772.852	3775.3	3765.446	
6.740	3772.809	3775．426	3765.4	3742.75
5． 784	3772.748	3775．43	3765.446	
4.324	3772.680	3775．543	65．4	3742
	3772.624	3775.596	375．	
2．75	3772.567	3775.647	3765.4	3743
1．795	3772.510	3775.695	3765.	3743
3790．330	3772.452	3775.739	3765.46	3743
3789.938	3772.395	3775.780	3765.4	3743
3791.363	3772.337	3775．826	3765.46	3743
3791.729	3772.281	3775.873	3765.46	3743
$1 . .968$	3772.225	3775.920	3765.46	3743
3790.722	3772.167	3775.963	3765.4	3743．4
8.792	3772.101	3776.00	3765.46	3743．54
87．819	3772.029	37776.035	3765.46	3743
378.865	3771.938	3776.072	3765.46	3743
788．426	3771.849	3776.107	3765.46	3743
877．860	3771.777	3776.141	3765.46	3743
3786.372	3771.702	3776.170	3765.46	
384．566	3771.621	3776.194	3765.46	3743
3788．391	3771.536	3776.215	3765.446	3743
3782.628	3771.447	3776.233	3765.446	3744.047
3781.852	3771.354	3776.249	3765.46	44.108
3781.347	3771.262	3776．263		

 氙

2:41:20	59.987	3724.785
2:41:22	59.99	3720.108
2:41:24	59.994	3720.938
2:41:26	59.996	3725.661
2:41:28	60.001	3725.677
2:41:30	60.003	3727.754
2:41:32	60.004	3727.825
2:41:34	60.006	3727.683
2:41:36	60.012	3727.231
2:41:38	60.014	3725.012
2:41:40	60.019	3726.446
2:41:42	60.021	3726.016
2:41:44	60.025	3719.123
2:41:46	60.026	3716.375
2:41:48	60.027	3717.333
2:41:50	60.029	3717.560
2:41:52	60.029	3717.142
2:41:54	60.037	3715.166
2:41:56	60.036	3773.632
2:41:58	60.037	3710.283
2:42:00	60.037	3710.158
2:42:02	60.036	3699.356
2:42:04	60.041	3698.591
2:42:06	60.043	3704.591
2:42:08	60.044	3703.275
2:42:10	60.043	3702.482
2:42:12	60.046	3701.316
2:42:14	60.048	3700.826
2:42:16	60.046	3699.529
2:42:18	60.046	3699.726
2:42:20	60.043	3690.100
2:42:22	60.043	3690.477
2:42:24	60.044	3696.865
2:42:26	60.043	3696.877

10.400	10.615
7.999	9.700
4.800	7.985
3.201	6.311
-0.800	3.822
-2.399	1.645
-3.201	-0.051
-4.800	-1.714
-9.601	-4.474
-11.200	-6.828
-15.201	-9.759
-16.800	-12.223
-20.001	-14.945
-20.801	-16.995
-21.600	-18.607
-23.199	-20.214
-23.199	-21.259
-29.599	-24.178
-28.799	-25.796
-29.599	-27.127
-29.599	-27.992
-28.799	-28.275
-32.800	-29.859
-34.399	-31.448
-35.199	-32.761
-34.399	-33.334
-36.801	-34.548
-38.400	-35.896
-36.801	-36.213
-36.801	-36.419
-34.399	-35.712
-34.399	-35.253
-35.199	-35.234
-34.399	-34.942

-29.599	T-34 sec	2:26:52													T-34 sec	2:26:52				
-36.801	T-32 sec	2:26:54													T-32 sec	2:26:54				
-38.400	$T-30 \mathrm{sec}$	2:26:56													T-30 sec	2:26:56				
-38.400	T-28 sec	2:26:58													T-28 sec	2:26:58				
-34.399	T-26 sec	2:27:00													T-26 sec	2:27:00				
-32.800	T-24 sec	2:27:02													T-24 sec	2:27:02				
-32.800	T-22 sec	2:27:04													T-22 sec	2:27:04				
-32.800	T-20 sec	2:27:06													T-20 sec	2:27:06				
-31.201	T-18 sec	2:27:08													T-18 sec	2:27:08				
-32.800	T-16 sec	2:27:10	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-16 sec	2:27:10	60.042	3645.727	350.000	165.336
-34.399	T-14 sec	2:27:12	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-14 sec	2:27:12	60.042	3645.727	350.000	165.336
-35.999	$T-12 \mathrm{sec}$	2:27:14	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	${ }^{7651.305}$	-33.700		T-12 sec	2:27:14	60.042	3645.727	350.000	165.336
-36.801	$T-10 \mathrm{sec}$	2:27:16	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-10 sec	2:27:16	60.042	3645.727	350.000	165.336
-32.800	T-08 sec	2:27:18	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	${ }^{7651.305}$	-33.700		T-08 sec	2:27:18	60.042	3645.727	350.000	165.336
-32.800	T-06 sec	2:27:20	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-06 sec	2:27:20	60.042	3645.727	350.000	165.336
-32.800	T-04 sec	2:27:22	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	${ }^{7651.305}$	-33.700		T-04 sec	2:27:22	60.042	3645.727	350.000	165.336
-31.201	T-02 sec	2:27:24	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-02 sec	2:27:24	60.042	3645.727	350.000	165.336
17.599	T+0 sec	2:27:26													T+0 sec	2:27:26				
118.399	T+02 sec	2:27:28													T+02 sec	2:27:28				
131.201	T+04 sec	2:27:30													T+04 sec	2:27:30				
104.800	T+06 sec	2:27:32													T+06 sec	2:27:32				
104.800	T+08 sec	2:27:34													T+08 sec	2:27:34				
86.401	T+10 sec	2:27:36													T+10 sec	2:27:36				
87.201	T+12 sec	2:27:38	59.883	3770.653	335.000	212.139	0.857	235.500	10.000	0.000	-103.000	7632.000	93.943	3813.236	T+12 sec	2:27:38				
95.999	T+14 sec	2:27:40	59.883	3770.653	${ }^{335.000}$	212.139	0.857	235.500	10.000	0.000	-103.000	7632.000	93.943	3813.236	T+14 sec	2:27:40				
99.200	T+16 sec	2:27:42	59.883	3770.653	335.000	212.139	0.857	235.500	10.000	0.000	-103.000	7632.000	93.943	3813.236	T+16 sec	2:27:42				
100.000	T+18 sec	2:27:44	59.883	3770.653	335.000	212.139	0.857	235.500	10.000	0.000	-103.000	7632.000	93.943	3813.236	T+18 sec	2:27:44	59.884	3779.029	335.000	213.464
93.600	T+20 sec	2:27:46	59.883	3770.653	335.000	212.139	0.857	235.500	10.000	0.000	-103.000	7632.000	93.943	3813.236	T+20 sec	2:27:46	59.884	3779.029	335.000	213.464
90.399	T+22 sec	2:27:48	59.883	3770.653	335.000	212.139	0.857	235.500	10.000	0.000	-103.000	7632.000	93.943	3813.236	T+22 sec	2:27:48	59.884	3779.029	335.000	213.464
91.199	T+24 sec	2:27:50	59.883	3770.653	335.000	212.139	0.857	235.500	10.000	0.000	-103.000	7632.000	93.943	3813.236	T+24 sec	2:27:50	59.884	3779.029	335.000	213.464
92.001	T+26 sec	2:27:52													T+26 sec	2:27:52	59.884	3779.029	335.000	213.464
90.399	T+28 sec	2:27:54													T+28 sec	2:27:54	59.884	3779.029	335.000	213.464
89.600	T+30 sec	2:27:56													T+30 sec	2:27:56	59.884	3779.029	335.000	213.464
88.000	T+32 sec	2:27:58													T+32 sec	2:27:58				
84.000	T+34 sec	2:28:00													T+34 sec	2:28:00				
84.799	T+36 sec	2:28:02													T+36 sec	2:28:02				
85.599	T+38 sec	2:28:04													T+38 sec	2:28:04				
84.799	T+40 sec	2:28:06													T+40 sec	2:28:06				
84.799	${ }^{T+42}$ sec	2:28:08													${ }_{\text {T }}^{+422 \text { sec }}$	2:28:08				
87.201	${ }^{\text {T+4 }}$ sec	2:28:10													${ }^{\text {T }}+44$ sec	2:28:10				
88.000 92.001	$T+46 \mathrm{sec}$ $\mathrm{T}+48 \mathrm{sec}$	2:28:12													T+46 sec T+48 sec	2:28:12				
92.001	T+50 sec	2:28:16													T+50 sec	2:28:16				
89.600	T+52 sec	2:88:18													T+52 sec	2:28:18				
90.399	T+54 sec	2:28:20													T+54 sec	2:28:20				
89.600	T+56 sec	2:28:22													T+56 sec	2:28:22				
89.600	T+58 sec	2:28:24													${ }_{\text {T }+58 \text { sec }}$	2:28:24				
88.000 88.800	T+60 sec	2:28:26 2:28:28													T+60 sec T+62 sec	2:28:26 2:28:28				
94.400	T+64 sec	2:28:30													T+64 sec	2:28:30				
101.599	T+66 sec	2:28:32													T+66 sec	2:28:32				
114.401	T+68 sec	2:28:34													T+68 sec	2:28:34				
120.801	${ }_{\text {T }}^{T+770 \text { sec }}$	2:28:36													${ }_{\text {T }}^{+}$	2:28:36				
118.399 113.599	Tilt	2:28:38													T+72 sec $T+74$ sec	2:28:38 2:28:40				
109.601	T+76 sec	2:28:42													T+76 sec	2:28:42				
107.199	T+78 sec	2:88:44													T+78 sec	2:28:44				
107.999	$T+80 \mathrm{sec}$	2:88:46													T+80 sec	2:28:46				
106.400 107.199																				

7749.15	26.401
7749.48	24.799
7749.81	25.601
7750.14	29.599
7750.47	28.000
7750.80	23.999
7751.13	21.600
7751.46	25.601
7751.79	28.000
7752.12	25.601
7752.45	24.799
7752.78	26.401
7753.11	28.799
7753.44	27.200
7753.77	16.800
7754.10	7.999
7754.43	13.599
7754.76	20.801
7755.09	26.401
7755.42	28.000
7755.75	30.399
7756.08	30.399
7756.41	31.201
7756.74	31.201
7757.07	32.001
7757.40	29.599
7757.73	32.800
7758.06	35.199
7758.39	39.200
7758.72	37.601
7759.05	36.801
7759.38	34.399
7759.71	35.199
7760.04	31.201
7760.37	29.599
7760.70	31.201
7761.03	32.800
7761.36	29.599
7761.69	29.599
7762.02	28.000
7762.35	25.601
7762.68	25.601
7763.01	25.601
7763.34	23.999
7763.67	21.600
7764.00	23.199
7764.33	28.000
7764.66	26.401
7764.99	26.401
7765.32	22.400
7765.65	19.199
7765.98	20.001
7766.31	24.799
7766.64	21.600
7766.97	20.801
7767.30	17.599
7767.63	15.201
7767.96	15.201
7768.29	15.201
7768.62	14.401
7768.95	14.401
7769.28	12.799

									$\begin{aligned} & \text { 2:26:52 } \\ & \text { 2:26:54 } \\ & \text { 2:26:56 } \\ & \text { 2:26:58 } \\ & \text { 2:27:00 } \\ & \text { 2:27:02 } \\ & \text { 2:27:04 } \\ & \text { 2:27:06 } \\ & \text { 2:27:08 } \end{aligned}$ $\begin{aligned} & \text { 2.27:08 } \\ & 2.27 \cdot 10 \end{aligned}$												
0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-16 sec	2:27:10	${ }^{60.042}$	${ }^{3645.727}$	350.000	${ }^{165.336}$	0.000	229.250	10.000	15.000	-103.000 -10000	7651.305 7651305	- 33.700 -3700	
0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-14 sec	2:27:12	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700	
0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-12 sec	2:27:14	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700	
0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-10 sec	2:27:16	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700	
0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-08 sec	2:27:18	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700	
0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-06 sec	2:27:20	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700	
0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-04 sec	2:27:22	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700	
0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700		T-02 sec	2:27:24	60.042	3645.727	350.000	165.336	0.000	229.250	10.000	15.000	-103.000	7651.305	-33.700	
								T+0 sec	2:27:26												
								T+02 sec	2:27:28												
								T+04 sec	2:27:30												
								T+06 sec $T+08$ sec	2:27:32 2:77:34 2:37												
								T+10 sec	2:27:36												
								T+12 sec	2:27:38												
								T+14 sec	2:27:40												
								${ }_{\text {T }}^{+1+16 ~ s e c ~}$	2:27:42												
1.429 1.429	237.000	10.000 10.000	0.000 0.000	-103.000 -103.000	7632.000 7632.000	${ }^{92.457} 9$	3814.960 3814.96	${ }_{\text {T }}^{T+18 \mathrm{sec}}$	2:27:44	59.889	3783.863	335.000	213.078	3.545	238.500	10.000	0.000	-103.000	7632.000	88.581	3813.831
1.429	237.000	10.000	0.000	-103.000	7632.000	92.457	3814.960	T+22 sec	2:27:48	59.889	3783.863	335.000	213.078	3.545	238.500	10.000	0.000	-103.000	7632.000	88.581	3813.831
1.429	237.000	10.000	0.000	-103.000	7632.000	92.457	3814.960	T+24 sec	2:27:50	59.889	3783.863	335.000	213.078	3.545	238.500	10.000	0.000	-103.000	7632.000	88.581	3813.831
1.429	237.000	10.000	0.000	-103.000	7632.000	92.457	3814.960	T+26 sec	2:27:52	59.889	3783.863	335.000	213.078	3.545	238.500	10.000	0.000	-103.000	7632.000	88.581	3813.831
1.429	237.000	10.000	0.000	-103.000	7632.000	${ }^{92.457}$	3814.960	T+28 sec	2:27:54	59.889	3788.863 37838363	3355.000	213.078	3.545	238.500	10.000	0.000	-103.000	7632.000	${ }^{88.581}$	${ }^{3813.831}$
1.429	237.000	10.000	0.000	-103.000	7632.000	92.457	3814.960	T+30 sec	2:27:56	59.889	3783.863	335.000	213.078	3.545	238.500	10.000	0.000	-103.000	7632.000	88.581	3813.831
								${ }^{\text {T }}+33 \mathrm{sec}$	2:27:58	59.889	${ }^{3783.863}$	335.000	213.078	3.545	238.500	10.000	0.000	-103.000	7632.000	88.581	${ }^{3813.831}$
								T+34 sec	2:28:00	59.889	3783.863	335.000	213.078	3.545	238.500	10.000	0.000	-103.000	7632.000	88.581	${ }^{3813.831}$
								T+36 sec	2:28:02	59.889	3783.863	335.000	213.078	3.545	238.500	10.000	0.000	-103.000	7632.000	88.581	${ }^{3813.831}$
								$\mathrm{T}+38 \mathrm{sec}$	2:28:04	$\begin{aligned} & 59.889 \\ & 59.899 \end{aligned}$	3783.863	335.000 335.000	213.078 213.078	3.545 3.545	238.500 238.500	10.000 10.000	0.000 0.000	-103.000 -103.000	7632.000	88.581 88.581	3813.83
								${ }_{\text {T }}$T+40 sec $\mathrm{T}+42 \mathrm{sec}$	2:28:06	59.889	3783.863	335.000	213.078	3.545	238.500	10.000	0.000	-103.000	7632.000	88.581	3813.831
								T+44 sec	2:28:10												
								T+46 sec	2:28:12												
								${ }_{\text {T }}^{\text {T }}$ T+48 sec	$\begin{aligned} & 2: 28: 14 \\ & 2: 28: 16 \end{aligned}$												
								T+52 sec	2:288:18												
								T+54 sec	2:28:20												
								T+56 sec $\mathrm{T}+58 \mathrm{sec}$	2:28:22 2:28:24												
								T +58 sec T+60 sec	2:288:26												
								T+62 sec	2:28:28												
								$T+64 \mathrm{sec}$ $\mathrm{T}+66 \mathrm{sec}$	2:28:30 2:88:32												
								T+66 sec $\mathrm{T}+68 \mathrm{sec}$	2:28:32												
								T+70 sec	2:28:36												
								T+72 sec	2:28:38												
								T+74 sec $\mathrm{T}+76 \mathrm{sec}$	2:28:40												
								T+78 sec	2:28:44												
								T+80 sec	2:28:46												

10.000	15.000	-103.000	7651.305	-33.700	
10.000	15.000	-103.000	7651.305	-33.700	
10.000	15.000	-103.000	7651.305	-33.700	
10.000	15.000	-103.000	7651.305	-33.700	
10.000	15.000	-103.000	7651.305	-33.700	
10.000	15.000	-103.000	7651.305	-33.700	
10.000	15.000	-103.000	7651.305	-33.700	
10.000	15.000	-103.000	7651.305	-33.700	
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	${ }^{3819.329}$
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329
10.000	0.000	-103.000	7632.000	88.706	3819.329

Date	A Point Time	FPointA Hz	A Value Hz	$\mathrm{t}(0)$ Time	C Value Hz
Monday, October 12, 2009	$2: 27: 24$	60.0390	60.0421	$2: 27: 26$	59.8360

Value B	FR B								
12 to 24 sec	12 to 24 sec	18 to 30 sec	18 to 30 sec	20 to 40 sec	20 to 40 sec	18 to 52 sec	18 to 52 sec	20 to 52 sec	20 to 52 sec
Average									
Frequency	MW								
59.8825716	-397.19961	59.8844288	-401.66999	59.8891177	-414.40454	59.8883334	-411.99633	59.8891177	-413.95153

Value A D	ta	BA Performance									Value B		12 to 24 second Average Period Evaluation				
		JOU	Non-			Transferred	Contingent						JOU	Non-			Transferred
	Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency
	Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response
Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-) \operatorname{Del}(+)$	Load (-) Gen (+)	Setting		EPFR	Frequency	Interchange	Imp(-) Exp (+)	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-) \mathrm{Del}(+)$
Hz	MW	MW/0.1 Hz	MW	MW	Hz	MW	MW	MW	MW	MW	MW						
60.042125	3645.73	350.00	165.34	0.00	229.25	-4.21	15.00	-103	7651.305	-43.389	59.882572	3770.65	335.00	212.14	0.86	235.50	11.74

Value B															
Contingent									Jou	Non-			Transferred	Contingent	
BA	Initial	Initial	Sustained	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial
Lost Generation	Performance	Performance	Performance	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance
Load (-) Gen (+)	Adjusted	Unadjusted		Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	Rec (-) Del (+)	Load (-) Gen (+)	Adjusted
MW	P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW	Hz	MW	MW	MW	MW	MW	MW/0.1 Hz	MW	P.U.
0.00	0.666	0.979	0.923	-103	7632	120.9512	59.884429	3779.03	335.00	213.46	1.43	237.00	11.56	0.00	0.715

Value B															
							JOU	Non-			Transferred	Contingent			
Initial	Sustained	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained
Performance	Performance	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance
Unadjusted		Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-)$ Del (+)	Load (-) Gen (+)	Adjusted	Unadjusted	
P.U.	P.U.	MW	MW	MW	Hz	MW	MW	MW	MW	MW	MW/0.1 Hz	MW	P.U.	P.U.	P.U.
1.057	0.923	-103	7632	119.0383	59.889273	3783.86	335.00	213.08	3.55	238.50	11.07	0.00	0.755	1.130	0.923

	JOU	Non-			Transferred	Contingent						
Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained	BA	BA	Bias
Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance	Bias	Load	Setting
Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-) \mathrm{Del}(+)$	Load (-) Gen (+)	Adjusted	Unadjusted		Setting		EPFR
MW	P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW						
3788.35	335.00	165.34	6.35	240.00	11.09	0.00	0.747	1.165	0.923	-103	7632	114.2087

tops be completed for each event evaluated

1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Column A: Date and Time in this format, $\mathrm{mm} / \mathrm{dd} / \mathrm{yy} \mathrm{HH}: \mathrm{MM}: \mathrm{SS}$
Column B: Frequency Hz
Column C: Net Actual Interchange
Column D: Joint Owned Unit dynamic schedule
Column E: Non Conforming Load
Column F: Pumped Hydro
Column G: Ramping units
Column H: Transferred Frequency Response
Column I: Contingent BA Lost load or generatio
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D, E, F, G and H are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign (+/-) convention defined in FRS Form 1
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must be at 3 second sample rate for the full 25 minute minimum collection period that starts a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event.
The spreadsheet will work with up to 60 minutes of data. Be sure "Data" worksheet is clear of any old data.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data. The data must be numbers not text.
5 Once data is in place in the "Data" worksheet, determine when the beginning of the event occurred.
This will usually be a single change in frequency of 0.008 to 0.010 Hz more or less. Note the row number in the worksheet that this change occurs. In this sample data spreadsheet this occurs in row 313 of the data.
6 Edit cell "C8" of the "Entry Data" worksheet, change the formula in the cell "C8" to reference the row number identified in step 5 above. In the sample data of this workbook this formula is: "=Data!A313" If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency of the event on the center vertical grid line of the graph (Red Trend).
7 Determine the end of the event to be evaluated. Use the same rules that are used for DCS only look at frequency instead of ACE. Scroll down the frequency data in column B of the "Data" worksheet until frequency reaches 60 Hz or the pre-disturbance value. Note the row number in the worksheet that this occurs. In this sample data spreadsheet this occurs in row 427
8 Edit cell "C11" of the "Entry Data" worksheet, change the formula in the cell "C11" to reference the row number identified in step 7 above. In the sample data of this workbook this formula is: "=Data! A427"
In cell "R41" of the "Evaluation" spreadsheet, enter the MW value of the unit(s) that tripped (from the Master Event List). This is only necessary for the "Interconnection" evaluation if you're interested. It is not necessary to do this for the BA evaluation but it will provide a comparison of the BA frequency response as compared to the Interconnection frequency response.
10 Use the "copy" button provided to copy the evaluation and event specific data for the "FRS Form 1" of this field trial. This data is summarized in the correct order on worksheet "Form 1 Summary Data" of this workbook. Use PasteSpecial/Values when pasting the data into FRS Form 1 on the appropriate event row.

Steps To be completed once at the initial setup of the evaluation spreadsheet for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Entry Data" worksheet. For example: "NYISO".
Enter your Balancing Authorities Frequency Response Obligation in cell "B2" of the "Entry Data" worksheet. For example: - $80 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (This value could change annually) The time constant is located in cell "L13" of the "Evaluation" spreadsheet and should be edited for the types of generators in your BA. Presently this time constant is set at 0.35 ,
The higher the value of the time constant, the faster the delivery of frequency response is expected. Setting the TC to 1.0 effectively turns off the delay and instantaneous frequency response will be modeled. Do not set higher than 1.0 this time constant is only used in the "Sustained" evaluation and is not used for the Field Trial evaluation of performance to the FRO
A typical setting for this time constant is 0.08 to 0.15 for hydro units, 0.10 to 0.20 for large steam turbines and 0.20 to 0.40 for combustion turbines.
By observing the slope of your "Interchange Actual" on the "Sustained" Graph, adjust the time constant until the initial slope of the "Target" is similar.
When set appropriately, the "Target" trend on the "Sustained" graph will model what Interchange Actual should have done during the event recovery period based on your minimum FRO.
Note: For ease of use, only the necessary worksheets are displayed. If you are interested in viewing graphs and other hidden worksheets, select the "tab" at the bottom, right click, select unhide and select the worksheet you wish to unhide.

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Ramping Units Gen (+) MW	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting $\mathrm{MW} / 0.1 \mathrm{~Hz}$	BA Load MW
10/12/09 02:12:00	59.981	3669.878	350	351.361511	0	0	10	15	-103	7500
10/12/09 02:12:03	59.98	3671.7	350	351.361511	0	0.5	10	15	-103	7500.33
10/12/09 02:12:06	59.982	3670.949	350	351.361511	0	1	10	15	-103	7500.66
10/12/09 02:12:09	59.981	3671.548	350	357.94751	0	1.5	10	15	-103	7500.99
10/12/09 02:12:12	59.981	3672.31	350	357.94751	0	2	10	15	-103	7501.32
10/12/09 02:12:15	59.982	3672.174	350	357.94751	0	2.5	10	15	-103	7501.65
10/12/09 02:12:18	59.979	3672.276	350	357.94751	0	3	10	15	-103	7501.98
10/12/09 02:12:21	59.98	3674.508	350	357.94751	0	3.5	10	15	-103	7502.31
10/12/09 02:12:24	59.983	3673.844	350	360.234741	0	4	10	15	-103	7502.64
10/12/09 02:12:27	59.986	3672.106	350	360.234741	0	4.5	10	15	-103	7502.97
10/12/09 02:12:30	59.98	3669.33	350	360.234741	0	5	10	15	-103	7503.3
10/12/09 02:12:33	59.976	3671.5	350	360.234741	0	5.5	10	15	-103	7503.63
10/12/09 02:12:36	59.979	3673.56	350	360.234741	0	6	10	15	-103	7503.96
10/12/09 02:12:39	59.981	3673.834	350	346.525879	0	6.5	10	15	-103	7504.29
10/12/09 02:12:42	59.987	3671.887	350	346.525879	0	7	10	15	-103	7504.62
10/12/09 02:12:45	59.99	3671.22	350	346.525879	0	7.5	10	15	-103	7504.95
10/12/09 02:12:48	59.994	3671.56	350	346.525879	0	8	10	15	-103	7505.28
10/12/09 02:12:51	59.995	3670.772	350	346.525879	0	8.5	10	15	-103	7505.61
10/12/09 02:12:54	59.995	3668.362	350	296.443359	0	9	10	15	-103	7505.94
10/12/09 02:12:57	59.995	3668.245	350	296.443359	0	9.5	10	15	-103	7506.27
10/12/09 02:13:00	59.994	3669.291	350	296.443359	0	10	10	15	-103	7506.6
10/12/09 02:13:03	59.994	3671.254	350	296.443359	0	10.5	10	15	-103	7506.93
10/12/09 02:13:06	59.997	3670.683	350	296.443359	0	11	10	15	-103	7507.26
10/12/09 02:13:09	60.001	3670.212	350	341.061157	0	11.5	10	15	-103	7507.59
10/12/09 02:13:12	60.001	3670.712	350	341.061157	0	12	10	15	-103	7507.92
10/12/09 02:13:15	60.003	3671.184	350	341.061157	0	12.5	10	15	-103	7508.25
10/12/09 02:13:18	60.005	3671.227	350	341.061157	0	13	10	15	-103	7508.58
10/12/09 02:13:21	60.003	3670.19	350	341.061157	0	13.5	10	15	-103	7508.91
10/12/09 02:13:24	60.001	3671.092	350	322.826294	0	14	10	15	-103	7509.24
10/12/09 02:13:27	60.003	3670.67	350	322.826294	0	14.5	10	15	-103	7509.57
10/12/09 02:13:30	60.005	3669.899	350	322.826294	0	15	10	15	-103	7509.9
10/12/09 02:13:33	60.001	3670.199	350	322.826294	0	15.5	10	15	-103	7510.23
10/12/09 02:13:36	60.001	3671.628	350	322.826294	0	16	10	15	-103	7510.56
10/12/09 02:13:39	60.004	3671.968	350	321.544403	0	16.5	10	15	-103	7510.89
10/12/09 02:13:42	60.004	3671.444	350	321.544403	0	17	10	15	-103	7511.22
10/12/09 02:13:45	60.004	3671.875	350	321.544403	0	17.5	10	15	-103	7511.55
10/12/09 02:13:48	60.003	3671.066	350	321.544403	0	18	10	15	-103	7511.88
10/12/09 02:13:51	60.002	3673.235	350	321.544403	0	18.5	10	15	-103	7512.21
10/12/09 02:13:54	60.001	3673.498	350	362.136261	0	19	10	15	-103	7512.54
10/12/09 02:13:57	59.999	3672.75	350	362.136261	0	19.5	10	15	-103	7512.87
10/12/09 02:14:00	59.997	3673.186	350	362.136261	0	20	10	15	-103	7513.2

10/12/09 02:14:03	59.998	3673.576	350	362.136261	0	20.5	10	15	-103	7513.53
10/12/09 02:14:06	59.995	3673.365	350	362.136261	0	21	10	15	-103	7513.86
10/12/09 02:14:09	59.993	3672.093	350	336.311798	0	21.5	10	15	-103	7514.19
10/12/09 02:14:12	59.996	3671.998	350	336.311798	0	22	10	15	-103	7514.52
10/12/09 02:14:15	59.999	3671.073	350	336.311798	0	22.5	10	15	-103	7514.85
10/12/09 02:14:18	60.005	3670.957	350	336.311798	0	23	10	15	-103	7515.18
10/12/09 02:14:21	60.007	3670.893	350	336.311798	0	23.5	10	15	-103	7515.51
10/12/09 02:14:24	60.005	3670.162	350	316.443054	0	24	10	15	-103	7515.84
10/12/09 02:14:27	60.002	3670.62	350	316.443054	0	24.5	10	15	-103	7516.17
10/12/09 02:14:30	59.997	3672.713	350	316.443054	0	25	10	15	-103	7516.5
10/12/09 02:14:33	59.999	3671.07	350	316.443054	0	25.5	10	15	-103	7516.83
10/12/09 02:14:36	60.007	3670.826	350	316.443054	0	26	10	15	-103	7517.16
10/12/09 02:14:39	60.01	3671.809	350	325.464294	0	26.5	10	15	-103	7517.49
10/12/09 02:14:42	60.009	3673.363	350	325.464294	0	27	10	15	-103	7517.82
10/12/09 02:14:45	60.003	3673.255	350	325.464294	0	27.5	10	15	-103	7518.15
10/12/09 02:14:48	59.995	3674.415	350	325.464294	0	28	10	15	-103	7518.48
10/12/09 02:14:51	59.994	3674.755	350	325.464294	0	28.5	10	15	-103	7518.81
10/12/09 02:14:54	60	3674.29	350	336.614166	0	29	10	15	-103	7519.14
10/12/09 02:14:57	60.001	3675.157	350	336.614166	0	29.5	10	15	-103	7519.47
10/12/09 02:15:00	59.998	3675.166	350	336.614166	0	30	10	15	-103	7519.8
10/12/09 02:15:03	59.995	3674.442	350	336.614166	0	30.5	10	15	-103	7520.13
10/12/09 02:15:06	59.986	3674.906	350	336.614166	0	31	10	15	-103	7520.46
10/12/09 02:15:09	59.986	3676.714	350	316.726166	0	31.5	10	15	-103	7520.79
10/12/09 02:15:12	59.988	3677.791	350	316.726166	0	32	10	15	-103	7521.12
10/12/09 02:15:15	59.989	3675.543	350	316.726166	0	32.5	10	15	-103	7521.45
10/12/09 02:15:18	59.987	3676.593	350	316.726166	0	33	10	15	-103	7521.78
10/12/09 02:15:21	59.985	3677.223	350	316.726166	0	33.5	10	15	-103	7522.11
10/12/09 02:15:24	59.983	3677.067	350	320.195526	0	34	10	15	-103	7522.44
10/12/09 02:15:27	59.982	3678.455	350	320.195526	0	34.5	10	15	-103	7522.77
10/12/09 02:15:30	59.984	3679.228	350	320.195526	0	35	10	15	-103	7523.1
10/12/09 02:15:33	59.985	3679.059	350	320.195526	0	35.5	10	15	-103	7523.43
10/12/09 02:15:36	59.987	3677.627	350	320.195526	0	36	10	15	-103	7523.76
10/12/09 02:15:39	59.99	3676.409	350	341.86615	0	36.5	10	15	-103	7524.09
10/12/09 02:15:42	59.987	3677.528	350	341.86615	0	37	10	15	-103	7524.42
10/12/09 02:15:45	59.983	3676.915	350	341.86615	0	37.5	10	15	-103	7524.75
10/12/09 02:15:48	59.979	3678.086	350	341.86615	0	38	10	15	-103	7525.08
10/12/09 02:15:51	59.983	3680.163	350	341.86615	0	38.5	10	15	-103	7525.41
10/12/09 02:15:54	59.986	3679.213	350	348.597839	0	39	10	15	-103	7525.74
10/12/09 02:15:57	59.988	3677.653	350	348.597839	0	39.5	10	15	-103	7526.07
10/12/09 02:16:00	59.983	3677.678	350	348.597839	0	40	10	15	-103	7526.4
10/12/09 02:16:03	59.978	3679.279	350	348.597839	0	40.5	10	15	-103	7526.73
10/12/09 02:16:06	59.979	3678.729	350	348.597839	0	41	10	15	-103	7527.06
10/12/09 02:16:09	59.989	3680.287	350	329.085022	0	41.5	10	15	-103	7527.39
10/12/09 02:16:12	59.988	3679.026	350	329.085022	0	42	10	15	-103	7527.72
10/12/09 02:16:15	59.983	3678.489	350	329.085022	0	42.5	10	15	-103	7528.05
10/12/09 02:16:18	59.991	3678.72	350	329.085022	0	43	10	15	-103	7528.38

10/12/09 02:16:21	59.989	3678.971	350	329.085022	0	43.5	10	15	-103	7528.71
10/12/09 02:16:24	59.993	3679.39	350	342.418243	0	44	10	15	-103	7529.04
10/12/09 02:16:27	59.995	3678.33	350	342.418243	0	44.5	10	15	-103	7529.37
10/12/09 02:16:30	59.998	3678.49	350	342.418243	0	45	10	15	-103	7529.7
10/12/09 02:16:33	59.998	3676.763	350	342.418243	0	45.5	10	15	-103	7530.03
10/12/09 02:16:36	59.999	3678.951	350	342.418243	0	46	10	15	-103	7530.36
10/12/09 02:16:39	59.995	3679.148	350	338.794647	0	46.5	10	15	-103	7530.69
10/12/09 02:16:42	59.992	3679.903	350	338.794647	0	47	10	15	-103	7531.02
10/12/09 02:16:45	59.995	3678.997	350	338.794647	0	47.5	10	15	-103	7531.35
10/12/09 02:16:48	60.001	3677.86	350	338.794647	0	48	10	15	-103	7531.68
10/12/09 02:16:51	60.003	3678.267	350	338.794647	0	48.5	10	15	-103	7532.01
10/12/09 02:16:54	60.009	3677.686	350	335.931	0	49	10	15	-103	7532.34
10/12/09 02:16:57	60.009	3678.364	350	335.931	0	49.5	10	15	-103	7532.67
10/12/09 02:17:00	60.012	3679.209	350	335.931	0	50	10	15	-103	7533
10/12/09 02:17:03	60.011	3678.653	350	335.931	0	50.5	10	15	-103	7533.33
10/12/09 02:17:06	60.008	3679.057	350	335.931	0	51	10	15	-103	7533.66
10/12/09 02:17:09	60.007	3680.604	350	339.712402	0	51.5	10	15	-103	7533.99
10/12/09 02:17:12	60.012	3679.806	350	339.712402	0	52	10	15	-103	7534.32
10/12/09 02:17:15	60.013	3680.263	350	339.712402	0	52.5	10	15	-103	7534.65
10/12/09 02:17:18	60.01	3679.851	350	339.712402	0	53	10	15	-103	7534.98
10/12/09 02:17:21	60.007	3679.946	350	339.712402	0	53.5	10	15	-103	7535.31
10/12/09 02:17:24	60.009	3679.44	350	332.024658	0	54	10	15	-103	7535.64
10/12/09 02:17:27	60.006	3679.517	350	332.024658	0	54.5	10	15	-103	7535.97
10/12/09 02:17:30	60.009	3679.888	350	332.024658	0	55	10	15	-103	7536.3
10/12/09 02:17:33	60.009	3679.06	350	332.024658	0	55.5	10	15	-103	7536.63
10/12/09 02:17:36	60.009	3679.261	350	332.024658	0	56	10	15	-103	7536.96
10/12/09 02:17:39	60.009	3679.025	350	330.759033	0	56.5	10	15	-103	7537.29
10/12/09 02:17:42	60.004	3679.152	350	330.759033	0	57	10	15	-103	7537.62
10/12/09 02:17:45	60.001	3678.295	350	330.759033	0	57.5	10	15	-103	7537.95
10/12/09 02:17:48	59.993	3678.249	350	330.759033	0	58	10	15	-103	7538.28
10/12/09 02:17:51	59.991	3677.83	350	330.759033	0	58.5	10	15	-103	7538.61
10/12/09 02:17:54	59.992	3677.955	350	323.419952	0	59	10	15	-103	7538.94
10/12/09 02:17:57	59.994	3676.666	350	323.419952	0	59.5	10	15	-103	7539.27
10/12/09 02:18:00	59.994	3677.093	350	323.419952	0	60	10	15	-103	7539.6
10/12/09 02:18:03	59.995	3676.401	350	323.419952	0	60.5	10	15	-103	7539.93
10/12/09 02:18:06	59.99	3678.516	350	323.419952	0	61	10	15	-103	7540.26
10/12/09 02:18:09	59.99	3680.197	350	342.350922	0	61.5	10	15	-103	7540.59
10/12/09 02:18:12	59.983	3678.743	350	342.350922	0	62	10	15	-103	7540.92
10/12/09 02:18:15	59.977	3677.921	350	342.350922	0	62.5	10	15	-103	7541.25
10/12/09 02:18:18	59.989	3680.254	350	342.350922	0	63	10	15	-103	7541.58
10/12/09 02:18:21	59.995	3681.329	350	342.350922	0	63.5	10	15	-103	7541.91
10/12/09 02:18:24	59.994	3678.656	350	345.081818	0	64	10	15	-103	7542.24
10/12/09 02:18:27	59.989	3677.78	350	345.081818	0	64.5	10	15	-103	7542.57
10/12/09 02:18:30	59.986	3678.427	350	345.081818	0	65	10	15	-103	7542.9
10/12/09 02:18:33	59.984	3678.278	350	345.081818	0	65.5	10	15	-103	7543.23
10/12/09 02:18:36	59.985	3677.822	350	345.081818	0	66	10	15	-103	7543.56

10/12/09 02:18:39	59.986	3677.397	350	346.537384	0	66.5	10	15	-103	7543.89
10/12/09 02:18:42	59.986	3677.917	350	346.537384	0	67	10	15	-103	7544.22
10/12/09 02:18:45	59.98	3678.617	350	346.537384	0	67.5	10	15	-103	7544.55
10/12/09 02:18:48	59.981	3678.963	350	346.537384	0	68	10	15	-103	7544.88
10/12/09 02:18:51	59.989	3680.737	350	346.537384	0	68.5	10	15	-103	7545.21
10/12/09 02:18:54	60.007	3680.045	350	342.905762	0	69	10	15	-103	7545.54
10/12/09 02:18:57	60.007	3674.076	350	342.905762	0	69.5	10	15	-103	7545.87
10/12/09 02:19:00	59.986	3676.222	350	342.905762	0	70	10	15	-103	7546.2
10/12/09 02:19:03	59.981	3677.497	350	342.905762	0	70.5	10	15	-103	7546.53
10/12/09 02:19:06	59.974	3677.49	350	342.905762	0	71	10	15	-103	7546.86
10/12/09 02:19:09	59.976	3675.437	350	340.094391	0	71.5	10	15	-103	7547.19
10/12/09 02:19:12	59.974	3680.451	350	340.094391	0	72	10	15	-103	7547.52
10/12/09 02:19:15	59.977	3683.829	350	340.094391	0	72.5	10	15	-103	7547.85
10/12/09 02:19:18	59.979	3682.843	350	340.094391	0	73	10	15	-103	7548.18
10/12/09 02:19:21	59.982	3680.566	350	340.094391	0	73.5	10	15	-103	7548.51
10/12/09 02:19:24	59.987	3678.229	350	342.771179	0	74	10	15	-103	7548.84
10/12/09 02:19:27	59.988	3675.759	350	342.771179	0	74.5	10	15	-103	7549.17
10/12/09 02:19:30	59.987	3671.942	350	342.771179	0	75	10	15	-103	7549.5
10/12/09 02:19:33	59.987	3670.476	350	342.771179	0	75.5	10	15	-103	7549.83
10/12/09 02:19:36	59.985	3670.129	350	342.771179	0	76	10	15	-103	7550.16
10/12/09 02:19:39	59.984	3672.048	350	342.909912	0	76.5	10	15	-103	7550.49
10/12/09 02:19:42	59.983	3671.576	350	342.909912	0	77	10	15	-103	7550.82
10/12/09 02:19:45	59.989	3672.414	350	342.909912	0	77.5	10	15	-103	7551.15
10/12/09 02:19:48	59.988	3671.882	350	342.909912	0	78	10	15	-103	7551.48
10/12/09 02:19:51	59.984	3671.336	350	342.909912	0	78.5	10	15	-103	7551.81
10/12/09 02:19:54	59.983	3670.726	350	343.286011	0	79	10	15	-103	7552.14
10/12/09 02:19:57	59.981	3671.364	350	343.286011	0	79.5	10	15	-103	7552.47
10/12/09 02:20:00	59.983	3671.401	350	343.286011	0	80	10	15	-103	7552.8
10/12/09 02:20:03	59.986	3672.181	350	343.286011	0	80.5	10	15	-103	7553.13
10/12/09 02:20:06	59.987	3670.296	350	343.286011	0	81	10	15	-103	7553.46
10/12/09 02:20:09	59.985	3668.59	350	331.852966	0	81.5	10	15	-103	7553.79
10/12/09 02:20:12	59.98	3669.908	350	331.852966	0	82	10	15	-103	7554.12
10/12/09 02:20:15	59.983	3670.263	350	331.852966	0	82.5	10	15	-103	7554.45
10/12/09 02:20:18	59.979	3669.382	350	331.852966	0	83	10	15	-103	7554.78
10/12/09 02:20:21	59.979	3670.438	350	331.852966	0	83.5	10	15	-103	7555.11
10/12/09 02:20:24	59.981	3671.403	350	329.98822	0	84	10	15	-103	7555.44
10/12/09 02:20:27	59.98	3672.372	350	329.98822	0	84.5	10	15	-103	7555.77
10/12/09 02:20:30	59.981	3671.947	350	329.98822	0	85	10	15	-103	7556.1
10/12/09 02:20:33	59.98	3670.705	350	329.98822	0	85.5	10	15	-103	7556.43
10/12/09 02:20:36	59.977	3670.137	350	329.98822	0	86	10	15	-103	7556.76
10/12/09 02:20:39	59.979	3672.391	350	255.444168	0	86.5	10	15	-103	7557.09
10/12/09 02:20:42	59.979	3672.558	350	255.444168	0	87	10	15	-103	7557.42
10/12/09 02:20:45	59.976	3672.626	350	255.444168	0	87.5	10	15	-103	7557.75
10/12/09 02:20:48	59.972	3671.8	350	255.444168	0	88	10	15	-103	7558.08
10/12/09 02:20:51	59.971	3673.874	350	255.444168	0	88.5	10	15	-103	7558.41
10/12/09 02:20:54	59.973	3676.263	350	254.838303	0	89	10	15	-103	7558.74

10/12/09 02:20:57	59.973	3676.87	350	254.838303	0	89.5	10	15	-103	7559.07
10/12/09 02:21:00	59.971	3676.543	350	254.838303	0	90	10	15	-103	7559.4
10/12/09 02:21:03	59.975	3675.752	350	254.838303	0	90.5	10	15	-103	7559.73
10/12/09 02:21:06	59.977	3675.256	350	254.838303	0	91	10	15	-103	7560.06
10/12/09 02:21:09	59.975	3671.277	350	257.146973	0	91.5	10	15	-103	7560.39
10/12/09 02:21:12	59.98	3671.593	350	257.146973	0	92	10	15	-103	7560.72
10/12/09 02:21:15	59.979	3669.963	350	257.146973	0	92.5	10	15	-103	7561.05
10/12/09 02:21:18	59.982	3669.54	350	257.146973	0	93	10	15	-103	7561.38
10/12/09 02:21:21	59.982	3668.706	350	257.146973	0	93.5	10	15	-103	7561.71
10/12/09 02:21:24	59.982	3667.677	350	262.289368	0	94	10	15	-103	7562.04
10/12/09 02:21:27	59.981	3666.599	350	262.289368	0	94.5	10	15	-103	7562.37
10/12/09 02:21:30	59.984	3666.911	350	262.289368	0	95	10	15	-103	7562.7
10/12/09 02:21:33	59.985	3666.405	350	262.289368	0	95.5	10	15	-103	7563.03
10/12/09 02:21:36	59.989	3667.456	350	262.289368	0	96	10	15	-103	7563.36
10/12/09 02:21:39	59.993	3665.262	350	256.647949	0	96.5	10	15	-103	7563.69
10/12/09 02:21:42	59.998	3664.031	350	256.647949	0	97	10	15	-103	7564.02
10/12/09 02:21:45	59.998	3663.229	350	256.647949	0	97.5	10	15	-103	7564.35
10/12/09 02:21:48	60.007	3662.055	350	256.647949	0	98	10	15	-103	7564.68
10/12/09 02:21:51	60.01	3662.076	350	256.647949	0	98.5	10	15	-103	7565.01
10/12/09 02:21:54	60.014	3662.224	350	256.307251	0	99	10	15	-103	7565.34
10/12/09 02:21:57	60.013	3663.794	350	256.307251	0	99.5	10	15	-103	7565.67
10/12/09 02:22:00	60.008	3664.139	350	256.307251	0	100	10	15	-103	7566
10/12/09 02:22:03	60.01	3664.159	350	256.307251	0	100.5	10	15	-103	7566.33
10/12/09 02:22:06	60.019	3663.265	350	256.307251	0	101	10	15	-103	7566.66
10/12/09 02:22:09	60.023	3661.929	350	249.086395	0	101.5	10	15	-103	7566.99
10/12/09 02:22:12	60.02	3661.512	350	249.086395	0	102	10	15	-103	7567.32
10/12/09 02:22:15	60.021	3658.661	350	249.086395	0	102.5	10	15	-103	7567.65
10/12/09 02:22:18	60.02	3656.785	350	249.086395	0	103	10	15	-103	7567.98
10/12/09 02:22:21	60.019	3658.126	350	249.086395	0	103.5	10	15	-103	7568.31
10/12/09 02:22:24	60.022	3657.71	350	253.742477	0	104	10	15	-103	7568.64
10/12/09 02:22:27	60.025	3660.228	350	253.742477	0	104.5	10	15	-103	7568.97
10/12/09 02:22:30	60.026	3659.224	350	253.742477	0	105	10	15	-103	7569.3
10/12/09 02:22:33	60.02	3658.669	350	253.742477	0	105.5	10	15	-103	7569.63
10/12/09 02:22:36	60.018	3658.155	350	253.742477	0	106	10	15	-103	7569.96
10/12/09 02:22:39	60.018	3659.778	350	257.421204	0	106.5	10	15	-103	7570.29
10/12/09 02:22:42	60.019	3660.82	350	257.421204	0	107	10	15	-103	7570.62
10/12/09 02:22:45	60.019	3662.387	350	257.421204	0	107.5	10	15	-103	7570.95
10/12/09 02:22:48	60.022	3662.079	350	257.421204	0	108	10	15	-103	7571.28
10/12/09 02:22:51	60.022	3662.678	350	257.421204	0	108.5	10	15	-103	7571.61
10/12/09 02:22:54	60.02	3663.577	350	261.73822	0	109	10	15	-103	7571.94
10/12/09 02:22:57	60.02	3662.959	350	261.73822	0	109.5	10	15	-103	7572.27
10/12/09 02:23:00	60.02	3662.552	350	261.73822	0	110	10	15	-103	7572.6
10/12/09 02:23:03	60.02	3663.601	350	261.73822	0	110.5	10	15	-103	7572.93
10/12/09 02:23:06	60.021	3663.91	350	261.73822	0	111	10	15	-103	7573.26
10/12/09 02:23:09	60.018	3662.791	350	271.875977	0	111.5	10	15	-103	7573.59
10/12/09 02:23:12	60.014	3663.396	350	271.875977	0	112	10	15	-103	7573.92

10/12/09 02:23:15	60.014	3664.315	350	271.875977	0	112.5	10	15	-103	7574.25
10/12/09 02:23:18	60.013	3665.313	350	271.875977	0	113	10	15	-103	7574.58
10/12/09 02:23:21	60.01	3666.141	350	271.875977	0	113.5	10	15	-103	7574.91
10/12/09 02:23:24	60.011	3666.726	350	262.073486	0	114	10	15	-103	7575.24
10/12/09 02:23:27	60.011	3667.545	350	262.073486	0	114.5	10	15	-103	7575.57
10/12/09 02:23:30	60.012	3666.688	350	262.073486	0	115	10	15	-103	7575.9
10/12/09 02:23:33	60.009	3666.71	350	262.073486	0	115.5	10	15	-103	7576.23
10/12/09 02:23:36	60.009	3667.696	350	262.073486	0	116	10	15	-103	7576.56
10/12/09 02:23:39	60.009	3667.043	350	260.36441	0	116.5	10	15	-103	7576.89
10/12/09 02:23:42	60.002	3666.624	350	260.36441	0	117	10	15	-103	7577.22
10/12/09 02:23:45	59.999	3665.88	350	260.36441	0	117.5	10	15	-103	7577.55
10/12/09 02:23:48	59.995	3665.403	350	260.36441	0	118	10	15	-103	7577.88
10/12/09 02:23:51	59.997	3665.68	350	260.36441	0	118.5	10	15	-103	7578.21
10/12/09 02:23:54	59.998	3665.352	350	352.644379	0	119	10	15	-103	7578.54
10/12/09 02:23:57	59.998	3665.065	350	352.644379	0	119.5	10	15	-103	7578.87
10/12/09 02:24:00	59.995	3666.133	350	352.644379	0	120	10	15	-103	7579.2
10/12/09 02:24:03	59.995	3666.735	350	352.644379	0	120.5	10	15	-103	7579.53
10/12/09 02:24:06	59.993	3667.084	350	352.644379	0	121	10	15	-103	7579.86
10/12/09 02:24:09	59.988	3667.337	350	354.89566	0	121.5	10	15	-103	7580.19
10/12/09 02:24:12	59.982	3667.853	350	354.89566	0	122	10	15	-103	7580.52
10/12/09 02:24:15	59.982	3668.691	350	354.89566	0	122.5	10	15	-103	7580.85
10/12/09 02:24:18	59.982	3669.399	350	354.89566	0	123	10	15	-103	7581.18
10/12/09 02:24:21	59.984	3671.228	350	354.89566	0	123.5	10	15	-103	7581.51
10/12/09 02:24:24	59.978	3670.25	350	340.46936	0	124	10	15	-103	7581.84
10/12/09 02:24:27	59.978	3671.549	350	340.46936	0	124.5	10	15	-103	7582.17
10/12/09 02:24:30	59.975	3673.243	350	340.46936	0	125	10	15	-103	7582.5
10/12/09 02:24:33	59.974	3675.824	350	340.46936	0	125.5	10	15	-103	7582.83
10/12/09 02:24:36	59.979	3676.418	350	340.46936	0	126	10	15	-103	7583.16
10/12/09 02:24:39	59.98	3674.637	350	337.642914	0	126.5	10	15	-103	7583.49
10/12/09 02:24:42	59.98	3675.329	350	337.642914	0	127	10	15	-103	7583.82
10/12/09 02:24:45	59.984	3674.768	350	337.642914	0	127.5	10	15	-103	7584.15
10/12/09 02:24:48	59.988	3674.399	350	337.642914	0	128	10	15	-103	7584.48
10/12/09 02:24:51	59.988	3673.04	350	337.642914	0	128.5	10	15	-103	7584.81
10/12/09 02:24:54	59.992	3672.442	350	284.36084	0	129	10	15	-103	7585.14
10/12/09 02:24:57	59.991	3671.68	350	284.36084	0	129.5	10	15	-103	7585.47
10/12/09 02:25:00	59.991	3671.493	350	284.36084	0	130	10	15	-103	7585.8
10/12/09 02:25:03	59.993	3669.53	350	284.36084	0	130.5	10	15	-103	7586.13
10/12/09 02:25:06	59.996	3670.028	350	284.36084	0	131	10	15	-103	7586.46
10/12/09 02:25:09	60.002	3671.578	350	260.467987	0	131.5	10	15	-103	7586.79
10/12/09 02:25:12	60.003	3672.625	350	260.467987	0	132	10	15	-103	7587.12
10/12/09 02:25:15	60.004	3673.819	350	260.467987	0	132.5	10	15	-103	7587.45
10/12/09 02:25:18	60.004	3673.25	350	260.467987	0	133	10	15	-103	7587.78
10/12/09 02:25:21	60.002	3673.496	350	260.467987	0	133.5	10	15	-103	7588.11
10/12/09 02:25:24	60.008	3672.418	350	253.141541	0	134	10	15	-103	7588.44
10/12/09 02:25:27	60.01	3672.217	350	253.141541	0	134.5	10	15	-103	7588.77
10/12/09 02:25:30	60.01	3672.261	350	253.141541	0	135	10	15	-103	7589.1

10/12/09 02:25:33	60.011	3673.603	350	253.141541	0	135.5	10	15	-103	7589.43
10/12/09 02:25:36	60.014	3673.553	350	253.141541	0	136	10	15	-103	7589.76
10/12/09 02:25:39	60.013	3674.537	350	251.929871	0	136.5	10	15	-103	7590.09
10/12/09 02:25:42	60.011	3673.813	350	251.929871	0	137	10	15	-103	7590.42
10/12/09 02:25:45	60.011	3672.563	350	251.929871	0	137.5	10	15	-103	7590.75
10/12/09 02:25:48	60.022	3673.068	350	251.929871	0	138	10	15	-103	7591.08
10/12/09 02:25:51	60.017	3672.52	350	251.929871	0	138.5	10	15	-103	7591.41
10/12/09 02:25:54	60.013	3671.25	350	250.674194	0	139	10	15	-103	7591.74
10/12/09 02:25:57	60.014	3672.989	350	250.674194	0	139.5	10	15	-103	7592.07
10/12/09 02:26:00	60.017	3672.982	350	250.674194	0	140	10	15	-103	7592.4
10/12/09 02:26:03	60.019	3671.952	350	250.674194	0	140.5	10	15	-103	7592.73
10/12/09 02:26:06	60.019	3671.193	350	250.674194	0	141	10	15	-103	7593.06
10/12/09 02:26:09	60.027	3671.189	350	253.631866	0	141.5	10	15	-103	7593.39
10/12/09 02:26:12	60.026	3668.611	350	253.631866	0	142	10	15	-103	7593.72
10/12/09 02:26:15	60.022	3664.495	350	253.631866	0	142.5	10	15	-103	7594.05
10/12/09 02:26:18	60.017	3666.062	350	253.631866	0	143	10	15	-103	7594.38
10/12/09 02:26:21	60.019	3666.787	350	253.631866	0	143.5	10	15	-103	7594.71
10/12/09 02:26:24	60.019	3670.454	350	246.957306	0	144	10	15	-103	7595.04
10/12/09 02:26:27	60.021	3671.668	350	246.957306	0	144.5	10	15	-103	7595.37
10/12/09 02:26:30	60.021	3672.493	350	246.957306	0	145	10	15	-103	7595.7
10/12/09 02:26:33	60.019	3672.857	350	246.957306	0	145.5	10	15	-103	7596.03
10/12/09 02:26:36	60.022	3672.164	350	246.957306	0	146	10	15	-103	7596.36
10/12/09 02:26:39	60.031	3669.983	350	254.541779	0	146.5	10	15	-103	7596.69
10/12/09 02:26:42	60.037	3666.467	350	254.541779	0	147	10	15	-103	7597.02
10/12/09 02:26:45	60.036	3661.599	350	254.541779	0	147.5	10	15	-103	7597.35
10/12/09 02:26:48	60.046	3660.672	350	254.541779	0	148	10	15	-103	7597.68
10/12/09 02:26:51	60.048	3649.19	350	165.101685	0	148.5	10	15	-103	7598.01
10/12/09 02:26:54	60.043	3650.025	350	165.101685	0	149	10	15	-103	7598.34
10/12/09 02:26:57	60.041	3649.512	350	165.101685	0	149.5	10	15	-103	7598.67
10/12/09 02:27:00	60.041	3654.294	350	165.101685	0	150	10	15	-103	7599
10/12/09 02:27:03	60.039	3651.874	350	165.101685	0	150.5	10	15	-103	7599.33
10/12/09 02:27:06	60.043	3651.059	350	165.476395	0	151	10	15	-103	7599.66
10/12/09 02:27:09	60.045	3648.236	350	165.476395	0	151.5	10	15	-103	7599.99
10/12/09 02:27:12	60.041	3645.387	350	165.476395	0	152	10	15	-103	7600.32
10/12/09 02:27:15	60.041	3645.446	350	165.476395	0	152.5	10	15	-103	7600.65
10/12/09 02:27:18	60.039	3640.682	350	165.476395	0	153	10	15	-103	7600.98
10/12/09 02:27:21	59.978	3659.465	350	206.459106	0	153.5	10	0	-103	7601.31
10/12/09 02:27:24	59.836	3696.362	350	206.459106	0	154	10	0	-103	7570
10/12/09 02:27:27	59.869	3734.673	335	206.459106	0	154.5	10	0	-103	7569
10/12/09 02:27:30	59.891	3737.157	335	206.459106	0	155	10	0	-103	7570
10/12/09 02:27:33	59.88	3766.113	335	206.459106	0	155.5	10	0	-103	7570
10/12/09 02:27:36	59.875	3766.194	335	211.256042	0	156	10	0	-103	7570
10/12/09 02:27:39	59.883	3769.925	335	211.256042	1	156.5	10	0	-103	7570
10/12/09 02:27:42	59.886	3780.621	335	211.256042	1	157	10	0	-103	7570
10/12/09 02:27:45	59.885	3782.5	335	211.256042	1	157.5	10	0	-103	7570
10/12/09 02:27:48	59.888	3784.962	335	211.256042	1	158	10	0	-103	7570

10/12/09 02:27:51	59.89	3784.419	335	214.346695	1	158.5	10	0	-103	7570
10/12/09 02:27:54	59.894	3788.072	335	214.346695	1	159	10	0	-103	7570
10/12/09 02:27:57	59.893	3788.868	335	214.346695	1	159.5	10	0	-103	7570
10/12/09 02:28:00	59.894	3788.472	335	214.346695	2	160	10	0	-103	7570
10/12/09 02:28:03	59.891	3793.074	335	214.346695	3	160.5	10	0	-103	7570
10/12/09 02:28:06	59.885	3794.374	335	212.172699	4	161	10	0	-103	7570
10/12/09 02:28:09	59.885	3800.427	335	212.172699	5	161.5	10	0	-103	7570
10/12/09 02:28:12	59.887	3799.959	335	212.172699	6	162	10	0	-103	7570
10/12/09 02:28:15	59.888	3802.925	335	212.172699	7	162.5	10	0	-103	7570
10/12/09 02:28:18	59.89	3802.951	335	212.172699	8	163	10	0	-103	7570
10/12/09 02:28:21	59.889	3805.496	335	215.598175	9	163.5	10	0	-103	7570
10/12/09 02:28:24	59.873	3805.617	335	215.598175	10	164	10	0	-103	7568
10/12/09 02:28:27	59.857	3811.503	335	215.598175	11	164.5	10	0	-103	7565
10/12/09 02:28:30	59.852	3814.862	335	215.598175	12	165	10	0	-103	7560
10/12/09 02:28:33	59.858	3825.643	335	215.598175	13	165.5	10	0	-103	7563
10/12/09 02:28:36	59.866	3826.053	335	218.327255	14	166	10	0	-103	7564
10/12/09 02:28:39	59.865	3827.524	335	218.327255	15	166.5	10	0	-103	7566
10/12/09 02:28:42	59.866	3826.753	335	218.327255	16	167	10	0	-103	7570
10/12/09 02:28:45	59.871	3826.454	335	218.327255	16	167.5	10	0	-103	7570
10/12/09 02:28:48	59.879	3825.713	335	218.327255	16	168	10	0	-103	7570
10/12/09 02:28:51	59.88	3822.505	335	217.379425	16	168.5	10	0	-103	7570
10/12/09 02:28:54	59.886	3819.081	335	217.379425	16	169	10	0	-103	7570
10/12/09 02:28:57	59.89	3816.815	335	217.379425	16	169.5	10	0	-103	7569
10/12/09 02:29:00	59.889	3815.01	335	217.379425	16	170	10	0	-103	7575
10/12/09 02:29:03	59.893	3811.838	335	217.379425	16	170.5	10	0	-103	7573
10/12/09 02:29:06	59.903	3809.652	335	214.830353	16	171	10	0	-103	7571
10/12/09 02:29:09	59.902	3805.593	335	214.830353	16	171.5	10	0	-103	7573
10/12/09 02:29:12	59.904	3804.188	335	214.830353	16	172	10	0	-103	7575
10/12/09 02:29:15	59.907	3793.975	335	214.830353	16	172.5	10	0	-103	7577
10/12/09 02:29:18	59.916	3792.169	335	214.830353	16	173	10	0	-103	7577
10/12/09 02:29:21	59.916	3789.534	335	227.655914	16	173.5	10	0	-103	7578
10/12/09 02:29:24	59.918	3788.132	335	227.655914	16	174	10	0	-103	7579
10/12/09 02:29:27	59.92	3783.028	335	227.655914	16	174.5	10	0	-103	7580
10/12/09 02:29:30	59.92	3781.701	335	227.655914	16	175	10	0	-103	7581
10/12/09 02:29:33	59.917	3775.635	335	227.655914	16	175.5	10	0	-103	7585
10/12/09 02:29:36	59.921	3774.604	335	225.018082	16	176	10	0	-103	7588
10/12/09 02:29:39	59.923	3773.958	335	225.018082	16	176.5	10	0	-103	7589
10/12/09 02:29:42	59.925	3772.722	335	225.018082	0	177	10	0	-103	7589
10/12/09 02:29:45	59.928	3769.63	335	225.018082	0	177.5	10	0	-103	7590
10/12/09 02:29:48	59.932	3768.707	335	225.018082	0	178	10	0	-103	7590
10/12/09 02:29:51	59.927	3767.021	335	228.365158	0	178.5	10	0	-103	7590
10/12/09 02:29:54	59.931	3767.408	335	228.365158	0	179	10	0	-103	7591
10/12/09 02:29:57	59.929	3766.259	335	228.365158	0	179.5	10	0	-103	7591
10/12/09 02:30:00	59.931	3765.672	335	228.365158	0	180	10	0	-103	7591
10/12/09 02:30:03	59.937	3766.123	335	228.365158	0	180.5	10	0	-103	7592
10/12/09 02:30:06	59.945	3765.105	335	234.075333	0	181	10	0	-103	7592

10/12/09 02:30:09	59.949	3758.387	335	234.075333	0	181.5	10	0	-103	7593
10/12/09 02:30:12	59.942	3753.922	335	234.075333	0	182	10	0	-103	7594
10/12/09 02:30:15	59.941	3746.889	335	234.075333	0	182.5	10	0	-103	7595
10/12/09 02:30:18	59.945	3747.875	335	234.075333	0	183	10	0	-103	7655
10/12/09 02:30:21	59.948	3748.661	335	228.798157	0	183.5	10	0	-103	7656
10/12/09 02:30:24	59.949	3746.706	335	228.798157	0	184	10	0	-103	7656
10/12/09 02:30:27	59.951	3742.741	335	228.798157	0	184.5	10	0	-103	7657
10/12/09 02:30:30	59.953	3740.259	335	228.798157	0	185	10	0	-103	7657
10/12/09 02:30:33	59.951	3731.382	335	228.798157	0	185.5	10	0	-103	7658
10/12/09 02:30:36	59.952	3727.838	335	229.466965	0	186	10	0	-103	7658
10/12/09 02:30:39	59.952	3722.649	335	249.33757	0	186.5	10	0	-103	7659
10/12/09 02:30:42	59.952	3720.578	335	249.33757	0	187	10	0	-103	7659
10/12/09 02:30:45	59.954	3718.142	335	249.33757	0	187.5	10	0	-103	7659
10/12/09 02:30:48	59.953	3715.753	335	249.33757	0	188	10	0	-103	7660
10/12/09 02:30:51	59.953	3713.484	335	249.33757	0	188.5	10	0	-103	7660
10/12/09 02:30:54	59.954	3710.848	335	258.278168	0	189	10	0	-103	7661
10/12/09 02:30:57	59.954	3712.092	335	258.278168	0	189.5	10	0	-103	7661
10/12/09 02:31:00	59.957	3714.623	335	258.278168	0	190	10	0	-103	7625.4
10/12/09 02:31:03	59.956	3716.168	335	258.278168	0	190.5	10	0	-103	7625.73
10/12/09 02:31:06	59.956	3716.461	335	258.278168	0	191	10	0	-103	7626.06
10/12/09 02:31:09	59.955	3717.759	335	258.406372	0	191.5	10	0	-103	7626.39
10/12/09 02:31:12	59.961	3722.361	335	258.406372	0	192	10	0	-103	7626.72
10/12/09 02:31:15	59.962	3722.658	335	258.406372	0	192.5	10	0	-103	7627.05
10/12/09 02:31:18	59.968	3722.267	335	258.406372	0	193	10	0	-103	7627.38
10/12/09 02:31:21	59.966	3721.787	335	258.406372	0	193.5	10	0	-103	7627.71
10/12/09 02:31:24	59.968	3723.091	335	260.538879	0	194	10	0	-103	7628.04
10/12/09 02:31:27	59.97	3723.435	335	260.538879	0	194.5	10	0	-103	7628.37
10/12/09 02:31:30	59.97	3723.893	335	260.538879	0	195	10	0	-103	7628.7
10/12/09 02:31:33	59.969	3727.121	335	260.538879	0	195.5	10	0	-103	7629.03
10/12/09 02:31:36	59.97	3728.053	335	260.538879	0	196	10	0	-103	7629.36
10/12/09 02:31:39	59.971	3732.53	335	257.88208	0	196.5	10	0	-103	7629.69
10/12/09 02:31:42	59.973	3733.327	335	257.88208	0	197	10	0	-103	7630.02
10/12/09 02:31:45	59.976	3736.907	335	257.88208	0	197.5	10	0	-103	7630.35
10/12/09 02:31:48	59.978	3736.822	335	257.88208	0	198	10	0	-103	7630.68
10/12/09 02:31:51	59.976	3739.944	335	257.88208	0	198.5	10	0	-103	7631.01
10/12/09 02:31:54	59.976	3740.877	335	258.588654	0	199	10	0	-103	7631.34
10/12/09 02:31:57	59.978	3745.234	335	258.588654	0	199.5	10	0	-103	7631.67
10/12/09 02:32:00	59.98	3746.608	335	258.588654	0	200	10	0	-103	7632
10/12/09 02:32:03	59.982	3750.716	335	258.588654	0	200.5	10	0	-103	7632.33
10/12/09 02:32:06	59.98	3751.558	335	258.588654	0	201	10	0	-103	7632.66
10/12/09 02:32:09	59.979	3755.599	335	261.906158	0	201.5	10	0	-103	7632.99
10/12/09 02:32:12	59.979	3756.407	335	261.906158	0	202	10	0	-103	7633.32
10/12/09 02:32:15	59.983	3760.405	335	261.906158	0	202.5	10	0	-103	7633.65
10/12/09 02:32:18	59.984	3760.982	335	261.906158	0	203	10	0	-103	7633.98
10/12/09 02:32:21	59.988	3762.737	335	261.906158	0	203.5	10	0	-103	7634.31
10/12/09 02:32:24	59.987	3763.212	335	256.747803	0	204	10	0	-103	7634.64

10/12/09 02:32:27	59.987	3766.085	335	256.747803	0	204.5	10	0	-103	7634.97
10/12/09 02:32:30	59.993	3766.433	335	256.747803	0	205	10	0	-103	7635.3
10/12/09 02:32:33	59.992	3767.792	335	256.747803	0	205.5	10	0	-103	7635.63
10/12/09 02:32:36	59.989	3768.634	335	256.747803	0	206	10	0	-103	7635.96
10/12/09 02:32:39	59.986	3772.445	335	167.431976	0	206.5	10	0	-103	7636.29
10/12/09 02:32:42	59.983	3773.695	335	167.431976	0	207	10	0	-103	7636.62
10/12/09 02:32:45	59.988	3775.841	335	167.431976	0	207.5	10	0	-103	7636.95
10/12/09 02:32:48	59.996	3775.363	335	167.431976	0	208	10	0	-103	7637.28
10/12/09 02:32:51	59.998	3775.492	335	167.431976	0	208.5	10	0	-103	7637.61
10/12/09 02:32:54	60.001	3776.42	335	164.973404	0	209	10	0	-103	7637.94
10/12/09 02:32:57	59.999	3779.692	335	164.973404	0	209.5	10	0	-103	7638.27
10/12/09 02:33:00	59.999	3781.256	335	164.973404	0	210	10	0	-103	7638.6
10/12/09 02:33:03	60.002	3783.092	335	164.973404	0	210.5	10	0	-103	7638.93
10/12/09 02:33:06	60.007	3783.896	335	164.973404	0	211	10	0	-103	7639.26
10/12/09 02:33:09	60.008	3785.768	335	157.628082	0	211.5	10	0	-103	7639.59
10/12/09 02:33:12	60.014	3785.463	335	157.628082	0	212	10	0	-103	7639.92
10/12/09 02:33:15	60.017	3786.304	335	157.628082	0	212.5	10	0	-103	7640.25
10/12/09 02:33:18	60.021	3787.259	335	157.628082	0	213	10	0	-103	7640.58
10/12/09 02:33:21	60.017	3787.955	335	157.628082	0	213.5	10	0	-103	7640.91
10/12/09 02:33:24	60.019	3788.03	335	155.531708	0	214	10	0	-103	7641.24
10/12/09 02:33:27	60.023	3789.216	335	155.531708	0	214.5	10	0	-103	7641.57
10/12/09 02:33:30	60.025	3787.537	335	155.531708	0	215	10	0	-103	7641.9
10/12/09 02:33:33	60.021	3786.077	335	155.531708	0	215.5	10	0	-103	7642.23
10/12/09 02:33:36	60.024	3787.93	335	155.531708	0	216	10	0	-103	7642.56
10/12/09 02:33:39	60.024	3786.875	335	160.447235	0	216.5	10	0	-103	7642.89
10/12/09 02:33:42	60.02	3786.55	335	160.447235	0	217	10	0	-103	7643.22
10/12/09 02:33:45	60.025	3785.018	335	160.447235	0	217.5	10	0	-103	7643.55
10/12/09 02:33:48	60.02	3785.614	335	160.447235	0	218	10	0	-103	7643.88
10/12/09 02:33:51	60.02	3785.804	335	160.447235	0	218.5	10	0	-103	7644.21
10/12/09 02:33:54	60.022	3786.864	335	163.958603	0	219	10	0	-103	7644.54
10/12/09 02:33:57	60.022	3785.254	335	163.958603	0	219.5	10	0	-103	7644.87
10/12/09 02:34:00	60.021	3785.726	335	163.958603	0	220	10	0	-103	7645.2
10/12/09 02:34:03	60.023	3785.821	335	163.958603	0	220.5	10	0	-103	7645.53
10/12/09 02:34:06	60.022	3785.798	335	163.958603	0	221	10	0	-103	7645.86
10/12/09 02:34:09	60.019	3786.939	335	166.072449	0	221.5	10	0	-103	7646.19
10/12/09 02:34:12	60.018	3787.627	335	166.072449	0	222	10	0	-103	7646.52
10/12/09 02:34:15	60.018	3789.673	335	166.072449	0	222.5	10	0	-103	7646.85
10/12/09 02:34:18	60.019	3789.404	335	166.072449	0	223	10	0	-103	7647.18
10/12/09 02:34:21	60.019	3789.183	335	166.072449	0	223.5	10	0	-103	7647.51
10/12/09 02:34:24	60.015	3789.369	335	163.766586	0	224	10	0	-103	7647.84
10/12/09 02:34:27	60.016	3788.665	335	163.766586	0	224.5	10	0	-103	7648.17
10/12/09 02:34:30	60.013	3788.933	335	163.766586	0	225	10	0	-103	7648.5
10/12/09 02:34:33	60.012	3790.805	335	163.766586	0	225.5	10	0	-103	7648.83
10/12/09 02:34:36	60.01	3790.411	335	163.766586	0	226	10	0	-103	7649.16
10/12/09 02:34:39	60.007	3791.54	335	165.101685	0	226.5	10	0	-103	7649.49
10/12/09 02:34:42	60.009	3792.945	335	165.101685	0	227	10	0	-103	7649.82

10/12/09 02:34:45	60.009	3791.443	335	165.101685	0	227.5	10	0	-103	7650.15
10/12/09 02:34:48	60.003	3791.426	335	165.101685	0	228	10	0	-103	7650.48
10/12/09 02:34:51	59.999	3790.457	335	165.101685	0	228.5	10	0	-103	7650.81
10/12/09 02:34:54	59.992	3790.216	335	165.476395	0	229	10	0	-103	7651.14
10/12/09 02:34:57	59.991	3788.457	335	165.476395	0	229.5	10	0	-103	7651.47
10/12/09 02:35:00	59.992	3788.105	335	165.476395	0	230	10	0	-103	7651.8
10/12/09 02:35:03	59.988	3788.189	335	165.476395	0	230.5	10	0	-103	7652.13
10/12/09 02:35:06	59.985	3788.497	335	165.476395	0	231	10	0	-103	7652.46
10/12/09 02:35:09	59.984	3788.571	335	206.459106	0	231.5	10	0	-103	7652.79
10/12/09 02:35:12	59.984	3788.101	335	206.459106	0	232	10	0	-103	7616
10/12/09 02:35:15	59.982	3786.453	335	206.459106	0	232.5	10	0	-103	7626
10/12/09 02:35:18	59.982	3787.732	335	206.459106	0	233	10	0	-103	7632
10/12/09 02:35:21	59.979	3789.285	335	206.459106	0	233.5	10	0	-103	7632
10/12/09 02:35:24	59.976	3788.256	335	211.256042	0	234	10	0	-103	7632
10/12/09 02:35:27	59.976	3790.467	335	211.256042	1	234.5	10	0	-103	7632
10/12/09 02:35:30	59.982	3790.665	335	211.256042	1	235	10	0	-103	7632
10/12/09 02:35:33	59.978	3789.674	335	211.256042	1	235.5	10	0	-103	7632
10/12/09 02:35:36	59.974	3789.267	335	211.256042	1	236	10	0	-103	7632
10/12/09 02:35:39	59.976	3790.43	335	214.346695	1	236.5	10	0	-103	7632
10/12/09 02:35:42	59.977	3789.914	335	214.346695	1	237	10	0	-103	7632
10/12/09 02:35:45	59.975	3787.442	335	214.346695	1	237.5	10	0	-103	7632
10/12/09 02:35:48	59.969	3788.963	335	214.346695	2	238	10	0	-103	7632
10/12/09 02:35:51	59.97	3791.877	335	214.346695	3	238.5	10	0	-103	7632
10/12/09 02:35:54	59.973	3792.911	335	212.172699	4	239	10	0	-103	7632
10/12/09 02:35:57	59.978	3789.125	335	212.172699	5	239.5	10	0	-103	7632
10/12/09 02:36:00	59.978	3788.08	335	212.172699	6	240	10	0	-103	7632
10/12/09 02:36:03	59.975	3787.135	335	212.172699	7	240.5	10	0	-103	7632
10/12/09 02:36:06	59.976	3787.164	335	212.172699	8	241	10	0	-103	7632
10/12/09 02:36:09	59.975	3787.405	335	215.598175		241.5	10	0	-103	7632
10/12/09 02:36:12	59.969	3786.487	335	215.598175	10	242	10	0	-103	7632
10/12/09 02:36:15	59.966	3789.214	335	215.598175	11	242.5	10	0	-103	7632
10/12/09 02:36:18	59.966	3790.512	335	215.598175	12	243	10	0	-103	7632
10/12/09 02:36:21	59.969	3792.218	335	215.598175	13	243.5	10	0	-103	7632
10/12/09 02:36:24	59.968	3790.959	335	218.327255	14	244	10	0	-103	7632
10/12/09 02:36:27	59.965	3789.026	335	218.327255	15	244.5	10	0	-103	7632
10/12/09 02:36:30	59.97	3789.167	335	218.327255	16	245	10	0	-103	7632
10/12/09 02:36:33	59.972	3785.69	335	218.327255	16	245.5	10	0	-103	7632
10/12/09 02:36:36	59.967	3784.831	335	218.327255	16	246	10	0	-103	7632
10/12/09 02:36:39	59.969	3784.32	335	217.379425	16	246.5	10	0	-103	7632
10/12/09 02:36:42	59.969	3782.809	335	217.379425	16	247	10	0	-103	7632
10/12/09 02:36:45	59.967	3779.352	335	217.379425	16	247.5	10	0	-103	7631
10/12/09 02:36:48	59.966	3779.056	335	217.379425	16	248	10	0	-103	7625
10/12/09 02:36:51	59.965	3779.212	335	217.379425	16	248.5	10	0	-103	7623
10/12/09 02:36:54	59.967	3779.335	335	214.830353	16	249	10	0	-103	7621
10/12/09 02:36:57	59.965	3775.647	335	214.830353	16	249.5	10	0	-103	7623
10/12/09 02:37:00	59.964	3776.597	335	214.830353	16	250	10	0	-103	7625

10/12/09 02:37:03	59.97	3776.023	335	214.830353	16	250.5	10	0	-103	7627
10/12/09 02:37:06	59.969	3773.17	335	214.830353	16	251	10	0	-103	7628
10/12/09 02:37:09	59.968	3768.793	335	227.655914	16	251.5	10	0	-103	7628
10/12/09 02:37:12	59.965	3768.503	335	227.655914	16	252	10	0	-103	7629
10/12/09 02:37:15	59.97	3767.366	335	227.655914	16	252.5	10	0	-103	7630
10/12/09 02:37:18	59.968	3764.786	335	227.655914	16	253	10	0	-103	7631
10/12/09 02:37:21	59.965	3759.592	335	227.655914	16	253.5	10	0	-103	7635
10/12/09 02:37:24	59.969	3761.894	335	225.018082	16	254	10	0	-103	7638
10/12/09 02:37:27	59.967	3760.583	335	225.018082	16	254.5	10	0	-103	7639
10/12/09 02:37:30	59.966	3760.157	335	225.018082	16	255	10	0	-103	7642
10/12/09 02:37:33	59.979	3759.495	335	225.018082	16	255.5	10	0	-103	7644
10/12/09 02:37:36	59.983	3757.773	335	225.018082	16	256	10	0	-103	7645
10/12/09 02:37:39	59.974	3753.087	335	228.365158	16	256.5	10	0	-103	7647
10/12/09 02:37:42	59.965	3751.637	335	228.365158	16	257	10	0	-103	7648
10/12/09 02:37:45	59.962	3758.225	335	228.365158	16	257.5	10	0	-103	7649
10/12/09 02:37:48	59.961	3759.25	335	228.365158	16	258	10	0	-103	7650
10/12/09 02:37:51	59.961	3760.965	335	228.365158	16	258.5	10	0	-103	7651
10/12/09 02:37:54	59.963	3762.022	335	234.075333	16	259	10	0	-103	7652
10/12/09 02:37:57	59.959	3763.1	335	234.075333	16	259.5	10	0	-103	7653
10/12/09 02:38:00	59.951	3763.858	335	234.075333	16	260	10	0	-103	7654
10/12/09 02:38:03	59.953	3766.127	335	234.075333	16	260.5	10	0	-103	7655
10/12/09 02:38:06	59.957	3768.339	335	234.075333	16	261	10	0	-103	7655
10/12/09 02:38:09	59.956	3767.438	335	228.798157	16	261.5	10	0	-103	7656
10/12/09 02:38:12	59.963	3765.606	335	228.798157	16	262	10	0	-103	7656
10/12/09 02:38:15	59.961	3761.57	335	228.798157	16	262.5	10	0	-103	7657
10/12/09 02:38:18	59.963	3761.92	335	228.798157	16	263	10	0	-103	7657
10/12/09 02:38:21	59.963	3758.522	335	228.798157	16	263.5	10	0	-103	7658
10/12/09 02:38:24	59.968	3752.429	335	229.466965	16	264	10	0	-103	7658
10/12/09 02:38:27	59.968	3753.83	335	229.466965	16	264.5	10	0	-103	7659
10/12/09 02:38:30	59.97	3753.51	335	229.466965	16	265	10	0	-103	7659
10/12/09 02:38:33	59.973	3752.741	335	229.466965	16	265.5	10	0	-103	7659
10/12/09 02:38:36	59.965	3753.178	335	229.466965	16	266	10	0	-103	7660
10/12/09 02:38:39	59.967	3753.291	335	228.980164	16	266.5	10	0	-103	7660
10/12/09 02:38:42	59.972	3752.872	335	228.980164	16	267	10	0	-103	7661
10/12/09 02:38:45	59.976	3749.398	335	228.980164	16	267.5	10	0	-103	7661
10/12/09 02:38:48	59.969	3747.476	335	228.980164	16	268	10	0	-103	7662
10/12/09 02:38:51	59.973	3741.285	335	228.980164	16	268.5	10	0	-103	7662
10/12/09 02:38:54	59.978	3746.651	335	219.975555	16	269	10	0	-103	7663
10/12/09 02:38:57	59.981	3743.351	335	219.975555	16	269.5	10	0	-103	7663
10/12/09 02:39:00	59.981	3741.618	335	219.975555	16	270	10	0	-103	7664
10/12/09 02:39:03	59.982	3738.484	335	219.975555	16	270.5	10	0	-103	7664
10/12/09 02:39:06	59.984	3738.901	335	219.975555	16	271	10	0	-103	7665
10/12/09 02:39:09	59.982	3737.273	335	229.089249	16	271.5	10	0	-103	7666
10/12/09 02:39:12	59.979	3736.308	335	229.089249	16	272	10	0	-103	7666
10/12/09 02:39:15	59.98	3735.448	335	229.089249	16	272.5	10	0	-103	7667
10/12/09 02:39:18	59.978	3735.65	335	229.089249	16	273	10	0	-103	7668

10/12/09 02:39:21	59.98	3738.012	335	229.089249	16	273.5	10	0	-103	7668
10/12/09 02:39:24	59.98	3736.748	335	229.663269	16	274	10	0	-103	7669
10/12/09 02:39:27	59.978	3736.067	335	229.663269	16	274.5	10	0	-103	7669
10/12/09 02:39:30	59.972	3736.094	335	229.663269	16	275	10	0	-103	7670
10/12/09 02:39:33	59.971	3738.571	335	229.663269	16	275.5	10	0	-103	7670
10/12/09 02:39:36	59.974	3738.875	335	229.663269	16	276	10	0	-103	7671
10/12/09 02:39:39	59.975	3738.647	335	229.233856	16	276.5	10	0	-103	7671
10/12/09 02:39:42	59.972	3737.684	335	229.233856	16	277	10	0	-103	7672
10/12/09 02:39:45	59.969	3737.892	335	229.233856	16	277.5	10	0	-103	7673
10/12/09 02:39:48	59.974	3740.017	335	229.233856	16	278	10	0	-103	7673
10/12/09 02:39:51	59.972	3742.053	350	229.233856	16	278.5	10	0	-103	7673
10/12/09 02:39:54	59.972	3742.424	350	231.409882	16	279	10	0	-103	7673
10/12/09 02:39:57	59.977	3742.245	350	231.409882	16	279.5	10	0	-103	7673
10/12/09 02:40:00	59.978	3741.723	350	231.409882	16	280	10	0	-103	7673
10/12/09 02:40:03	59.976	3740.629	350	231.409882	16	280.5	10	0	-103	7673
10/12/09 02:40:06	59.974	3739.964	350	231.409882	16	281	10	0	-103	7673
10/12/09 02:40:09	59.977	3742.833	350	218.622284	16	281.5	10	0	-103	7673
10/12/09 02:40:12	59.978	3741.268	350	218.622284	16	282	10	0	-103	7673
10/12/09 02:40:15	59.979	3738.966	350	218.622284	16	282.5	10	0	-103	7673
10/12/09 02:40:18	59.977	3738.706	350	218.622284	16	283	10	0	-103	7673
10/12/09 02:40:21	59.974	3739.86	350	218.622284	16	283.5	10	0	-103	7673
10/12/09 02:40:24	59.971	3738.102	350	213.535858	16	284	10	0	-103	7673
10/12/09 02:40:27	59.971	3743.507	350	213.535858	16	284.5	10	0	-103	7673
10/12/09 02:40:30	59.968	3743.419	350	213.535858	16	285	10	0	-103	7673
10/12/09 02:40:33	59.966	3745.744	350	213.535858	16	285.5	10	0	-103	7674
10/12/09 02:40:36	59.971	3747.34	350	213.535858	16	286	10	0	-103	7675
10/12/09 02:40:39	59.973	3749.75	350	225.651855	16	286.5	10	0	-103	7676
10/12/09 02:40:42	59.969	3746.217	350	225.651855	16	287	10	0	-103	7677
10/12/09 02:40:45	59.972	3743.745	350	225.651855	16	287.5	10	0	-103	7678
10/12/09 02:40:48	59.973	3743.149	350	225.651855	16	288	10	0	-103	7679
10/12/09 02:40:51	59.97	3739.453	350	225.651855	16	288.5	10	0	-103	7680
10/12/09 02:40:54	59.974	3733.376	350	212.573639	16	289	10	0	-103	7681
10/12/09 02:40:57	59.982	3737.583	350	212.573639	16	289.5	10	0	-103	7682
10/12/09 02:41:00	59.985	3736.229	350	212.573639	16	290	10	0	-103	7684
10/12/09 02:41:03	59.985	3733.434	350	212.573639	16	290.5	10	0	-103	7685
10/12/09 02:41:06	59.989	3733.115	350	212.573639	16	291	10	0	-103	7687
10/12/09 02:41:09	59.989	3729.18	350	219.897293	16	291.5	10	0	-103	7689
10/12/09 02:41:12	59.987	3725.459	350	219.897293	16	292	10	0	-103	7690
10/12/09 02:41:15	59.99	3720.108	350	219.897293	16	292.5	10	0	-103	7692
10/12/09 02:41:18	59.996	3720.938	350	219.897293	16	293	10	0	-103	7692
10/12/09 02:41:21	60.001	3725.677	350	219.897293	16	293.5	10	0	-103	7693
10/12/09 02:41:24	60.004	3727.754	350	231.1754	16	294	10	0	-103	7693
10/12/09 02:41:27	60.006	3727.683	350	231.1754	16	294.5	10	0	-103	7694
10/12/09 02:41:30	60.014	3727.231	350	231.1754	16	295	10	0	-103	7694
10/12/09 02:41:33	60.019	3726.446	350	231.1754	16	295.5	10	0	-103	7695
10/12/09 02:41:36	60.025	3726.016	350	231.1754	16	296	10	0	-103	7695

10/12/09 02:41:39	60.026	3716.375	350	226.634125	16	296.5	10	0	-103	7695
10/12/09 02:41:42	60.029	3717.333	350	226.634125	16	297	10	0	-103	7696
10/12/09 02:41:45	60.029	3717.142	350	226.634125	16	297.5	10	0	-103	7696
10/12/09 02:41:48	60.036	3715.166	350	226.634125	16	298	10	0	-103	7697
10/12/09 02:41:51	60.037	3710.283	350	226.634125	16	298.5	10	0	-103	7697
10/12/09 02:41:54	60.036	3710.158	350	227.255066	16	299	10	0	-103	7697
10/12/09 02:41:57	60.041	3698.591	350	227.255066	16	299.5	10	0	-103	7698
10/12/09 02:42:00	60.044	3704.591	350	227.255066	16	300	10	0	-103	7698
10/12/09 02:42:03	60.043	3702.482	350	227.255066	16	300.5	10	0	-103	7698.33
10/12/09 02:42:06	60.048	3701.316	350	227.255066	16	301	10	0	-103	7698.66
10/12/09 02:42:09	60.046	3699.529	350	229.290222	16	301.5	10	0	-103	7698.99
10/12/09 02:42:12	60.043	3699.726	350	229.290222	16	302	10	0	-103	7699.32
10/12/09 02:42:15	60.043	3690.477	350	229.290222	16	302.5	10	0	-103	7699.65
10/12/09 02:42:18	60.043	3696.865	350	229.290222	16	303	10	0	-103	7699.98
10/12/09 02:42:21	60.043	3696.182	350	229.290222	16	303.5	10	0	-103	7700.31
10/12/09 02:42:24	60.04	3696.541	350	221.461365	16	304	10	0	-103	7700.64
10/12/09 02:42:27	60.041	3698.686	350	221.461365	16	304.5	10	0	-103	7700.97
10/12/09 02:42:30	60.039	3699.631	350	221.461365	16	305	10	0	-103	7701.3
10/12/09 02:42:33	60.036	3699.712	350	221.461365	16	305.5	10	0	-103	7701.63
10/12/09 02:42:36	60.033	3700.106	350	221.461365	16	306	10	0	-103	7701.96
10/12/09 02:42:39	60.034	3701.122	350	241.274368	16	306.5	10	0	-103	7702.29
10/12/09 02:42:42	60.037	3701.865	350	241.274368	16	307	10	0	-103	7702.62
10/12/09 02:42:45	60.035	3701.998	350	241.274368	16	307.5	10	0	-103	7702.95
10/12/09 02:42:48	60.033	3702.913	350	241.274368	16	308	10	0	-103	7703.28
10/12/09 02:42:51	60.036	3705.522	350	241.274368	16	308.5	10	0	-103	7703.61
10/12/09 02:42:54	60.034	3704.967	350	243.071854	16	309	10	0	-103	7703.94
10/12/09 02:42:57	60.032	3702.771	350	243.071854	16	309.5	10	0	-103	7704.27
10/12/09 02:43:00	60.034	3703.706	350	243.071854	16	310	10	0	-103	7704.6
10/12/09 02:43:03	60.033	3705.435	350	243.071854	16	310.5	10	0	-103	7704.93
10/12/09 02:43:06	60.035	3704.36	350	243.071854	16	311	10	0	-103	7705.26
10/12/09 02:43:09	60.035	3702.204	350	241.670212	16	311.5	10	0	-103	7705.59
10/12/09 02:43:12	60.039	3701.942	350	241.670212	16	312	10	0	-103	7705.92
10/12/09 02:43:15	60.037	3703.318	350	241.670212	16	312.5	10	0	-103	7706.25
10/12/09 02:43:18	60.036	3702.457	350	241.670212	16	313	10	0	-103	7706.58
10/12/09 02:43:21	60.034	3703.269	350	241.670212	16	313.5	10	0	-103	7706.91
10/12/09 02:43:24	60.037	3703.844	350	228.149307	16	314	10	0	-103	7707.24
10/12/09 02:43:27	60.037	3702.518	350	228.149307	16	314.5	10	0	-103	7707.57
10/12/09 02:43:30	60.038	3702.28	350	228.149307	16	315	10	0	-103	7707.9
10/12/09 02:43:33	60.04	3692.178	350	228.149307	16	315.5	10	0	-103	7708.23
10/12/09 02:43:36	60.045	3700.276	350	228.149307	16	316	10	0	-103	7708.56
10/12/09 02:43:39	60.045	3697.729	350	235.128983	16	316.5	10	0	-103	7708.89
10/12/09 02:43:42	60.043	3696.916	350	235.128983	16	317	10	0	-103	7709.22
10/12/09 02:43:45	60.04	3697.346	350	235.128983	16	317.5	10	0	-103	7709.55
10/12/09 02:43:48	60.046	3698.429	350	235.128983	16	318	10	0	-103	7709.88
10/12/09 02:43:51	60.042	3693.584	350	235.128983	16	318.5	10	0	-103	7710.21
10/12/09 02:43:54	60.039	3693.241	350	246.433136	16	319	10	0	-103	7710.54

10/12/09 02:43:57	60.039	3699.364	350	246.433136	16	319.5	10	0	-103	7710.87
10/12/09 02:44:00	60.037	3701.791	350	246.433136	16	320	10	0	-103	7711.2
10/12/09 02:44:03	60.034	3700.753	350	246.433136	16	320.5	10	0	-103	7711.53
10/12/09 02:44:06	60.032	3702.148	350	246.433136	16	321	10	0	-103	7711.86
10/12/09 02:44:09	60.031	3707.521	350	236.553543	16	321.5	10	0	-103	7712.19
10/12/09 02:44:12	60.027	3707.287	350	236.553543	16	322	10	0	-103	7712.52
10/12/09 02:44:15	60.031	3707.34	350	236.553543	16	322.5	10	0	-103	7712.85
10/12/09 02:44:18	60.031	3707.917	350	236.553543	16	323	10	0	-103	7713.18
10/12/09 02:44:21	60.031	3706.857	350	236.553543	16	323.5	10	0	-103	7713.51
10/12/09 02:44:24	60.039	3707.615	350	230.297562	16	324	10	0	-103	7713.84
10/12/09 02:44:27	60.039	3703.746	350	230.297562	16	324.5	10	0	-103	7714.17
10/12/09 02:44:30	60.037	3701.582	350	230.297562	16	325	10	0	-103	7714.5
10/12/09 02:44:33	60.035	3701.208	350	230.297562	16	325.5	10	0	-103	7714.83
10/12/09 02:44:36	60.04	3702.212	350	230.297562	16	326	10	0	-103	7715.16
10/12/09 02:44:39	60.042	3700.397	350	231.175537	16	326.5	10	0	-103	7715.49
10/12/09 02:44:42	60.036	3699.69	350	231.175537	16	327	10	0	-103	7715.82
10/12/09 02:44:45	60.04	3700.827	350	231.175537	16	327.5	10	0	-103	7716.15
10/12/09 02:44:48	60.045	3700.662	350	231.175537	16	328	10	0	-103	7716.48
10/12/09 02:44:51	60.048	3695.688	350	231.175537	16	328.5	10	0	-103	7716.81
10/12/09 02:44:54	60.044	3695.819	350	225.61763	16	329	10	0	-103	7717.14
10/12/09 02:44:57	60.044	3694.799	350	225.61763	16	329.5	10	0	-103	7717.47
10/12/09 02:45:00	60.044	3696.897	350	225.61763	16	330	10	0	-103	7717.8
10/12/09 02:45:03	60.04	3696.023	350	225.61763	16	330.5	10	0	-103	7718.13
10/12/09 02:45:06	60.045	3698.424	350	225.61763	16	331	10	0	-103	7718.46
10/12/09 02:45:09	60.044	3700.177	350	230.734421	16	331.5	10	0	-103	7718.79
10/12/09 02:45:12	60.039	3699.806	350	230.734421	16	332	10	0	-103	7719.12
10/12/09 02:45:15	60.042	3697.681	350	230.734421	16	332.5	10	0	-103	7719.45
10/12/09 02:45:18	60.041	3698.507	350	230.734421	16	333	10	0	-103	7719.78
10/12/09 02:45:21	60.038	3698.466	350	230.734421	16	333.5	10	0	-103	7720.11
10/12/09 02:45:24	60.037	3699.077	350	234.847107	16	334	10	0	-103	7720.44
10/12/09 02:45:27	60.039	3701.592	350	234.847107	16	334.5	10	0	-103	7720.77
10/12/09 02:45:30	60.04	3700.902	350	234.847107	16	335	10	0	-103	7721.1
10/12/09 02:45:33	60.039	3700.27	350	234.847107	16	335.5	10	0	-103	7721.43
10/12/09 02:45:36	60.038	3701.139	350	234.847107	16	336	10	0	-103	7721.76
10/12/09 02:45:39	60.039	3700.264	350	228.960922	16	336.5	10	0	-103	7722.09
10/12/09 02:45:42	60.037	3699.458	350	228.960922	16	337	10	0	-103	7722.42
10/12/09 02:45:45	60.037	3700.458	350	228.960922	16	337.5	10	0	-103	7722.75
10/12/09 02:45:48	60.039	3699.505	350	228.960922	16	338	10	0	-103	7723.08
10/12/09 02:45:51	60.038	3699.216	350	228.960922	16	338.5	10	0	-103	7723.41
10/12/09 02:45:54	60.035	3699.4	350	231.177917	16	339	10	0	-103	7723.74
10/12/09 02:45:57	60.033	3702.173	350	231.177917	16	339.5	10	0	-103	7724.07
10/12/09 02:46:00	60.03	3702.968	350	231.177917	16	340	10	0	-103	7724.4
10/12/09 02:46:03	60.032	3704.952	350	231.177917	16	340.5	10	0	-103	7724.73
10/12/09 02:46:06	60.037	3705.775	350	231.177917	16	341	10	0	-103	7725.06
10/12/09 02:46:09	60.042	3703.744	350	236.489288	16	341.5	10	0	-103	7725.39
10/12/09 02:46:12	60.036	3701.981	350	236.489288	16	342	10	0	-103	7725.72

10/12/09 02:46:15	60.031	3700.747	350	236.489288	16	342.5	10	0	-103	7726.05
10/12/09 02:46:18	60.031	3702.213	350	236.489288	16	343	10	0	-103	7726.38
10/12/09 02:46:21	60.034	3705.514	350	236.489288	16	343.5	10	0	-103	7726.71
10/12/09 02:46:24	60.032	3704.449	350	245.038925	16	344	10	0	-103	7727.04
10/12/09 02:46:27	60.038	3703.62	350	245.038925	16	344.5	10	0	-103	7727.37
10/12/09 02:46:30	60.044	3702.795	350	245.038925	16	345	10	0	-103	7727.7
10/12/09 02:46:33	60.042	3697.38	350	245.038925	16	345.5	10	0	-103	7728.03
10/12/09 02:46:36	60.04	3696.25	350	245.038925	16	346	10	0	-103	7728.36
10/12/09 02:46:39	60.04	3693.518	350	223.605682	16	346.5	10	0	-103	7728.69
10/12/09 02:46:42	60.043	3693.577	350	223.605682	16	347	10	0	-103	7729.02
10/12/09 02:46:45	60.041	3695.186	350	223.605682	16	347.5	10	0	-103	7729.35
10/12/09 02:46:48	60.038	3693.786	350	223.605682	16	348	10	0	-103	7729.68
10/12/09 02:46:51	60.043	3694.926	350	223.605682	16	348.5	10	0	-103	7730.01
10/12/09 02:46:54	60.042	3694.938	350	231.119354	16	349	10	0	-103	7730.34
10/12/09 02:46:57	60.036	3691.33	350	231.119354	16	349.5	10	0	-103	7730.67
10/12/09 02:47:00	60.041	3692.686	350	231.119354	16	350	10	0	-103	7731
10/12/09 02:47:03	60.042	3693.39	350	231.119354	16	350.5	10	0	-103	7731.33
10/12/09 02:47:06	60.043	3692.357	350	231.119354	16	351	10	0	-103	7731.66
10/12/09 02:47:09	60.036	3690.836	350	237.20665	16	351.5	10	0	-103	7731.99
10/12/09 02:47:12	60.039	3692.042	350	237.20665	16	352	10	0	-103	7732.32
10/12/09 02:47:15	60.037	3694.117	350	237.20665	16	352.5	10	0	-103	7732.65
10/12/09 02:47:18	60.035	3695.258	350	237.20665	16	353	10	0	-103	7732.98
10/12/09 02:47:21	60.035	3695.949	350	237.20665	16	353.5	10	0	-103	7733.31
10/12/09 02:47:24	60.036	3695.491	350	240.516373	16	354	10	0	-103	7733.64
10/12/09 02:47:27	60.03	3696.486	350	240.516373	16	354.5	10	0	-103	7733.97
10/12/09 02:47:30	60.03	3697.336	350	240.516373	16	355	10	0	-103	7734.3
10/12/09 02:47:33	60.031	3699.357	350	240.516373	16	355.5	10	0	-103	7734.63
10/12/09 02:47:36	60.032	3699.251	350	240.516373	16	356	10	0	-103	7734.96
10/12/09 02:47:39	60.031	3699.105	350	237.566055	16	356.5	10	0	-103	7735.29
10/12/09 02:47:42	60.032	3699.126	350	237.566055	16	357	10	0	-103	7735.62
10/12/09 02:47:45	60.032	3698.136	350	237.566055	16	357.5	10	0	-103	7735.95
10/12/09 02:47:48	60.037	3698.277	350	237.566055	16	358	10	0	-103	7736.28
10/12/09 02:47:51	60.04	3695.94	350	237.566055	16	358.5	10	0	-103	7736.61
10/12/09 02:47:54	60.042	3693.736	350	231.581421	16	359	10	0	-103	7736.94
10/12/09 02:47:57	60.036	3691.759	350	231.581421	16	359.5	10	0	-103	7737.27
10/12/09 02:48:00	60.041	3691.919	350	231.581421	16	360	10	0	-103	7737.6
10/12/09 02:48:03	60.04	3691.582	350	231.581421	16	360.5	10	0	-103	7737.93
10/12/09 02:48:06	60.036	3692.374	350	231.581421	16	361	10	0	-103	7738.26
10/12/09 02:48:09	60.038	3694.71	350	235.850845	16	361.5	10	0	-103	7738.59
10/12/09 02:48:12	60.041	3694.331	350	235.850845	16	362	10	0	-103	7738.92
10/12/09 02:48:15	60.04	3693.617	350	235.850845	16	362.5	10	0	-103	7739.25
10/12/09 02:48:18	60.033	3694.324	350	235.850845	16	363	10	0	-103	7739.58
10/12/09 02:48:21	60.034	3694.66	350	235.850845	16	363.5	10	0	-103	7739.91
10/12/09 02:48:24	60.04	3693.748	350	233.559982	16	364	10	0	-103	7740.24
10/12/09 02:48:27	60.041	3691.445	350	233.559982	16	364.5	10	0	-103	7740.57
10/12/09 02:48:30	60.037	3691.012	350	233.559982	16	365	10	0	-103	7740.9

10/12/09 02:48:33	60.036	3693.077	350	233.559982	16	365.5	10	0	-103	7741.23
10/12/09 02:48:36	60.038	3693.727	350	233.559982	16	366	10	0	-103	7741.56
10/12/09 02:48:39	60.039	3692.641	350	219.009995	16	366.5	10	0	-103	7741.89
10/12/09 02:48:42	60.034	3688.159	350	219.009995	16	367	10	0	-103	7742.22
10/12/09 02:48:45	60.033	3688.208	350	219.009995	16	367.5	10	0	-103	7742.55
10/12/09 02:48:48	60.034	3690.092	350	219.009995	16	368	10	0	-103	7742.88
10/12/09 02:48:51	60.029	3693.321	350	219.009995	16	368.5	10	0	-103	7743.21
10/12/09 02:48:54	60.031	3694.593	350	205.338913	16	369	10	0	-103	7743.54
10/12/09 02:48:57	60.03	3694.609	350	205.338913	16	369.5	10	0	-103	7743.87
10/12/09 02:49:00	60.026	3693.412	350	205.338913	16	370	10	0	-103	7744.2
10/12/09 02:49:03	60.022	3696.026	350	205.338913	16	370.5	10	0	-103	7744.53
10/12/09 02:49:06	60.024	3698.012	350	205.338913	16	371	10	0	-103	7744.86
10/12/09 02:49:09	60.023	3699.414	350	236.285355	16	371.5	10	0	-103	7745.19
10/12/09 02:49:12	60.021	3698.935	350	236.285355	16	372	10	0	-103	7745.52
10/12/09 02:49:15	60.023	3700.544	350	236.285355	16	372.5	10	0	-103	7745.85
10/12/09 02:49:18	60.026	3700.486	350	236.285355	16	373	10	0	-103	7746.18
10/12/09 02:49:21	60.026	3697.961	350	236.285355	16	373.5	10	0	-103	7746.51
10/12/09 02:49:24	60.024	3699.914	350	223.015732	16	374	10	0	-103	7746.84
10/12/09 02:49:27	60.024	3701.301	350	223.015732	16	374.5	10	0	-103	7747.17
10/12/09 02:49:30	60.023	3701.45	350	223.015732	16	375	10	0	-103	7747.5
10/12/09 02:49:33	60.023	3701.094	350	223.015732	16	375.5	10	0	-103	7747.83
10/12/09 02:49:36	60.026	3701.702	350	223.015732	16	376	10	0	-103	7748.16
10/12/09 02:49:39	60.029	3701.965	350	223.015732	16	376.5	10	0	-103	7748.49
10/12/09 02:49:42	60.024	3700.269	350	223.015732	16	377	10	0	-103	7748.82
10/12/09 02:49:45	60.021	3701.09	350	223.015732	16	377.5	10	0	-103	7749.15
10/12/09 02:49:48	60.025	3701.268	350	223.015732	16	378	10	0	-103	7749.48
10/12/09 02:49:51	60.025	3700.587	350	223.015732	16	378.5	10	0	-103	7749.81
10/12/09 02:49:54	60.026	3700.532	350	223.015732	16	379	10	0	-103	7750.14
10/12/09 02:49:57	60.024	3700.295	350	223.015732	16	379.5	10	0	-103	7750.47
10/12/09 02:50:00	60.023	3700.277	350	223.015732	16	380	10	0	-103	7750.8
10/12/09 02:50:03	60.026	3700.863	350	223.015732	16	380.5	10	0	-103	7751.13
10/12/09 02:50:06	60.02	3700.26	350	223.015732	16	381	10	0	-103	7751.46
10/12/09 02:50:09	60.02	3699.926	350	223.015732	16	381.5	10	0	-103	7751.79
10/12/09 02:50:12	60.015	3700.965	350	223.015732	16	382	10	0	-103	7752.12
10/12/09 02:50:15	60.016	3703.516	350	223.015732	16	382.5	10	0	-103	7752.45
10/12/09 02:50:18	60.015	3703.824	350	223.015732	16	383	10	0	-103	7752.78
10/12/09 02:50:21	60.015	3703.689	350	223.015732	16	383.5	10	0	-103	7753.11
10/12/09 02:50:24	60.017	3703.003	350	223.015732	16	384	10	0	-103	7753.44
10/12/09 02:50:27	60.012	3703	350	223.015732	16	384.5	10	0	-103	7753.77
10/12/09 02:50:30	60.008	3703.167	350	223.015732	16	385	10	0	-103	7754.1
10/12/09 02:50:33	60.002	3703.616	350	223.015732	16	385.5	10	0	-103	7754.43
10/12/09 02:50:36	59.999	3703.775	350	223.015732	16	386	10	0	-103	7754.76
10/12/09 02:50:39	60.002	3701.534	350	223.015732	16	386.5	10	0	-103	7755.09
10/12/09 02:50:42	60.004	3700.617	350	223.015732	16	387	10	0	-103	7755.42
10/12/09 02:50:45	60.001	3700.625	350	223.015732	16	387.5	10	0	-103	7755.75
10/12/09 02:50:48	59.993	3701.389	350	223.015732	16	388	10	0	-103	7756.08

10/12/09 02:50:51	59.992	3700.671	350	223.015732	16	388.5	10	0	-103	7756.41
10/12/09 02:50:54	59.987	3700.826	350	223.015732	16	389	10	0	-103	7756.74
10/12/09 02:50:57	59.985	3700.7	350	223.015732	16	389.5	10	0	-103	7757.07
10/12/09 02:51:00	59.986	3699.854	350	223.015732	16	390	10	0	-103	7757.4
10/12/09 02:51:03	59.984	3700.342	350	223.015732	16	390.5	10	0	-103	7757.73
10/12/09 02:51:06	59.98	3700.77	350	223.015732	16	391	10	0	-103	7758.06
10/12/09 02:51:09	59.977	3701.625	350	223.015732	16	391.5	10	0	-103	7758.39
10/12/09 02:51:12	59.976	3703.166	350	223.015732	16	392	10	0	-103	7758.72
10/12/09 02:51:15	59.972	3704.785	350	223.015732	16	392.5	10	0	-103	7759.05
10/12/09 02:51:18	59.977	3705.811	350	223.015732	16	393	10	0	-103	7759.38
10/12/09 02:51:21	59.975	3706.688	350	223.015732	16	393.5	10	0	-103	7759.71
10/12/09 02:51:24	59.971	3706.543	350	223.015732	16	394	10	0	-103	7760.04
10/12/09 02:51:27	59.971	3707.027	350	223.015732	16	394.5	10	0	-103	7760.37
10/12/09 02:51:30	59.979	3710.118	350	223.015732	16	395	10	0	-103	7760.7
10/12/09 02:51:33	59.98	3708.701	350	223.015732	16	395.5	10	0	-103	7761.03
10/12/09 02:51:36	59.982	3708.018	350	223.015732	16	396	10	0	-103	7761.36
10/12/09 02:51:39	59.982	3706.343	350	223.015732	16	396.5	10	0	-103	7761.69
10/12/09 02:51:42	59.981	3706.125	350	223.015732	16	397	10	0	-103	7762.02
10/12/09 02:51:45	59.979	3706.119	350	223.015732	16	397.5	10	0	-103	7762.35
10/12/09 02:51:48	59.976	3706.19	350	223.015732	16	398	10	0	-103	7762.68
10/12/09 02:51:51	59.978	3709.409	350	223.015732	16	398.5	10	0	-103	7763.01
10/12/09 02:51:54	59.976	3708.971	350	223.015732	16	399	10	0	-103	7763.34
10/12/09 02:51:57	59.978	3708.071	350	223.015732	16	399.5	10	0	-103	7763.67
10/12/09 02:52:00	59.971	3707.24	350	223.015732	16	400	10	0	-103	7764
10/12/09 02:52:03	59.97	3709.961	350	223.015732	16	400.5	10	0	-103	7764.33
10/12/09 02:52:06	59.971	3711.75	350	223.015732	16	401	10	0	-103	7764.66
10/12/09 02:52:09	59.99	3710.695	350	223.015732	16	401.5	10	0	-103	7764.99
10/12/09 02:52:12	59.999	3707.867	350	223.015732	16	402	10	0	-103	7765.32
10/12/09 02:52:15	59.999	3705.639	350	223.015732	16	402.5	10	0	-103	7765.65
10/12/09 02:52:18	59.999	3703.787	350	223.015732	16	403	10	0	-103	7765.98
10/12/09 02:52:21	60.003	3702.071	350	223.015732	16	403.5	10	0	-103	7766.31
10/12/09 02:52:24	60.005	3699.51	350	223.015732	16	404	10	0	-103	7766.64
10/12/09 02:52:27	60.01	3698.137	350	223.015732	16	404.5	10	0	-103	7766.97
10/12/09 02:52:30	60.02	3697.882	350	223.015732	16	405	10	0	-103	7767.3
10/12/09 02:52:33	60.022	3698.604	350	223.015732	16	405.5	10	0	-103	7767.63
10/12/09 02:52:36	60.025	3697.868	350	223.015732	16	406	10	0	-103	7767.96
10/12/09 02:52:39	60.025	3693.912	350	223.015732	16	406.5	10	0	-103	7768.29
10/12/09 02:52:42	60.023	3693.418	350	223.015732	16	407	10	0	-103	7768.62
10/12/09 02:52:45	60.029	3688.021	350	223.015732	16	407.5	10	0	-103	7768.95
10/12/09 02:52:48	60.029	3689.143	350	223.015732	16	408	10	0	-103	7769.28
10/12/09 02:52:51	60.028	3687.878	350	223.015732	16	408.5	10	0	-103	7769.61
10/12/09 02:52:54	60.031	3687.026	350	223.015732	16	409	10	0	-103	7769.94
10/12/09 02:52:57	60.032	3685.276	350	223.015732	16	409.5	10	0	-103	7770.27
10/12/09 02:53:00	60.033	3685.576	350	223.015732	16	410	10	0	-103	7770.6
10/12/09 02:53:03	60.03	3685.985	350	223.015732	16	410.5	10	0	-103	7770.93
10/12/09 02:53:06	60.021	3687.159	350	223.015732	16	411	10	0	-103	7771.26

10/12/09 02:53:09	60.019	3688.997	350	223.015732	16	411.5	10	0	-103	7771.59
10/12/09 02:53:12	60.017	3690.426	350	223.015732	16	412	10	0	-103	7771.92
10/12/09 02:53:15	60.017	3692.715	350	223.015732	16	412.5	10	0	-103	7772.25
10/12/09 02:53:18	60.015	3692.578	350	223.015732	16	413	10	0	-103	7772.58
10/12/09 02:53:21	60.015	3693.173	350	223.015732	16	413.5	10	0	-103	7772.91
10/12/09 02:53:24	60.009	3693.249	350	223.015732	16	414	10	0	-103	7773.24
10/12/09 02:53:27	60.008	3695.124	350	223.015732	16	414.5	10	0	-103	7773.57
10/12/09 02:53:30	60.005	3694.681	350	223.015732	16	415	10	0	-103	7773.9
10/12/09 02:53:33	60.005	3694.199	350	223.015732	16	415.5	10	0	-103	7774.23
10/12/09 02:53:36	59.999	3693.75	350	223.015732	16	416	10	0	-103	7774.56
10/12/09 02:53:39	59.997	3692.806	350	223.015732	16	416.5	10	0	-103	7774.89
10/12/09 02:53:42	60	3691.15	350	223.015732	16	417	10	0	-103	7775.22
10/12/09 02:53:45	59.998	3691.077	350	223.015732	16	417.5	10	0	-103	7775.55
10/12/09 02:53:48	59.994	3690.588	350	223.015732	16	418	10	0	-103	7775.88
10/12/09 02:53:51	59.992	3688.483	350	223.015732	16	418.5	10	0	-103	7776.21
10/12/09 02:53:54	59.988	3689.445	350	223.015732	16	419	10	0	-103	7776.54
10/12/09 02:53:57	59.985	3689.525	350	223.015732	16	419.5	10	0	-103	7776.87
10/12/09 02:54:00	59.988	3689.736	350	223.015732	16	420	10	0	-103	7777.2
10/12/09 02:54:03	59.988	3688.24	350	223.015732	16	420.5	10	0	-103	7777.53
10/12/09 02:54:06	59.983	3687.494	350	223.015732	16	421	10	0	-103	7777.86
10/12/09 02:54:09	59.983	3686.707	350	223.015732	16	421.5	10	0	-103	7778.19
10/12/09 02:54:12	59.986	3685.66	350	223.015732	16	422	10	0	-103	7778.52
10/12/09 02:54:15	59.987	3684.333	350	223.015732	16	422.5	10	0	-103	7778.85
10/12/09 02:54:18	59.986	3683.911	350	223.015732	16	423	10	0	-103	7779.18
10/12/09 02:54:21	59.985	3684.208	350	223.015732	16	423.5	10	0	-103	7779.51
10/12/09 02:54:24	59.983	3683.811	350	223.015732	16	424	10	0	-103	7779.84
10/12/09 02:54:27	59.982	3684.258	350	223.015732	16	424.5	10	0	-103	7780.17
10/12/09 02:54:30	59.98	3684.884	350	223.015732	16	425	10	0	-103	7780.5
10/12/09 02:54:33	59.978	3685.654	350	223.015732	16	425.5	10	0	-103	7780.83
10/12/09 02:54:36	59.975	3685.087	350	223.015732	16	426	10	0	-103	7781.16
10/12/09 02:54:39	59.973	3685.196	350	223.015732	16	426.5	10	0	-103	7781.49
10/12/09 02:54:42	59.976	3687.412	350	223.015732	16	427	10	0	-103	7781.82
10/12/09 02:54:45	59.976	3688.599	350	223.015732	16	427.5	10	0	-103	7782.15
10/12/09 02:54:48	59.982	3687.848	350	223.015732	16	428	10	0	-103	7782.48
10/12/09 02:54:51	59.979	3685.782	350	223.015732	16	428.5	10	0	-103	7782.81
10/12/09 02:54:54	59.977	3684.89	350	223.015732	16	429	10	0	-103	7783.14
10/12/09 02:54:57	59.977	3684.549	350	223.015732	16	429.5	10	0	-103	7783.47
10/12/09 02:55:00	59.978	3684.093	350	223.015732	16	430	10	0	-103	7783.8
10/12/09 02:55:03	59.978	3682.814	350	223.015732	16	430.5	10	0	-103	7784.13
10/12/09 02:55:06	59.983	3682.318	350	223.015732	16	431	10	0	-103	7784.46
10/12/09 02:55:09	59.981	3682.647	350	223.015732	16	431.5	10	0	-103	7784.79
10/12/09 02:55:12	59.978	3682.855	350	223.015732	16	432	10	0	-103	7785.12
10/12/09 02:55:15	59.979	3684.052	350	223.015732	16	432.5	10	0	-103	7785.45
10/12/09 02:55:18	59.979	3684.318	350	223.015732	16	433	10	0	-103	7785.78
10/12/09 02:55:21	59.983	3686.629	350	223.015732	16	433.5	10	0	-103	7786.11
10/12/09 02:55:24	59.99	3685.286	350	223.015732	16	434	10	0	-103	7786.44

10/12/09 02:55:27	59.992	3682.416	350	223.015732	16	434.5	10	0	-103	7786.77
10/12/09 02:55:30	59.99	3681.403	350	223.015732	16	435	10	0	-103	7787.1
10/12/09 02:55:33	59.988	3679.436	350	223.015732	16	435.5	10	0	-103	7787.43
10/12/09 02:55:36	59.99	3671.761	350	223.015732	16	436	10	0	-103	7787.76
10/12/09 02:55:39	59.993	3670.159	350	223.015732	16	436.5	10	0	-103	7788.09
10/12/09 02:55:42	59.993	3679	350	223.015732	16	437	10	0	-103	7788.42
10/12/09 02:55:45	59.994	3681.799	350	223.015732	16	437.5	10	0	-103	7788.75
10/12/09 02:55:48	59.993	3682.7	350	223.015732	16	438	10	0	-103	7789.08
10/12/09 02:55:51	59.989	3685.03	350	223.015732	16	438.5	10	0	-103	7789.41
10/12/09 02:55:54	59.986	3684.878	350	223.015732	16	439	10	0	-103	7789.74
10/12/09 02:55:57	59.985	3684.478	350	223.015732	16	439.5	10	0	-103	7790.07
10/12/09 02:56:00	59.987	3685.584	350	223.015732	16	440	10	0	-103	7790.4
10/12/09 02:56:03	59.986	3684.587	350	223.015732	16	440.5	10	0	-103	7790.73
10/12/09 02:56:06	59.985	3684.976	350	223.015732	16	441	10	0	-103	7791.06
10/12/09 02:56:09	59.982	3684.872	350	223.015732	16	441.5	10	0	-103	7791.39
10/12/09 02:56:12	59.982	3684.245	350	223.015732	16	442	10	0	-103	7791.72
10/12/09 02:56:15	59.987	3685.589	350	223.015732	16	442.5	10	0	-103	7792.05
10/12/09 02:56:18	59.997	3683.736	350	223.015732	16	443	10	0	-103	7792.38
10/12/09 02:56:21	60	3682.234	350	223.015732	16	443.5	10	0	-103	7792.71
10/12/09 02:56:24	60.003	3682.138	350	223.015732	16	444	10	0	-103	7793.04
10/12/09 02:56:27	60.003	3681.689	350	223.015732	16	444.5	10	0	-103	7793.37
10/12/09 02:56:30	60.003	3681.458	350	223.015732	16	445	10	0	-103	7793.7
10/12/09 02:56:33	60.002	3681.013	350	223.015732	16	445.5	10	0	-103	7794.03
10/12/09 02:56:36	60.004	3680.167	350	223.015732	16	446	10	0	-103	7794.36
10/12/09 02:56:39	60.005	3679.429	350	223.015732	16	446.5	10	0	-103	7794.69
10/12/09 02:56:42	60.009	3679.669	350	223.015732	16	447	10	0	-103	7795.02
10/12/09 02:56:45	60.012	3678.267	350	223.015732	16	447.5	10	0	-103	7795.35
10/12/09 02:56:48	60.021	3676.796	350	223.015732	16	448	10	0	-103	7795.68
10/12/09 02:56:51	60.022	3674.798	350	223.015732	16	448.5	10	0	-103	7796.01
10/12/09 02:56:54	60.02	3673.906	350	223.015732	16	449	10	0	-103	7796.34
10/12/09 02:56:57	60.018	3670.51	350	223.015732	16	449.5	10	0	-103	7796.67
10/12/09 02:57:00	60.02	3673.648	350	223.015732	16	450	10	0	-103	7797
10/12/09 02:57:03	60.02	3675.865								
10/12/09 02:57:06	60.018	3676.676								
10/12/09 02:57:09	60.019	3676.437								
10/12/09 02:57:12	60.018	3677.185								
10/12/09 02:57:15	60.017	3678.828								
10/12/09 02:57:18	60.016	3679.289								
10/12/09 02:57:21	60.016	3679.276								
10/12/09 02:57:24	60.014	3678.599								
10/12/09 02:57:27	60.014	3678.25								
10/12/09 02:57:30	60.013	3678.589								
10/12/09 02:57:33	60.015	3675.698								
10/12/09 02:57:36	60.016	3674.669								
10/12/09 02:57:39	60.019	3674.402								
10/12/09 02:57:42	60.021	3674.546								

10/12/09 02:57:45 $\quad 60.02 \quad 3671.914$ $\begin{array}{lrrr}10 / 12 / 09 & 02: 57: 48 & 60.024 & 3671.982\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 02: 57: 51 & 60.024 & 3671.9821 \\ & 6670.821\end{array}$ $\begin{array}{llr}10 / 12 / 09 & 02: 57: 54 & 60.026 \\ & 3671.06\end{array}$ $\begin{array}{lrr}10 / 12 / 09 & 02: 57: 57 & 60.022 \\ & 3673.794\end{array}$ $\begin{array}{llrr}10 / 12 / 09 & 02: 58: 00 & 60.022 & 3674.01\end{array}$ 10/12/09 02:58:03 $60.024 \quad 3675.284$ 10/12/09 02:58:06 $\quad 60.029 \quad 3676.051$ $\begin{array}{llll}10 / 12 / 09 & 02: 58: 09 & 60.028 & 3672.583\end{array}$ $\begin{array}{llll}\text { 0/12/09 02:58:12 } & 60.032 \quad 3671.343\end{array}$ 10/12/09 02:58:15 $\quad 60.035 \quad 3668.654$ 10/12/09 02:58:18 $\quad 60.028 \quad 3668.767$ $\begin{array}{llll}10 / 12 / 09 & 02: 58: 18 & 60.028 & 3668.767\end{array}$ $\begin{array}{lll}10 / 12 / 09 & 02: 58: 21 & 60.021 \\ 3667.322 \\ 0 / 12 / 09 & 02: 58: 24 & 60.024 \\ 3657.164\end{array}$ \begin{tabular}{llll}
$10 / 12 / 09$ \& $02: 58: 24$ \& 60.024 \& 3657.164

\hline

 $\begin{array}{llll}10 / 12 / 09 & 02: 58: 27 & 60.025 & 3668.637\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 02: 58: 30 & 60.022 & 3669.309\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 02: 58: 33 & 60.023 & 3670.735\end{array}$ 0/12/09 02:58:36 $\quad 60.02 \quad 3671.332$ 10/12/09 02:58:39 $\quad 60.023672 .683$ $\begin{array}{llll}10 / 12 / 09 & 02: 58: 42 & 60.02 & 3673.833\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 02: 58: 45 & 60.017 & 3675.641\end{array}$ 0/12/09 02:58:48 $\quad 60.012 \quad 3675.971$ $\begin{array}{llll}10 / 12 / 09 & 02: 58: 51 & 60.01 & 3678.314\end{array}$ 10/12/09 02:58:54 $\quad 60.01 \quad 3679.393$ $\begin{array}{llll}10 / 12 / 09 & 02: 58: 57 & 60.01 & 3679.792\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 02: 59: 00 & 60.012 & 3679.597\end{array}$ 10/12/09 02:59:03 $\quad 60.012 \quad 3680.11$ 10/12/09 02:59:06 $\quad 60.014 \quad 3679.062$ $\begin{array}{lll}10 / 12 / 09 & 02: 59: 06 & 60.014 \\ 3679.062 \\ 0 / 12 / 09 & 02: 59: 09 & 60.013 \\ 3679.587\end{array}$

10/12/09 02:59:09 \& 60.013 \& 3679.587

\hline
\end{tabular} $\begin{array}{lrr}0 / 12 / 09 & 02: 59: 12 & 60.011 \\ 3679.637\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 02: 59: 15 & 60.01 & 3678.418\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 02.59 .18 & 60.01 \quad 3679.383\end{array}$ 10/12/09 02:59:21 $\quad 60.011 \quad 3679.93$ $\begin{array}{llll}10 / 12 / 09 & 02: 59: 24 & 60.016 & 3679.138\end{array}$ 0/12/09 02:59:27 $\quad 60.018 \quad 3678.499$ 0/12/09 02:59:30 $\quad 60.019 \quad 3678.456$ $\begin{array}{llll}10 / 12 / 09 & 02: 59: 33 & 60.019 & 3677.446\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 02: 59: 36 & 60.02 & 3677.431\end{array}$ 10/12/09 02:59:39 $\quad 60.018 \quad 3677.315$ 10/12/09 02:59:42 $\quad 60.016 \quad 3678.151$ 10/12/09 02:59:45 $\quad 60.016 \quad 3678.874$ 10/12/09 02:59:48 $\quad 60.023 \quad 3680.771$ $\begin{array}{llll}10 / 12 / 09 & 02: 59: 51 & 60.022 & 3680.353\end{array}$ 10/12/09 02:59:54 $\quad 60.015 \quad 3679.167$ 10/12/09 02:59:57 $\quad 60.016 \quad 3680.672$ 10/12/09 03:00:00 $60.017 \quad 3682.73$

10/12/09 03:00:03 $\quad 60.01 \quad 3682.714$ $\begin{array}{lrrr}10 / 12 / 09 & 03: 00: 06 & 60.004 & 3682.01\end{array}$ $\begin{array}{llr}\text { 10/12/09 03:00:06 } & 60.004 & 3682.01 \\ 10 / 12 / 09 & 03: 00: 09 & 59.995 \\ 3682.483\end{array}$ $\begin{array}{lll}10 / 12 / 09 & 03: 00: 09 & 59.995 \\ 3682.483\end{array}$ 10/12/09 03:00:12 $\quad 59.982 \quad 3685.306$ $\begin{array}{llll}10 / 12 / 09 & 03: 00: 15 & 59.974 & 3684.643\end{array}$ 10/12/09 03:00:18 $\quad 59.97 \quad 3687.527$ $\begin{array}{llll}10 / 12 / 09 & 03: 00: 21 & 59.968 & 3692.287\end{array}$ $\begin{array}{lll}10 / 12 / 09 & 03: 00: 24 & 59.968 \\ 3692.966\end{array}$ 10/12/09 03:00:27 $\quad 59.972 \quad 3693.793$ $\begin{array}{llll}10 / 12 / 09 & 03: 00: 30 & 59.966 & 3694.974\end{array}$ 10/12/09 03:00:33 $59.964 \quad 3698.502$ 10/12/09 03:00:36 $59.966 \quad 3698.617$ $\begin{array}{lrr}10 / 12 / 09 & 03: 00: 36 & 59.966 \\ 3698.617 \\ 10 / 12 / 09 & 03: 00: 39 & 59.963 \\ 3699.85\end{array}$ $\begin{array}{lrr}10 / 12 / 09 & 03: 00: 39 & 59.963 \\ 3699.85 \\ 1012 / 09 & 03: 00: 42 & 59.965 \\ 3702.645\end{array}$ \begin{tabular}{lll}
$10 / 12 / 09$ \& $03: 00: 42$ \& 59.965

3702.645

\hline

 $\begin{array}{lrr}10 / 12 / 09 & 03: 00: 45 & 59.968 \\ 3702.218\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 03: 00: 48 & 59.97 & 3704.023\end{array}$ $\begin{array}{lrr}10 / 12 / 09 & 03: 00: 51 & 59.97 \\ 3702.988\end{array}$ 10/12/09 03:00:54 $\quad 59.972 \quad 3703.814$ 10/12/09 03:00:57 $\quad 59.976 \quad 3705.625$ 10/12/09 03:01:00 59.975 3704.293 10/12/09 03:01:03 $\quad 59.977 \quad 3701.944$ $\begin{array}{llll}10 / 12 / 09 & 03: 01: 06 & 59.976 & 3703.142\end{array}$ 10/12/09 03:01:09 $\quad 59.974 \quad 3705.376$ 10/12/09 03:01:12 $\quad 59.9743705 .662$ 10/12/09 03:01:15 $\quad 59.974 \quad 3706.776$ 10/12/09 03:01:18 $\quad 59.977$ 3707.514 10/12/09 03:01:21 $\quad 59.979 \quad 3706.446$ 10/12/09 03:01:24 $\quad 59.983 \quad 3706.335$

$10 / 12 / 09$ \& $03: 01: 24$ \& 59.983

3706.335

\hline

$10 / 12 / 09$ \& $03: 01: 27$ \& 59.985

3705.943

\hline
\end{tabular} $\begin{array}{lrrr}10 / 12 / 09 & 03: 01: 30 & 59.98 & 3704.127\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 03: 01: 33 & 59.979 & 3705.974\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 03: 01: 36 & 59.987 & 3705.968\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 03: 01: 39 & 59.986 & 3704.683\end{array}$ 10/12/09 03:01:42 $\quad 59.98$ 3703.913 $\begin{array}{llr}10 / 12 / 0903: 01: 48 & 59.985 & 3705.05\end{array}$ $\begin{array}{lll}10 / 12 / 09 & 03: 01: 48 & 59.985 \\ 3705.05\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 03: 01: 51 & 59.987 & 3703.741\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 03: 01: 54 & 59.992 & 3701.831\end{array}$ $\begin{array}{lll}10 / 12 / 09 & 03: 01: 57 & 59.996 \\ 3700.07\end{array}$ 10/12/09 03:02:00 59.997 3701.308 10/12/09 03:02:03 $59.997 \quad 3700.913$ 10/12/09 03:02:06 $\quad 59.997 \quad 3700.541$ 10/12/09 03:02:09 59.996 3700.858 10/12/09 03:02:12 $\quad 59.996 \quad 3700.549$ 10/12/09 03:02:15 59.998 3700.224 10/12/09 03:02:18 $60.009 \quad 3699.5$

10/12/09 03:02:21 $\quad 60.01 \quad 3697.96$ $\begin{array}{lrrr}10 / 12 / 09 & 03: 02: 24 & 60.005 & 3699.409\end{array}$ $\begin{array}{llll}\text { 0/12/09 03:02:27 } & 60.004 & 3700.738\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 03: 02: 30 & 60.003 & 3701.11\end{array}$ $\begin{array}{lrrr}10 / 12 / 09 & 03: 02: 33 & 60.001 & 3699.998\end{array}$ $\begin{array}{llll}\text { 10/12/09 03:02:36 } & 60.004 & 3700.22\end{array}$ 10/12/09 03:02:39 $\quad 60.007 \quad 3702.554$ 10/12/09 03:02:42 $\quad 60.008 \quad 3702.276$ 10/12/09 03:02:45 $\quad 60.008 \quad 3701.923$ 10/12/09 03:02:48 $\quad 60.006 \quad 3702.943$ 10/12/09 03:02:51 $\quad 60.006 \quad 3703.96$ 0/12/09 03:02:54 $\quad 60 \quad 3703.819$ $\begin{array}{lrr}10 / 12 / 09 & 03: 02: 54 & 60 \\ 3703.819\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 03: 02: 57 & 59.999 & 3704.346\end{array}$ $\begin{array}{lrr}10 / 12 / 09 & 03: 03: 00 & 60 \\ 3705.329\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 03: 03: 03 & 60.004 & 3704.40\end{array}$ $\begin{array}{llll}\text { 0/12/09 03:03:06 } & 60.013 & 3703.675\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 03: 03: 09 & 60.015 & 3702.669\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 03: 03: 12 & 60.012 & 3703.017\end{array}$ 10/12/09 03:03:15 $\quad 60.009 \quad 3703.297$ 10/12/09 03:03:18 $\quad 60.008 \quad 3705.189$ 10/12/09 03:03:21 $\quad 60.011 \quad 3704.646$ 10/12/09 03:03:24 $\quad 60.013 \quad 3704.051$ 10/12/09 03:03:27 $\quad 60.016 \quad 3704.255$ 10/12/09 03:03:30 $\quad 60.018 \quad 3703.708$ 10/12/09 03:03:33 $\quad 60.019 \quad 3704.524$ 10/12/09 03:03:36 $\quad 60.013 \quad 3704.139$ 10/12/09 03:03:39 $\quad 60.011 \quad 3705.429$ 10/12/09 03:03:42 $\quad 60.009 \quad 3705.942$ \begin{tabular}{lll}
$10 / 12 / 09$ \& $03: 03: 42$ \& 60.009

3705.942

\hline $10 / 2 / 09$ \& $03: 03: 45$ \& 60.008

3705.634

$0 / 12 / 09$ \& $03: 03: 45$ \& 60.008 \& 3705.634

\hline
\end{tabular} $\begin{array}{llll}10 / 12 / 09 & 03: 03: 48 & 60.011 & 3705.749\end{array}$ 1209 03.03.51 60.021 3706. 63 $\begin{array}{llll} & 60.021 & 3706.63\end{array}$ 10/12/09 03:03:57 $\quad 60.018 \quad 3703.89$ 10/12/09 03:04:00 $\quad 60.019 \quad 3704.224$ $\begin{array}{llll} & 60.019 & 3704.648\end{array}$ $\begin{array}{llll} & 60.022 & 3704.795\end{array}$ 10/12/09 03:04:09 $\quad 60.025$ 3702.764 $\begin{array}{lll}10 / 12 / 09 & 03: 04: 12 & 60.03 \\ 3702.008\end{array}$ 10/12/09 03:04:15 $60.027 \quad 3701.063$ 10/12/09 03:04:18 $\quad 60.021 \quad 3700.34$ 10/12/09 03:04:21 $\quad 60.023 \quad 3701.568$ $\begin{array}{llll}10 / 12 / 09 & 03: 04: 24 & 60.02 \quad 3702.959\end{array}$ 10/12/09 03:04:27 $\quad 60.024 \quad 3703.621$ 10/12/09 03:04:30 $\quad 60.022 \quad 3703.374$ 10/12/09 03:04:33 $\quad 60.022 \quad 3703.931$ $\begin{array}{llll}10 / 12 / 09 & 03: 04: 36 & 60.025 & 3704.947\end{array}$

10/12/09 03:04:39 10/12/09 03:04:39 10/12/09 03:04:42 10/12/09 03:04:45 0/12/09 03:04:51 0/12/09 03:04:54 0/12/09 03:04:57 1/12/09 03:05:00 10/12/09 03:05:03 10/12/09 03:05:06 10/12/09 03:05:09 10/12/09 03:05:12 0/12/09 03:05:12 0/12/09 03:05:15 /12/09 03:05:18 /12/09 03:05:21 0/12/09 03:05:24 10/12/09 03:05:27 0/12/09 03:05:30 10/12/09 03:05:33 0/12/09 03:05:36 0/12/09 03:05:39 0/12/09 03:05:42 0/12/09 03:05:45 0/12/09 03:05:48 10/12/09 03:05:51 10/12/09 03:05:54 10/12/09 03:05:57 10/12/09 03:06:00 10/12/09 03:06:00 0/12/09 03:06:03 1/12/09 03:06:06 0/12/09 03:06:09 0/12/09 03:06:12 10/12/09 03:06:15
10/12/09 03:06:18 10/12/09 03:06:18 0/12/09 03:06:21 0/12/09 03:06:24 10/12/09 03:06:27 0/12/09 03:06:30 10/12/09 03:06:33 0/12/09 03:06:36 10/12/09 03:06:39 10/12/09 03:06:42 10/12/09 03:06:45 10/12/09 03:06:48 0/12/09 03:06:51 10/12/09 03:06:54
$60.023 \quad 3703.541$ $60.02 \quad 3703.16$ $60.018 \quad 3704.376$ $60.008 \quad 3705.441$ 60.0123710 .072 $60.019 \quad 3707.971$ $60.019 \quad 3707.609$ $60.016 \quad 3708.831$ 60.0153709 .813 60.0143709 .817 60.0163709 .094 $60.019 \quad 3709.642$ $60.019 \quad 3709.642$ 60.0163709 .933 60.0143710 .677 60.0183709 .354 $\begin{array}{lr}60.023 & 3707.696 \\ 60.024 & 3707.12\end{array}$ $\begin{array}{ll}60.024 & 3707.12 \\ 60.026 & 3706.99\end{array}$ $\begin{array}{lr}60.026 & 3706.99 \\ 60.024 & 3704.185\end{array}$ 60.0243704 .185 $60.02 \quad 3704.406$ $60.019 \quad 3706.567$ $60.025 \quad 3705.516$ $60.028 \quad 3704.428$ 60.0313704 .773 60.0293702 .686 60.0263702 .093 $60.029 \quad 3703.676$ $60.033 \quad 3701.52$ $\begin{array}{rr}60.033 & 3701.52 \\ 60.03 & 3698.222\end{array}$ $60.03 \quad 3698.222$ 60.0163698 .009 60.0193703 .192 60.028 3703.815 $60.021 \quad 3699.956$ 60.0153700 .816 $60.012 \quad 3706.943$ $\begin{array}{ll}60.014 & 3708.527 \\ 60.013 & 3707.647\end{array}$ $60.013 \quad 3707.647$ $60.016 \quad 3706.991$ $60.016 \quad 3705.584$ $60.013 \quad 3705.398$ $60.007 \quad 3709.144$ $59.994 \quad 3708.99$ $59.993 \quad 3706.193$ $59.993 \quad 3707.304$ $59.994 \quad 3706.76$ $59.994 \quad 3706.921$

10/12/09 03:06:57 10/12/09 03:07:00 10/12/09 03:07:00 10/12/09 03:07:03 1/12/09 03:07:06 10/12/09 03:07:09 10/12/09 03:07:12 10/12/09 03:07:15 10/12/09 03:07:18 0/12/09 03:07:21 10/12/09 03:07:24 10/12/09 03:07:27 10/12/09 03:07:30 0/12/09 03:07:33 0/12/09 03:07:33 0/12/09 03:07:36 0/12/09 03:07:39 10/12/09 03:07:42 10/12/09 03:07:45 10/12/09 03:07:48 10/12/09 03:07:51 10/12/09 03:07:51 0/12/09 03:07:54 10/12/09 03:07:57 10/12/09 03:08:00 0/12/09 03:08:03 10/12/09 03:08:06 0/12/09 03:08:09 10/12/09 03:08:12 10/12/09 03:08:15 10/12/09 03:08:18 0/12/09 03:08:18 0/12/09 03:08:21 0/12/09 03:08:24 0/12/09 03:08:27 10/12/09 03:08:30 10/12/09 03:08:33 0/12/09 03:08:36 10/12/09 03:08:36 10/12/09 03:08:39 10/12/09 03:08:42 0/12/09 03:08:45 0/12/09 03:08:48 10/12/09 03:08:51 10/12/09 03:08:54 10/12/09 03:08:57 10/12/09 03:09:00 10/12/09 03:09:03 10/12/09 03:09:06 10/12/09 03:09:06 $\begin{array}{llll} & 59.979 & 3709.894\end{array}$ 10/12/09 03:09:12 $\quad 59.983$ 3712.303

10/12/09 03:09:15 10/12/09 03:09:15 $\begin{array}{llll}1 / 12 / 09 & 03: 09 \cdot 18 & 59.979 & 3711.627\end{array}$ 10/12/09 03:00:21 $\begin{array}{llll}59.978 & 3712.076\end{array}$ $\begin{array}{llll}10 / 12 / 09 & 03.09: 24 & 59.975 & 3712.999\end{array}$ $\begin{array}{llll} & 5913.989 & & 3713.5\end{array}$ $\begin{array}{lll} & 59.999 & 3715.443\end{array}$ 10/12/09 03:09:30 $\quad 59.989 \quad 3712.092$ 0/12/09 03:09:33 $\quad 59.986 \quad 3714.894$ 10/12/09 03:09:36 $59.983 \quad 3714.953$ 10/12/09 03:09:39 $\quad 59.982 \quad 3716.308$ $\begin{array}{llll}10 / 12 / 09 & 03: 09: 42 & 59.99 & 3715.438\end{array}$ 10/12/09 03:09:45 $\quad 59.995 \quad 3714.714$ 10/12/09 03:09:48 $\quad 59.99 \quad 3715.068$ $\begin{array}{lrrr}10 / 12 / 09 & 03: 09: 48 & 59.99 & 3715.068\end{array}$ 0/12/09 03:09:51 $\quad 59.989 \quad 3715.791$ 0/12/09 03:09:54 0/12/09 03:09:57 0/12/09 03:10:00 10/12/09 03:10:03 10/12/09 03:10:06 0/12/09 03:10:09 0/12/09 03:10:12 0/12/09 03:10:15 10/12/09 03:10:18 10/12/09 03:10:21 0/12/09 03:10:24 10/12/09 03:10:27 10/12/09 03:10:30 10/12/09 03:10:33 10/12/09 03:10:36 10/12/09 03:10:36 0/12/09 03:10:39 /12/09 03:10:42 0/12/09 03:10:45 0/12/09 03:10:48 0/12/09 03:10:51 0/12/09 03:10:54 0/12/09 03:10:57 12/090 10/12/09 03:11:00 0/12/09 03:11:03 10/12/09 03:11:06 0/12/09 03:11:09 10/12/09 03:11:12 10/12/09 03:11:15 10/12/09 03:11:18 10/12/09 03:11:21 10/12/09 03:11:24 10/12/09 03:11:27 10/12/09 03:11:30
$60 \quad 3714.46$ 60.0043711708 60.0043712 .851 $\begin{array}{ll}60.004 & 3712.851 \\ 59.999 & 3713.362\end{array}$ $\begin{array}{lll}59.999 & 3173.362 \\ 59.998 & 3718.292\end{array}$ $\begin{array}{ll}59.998 & 3718.292 \\ 59.996 & 3719.079\end{array}$ $59.996 \quad 3719.079$ $60.001 \quad 3717.815$ $60.001 \quad 3717.889$ $60.003 \quad 3718.195$ 60.0043719 .021 60.0043719 .897 $60.006 \quad 3719.299$ $60.003 \quad 3719.527$ $60.006 \quad 3719.731$ $\begin{array}{rr}60.006 & 3719.731 \\ 60.009 & 3718.58\end{array}$ 60.009

$60.01 \quad 3718.976$ $\begin{array}{rr}60.01 & 3718.976 \\ 60.009 & 3720.034\end{array}$ 60.0093720 .034 $60.015 \quad 3720.60$ $60.014 \quad 3721.239$ | 60.009 | 3720.38 |
| :--- | :--- | | 60.008 | 3720.807 |
| :--- | :--- | $60.01 \quad 3721.272$ $60.009 \quad 3721.245$ 60.0133721 .594 60.0143721 .999 60.0123721 .646 $60.01 \quad 3720.86$ $60.007 \quad 3721.645$ $60.003 \quad 3725.07$

$60 \quad 3724.656$ $\begin{array}{lll}59.998 & 3724.661\end{array}$ 59.9993723 .696

Note: See "Instruction" tab for more detailed instructions.

Step 1.	Copy and Paste Event Data into the appropriate cells of the "Data" worksheet. Maintain date and time format of $\mathrm{mm} / \mathrm{dd} / \mathrm{yy} \mathrm{hh}: \mathrm{mm}: \mathrm{ss}$.
Step 2.	Determine Time of $\mathrm{T}(0)$ and edit formula in cell "C8" to reference the correct row of the "Data" worksheet. $\mathrm{T}(0)$ is the first change in frequency of about $0.010 \mathrm{~Hz}(10 \mathrm{mHz})$ which should be the first scan of frequency data of the event.
Step 3.	Time of Frequency Recovery to 60 Hz or Pre-Perturbation Hz
Step 4.	Enter MW output of generator or load that caused event (+ for gen loss, - for load loss) (Value from NERC Event List. If multiple units, enter total MW loss.) If MW loss value is not known, enter a default 1000 MW.
Step 5.	Hit the big blue button to copy your data for pasting into FRS Form 1 "BA Event Data" worksheet. Copy Form 2 Data for Pasting into Form 1
Step 6.	Paste data into "FRS Form 1" in the appropriate row on the "BA Event Data" worksheet.

Step 7. Save this workbook using the following file name format:MyBA_yymmdd_hhmm_FRS_Form2.xlsm
09/10/12 Date yymmdd
2:27 Time hh:ss of T(0)
Where "MyBA" = your BA mnemonic

Date Time of T(0)
Time of Frequency Recovery to 60 Hz or Pre-Perturbation Hz Value A Pre-Perturbation Average Frequency [$\mathrm{T}(-2)$ to $\mathrm{T}(-16)$] Value B Post-Perturbation Average Frequency [$\mathrm{T}(+20$ to $\mathrm{T}(+52)$

Pre to Post Perturbation Delta Frequency Actual
Value A Pre-Perturbation Average Interchange MW [T(-2) to T(-16)] Value B Post-Perturbation Average Interchange MW [$\mathrm{T}+20$ to $\mathrm{T}(+52)]$ Pre to Post Perturbation Interchange Delta MW Actual

Initial Performance Ramp Magnitude Adjustment
EPFR Pre-Perturbation Average
EPFR Post-Perturbation Averag EPFR Delta

EPFR = Expected Primary Frequency Response

Monday, October 12, 2009
2:27:21 2:33:03 60.0417 Hz 59.8887 Hz $-0.153 \mathrm{~Hz}$ 3647.05 MW 3787.78 MW 140.73 MW -12.59 MW -12.59 MW
-33.40 MW -33.40 MW 122.44 MW

Balancing Authority My BA
Grid Nominal Frequency $\quad 60.000 \mathrm{~Hz}$
Capacity @ Droop for Minimum Performance 2400.0 MW
Droop Setting $5.00 \% \quad 3.00000 \mathrm{~Hz}$
Deadband Setting $\quad 0.000 \mathrm{~Hz}$
Hz Span 3.00000 Hz
Frequency Response Obligation (FRO) $\quad-80 \mathrm{MW} / 0.1 \mathrm{~Hz}$

TC (frequency response filter constant)
0.350 Time Constant for delayed delivery of PFR during Sustained Measure

Low Hz Delta Hz Event
3764.20 Actual Interchange MW Average during frequency recovery period 3776.17 Target Interchange MW Average during frequency recovery period 3728.90 Interchange Average Ramp MW during frequency recovery period 3645.45 Actual MW @ T(-4)
101.48 Starting and Ending Difference in Interchange MW during frequency recovery pe 0:05:42 Event Duration (h:mm:ss)

No Target MW Average minus MW @ T(-4) less than zero
130.73 Interchange Target Relative Average Change - MW (Low Frequency Event)
118.75 Interchange Actual Relative Average Change - MW (Low Frequency Event)

No Interchange Actual Average minus MW @ T(-4) less than zero
Yes Interchange Average MW minus MW @ T(-4) greater than zero
Yes Interchange Target MW Average minus MW @ $T(-4)$ greater than zero
29.25 Interchange Target Relative Average Change - MW (High Frequency Event) 17.27 Interchange Actual Relative Average Change - MW (High Frequency Event) Up Ramp Direction during frequency recovery period
nitial Response P.U. Performance
1.281 P.U.
0.908 P.U. Sustianed Response P.U. Performance

					Initial									Generator
					FRO		Measure			Average	Average		Average	Trip
					(EPFR)	(TC)	Final			Output	Target		Ramp	MW
			Value B		Expected	Delayed	Expected		Recovery	During	During	Recovery	During	
			20 to 52 sec		Primary	Delivery	Primary	Average	Period	Recovery	Recovery	Period	Recovery	
	Frequency	Interchange	Average	Average	Frequency	Frequency	Frequency	Ramp	Target	Period	Period	Ramp	Period	
T	Hz	MW	Frequency	MW	Response	Response	Response	MW/scan	MW	MW	MW	MW	MW	633

T-72 sec	$2: 26: 09$	60.027	3671.189	-21.600
T-70 sec	$2: 26: 11$	60.027	3671.189	-21.600
T-68 sec	$2: 26: 13$	60.026	3668.611	-20.801

T-66 sec	2:26:15	60.022	3664.495			-17.599	-16.162								
T-64 sec	2:26:17	60.022	3664.495			-17.599	-16.665								
T-62 sec	2:26:19	60.017	3666.062			-13.599	-15.592								
T-60 sec	2:26:21	60.019	3666.787			-15.201	-15.455		-0.310	3666.787					
T-58 sec	2:26:23	60.019	3666.787			-15.201	-15.366		-0.310	3666.567					
T-56 sec	2:26:25	60.019	3670.454			-15.201	-15.308		-0.310	3666.315					
T-54 sec	2:26:27	60.021	3671.668			-16.800	-15.830		-0.310	3665.483					
T-52 sec	2:26:29	60.021	3671.668			-16.800	-16.170		-0.310	3664.834					
T-50 sec	2:26:31	60.021	3672.493			-16.800	-16.390		-0.310	3664.304					
T-48 sec	2:26:33	60.019	3672.857			-15.201	-15.974		-0.310	3664.410					
T-46 sec	2:26:35	60.019	3672.857			-15.201	-15.703		-0.310	3664.371					
T-44 sec	2:26:37	60.022	3672.164			-17.599	-16.367		-0.310	3663.398					
T-42 sec	2:26:39	60.031	3669.983			-24.799	-19.318		-0.310	3660.137					
T-40 sec	2:26:41	60.031	3669.983			-24.799	-21.236		-0.310	3657.909					
T-38 sec	2:26:43	60.037	3666.467			-29.599	-24.163		-0.310	3654.672					
T-36 sec	2:26:45	60.036	3661.599			-28.799	-25.786		-0.310	3652.740					
T-34 sec	2:26:47	60.036	3661.599			-28.799	-26.841		-0.310	3651.375					
T-32 sec	2:26:49	60.046	3660.672			-36.801	-30.327		-0.310	3647.580					
T-30 sec	2:26:51	60.048	3649.190			-38.400	-33.153		-0.310	3644.444					
T-28 sec	2:26:53	60.048	3649.190			-38.400	-34.989		-0.310	3642.298					
T-26 sec	2:26:55	60.043	3650.025			-34.399	-34.783		-0.310	3642.194					
T-24 sec	2:26:57	60.041	3649.512			-32.800	-34.089		-0.310	3642.579					
T-22 sec	2:26:59	60.041	3649.512			-32.800	-33.638		-0.310	3642.720					
T-20 sec	2:27:01	60.041	3654.294			-32.800	-33.345		-0.310	3642.703					
T-18 sec	2:27:03	60.039	3651.874			-31.201	-32.594		-0.310	3643.144					
T-16 sec	2:27:05	60.039	3651.874	60.042	3647.046	-31.201	-32.107		-0.310	3643.322					
T-14 sec	2:27:07	60.043	3651.059	60.042	3647.046	-34.399	-32.909		-0.310	3642.210					
T-12 sec	2:27:09	60.045	3648.236	60.042	3647.046	-35.999	-33.990		-0.310	3640.819					
$\mathrm{T}-10 \mathrm{sec}$	2:27:11	60.045	3648.236	60.042	3647.046	-35.999	-34.693		-0.310	3639.806					
T-08 sec	2:27:13	60.041	3645.387	60.042	3647.046	-32.800	-34.031		-0.310	3640.159					
T-06 sec	2:27:15	60.041	3645.446	60.042	3647.046	-32.800	-33.600		-0.310	3640.280					
T-04 sec	2:27:17	60.041	3645.446	60.042	3647.046	-32.800	-33.320		-0.310	3640.250					
T-02 sec	2:27:19	60.039	3640.682	60.042	3647.046	-31.201	-32.579		-0.310	3640.682					
T+0 sec	2:27:21	59.978	3659.465			17.599	-15.016		0.000	3658.244					633
T+02 sec	2:27:23	59.978	3659.465			17.599	-3.601		0.593	3670.253	3659.465	3664.249	3678.456	3678.456	633
T+04 sec	2:27:25	59.836	3696.362			131.201	43.580		0.593	3718.028	3671.764	3682.175	3679.050	3678.753	633
T+06 sec	2:27:27	59.836	3696.362			131.201	74.247		0.593	3749.288	3677.914	3698.953	3679.643	3679.050	633
T+08 sec	2:27:29	59.869	3734.673			104.800	84.941		0.593	3760.575	3689.265	3711.278	3680.237	3679.346	633
T+10 sec	2:27:31	59.891	3737.157			87.201	85.732		0.593	3761.960	3697.247	3719.725	3680.830	3679.643	633
T+12 sec	2:27:33	59.891	3737.157			87.201	86.246		0.593	3763.067	3702.949	3725.917	3681.424	3679.940	633
T+14 sec	2:27:35	59.88	3766.113			95.999	89.660		0.593	3767.074	3710.844	3731.061	3682.017	3680.237	633
T+16 sec	2:27:37	59.875	3766.194			100.000	93.279		0.593	3771.287	3716.994	3735.531	3682.610	3680.533	633
T+18 sec	2:27:39	59.875	3766.194			100.000	95.631		0.593	3774.233	3721.914	3739.401	3683.204	3680.830	633
T+20 sec	2:27:41	59.883	3769.925	59.889	3787.775	93.600	94.920	3756.890	0.593	3774.116	3726.279	3742.557	3683.797	3681.127	633
T+22 sec	2:27:43	59.886	3780.621	59.889	3787.775	91.199	93.618	3756.890	0.593	3773.407	3730.807	3745.128	3684.391	3681.424	633
T+24 sec	2:27:45	59.886	3780.621	59.889	3787.775	91.199	92.771	3756.890	0.593	3773.153	3734.639	3747.284	3684.984	3681.720	633

T+26 sec	2:27:47	59.885	3782.500	59.889	3787.775	92.001	92.502	3756.890	0.593	3773.477	3738.058	3749.155	3685.578	3682.017	633
T+28 sec	2:27:49	59.888	3784.962	59.889	3787.775	89.600	91.486	3756.890	0.593	3773.055	3741.185	3750.748	3686.171	3682.314	633
T+30 sec	2:27:51	59.888	3784.962	59.889	3787.775	89.600	90.826	3756.890	0.593	3772.988	3743.921	3752.138	3686.765	3682.610	633
T+32 sec	2:27:53	59.89	3784.419	59.889	3787.775	88.000	89.837	3756.890	0.593	3772.593	3746.303	3753.341	3687.358	3682.907	633
T+34 sec	2:27:55	59.894	3788.072	59.889	3787.775	84.799	88.074	3756.890	0.593	3771.423	3748.623	3754.346	3687.952	3683.204	633
T+36 sec	2:27:57	59.894	3788.072	59.889	3787.775	84.799	86.928	3756.890	0.593	3770.870	3750.700	3755.215	3688.545	3683.501	633
$\mathrm{T}+38 \mathrm{sec}$	2:27:59	59.893	3788.868	59.889	3787.775	85.599	86.463	3756.890	0.593	3770.999	3752.608	3756.005	3689.138	3683.797	633
T+40 sec	2:28:01	59.894	3788.472	59.889	3787.775	84.799	85.880	3756.890	0.593	3771.010	3754.316	3756.719	3689.732	3684.094	633
$\mathrm{T}+42 \mathrm{sec}$	2:28:03	59.894	3788.472	59.889	3787.775	84.799	85.502	3756.890	0.593	3771.225	3755.868	3757.379	3690.325	3684.391	633
T+44 sec	2:28:05	59.891	3793.074	59.889	3787.775	87.201	86.097	3756.890	0.593	3772.413	3757.486	3758.032	3690.919	3684.688	633
$\mathrm{T}+46 \mathrm{sec}$	2:28:07	59.885	3794.374	59.889	3787.775	92.001	88.163	3756.890	0.593	3775.073	3759.023	3758.742	3691.512	3684.984	633
$\mathrm{T}+48 \mathrm{sec}$	2:28:09	59.885	3794.374	59.889	3787.775	92.001	89.507	3756.890	0.593	3777.010	3760.437	3759.473	3692.106	3685.281	633
T+50 sec	2:28:11	59.885	3800.427	59.889	3787.775	92.001	90.380	3756.890	0.593	3778.477	3761.975	3760.204	3692.699	3685.578	633
T+52 sec	2:28:13	59.887	3799.959	59.889	3787.775	90.399	90.387	3756.890	0.593	3779.077	3763.382	3760.903	3693.293	3685.874	633
T+54 sec	2:28:15	59.887	3799.959			90.399	90.391		0.593	3779.675	3764.688	3761.573	3693.886	3686.171	633
T+56 sec	2:28:17	59.888	3802.925			89.600	90.114		0.593	3779.991	3766.007	3762.208	3694.480	3686.468	633
T+58 sec	2:28:19	59.89	3802.951			88.000	89.374		0.593	3779.845	3767.238	3762.796	3695.073	3686.765	633
T+60 sec	2:28:21	59.89	3802.951			88.000	88.893		0.593	3779.958	3768.390	3763.350	3695.666	3687.061	633
T+62 sec	2:28:23	59.889	3805.496			88.800	88.861		0.593	3780.519	3769.550	3763.886	3696.260	3687.358	633
T+64 sec	2:28:25	59.873	3805.617			101.599	93.319		0.593	3785.570	3770.643	3764.544	3696.853	3687.655	633
T+66 sec	2:28:27	59.873	3805.617			101.599	96.217		0.593	3789.062	3771.672	3765.265	3697.447	3687.952	633
T+68 sec	2:28:29	59.857	3811.503			114.401	102.582		0.593	3796.020	3772.810	3766.143	3698.040	3688.248	633
T+70 sec	2:28:31	59.852	3814.862			118.399	108.118		0.593	3802.149	3773.978	3767.144	3698.634	3688.545	633
T+72 sec	2:28:33	59.852	3814.862			118.399	111.716		0.593	3806.341	3775.083	3768.203	3699.227	3688.842	633
T+74 sec	2:28:35	59.858	3825.643			113.599	112.375		0.593	3807.594	3776.413	3769.240	3699.821	3689.138	633
T+76 sec	2:28:37	59.866	3826.053			107.199	110.563		0.593	3806.375	3777.686	3770.192	3700.414	3689.435	633
T+78 sec	2:28:39	59.866	3826.053			107.199	109.386		0.593	3805.791	3778.895	3771.082	3701.008	3689.732	633
T+80 sec	2:28:41	59.865	3827.524			107.999	108.900		0.593	3805.899	3780.081	3771.931	3701.601	3690.029	633
	2:28:43	59.866	3826.753			107.199	108.305		0.593	3805.897	3781.193	3772.740	3702.195	3690.325	633
	2:28:45	59.866	3826.753			107.199	107.918		0.593	3806.104	3782.252	3773.516	3702.788	3690.622	633
	2:28:47	59.871	3826.454			103.201	106.267		0.593	3805.046	3783.257	3774.232	3703.381	3690.919	633
	2:28:49	59.879	3825.713			96.799	102.953		0.593	3802.326	3784.200	3774.856	3703.975	3691.216	633
	2:28:51	59.879	3825.713			96.799	100.799		0.593	3800.765	3785.103	3775.420	3704.568	3691.512	633
	2:28:53	59.88	3822.505			95.999	99.119		0.593	3799.679	3785.898	3775.936	3705.162	3691.809	633
	2:28:55	59.886	3819.081			91.199	96.347		0.593	3797.500	3786.590	3776.385	3705.755	3692.106	633
	2:28:57	59.886	3819.081			91.199	94.545		0.593	3796.292	3787.253	3776.791	3706.349	3692.402	633
	2:28:59	59.89	3816.815			88.000	92.254		0.593	3794.595	3787.844	3777.147	3706.942	3692.699	633
	2:29:01	59.889	3815.010			88.800	91.045		0.593	3793.979	3788.377	3777.477	3707.536	3692.996	633
	2:29:03	59.889	3815.010			88.800	90.260		0.593	3793.786	3788.889	3777.791	3708.129	3693.293	633
	2:29:05	59.893	3811.838			85.599	88.628		0.593	3792.749	3789.322	3778.073	3708.723	3693.589	633
	2:29:07	59.903	3809.652			77.600	84.768		0.593	3789.482	3789.698	3778.285	3709.316	3693.886	633
	2:29:09	59.903	3809.652			77.600	82.260		0.593	3787.567	3790.061	3778.453	3709.909	3694.183	633
	2:29:11	59.902	3805.593			78.400	80.909		0.593	3786.809	3790.339	3778.603	3710.503	3694.480	633
	2:29:13	59.904	3804.188			76.801	79.471		0.593	3785.965	3790.581	3778.732	3711.096	3694.776	633
	2:29:15	59.904	3804.188			76.801	78.536		0.593	3785.624	3790.816	3778.851	3711.690	3695.073	633

2:29:17	59.907	3793.975	74.399	77.088
2:29:19	59.916	3792.169	67.200	73.627
2:29:21	59.916	3792.169	67.200	71.378
2:29:23	59.916	3789.534	67.200	69.915
2:29:25	59.918	3788.132	65.601	68.405
2:29:27	59.918	3788.132	65.601	67.424
2:29:29	59.92	3783.028	64.001	66.226
2:29:31	59.92	3781.701	64.001	65.447
2:29:33	59.92	3781.701	64.001	64.941
2:29:35	59.917	3775.635	66.400	65.452
2:29:37	59.921	3774.604	63.199	64.663
2:29:39	59.921	3774.604	63.199	64.151
2:29:41	59.923	3773.958	61.600	63.258
2:29:43	59.925	3772.722	60.001	62.118
2:29:45	59.925	3772.722	60.001	61.377
2:29:47	59.928	3769.630	57.599	60.055
2:29:49	59.932	3768.707	54.401	58.076
2:29:51	59.932	3768.707	54.401	56.789
2:29:53	59.927	3767.021	58.401	57.354
2:29:55	59.931	3767.408	55.200	56.600
2:29:57	59.931	3767.408	55.200	56.110
2:29:59	59.929	3766.259	56.799	56.351
2:30:01	59.931	3765.672	55.200	55.948
2:30:03	59.931	3765.672	55.200	55.687
2:30:05	59.937	3766.123	50.400	53.836
2:30:07	59.945	3765.105	44.000	50.394
2:30:09	59.945	3765.105	44.000	48.156
2:30:11	59.949	3758.387	40.799	45.581
2:30:13	59.942	3753.922	46.399	45.867
2:30:15	59.942	3753.922	46.399	46.053
2:30:17	59.941	3746.889	47.198	46.454
2:30:19	59.945	3747.875	44.000	45.595
2:30:21	59.945	3747.875	44.000	45.037
2:30:23	59.948	3748.661	41.599	43.834
2:30:25	59.949	3746.706	40.799	42.771
2:30:27	59.949	3746.706	40.799	42.081
2:30:29	59.951	3742.741	39.200	41.073
2:30:31	59.953	3740.259	37.601	39.857
2:30:33	59.953	3740.259	37.601	39.068
2:30:35	59.951	3731.382	39.200	39.114
2:30:37	59.952	3727.838	38.400	38.864
2:30:39	59.952	3727.838	38.400	38.702
2:30:41	59.952	3722.649	38.400	38.596
2:30:43	59.952	3720.578	38.400	38.528
2:30:45	59.952	3720.578	38.400	38.483
2:30:47	59.954	3718.142	36.801	37.894

0.593	3784.769	3790.870	3778.951	3712.283	3695.370
0.593	3781.902	3790.891	3779.000	3712.877	3695.666
0.593	3780.246	3790.912	3779.020	3713.470	3695.963
0.593	3779.377	3790.890	3779.026	3714.064	3696.260
0.593	3778.460	3790.846	3779.017	3714.657	3696.557
0.593	3778.072	3790.804	3779.002	3715.251	3696.853
0.593	3777.468	3790.684	3778.979	3715.844	3697.150
0.593	3777.283	3790.548	3778.953	3716.437	3697.447
0.593	3777.370	3790.416	3778.930	3717.031	3697.744
0.593	3778.474	3790.199	3778.923	3717.624	3698.040
0.593	3778.279	3789.973	3778.914	3718.218	3698.337
0.593	3778.360	3789.753	3778.906	3718.811	3698.634
0.593	3778.061	3789.531	3778.894	3719.405	3698.931
0.593	3777.514	3789.297	3778.875	3719.998	3699.227
0.593	3777.366	3789.070	3778.854	3720.592	3699.524
0.593	3776.638	3788.807	3778.824	3721.185	3699.821
0.593	3775.252	3788.539	3778.776	3721.779	3700.117
0.593	3774.559	3788.278	3778.721	3722.372	3700.414
0.593	3775.717	3788.002	3778.682	3722.965	3700.711
0.593	3775.557	3787.738	3778.642	3723.559	3701.008
0.593	3775.660	3787.481	3778.604	3724.152	3701.304
0.593	3776.495	3787.216	3778.578	3724.746	3701.601
0.593	3776.686	3786.950	3778.554	3725.339	3701.898
0.593	3777.017	3786.690	3778.536	3725.933	3702.195
0.593	3775.760	3786.443	3778.502	3726.526	3702.491
0.593	3772.911	3786.188	3778.436	3727.120	3702.788
0.593	3771.267	3785.940	3778.351	3727.713	3703.085
0.593	3769.285	3785.620	3778.246	3728.307	3703.381
0.593	3770.165	3785.256	3778.153	3728.900	3703.678
0.593	3770.945	3784.900	3778.071	3729.494	3703.975
0.593	3771.939	3784.473	3778.002	3730.087	3704.272
0.593	3771.674	3788.066	37777.932	3730.680	3704.568
0.593	3771.709	3783.668	3777.863	3731.274	3704.865
0.593	3771.099	3783.288	37777.79	3731.867	3705.162
0.593	3770.630	3782.894	37777.71	3732.461	3705.459
0.593	3770.533	3782.509	3777.636	3733.054	3705.755
0.593	3770.118	3782.091	3777.557	3733.648	3706.052
0.593	3769.496	3781.655	3777.473	3734.241	3706.349
0.593	3769.300	3781.228	3777.389	3734.835	3706.645
0.593	3769.940	3780.720	3777.313	3735.428	3706.942
0.593	3770.284	3780.185	3777.242	3736.022	3707.239
0.593	3770.715	3779.662	3777.177	3736.615	3707.536
0.593	3771.203	3779.098	3777.118	3737.208	3707.832
0.593	3771.727	3778.524	3777.065	3737.802	3708.129
0.593	3772.276	3777.961	3777.018	3738.395	3708.426
0.593	3772.281	3777.386	3776.973	3738.989	3708.723

2:30:49	59.953	3715.753	37.601	37.792
2:30:51	59.953	3715.753	37.601	37.725
2:30:53	59.953	3713.484	37.601	37.681
2:30:55	59.954	3710.848	36.801	37.373
2:30:57	59.954	3710.848	36.801	37.173
2:30:59	59.954	3712.092	36.801	37.043
2:31:01	59.957	3714.623	34.399	36.118
2:31:03	59.957	3714.623	34.399	35.516
2:31:05	59.956	3716.168	35.199	35.405
2:31:07	59.956	3716.461	35.199	35.333
2:31:09	59.956	3716.461	35.199	35.286
2:31:11	59.955	3717.759	35.999	35.535
2:31:13	59.961	3722.361	31.201	34.018
2:31:15	59.961	3722.361	31.201	33.032
2:31:17	59.962	3722.658	30.399	32.111
2:31:19	59.968	3722.267	25.601	29.832
2:31:21	59.968	3722.267	25.601	28.351
2:31:23	59.966	3721.787	27.200	27.949
2:31:25	59.968	3723.091	25.601	27.127
2:31:27	59.968	3723.091	25.601	26.593
2:31:29	59.97	3723.435	23.999	25.685
2:31:31	59.97	3723.893	23.999	25.095
2:31:33	59.97	3723.893	23.999	24.711
2:31:35	59.969	3727.121	24.799	24.742
2:31:37	59.97	3728.053	23.999	24.482
2:31:39	59.97	3728.053	23.999	24.313
2:31:41	59.971	3732.530	23.199	23.923
2:31:43	59.973	3733.327	21.600	23.110
2:31:45	59.973	3733.327	21.600	22.582
2:31:47	59.976	3736.907	19.199	21.398
2:31:49	59.978	3736.822	17.599	20.068
2:31:51	59.978	3736.822	17.599	19.204
2:31:53	59.976	3739.944	19.199	19.202
2:31:55	59.976	3740.877	19.199	19.201
2:31:57	59.976	3740.877	19.199	19.200
2:31:59	59.978	3745.234	17.599	18.640
2:32:01	59.98	3746.608	16.000	17.716
2:32:03	59.98	3746.608	16.000	17.116
2:32:05	59.982	3750.716	14.401	16.166
2:32:07	59.98	3751.558	16.000	16.108
2:32:09	59.98	3751.558	16.000	16.070
2:32:11	59.979	3755.599	16.800	16.326
2:32:13	59.979	3756.407	16.800	16.492
2:32:15	59.979	3756.407	16.800	16.600
2:32:17	59.983	3760.405	13.599	15.549
2:32:19	59.984	3760.982	12.799	14.587

Abstract

$\begin{array}{lllllll}0.593 & 3772.772 & 3776.799 & 3776.933 & 3739.582 & 3709.019\end{array}$ $\begin{array}{lllllll}0.593 & 3773.298 & 3776.223 & 3776.898 & 3740.176 & 3709.316\end{array}$ $\begin{array}{lllllll}0.593 & 3773.848 & 3775.637 & 3776.870 & 3740.769 & 3709.613\end{array}$ $\begin{array}{lllllll}0.593 & 3774.134 & 3775.037 & 3776.845 & 3741.363 & 3709.909\end{array}$ $\begin{array}{lllllll}0.593 & 3774.527 & 3774.448 & 3776.823 & 3741.956 & 3710.206\end{array}$ $\begin{array}{lllllll}0.593 & 3774.990 & 3773.881 & 3776.807 & 3742.550 & 3710.503\end{array}$ $\begin{array}{lllllll}0.593 & 3774.659 & 3773.347 & 3776.787 & 3743.143 & 3710.80\end{array}$ $\begin{array}{lllllll}0.593 & 3774.651 & 3772.823 & 3776.768 & 3743.736 & 3711.09\end{array}$ $\begin{array}{lllllll}0.593 & 3775.133 & 3772.322 & 3776.754 & 3744.330 & 3711.393\end{array}$ $\begin{array}{lllllll}0.593 & 3775.654 & 3771.832 & 3776.744 & 3744.923 & 3711.690\end{array}$ $\begin{array}{llllllll}0.593 & 3776.201 & 3771.350 & 3776.739 & 3745.517 & 3711.98\end{array}$ $\begin{array}{llllllll}0.593 & 3777.044 & 3770.888 & 3776.742 & 3746.110 & 3712.283\end{array}$ $\begin{array}{llllllll}0.593 & 3776.120 & 3770.473 & 3776.737 & 3746.704 & 3712.580\end{array}$ $\begin{array}{llllllll}0.593 & 3775.727 & 3770.066 & 3776.728 & 3747.297 & 3712.877\end{array}$ $\begin{array}{llllllllllll}0.593 & 3775399 & 3769.667 & 3776.717 & 3747.891 & 3713173\end{array}$ $\begin{array}{llllll}0.593 & 3773.714 & 3769.272 & 3776.692 & 3748.484 & 3713.470\end{array}$ $\begin{array}{llllllllll}0.593 & 3772.827 & 3768.884 & 3776660 & 3749.078 & 3713.767\end{array}$ $0.593 \quad 3773.017 \quad 3768.498 \quad 3776.630 \quad 3749.671$ $\begin{array}{lllllll}0.593 & 3772.789 & 3768.129 & 3776.599 & 3750.265 & 3714.360\end{array}$ $\begin{array}{lllllll}0.593 & 3772.849 & 3767.765 & 3776.569 & 3750.858 & 3714.657\end{array}$ $\begin{array}{lllllll}0.593 & 3772.534 & 3767.411 & 3776.536 & 3751.451 & 3714.954\end{array}$ $\begin{array}{llllllll}0.593 & 3772.538 & 3767.065 & 3776.505 & 3752.045 & 3715.251\end{array}$ $\begin{array}{lllllll}0.593 & 3772.748 & 3766.725 & 3776.475 & 3752.638 & 3715.54\end{array}$ $\begin{array}{lllllll}0.593 & 3773.372 & 3766.416 & 3776.451 & 3753.232 & 3715.844\end{array}$ $\begin{array}{lllllll}0.593 & 3773.705 & 3766.119 & 3776.430 & 3753.825 & 3716.14\end{array}$ $\begin{array}{lllllll}0.593 & 3774.129 & 3765.826 & 3776.412 & 3754.419 & 3716.437\end{array}$ $\begin{array}{lllllll}0.593 & 3774.333 & 3765.572 & 3776.396 & 3755.012 & 3716.734\end{array}$ $\begin{array}{llllllll}0.593 & 3774.114 & 3765.327 & 3776.379 & 3755.606 & 3717.031\end{array}$ $\begin{array}{lllllll}0.593 & 3774.179 & 3765.087 & 3776.362 & 3756.199 & 3717.328\end{array}$ $\begin{array}{llllll}0.593 & 3773.588 & 3764.876 & 3776342 & 3756793 & 3717.624\end{array}$ $\begin{array}{llllll}0.593 & 3772.852 & 3764.669 & 3776316 & 3757.386 & 3717.921\end{array}$ $\begin{array}{lllllll}0.593 & 3772.582 & 3764.464 & 3776.288 & 3757.979 & 3718.218\end{array}$ $\begin{array}{lllllll}0.593 & 3773.173 & 3764.285 & 3776.265 & 3758.573 & 3718.515\end{array}$ $0.593 \quad 3773.765 \quad 3764.115 \quad 3776.247 \quad 3759.166 \quad 3718.81$ $0.593 \quad 3774.358 \quad 3763.9487646234 \quad 3795.760 \quad 3718.81$ $\begin{array}{lllllll}0.593 & 3774.391 & 3763.814 & 3776.221 & 3760.353 & 3719.405\end{array}$ $\begin{array}{lllllll}0.593 & 3774.061 & 3763.692 & 3776.205 & 3760.947 & 3719.701\end{array}$ $\begin{array}{llllllll}0.593 & 3774.054 & 3763.572 & 3776.190 & 3761.540 & 3719.998\end{array}$ $\begin{array}{lllllll}0.593 & 3773.697 & 3763.482 & 3776.173 & 3762.134 & 3720.295\end{array}$ $\begin{array}{lllllll}0.593 & 3774.233 & 3763.399 & 3776.159 & 3762.727 & 3720.592\end{array}$ $\begin{array}{lllllll}0.593 & 3774.789 & 3763.318 & 3776.150 & 3763.321 & 3720.888\end{array}$ $\begin{array}{lllllll}0.593 & 3775.637 & 3763.265 & 3776.146 & 3763.914 & 3721.185\end{array}$ $\begin{array}{lllllll}0.593 & 3776.397 & 3763.218 & 3776.148 & 3764.507 & 3721.482\end{array}$ $\begin{array}{lllllll}0.593 & 3777.098 & 3763.172 & 3776.154 & 3765.101 & 3721.779\end{array}$ $\begin{array}{llllllll}0.593 & 3776.641 & 3763.154 & 3776.158 & 3765.694 & 3722.075\end{array}$ $\begin{array}{lllllll}0.593 & 3776.272 & 3763.139 & 3776.158 & 3766.288 & 3722.372\end{array}$

2:32:21	59.984	3760.982	12.799	13.961
2:32:23	59.988	3762.737	9.601	12.435
2:32:25	59.987	3763.212	10.400	11.723
2:32:27	59.987	3763.212	10.400	11.260
2:32:29	59.987	3766.085	10.400	10.959
2:32:31	59.993	3766.433	5.600	9.083
2:32:33	59.993	3766.433	5.600	7.864
2:32:35	59.992	3767.792	6.400	7.352
2:32:37	59.989	3768.634	8.801	7.859
2:32:39	59.989	3768.634	8.801	8.189
2:32:41	59.986	3772.445	11.200	9.243
2:32:43	59.983	3773.695	13.599	10.767
2:32:45	59.983	3773.695	13.599	11.758
2:32:47	59.988	3775.841	9.601	11.003
2:32:49	59.996	3775.363	3.201	8.273
2:32:51	59.996	3775.363	3.201	6.498
2:32:53	59.998	3775.492	1.599	4.783
2:32:55	60.001	3776.420	-0.800	2.829
2:32:57	60.001	3776.420	-0.800	1.559
2:32:59	59.999	3779.692	0.800	1.293
2:33:01	59.999	3781.256	0.800	1.120
2:33:03	59.999	3781.256	0.800	1.008
2:33:05	60.002	3783.092	-1.599	0.096
2:33:07	60.007	3783.896	-5.600	-1.898
2:33:09	60.007	3783.896	-5.600	-3.194
2:33:11	60.008	3785.768	-6.400	-4.316
2:33:13	60.014	3785.463	-11.200	-6.725
2:33:15	60.014	3785.463	-11.200	-8.291
2:33:17	60.017	3786.304	-13.599	-10.149
2:33:19	60.021	3787.259	-16.800	-12.477
2:33:21	60.021	3787.259	-16.800	-13.990
2:33:23	60.017	3787.955	-13.599	-13.853
2:33:25	60.019	3788.030	-15.201	-14.325
2:33:27	60.019	3788.030	-15.201	-14.631
2:33:29	60.023	3789.216	-18.399	-15.950
2:33:31	60.025	3787.537	-20.001	-17.368
2:33:33	60.025	3787.537	-20.001	-18.290
2:33:35	60.021	3786.077	-16.800	-17.768
2:33:37	60.024	3787.930	-19.199	-18.269
2:33:39	60.024	3787.930	-19.199	-18.594
2:33:41	60.024	3786.875	-19.199	-18.806
2:33:43	60.02	3786.550	-16.000	-17.824
2:33:45	60.02	3786.550	-16.000	-17.186
2:33:47	60.025	3785.018	-20.001	-18.171
2:33:49	60.02	3785.614	-16.000	-17.411
2:33:51	60.02	3785.614	-16.000	-16.918

Abstract

$\begin{array}{llllll}0.593 & 3776.240 & 3763.125 & 3776.159 & 3766.881 & 3722.669\end{array}$ $\begin{array}{lllllll}0.593 & 3775.308 & 3763.122 & 3776.153 & 3767.475 & 3722.965\end{array}$ $\begin{array}{llllll}0.593 & 3775.189 & 3763.123 & 3776.147 & 3768.068 & 3723.262\end{array}$ $\begin{array}{lllllll}0.593 & 3775.320 & 3763.123 & 3776.142 & 3768.662 & 3723.559\end{array}$ $\begin{array}{lllllll}0.593 & 3775.612 & 3763.143 & 3776.138 & 3769.255 & 3723.856\end{array}$ $\begin{array}{lllllll}0.593 & 3774.330 & 3763.164 & 3776.127 & 3769.849 & 3724.15\end{array}$ $\begin{array}{lllllll}0.593 & 3773.704 & 3763.184 & 3776.111 & 3770.442 & 3724.449\end{array}$ $\begin{array}{lllllll}0.593 & 3773.785 & 3763.214 & 3776.097 & 3771.035 & 3724.746\end{array}$ $\begin{array}{lllllll}0.593 & 3774.886 & 3763.248 & 3776.089 & 3771.629 & 3725.043\end{array}$ $\begin{array}{lllllll}0.593 & 3775.809 & 3763.281 & 3776.087 & 3772.222 & 3725.339\end{array}$ $\begin{array}{lllllll}0.593 & 3777.456 & 3763.338 & 3776.096 & 3772.816 & 3725.636\end{array}$ $\begin{array}{llllllll}0.593 & 3779.574 & 3763.402 & 3776.117 & 3773.409 & 3725.933\end{array}$ $\begin{array}{lllllll}0.593 & 3781.159 & 3763.465 & 3776.148 & 3774.003 & 37262.230\end{array}$ $\begin{array}{lllllll}0.593 & 3780.997 & 3763.541 & 3776178 & 3774.596 & 3726526\end{array}$ $\begin{array}{lllllll}0.593 & 3778.860 & 3763.612 & 3776.194 & 3775.190 & 3726823\end{array}$ $\begin{array}{lllllll}0.593 & 3777.679 & 3763.683 & 3776.203 & 3775.783 & 3727.120\end{array}$ $\begin{array}{lllllll}0.593 & 3776.558 & 3763.754 & 3776.205 & 3776377 & 3727.416\end{array}$ $\begin{array}{lllllllll}0.593 & 3775.197 & 3763.829 & 3776.199 & 3776.970 & 3727.713\end{array}$ $\begin{array}{llllllll}0.593 & 377.197 & 3763.829 & 3776.199 & 3776.970 & 3727.713\end{array}$ $\begin{array}{lllllll}0.593 & 3774.520 & 3763.904 & 3776.189 & 3777.564 & 3728.010\end{array}$ $\begin{array}{llllllll}0.593 & 3774.848 & 3763.997 & 3776.181 & 3778.157 & 3728.307\end{array}$ $\begin{array}{lllllll}0.593 & 3775.269 & 3764.098 & 3776.176 & 3778.750 & 3728.603\end{array}$ $\begin{array}{llllllll}0.593 & 3775.750 & 3764.197 & 3776.173 & 3779.344 & 3728.90\end{array}$ $\begin{array}{llllllll}0.000 & 3774.837 & 3764.307 & 3776.166 & 3779.344 & 3729.193\end{array}$ $\begin{array}{lllllll}0.000 & 3772.844 & 3764.419 & 3776.147 & 3779.344 & 3729.483\end{array}$ $\begin{array}{lllllll}0.000 & 3771.548 & 3764.531 & 3776.120 & 3779.344 & 3729.770\end{array}$ $\begin{array}{lllllll}0.000 & 3770.426 & 3764.651 & 3776.088 & 3779.344 & 3730.05\end{array}$ $\begin{array}{lllllll}0.000 & 3768.017 & 3764.769 & 3776.042 & 3779.344 & 3730.333\end{array}$ $\begin{array}{lllllll}0.000 & 3766.450 & 3764.885 & 3775.988 & 3779.344 & 3730.610\end{array}$ $\begin{array}{llllllll}0.000 & 3764.593 & 3765.005 & 3775.925 & 3779.344 & 3730.88\end{array}$ $\begin{array}{lllllll}0 & 0.000 & 3762.265 & 3765.128 & 3775.849 & 3779.344 & 3731155\end{array}$ $0.000 \quad 3760.752 \quad 3765.251 \quad 3775.765 \quad 3779.344$ $\begin{array}{lllllll}0.000 & 3760.889 & 3765 & 375 & 3775.684 & 3779.344 & 3731.687\end{array}$ $\begin{array}{lllllllllll}0 & 0.000 & 3760.417 & 3765.499 & 3775.600 & 3779.344 & 3731.95\end{array}$ $0.000 \quad 3760.110 \quad 3765.622 \quad 3775.516 \quad 379.33413732 .20$ $\begin{array}{lllllllllllllllll}0 & 0.000 & 3758.792 & 3765.749 & 3775.426 & 3779.344 & 3732.464\end{array}$ $\begin{array}{lllllll}0.00 & 3758.792 & 3765.749 & 3775.426 & 3779.344 & 3732.464\end{array}$ $\begin{array}{lllllll}0.000 & 3756.452 & 3765.982 & 3775.228 & 3779.344 & 3732.968\end{array}$ $\begin{array}{llllllll}0.000 & 3756.974 & 3766.089 & 3775.131 & 3779.344 & 3733.216\end{array}$ $\begin{array}{lllllll}0.000 & 3756.473 & 3766.205 & 3775.032 & 3779.344 & 3733.461\end{array}$ $\begin{array}{lllllll}0.000 & 3756.147 & 3766.319 & 3774.932 & 3779.344 & 3733.70\end{array}$ $\begin{array}{lllllll}0.000 & 3755.936 & 3766.427 & 3774.833 & 3779.344 & 3733.944\end{array}$ $\begin{array}{lllllll}0.000 & 3756.918 & 3766.531 & 3774.740 & 3779.344 & 3734.182\end{array}$ $\begin{array}{lllllll}0.000 & 3757.556 & 3766.635 & 3774.651 & 3779.344 & 3734.417\end{array}$ $\begin{array}{lllllll}0.000 & 3756.571 & 3766.730 & 3774.557 & 3779.344 & 3734.650\end{array}$ $\begin{array}{lllllll}0.000 & 3757.330 & 3766.827 & 3774.469 & 3779.344 & 3734.881\end{array}$ $\begin{array}{lllllll}0.000 & 3757.824 & 3766.923 & 3774.384 & 3779.344 & 3735.109\end{array}$

2:33:53	60.02	3785.804	-16.000	-16.597
2:33:55	60.022	3786.864	-17.599	-16.948
2:33:57	60.022	3786.864	-17.599	-17.176
2:33:59	60.022	3785.254	-17.599	-17.324
2:34:01	60.021	3785.726	-16.800	-17.141
2:34:03	60.021	3785.726	-16.800	-17.021
2:34:05	60.023	3785.821	-18.399	-17.504
2:34:07	60.022	3785.798	-17.599	-17.537
2:34:09	60.022	3785.798	-17.599	-17.559
2:34:11	60.019	3786.939	-15.201	-16.734
2:34:13	60.018	3787.627	-14.401	-15.917
2:34:15	60.018	3787.627	-14.401	-15.387
2:34:17	60.018	3789.673	-14.401	-15.042
2:34:19	60.019	3789.404	-15.201	-15.097
2:34:21	60.019	3789.404	-15.201	-15.134
2:34:23	60.019	3789.183	-15.201	-15.157
2:34:25	60.015	3789.369	-12.000	-14.052
2:34:27	60.015	3789.369	-12.000	-13.334
2:34:29	60.016	3788.665	-12.799	-13.147
2:34:31	60.013	3788.933	-10.400	-12.185
2:34:33	60.013	3788.933	-10.400	-11.561
2:34:35	60.012	3790.805	-9.601	-10.875
2:34:37	60.01	3790.411	-7.999	-9.868
2:34:39	60.01	3790.411	-7.999	-9.214
2:34:41	60.007	3791.540	-5.600	-7.949
2:34:43	60.009	3792.945	-7.199	-7.687
2:34:45	60.009	3792.945	-7.199	-7.516
2:34:47	60.009	3791.443	-7.199	-7.405
2:34:49	60.003	3791.426	-2.399	-5.653
2:34:51	60.003	3791.426	-2.399	-4.514
2:34:53	59.999	3790.457	0.800	-2.654
2:34:55	59.992	3790.216	6.400	0.515
2:34:57	59.992	3790.216	6.400	2.574
2:34:59	59.991	3788.457	7.199	4.193
2:35:01	59.992	3788.105	6.400	4.965
2:35:03	59.992	3788.105	6.400	5.467
2:35:05	59.988	3788.189	9.601	6.914
2:35:07	59.985	3788.497	12.000	8.694
2:35:09	59.985	3788.497	12.000	9.851
2:35:11	59.984	3788.571	12.799	10.883
2:35:13	59.984	3788.101	12.799	11.553
2:35:15	59.984	3788.101	12.799	11.989
2:35:17	59.982	3786.453	14.401	12.834
2:35:19	59.982	3787.732	14.401	13.382
2:35:21	59.982	3787.732	14.401	13.739
2:35:23	59.979	3789.285	16.800	14.810

Abstract

$\begin{array}{lllllll}0.000 & 3758.145 & 3767.018 & 3774.302 & 3779.344 & 3735.334\end{array}$ $\begin{array}{llllll}0.000 & 3757.794 & 3767.119 & 3774.218 & 3779.344 & 3735.55\end{array}$ $\begin{array}{lllllll}0.000 & 3757.566 & 3767.218 & 3774.135 & 3779.344 & 3735.779\end{array}$ $\begin{array}{lllllll}0.000 & 3757.418 & 3767.308 & 3774.051 & 3779.344 & 3735.998\end{array}$ $\begin{array}{lllllll}0.000 & 3757.601 & 3767.400 & 3773.969 & 3779.344 & 3736.214\end{array}$ $\begin{array}{lllllll}0.000 & 3757.720 & 3767.490 & 3773.889 & 3779.344 & 3736.429\end{array}$ $\begin{array}{lllllll}0.000 & 3757.238 & 3767.581 & 3773.807 & 3779.344 & 3736.641\end{array}$ $\begin{array}{lllllll}0.000 & 3757.205 & 3767.670 & 3773.725 & 3779.344 & 3736.85\end{array}$ $\begin{array}{lllllll}0.000 & 3757.183 & 3767.758 & 3773.645 & 3779.344 & 3737.060\end{array}$ $\begin{array}{lllllll}0.000 & 3758.008 & 3767.852 & 3773.569 & 3779.344 & 3737.266\end{array}$ $\begin{array}{lllllll}0.000 & 3758.824 & 3767.947 & 3773.498 & 3779.344 & 3737.47\end{array}$ $\begin{array}{llllllll}0.000 & 3759.355 & 3768.042 & 3773.430 & 3779.344 & 3737.673\end{array}$ $\begin{array}{llllllll}0.000 & 3759.700 & 3768.145 & 3773.364 & 3779.344 & 3737.873\end{array}$ $\begin{array}{llllll}0.000 & 3759.644 & 3768.246 & 3773.299 & 3779.344 & 3738 \\ 0 & 0.072\end{array}$ $\begin{array}{llllllllllll}0 & 0.000 & 3759.608 & 3768.347 & 3773.234 & 3779.344 & 3738.268\end{array}$ $\begin{array}{llllllll}0 & 0.000 & 3759.585 & 3768.445 & 3773.169 & 3779.344 & 3738.463\end{array}$ $\begin{array}{lllllll}0 & 000 & 3760.690 & 3768.543 & 3773.111 & 3779.344 & 3738.65\end{array}$ $\begin{array}{llllllll}0.000 & 3761.608 & 3768.541 & 3773.056 & 3779.344 & 3738.656\end{array}$ $\begin{array}{lllllll}0.000 & 3761.408 & 3768.641 & 3773.056 & 3779.344 & 3738.847\end{array}$ $\begin{array}{lllllll}0.000 & 3761.595 & 3768.734 & 3773.003 & 3779.344 & 3739.036\end{array}$ $\begin{array}{lllllll}0.000 & 3762.556 & 3768.827 & 3772.954 & 3779.344 & 3739.223\end{array}$ $\begin{array}{lllllll}0.000 & 3763.181 & 3768.920 & 3772.909 & 3779.344 & 3739.409\end{array}$ $\begin{array}{llllllll}0.000 & 3763.867 & 3769.020 & 3772.868 & 3779.344 & 3739.593\end{array}$ | 0.000 | 3764.874 | 3769.118 | 3772.831 | 3779.344 | 3739.77 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllll}0.000 & 3765.528 & 3769.215 & 3772.798 & 3779.344 & 3739.956\end{array}$ $\begin{array}{lllllll}0.000 & 3766.793 & 3769.316 & 3772.771 & 3779.344 & 3740.135\end{array}$ $\begin{array}{llllllll}0.000 & 3767.055 & 3769.422 & 3772.745 & 3779.344 & 3740.313\end{array}$ $\begin{array}{lllllll}0.000 & 3767.226 & 3769.528 & 3772.721 & 3779.344 & 3740.489\end{array}$ $\begin{array}{lllllll}0.000 & 3767.337 & 3769.625 & 3772.696 & 3779.344 & 3740.663\end{array}$ $\begin{array}{lllllll}0.000 & 3769.089 & 3769.722 & 3772.680 & 3779.344 & 3740.835\end{array}$ $\begin{array}{llllll}0 & 0.000 & 3770.228 & 3769.818 & 3772.670 & 3779.344 \\ 3741.007\end{array}$ $0.000 \quad 3772.088$ 3769.909 3772.667 3779.344 3741.176 $\begin{array}{llllll}0.000 & 3775.256 & 3769.998 & 3772.678 & 3779.344 & 3741344\end{array}$ $\begin{array}{llllll}0.000 & 3777.316 & 3770.087 & 3772.699 & 3779.344 & 3741.517\end{array}$ $0.000 \quad 3778.935 \quad 3770.167 \quad 3772.726 \quad 3799.344 \quad 3741.676$ $\begin{array}{lllllllllll}0 & 000 & 3779.907 & 3770.244 & 3772.756 & 3779.344 & 3741.840\end{array}$ $\begin{array}{lllllll}07779.707 & 3770.244 & 3772.756 & 3779.344 & 3741.840\end{array}$ $\begin{array}{lllllll}0.000 & 3780.205 & 3770.321 & 3772.788 & 3779.344 & 3742.002\end{array}$ $\begin{array}{lllllll}0.000 & 3781.656 & 3770.398 & 3772.826 & 3779.344 & 3742.163\end{array}$ $\begin{array}{lllllll}0.000 & 3783.436 & 3770.475 & 3772.872 & 3779.344 & 3742.323\end{array}$ $\begin{array}{lllllll}0.000 & 3784.593 & 3770.552 & 3772.921 & 3779.344 & 3742.48\end{array}$ $\begin{array}{lllllll}0.000 & 3785.624 & 3770.628 & 3772.975 & 3779.344 & 3742.638\end{array}$ $\begin{array}{llllllll}0.000 & 3786.295 & 3770.702 & 3773.031 & 3779.344 & 3742.793\end{array}$ $\begin{array}{lllllll}0.000 & 3786.731 & 3770.775 & 3773.089 & 3779.344 & 3742.948\end{array}$ $\begin{array}{llllllllll}0.000 & 3787.575 & 3770.841 & 3773.150 & 3779.344 & 3743.101\end{array}$ $\begin{array}{lllllll}0.000 & 3788.124 & 3770.911 & 3773.212 & 3779.344 & 3743.252\end{array}$ $\begin{array}{llllllll}0.000 & 3788.481 & 3770.981 & 3773.275 & 3779.344 & 3743.403\end{array}$ $\begin{array}{llllllll}0.000 & 3789.552 & 3771.056 & 3773.343 & 3779.344 & 3743.552\end{array}$

2:35:25	59.976	3788.256
$2: 35: 27$	59.976	3788.256
$2: 35: 29$	59.976	3790.467
$2: 35: 31$	59.982	3790.665
$2: 35: 33$	59.982	3790.665
$2: 35: 35$	59.978	3789.674
$2: 35: 37$	59.974	3789.267
$2: 35: 39$	59.974	3789.267
$2: 35: 41$	59.976	3790.430
$2: 35: 43$	59.977	3789.914
$2: 35: 45$	59.977	3789.914
$2: 35: 47$	59.975	3787.442
$2: 35: 49$	59.969	3788.963
$2: 35: 51$	59.969	3788.963
$2: 35: 53$	59.97	3791.877
$2: 35: 55$	59.973	3792.911
$2: 35: 57$	59.973	3792.911
$2: 35: 59$	59.978	3789.125
$2: 36: 01$	59.978	3788.080
$2: 36: 03$	59.978	3788.080
$2: 36: 05$	59.975	3787.135
$2: 36: 07$	59.976	3787.164
$2: 36: 09$	59.976	3787.164
$2: 36: 11$	59.975	3787.405
$2: 36: 13$	59.969	3786.487
$2: 36: 15$	59.969	3786.487
$2: 36: 17$	59.966	3789.214
$2: 36: 19$	59.966	3790.512
$2: 36: 21$	59.966	3790.512
$2: 36: 23$	59.969	3792.218
$2: 36: 25$	59.968	3790.959
$2: 36: 27$	59.968	3790.959
$2: 36: 29$	59.965	3789.026
$2: 36: 31$	59.97	3789.167
$2: 36: 33$	59.97	3789.167
$2: 36: 35$	59.972	3785.690
$2: 36: 37$	59.967	3784.831
$2: 36: 39$	59.967	3784.831
$2: 36: 41$	59.969	3784.320
$2: 36: 43$	59.969	3782.809
$2: 36: 45$	59.969	3782.809
$2: 36: 47$	59.967	3779.352
$2: 36: 49$	59.966	3779.056
$2: 36: 51$	59.966	3779.056
$2: 36: 53$	59.965	3779.212
$2: 36: 55$	59.967	3779.335
$2: 3$		

19.199	16.346
19.199	17.345
19.199	17.993
14.401	16.736
14.01	15.919
17.599	16.507
20.801	18.010
20.801	18.987
19.199	19.061
18.399	18.829
18.399	18.679
20.001	19.142
24.799	21.122
24.799	22.408
23.999	22.965
21.600	22.487
21.600	22.177
17.599	20.575
17.599	19.533
17.599	18.857
20.001	19.257
19.199	19.237
19.199	19.223
20.001	19.496
24.799	21.352
24.799	22.558
27.200	24.183
27.200	25.239
27.200	25.925
24.799	25.531
25.601	25.556
25.601	25.572
28.000	26.421
23.999	25.574
23.999	25.023
22.400	24.105
26.401	24.908
26.401	25.431
24.799	25.209
24.799	25.066
24.799	24.972
26.401	25.472
27.200	26.077
27.200	26.470
28.000	27.006
26.401	26.794

0.000	3791.088	3771.127	3773.416	3779.344	3743.700
0.000	3792.086	37771.197	3773.492	3779.344	3743.846
0.000	3792.735	3771.276	3773.571	3779.344	3743.992
0.000	3791.478	3771.355	3773.641	3779.344	3744.136
0.000	3790.661	3771.433	3773.712	3779.344	3744.279
0.000	3791.249	3771.507	3773.783	3779.344	3744.421
0.000	3792.752	3771.578	3773.859	3779.344	3744.562
0.000	3793.728	3771.649	3773.939	3779.344	3744.702
0.000	3793.803	3771.724	3774.018	3779.344	3744.840
0.000	3793.571	3771.996	3774.095	3779.344	3744.978
0.000	3793.420	3771.867	3774.172	3779.344	3745.114
0.000	3793.883	3771.929	3774.249	3779.344	3745.249
0.000	3795.863	3771.996	3774.334	3779.344	3745.384
0.000	3797.150	3772.062	3774.423	3779.344	3745.517
0.000	3797.707	3772.139	3774.514	3779.344	3745.649
0.000	3797.229	3772.219	3774.602	3779.344	3745.780
0.000	3796.919	3772.299	3774.688	3779.344	3745.910
0.000	3795.317	3772.364	3774.767	3779.344	3746.039
0.000	3794.275	3772.424	3774.842	3779.344	3746.167
0.000	3793.598	3772.484	3774.914	3779.344	3746.294
0.000	3793.999	3772.540	3774.986	3779.344	3746.421
0.000	3793.978	3772.595	3775.058	3779.344	3746.546
0.000	3793.965	3772.650	3775.130	3779.344	3746.670
0.000	3794.237	3772.706	3775.202	3779.344	3746.793
0.000	3796.093	3772.757	3775.280	3779.344	3746.916
0.000	3797.300	3772.808	3775.362	3779.344	3747.037
0.000	3798.925	3772.869	3775.450	3779.344	3747.158
0.000	3799.981	3772.935	3775.540	3779.344	3747.277
0.000	3800.667	3773.000	3775.633	3779.344	3747.396
0.000	3800.273	3773.070	3775.724	3779.344	3747.514
0.000	3800.297	3773.136	3775.814	3779.344	3747.631
0.000	3800.313	3773.201	3775.903	3779.344	3747.747
0.000	3801.163	3773.258	3775.995	3779.344	3747.863
0.000	3800.315	3773.316	3776.083	3779.344	3747.977
0.000	3799.764	3773.373	3776.169	3779.344	3748.091
0.000	3798.846	3773.418	3776.250	3779.344	3748.203
0.000	3799.650	3773.458	3776.334	3779.344	3748.315
0.000	3800.172	3773.499	3776.419	3779.344	3748.427
0.000	3799.951	3773.538	3776.503	3779.344	3748.537
0.000	3799.807	3773.570	3776.586	3779.344	3748.647
0.000	3799.714	3773.603	3776.667	3779.344	3748.756
0.000	3800.214	3773.623	3776.750	3779.344	3748.864
0.000	3800.819	3773.642	3776.835	3779.344	3748.971
0.000	3801.212	3773.661	3776.920	3779.344	3749.078
0.000	3801.747	3773.681	3777.006	3779.344	3749.183
0.000	3801.536	3773.700	3777.092	3779.344	3749.289
0					

2:36:57	59.967	3779.335	26.401	26.656
2:36:59	59.965	3775.647	28.000	27.127
2:37:01	59.964	3776.597	28.799	27.712
2:37:03	59.964	3776.597	28.799	28.093
2:37:05	59.97	3776.023	23.999	26.660
2:37:07	59.969	3773.170	24.799	26.008
2:37:09	59.969	3773.170	24.799	25.585
2:37:11	59.968	3768.793	25.601	25.591
2:37:13	59.965	3768.503	28.000	26.434
2:37:15	59.965	3768.503	28.000	26.982
2:37:17	59.97	3767.366	23.999	25.938
2:37:19	59.968	3764.786	25.601	25.820
2:37:21	59.968	3764.786	25.601	25.743
2:37:23	59.965	3759.592	28.000	26.533
2:37:25	59.969	3761.894	24.799	25.926
2:37:27	59.969	3761.894	24.799	25.531
2:37:29	59.967	3760.583	26.401	25.836
2:37:31	59.966	3760.157	27.200	26.313
2:37:33	59.966	3760.157	27.200	26.624
2:37:35	59.979	3759.495	16.800	23.185
2:37:37	59.983	3757.773	13.599	19.830
2:37:39	59.983	3757.773	13.599	17.649
2:37:41	59.974	3753.087	20.801	18.752
2:37:43	59.965	3751.637	28.000	21.989
2:37:45	59.965	3751.637	28.000	24.093
2:37:47	59.962	3758.225	30.399	26.300
2:37:49	59.961	3759.250	31.201	28.015
2:37:51	59.961	3759.250	31.201	29.130
2:37:53	59.961	3760.965	31.201	29.855
2:37:55	59.963	3762.022	29.599	29.765
2:37:57	59.963	3762.022	29.599	29.707
2:37:59	59.959	3763.100	32.800	30.790
2:38:01	59.951	3763.858	39.200	33.733
2:38:03	59.951	3763.858	39.200	35.647
2:38:05	59.953	3766.127	37.601	36.331
2:38:07	59.957	3768.339	34.399	35.655
2:38:09	59.957	3768.339	34.399	35.215
2:38:11	59.956	3767.438	35.199	35.210
2:38:13	59.963	3765.606	29.599	33.246
2:38:15	59.963	3765.606	29.599	31.969
2:38:17	59.961	3761.570	31.201	31.701
2:38:19	59.963	3761.920	29.599	30.965
2:38:21	59.963	3761.920	29.599	30.487
2:38:23	59.963	3758.522	29.599	30.176
2:38:25	59.968	3752.429	25.601	28.575
2:38:27	59.968	3752.429	25.601	27.534

Abstract

$\begin{array}{lllllll}0.000 & 3801.398 & 3773.720 & 3777.176 & 3779.344 & 3749.393\end{array}$ $\begin{array}{llllll}0.000 & 3801.868 & 3773.726 & 3777.261 & 3779.344 & 3749.497\end{array}$ $\begin{array}{llllll}0.000 & 3802.454 & 3773.736 & 3777.347 & 3779.344 & 3749.599\end{array}$ $\begin{array}{lllllll}0.000 & 3802.834 & 3773.746 & 3777.435 & 3779.344 & 3749.702\end{array}$ $\begin{array}{llllllll}0.000 & 3801.402 & 3773.754 & 3777.516 & 3779.344 & 3749.803\end{array}$ $\begin{array}{lllllll}0.000 & 3800.750 & 3773.752 & 3777.595 & 3779.344 & 3749.904\end{array}$ $\begin{array}{lllllll}0.000 & 3800.327 & 3773.750 & 3777.673 & 3779.344 & 3750.004\end{array}$ $\begin{array}{llllllll}0.000 & 3800.332 & 3773.733 & 3777.749 & 3779.344 & 3750.10\end{array}$ $\begin{array}{llllllll}0.000 & 3801.176 & 3773.716 & 3777.828 & 3779.344 & 3750.202\end{array}$ $\begin{array}{lllllll}0.000 & 3801.724 & 3773.698 & 3777.908 & 3779.344 & 3750.300\end{array}$ $\begin{array}{lllllll}0.000 & 3800.680 & 3773.677 & 3777.984 & 3779.344 & 3750.398\end{array}$ $\begin{array}{lllllll}0.000 & 3800.562 & 3773.647 & 3778.060 & 3779.344 & 3750.495\end{array}$ $\begin{array}{lllllll}0.000 & 3800.485 & 3773.618 & 3778.134 & 3779.344 & 3750.591\end{array}$ $\begin{array}{llllllll}0.000 & 3801275 & 3773.571 & 3778.211 & 3779.344 & 3750.686\end{array}$ $\begin{array}{llllllllll}0.000 & 3800.668 & 3773.533 & 3778.285 & 3779.344 & 3750.781\end{array}$ $\begin{array}{llllllll}0.000 & 3800.273 & 3773.495 & 3778.357 & 3779.344 & 3750.876\end{array}$ $0.000 \quad 3800.577 \quad 3773.452 \quad 3778.430 \quad 3779.344 \quad 3750.89$ $\begin{array}{lllllll}0.000 & 3801.055 & 3773.409 & 3778.504 & 3779.344 & 3751.062\end{array}$ $\begin{array}{lllllll}0.000 & 3801.366 & 3773.366 & 3778.578 & 3779.344 & 3751.155\end{array}$ $\begin{array}{llllll}0.000 & 3701.366 & 3773.366 & 3778.578 & 3779.344 & 3751.15\end{array}$ $\begin{array}{lllllll}0.000 & 3794.572 & 3773.270 & 3778.693 & 3779.344 & 3751.338\end{array}$ $\begin{array}{lllllll}0.000 & 3792.391 & 3773.220 & 3778.737 & 3779.344 & 3751.428\end{array}$ $\begin{array}{lllllll}0.000 & 3793.494 & 3773.155 & 3778.784 & 3779.344 & 3751.518\end{array}$ $\begin{array}{lllllll}0.000 & 3796.731 & 3773.087 & 3778.842 & 3779.344 & 3751.608\end{array}$ $\begin{array}{llllllll}0.000 & 3798.834 & 3773.018 & 3778.906 & 3779.344 & 3751.69\end{array}$ $\begin{array}{lllllll}0.000 & 3801.041 & 3772.971 & 3778.976 & 3779.344 & 3751.785\end{array}$ $\begin{array}{lllllll}0.000 & 3802.757 & 3772.927 & 3779.052 & 3779.344 & 3751.873\end{array}$ $\begin{array}{llllllll}0.000 & 3803.872 & 3772.884 & 3779.130 & 3779.344 & 3751.960\end{array}$ $\begin{array}{lllllllll}0.000 & 3804.597 & 3772.846 & 3779.211 & 3779.344 & 3752.047\end{array}$ $\begin{array}{llllll}0.000 & 3804.507 & 3772.812 & 3779.290 & 3779.344 & 3752.133\end{array}$ $\begin{array}{llllllll}0 & 0.000 & 3804.449 & 3772.779 & 3779.369 & 3779.344 & 3752.218\end{array}$ $\begin{array}{lllllllllll}0.000 & 3805.532 & 3772.748 & 3779.451 & 3779.344 & 3752.303\end{array}$ $\begin{array}{llllllll}0.000 & 3808.475 & 3772.721 & 3779.541 & 3779.344 & 3752.388\end{array}$ $0000 \quad 3810.388 \quad 3772.693 \quad 3779.637 \quad 379.344$ $\begin{array}{lllllll} & 0.00 & 3810.396 & 3772.659 & 3779.829 & 3779.344 & 3752.638\end{array}$ $\begin{array}{lllllll}0.00 & 3809.957 & 3772.646 & 3779.922 & 3779.344 & 3752.721\end{array}$ $\begin{array}{lllllll}0.000 & 3809.951 & 3772.630 & 3780.014 & 3779.344 & 3752.803\end{array}$ $\begin{array}{lllllll}0.000 & 3807.988 & 3772.609 & 3780.099 & 3779.344 & 3752.884\end{array}$ $\begin{array}{llllllll}0.000 & 3806.711 & 3772.587 & 3780.181 & 3779.344 & 3752.96\end{array}$ $\begin{array}{lllllll}0.000 & 3806.442 & 3772.554 & 3780.260 & 3779.344 & 3753.04\end{array}$ $\begin{array}{lllllll}0.000 & 3805.707 & 3772.522 & 3780.337 & 3779.344 & 3753.125\end{array}$ $\begin{array}{lllllll}0.000 & 3805.229 & 3772.490 & 3780.413 & 3779.344 & 3753.205\end{array}$ $\begin{array}{lllllll}0.000 & 3804.918 & 3772.447 & 3780.486 & 3779.344 & 3753.284\end{array}$ $\begin{array}{lllllll}0.000 & 3803.317 & 3772.387 & 3780.555 & 3779.344 & 3753.362\end{array}$ $\begin{array}{llllllll}0.000 & 3802.276 & 3772.328 & 3780.620 & 3779.344 & 3753.440\end{array}$

2:38:29	59.968	3753.830	25.601	26.858
2:38:31	59.97	3753.510	23.999	25.857
2:38:33	59.97	3753.510	23.999	25.207
2:38:35	59.973	3752.741	21.600	23.945
2:38:37	59.965	3753.178	28.000	25.364
2:38:39	59.965	3753.178	28.000	26.286
2:38:41	59.967	3753.291	26.401	26.326
2:38:43	59.972	3752.872	22.400	24.952
2:38:45	59.972	3752.872	22.400	24.059
2:38:47	59.976	3749.398	19.199	22.358
2:38:49	59.969	3747.476	24.799	23.212
2:38:51	59.969	3747.476	24.799	23.767
2:38:53	59.973	3741.285	21.600	23.009
2:38:55	59.978	3746.651	17.599	21.116
2:38:57	59.978	3746.651	17.599	19.885
2:38:59	59.981	3743.351	15.201	18.246
2:39:01	59.981	3741.618	15.201	17.180
2:39:03	59.981	3741.618	15.201	16.487
2:39:05	59.982	3738.484	14.401	15.757
2:39:07	59.984	3738.901	12.799	14.722
2:39:09	59.984	3738.901	12.799	14.049
2:39:11	59.982	3737.273	14.401	14.172
2:39:13	59.979	3736.308	16.800	15.092
2:39:15	59.979	3736.308	16.800	15.690
2:39:17	59.98	3735.448	16.000	15.798
2:39:19	59.978	3735.650	17.599	16.429
2:39:21	59.978	3735.650	17.599	16.839
2:39:23	59.98	3738.012	16.000	16.545
2:39:25	59.98	3736.748	16.000	16.354
2:39:27	59.98	3736.748	16.000	16.231
2:39:29	59.978	3736.067	17.599	16.710
2:39:31	59.972	3736.094	22.400	18.701
2:39:33	59.972	3736.094	22.400	19.996
2:39:35	59.971	3738.571	23.199	21.117
2:39:37	59.974	3738.875	20.801	21.006
2:39:39	59.974	3738.875	20.801	20.934
2:39:41	59.975	3738.647	20.001	20.608
2:39:43	59.972	3737.684	22.400	21.235
2:39:45	59.972	3737.684	22.400	21.643
2:39:47	59.969	3737.892	24.799	22.747
2:39:49	59.974	3740.017	20.801	22.066
2:39:51	59.974	3740.017	20.801	21.623
2:39:53	59.972	3742.053	22.400	21.895
2:39:55	59.972	3742.424	22.400	22.072
2:39:57	59.972	3742.424	22.400	22.187
2:39:59	59.977	3742.245	18.399	20.861

Abstract

$\begin{array}{lllllll}0.000 & 3801.599 & 3772.272 & 3780.683 & 3779.344 & 3753.518\end{array}$ $\begin{array}{llllll}0.000 & 3801.599 & 3772.272 & 3780.683 & 3779.344 & 3753.518 \\ 0.000 & 3800.599 & 3772.217 & 3780.742 & 3779.344 & 3753.595\end{array}$ $\begin{array}{llllll}0.000 & 3800.599 & 3772.217 & 3780.742 & 3779.344 & 3753.595 \\ 0.000 & 3799.949 & 3772.161 & 3780.799 & 3779.344 & 3753.672\end{array}$ $\begin{array}{lllllll}0.000 & 3799.949 & 3772.161 & 3780.799 & 3779.344 & 3753.672\end{array}$ $\begin{array}{lllllll}0.000 & 3798.686 & 3772.104 & 3780.852 & 3779.344 & 3753.748\end{array}$ $\begin{array}{lllllll}0.000 & 3800.106 & 3772.048 & 3780.909 & 3779.344 & 3753.823\end{array}$ 0753.823 $\begin{array}{lllllll}0.000 & 3801.068 & 3771.937 & 3781.027 & 3779.344 & 3753.974\end{array}$ $\begin{array}{lllllll}0.000 & 3799.694 & 3771.882 & 3781.081 & 3779.344 & 3754.048\end{array}$ $\begin{array}{lllllll}0.000 & 3798.801 & 3771.826 & 3781.133 & 3779.344 & 3754.12\end{array}$ $\begin{array}{lllllll}0.000 & 3797.100 & 3771.761 & 3781.179 & 3779.344 & 3754.196\end{array}$ $\begin{array}{lllllll}0.000 & 3797.954 & 3771.691 & 3781.228 & 3779.344 & 3754.269\end{array}$ $\begin{array}{lllllll}0.000 & 3798.509 & 3771.621 & 3781.278 & 3779.344 & 3754.341\end{array}$ $\begin{array}{lllllll}0.000 & 3797.751 & 3771.533 & 3781.325 & 3779.344 & 3754.414\end{array}$ $\begin{array}{llllllll}0.000 & 3795.857 & 3771.462 & 3781.367 & 3779.344 & 3754.485\end{array}$ $\begin{array}{lllllllll}0 & 0.000 & 3794.627 & 3771.391 & 3781.405 & 3779.344 & 3754.557\end{array}$ $\begin{array}{llllllllll}0 & 0000 & 3792.987 & 3771.311 & 3781.438 & 3779.344 & 3754.628\end{array}$ $\begin{array}{lllllllll}0 & 000 & 3791.922 & 3771.226 & 3781.468 & 379.3 .344 & 3754.69\end{array}$ $\begin{array}{lllllllll}0 & 000 & 3791.229 & 3771.142 & 3781.496 & 3779.344 & 3754.769\end{array}$ $\begin{array}{lllllll}0 & 000 & 379.22 & 371.142 & 3781.496 & 3779.344 & 3754.769\end{array}$ $\begin{array}{lllllll}0.000 & 3790.499 & 3771.049 & 3781.521 & 3779.344 & 3754.839\end{array}$ $\begin{array}{llllllll} & 0.00 & 3789.464 & 3770.959 & 3781.544 & 3779.344 & 3754.908\end{array}$ $\begin{array}{lllllll}0780 & 3788.791 & 3770.868 & 3781.564 & 3779.344 & 3754.97\end{array}$ $\begin{array}{lllllll}0.000 & 3788.914 & 3770.774 & 3781.585 & 3779.344 & 3755.046\end{array}$ $\begin{array}{llllllll}0.000 & 3789.834 & 3770.677 & 3781.608 & 3779.344 & 3755.114\end{array}$ $\begin{array}{lllllll}0.000 & 3790.431 & 3770.581 & 3781.633 & 3779.344 & 3755.182\end{array}$ $\begin{array}{lllllll}0.000 & 3790.540 & 3770.483 & 3781.657 & 3779.344 & 3755.24\end{array}$ $\begin{array}{lllllll}0.000 & 3791.171 & 3770.387 & 3781.684 & 3779.344 & 3755.316\end{array}$ $\begin{array}{lllllll}0.000 & 3791.580 & 3770.290 & 3781.711 & 3779.344 & 3755.383\end{array}$ $\begin{array}{llllllll}0.000 & 3791.287 & 3770.201 & 3781.738 & 3779.344 & 3755.449\end{array}$ $\begin{array}{llllllll}0.000 & 3791.096 & 3770.109 & 3781.764 & 3779.344 & 3755.515\end{array}$ $\begin{array}{llllllll}0.000 & 3790.972 & 3770.017 & 3781.789 & 3779.344 & 3755.581\end{array}$ $\begin{array}{lllllllll}0 & 0.000 & 3791.451 & 3769.924 & 3781.815 & 3779.344 & 3755.61\end{array}$ $\begin{array}{llllllll}0 & 0.000 & 3793.443 & 3769.832 & 3781.847 & 3779.344 & 3755.711\end{array}$ $\begin{array}{lllllllll}0.000 & 3794.738 & 3769.740 & 3781.882 & 3779.344 & 3755.776\end{array}$ $0000 \quad 3795.748 \quad 3769.572 \quad 3781.958 \quad 3779.344$ $\begin{array}{lllllll}0.000 & 379.748 & 3769.572 & 3781.958 & 379.344 & 3755.904\end{array}$ 075755.967 $\begin{array}{llllllll}0.000 & 3795.350 & 3769.406 & 3782.031 & 3779.344 & 3756.03\end{array}$ $\begin{array}{lllllll}0.000 & 3795.977 & 3769.321 & 3782.068 & 3779.344 & 3756.093\end{array}$ $\begin{array}{llllllll}0.000 & 3796.384 & 3769.236 & 3782.107 & 3779.344 & 3756.156\end{array}$ $\begin{array}{lllllll}0.000 & 3797.489 & 3769.152 & 3782.148 & 3779.344 & 3756.218\end{array}$ $\begin{array}{lllllll}0.000 & 3796.808 & 3769.074 & 3782.187 & 3779.344 & 3756.280\end{array}$ $\begin{array}{lllllll}0.000 & 3796.365 & 3768.997 & 3782.225 & 3779.344 & 3756.34\end{array}$ $\begin{array}{lllllll}0.000 & 3796.637 & 3768.926 & 3782.263 & 3779.344 & 3756.40\end{array}$ $\begin{array}{lllllll}0.000 & 3796.813 & 3768.855 & 3782.301 & 3779.344 & 3756.46\end{array}$ $\begin{array}{llllllll}0.000 & 3796.928 & 3768.786 & 3782.340 & 3779.344 & 3756.524\end{array}$ $\begin{array}{llllllll}0.000 & 3795.603 & 3768.716 & 3782.375 & 3779.344 & 3756.584\end{array}$

2:40:01	59.978	3741.723	17.599	19.719
2:40:03	59.978	3741.723	17.599	18.977
2:40:05	59.976	3740.629	19.199	19.055
2:40:07	59.974	3739.964	20.801	19.666
2:40:09	59.974	3739.964	20.801	20.063
2:40:11	59.977	3742.833	18.399	19.481
2:40:13	59.978	3741.268	17.599	18.822
2:40:15	59.978	3741.268	17.599	18.394
2:40:17	59.979	3738.966	16.800	17.836
2:40:19	59.977	3738.706	18.399	18.033
2:40:21	59.977	3738.706	18.399	18.161
2:40:23	59.974	3739.860	20.801	19.085
2:40:25	59.971	3738.102	23.199	20.525
2:40:27	59.971	3738.102	23.199	21.461
2:40:29	59.971	3743.507	23.199	22.070
2:40:31	59.968	3743.419	25.601	23.306
2:40:33	59.968	3743.419	25.601	24.109
2:40:35	59.966	3745.744	27.200	25.191
2:40:37	59.971	3747.340	23.199	24.494
2:40:39	59.971	3747.340	23.199	24.041
2:40:41	59.973	3749.750	21.600	23.187
2:40:43	59.969	3746.217	24.799	23.751
2:40:45	59.969	3746.217	24.799	24.118
2:40:47	59.972	3743.745	22.400	23.516
2:40:49	59.973	3743.149	21.600	22.846
2:40:51	59.973	3743.149	21.600	22.410
2:40:53	59.97	3739.453	23.999	22.966
2:40:55	59.974	3733.376	20.801	22.208
2:40:57	59.974	3733.376	20.801	21.716
2:40:59	59.982	3737.583	14.401	19.156
2:41:01	59.985	3736.229	12.000	16.651
2:41:03	59.985	3736.229	12.000	15.023
2:41:05	59.985	3733.434	12.000	13.965
2:41:07	59.989	3733.115	8.801	12.158
2:41:09	59.989	3733.115	8.801	10.983
2:41:11	59.989	3729.180	8.801	10.219
2:41:13	59.987	3725.459	10.400	10.283
2:41:15	59.987	3725.459	10.400	10.324
2:41:17	59.99	3720.108	7.999	9.510
2:41:19	59.996	3720.938	3.201	7.302
2:41:21	59.996	3720.938	3.201	5.867
2:41:23	60.001	3725.677	-0.800	3.534
2:41:25	60.004	3727.754	-3.201	1.176
2:41:27	60.004	3727.754	-3.201	-0.356
2:41:29	60.006	3727.683	-4.800	-1.911
2:41:31	60.014	3727.231	-11.200	-5.162

0.000	3794.461	3768.645	3782.40	377	3756.644
0.000	3793.719	3768.575	3782.436	377	3756.704
	379	3768.502	3782	3779.344	63
0.000	37	3768	3782.497	3779.344	822
. 000	3794.805	3768.353	3782.529	3779.344	81
. 00	3794.222	3768.287	3782.559	377	3756.939
0.000	3793	3768	3782.588	3779.344	3756.997
, 00	3793	3768.148	3782.615	3779.344	3757.055
0.000	3792.578	768.	3782.640	3779.344	3757.112
, 00	3792.775	3767.998	3782.666	3779.344	69
0.000	3792.903	3767.923	782	3779.344	6
0.000	3793.827	3767.851	3782.721	3779.344	83
. 00	3795.267	3767.775	753	44	3757.339
0.000	3796.203	3767.700	3782.787	3779.3	3757.395
. 00	3796.811	3767.639	.822	3779.344	. 51
0.000	379	3767.578	3782.861	3779.344	3757.506
0.000	3798.851	3767.517	3782.901	3779.344	. 561
0.000	3799.933	3767.462	3782.944	3779.344	3757.616
0.000	3799.236	3767.412	3782.985	3779	3757.671
0.000	379	3767.362	224	3779.344	25
. 00	3797.928	3767.318	3783.062	3779	3757.779
0.000	3798	3767	3783.100	3779.344	833
0.000	3798.	3767.213	3783.139	3779.344	3757.886
0.000	3798.258	3767.155	783.176	37	3757.940
0.000	3797	3767.096	3783.212	3779.344	93
0.000	3797.152	3767.037	3783.246	3779	375
0.000	379	37	3783.282	3779.344	98
0.000	3796.950	3766.886	3783.315	3779.344	3758.150
0.000	3796	3766	783	3779.344	3758.202
. 00	3793.897	3766.733	3783.373	37	3758.254
0.000	379	37	3783.393	3779.344	5
0.000	3789	3766	3783.408	3779.344	3758.356
, 00	3788.706	3766.505	3783.421	377	3758.407
0.000	378	3766.424	3783.429	3779.344	58
. 000	3785.725	3766	3783.435	3779.344	508
0.000	378	376	378	377	3758.559
0.000	3785.024	3766.157	3783.442	3779.344	3758.609
0.000	3785	3766.05	3783	3779.34	375
0.000	3784.252	3765.950	3783.448	3779.344	3758.708
, 00	3782.044	3765.843	378	3779	3758.757
0.000	3780.608	3765.736	3783.438	3779.344	3758.806
0.000	3778.275	3765.641	3783.426	3779.344	3758.855
0.000	3775.918	3765.551	3783.408	3779.344	3758.903
0.000	3774.386	3765.462	3783.387	3779.344	3758.952
0.000	3772.830	3765.373	3783.362	3779.344	3759.000
0.000	3769.579	3765.284	3783.330	3779.344	3759.048

$2: 41: 33$	60.014	3727.231	-11.200	-7.276
$2: 41: 35$	60.019	3726.446	-15.201	-10.049
$2: 41: 37$	60.025	3726.016	-20.001	-13.533
$2: 41: 39$	60.025	3726.016	-20.001	-15.797
$2: 41: 41$	60.026	3716.375	-20.801	-17.548
$2: 41: 43$	60.029	3717.333	-23.199	-19.526
$2: 41: 45$	60.029	3717.333	-23.199	-20.812
$2: 41: 47$	60.029	3717.142	-23.199	-21.647
$2: 41: 49$	60.036	3715.166	-28.799	-24.151
$2: 41: 51$	60.036	3715.166	-28.799	-25.778
$2: 41: 53$	60.037	3710.283	-29.599	-27.115
$2: 41: 55$	60.036	3710.158	-28.799	-27.705
$2: 41: 57$	60.036	3710.158	-28.799	-28.088
$2: 41: 59$	60.041	3698.591	-32.800	-29.737
$2: 42: 01$	60.044	3704.591	-35.199	-31.649
$2: 42: 03$	60.044	3704.591	-35.199	-32.891
$2: 42: 05$	60.043	3702.482	-34.399	-33.419
$2: 42: 07$	60.048	3701.316	-38.400	-35.163
$2: 42: 09$	60.048	3701.316	-38.400	-36.296
$2: 42: 11$	60.046	3699.529	-36.801	-36.473
$2: 42: 13$	60.043	3699.726	-34.399	-35.747
$2: 42: 15$	60.043	3699.726	-34.399	-35.275
$2: 42: 17$	60.043	3690.477	-34.399	-34.969
$2: 42: 19$	60.043	3696.865	-34.399	-34.769
$2: 42: 21$	60.043	3696.865	-34.399	-34.640

$\begin{array}{lllllll}0.000 & 3767.466 & 3765.195 & 3783.293 & 3779.344 & 3759.095\end{array}$ $\begin{array}{llllll}0.000 & 3767.469 & 3765.195 & 3783.293 & 3779.344 & 3759.095 \\ 0.000 & 3764.692 & 3765.104 & 3783.249 & 3779.344 & 3759.143\end{array}$ $\begin{array}{llllll}0.000 & 3764.692 & 3765.104 & 3783.249 & 3779.344 & 3759.143 \\ 0.000 & 3761.209 & 3765.013 & 3783.198 & 3779.344 & 3759.190\end{array}$ $\begin{array}{llllll}0.000 & 3761.209 & 3765.013 & 3783.198 & 3779.344 & 3759.190 \\ 0.000 & 3758.945 & 3764.922 & 3783.141 & 3779.344 & 3759.237\end{array}$ $\begin{array}{llllll}0.000 & 3758.945 & 3764.922 & 3783.141 & 3779.344 & 3759.237 \\ 0.000 & 3757.194 & 3764.810 & 3783.081 & 3779.344 & 3759.284\end{array}$ $\begin{array}{lllllll}0.000 & 3757.194 & 3764.810 & 3783.081 & 3779.344 & 3759.284\end{array}$ $\begin{array}{lllllll}0.000 & 3755.216 & 3764.700 & 3783.017 & 3779.344 & 3759.330\end{array}$ $\begin{array}{lllllll}0.000 & 3753.930 & 3764.590 & 3782.949 & 3779.344 & 3759.377\end{array}$ $\begin{array}{lllllll}0.000 & 3753.094 & 3764.481 & 3782.881 & 3779.344 & 3759.423\end{array}$ $\begin{array}{lllllll}0.000 & 3750.591 & 3764.368 & 3782.806 & 3779.344 & 3759.469\end{array}$ $\begin{array}{lllllll}0.000 & 3748.964 & 3764.255 & 3782.729 & 3779.344 & 3759.514\end{array}$ $\begin{array}{lllllll}0.000 & 3747.627 & 3764.131 & 3782.648 & 3779.344 & 3759.560\end{array}$ $\begin{array}{lllllll}0.000 & 3747.037 & 3764.008 & 3782.567 & 3779.344 & 3759.605\end{array}$ $\begin{array}{llllllll}0.000 & 3746.654 & 3763.886 & 3782.485 & 3779.344 & 3759.650\end{array}$ $\begin{array}{lllllll}0.000 & 3745.005 & 3763.737 & 3782.400 & 3779.344 & 3759.695\end{array}$ $\begin{array}{lllllll}0.000 & 3743.093 & 3763.603 & 3782.311 & 3779.344 & 3759.740\end{array}$ $\begin{array}{lllllll}0.000 & 3741.850 & 3763.469 & 3782.220 & 3779.344 & 3759.784\end{array}$ $\begin{array}{lllllll}0.000 & 3741.323 & 3763.332 & 3782.127 & 3779.344 & 3759.828\end{array}$ $\begin{array}{llllll}0.000 & 3739.579 & 3763.192 & 3782.031 & 3779.344 & 3759.872\end{array}$ $\begin{array}{llllll}0.000 & 3739.579 & 3763.192 & 3782.031 & 379.344 & 3759.872 \\ 0.000 & 3738.446 & 3763.053 & 3781.933 & 3779.344 & 3759.916\end{array}$ $\begin{array}{llllll}0.000 & 3738.446 & 3763.053 & 3781.933 & 379.344 & 3759.916 \\ 0.000 & 3738.269 & 3762.911 & 3781.836 & 3779.344 & 3759.960\end{array}$ $\begin{array}{llllll}0.000 & 3738.995 & 3762.769 & 3781.740 & 3779.344 & 3760.003\end{array}$ $\begin{array}{lllllll}0.000 & 3739.466 & 3762.629 & 3781.645 & 3779.344 & 3760.047\end{array}$ $\begin{array}{lllllll}0.000 & 3739.773 & 3762.468 & 3781.552 & 3779.344 & 3760.090\end{array}$ $\begin{array}{lllllll}0.000 & 3739.972 & 3762.322 & 3781.460 & 3779.344 & 3760.133\end{array}$ $\begin{array}{lllllll}0.000 & 3740.102 & 3762.177 & 3781.368 & 3779.344 & 3760.175\end{array}$

riod (indicates ramp direction during recovery period)

Frequency and Interconnection Frequency Response @ different Average periods of B

633	-469.764
633	-503.381
633	-503.381
633	-503.381
633	-511.512
633	-511.512
633	-519.91
633	-519.91
633	-519.91
633	-507.414
633	-524.23
633	-524.23
633	-533.054
633	-542.181
633	-542.181
633	-556.491
633	-576.761
633	-576.761
633	-551.625
633	-571.557
633	-571.557
633	-561.424
633	-571.557
633	-571.557
633	-604.298
633	-654.262
633	-654.262
633	-682.49
633	-634.595
633	-634.595
633	-628.3
633	-654.262
633	-654.262
633	-675.214
633	-682.49
633	-682.49
633	-697.523
633	-713.233
633	-713.233
633	-697.523
633	-705.29
633	-705.29
633	-705.29
633	-705.29
633	-705.29
633	-721.356

633	-713.233
633	-713.233
633	-713.233
633	-721.356
633	-721.356
633	-721.356
633	-746.91
633	-746.91
633	-738.204
633	-738.204
633	-738.204
633	-729.699
633	-783.887
633	-783.887
633	-793.749
633	-858.288
633	-858.288
633	-835.64
633	-858.288
633	-858.288
633	-882.246
633	-882.246
633	-882.246
633	-870.125
633	-882.246
633	-882.246
633	-894.709
633	-920.722
633	-920.722
633	-962.764
633	-992.952
633	-992.952
633	-962.764
633	-962.764
633	-962.764
633	-992.952
633	-1025.09
633	-1025.09
633	-1059.39
633	-1025.09
633	-1025.09
633	-1008.77
633	-1008.77
633	-1008.77
633	-1077.48
633	-1096.13

633	-2910.41
633	-3204.97
633	-3204.97
633	-3204.97
633	-3050.6
633	-3050.6
633	-3375.79
633	-3204.97
633	-3204.97
633	-2782.55
633	-2665.44
633	-2665.44
633	-2665.44
633	-2782.55
633	-2782.55
633	-2782.55
633	-2366.31
633	-2366.31
633	-2458.15
633	-2201.78
633	-2201.78
633	-2127.81
633	-1993.6
633	-1993.6
633	-1821.58
633	-1932.76
633	-1932.76
633	-1932.76
633	-1633.48
633	-1633.48
633	-1480.72
633	-1272.38
633	-1272.38
633	-1247.32
633	-1272.38
633	-1272.38
633	-1177.65
633	-1115.43
633	-1115.43
633	-1096.13
633	-1096.13
633	-1096.13
633	-1059.39
633	-1059.39
633	-1059.39
633	-1008.77

633	-962.764
633	-962.764
633	-962.764
633	-1059.39
633	-1059.39
633	-992.952
633	-934.305
633	-934.305
633	-962.764
633	-977.625
633	-977.625
633	-948.294
633	-870.125
633	-870.125
633	-882.246
633	-920.722
633	-920.722
633	-992.952
633	-992.952
633	-992.952
633	-948.294
633	-962.764
633	-962.764
633	-948.294
633	-870.125
633	-870.125
633	-835.64
633	-835.64
633	-835.64
633	-870.125
633	-858.288
633	-858.288
633	-824.758
633	-882.246
633	-882.246
633	-907.529
633	-846.813
633	-846.813
633	-870.125
633	-870.125
633	-870.125
633	-846.813
633	-835.64
633	-835.64
633	-824.758
633	-846.813

633	-846.813
633	-824.758
633	-814.156
633	-814.156
633	-882.246
633	-870.125
633	-870.125
633	-858.288
633	-824.758
633	-824.758
633	-882.246
633	-858.288
633	-858.288
633	-824.758
633	-870.125
633	-870.125
633	-846.813
633	-835.64
633	-835.64
633	-1008.77
633	-1077.48
633	-1077.48
633	-934.305
633	-824.758
633	-824.758
633	-793.749
633	-783.887
633	-783.887
633	-783.887
633	-803.823
633	-803.823
633	-764.952
633	-697.523
633	-697.523
633	-713.233
633	-746.91
633	-746.91
633	-738.204
633	-803.823
633	-803.823
633	-783.887
633	-803.823
633	-803.823
633	-803.823
633	-858.288
633	-858.288

633	-858.288
633	-882.246
633	-882.246
633	-920.722
633	-824.758
633	-824.758
633	-846.813
633	-907.529
633	-907.529
633	-962.764
633	-870.125
633	-870.125
633	-920.722
633	-992.952
633	-992.952
633	-1041.96
633	-1041.96
633	-1041.96
633	-1059.39
633	-1096.13
633	-1096.13
633	-1059.39
633	-1008.77
633	-1008.77
633	-1025.09
633	-992.952
633	-992.952
633	-1025.09
633	-1025.09
633	-1025.09
633	-992.952
633	-907.529
633	-907.529
633	-894.709
633	-934.305
633	-934.305
633	-948.294
633	-907.529
633	-907.529
633	-870.125
633	-934.305
633	-934.305
633	-907.529
633	-907.529
633	-907.529
633	-977.625

633	-992.952
633	-992.952
633	-962.764
633	-934.305
633	-934.305
633	-977.625
633	-992.952
633	-992.952
633	-1008.77
633	-977.625
633	-977.625
633	-934.305
633	-894.709
633	-894.709
633	-894.709
633	-858.288
633	-858.288
633	-835.64
633	-894.709
633	-894.709
633	-920.722
633	-870.125
633	-870.125
633	-907.529
633	-920.722
633	-920.722
633	-882.246
633	-934.305
633	-934.305
633	-1059.39
633	-1115.43
633	-1115.43
633	-1115.43
633	-1199.96
633	-1199.96
633	-1199.96
633	-1156.16
633	-1156.16
633	-1223.23
633	-1383.56
633	-1883.56
633	-1553.36
633	-1676.9
633	-1676.9
633	-1770.66
633	-2281.08

$$
\begin{array}{lr}
633 & -2281.08 \\
633 & -2782.55 \\
633 & -3779.46 \\
633 & -3779.46 \\
633 & -4019.31 \\
633 & -4964.46 \\
633 & -4964.46 \\
633 & -4964.46 \\
633 & -11007.4 \\
633 & -11007.4 \\
633 & -13322.9 \\
633 & -11007.4 \\
633 & -11007.4 \\
633 & -84446.4 \\
633 & 28148.8 \\
633 & 28148.8 \\
633 & 50667.83 \\
633 & 10127.38 \\
633 & 10127.38 \\
633 & 14888.93 \\
633 & 50667.83 \\
633 & 50667.83 \\
633 & 50667.83 \\
633 & 50667.83 \\
633 & 50667.83
\end{array}
$$

	T-66 sec	2:26:15	60.0220	3664.50	350.00	-253.63	0.00	142.50	10.00	15.00	-103.00	7594.05	-17.599	T-66 sec	2:26:15	
	T-64 sec	2:26:17	60.0220	3664.50	350.00	-253.63	0.00	142.50	10.00	15.00	-103.00	7594.05	-17.599	T-64 sec	2:26:17	
	T-62 sec	2:26:19	60.0170	3666.06	350.00	-253.63	0.00	143.00	10.00	15.00	-103.00	7594.38	-13.599	T-62 sec	2:26:19	
	T-60 sec	2:26:21	60.0190	3666.79	350.00	-253.63	0.00	143.50	10.00	15.00	-103.00	7594.71	-15.201	T-60 sec	2:26:21	
	T-58 sec	2:26:23	60.0190	3666.79	350.00	-253.63	0.00	143.50	10.00	15.00	-103.00	7594.71	-15.201	T-58 sec	2:26:23	
	T-56 sec	2:26:25	60.0190	3670.45	350.00	-246.96	0.00	144.00	10.00	15.00	-103.00	7595.04	-15.201	T-56 sec	2:26:25	
	T-54 sec	2:26:27	60.0210	3671.67	350.00	-246.96	0.00	144.50	10.00	15.00	-103.00	7595.37	-16.800	T-54 sec	2:26:27	
	T-52 sec	2:26:29	60.0210	3671.67	350.00	-246.96	0.00	144.50	10.00	15.00	-103.00	7595.37	-16.800	T-52 sec	2:26:29	
	T-50 sec	2:26:31	60.0210	3672.49	350.00	-246.96	0.00	145.00	10.00	15.00	-103.00	7595.70	-16.800	T-50 sec	2:26:31	
	T-48 sec	2:26:33	60.0190	3672.86	350.00	-246.96	0.00	145.50	10.00	15.00	-103.00	7596.03	-15.201	T-48 sec	2:26:33	
	T-46 sec	2:26:35	60.0190	3672.86	350.00	-246.96	0.00	145.50	10.00	15.00	-103.00	7596.03	-15.201	T-46 sec	2:26:35	
	T-44 sec	2:26:37	60.0220	3672.16	350.00	-246.96	0.00	146.00	10.00	15.00	-103.00	7596.36	-17.599	T-44 sec	2:26:37	
	T-42 sec	2:26:39	60.0310	3669.98	350.00	-254.54	0.00	146.50	10.00	15.00	-103.00	7596.69	-24.799	T-42 sec	2:26:39	
	T-40 sec	2:26:41	60.0310	3669.98	350.00	-254.54	0.00	146.50	10.00	15.00	-103.00	7596.69	-24.799	T-40 sec	2:26:41	
	T-38 sec	2:26:43	60.0370	3666.47	350.00	-254.54	0.00	147.00	10.00	15.00	-103.00	7597.02	-29.599	T-38 sec	2:26:43	
	T-36 sec	2:26:45	60.0360	3661.60	350.00	-254.54	0.00	147.50	10.00	15.00	-103.00	7597.35	-28.799	T-36 sec	2:26:45	
	T-34 sec	2:26:47	60.0360	3661.60	350.00	-254.54	0.00	147.50	10.00	15.00	-103.00	7597.35	-28.799	T-34 sec	2:26:47	
	T-32 sec	2:26:49	60.0460	3660.67	350.00	-254.54	0.00	148.00	10.00	15.00	-103.00	7597.68	-36.801	T-32 sec	2:26:49	
	T-30 sec	2:26:51	60.0480	3649.19	350.00	-165.10	0.00	148.50	10.00	15.00	-103.00	7598.01	-38.400	T-30 sec	2:26:51	
	T-28 sec	2:26:53	60.0480	3649.19	350.00	-165.10	0.00	148.50	10.00	15.00	-103.00	7598.01	-38.400	T-28 sec	2:26:53	
	T-26 sec	2:26:55	60.0430	3650.03	350.00	-165.10	0.00	149.00	10.00	15.00	-103.00	7598.34	-34.399	T-26 sec	2:26:55	
	T-24 sec	2:26:57	60.0410	3649.51	350.00	-165.10	0.00	149.50	10.00	15.00	-103.00	7598.67	-32.800	T-24 sec	2:26:57	
	T-22 sec	2:26:59	60.0410	3649.51	350.00	-165.10	0.00	149.50	10.00	15.00	-103.00	7598.67	-32.800	T-22 sec	2:26:59	
	T-20 sec	2:27:01	60.0410	3654.29	350.00	-165.10	0.00	150.00	10.00	15.00	-103.00	7599.00	-32.800	T-20 sec	2:27:01	
	T-18 sec	2:27:03	60.0390	3651.87	350.00	-165.10	0.00	150.50	10.00	15.00	-103.00	7599.33	-31.201	T-18 sec	2:27:03	
	$\mathrm{T}-16 \mathrm{sec}$	2:27:05	60.0390	3651.87	350.00	-165.10	0.00	150.50	10.00	15.00	-103.00	7599.33	-31.201	T-16 sec	2:27:05	60.042
	T-14 sec	2:27:07	60.0430	3651.06	350.00	-165.48	0.00	151.00	10.00	15.00	-103.00	7599.66	-34.399	T-14 sec	2:27:07	60.042
	$\mathrm{T}-12 \mathrm{sec}$	2:27:09	60.0450	3648.24	350.00	-165.48	0.00	151.50	10.00	15.00	-103.00	7599.99	-35.999	$\mathrm{T}-12 \mathrm{sec}$	2:27:09	60.042
	T-10 sec	2:27:11	60.0450	3648.24	350.00	-165.48	0.00	151.50	10.00	15.00	-103.00	7599.99	-35.999	T-10 sec	2:27:11	60.042
	T-08 sec	2:27:13	60.0410	3645.39	350.00	-165.48	0.00	152.00	10.00	15.00	-103.00	7600.32	-32.800	T-08 sec	2:27:13	60.042
	T-06 sec	2:27:15	60.0410	3645.45	350.00	-165.48	0.00	152.50	10.00	15.00	-103.00	7600.65	-32.800	T-06 sec	2:27:15	60.042
	T-04 sec	2:27:17	60.0410	3645.45	350.00	-165.48	0.00	152.50	10.00	15.00	-103.00	7600.65	-32.800	T-04 sec	2:27:17	60.042
	T-02 sec	2:27:19	60.0390	3640.68	350.00	-165.48	0.00	153.00	10.00	15.00	-103.00	7600.98	-31.201	T-02 sec	2:27:19	60.042
	T+0 sec	2:27:21	59.9780	3659.46	350.00	-206.46	0.00	153.50	10.00	0.00	-103.00	7601.31	17.599	T+0 sec	2:27:21	
	T+02 sec	2:27:23	59.9780	3659.46	350.00	-206.46	0.00	153.50	10.00	0.00	-103.00	7601.31	17.599	T+02 sec	2:27:23	
	T+04 sec	2:27:25	59.8360	3696.36	350.00	-206.46	0.00	154.00	10.00	0.00	-103.00	7570.00	131.201	T+04 sec	2:27:25	
	T+06 sec	2:27:27	59.8360	3696.36	350.00	-206.46	0.00	154.00	10.00	0.00	-103.00	7570.00	131.201	T+06 sec	2:27:27	
	T+08 sec	2:27:29	59.8690	3734.67	335.00	-206.46	0.00	154.50	10.00	0.00	-103.00	7569.00	104.800	T+08 sec	2:27:29	
	T+10 sec	2:27:31	59.8910	3737.16	335.00	-206.46	0.00	155.00	10.00	0.00	-103.00	7570.00	87.201	T+10 sec	2:27:31	
	T+12 sec	2:27:33	59.8910	3737.16	335.00	-206.46	0.00	155.00	10.00	0.00	-103.00	7570.00	87.201	$\mathrm{T}+12 \mathrm{sec}$	2:27:33	59.882
	T+14 sec	2:27:35	59.8800	3766.11	335.00	-206.46	0.00	155.50	10.00	0.00	-103.00	7570.00	95.999	$\mathrm{T}+14 \mathrm{sec}$	2:27:35	59.882
	T+16 sec	2:27:37	59.8750	3766.19	335.00	-211.26	0.00	156.00	10.00	0.00	-103.00	7570.00	100.000	$\mathrm{T}+16 \mathrm{sec}$	2:27:37	59.882
	T+18 sec	2:27:39	59.8750	3766.19	335.00	-211.26	0.00	156.00	10.00	0.00	-103.00	7570.00	100.000	$\mathrm{T}+18 \mathrm{sec}$	2:27:39	59.882
-413.862	T+20 sec	2:27:41	59.8830	3769.93	335.00	-211.26	1.00	156.50	10.00	0.00	-103.00	7570.00	93.600	$\mathrm{T}+20 \mathrm{sec}$	2:27:41	59.882
-413.862	T+22 sec	2:27:43	59.8860	3780.62	335.00	-211.26	1.00	157.00	10.00	0.00	-103.00	7570.00	91.199	T+22 sec	2:27:43	59.882
-413.862	T+24 sec	2:27:45	59.8860	3780.62	335.00	-211.26	1.00	157.00	10.00	0.00	-103.00	7570.00	91.199	T+24 sec	2:27:45	59.882

-413.862	T+26 sec	2:27:47	59.8850	3782.50	335.00	-211.26	1.00	157.50	10.00	0.00	-103.00	7570.00	92.001	T+26 sec	2:27:47
-413.862	T+28 sec	2:27:49	59.8880	3784.96	335.00	-211.26	1.00	158.00	10.00	0.00	-103.00	7570.00	89.600	T+28 sec	2:27:49
-413.862	T+30 sec	2:27:51	59.8880	3784.96	335.00	-211.26	1.00	158.00	10.00	0.00	-103.00	7570.00	89.600	T+30 sec	2:27:51
-413.862	T+32 sec	2:27:53	59.8900	3784.42	335.00	-214.35	1.00	158.50	10.00	0.00	-103.00	7570.00	88.000	T+32 sec	2:27:53
-413.862	T+34 sec	2:27:55	59.8940	3788.07	335.00	-214.35	1.00	159.00	10.00	0.00	-103.00	7570.00	84.799	T+34 sec	2:27:55
-413.862	T+36 sec	2:27:57	59.8940	3788.07	335.00	-214.35	1.00	159.00	10.00	0.00	-103.00	7570.00	84.799	T+36 sec	2:27:57
-413.862	T+38 sec	2:27:59	59.8930	3788.87	335.00	-214.35	1.00	159.50	10.00	0.00	-103.00	7570.00	85.599	T+38 sec	2:27:59
-413.862	$\mathrm{T}+40 \mathrm{sec}$	2:28:01	59.8940	3788.47	335.00	-214.35	2.00	160.00	10.00	0.00	-103.00	7570.00	84.799	$\mathrm{T}+40 \mathrm{sec}$	2:28:01
-413.862	$\mathrm{T}+42 \mathrm{sec}$	2:28:03	59.8940	3788.47	335.00	-214.35	2.00	160.00	10.00	0.00	-103.00	7570.00	84.799	$\mathrm{T}+42 \mathrm{sec}$	2:28:03
-413.862	$\mathrm{T}+44 \mathrm{sec}$	2:28:05	59.8910	3793.07	335.00	-214.35	3.00	160.50	10.00	0.00	-103.00	7570.00	87.201	T+44 sec	2:28:05
-413.862	T+46 sec	2:28:07	59.8850	3794.37	335.00	-212.17	4.00	161.00	10.00	0.00	-103.00	7570.00	92.001	T+46 sec	2:28:07
-413.862	T+48 sec	2:28:09	59.8850	3794.37	335.00	-212.17	4.00	161.00	10.00	0.00	-103.00	7570.00	92.001	$\mathrm{T}+48 \mathrm{sec}$	2:28:09
-413.862	T+50 sec	2:28:11	59.8850	3800.43	335.00	-212.17	5.00	161.50	10.00	0.00	-103.00	7570.00	92.001	T+50 sec	2:28:11
-413.862	T+52 sec	2:28:13	59.8870	3799.96	335.00	-212.17	6.00	162.00	10.00	0.00	-103.00	7570.00	90.399	T+52 sec	2:28:13
	T+54 sec	2:28:15	59.8870	3799.96	335.00	-212.17	6.00	162.00	10.00	0.00	-103.00	7570.00	90.399	T+54 sec	2:28:15
	T+56 sec	2:28:17	59.8880	3802.93	335.00	-212.17	7.00	162.50	10.00	0.00	-103.00	7570.00	89.600	T+56 sec	2:28:17
	T+58 sec	2:28:19	59.8900	3802.95	335.00	-212.17	8.00	163.00	10.00	0.00	-103.00	7570.00	88.000	T+58 sec	2:28:19
	T+60 sec	2:28:21	59.8900	3802.95	335.00	-212.17	8.00	163.00	10.00	0.00	-103.00	7570.00	88.000	T+60 sec	2:28:21
	T+62 sec	2:28:23	59.8890	3805.50	335.00	-215.60	9.00	163.50	10.00	0.00	-103.00	7570.00	88.800	T+62 sec	2:28:23
	T+64 sec	2:28:25	59.8730	3805.62	335.00	-215.60	10.00	164.00	10.00	0.00	-103.00	7568.00	101.599	T+64 sec	2:28:25
	T+66 sec	2:28:27	59.8730	3805.62	335.00	-215.60	10.00	164.00	10.00	0.00	-103.00	7568.00	101.599	T+66 sec	2:28:27
	T+68 sec	2:28:29	59.8570	3811.50	335.00	-215.60	11.00	164.50	10.00	0.00	-103.00	7565.00	114.401	T+68 sec	2:28:29
	T+70 sec	2:28:31	59.8520	3814.86	335.00	-215.60	12.00	165.00	10.00	0.00	-103.00	7560.00	118.399	T+70 sec	2:28:31
	T+72 sec	2:28:33	59.8520	3814.86	335.00	-215.60	12.00	165.00	10.00	0.00	-103.00	7560.00	118.399	T+72 sec	2:28:33
	T+74 sec	2:28:35	59.8580	3825.64	335.00	-215.60	13.00	165.50	10.00	0.00	-103.00	7563.00	113.599	T+74 sec	2:28:35
	T+76 sec	2:28:37	59.8660	3826.05	335.00	-218.33	14.00	166.00	10.00	0.00	-103.00	7564.00	107.199	T+76 sec	2:28:37
	T+78 sec	2:28:39	59.8660	3826.05	335.00	-218.33	14.00	166.00	10.00	0.00	-103.00	7564.00	107.199	T+78 sec	2:28:39
	T+80 sec	2:28:41	59.8650	3827.52	335.00	-218.33	15.00	166.50	10.00	0.00	-103.00	7566.00	107.999	T+80 sec	2:28:41
		2:28:43	59.8660	3826.75	335.00	-218.33	16.00	167.00	10.00	0.00	-103.00	7570.00	107.199		
		2:28:45	59.8660	3826.75	335.00	-218.33	16.00	167.00	10.00	0.00	-103.00	7570.00	107.199		
		2:28:47	59.8710	3826.45	335.00	-218.33	16.00	167.50	10.00	0.00	-103.00	7570.00	103.201		
		2:28:49	59.8790	3825.71	335.00	-218.33	16.00	168.00	10.00	0.00	-103.00	7570.00	96.799		
		2:28:51	59.8790	3825.71	335.00	-218.33	16.00	168.00	10.00	0.00	-103.00	7570.00	96.799		
		2:28:53	59.8800	3822.51	335.00	-217.38	16.00	168.50	10.00	0.00	-103.00	7570.00	95.999		
		2:28:55	59.8860	3819.08	335.00	-217.38	16.00	169.00	10.00	0.00	-103.00	7570.00	91.199		
		2:28:57	59.8860	3819.08	335.00	-217.38	16.00	169.00	10.00	0.00	-103.00	7570.00	91.199		
		2:28:59	59.8900	3816.81	335.00	-217.38	16.00	169.50	10.00	0.00	-103.00	7569.00	88.000		
		2:29:01	59.8890	3815.01	335.00	-217.38	16.00	170.00	10.00	0.00	-103.00	7575.00	88.800		
		2:29:03	59.8890	3815.01	335.00	-217.38	16.00	170.00	10.00	0.00	-103.00	7575.00	88.800		
		2:29:05	59.8930	3811.84	335.00	-217.38	16.00	170.50	10.00	0.00	-103.00	7573.00	85.599		
		2:29:07	59.9030	3809.65	335.00	-214.83	16.00	171.00	10.00	0.00	-103.00	7571.00	77.600		
		2:29:09	59.9030	3809.65	335.00	-214.83	16.00	171.00	10.00	0.00	-103.00	7571.00	77.600		
		2:29:11	59.9020	3805.59	335.00	-214.83	16.00	171.50	10.00	0.00	-103.00	7573.00	78.400		
		2:29:13	59.9040	3804.19	335.00	-214.83	16.00	172.00	10.00	0.00	-103.00	7575.00	76.801		
		2:29:15	59.9040	3804.19	335.00	-214.83	16.00	172.00	10.00	0.00	-103.00	7575.00	76.801		

2:29:17	59.9070	3793.98	335.00	-214.83	16.00	172.50	10.00	0.00	-103.00	7577.00	74.399
2:29:19	59.9160	3792.17	335.00	-214.83	16.00	173.00	10.00	0.00	-103.00	7577.00	67.200
2:29:21	59.9160	3792.17	335.00	-214.83	16.00	173.00	10.00	0.00	-103.00	7577.00	67.200
2:29:23	59.9160	3789.53	335.00	-227.66	16.00	173.50	10.00	0.00	-103.00	7578.00	67.200
2:29:25	59.9180	3788.13	335.00	-227.66	16.00	174.00	10.00	0.00	-103.00	7579.00	65.601
2:29:27	59.9180	3788.13	335.00	-227.66	16.00	174.00	10.00	0.00	-103.00	7579.00	65.601
2:29:29	59.9200	3783.03	335.00	-227.66	16.00	174.50	10.00	0.00	-103.00	7580.00	64.001
2:29:31	59.9200	3781.70	335.00	-227.66	16.00	175.00	10.00	0.00	-103.00	7581.00	64.001
2:29:33	59.9200	3781.70	335.00	-227.66	16.00	175.00	10.00	0.00	-103.00	7581.00	64.001
2:29:35	59.9170	3775.64	335.00	-227.66	16.00	175.50	10.00	0.00	-103.00	7585.00	66.400
2:29:37	59.9210	3774.60	335.00	-225.02	16.00	176.00	10.00	0.00	-103.00	7588.00	63.199
2:29:39	59.9210	3774.60	335.00	-225.02	16.00	176.00	10.00	0.00	-103.00	7588.00	63.199
2:29:41	59.9230	3773.96	335.00	-225.02	16.00	176.50	10.00	0.00	-103.00	7589.00	61.600
2:29:43	59.9250	3772.72	335.00	-225.02	0.00	177.00	10.00	0.00	-103.00	7589.00	60.001
2:29:45	59.9250	3772.72	335.00	-225.02	0.00	177.00	10.00	0.00	-103.00	7589.00	60.001
2:29:47	59.9280	3769.63	335.00	-225.02	0.00	177.50	10.00	0.00	-103.00	7590.00	57.599
2:29:49	59.9320	3768.71	335.00	-225.02	0.00	178.00	10.00	0.00	-103.00	7590.00	54.401
2:29:51	59.9320	3768.71	335.00	-225.02	0.00	178.00	10.00	0.00	-103.00	7590.00	54.401
2:29:53	59.9270	3767.02	335.00	-228.37	0.00	178.50	10.00	0.00	-103.00	7590.00	58.401
2:29:55	59.9310	3767.41	335.00	-228.37	0.00	179.00	10.00	0.00	-103.00	7591.00	55.200
2:29:57	59.9310	3767.41	335.00	-228.37	0.00	179.00	10.00	0.00	-103.00	7591.00	55.200
2:29:59	59.9290	3766.26	335.00	-228.37	0.00	179.50	10.00	0.00	-103.00	7591.00	56.799
2:30:01	59.9310	3765.67	335.00	-228.37	0.00	180.00	10.00	0.00	-103.00	7591.00	55.200
2:30:03	59.9310	3765.67	335.00	-228.37	0.00	180.00	10.00	0.00	-103.00	7591.00	55.200
2:30:05	59.9370	3766.12	335.00	-228.37	0.00	180.50	10.00	0.00	-103.00	7592.00	50.400
2:30:07	59.9450	3765.10	335.00	-234.08	0.00	181.00	10.00	0.00	-103.00	7592.00	44.000
2:30:09	59.9450	3765.10	335.00	-234.08	0.00	181.00	10.00	0.00	-103.00	7592.00	44.000
2:30:11	59.9490	3758.39	335.00	-234.08	0.00	181.50	10.00	0.00	-103.00	7593.00	40.799
2:30:13	59.9420	3753.92	335.00	-234.08	0.00	182.00	10.00	0.00	-103.00	7594.00	46.399
2:30:15	59.9420	3753.92	335.00	-234.08	0.00	182.00	10.00	0.00	-103.00	7594.00	46.399
2:30:17	59.9410	3746.89	335.00	-234.08	0.00	182.50	10.00	0.00	-103.00	7595.00	47.198
2:30:19	59.9450	3747.88	335.00	-234.08	0.00	183.00	10.00	0.00	-103.00	7655.00	44.000
2:30:21	59.9450	3747.88	335.00	-234.08	0.00	183.00	10.00	0.00	-103.00	7655.00	44.000
2:30:23	59.9480	3748.66	335.00	-228.80	0.00	183.50	10.00	0.00	-103.00	7656.00	41.599
2:30:25	59.9490	3746.71	335.00	-228.80	0.00	184.00	10.00	0.00	-103.00	7656.00	40.799
2:30:27	59.9490	3746.71	335.00	-228.80	0.00	184.00	10.00	0.00	-103.00	7656.00	40.799
2:30:29	59.9510	3742.74	335.00	-228.80	0.00	184.50	10.00	0.00	-103.00	7657.00	39.200
2:30:31	59.9530	3740.26	335.00	-228.80	0.00	185.00	10.00	0.00	-103.00	7657.00	37.601
2:30:33	59.9530	3740.26	335.00	-228.80	0.00	185.00	10.00	0.00	-103.00	7657.00	37.601
2:30:35	59.9510	3731.38	335.00	-228.80	0.00	185.50	10.00	0.00	-103.00	7658.00	39.200
2:30:37	59.9520	3727.84	335.00	-229.47	0.00	186.00	10.00	0.00	-103.00	7658.00	38.400
2:30:39	59.9520	3727.84	335.00	-229.47	0.00	186.00	10.00	0.00	-103.00	7658.00	38.400
2:30:41	59.9520	3722.65	335.00	-249.34	0.00	186.50	10.00	0.00	-103.00	7659.00	38.400
2:30:43	59.9520	3720.58	335.00	-249.34	0.00	187.00	10.00	0.00	-103.00	7659.00	38.400
2:30:45	59.9520	3720.58	335.00	-249.34	0.00	187.00	10.00	0.00	-103.00	7659.00	38.400
2:30:47	59.9540	3718.14	335.00	-249.34	0.00	187.50	10.00	0.00	-103.00	7659.00	36.801

2:30:49	59.9530	3715.75	335.00	-249.34	0.00	188.00	10.00	0.00	-103.00	7660.00	37.601
2:30:51	59.9530	3715.75	335.00	-249.34	0.00	188.00	10.00	0.00	-103.00	7660.00	37.601
2:30:53	59.9530	3713.48	335.00	-249.34	0.00	188.50	10.00	0.00	-103.00	7660.00	37.601
2:30:55	59.9540	3710.85	335.00	-258.28	0.00	189.00	10.00	0.00	-103.00	7661.00	36.801
2:30:57	59.9540	3710.85	335.00	-258.28	0.00	189.00	10.00	0.00	-103.00	7661.00	36.801
2:30:59	59.9540	3712.09	335.00	-258.28	0.00	189.50	10.00	0.00	-103.00	7661.00	36.801
2:31:01	59.9570	3714.62	335.00	-258.28	0.00	190.00	10.00	0.00	-103.00	7625.40	34.399
2:31:03	59.9570	3714.62	335.00	-258.28	0.00	190.00	10.00	0.00	-103.00	7625.40	34.399
2:31:05	59.9560	3716.17	335.00	-258.28	0.00	190.50	10.00	0.00	-103.00	7625.73	35.199
2:31:07	59.9560	3716.46	335.00	-258.28	0.00	191.00	10.00	0.00	-103.00	7626.06	35.199
2:31:09	59.9560	3716.46	335.00	-258.28	0.00	191.00	10.00	0.00	-103.00	7626.06	35.199
2:31:11	59.9550	3717.76	335.00	-258.41	0.00	191.50	10.00	0.00	-103.00	7626.39	35.999
2:31:13	59.9610	3722.36	335.00	-258.41	0.00	192.00	10.00	0.00	-103.00	7626.72	31.201
2:31:15	59.9610	3722.36	335.00	-258.41	0.00	192.00	10.00	0.00	-103.00	7626.72	31.201
2:31:17	59.9620	3722.66	335.00	-258.41	0.00	192.50	10.00	0.00	-103.00	7627.05	30.399
2:31:19	59.9680	3722.27	335.00	-258.41	0.00	193.00	10.00	0.00	-103.00	7627.38	25.601
2:31:21	59.9680	3722.27	335.00	-258.41	0.00	193.00	10.00	0.00	-103.00	7627.38	25.601
2:31:23	59.9660	3721.79	335.00	-258.41	0.00	193.50	10.00	0.00	-103.00	7627.71	27.200
2:31:25	59.9680	3723.09	335.00	-260.54	0.00	194.00	10.00	0.00	-103.00	7628.04	25.601
2:31:27	59.9680	3723.09	335.00	-260.54	0.00	194.00	10.00	0.00	-103.00	7628.04	25.601
2:31:29	59.9700	3723.43	335.00	-260.54	0.00	194.50	10.00	0.00	-103.00	7628.37	23.999
2:31:31	59.9700	3723.89	335.00	-260.54	0.00	195.00	10.00	0.00	-103.00	7628.70	23.999
2:31:33	59.9700	3723.89	335.00	-260.54	0.00	195.00	10.00	0.00	-103.00	7628.70	23.999
2:31:35	59.9690	3727.12	335.00	-260.54	0.00	195.50	10.00	0.00	-103.00	7629.03	24.799
2:31:37	59.9700	3728.05	335.00	-260.54	0.00	196.00	10.00	0.00	-103.00	7629.36	23.999
2:31:39	59.9700	3728.05	335.00	-260.54	0.00	196.00	10.00	0.00	-103.00	7629.36	23.999
2:31:41	59.9710	3732.53	335.00	-257.88	0.00	196.50	10.00	0.00	-103.00	7629.69	23.199
2:31:43	59.9730	3733.33	335.00	-257.88	0.00	197.00	10.00	0.00	-103.00	7630.02	21.600
2:31:45	59.9730	3733.33	335.00	-257.88	0.00	197.00	10.00	0.00	-103.00	7630.02	21.600
2:31:47	59.9760	3736.91	335.00	-257.88	0.00	197.50	10.00	0.00	-103.00	7630.35	19.199
2:31:49	59.9780	3736.82	335.00	-257.88	0.00	198.00	10.00	0.00	-103.00	7630.68	17.599
2:31:51	59.9780	3736.82	335.00	-257.88	0.00	198.00	10.00	0.00	-103.00	7630.68	17.599
2:31:53	59.9760	3739.94	335.00	-257.88	0.00	198.50	10.00	0.00	-103.00	7631.01	19.199
2:31:55	59.9760	3740.88	335.00	-258.59	0.00	199.00	10.00	0.00	-103.00	7631.34	19.199
2:31:57	59.9760	3740.88	335.00	-258.59	0.00	199.00	10.00	0.00	-103.00	7631.34	19.199
2:31:59	59.9780	3745.23	335.00	-258.59	0.00	199.50	10.00	0.00	-103.00	7631.67	17.599
2:32:01	59.9800	3746.61	335.00	-258.59	0.00	200.00	10.00	0.00	-103.00	7632.00	16.000
2:32:03	59.9800	3746.61	335.00	-258.59	0.00	200.00	10.00	0.00	-103.00	7632.00	16.000
2:32:05	59.9820	3750.72	335.00	-258.59	0.00	200.50	10.00	0.00	-103.00	7632.33	14.401
2:32:07	59.9800	3751.56	335.00	-258.59	0.00	201.00	10.00	0.00	-103.00	7632.66	16.000
2:32:09	59.9800	3751.56	335.00	-258.59	0.00	201.00	10.00	0.00	-103.00	7632.66	16.000
2:32:11	59.9790	3755.60	335.00	-261.91	0.00	201.50	10.00	0.00	-103.00	7632.99	16.800
2:32:13	59.9790	3756.41	335.00	-261.91	0.00	202.00	10.00	0.00	-103.00	7633.32	16.800
2:32:15	59.9790	3756.41	335.00	-261.91	0.00	202.00	10.00	0.00	-103.00	7633.32	16.800
2:32:17	59.9830	3760.41	335.00	-261.91	0.00	202.50	10.00	0.00	-103.00	7633.65	13.599
2:32:19	59.9840	3760.98	335.00	-261.91	0.00	203.00	10.00	0.00	-103.00	7633.98	12.799

2:32:21	59.9840	3760.98	335.00	-261.91	0.00	203.00	10.00	0.00	-103.00	7633.98	12.799
2:32:23	59.9880	3762.74	335.00	-261.91	0.00	203.50	10.00	0.00	-103.00	7634.31	9.601
2:32:25	59.9870	3763.21	335.00	-256.75	0.00	204.00	10.00	0.00	-103.00	7634.64	10.400
2:32:27	59.9870	3763.21	335.00	-256.75	0.00	204.00	10.00	0.00	-103.00	7634.64	10.400
2:32:29	59.9870	3766.09	335.00	-256.75	0.00	204.50	10.00	0.00	-103.00	7634.97	10.400
2:32:31	59.9930	3766.43	335.00	-256.75	0.00	205.00	10.00	0.00	-103.00	7635.30	5.600
2:32:33	59.9930	3766.43	335.00	-256.75	0.00	205.00	10.00	0.00	-103.00	7635.30	5.600
2:32:35	59.9920	3767.79	335.00	-256.75	0.00	205.50	10.00	0.00	-103.00	7635.63	6.400
2:32:37	59.9890	3768.63	335.00	-256.75	0.00	206.00	10.00	0.00	-103.00	7635.96	8.801
2:32:39	59.9890	3768.63	335.00	-256.75	0.00	206.00	10.00	0.00	-103.00	7635.96	8.801
2:32:41	59.9860	3772.44	335.00	-167.43	0.00	206.50	10.00	0.00	-103.00	7636.29	11.200
2:32:43	59.9830	3773.69	335.00	-167.43	0.00	207.00	10.00	0.00	-103.00	7636.62	13.599
2:32:45	59.9830	3773.69	335.00	-167.43	0.00	207.00	10.00	0.00	-103.00	7636.62	13.599
2:32:47	59.9880	3775.84	335.00	-167.43	0.00	207.50	10.00	0.00	-103.00	7636.95	9.601
2:32:49	59.9960	3775.36	335.00	-167.43	0.00	208.00	10.00	0.00	-103.00	7637.28	3.201
2:32:51	59.9960	3775.36	335.00	-167.43	0.00	208.00	10.00	0.00	-103.00	7637.28	3.201
2:32:53	59.9980	3775.49	335.00	-167.43	0.00	208.50	10.00	0.00	-103.00	7637.61	1.599
2:32:55	60.0010	3776.42	335.00	-164.97	0.00	209.00	10.00	0.00	-103.00	7637.94	-0.800
2:32:57	60.0010	3776.42	335.00	-164.97	0.00	209.00	10.00	0.00	-103.00	7637.94	-0.800
2:32:59	59.9990	3779.69	335.00	-164.97	0.00	209.50	10.00	0.00	-103.00	7638.27	0.800
2:33:01	59.9990	3781.26	335.00	-164.97	0.00	210.00	10.00	0.00	-103.00	7638.60	0.800
2:33:03	59.9990	3781.26	335.00	-164.97	0.00	210.00	10.00	0.00	-103.00	7638.60	0.800
2:33:05	60.0020	3783.09	335.00	-164.97	0.00	210.50	10.00	0.00	-103.00	7638.93	-1.599
2:33:07	60.0070	3783.90	335.00	-164.97	0.00	211.00	10.00	0.00	-103.00	7639.26	-5.600
2:33:09	60.0070	3783.90	335.00	-164.97	0.00	211.00	10.00	0.00	-103.00	7639.26	-5.600
2:33:11	60.0080	3785.77	335.00	-157.63	0.00	211.50	10.00	0.00	-103.00	7639.59	-6.400
2:33:13	60.0140	3785.46	335.00	-157.63	0.00	212.00	10.00	0.00	-103.00	7639.92	-11.200
2:33:15	60.0140	3785.46	335.00	-157.63	0.00	212.00	10.00	0.00	-103.00	7639.92	-11.200
2:33:17	60.0170	3786.30	335.00	-157.63	0.00	212.50	10.00	0.00	-103.00	7640.25	-13.599
2:33:19	60.0210	3787.26	335.00	-157.63	0.00	213.00	10.00	0.00	-103.00	7640.58	-16.800
2:33:21	60.0210	3787.26	335.00	-157.63	0.00	213.00	10.00	0.00	-103.00	7640.58	-16.800
2:33:23	60.0170	3787.96	335.00	-157.63	0.00	213.50	10.00	0.00	-103.00	7640.91	-13.599
2:33:25	60.0190	3788.03	335.00	-155.53	0.00	214.00	10.00	0.00	-103.00	7641.24	-15.201
2:33:27	60.0190	3788.03	335.00	-155.53	0.00	214.00	10.00	0.00	-103.00	7641.24	-15.201
2:33:29	60.0230	3789.22	335.00	-155.53	0.00	214.50	10.00	0.00	-103.00	7641.57	-18.399
2:33:31	60.0250	3787.54	335.00	-155.53	0.00	215.00	10.00	0.00	-103.00	7641.90	-20.001
2:33:33	60.0250	3787.54	335.00	-155.53	0.00	215.00	10.00	0.00	-103.00	7641.90	-20.001
2:33:35	60.0210	3786.08	335.00	-155.53	0.00	215.50	10.00	0.00	-103.00	7642.23	-16.800
2:33:37	60.0240	3787.93	335.00	-155.53	0.00	216.00	10.00	0.00	-103.00	7642.56	-19.199
2:33:39	60.0240	3787.93	335.00	-155.53	0.00	216.00	10.00	0.00	-103.00	7642.56	-19.199
2:33:41	60.0240	3786.87	335.00	-160.45	0.00	216.50	10.00	0.00	-103.00	7642.89	-19.199
2:33:43	60.0200	3786.55	335.00	-160.45	0.00	217.00	10.00	0.00	-103.00	7643.22	-16.000
2:33:45	60.0200	3786.55	335.00	-160.45	0.00	217.00	10.00	0.00	-103.00	7643.22	-16.000
2:33:47	60.0250	3785.02	335.00	-160.45	0.00	217.50	10.00	0.00	-103.00	7643.55	-20.001
2:33:49	60.0200	3785.61	335.00	-160.45	0.00	218.00	10.00	0.00	-103.00	7643.88	-16.000
2:33:51	60.0200	3785.61	335.00	-160.45	0.00	218.00	10.00	0.00	-103.00	7643.88	-16.000

2:33:53	60.0200	3785.80	335.00	-160.45	0.00	218.50	10.00	0.00	-103.00	7644.21	-16.000
2:33:55	60.0220	3786.86	335.00	-163.96	0.00	219.00	10.00	0.00	-103.00	7644.54	-17.599
2:33:57	60.0220	3786.86	335.00	-163.96	0.00	219.00	10.00	0.00	-103.00	7644.54	-17.599
2:33:59	60.0220	3785.25	335.00	-163.96	0.00	219.50	10.00	0.00	-103.00	7644.87	-17.599
2:34:01	60.0210	3785.73	335.00	-163.96	0.00	220.00	10.00	0.00	-103.00	7645.20	-16.800
2:34:03	60.0210	3785.73	335.00	-163.96	0.00	220.00	10.00	0.00	-103.00	7645.20	-16.800
2:34:05	60.0230	3785.82	335.00	-163.96	0.00	220.50	10.00	0.00	-103.00	7645.53	-18.399
2:34:07	60.0220	3785.80	335.00	-163.96	0.00	221.00	10.00	0.00	-103.00	7645.86	-17.599
2:34:09	60.0220	3785.80	335.00	-163.96	0.00	221.00	10.00	0.00	-103.00	7645.86	-17.599
2:34:11	60.0190	3786.94	335.00	-166.07	0.00	221.50	10.00	0.00	-103.00	7646.19	-15.201
2:34:13	60.0180	3787.63	335.00	-166.07	0.00	222.00	10.00	0.00	-103.00	7646.52	-14.401
2:34:15	60.0180	3787.63	335.00	-166.07	0.00	222.00	10.00	0.00	-103.00	7646.52	-14.401
2:34:17	60.0180	3789.67	335.00	-166.07	0.00	222.50	10.00	0.00	-103.00	7646.85	-14.401
2:34:19	60.0190	3789.40	335.00	-166.07	0.00	223.00	10.00	0.00	-103.00	7647.18	-15.201
2:34:21	60.0190	3789.40	335.00	-166.07	0.00	223.00	10.00	0.00	-103.00	7647.18	-15.201
2:34:23	60.0190	3789.18	335.00	-166.07	0.00	223.50	10.00	0.00	-103.00	7647.51	-15.201
2:34:25	60.0150	3789.37	335.00	-163.77	0.00	224.00	10.00	0.00	-103.00	7647.84	-12.000
2:34:27	60.0150	3789.37	335.00	-163.77	0.00	224.00	10.00	0.00	-103.00	7647.84	-12.000
2:34:29	60.0160	3788.66	335.00	-163.77	0.00	224.50	10.00	0.00	-103.00	7648.17	-12.799
2:34:31	60.0130	3788.93	335.00	-163.77	0.00	225.00	10.00	0.00	-103.00	7648.50	-10.400
2:34:33	60.0130	3788.93	335.00	-163.77	0.00	225.00	10.00	0.00	-103.00	7648.50	-10.400
2:34:35	60.0120	3790.81	335.00	-163.77	0.00	225.50	10.00	0.00	-103.00	7648.83	-9.601
2:34:37	60.0100	3790.41	335.00	-163.77	0.00	226.00	10.00	0.00	-103.00	7649.16	-7.999
2:34:39	60.0100	3790.41	335.00	-163.77	0.00	226.00	10.00	0.00	-103.00	7649.16	-7.999
2:34:41	60.0070	3791.54	335.00	-165.10	0.00	226.50	10.00	0.00	-103.00	7649.49	-5.600
2:34:43	60.0090	3792.95	335.00	-165.10	0.00	227.00	10.00	0.00	-103.00	7649.82	-7.199
2:34:45	60.0090	3792.95	335.00	-165.10	0.00	227.00	10.00	0.00	-103.00	7649.82	-7.199
2:34:47	60.0090	3791.44	335.00	-165.10	0.00	227.50	10.00	0.00	-103.00	7650.15	-7.199
2:34:49	60.0030	3791.43	335.00	-165.10	0.00	228.00	10.00	0.00	-103.00	7650.48	-2.399
2:34:51	60.0030	3791.43	335.00	-165.10	0.00	228.00	10.00	0.00	-103.00	7650.48	-2.399
2:34:53	59.9990	3790.46	335.00	-165.10	0.00	228.50	10.00	0.00	-103.00	7650.81	0.800
2:34:55	59.9920	3790.22	335.00	-165.48	0.00	229.00	10.00	0.00	-103.00	7651.14	6.400
2:34:57	59.9920	3790.22	335.00	-165.48	0.00	229.00	10.00	0.00	-103.00	7651.14	6.400
2:34:59	59.9910	3788.46	335.00	-165.48	0.00	229.50	10.00	0.00	-103.00	7651.47	7.199
2:35:01	59.9920	3788.10	335.00	-165.48	0.00	230.00	10.00	0.00	-103.00	7651.80	6.400
2:35:03	59.9920	3788.10	335.00	-165.48	0.00	230.00	10.00	0.00	-103.00	7651.80	6.400
2:35:05	59.9880	3788.19	335.00	-165.48	0.00	230.50	10.00	0.00	-103.00	7652.13	9.601
2:35:07	59.9850	3788.50	335.00	-165.48	0.00	231.00	10.00	0.00	-103.00	7652.46	12.000
2:35:09	59.9850	3788.50	335.00	-165.48	0.00	231.00	10.00	0.00	-103.00	7652.46	12.000
2:35:11	59.9840	3788.57	335.00	-206.46	0.00	231.50	10.00	0.00	-103.00	7652.79	12.799
2:35:13	59.9840	3788.10	335.00	-206.46	0.00	232.00	10.00	0.00	-103.00	7616.00	12.799
2:35:15	59.9840	3788.10	335.00	-206.46	0.00	232.00	10.00	0.00	-103.00	7616.00	12.799
2:35:17	59.9820	3786.45	335.00	-206.46	0.00	232.50	10.00	0.00	-103.00	7626.00	14.401
2:35:19	59.9820	3787.73	335.00	-206.46	0.00	233.00	10.00	0.00	-103.00	7632.00	14.401
2:35:21	59.9820	3787.73	335.00	-206.46	0.00	233.00	10.00	0.00	-103.00	7632.00	14.401
2:35:23	59.9790	3789.29	335.00	-206.46	0.00	233.50	10.00	0.00	-103.00	7632.00	16.800

2:35:25	59.9760	3788.26	335.00	-211.26	0.00	234.00	10.00	0.00	-103.00	7632.00	19.199
2:35:27	59.9760	3788.26	335.00	-211.26	0.00	234.00	10.00	0.00	-103.00	7632.00	19.199
2:35:29	59.9760	3790.47	335.00	-211.26	1.00	234.50	10.00	0.00	-103.00	7632.00	19.199
2:35:31	59.9820	3790.66	335.00	-211.26	1.00	235.00	10.00	0.00	-103.00	7632.00	14.401
2:35:33	59.9820	3790.66	335.00	-211.26	1.00	235.00	10.00	0.00	-103.00	7632.00	14.401
2:35:35	59.9780	3789.67	335.00	-211.26	1.00	235.50	10.00	0.00	-103.00	7632.00	17.599
2:35:37	59.9740	3789.27	335.00	-211.26	1.00	236.00	10.00	0.00	-103.00	7632.00	20.801
2:35:39	59.9740	3789.27	335.00	-211.26	1.00	236.00	10.00	0.00	-103.00	7632.00	20.801
2:35:41	59.9760	3790.43	335.00	-214.35	1.00	236.50	10.00	0.00	-103.00	7632.00	19.199
2:35:43	59.9770	3789.91	335.00	-214.35	1.00	237.00	10.00	0.00	-103.00	7632.00	18.399
2:35:45	59.9770	3789.91	335.00	-214.35	1.00	237.00	10.00	0.00	-103.00	7632.00	18.399
2:35:47	59.9750	3787.44	335.00	-214.35	1.00	237.50	10.00	0.00	-103.00	7632.00	20.001
2:35:49	59.9690	3788.96	335.00	-214.35	2.00	238.00	10.00	0.00	-103.00	7632.00	24.799
2:35:51	59.9690	3788.96	335.00	-214.35	2.00	238.00	10.00	0.00	-103.00	7632.00	24.799
2:35:53	59.9700	3791.88	335.00	-214.35	3.00	238.50	10.00	0.00	-103.00	7632.00	23.999
2:35:55	59.9730	3792.91	335.00	-212.17	4.00	239.00	10.00	0.00	-103.00	7632.00	21.600
2:35:57	59.9730	3792.91	335.00	-212.17	4.00	239.00	10.00	0.00	-103.00	7632.00	21.600
2:35:59	59.9780	3789.13	335.00	-212.17	5.00	239.50	10.00	0.00	-103.00	7632.00	17.599
2:36:01	59.9780	3788.08	335.00	-212.17	6.00	240.00	10.00	0.00	-103.00	7632.00	17.599
2:36:03	59.9780	3788.08	335.00	-212.17	6.00	240.00	10.00	0.00	-103.00	7632.00	17.599
2:36:05	59.9750	3787.14	335.00	-212.17	7.00	240.50	10.00	0.00	-103.00	7632.00	20.001
2:36:07	59.9760	3787.16	335.00	-212.17	8.00	241.00	10.00	0.00	-103.00	7632.00	19.199
2:36:09	59.9760	3787.16	335.00	-212.17	8.00	241.00	10.00	0.00	-103.00	7632.00	19.199
2:36:11	59.9750	3787.40	335.00	-215.60	9.00	241.50	10.00	0.00	-103.00	7632.00	20.001
2:36:13	59.9690	3786.49	335.00	-215.60	10.00	242.00	10.00	0.00	-103.00	7632.00	24.799
2:36:15	59.9690	3786.49	335.00	-215.60	10.00	242.00	10.00	0.00	-103.00	7632.00	24.799
2:36:17	59.9660	3789.21	335.00	-215.60	11.00	242.50	10.00	0.00	-103.00	7632.00	27.200
2:36:19	59.9660	3790.51	335.00	-215.60	12.00	243.00	10.00	0.00	-103.00	7632.00	27.200
2:36:21	59.9660	3790.51	335.00	-215.60	12.00	243.00	10.00	0.00	-103.00	7632.00	27.200
2:36:23	59.9690	3792.22	335.00	-215.60	13.00	243.50	10.00	0.00	-103.00	7632.00	24.799
2:36:25	59.9680	3790.96	335.00	-218.33	14.00	244.00	10.00	0.00	-103.00	7632.00	25.601
2:36:27	59.9680	3790.96	335.00	-218.33	14.00	244.00	10.00	0.00	-103.00	7632.00	25.601
2:36:29	59.9650	3789.03	335.00	-218.33	15.00	244.50	10.00	0.00	-103.00	7632.00	28.000
2:36:31	59.9700	3789.17	335.00	-218.33	16.00	245.00	10.00	0.00	-103.00	7632.00	23.999
2:36:33	59.9700	3789.17	335.00	-218.33	16.00	245.00	10.00	0.00	-103.00	7632.00	23.999
2:36:35	59.9720	3785.69	335.00	-218.33	16.00	245.50	10.00	0.00	-103.00	7632.00	22.400
2:36:37	59.9670	3784.83	335.00	-218.33	16.00	246.00	10.00	0.00	-103.00	7632.00	26.401
2:36:39	59.9670	3784.83	335.00	-218.33	16.00	246.00	10.00	0.00	-103.00	7632.00	26.401
2:36:41	59.9690	3784.32	335.00	-217.38	16.00	246.50	10.00	0.00	-103.00	7632.00	24.799
2:36:43	59.9690	3782.81	335.00	-217.38	16.00	247.00	10.00	0.00	-103.00	7632.00	24.799
2:36:45	59.9690	3782.81	335.00	-217.38	16.00	247.00	10.00	0.00	-103.00	7632.00	24.799
2:36:47	59.9670	3779.35	335.00	-217.38	16.00	247.50	10.00	0.00	-103.00	7631.00	26.401
2:36:49	59.9660	3779.06	335.00	-217.38	16.00	248.00	10.00	0.00	-103.00	7625.00	27.200
2:36:51	59.9660	3779.06	335.00	-217.38	16.00	248.00	10.00	0.00	-103.00	7625.00	27.200
2:36:53	59.9650	3779.21	335.00	-217.38	16.00	248.50	10.00	0.00	-103.00	7623.00	28.000
2:36:55	59.9670	3779.33	335.00	-214.83	16.00	249.00	10.00	0.00	-103.00	7621.00	26.401

2:36:57	59.9670	3779.33	335.00	-214.83	16.00	249.00	10.00	0.00	-103.00	7621.00	26.401
2:36:59	59.9650	3775.65	335.00	-214.83	16.00	249.50	10.00	0.00	-103.00	7623.00	28.000
2:37:01	59.9640	3776.60	335.00	-214.83	16.00	250.00	10.00	0.00	-103.00	7625.00	28.799
2:37:03	59.9640	3776.60	335.00	-214.83	16.00	250.00	10.00	0.00	-103.00	7625.00	28.799
2:37:05	59.9700	3776.02	335.00	-214.83	16.00	250.50	10.00	0.00	-103.00	7627.00	23.999
2:37:07	59.9690	3773.17	335.00	-214.83	16.00	251.00	10.00	0.00	-103.00	7628.00	24.799
2:37:09	59.9690	3773.17	335.00	-214.83	16.00	251.00	10.00	0.00	-103.00	7628.00	24.799
2:37:11	59.9680	3768.79	335.00	-227.66	16.00	251.50	10.00	0.00	-103.00	7628.00	25.601
2:37:13	59.9650	3768.50	335.00	-227.66	16.00	252.00	10.00	0.00	-103.00	7629.00	28.000
2:37:15	59.9650	3768.50	335.00	-227.66	16.00	252.00	10.00	0.00	-103.00	7629.00	28.000
2:37:17	59.9700	3767.37	335.00	-227.66	16.00	252.50	10.00	0.00	-103.00	7630.00	23.999
2:37:19	59.9680	3764.79	335.00	-227.66	16.00	253.00	10.00	0.00	-103.00	7631.00	25.601
2:37:21	59.9680	3764.79	335.00	-227.66	16.00	253.00	10.00	0.00	-103.00	7631.00	25.601
2:37:23	59.9650	3759.59	335.00	-227.66	16.00	253.50	10.00	0.00	-103.00	7635.00	28.000
2:37:25	59.9690	3761.89	335.00	-225.02	16.00	254.00	10.00	0.00	-103.00	7638.00	24.799
2:37:27	59.9690	3761.89	335.00	-225.02	16.00	254.00	10.00	0.00	-103.00	7638.00	24.799
2:37:29	59.9670	3760.58	335.00	-225.02	16.00	254.50	10.00	0.00	-103.00	7639.00	26.401
2:37:31	59.9660	3760.16	335.00	-225.02	16.00	255.00	10.00	0.00	-103.00	7642.00	27.200
2:37:33	59.9660	3760.16	335.00	-225.02	16.00	255.00	10.00	0.00	-103.00	7642.00	27.200
2:37:35	59.9790	3759.49	335.00	-225.02	16.00	255.50	10.00	0.00	-103.00	7644.00	16.800
2:37:37	59.9830	3757.77	335.00	-225.02	16.00	256.00	10.00	0.00	-103.00	7645.00	13.599
2:37:39	59.9830	3757.77	335.00	-225.02	16.00	256.00	10.00	0.00	-103.00	7645.00	13.599
2:37:41	59.9740	3753.09	335.00	-228.37	16.00	256.50	10.00	0.00	-103.00	7647.00	20.801
2:37:43	59.9650	3751.64	335.00	-228.37	16.00	257.00	10.00	0.00	-103.00	7648.00	28.000
2:37:45	59.9650	3751.64	335.00	-228.37	16.00	257.00	10.00	0.00	-103.00	7648.00	28.000
2:37:47	59.9620	3758.22	335.00	-228.37	16.00	257.50	10.00	0.00	-103.00	7649.00	30.399
2:37:49	59.9610	3759.25	335.00	-228.37	16.00	258.00	10.00	0.00	-103.00	7650.00	31.201
2:37:51	59.9610	3759.25	335.00	-228.37	16.00	258.00	10.00	0.00	-103.00	7650.00	31.201
2:37:53	59.9610	3760.96	335.00	-228.37	16.00	258.50	10.00	0.00	-103.00	7651.00	31.201
2:37:55	59.9630	3762.02	335.00	-234.08	16.00	259.00	10.00	0.00	-103.00	7652.00	29.599
2:37:57	59.9630	3762.02	335.00	-234.08	16.00	259.00	10.00	0.00	-103.00	7652.00	29.599
2:37:59	59.9590	3763.10	335.00	-234.08	16.00	259.50	10.00	0.00	-103.00	7653.00	32.800
2:38:01	59.9510	3763.86	335.00	-234.08	16.00	260.00	10.00	0.00	-103.00	7654.00	39.200
2:38:03	59.9510	3763.86	335.00	-234.08	16.00	260.00	10.00	0.00	-103.00	7654.00	39.200
2:38:05	59.9530	3766.13	335.00	-234.08	16.00	260.50	10.00	0.00	-103.00	7655.00	37.601
2:38:07	59.9570	3768.34	335.00	-234.08	16.00	261.00	10.00	0.00	-103.00	7655.00	34.399
2:38:09	59.9570	3768.34	335.00	-234.08	16.00	261.00	10.00	0.00	-103.00	7655.00	34.399
2:38:11	59.9560	3767.44	335.00	-228.80	16.00	261.50	10.00	0.00	-103.00	7656.00	35.199
2:38:13	59.9630	3765.61	335.00	-228.80	16.00	262.00	10.00	0.00	-103.00	7656.00	29.599
2:38:15	59.9630	3765.61	335.00	-228.80	16.00	262.00	10.00	0.00	-103.00	7656.00	29.599
2:38:17	59.9610	3761.57	335.00	-228.80	16.00	262.50	10.00	0.00	-103.00	7657.00	31.201
2:38:19	59.9630	3761.92	335.00	-228.80	16.00	263.00	10.00	0.00	-103.00	7657.00	29.599
2:38:21	59.9630	3761.92	335.00	-228.80	16.00	263.00	10.00	0.00	-103.00	7657.00	29.599
2:38:23	59.9630	3758.52	335.00	-228.80	16.00	263.50	10.00	0.00	-103.00	7658.00	29.599
2:38:25	59.9680	3752.43	335.00	-229.47	16.00	264.00	10.00	0.00	-103.00	7658.00	25.601
2:38:27	59.9680	3752.43	335.00	-229.47	16.00	264.00	10.00	0.00	-103.00	7658.00	25.601

2:38:29	59.9680	3753.83	335.00	-229.47	16.00	264.50	10.00	0.00	-103.00	7659.00	25.601
2:38:31	59.9700	3753.51	335.00	-229.47	16.00	265.00	10.00	0.00	-103.00	7659.00	23.999
2:38:33	59.9700	3753.51	335.00	-229.47	16.00	265.00	10.00	0.00	-103.00	7659.00	23.999
2:38:35	59.9730	3752.74	335.00	-229.47	16.00	265.50	10.00	0.00	-103.00	7659.00	21.600
2:38:37	59.9650	3753.18	335.00	-229.47	16.00	266.00	10.00	0.00	-103.00	7660.00	28.000
2:38:39	59.9650	3753.18	335.00	-229.47	16.00	266.00	10.00	0.00	-103.00	7660.00	28.000
2:38:41	59.9670	3753.29	335.00	-228.98	16.00	266.50	10.00	0.00	-103.00	7660.00	26.401
2:38:43	59.9720	3752.87	335.00	-228.98	16.00	267.00	10.00	0.00	-103.00	7661.00	22.400
2:38:45	59.9720	3752.87	335.00	-228.98	16.00	267.00	10.00	0.00	-103.00	7661.00	22.400
2:38:47	59.9760	3749.40	335.00	-228.98	16.00	267.50	10.00	0.00	-103.00	7661.00	19.199
2:38:49	59.9690	3747.48	335.00	-228.98	16.00	268.00	10.00	0.00	-103.00	7662.00	24.799
2:38:51	59.9690	3747.48	335.00	-228.98	16.00	268.00	10.00	0.00	-103.00	7662.00	24.799
2:38:53	59.9730	3741.29	335.00	-228.98	16.00	268.50	10.00	0.00	-103.00	7662.00	21.600
2:38:55	59.9780	3746.65	335.00	-219.98	16.00	269.00	10.00	0.00	-103.00	7663.00	17.599
2:38:57	59.9780	3746.65	335.00	-219.98	16.00	269.00	10.00	0.00	-103.00	7663.00	17.599
2:38:59	59.9810	3743.35	335.00	-219.98	16.00	269.50	10.00	0.00	-103.00	7663.00	15.201
2:39:01	59.9810	3741.62	335.00	-219.98	16.00	270.00	10.00	0.00	-103.00	7664.00	15.201
2:39:03	59.9810	3741.62	335.00	-219.98	16.00	270.00	10.00	0.00	-103.00	7664.00	15.201
2:39:05	59.9820	3738.48	335.00	-219.98	16.00	270.50	10.00	0.00	-103.00	7664.00	14.401
2:39:07	59.9840	3738.90	335.00	-219.98	16.00	271.00	10.00	0.00	-103.00	7665.00	12.799
2:39:09	59.9840	3738.90	335.00	-219.98	16.00	271.00	10.00	0.00	-103.00	7665.00	12.799
2:39:11	59.9820	3737.27	335.00	-229.09	16.00	271.50	10.00	0.00	-103.00	7666.00	14.401
2:39:13	59.9790	3736.31	335.00	-229.09	16.00	272.00	10.00	0.00	-103.00	7666.00	16.800
2:39:15	59.9790	3736.31	335.00	-229.09	16.00	272.00	10.00	0.00	-103.00	7666.00	16.800
2:39:17	59.9800	3735.45	335.00	-229.09	16.00	272.50	10.00	0.00	-103.00	7667.00	16.000
2:39:19	59.9780	3735.65	335.00	-229.09	16.00	273.00	10.00	0.00	-103.00	7668.00	17.599
2:39:21	59.9780	3735.65	335.00	-229.09	16.00	273.00	10.00	0.00	-103.00	7668.00	17.599
2:39:23	59.9800	3738.01	335.00	-229.09	16.00	273.50	10.00	0.00	-103.00	7668.00	16.000
2:39:25	59.9800	3736.75	335.00	-229.66	16.00	274.00	10.00	0.00	-103.00	7669.00	16.000
2:39:27	59.9800	3736.75	335.00	-229.66	16.00	274.00	10.00	0.00	-103.00	7669.00	16.000
2:39:29	59.9780	3736.07	335.00	-229.66	16.00	274.50	10.00	0.00	-103.00	7669.00	17.599
2:39:31	59.9720	3736.09	335.00	-229.66	16.00	275.00	10.00	0.00	-103.00	7670.00	22.400
2:39:33	59.9720	3736.09	335.00	-229.66	16.00	275.00	10.00	0.00	-103.00	7670.00	22.400
2:39:35	59.9710	3738.57	335.00	-229.66	16.00	275.50	10.00	0.00	-103.00	7670.00	23.199
2:39:37	59.9740	3738.87	335.00	-229.66	16.00	276.00	10.00	0.00	-103.00	7671.00	20.801
2:39:39	59.9740	3738.87	335.00	-229.66	16.00	276.00	10.00	0.00	-103.00	7671.00	20.801
2:39:41	59.9750	3738.65	335.00	-229.23	16.00	276.50	10.00	0.00	-103.00	7671.00	20.001
2:39:43	59.9720	3737.68	335.00	-229.23	16.00	277.00	10.00	0.00	-103.00	7672.00	22.400
2:39:45	59.9720	3737.68	335.00	-229.23	16.00	277.00	10.00	0.00	-103.00	7672.00	22.400
2:39:47	59.9690	3737.89	335.00	-229.23	16.00	277.50	10.00	0.00	-103.00	7673.00	24.799
2:39:49	59.9740	3740.02	335.00	-229.23	16.00	278.00	10.00	0.00	-103.00	7673.00	20.801
2:39:51	59.9740	3740.02	335.00	-229.23	16.00	278.00	10.00	0.00	-103.00	7673.00	20.801
2:39:53	59.9720	3742.05	350.00	-229.23	16.00	278.50	10.00	0.00	-103.00	7673.00	22.400
2:39:55	59.9720	3742.42	350.00	-231.41	16.00	279.00	10.00	0.00	-103.00	7673.00	22.400
2:39:57	59.9720	3742.42	350.00	-231.41	16.00	279.00	10.00	0.00	-103.00	7673.00	22.400
2:39:59	59.9770	3742.25	350.00	-231.41	16.00	279.50	10.00	0.00	-103.00	7673.00	18.399

2:40:01	59.9780	3741.72	350.00	-231.41	16.00	280.00	10.00	0.00	-103.00	7673.00	17.599
2:40:03	59.9780	3741.72	350.00	-231.41	16.00	280.00	10.00	0.00	-103.00	7673.00	17.599
2:40:05	59.9760	3740.63	350.00	-231.41	16.00	280.50	10.00	0.00	-103.00	7673.00	19.199
2:40:07	59.9740	3739.96	350.00	-231.41	16.00	281.00	10.00	0.00	-103.00	7673.00	20.801
2:40:09	59.9740	3739.96	350.00	-231.41	16.00	281.00	10.00	0.00	-103.00	7673.00	20.801
2:40:11	59.9770	3742.83	350.00	-218.62	16.00	281.50	10.00	0.00	-103.00	7673.00	18.399
2:40:13	59.9780	3741.27	350.00	-218.62	16.00	282.00	10.00	0.00	-103.00	7673.00	17.599
2:40:15	59.9780	3741.27	350.00	-218.62	16.00	282.00	10.00	0.00	-103.00	7673.00	17.599
2:40:17	59.9790	3738.97	350.00	-218.62	16.00	282.50	10.00	0.00	-103.00	7673.00	16.800
2:40:19	59.9770	3738.71	350.00	-218.62	16.00	283.00	10.00	0.00	-103.00	7673.00	18.399
2:40:21	59.9770	3738.71	350.00	-218.62	16.00	283.00	10.00	0.00	-103.00	7673.00	18.399
2:40:23	59.9740	3739.86	350.00	-218.62	16.00	283.50	10.00	0.00	-103.00	7673.00	20.801
2:40:25	59.9710	3738.10	350.00	-213.54	16.00	284.00	10.00	0.00	-103.00	7673.00	23.199
2:40:27	59.9710	3738.10	350.00	-213.54	16.00	284.00	10.00	0.00	-103.00	7673.00	23.199
2:40:29	59.9710	3743.51	350.00	-213.54	16.00	284.50	10.00	0.00	-103.00	7673.00	23.199
2:40:31	59.9680	3743.42	350.00	-213.54	16.00	285.00	10.00	0.00	-103.00	7673.00	25.601
2:40:33	59.9680	3743.42	350.00	-213.54	16.00	285.00	10.00	0.00	-103.00	7673.00	25.601
2:40:35	59.9660	3745.74	350.00	-213.54	16.00	285.50	10.00	0.00	-103.00	7674.00	27.200
2:40:37	59.9710	3747.34	350.00	-213.54	16.00	286.00	10.00	0.00	-103.00	7675.00	23.199
2:40:39	59.9710	3747.34	350.00	-213.54	16.00	286.00	10.00	0.00	-103.00	7675.00	23.199
2:40:41	59.9730	3749.75	350.00	-225.65	16.00	286.50	10.00	0.00	-103.00	7676.00	21.600
2:40:43	59.9690	3746.22	350.00	-225.65	16.00	287.00	10.00	0.00	-103.00	7677.00	24.799
2:40:45	59.9690	3746.22	350.00	-225.65	16.00	287.00	10.00	0.00	-103.00	7677.00	24.799
2:40:47	59.9720	3743.75	350.00	-225.65	16.00	287.50	10.00	0.00	-103.00	7678.00	22.400
2:40:49	59.9730	3743.15	350.00	-225.65	16.00	288.00	10.00	0.00	-103.00	7679.00	21.600
2:40:51	59.9730	3743.15	350.00	-225.65	16.00	288.00	10.00	0.00	-103.00	7679.00	21.600
2:40:53	59.9700	3739.45	350.00	-225.65	16.00	288.50	10.00	0.00	-103.00	7680.00	23.999
2:40:55	59.9740	3733.38	350.00	-212.57	16.00	289.00	10.00	0.00	-103.00	7681.00	20.801
2:40:57	59.9740	3733.38	350.00	-212.57	16.00	289.00	10.00	0.00	-103.00	7681.00	20.801
2:40:59	59.9820	3737.58	350.00	-212.57	16.00	289.50	10.00	0.00	-103.00	7682.00	14.401
2:41:01	59.9850	3736.23	350.00	-212.57	16.00	290.00	10.00	0.00	-103.00	7684.00	12.000
2:41:03	59.9850	3736.23	350.00	-212.57	16.00	290.00	10.00	0.00	-103.00	7684.00	12.000
2:41:05	59.9850	3733.43	350.00	-212.57	16.00	290.50	10.00	0.00	-103.00	7685.00	12.000
2:41:07	59.9890	3733.12	350.00	-212.57	16.00	291.00	10.00	0.00	-103.00	7687.00	8.801
2:41:09	59.9890	3733.12	350.00	-212.57	16.00	291.00	10.00	0.00	-103.00	7687.00	8.801
2:41:11	59.9890	3729.18	350.00	-219.90	16.00	291.50	10.00	0.00	-103.00	7689.00	8.801
2:41:13	59.9870	3725.46	350.00	-219.90	16.00	292.00	10.00	0.00	-103.00	7690.00	10.400
2:41:15	59.9870	3725.46	350.00	-219.90	16.00	292.00	10.00	0.00	-103.00	7690.00	10.400
2:41:17	59.9900	3720.11	350.00	-219.90	16.00	292.50	10.00	0.00	-103.00	7692.00	7.999
2:41:19	59.9960	3720.94	350.00	-219.90	16.00	293.00	10.00	0.00	-103.00	7692.00	3.201
2:41:21	59.9960	3720.94	350.00	-219.90	16.00	293.00	10.00	0.00	-103.00	7692.00	3.201
2:41:23	60.0010	3725.68	350.00	-219.90	16.00	293.50	10.00	0.00	-103.00	7693.00	-0.800
2:41:25	60.0040	3727.75	350.00	-231.18	16.00	294.00	10.00	0.00	-103.00	7693.00	-3.201
2:41:27	60.0040	3727.75	350.00	-231.18	16.00	294.00	10.00	0.00	-103.00	7693.00	-3.201
2:41:29	60.0060	3727.68	350.00	-231.18	16.00	294.50	10.00	0.00	-103.00	7694.00	-4.800
2:41:31	60.0140	3727.23	350.00	-231.18	16.00	295.00	10.00	0.00	-103.00	7694.00	-11.200

2:41:33	60.0140	3727.23	350.00	-231.18	16.00	295.00	10.00	0.00	-103.00	7694.00	-11.200
2:41:35	60.0190	3726.45	350.00	-231.18	16.00	295.50	10.00	0.00	-103.00	7695.00	-15.201
2:41:37	60.0250	3726.02	350.00	-231.18	16.00	296.00	10.00	0.00	-103.00	7695.00	-20.001
2:41:39	60.0250	3726.02	350.00	-231.18	16.00	296.00	10.00	0.00	-103.00	7695.00	-20.001
2:41:41	60.0260	3716.37	350.00	-226.63	16.00	296.50	10.00	0.00	-103.00	7695.00	-20.801
2:41:43	60.0290	3717.33	350.00	-226.63	16.00	297.00	10.00	0.00	-103.00	7696.00	-23.199
2:41:45	60.0290	3717.33	350.00	-226.63	16.00	297.00	10.00	0.00	-103.00	7696.00	-23.199
2:41:47	60.0290	3717.14	350.00	-226.63	16.00	297.50	10.00	0.00	-103.00	7696.00	-23.199
2:41:49	60.0360	3715.17	350.00	-226.63	16.00	298.00	10.00	0.00	-103.00	7697.00	-28.799
2:41:51	60.0360	3715.17	350.00	-226.63	16.00	298.00	10.00	0.00	-103.00	7697.00	-28.799
2:41:53	60.0370	3710.28	350.00	-226.63	16.00	298.50	10.00	0.00	-103.00	7697.00	-29.599
2:41:55	60.0360	3710.16	350.00	-227.26	16.00	299.00	10.00	0.00	-103.00	7697.00	-28.799
2:41:57	60.0360	3710.16	350.00	-227.26	16.00	299.00	10.00	0.00	-103.00	7697.00	-28.799
2:41:59	60.0410	3698.59	350.00	-227.26	16.00	299.50	10.00	0.00	-103.00	7698.00	-32.800
2:42:01	60.0440	3704.59	350.00	-227.26	16.00	300.00	10.00	0.00	-103.00	7698.00	-35.199
2:42:03	60.0440	3704.59	350.00	-227.26	16.00	300.00	10.00	0.00	-103.00	7698.00	-35.199
2:42:05	60.0430	3702.48	350.00	-227.26	16.00	300.50	10.00	0.00	-103.00	7698.33	-34.399
2:42:07	60.0480	3701.32	350.00	-227.26	16.00	301.00	10.00	0.00	-103.00	7698.66	-38.400
2:42:09	60.0480	3701.32	350.00	-227.26	16.00	301.00	10.00	0.00	-103.00	7698.66	-38.400
2:42:11	60.0460	3699.53	350.00	-229.29	16.00	301.50	10.00	0.00	-103.00	7698.99	-36.801
2:42:13	60.0430	3699.73	350.00	-229.29	16.00	302.00	10.00	0.00	-103.00	7699.32	-34.399
2:42:15	60.0430	3699.73	350.00	-229.29	16.00	302.00	10.00	0.00	-103.00	7699.32	-34.399
2:42:17	60.0430	3690.48	350.00	-229.29	16.00	302.50	10.00	0.00	-103.00	7699.65	-34.399
2:42:19	60.0430	3696.86	350.00	-229.29	16.00	303.00	10.00	0.00	-103.00	7699.98	-34.399
2:42:21	60.0430	3696.86	350.00	-229.29	16.00	303.00	10.00	0.00	-103.00	7699.98	-34.399

											T-66 sec	2:26:15			
											T-64 sec	2:26:17			
											T-62 sec	2:26:19			
											T-60 sec	2:26:21			
											T-58 sec	2:26:23			
											T-56 sec	2:26:25			
											T-54 sec	2:26:27			
											T-52 sec	2:26:29			
											T-50 sec	2:26:31			
											T-48 sec	2:26:33			
											T-46 sec	2:26:35			
											T-44 sec	2:26:37			
											T-42 sec	2:26:39			
											T-40 sec	2:26:41			
											T-38 sec	2:26:43			
											T-36 sec	2:26:45			
											T-34 sec	2:26:47			
											T-32 sec	2:26:49			
											T-30 sec	2:26:51			
											T-28 sec	2:26:53			
											T-26 sec	2:26:55			
											T-24 sec	2:26:57			
											T-22 sec	2:26:59			
											T-20 sec	2:27:01			
											T-18 sec	2:27:03			
3647.046	350.000	-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-16 sec	2:27:05	60.042	3647.046	350.000
3647.046	350.000	-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-14 sec	2:27:07	60.042	3647.046	350.000
3647.046	350.000	-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-12 sec	2:27:09	60.042	3647.046	350.000
3647.046	350.000	-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-10 sec	2:27:11	60.042	3647.046	350.000
3647.046	350.000	-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-08 sec	2:27:13	60.042	3647.046	350.000
3647.046	350.000	-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-06 sec	2:27:15	60.042	3647.046	350.000
3647.046	350.000	-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-04 sec	2:27:17	60.042	3647.046	350.000
3647.046	350.000	-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-02 sec	2:27:19	60.042	3647.046	350.000
											T+0 sec	2:27:21			
											T+02 sec	2:27:23			
											T+04 sec	2:27:25			
											T+06 sec	2:27:27			
											T+08 sec	2:27:29			
											$\mathrm{T}+10 \mathrm{sec}$	2:27:31			
3766.689	335.000	-209.885	0.429	156.143	10.000	0.000	-103.000	7570.000	94.171	3720.866	$\mathrm{T}+12 \mathrm{sec}$	2:27:33			
3766.689	335.000	-209.885	0.429	156.143	10.000	0.000	-103.000	7570.000	94.171	3720.866	$\mathrm{T}+14 \mathrm{sec}$	2:27:35			
3766.689	335.000	-209.885	0.429	156.143	10.000	0.000	-103.000	7570.000	94.171	3720.866	T+16 sec	2:27:37			
3766.689	335.000	-209.885	0.429	156.143	10.000	0.000	-103.000	7570.000	94.171	3720.866	$\mathrm{T}+18 \mathrm{sec}$	2:27:39	59.884	3778.540	335.000
3766.689	335.000	-209.885	0.429	156.143	10.000	0.000	-103.000	7570.000	94.171	3720.866	$\mathrm{T}+20 \mathrm{sec}$	2:27:41	59.884	3778.540	335.000
3766.689	335.000	-209.885	0.429	156.143	10.000	0.000	-103.000	7570.000	94.171	3720.866	$\mathrm{T}+22 \mathrm{sec}$	2:27:43	59.884	3778.540	335.000
3766.689	335.000	-209.885	0.429	156.143	10.000	0.000	-103.000	7570.000	94.171	3720.866	$\mathrm{T}+24 \mathrm{sec}$	2:27:45	59.884	3778.540	335.000

									$\begin{array}{\|l} \mathrm{T}-20 \mathrm{sec} \\ \mathrm{~T}-18 \mathrm{sec} \end{array}$	$\begin{aligned} & \text { 2:27:01 } \\ & \text { 2:27:03 } \end{aligned}$					
-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-16 sec	2:27:05	60.042	3647.046	350.000	-165.430	0.000
-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-14 sec	2:27:07	60.042	3647.046	350.000	-165.430	0.000
-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-12 sec	2:27:09	60.042	3647.046	350.000	-165.430	0.000
-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		$\mathrm{T}-10 \mathrm{sec}$	2:27:11	60.042	3647.046	350.000	-165.430	0.000
-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-08 sec	2:27:13	60.042	3647.046	350.000	-165.430	0.000
-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-06 sec	2:27:15	60.042	3647.046	350.000	-165.430	0.000
-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-04 sec	2:27:17	60.042	3647.046	350.000	-165.430	0.000
-165.430	0.000	151.813	10.000	15.000	-103.000	7600.196	-33.400		T-02 sec	2:27:19	60.042	3647.046	350.000	-165.430	0.000
									T+0 sec	2:27:21					
									T+02 sec	2:27:23					
									T+04 sec	2:27:25					
									T+06 sec	2:27:27					
									T+08 sec	2:27:29					
									$\mathrm{T}+10 \mathrm{sec}$	2:27:31					
									T+12 sec	2:27:33					
									$\mathrm{T}+14 \mathrm{sec}$	2:27:35					
									$\mathrm{T}+16 \mathrm{sec}$	2:27:37					
-211.256	0.857	157.143	10.000	0.000	-103.000	7570.000	92.457	3718.996	$\mathrm{T}+18 \mathrm{sec}$	2:27:39					
-211.256	0.857	157.143	10.000	0.000	-103.000	7570.000	92.457	3718.996	$\mathrm{T}+20 \mathrm{sec}$	2:27:41	59.889	3783.772	335.000	-212.661	1.091
-211.256	0.857	157.143	10.000	0.000	-103.000	7570.000	92.457	3718.996	T+22 sec	2:27:43	59.889	3783.772	335.000	-212.661	1.091
-211.256	0.857	157.143	10.000	0.000	-103.000	7570.000	92.457	3718.996	T+24 sec	2:27:45	59.889	3783.772	335.000	-212.661	1.091

-211.256	0.857	157.143	10.000	0.000	-103.000	7570.000	92.457	3718.996	T+26 sec	2:27:47	59.889	3783.772	335.000	-212.661	1.091
-211.256	0.857	157.143	10.000	0.000	-103.000	7570.000	92.457	3718.996	$\mathrm{T}+28 \mathrm{sec}$	2:27:49	59.889	3783.772	335.000	-212.661	1.091
-211.256	0.857	157.143	10.000	0.000	-103.000	7570.000	92.457	3718.996	$\mathrm{T}+30 \mathrm{sec}$	2:27:51	59.889	3783.772	335.000	-212.661	1.091
									$\mathrm{T}+32 \mathrm{sec}$	2:27:53	59.889	3783.772	335.000	-212.661	1.091
									$\mathrm{T}+34 \mathrm{sec}$	2:27:55	59.889	3783.772	335.000	-212.661	1.091
									$\mathrm{T}+36 \mathrm{sec}$	2:27:57	59.889	3783.772	335.000	-212.661	1.091
									$\mathrm{T}+38 \mathrm{sec}$	2:27:59	59.889	3783.772	335.000	-212.661	1.091
									$\mathrm{T}+40 \mathrm{sec}$	2:28:01	59.889	3783.772	335.000	-212.661	1.091
									T+42 sec	2:28:03					
									T+44 sec	2:28:05					
									$\mathrm{T}+46 \mathrm{sec}$	2:28:07					
									T+48 sec	2:28:09					
									T+50 sec	2:28:11					
									T+52 sec	2:28:13					
									T+54 sec	2:28:15					
									T+56 sec	2:28:17					
									T+58 sec	2:28:19					
									$\mathrm{T}+60 \mathrm{sec}$	2:28:21					
									T+62 sec	2:28:23					
									T+64 sec	2:28:25					
									T+66 sec	2:28:27					
									T+68 sec	2:28:29					
									T+70 sec	2:28:31					
									T+72 sec	2:28:33					
									T+74 sec	2:28:35					
									T+76 sec	2:28:37					
									T+78 sec	2:28:39					
									T+80 sec	2:28:41					

							T-66 sec	2:26:15							
							T-64 sec	2:26:17							
							T-62 sec	2:26:19							
							T-60 sec	2:26:21							
							T-58 sec	2:26:23							
							T-56 sec	2:26:25							
							T-54 sec	2:26:27							
							T-52 sec	2:26:29							
							T-50 sec	2:26:31							
							T-48 sec	2:26:33							
							T-46 sec	2:26:35							
							T-44 sec	2:26:37							
							T-42 sec	2:26:39							
							T-40 sec	2:26:41							
							T-38 sec	2:26:43							
							T-36 sec	2:26:45							
							T-34 sec	2:26:47							
							T-32 sec	2:26:49							
							T-30 sec	2:26:51							
							T-28 sec	2:26:53							
							T-26 sec	2:26:55							
							T-24 sec	2:26:57							
							T-22 sec	2:26:59							
							T-20 sec	2:27:01							
							T-18 sec	2:27:03							
151.813	10.000	15.000	-103.000	7600.196	-33.400		T-16 sec	2:27:05	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000
151.813	10.000	15.000	-103.000	7600.196	-33.400		T-14 sec	2:27:07	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000
151.813	10.000	15.000	-103.000	7600.196	-33.400		T-12 sec	2:27:09	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000
151.813	10.000	15.000	-103.000	7600.196	-33.400		T-10 sec	2:27:11	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000
151.813	10.000	15.000	-103.000	7600.196	-33.400		T-08 sec	2:27:13	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000
151.813	10.000	15.000	-103.000	7600.196	-33.400		T-06 sec	2:27:15	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000
151.813	10.000	15.000	-103.000	7600.196	-33.400		T-04 sec	2:27:17	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000
151.813	10.000	15.000	-103.000	7600.196	-33.400		T-02 sec	2:27:19	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000
							T+0 sec	2:27:21							
							T+02 sec	2:27:23							
							T+04 sec	2:27:25							
							T+06 sec	2:27:27							
							T+08 sec	2:27:29							
							$\mathrm{T}+10 \mathrm{sec}$	2:27:31							
							T+12 sec	2:27:33							
							T+14 sec	2:27:35							
							T+16 sec	2:27:37							
							$\mathrm{T}+18 \mathrm{sec}$	2:27:39	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
158.182	10.000	0.000	-103.000	7570.000	88.654	3714.586	T+20 sec	2:27:41	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
158.182	10.000	0.000	-103.000	7570.000	88.654	3714.586	$\mathrm{T}+22 \mathrm{sec}$	2:27:43	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
158.182	10.000	0.000	-103.000	7570.000	88.654	3714.586	T+24 sec	2:27:45	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000

158.182	10.000	0.000	-103.000	7570.000	88.654	3714.586	T+26 sec	2:27:47	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
158.182	10.000	0.000	-103.000	7570.000	88.654	3714.586	$\mathrm{T}+28 \mathrm{sec}$	2:27:49	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
158.182	10.000	0.000	-103.000	7570.000	88.654	3714.586	$\mathrm{T}+30 \mathrm{sec}$	2:27:51	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
158.182	10.000	0.000	-103.000	7570.000	88.654	3714.586	$\mathrm{T}+32 \mathrm{sec}$	2:27:53	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
158.182	10.000	0.000	-103.000	7570.000	88.654	3714.586	$\mathrm{T}+34 \mathrm{sec}$	2:27:55	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
158.182	10.000	0.000	-103.000	7570.000	88.654	3714.586	$\mathrm{T}+36 \mathrm{sec}$	2:27:57	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
158.182	10.000	0.000	-103.000	7570.000	88.654	3714.586	$\mathrm{T}+38 \mathrm{sec}$	2:27:59	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
158.182	10.000	0.000	-103.000	7570.000	88.654	3714.586	$\mathrm{T}+40 \mathrm{sec}$	2:28:01	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
							$\mathrm{T}+42 \mathrm{sec}$	2:28:03	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
							T+44 sec	2:28:05	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
							T+46 sec	2:28:07	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
							$\mathrm{T}+48 \mathrm{sec}$	2:28:09	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
							T+50 sec	2:28:11	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
							T+52 sec	2:28:13	59.888	3786.576	335.000	-212.662	2.000	159.000	10.000
							T+54 sec	2:28:15							
							T+56 sec	2:28:17							
							$\mathrm{T}+58 \mathrm{sec}$	2:28:19							
							T+60 sec	2:28:21							
							T+62 sec	2:28:23							
							T+64 sec	2:28:25							
							T+66 sec	2:28:27							
							T+68 sec	2:28:29							
							T+70 sec	2:28:31							
							T+72 sec	2:28:33							
							T+74 sec	2:28:35							
							T+76 sec	2:28:37							
							T+78 sec	2:28:39							
							T+80 sec	2:28:41							

| | | |
| :--- | :--- | :--- | :--- |

					T-66 sec	2:26:15								
					T-64 sec	2:26:17								
					T-62 sec	2:26:19								
					T-60 sec	2:26:21								
					T-58 sec	2:26:23								
					T-56 sec	2:26:25								
					T-54 sec	2:26:27								
					T-52 sec	2:26:29								
					T-50 sec	2:26:31								
					T-48 sec	2:26:33								
					T-46 sec	2:26:35								
					T-44 sec	2:26:37								
					T-42 sec	2:26:39								
					T-40 sec	2:26:41								
					T-38 sec	2:26:43								
					T-36 sec	2:26:45								
					T-34 sec	2:26:47								
					T-32 sec	2:26:49								
					T-30 sec	2:26:51								
					T-28 sec	2:26:53								
					T-26 sec	2:26:55								
					T-24 sec	2:26:57								
					T-22 sec	2:26:59								
					T-20 sec	2:27:01								
					T-18 sec	2:27:03								
15.000	-103.000	7600.196	-33.400		$\mathrm{T}-16 \mathrm{sec}$	2:27:05	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000	15.000
15.000	-103.000	7600.196	-33.400		T-14 sec	2:27:07	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000	15.000
15.000	-103.000	7600.196	-33.400		T-12 sec	2:27:09	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000	15.000
15.000	-103.000	7600.196	-33.400		T-10 sec	2:27:11	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000	15.000
15.000	-103.000	7600.196	-33.400		T-08 sec	2:27:13	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000	15.000
15.000	-103.000	7600.196	-33.400		T-06 sec	2:27:15	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000	15.000
15.000	-103.000	7600.196	-33.400		T-04 sec	2:27:17	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000	15.000
15.000	-103.000	7600.196	-33.400		T-02 sec	2:27:19	60.042	3647.046	350.000	-165.430	0.000	151.813	10.000	15.000
					T+0 sec	2:27:21								
					T+02 sec	2:27:23								
					T+04 sec	2:27:25								
					T+06 sec	2:27:27								
					T+08 sec	2:27:29								
					T+10 sec	2:27:31								
					T+12 sec	2:27:33								
					$\mathrm{T}+14 \mathrm{sec}$	2:27:35								
					$\mathrm{T}+16 \mathrm{sec}$	2:27:37								
0.000	-103.000	7570.000	89.644	3717.426	$\mathrm{T}+18 \mathrm{sec}$	2:27:39								
0.000	-103.000	7570.000	89.644	3717.426	$\mathrm{T}+20 \mathrm{sec}$	2:27:41	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	T+22 sec	2:27:43	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	T+24 sec	2:27:45	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000

0.000	-103.000	7570.000	89.644	3717.426	T+26 sec	2:27:47	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	$\mathrm{T}+28 \mathrm{sec}$	2:27:49	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	$\mathrm{T}+30 \mathrm{sec}$	2:27:51	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	$\mathrm{T}+32 \mathrm{sec}$	2:27:53	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	$\mathrm{T}+34 \mathrm{sec}$	2:27:55	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	T+36 sec	2:27:57	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	$\mathrm{T}+38 \mathrm{sec}$	2:27:59	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	$\mathrm{T}+40 \mathrm{sec}$	2:28:01	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	$\mathrm{T}+42 \mathrm{sec}$	2:28:03	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	$\mathrm{T}+44 \mathrm{sec}$	2:28:05	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	$\mathrm{T}+46 \mathrm{sec}$	2:28:07	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	$\mathrm{T}+48 \mathrm{sec}$	2:28:09	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	T+50 sec	2:28:11	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
0.000	-103.000	7570.000	89.644	3717.426	T+52 sec	2:28:13	59.889	3787.775	335.000	-212.744	2.118	159.176	10.000	0.000
					T+54 sec	2:28:15								
					T+56 sec	2:28:17								
					T+58 sec	2:28:19								
					T+60 sec	2:28:21								
					T+62 sec	2:28:23								
					T+64 sec	2:28:25								
					T+66 sec	2:28:27								
					T+68 sec	2:28:29								
					T+70 sec	2:28:31								
					T+72 sec	2:28:33								
					T+74 sec	2:28:35								
					T+76 sec	2:28:37								
					T+78 sec	2:28:39								
					T+80 sec	2:28:41								

-103.000	7600.196	-33.400

103.000
103.000
-103.000

-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952
-103.000	7570.000	89.035	3716.952

Date	A Point Time	FPointA Hz	A Value Hz	$\mathrm{t}(0)$ Time	C Value Hz
Monday, October 12, 2009	$2: 27: 19$	60.0390	60.0417	$2: 27: 21$	59.8360

Value B	FR B								
12 to 24 sec	12 to 24 sec	18 to 30 sec	18 to 30 sec	20 to 40 sec	20 to 40 sec	18 to 52 sec	18 to 52 sec	20 to 52 sec	20 to 52 sec
Average									
Frequency	MW								
59.8822861	-397.43625	59.8844288	-402.63425	59.888706	-415.16368	59.8879445	-411.95878	59.888706	-413.86163

Value A D	ta	BA Performance									Value B		12 to 24 second Average Period Evaluation				
		JOU	Non-			Transferred	Contingent						JOU	Non-			Transferred
	Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency
	Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response
Frequency	Interchange	Imp(-) Exp (+)	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-) \operatorname{Del}(+)$	Load (-) Gen (+)	Setting		EPFR	Frequency	Interchange	Imp(-) Exp (+)	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-) \mathrm{Del}(+)$
Hz	MW	MW/0.1 Hz	MW	MW	Hz	MW	MW	MW	MW	MW	MW						
60.04175	3647.05	350.00	-165.43	0.00	151.81	-4.17	15.00	-103	7600.196	-43.0025	59.882286	3766.69	335.00	-209.89	0.43	156.14	11.77

Value B															
Contingent									Jou	Non-			Transferred	Contingent	
BA	Initial	Initial	Sustained	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial
Lost Generation	Performance	Performance	Performance	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance
Load (-) Gen (+)	Adjusted	Unadjusted		Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	Rec (-) Del (+)	Load (-) Gen (+)	Adjusted
MW	P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW	Hz	MW	MW	MW	MW	MW	MW/0.1 Hz	MW	P.U.
0.00	1.359	0.938	0.908	-103	7570	121.2453	59.884429	3778.54	335.00	-211.26	0.86	157.14	11.56	0.00	1.473

Value B															
							JOU	Non-			Transferred	Contingent			
Initial	Sustained	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained
Performance	Performance	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance
Unadjusted		Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-)$ Del (+)	Load (-) Gen (+)	Adjusted	Unadjusted	
P.U.	P.U.	MW	MW	MW	Hz	MW	MW	MW	MW	MW	MW/0.1 Hz	MW	P.U.	P.U.	P.U.
1.045	0.908	-103	7570	119.0383	59.889182	3783.77	335.00	-212.66	1.09	158.18	11.08	0.00	1.567	1.120	0.908

	Jou	Non-			Transferred	Contingent						
Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained	BA	BA	Bias
Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance	Bias	Load	Setting
Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-)$ Del (+)	Load (-) Gen (+)	Adjusted	Unadjusted		Setting		EPFR
MW	P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW						
3787.78	335.00	-165.43	2.12	159.18	11.13	0.00	1.578	1.149	0.908	-103	7570	114.6328

Steps To be completed for each event evaluated.

1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Column A: Date and Time in this format, $\mathrm{mm} / \mathrm{dd} / \mathrm{yy} \mathrm{HH}: \mathrm{MM}: \mathrm{SS}$
Column B: Frequency Hz
Column C: Net Actual Interchange
Column D: Joint Owned Unit dynamic schedule
Column E: Non Conforming Load
Column F: Pumped Hydro
Column G: Ramping units
Column H: Transferred Frequency Response
Column I: Contingent BA Lost load or generatio
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D, E, F, G and H are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign ($+/-$) convention defined in FRS Form 1 .
3 Note: Columns $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are optional data. If you choose not to use these, leave the columns blank. Do not dest
4 Data must be at 4 second sample rate for the full 25 minute minimum collection period that starts a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event.
The spreadsheet will work with up to 60 minutes of data. Be sure "Data" worksheet is clear of any old data.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data
5 Once data is in place in the "Data" worksheet, determine when the beginning of the event occurred. This is accomplished by knowing the UTC event time from the master event list,
Convert the UTC event time to your PI data time and then scroll through the Data worksheet column B data of frequency and observe when frequency moves from the normal, pre-event frequency.
This will usually be a single change in frequency of 0.008 to 0.010 Hz more or less. Note the row number in the worksheet that this change occurs. In this sample data spreadsheet this occurs in row 237 of the data.
6 Edit cell "C8" of the "Entry Data" worksheet, change the formula in the cell "C8" to reference the row number identified in step 5 above. In the sample data of this workbook this formula is: "=Data!A237"
If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency of the event on the center vertical grid line of the graph (Red Trend).
7 Determine the end of the event to be evaluated. Use the same rules that are used for DCS only look at frequency instead of ACE. Scroll down the frequency data in column B of the "Data" worksheet until frequency reaches 60 Hz or the pre-disturbance value. Note the row number in the worksheet that this occurs. In this sample data spreadsheet this occurs in row 323
8 Edit cell "C11" of the "Entry Data" worksheet, change the formula in the cell "C11" to reference the row number identified in step 7 above. In the sample data of this workbook this formula is: "=Data! A323"
In cell "R41" of the "Evaluation" spreadsheet, enter the MW value of the unit(s) that tripped (from the Master Event List). This is only necessary for the "Interconnection" evaluation if you're interested. It is not necessary to do this for the BA evaluation but it will provide a comparison of the BA frequency response as compared to the Interconnection frequency response.
10 Use the "copy" button provided to copy the evaluation and event specific data for the "FRS Form 1" of this field trial. This data is summarized in the correct order on worksheet "Form 1 Summary Data" of this workbook. Use PasteSpecial/Values when pasting the data into FRS Form 1 on the appropriate event row.

Steps To be completed once at the initial setup of the evaluation spreadsheet for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Entry Data" worksheet. For example: "NYISO".
C Enter your Balancing Authorities Frequency Response Obligation in cell "B2" of the "Entry Data" worksheet. For example: - $80 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (This value could change annually) The time constant is located in cell "L13" of the "Evaluation" spreadsheet and should be edited for the types of generators in your BA. Presently this time constant is set at 0.35
The higher the value of the time constant, the faster the delivery of frequency response is expected. Setting the TC to 1.0 effectively turns off the delay and instantaneous frequency response will be modeled. Do not set higher than 1.0 This time constant is only used in the "Sustained" evaluation and is not used for the Field Trial evaluation of performance to the FRO
A typical setting for this time constant is 0.08 to 0.15 for hydro units, 0.10 to 0.20 for large steam turbines and 0.20 to 0.40 for combustion turbines.
By observing the slope of your "Interchange Actual" on the "Sustained" Graph, adjust the time constant until the initial slope of the "Target" is similar.
When set appropriately, the "Target" trend on the "Sustained" graph will model what Interchange Actual should have done during the event recovery period based on your minimum FRO,
Note: For ease of use, only the necessary worksheets are displayed. If you are interested in viewing graphs and other hidden worksheets, select the "tab" at the bottom, right click, select unhide and select the worksheet you wish to unhide.

10/12/09 02:14:20	60.001	3671.441406	350	321.544403	0	17.5	10	15	-103	7511.55
10/12/09 02:14:24	60.007	3670.161865	350	321.544403	0	18	10	15	-103	7511.88
10/12/09 02:14:28	60.005	3670.619873	350	321.544403	0	18.5	10	15	-103	7512.21
10/12/09 02:14:32	59.999	3672.085693	350	362.136261	0	19	10	15	-103	7512.54
10/12/09 02:14:36	59.999	3670.825684	350	362.136261	0	19.5	10	15	-103	7512.87
10/12/09 02:14:40	60.007	3671.809082	350	362.136261	0	20	10	15	-103	7513.2
10/12/09 02:14:44	60.011	3672.73584	350	362.136261	0	20.5	10	15	-103	7513.53
10/12/09 02:14:48	60.003	3674.414551	350	362.136261	0	21	10	15	-103	7513.86
10/12/09 02:14:52	59.995	3674.754639	350	336.311798	0	21.5	10	15	-103	7514.19
10/12/09 02:14:56	59.994	3675.310547	350	336.311798	0	22	10	15	-103	7514.52
10/12/09 02:15:00	60.001	3675.165527	350	336.311798	0	22.5	10	15	-103	7514.85
10/12/09 02:15:04	59.998	3674.319092	350	336.311798	0	23	10	15	-103	7515.18
10/12/09 02:15:08	59.992	3676.328613	350	336.311798	0	23.5	10	15	-103	7515.51
10/12/09 02:15:12	59.986	3677.791016	350	316.443054	0	24	10	15	-103	7515.84
10/12/09 02:15:16	59.988	3675.542969	350	316.443054	0	24.5	10	15	-103	7516.17
10/12/09 02:15:20	59.988	3676.931396	350	316.443054	0	25	10	15	-103	7516.5
10/12/09 02:15:24	59.985	3677.067139	350	316.443054	0	25.5	10	15	-103	7516.83
10/12/09 02:15:28	59.983	3678.455322	350	316.443054	0	26	10	15	-103	7517.16
10/12/09 02:15:32	59.984	3679.731445	350	325.464294	0	26.5	10	15	-103	7517.49
10/12/09 02:15:36	59.985	3677.626953	350	325.464294	0	27	10	15	-103	7517.82
10/12/09 02:15:40	59.987	3676.409424	350	325.464294	0	27.5	10	15	-103	7518.15
10/12/09 02:15:44	59.99	3677.371094	350	325.464294	0	28	10	15	-103	7518.48
10/12/09 02:15:48	59.983	3678.086426	350	325.464294	0	28.5	10	15	-103	7518.81
10/12/09 02:15:52	59.979	3680.163086	350	336.614166	0	29	10	15	-103	7519.14
10/12/09 02:15:56	59.987	3678.344238	350	336.614166	0	29.5	10	15	-103	7519.47
10/12/09 02:16:00	59.988	3677.677734	350	336.614166	0	30	10	15	-103	7519.8
10/12/09 02:16:04	59.983	3679.279053	350	336.614166	0	30.5	10	15	-103	7520.13
10/12/09 02:16:08	59.979	3679.605713	350	336.614166	0	31	10	15	-103	7520.46
10/12/09 02:16:12	59.989	3679.025879	350	316.726166	0	31.5	10	15	-103	7520.79
10/12/09 02:16:16	59.988	3678.488525	350	316.726166	0	32	10	15	-103	7521.12
10/12/09 02:16:20	59.989	3678.740234	350	316.726166	0	32.5	10	15	-103	7521.45
10/12/09 02:16:24	59.989	3679.390137	350	316.726166	0	33	10	15	-103	7521.78
10/12/09 02:16:28	59.993	3678.330078	350	316.726166	0	33.5	10	15	-103	7522.11
10/12/09 02:16:32	59.996	3677.944336	350	320.195526	0	34	10	15	-103	7522.44
10/12/09 02:16:36	59.998	3678.950928	350	320.195526	0	34.5	10	15	-103	7522.77
10/12/09 02:16:40	59.999	3679.148438	350	320.195526	0	35	10	15	-103	7523.1
10/12/09 02:16:44	59.991	3680.041016	350	320.195526	0	35.5	10	15	-103	7523.43
10/12/09 02:16:48	59.995	3677.860352	350	320.195526	0	36	10	15	-103	7523.76
10/12/09 02:16:52	60.001	3678.266846	350	341.86615	0	36.5	10	15	-103	7524.09
10/12/09 02:16:56	60.006	3677.898682	350	341.86615	0	37	10	15	-103	7524.42

10/12/09 02:17:00	60.009	3679.20874	350	341.86615	0	37.5	10	15	-103	7524.75
10/12/09 02:17:04	60.012	3678.652588	350	341.86615	0	38	10	15	-103	7525.08
10/12/09 02:17:08	60.01	3679.702637	350	341.86615	0	38.5	10	15	-103	7525.41
10/12/09 02:17:12	60.007	3679.805908	350	348.597839	0	39	10	15	-103	7525.74
10/12/09 02:17:16	60.012	3680.262695	350	348.597839	0	39.5	10	15	-103	7526.07
10/12/09 02:17:20	60.01	3679.560791	350	348.597839	0	40	10	15	-103	7526.4
10/12/09 02:17:24	60.007	3679.439941	350	348.597839	0	40.5	10	15	-103	7526.73
10/12/09 02:17:28	60.009	3679.516602	350	348.597839	0	41	10	15	-103	7527.06
10/12/09 02:17:32	60.006	3679.608154	350	329.085022	0	41.5	10	15	-103	7527.39
10/12/09 02:17:36	60.009	3679.260742	350	329.085022	0	42	10	15	-103	7527.72
10/12/09 02:17:40	60.009	3679.024658	350	329.085022	0	42.5	10	15	-103	7528.05
10/12/09 02:17:44	60.005	3678.572266	350	329.085022	0	43	10	15	-103	7528.38
10/12/09 02:17:48	60.001	3678.248779	350	329.085022	0	43.5	10	15	-103	7528.71
10/12/09 02:17:52	59.993	3677.82959	350	342.418243	0	44	10	15	-103	7529.04
10/12/09 02:17:56	59.994	3677.772217	350	342.418243	0	44.5	10	15	-103	7529.37
10/12/09 02:18:00	59.994	3677.093262	350	342.418243	0	45	10	15	-103	7529.7
10/12/09 02:18:04	59.994	3676.400635	350	342.418243	0	45.5	10	15	-103	7530.03
10/12/09 02:18:08	59.993	3679.87207	350	342.418243	0	46	10	15	-103	7530.36
10/12/09 02:18:12	59.99	3678.743164	350	338.794647	0	46.5	10	15	-103	7530.69
10/12/09 02:18:16	59.983	3677.921143	350	338.794647	0	47	10	15	-103	7531.02
10/12/09 02:18:20	59.977	3682.070068	350	338.794647	0	47.5	10	15	-103	7531.35
10/12/09 02:18:24	59.995	3678.655518	350	338.794647	0	48	10	15	-103	7531.68
10/12/09 02:18:28	59.994	3677.780029	350	338.794647	0	48.5	10	15	-103	7532.01
10/12/09 02:18:32	59.987	3678.473145	350	335.931	0	49	10	15	-103	7532.34
10/12/09 02:18:36	59.984	3677.822266	350	335.931	0	49.5	10	15	-103	7532.67
10/12/09 02:18:40	59.985	3677.397461	350	335.931	0	50	10	15	-103	7533
10/12/09 02:18:44	59.985	3677.949707	350	335.931	0	50.5	10	15	-103	7533.33
10/12/09 02:18:48	59.98	3678.962646	350	335.931	0	51	10	15	-103	7533.66
10/12/09 02:18:52	59.981	3680.737305	350	339.712402	0	51.5	10	15	-103	7533.99
10/12/09 02:18:56	59.998	3678.161377	350	339.712402	0	52	10	15	-103	7534.32
10/12/09 02:19:00	60.007	3676.222168	350	339.712402	0	52.5	10	15	-103	7534.65
10/12/09 02:19:04	59.986	3677.49707	350	339.712402	0	53	10	15	-103	7534.98
10/12/09 02:19:08	59.977	3675.185791	350	339.712402	0	53.5	10	15	-103	7535.31
10/12/09 02:19:12	59.976	3680.450928	350	332.024658	0	54	10	15	-103	7535.64
10/12/09 02:19:16	59.974	3683.828613	350	332.024658	0	54.5	10	15	-103	7535.97
10/12/09 02:19:20	59.979	3681.108398	350	332.024658	0	55	10	15	-103	7536.3
10/12/09 02:19:24	59.982	3678.229004	350	332.024658	0	55.5	10	15	-103	7536.63
10/12/09 02:19:28	59.987	3675.759277	350	332.024658	0	56	10	15	-103	7536.96
10/12/09 02:19:32	59.988	3671.165527	350	330.759033	0	56.5	10	15	-103	7537.29
10/12/09 02:19:36	59.987	3670.128662	350	330.759033	0	57	10	15	-103	7537.62

10/12/09 02:19:40	59.985	3672.047852	350	330.759033	0	57.5	10	15	-103	7537.95
10/12/09 02:19:44	59.982	3672.103516	350	330.759033	0	58	10	15	-103	7538.28
10/12/09 02:19:48	59.989	3671.882324	350	330.759033	0	58.5	10	15	-103	7538.61
10/12/09 02:19:52	59.988	3671.335938	350	323.419952	0	59	10	15	-103	7538.94
10/12/09 02:19:56	59.982	3670.37207	350	323.419952	0	59.5	10	15	-103	7539.27
10/12/09 02:20:00	59.981	3671.400879	350	323.419952	0	60	10	15	-103	7539.6
10/12/09 02:20:04	59.983	3672.181396	350	323.419952	0	60.5	10	15	-103	7539.93
10/12/09 02:20:08	59.989	3668.070801	350	323.419952	0	61	10	15	-103	7540.26
10/12/09 02:20:12	59.985	3669.908203	350	342.350922	0	61.5	10	15	-103	7540.59
10/12/09 02:20:16	59.98	3670.262695	350	342.350922	0	62	10	15	-103	7540.92
10/12/09 02:20:20	59.98	3670.102051	350	342.350922	0	62.5	10	15	-103	7541.25
10/12/09 02:20:24	59.979	3671.402588	350	342.350922	0	63	10	15	-103	7541.58
10/12/09 02:20:28	59.981	3672.371826	350	342.350922	0	63.5	10	15	-103	7541.91
10/12/09 02:20:32	59.98	3670.9375	350	345.081818	0	64	10	15	-103	7542.24
10/12/09 02:20:36	59.98	3670.137207	350	345.081818	0	64.5	10	15	-103	7542.57
10/12/09 02:20:40	59.977	3672.390869	350	345.081818	0	65	10	15	-103	7542.9
10/12/09 02:20:44	59.981	3674.051758	350	345.081818	0	65.5	10	15	-103	7543.23
10/12/09 02:20:48	59.976	3671.800293	350	345.081818	0	66	10	15	-103	7543.56
10/12/09 02:20:52	59.972	3673.873535	350	346.537384	0	66.5	10	15	-103	7543.89
10/12/09 02:20:56	59.973	3676.623291	350	346.537384	0	67	10	15	-103	7544.22
10/12/09 02:21:00	59.973	3676.542969	350	346.537384	0	67.5	10	15	-103	7544.55
10/12/09 02:21:04	59.971	3675.752441	350	346.537384	0	68	10	15	-103	7544.88
10/12/09 02:21:08	59.977	3674.869629	350	346.537384	0	68.5	10	15	-103	7545.21
10/12/09 02:21:12	59.975	3671.593262	350	342.905762	0	69	10	15	-103	7545.54
10/12/09 02:21:16	59.98	3669.962891	350	342.905762	0	69.5	10	15	-103	7545.87
10/12/09 02:21:20	59.981	3669.496826	350	342.905762	0	70	10	15	-103	7546.2
10/12/09 02:21:24	59.982	3667.676514	350	342.905762	0	70.5	10	15	-103	7546.53
10/12/09 02:21:28	59.982	3666.599365	350	342.905762	0	71	10	15	-103	7546.86
10/12/09 02:21:32	59.982	3666.44165	350	340.094391	0	71.5	10	15	-103	7547.19
10/12/09 02:21:36	59.985	3667.456299	350	340.094391	0	72	10	15	-103	7547.52
10/12/09 02:21:40	59.989	3665.261719	350	340.094391	0	72.5	10	15	-103	7547.85
10/12/09 02:21:44	59.996	3663.824951	350	340.094391	0	73	10	15	-103	7548.18
10/12/09 02:21:48	59.998	3662.054932	350	340.094391	0	73.5	10	15	-103	7548.51
10/12/09 02:21:52	60.007	3662.076172	350	342.771179	0	74	10	15	-103	7548.84
10/12/09 02:21:56	60.013	3662.959473	350	342.771179	0	74.5	10	15	-103	7549.17
10/12/09 02:22:00	60.013	3664.13916	350	342.771179	0	75	10	15	-103	7549.5
10/12/09 02:22:04	60.008	3664.158691	350	342.771179	0	75.5	10	15	-103	7549.83
10/12/09 02:22:08	60.019	3663.183594	350	342.771179	0	76	10	15	-103	7550.16
10/12/09 02:22:12	60.023	3661.512207	350	342.909912	0	76.5	10	15	-103	7550.49
10/12/09 02:22:16	60.02	3658.661377	350	342.909912	0	77	10	15	-103	7550.82

10/12/09 02:22:20	60.021	3657.571045	350	342.909912	0	77.5	10	15	-103	7551.15
10/12/09 02:22:24	60.019	3657.710449	350	342.909912	0	78	10	15	-103	7551.48
10/12/09 02:22:28	60.022	3660.227539	350	342.909912	0	78.5	10	15	-103	7551.81
10/12/09 02:22:32	60.025	3658.698242	350	343.286011	0	79	10	15	-103	7552.14
10/12/09 02:22:36	60.02	3658.154541	350	343.286011	0	79.5	10	15	-103	7552.47
10/12/09 02:22:40	60.018	3659.777588	350	343.286011	0	80	10	15	-103	7552.8
10/12/09 02:22:44	60.02	3662.531494	350	343.286011	0	80.5	10	15	-103	7553.13
10/12/09 02:22:48	60.019	3662.078857	350	343.286011	0	81	10	15	-103	7553.46
10/12/09 02:22:52	60.022	3662.678223	350	331.852966	0	81.5	10	15	-103	7553.79
10/12/09 02:22:56	60.025	3663.538574	350	331.852966	0	82	10	15	-103	7554.12
10/12/09 02:23:00	60.02	3662.55249	350	331.852966	0	82.5	10	15	-103	7554.45
10/12/09 02:23:04	60.02	3663.600586	350	331.852966	0	83	10	15	-103	7554.78
10/12/09 02:23:08	60.021	3663.689941	350	331.852966	0	83.5	10	15	-103	7555.11
10/12/09 02:23:12	60.018	3663.395752	350	329.98822	0	84	10	15	-103	7555.44
10/12/09 02:23:16	60.014	3664.31543	350	329.98822	0	84.5	10	15	-103	7555.77
10/12/09 02:23:20	60.013	3665.797607	350	329.98822	0	85	10	15	-103	7556.1
10/12/09 02:23:24	60.01	3666.72583	350	329.98822	0	85.5	10	15	-103	7556.43
10/12/09 02:23:28	60.011	3667.54541	350	329.98822	0	86	10	15	-103	7556.76
10/12/09 02:23:32	60.012	3666.44873	350	255.444168	0	86.5	10	15	-103	7557.09
10/12/09 02:23:36	60.009	3667.696045	350	255.444168	0	87	10	15	-103	7557.42
10/12/09 02:23:40	60.009	3667.042969	350	255.444168	0	87.5	10	15	-103	7557.75
10/12/09 02:23:44	60.005	3666.222656	350	255.444168	0	88	10	15	-103	7558.08
10/12/09 02:23:48	59.999	3665.40332	350	255.444168	0	88.5	10	15	-103	7558.41
10/12/09 02:23:52	59.995	3665.679688	350	254.838303	0	89	10	15	-103	7558.74
10/12/09 02:23:56	59.998	3664.94751	350	254.838303	0	89.5	10	15	-103	7559.07
10/12/09 02:24:00	59.998	3666.133301	350	254.838303	0	90	10	15	-103	7559.4
10/12/09 02:24:04	59.995	3666.734619	350	254.838303	0	90.5	10	15	-103	7559.73
10/12/09 02:24:08	59.992	3667.557373	350	254.838303	0	91	10	15	-103	7560.06
10/12/09 02:24:12	59.988	3667.853271	350	257.146973	0	91.5	10	15	-103	7560.39
10/12/09 02:24:16	59.982	3668.690918	350	257.146973	0	92	10	15	-103	7560.72
10/12/09 02:24:20	59.982	3669.606201	350	257.146973	0	92.5	10	15	-103	7561.05
10/12/09 02:24:24	59.984	3670.25	350	257.146973	0	93	10	15	-103	7561.38
10/12/09 02:24:28	59.978	3671.548828	350	257.146973	0	93.5	10	15	-103	7561.71
10/12/09 02:24:32	59.976	3674.262939	350	262.289368	0	94	10	15	-103	7562.04
10/12/09 02:24:36	59.974	3676.418213	350	262.289368	0	94.5	10	15	-103	7562.37
10/12/09 02:24:40	59.979	3674.637451	350	262.289368	0	95	10	15	-103	7562.7
10/12/09 02:24:44	59.981	3675.226074	350	262.289368	0	95.5	10	15	-103	7563.03
10/12/09 02:24:48	59.984	3674.399414	350	262.289368	0	96	10	15	-103	7563.36
10/12/09 02:24:52	59.988	3673.039551	350	256.647949	0	96.5	10	15	-103	7563.69
10/12/09 02:24:56	59.99	3673.056396	350	256.647949	0	97	10	15	-103	7564.02

10/12/09 02:25:00	59.991	3671.493164	350	256.647949	0	97.5	10	15	-103	7564.35
10/12/09 02:25:04	59.991	3670.066162	350	256.647949	0	98	10	15	-103	7564.68
10/12/09 02:25:08	59.993	3671.744141	350	256.647949	0	98.5	10	15	-103	7565.01
10/12/09 02:25:12	60.002	3672.625488	350	256.307251	0	99	10	15	-103	7565.34
10/12/09 02:25:16	60.003	3673.818604	350	256.307251	0	99.5	10	15	-103	7565.67
10/12/09 02:25:20	60.005	3673.182129	350	256.307251	0	100	10	15	-103	7566
10/12/09 02:25:24	60.002	3672.417969	350	256.307251	0	100.5	10	15	-103	7566.33
10/12/09 02:25:28	60.008	3672.216797	350	256.307251	0	101	10	15	-103	7566.66
10/12/09 02:25:32	60.01	3673.182129	350	249.086395	0	101.5	10	15	-103	7566.99
10/12/09 02:25:36	60.011	3673.553467	350	249.086395	0	102	10	15	-103	7567.32
10/12/09 02:25:40	60.014	3674.537109	350	249.086395	0	102.5	10	15	-103	7567.65
10/12/09 02:25:44	60.012	3673.203613	350	249.086395	0	103	10	15	-103	7567.98
10/12/09 02:25:48	60.011	3673.067627	350	249.086395	0	103.5	10	15	-103	7568.31
10/12/09 02:25:52	60.022	3672.519531	350	253.742477	0	104	10	15	-103	7568.64
10/12/09 02:25:56	60.014	3671.288086	350	253.742477	0	104.5	10	15	-103	7568.97
10/12/09 02:26:00	60.014	3672.981689	350	253.742477	0	105	10	15	-103	7569.3
10/12/09 02:26:04	60.017	3671.95166	350	253.742477	0	105.5	10	15	-103	7569.63
10/12/09 02:26:08	60.019	3671.627197	350	253.742477	0	106	10	15	-103	7569.96
10/12/09 02:26:12	60.027	3668.610596	350	257.421204	0	106.5	10	15	-103	7570.29
10/12/09 02:26:16	60.026	3664.495117	350	257.421204	0	107	10	15	-103	7570.62
10/12/09 02:26:20	60.019	3666.820801	350	257.421204	0	107.5	10	15	-103	7570.95
10/12/09 02:26:24	60.019	3670.453613	350	257.421204	0	108	10	15	-103	7571.28
10/12/09 02:26:28	60.019	3671.667969	350	257.421204	0	108.5	10	15	-103	7571.61
10/12/09 02:26:32	60.021	3672.685059	350	261.73822	0	109	10	15	-103	7571.94
10/12/09 02:26:36	60.019	3672.164063	350	261.73822	0	109.5	10	15	-103	7572.27
10/12/09 02:26:40	60.022	3669.98291	350	165.101685	0	110	10	15	-103	7572.6
10/12/09 02:26:44	60.037	3663.758057	350	165.476395	0	110.5	10	15	-103	7572.93
10/12/09 02:26:48	60.036	3660.672363	350	165.476395	0	111	10	15	-103	7573.26
10/12/09 02:26:52	60.046	3649.19043	350	165.476395	0	111.5	10	15	-103	7573.59
10/12/09 02:26:56	60.048	3648.246338	350	165.476395	0	112	10	15	-103	7573.92
10/12/09 02:27:00	60.041	3654.294434	350	165.101685	0	112.5	10	15	-103	7574.25
10/12/09 02:27:04	60.041	3651.874268	350	165.476395	0	113	10	15	-103	7574.58
10/12/09 02:27:08	60.041	3649.187012	350	165.476395	0	113.5	10	15	-103	7574.91
10/12/09 02:27:12	60.045	3645.386963	350	165.476395	0	114	10	15	-103	7575.24
10/12/09 02:27:16	60.041	3645.445801	350	165.476395	0	114.5	10	15	-103	7575.57
10/12/09 02:27:20	60.041	3641.191162	350	165.476395	0	115	10	15	-103	7575.9
10/12/09 02:27:24	59.978	3696.362305	350	206.459106	1	115.5	10	15	-103	7576.23
10/12/09 02:27:28	59.836	3734.672607	335	206.459106	1	116	10	0	-103	7576.56
10/12/09 02:27:32	59.892	3761.249512	335	206.459106	1	116.5	10	0	-103	7576.89
10/12/09 02:27:36	59.88	3766.193848	335	206.459106	1	117	10	0	-103	7577.22

10/12/09 02:27:40	59.875	3769.925049	335	206.459106	1	117.5	10	0	-103	7577.55
10/12/09 02:27:44	59.887	3781.591797	335	211.256042	1	118	10	0	-103	7577.88
10/12/09 02:27:48	59.885	3784.961914	335	211.256042	1	118.5	10	0	-103	7578.21
10/12/09 02:27:52	59.888	3784.418945	335	211.256042	2	119	10	0	-103	7578.54
10/12/09 02:27:56	59.895	3788.327637	335	211.256042	3	119.5	10	0	-103	7578.87
10/12/09 02:28:00	59.893	3788.471924	335	211.256042	4	120	10	0	-103	7579.2
10/12/09 02:28:04	59.894	3793.074463	335	214.346695	5	120.5	10	0	-103	7579.53
10/12/09 02:28:08	59.89	3799.427734	335	214.346695	6	121	10	0	-103	7579.86
10/12/09 02:28:12	59.885	3799.959229	335	214.346695	7	121.5	10	0	-103	7580.19
10/12/09 02:28:16	59.887	3802.925049	335	214.346695	8	122	10	0	-103	7580.52
10/12/09 02:28:20	59.888	3804.387939	335	214.346695	9	122.5	10	0	-103	7580.85
10/12/09 02:28:24	59.889	3805.616699	335	212.172699	10	123	10	0	-103	7581.18
10/12/09 02:28:28	59.873	3811.50293	335	212.172699	11	123.5	10	0	-103	7581.51
10/12/09 02:28:32	59.849	3815.888916	335	212.172699	12	124	10	0	-103	7581.84
10/12/09 02:28:36	59.858	3826.053223	335	212.172699	13	124.5	10	0	-103	7582.17
10/12/09 02:28:40	59.866	3827.523926	335	212.172699	14	125	10	0	-103	7582.5
10/12/09 02:28:44	59.867	3826.783447	335	215.598175	15	125.5	10	0	-103	7582.83
10/12/09 02:28:48	59.871	3825.713379	335	215.598175	16	126	10	0	-103	7583.16
10/12/09 02:28:52	59.879	3822.505371	335	215.598175	16	126.5	10	0	-103	7583.49
10/12/09 02:28:56	59.883	3818.055176	335	215.598175	16	127	10	0	-103	7583.82
10/12/09 02:29:00	59.89	3815.009766	335	215.598175	16	127.5	10	0	-103	7584.15
10/12/09 02:29:04	59.889	3811.838379	335	218.327255	16	128	10	0	-103	7584.48
10/12/09 02:29:08	59.899	3806.972168	335	218.327255	16	128.5	10	0	-103	7584.81
10/12/09 02:29:12	59.902	3804.188477	335	218.327255	16	129	10	0	-103	7585.14
10/12/09 02:29:16	59.904	3793.975098	335	218.327255	16	129.5	10	0	-103	7585.47
10/12/09 02:29:20	59.911	3791.501953	335	218.327255	16	130	10	0	-103	7585.8
10/12/09 02:29:24	59.916	3788.13208	335	217.379425	16	130.5	10	0	-103	7586.13
10/12/09 02:29:28	59.918	3783.02832	335	217.379425	16	131	10	0	-103	7586.46
10/12/09 02:29:32	59.921	3776.358398	335	217.379425	16	131.5	10	0	-103	7586.79
10/12/09 02:29:36	59.917	3774.604248	335	217.379425	16	132	10	0	-103	7587.12
10/12/09 02:29:40	59.921	3773.957764	335	217.379425	16	132.5	10	0	-103	7587.45
10/12/09 02:29:44	59.926	3771.67041	335	214.830353	16	133	10	0	-103	7587.78
10/12/09 02:29:48	59.928	3768.707031	335	214.830353	16	133.5	10	0	-103	7588.11
10/12/09 02:29:52	59.932	3767.020996	335	214.830353	16	134	10	0	-103	7588.44
10/12/09 02:29:56	59.928	3766.788086	335	214.830353	16	134.5	10	0	-103	7588.77
10/12/09 02:30:00	59.929	3765.671631	335	214.830353	16	135	10	0	-103	7589.1
10/12/09 02:30:04	59.933	3764.242676	335	227.655914	16	135.5	10	0	-103	7589.43
10/12/09 02:30:08	59.937	3762.935303	335	227.655914	16	136	10	0	-103	7589.76
10/12/09 02:30:12	59.949	3753.922363	335	227.655914	0	136.5	10	0	-103	7590.09
10/12/09 02:30:16	59.942	3746.888672	335	227.655914	0	137	10	0	-103	7590.42

10/12/09 02:30:20	59.942	3749.593262	335	227.655914	0	137.5	10	0	-103	7590.75
10/12/09 02:30:24	59.948	3746.706055	335	225.018082	0	138	10	0	-103	7591.08
10/12/09 02:30:28	59.949	3742.741455	335	225.018082	0	138.5	10	0	-103	7591.41
10/12/09 02:30:32	59.952	3736.13916	335	225.018082	0	139	10	0	-103	7591.74
10/12/09 02:30:36	59.951	3727.838379	335	225.018082	0	139.5	10	0	-103	7592.07
10/12/09 02:30:40	59.952	3722.648926	335	225.018082	0	140	10	0	-103	7592.4
10/12/09 02:30:44	59.955	3717.996094	335	228.365158	0	140.5	10	0	-103	7592.73
10/12/09 02:30:48	59.954	3715.752686	335	228.365158	0	141	10	0	-103	7593.06
10/12/09 02:30:52	59.953	3713.483643	335	228.365158	0	141.5	10	0	-103	7593.39
10/12/09 02:30:56	59.952	3710.810059	335	228.365158	0	142	10	0	-103	7593.72
10/12/09 02:31:00	59.954	3714.622559	335	228.365158	0	142.5	10	0	-103	7594.05
10/12/09 02:31:04	59.957	3716.168213	335	234.075333	0	143	10	0	-103	7594.38
10/12/09 02:31:08	59.954	3716.97998	335	234.075333	0	143.5	10	0	-103	7594.71
10/12/09 02:31:12	59.955	3722.361328	335	234.075333	0	144	10	0	-103	7595.04
10/12/09 02:31:16	59.961	3722.657959	335	234.075333	0	144.5	10	0	-103	7595.37
10/12/09 02:31:20	59.962	3722.277588	335	234.075333	0	145	10	0	-103	7595.7
10/12/09 02:31:24	59.966	3723.09082	335	228.798157	0	145.5	10	0	-103	7596.03
10/12/09 02:31:28	59.968	3723.43457	335	228.798157	0	146	10	0	-103	7596.36
10/12/09 02:31:32	59.974	3725.402832	335	228.798157	0	146.5	10	0	-103	7596.69
10/12/09 02:31:36	59.969	3728.052979	335	228.798157	0	147	10	0	-103	7597.02
10/12/09 02:31:40	59.97	3732.530029	335	228.798157	0	147.5	10	0	-103	7597.35
10/12/09 02:31:44	59.973	3736.535156	335	229.466965	0	148	10	0	-103	7597.68
10/12/09 02:31:48	59.976	3736.821777	335	229.466965	0	148.5	10	0	-103	7598.01
10/12/09 02:31:52	59.978	3739.943848	335	229.466965	0	149	10	0	-103	7598.34
10/12/09 02:31:56	59.978	3741.793701	335	229.466965	0	149.5	10	0	-103	7598.67
10/12/09 02:32:00	59.978	3746.60791	335	229.466965	0	150	10	0	-103	7599
10/12/09 02:32:04	59.98	3750.716309	335	228.980164	0	150.5	10	0	-103	7599.33
10/12/09 02:32:08	59.981	3752.747559	335	228.980164	0	151	10	0	-103	7599.66
10/12/09 02:32:12	59.979	3756.407227	335	228.980164	0	151.5	10	0	-103	7599.99
10/12/09 02:32:16	59.979	3760.405273	335	228.980164	0	152	10	0	-103	7600.32
10/12/09 02:32:20	59.983	3761.406982	335	228.980164	0	152.5	10	0	-103	7600.65
10/12/09 02:32:24	59.988	3763.212158	335	219.975555	0	153	10	0	-103	7600.98
10/12/09 02:32:28	59.987	3766.085205	335	219.975555	0	153.5	10	0	-103	7601.31
10/12/09 02:32:32	59.991	3767.250977	335	219.975555	0	154	10	0	-103	7601.64
10/12/09 02:32:36	59.992	3768.633545	335	219.975555	0	154.5	10	0	-103	7601.97
10/12/09 02:32:40	59.989	3772.44458	335	219.975555	0	155	10	0	-103	7602.3
10/12/09 02:32:44	59.983	3774.668457	335	229.089249	0	155.5	10	0	-103	7602.63
10/12/09 02:32:48	59.988	3775.363281	335	229.089249	0	156	10	0	-103	7602.96
10/12/09 02:32:52	59.996	3775.491699	335	229.089249	0	156.5	10	0	-103	7603.29
10/12/09 02:32:56	59.999	3778.553711	335	229.089249	0	157	10	0	-103	7603.62

10/12/09 02:33:00	59.999	3781.255859	335	229.089249	0	157.5	10	0	-103	7603.95
10/12/09 02:33:04	59.999	3783.092041	335	229.663269	0	158	10	0	-103	7604.28
10/12/09 02:33:08	60.005	3784.420898	335	229.663269	0	158.5	10	0	-103	7604.61
10/12/09 02:33:12	60.008	3785.462646	335	229.663269	0	159	10	0	-103	7604.94
10/12/09 02:33:16	60.014	3786.304199	335	229.663269	0	159.5	10	0	-103	7605.27
10/12/09 02:33:20	60.019	3787.515869	335	229.663269	0	160	10	0	-103	7605.6
10/12/09 02:33:24	60.017	3788.030273	335	229.233856	0	160.5	10	0	-103	7605.93
10/12/09 02:33:28	60.019	3789.21582	335	229.233856	0	161	10	0	-103	7606.26
10/12/09 02:33:32	60.024	3785.841797	335	229.233856	0	161.5	10	0	-103	7606.59
10/12/09 02:33:36	60.021	3787.93042	335	229.233856	0	162	10	0	-103	7606.92
10/12/09 02:33:40	60.024	3786.874756	335	262.1026	0	162.5	10	0	-103	7607.25
10/12/09 02:33:44	60.021	3787.357666	335	262.1026	0	163	10	0	-103	7607.58
10/12/09 02:33:48	60.025	3785.614014	335	262.1026	0	163.5	10	0	-103	7607.91
10/12/09 02:33:52	60.02	3785.803711	335	262.71701	0	164	10	0	-103	7608.24
10/12/09 02:33:56	60.022	3786.877197	335	262.71701	0	164.5	10	0	-103	7608.57
10/12/09 02:34:00	60.022	3785.726074	335	262.71701	0	165	10	0	-103	7608.9
10/12/09 02:34:04	60.021	3785.821045	335	262.71701	0	165.5	10	0	-103	7609.23
10/12/09 02:34:08	60.023	3786.28418	335	262.71701	0	166	10	0	-103	7609.56
10/12/09 02:34:12	60.019	3787.627441	335	260.016479	0	166.5	10	0	-103	7609.89
10/12/09 02:34:16	60.018	3789.67334	335	260.016479	0	167	10	0	-103	7610.22
10/12/09 02:34:20	60.018	3788.47876	335	260.016479	0	167.5	10	0	-103	7610.55
10/12/09 02:34:24	60.019	3789.368896	335	260.016479	0	168	10	0	-103	7610.88
10/12/09 02:34:28	60.015	3788.664551	335	260.016479	0	168.5	10	0	-103	7611.21
10/12/09 02:34:32	60.014	3790.666992	335	263.87323	0	169	10	0	-103	7611.54
10/12/09 02:34:36	60.012	3790.411133	335	263.87323	0	169.5	10	0	-103	7611.87
10/12/09 02:34:40	60.01	3791.539795	335	263.87323	0	170	10	0	-103	7612.2
10/12/09 02:34:44	60.007	3791.0271	335	263.87323	0	170.5	10	0	-103	7612.53
10/12/09 02:34:48	60.009	3791.426025	335	263.87323	0	171	10	0	-103	7612.86
10/12/09 02:34:52	60.003	3790.457275	335	264.5979	0	171.5	10	0	-103	7613.19
10/12/09 02:34:56	59.995	3789.584961	335	264.5979	0	172	10	0	-103	7613.52
10/12/09 02:35:00	59.991	3788.10498	335	264.5979	0	172.5	10	0	-103	7613.85
10/12/09 02:35:04	59.992	3788.189453	335	264.5979	0	173	10	0	-103	7614.18
10/12/09 02:35:08	59.986	3788.540039	335	264.5979	0	173.5	10	0	-103	7614.51
10/12/09 02:35:12	59.984	3788.101074	335	262.415924	0	174	10	0	-103	7614.84
10/12/09 02:35:16	59.984	3786.452881	335	262.415924	0	174.5	10	0	-103	7615.17
10/12/09 02:35:20	59.981	3788.813477	335	262.415924	0	175	10	0	-103	7615.5
10/12/09 02:35:24	59.979	3788.256348	335	262.415924	0	175.5	10	0	-103	7615.83
10/12/09 02:35:28	59.976	3790.467285	335	262.415924	0	176	10	0	-103	7616.16
10/12/09 02:35:32	59.979	3790.42041	335	259.685242	0	176.5	10	0	-103	7616.49
10/12/09 02:35:36	59.978	3789.26709	335	259.685242	0	177	10	0	-103	7616.82

10/12/09 02:35:40	59.974	3790.43042	335	259.685242	0	177.5	10	0	-103	7617.15
10/12/09 02:35:44	59.977	3786.243164	335	259.685242	0	178	10	0	-103	7617.48
10/12/09 02:35:48	59.975	3788.962891	335	259.685242	0	178.5	10	0	-103	7617.81
10/12/09 02:35:52	59.969	3791.876953	335	255.911011	0	179	10	0	-103	7618.14
10/12/09 02:35:56	59.971	3792.311279	335	255.911011	0	179.5	10	0	-103	7618.47
10/12/09 02:36:00	59.978	3788.07959	335	255.911011	0	180	10	0	-103	7618.8
10/12/09 02:36:04	59.978	3787.13501	335	255.911011	0	180.5	10	0	-103	7619.13
10/12/09 02:36:08	59.972	3786.996094	335	255.911011	0	181	10	0	-103	7619.46
10/12/09 02:36:12	59.975	3786.486816	335	258.148193	0	181.5	10	0	-103	7619.79
10/12/09 02:36:16	59.969	3789.213867	335	258.148193	0	182	10	0	-103	7620.12
10/12/09 02:36:20	59.965	3791.221191	335	258.148193	0	182.5	10	0	-103	7620.45
10/12/09 02:36:24	59.969	3790.959473	335	258.148193	0	183	10	0	-103	7620.78
10/12/09 02:36:28	59.968	3789.026367	335	258.148193	0	183.5	10	0	-103	7621.11
10/12/09 02:36:32	59.964	3787.394043	335	258.873596	0	184	10	0	-103	7621.44
10/12/09 02:36:36	59.972	3784.830566	335	258.873596	0	184.5	10	0	-103	7621.77
10/12/09 02:36:40	59.967	3784.320313	335	258.873596	0	185	10	0	-103	7622.1
10/12/09 02:36:44	59.968	3782.109863	335	258.873596	0	185.5	10	0	-103	7622.43
10/12/09 02:36:48	59.967	3779.056152	335	258.873596	0	186	10	0	-103	7622.76
10/12/09 02:36:52	59.966	3779.21167	335	249.33757	0	186.5	10	0	-103	7623.09
10/12/09 02:36:56	59.971	3776.429199	335	249.33757	0	187	10	0	-103	7623.42
10/12/09 02:37:00	59.965	3776.59668	335	249.33757	0	187.5	10	0	-103	7623.75
10/12/09 02:37:04	59.964	3776.022949	335	249.33757	0	188	10	0	-103	7624.08
10/12/09 02:37:08	59.967	3771.730469	335	249.33757	0	188.5	10	0	-103	7624.41
10/12/09 02:37:12	59.968	3768.50293	335	258.278168	0	189	10	0	-103	7624.74
10/12/09 02:37:16	59.965	3767.366211	335	258.278168	0	189.5	10	0	-103	7625.07
10/12/09 02:37:20	59.973	3760.29541	335	258.278168	0	190	10	0	-103	7625.4
10/12/09 02:37:24	59.965	3761.893799	335	258.278168	0	190.5	10	0	-103	7625.73
10/12/09 02:37:28	59.969	3760.58252	335	258.278168	0	191	10	0	-103	7626.06
10/12/09 02:37:32	59.964	3759.781006	335	258.406372	0	191.5	10	0	-103	7626.39
10/12/09 02:37:36	59.979	3757.772949	335	258.406372	0	192	10	0	-103	7626.72
10/12/09 02:37:40	59.983	3753.087402	335	258.406372	0	192.5	10	0	-103	7627.05
10/12/09 02:37:44	59.967	3753.750977	335	258.406372	0	193	10	0	-103	7627.38
10/12/09 02:37:48	59.962	3759.249756	335	258.406372	0	193.5	10	0	-103	7627.71
10/12/09 02:37:52	59.961	3760.964844	335	260.538879	0	194	10	0	-103	7628.04
10/12/09 02:37:56	59.96	3763.822266	335	260.538879	0	194.5	10	0	-103	7628.37
10/12/09 02:38:00	59.959	3763.858154	335	260.538879	0	195	10	0	-103	7628.7
10/12/09 02:38:04	59.951	3766.126709	335	260.538879	0	195.5	10	0	-103	7629.03
10/12/09 02:38:08	59.954	3767.972168	335	260.538879	0	196	10	0	-103	7629.36
10/12/09 02:38:12	59.956	3765.606445	335	257.88208	0	196.5	10	0	-103	7629.69
10/12/09 02:38:16	59.963	3761.570313	335	257.88208	0	197	10	0	-103	7630.02

10/12/09 02:38:20	59.959	3759.626953	335	257.88208	0	197.5	10	0	-103	7630.35
10/12/09 02:38:24	59.963	3752.428711	335	257.88208	0	198	10	0	-103	7630.68
10/12/09 02:38:28	59.968	3753.82959	335	257.88208	0	198.5	10	0	-103	7631.01
10/12/09 02:38:32	59.968	3753.522949	335	258.588654	0	199	10	0	-103	7631.34
10/12/09 02:38:36	59.973	3753.178223	335	258.588654	0	199.5	10	0	-103	7631.67
10/12/09 02:38:40	59.965	3753.290527	335	258.588654	0	200	10	0	-103	7632
10/12/09 02:38:44	59.967	3752.358643	335	258.588654	0	200.5	10	0	-103	7632.33
10/12/09 02:38:48	59.976	3747.47583	335	258.588654	0	201	10	0	-103	7632.66
10/12/09 02:38:52	59.969	3741.285156	335	261.906158	0	201.5	10	0	-103	7632.99
10/12/09 02:38:56	59.974	3745.738281	335	261.906158	0	202	10	0	-103	7633.32
10/12/09 02:39:00	59.981	3741.618164	335	261.906158	0	202.5	10	0	-103	7633.65
10/12/09 02:39:04	59.981	3738.484375	335	261.906158	0	203	10	0	-103	7633.98
10/12/09 02:39:08	59.982	3737.403564	335	261.906158	0	203.5	10	0	-103	7634.31
10/12/09 02:39:12	59.982	3736.30835	335	256.747803	0	204	10	0	-103	7634.64
10/12/09 02:39:16	59.979	3735.448242	335	256.747803	0	204.5	10	0	-103	7634.97
10/12/09 02:39:20	59.978	3737.540527	335	256.747803	0	205	10	0	-103	7635.3
10/12/09 02:39:24	59.98	3736.747559	350	256.747803	0	205.5	10	0	-103	7635.63
10/12/09 02:39:28	59.98	3736.067383	350	256.747803	0	206	10	0	-103	7635.96
10/12/09 02:39:32	59.976	3736.574951	350	167.431976	0	206.5	10	0	-103	7636.29
10/12/09 02:39:36	59.971	3738.874756	350	167.431976	0	207	10	0	-103	7636.62
10/12/09 02:39:40	59.974	3738.646973	350	167.431976	0	207.5	10	0	-103	7636.95
10/12/09 02:39:44	59.976	3737.38208	350	167.431976	0	208	10	0	-103	7637.28
10/12/09 02:39:48	59.969	3740.016846	350	167.431976	0	208.5	10	0	-103	7637.61
10/12/09 02:39:52	59.974	3742.052734	350	164.973404	0	209	10	0	-103	7637.94
10/12/09 02:39:56	59.972	3742.524414	350	164.973404	0	209.5	10	0	-103	7638.27
10/12/09 02:40:00	59.977	3741.723145	350	164.973404	0	210	10	0	-103	7638.6
10/12/09 02:40:04	59.978	3740.62915	350	164.973404	0	210.5	10	0	-103	7638.93
10/12/09 02:40:08	59.973	3740.775146	350	164.973404	0	211	10	0	-103	7639.26
10/12/09 02:40:12	59.977	3741.267822	350	157.628082	0	211.5	10	0	-103	7639.59
10/12/09 02:40:16	59.978	3738.96582	350	157.628082	0	212	10	0	-103	7639.92
10/12/09 02:40:20	59.981	3738.878662	350	157.628082	0	212.5	10	0	-103	7640.25
10/12/09 02:40:24	59.974	3738.101563	350	157.628082	0	213	10	0	-103	7640.58
10/12/09 02:40:28	59.971	3743.506836	350	157.628082	0	213.5	10	0	-103	7640.91
10/12/09 02:40:32	59.972	3745.250732	350	155.531708	0	214	10	0	-103	7641.24
10/12/09 02:40:36	59.966	3747.3396	350	155.531708	0	214.5	10	0	-103	7641.57
10/12/09 02:40:40	59.971	3749.75	350	155.531708	0	215	10	0	-103	7641.9
10/12/09 02:40:44	59.972	3744.682617	350	155.531708	0	215.5	10	0	-103	7642.23
10/12/09 02:40:48	59.972	3743.148926	350	155.531708	0	216	10	0	-103	7642.56
10/12/09 02:40:52	59.973	3739.452637	350	160.447235	0	216.5	10	0	-103	7642.89
10/12/09 02:40:56	59.971	3731.82959	350	160.447235	0	217	10	0	-103	7643.22

10/12/09 02:41:00	59.982	3736.229492	350	160.447235	0	217.5	10	0	-103	7643.55
10/12/09 02:41:04	59.985	3733.433838	350	160.447235	0	218	10	0	-103	7643.88
10/12/09 02:41:08	59.987	3730.509766	350	160.447235	0	218.5	10	0	-103	7644.21
10/12/09 02:41:12	59.989	3725.45874	350	163.958603	0	219	10	0	-103	7644.54
10/12/09 02:41:16	59.987	3720.10791	350	163.958603	0	219.5	10	0	-103	7644.87
10/12/09 02:41:20	59.994	3725.661377	350	163.958603	0	220	10	0	-103	7645.2
10/12/09 02:41:24	60.001	3727.75415	350	163.958603	0	220.5	10	0	-103	7645.53
10/12/09 02:41:28	60.004	3727.68335	350	163.958603	0	221	10	0	-103	7645.86
10/12/09 02:41:32	60.012	3725.012207	350	166.072449	0	221.5	10	0	-103	7646.19
10/12/09 02:41:36	60.019	3726.015625	350	166.072449	0	222	10	0	-103	7646.52
10/12/09 02:41:40	60.025	3716.374512	350	166.072449	0	222.5	10	0	-103	7646.85
10/12/09 02:41:44	60.027	3717.559814	350	166.072449	0	223	10	0	-103	7647.18
10/12/09 02:41:48	60.029	3715.166016	350	166.072449	0	223.5	10	0	-103	7647.51
10/12/09 02:41:52	60.036	3710.283447	350	163.766586	0	224	10	0	-103	7647.84
10/12/09 02:41:56	60.037	3699.355713	350	163.766586	0	224.5	10	0	-103	7648.17
10/12/09 02:42:00	60.041	3704.591309	350	163.766586	0	225	10	0	-103	7648.5
10/12/09 02:42:04	60.044	3702.482422	350	163.766586	0	225.5	10	0	-103	7648.83
10/12/09 02:42:08	60.046	3700.825928	350	163.766586	0	226	10	0	-103	7649.16
10/12/09 02:42:12	60.046	3699.726074	350	165.101685	0	226.5	10	0	-103	7649.49
10/12/09 02:42:16	60.043	3690.477295	350	165.101685	0	227	10	0	-103	7649.82
10/12/09 02:42:20	60.044	3696.877197	350	165.101685	0	227.5	10	0	-103	7650.15
10/12/09 02:42:24	60.043	3696.54126	350	165.101685	0	228	10	0	-103	7650.48
10/12/09 02:42:28	60.04	3698.686035	350	165.101685	0	228.5	10	0	-103	7650.81
10/12/09 02:42:32	60.039	3698.786865	350	165.476395	0	229	10	0	-103	7651.14
10/12/09 02:42:36	60.036	3700.105713	350	165.476395	0	229.5	10	0	-103	7651.47
10/12/09 02:42:40	60.033	3701.121826	350	165.476395	0	230	10	0	-103	7651.8
10/12/09 02:42:44	60.037	3701.61377	350	165.476395	0	230.5	10	0	-103	7652.13
10/12/09 02:42:48	60.035	3702.912598	350	165.476395	0	231	10	0	-103	7652.46
10/12/09 02:42:52	60.033	3705.522461	350	206.459106	0	231.5	10	0	-103	7652.79
10/12/09 02:42:56	60.033	3704.087402	350	206.459106	0	232	10	0	-103	7616
10/12/09 02:43:00	60.032	3703.706299	335	206.459106	0	232.5	10	0	-103	7626
10/12/09 02:43:04	60.034	3705.435303	335	206.459106	0	233	10	0	-103	7632
10/12/09 02:43:08	60.037	3702.587891	335	206.459106	0	233.5	10	0	-103	7632
10/12/09 02:43:12	60.035	3701.941895	335	211.256042	0	234	10	0	-103	7632
10/12/09 02:43:16	60.039	3703.317871	335	211.256042	1	234.5	10	0	-103	7632
10/12/09 02:43:20	60.039	3702.524902	335	211.256042	1	235	10	0	-103	7632
10/12/09 02:43:24	60.034	3703.843506	335	211.256042	1	235.5	10	0	-103	7632
10/12/09 02:43:28	60.037	3702.517578	335	211.256042	1	236	10	0	-103	7632
10/12/09 02:43:32	60.037	3692.427002	335	214.346695	1	236.5	10	0	-103	7632
10/12/09 02:43:36	60.04	3700.275879	335	214.346695	1	237	10	0	-103	7632

10/12/09 02:43:40	60.045	3697.728516	335	214.346695	1	237.5	10	0	-103	7632
10/12/09 02:43:44	60.042	3697.368408	335	214.346695	2	238	10	0	-103	7632
10/12/09 02:43:48	60.04	3698.429199	335	214.346695	3	238.5	10	0	-103	7632
10/12/09 02:43:52	60.046	3693.58374	335	212.172699	4	239	10	0	-103	7632
10/12/09 02:43:56	60.034	3696.79834	335	212.172699	5	239.5	10	0	-103	7632
10/12/09 02:44:00	60.039	3701.791016	335	212.172699	6	240	10	0	-103	7632
10/12/09 02:44:04	60.037	3700.753418	335	212.172699	7	240.5	10	0	-103	7632
10/12/09 02:44:08	60.033	3705.212646	335	212.172699	8	241	10	0	-103	7632
10/12/09 02:44:12	60.031	3707.286621	335	215.598175	9	241.5	10	0	-103	7632
10/12/09 02:44:16	60.027	3707.340332	335	215.598175	10	242	10	0	-103	7632
10/12/09 02:44:20	60.032	3707.383789	335	215.598175	11	242.5	10	0	-103	7632
10/12/09 02:44:24	60.031	3707.615234	335	215.598175	12	243	10	0	-103	7632
10/12/09 02:44:28	60.039	3703.746094	335	215.598175	13	243.5	10	0	-103	7632
10/12/09 02:44:32	60.038	3700.847412	335	218.327255	14	244	10	0	-103	7632
10/12/09 02:44:36	60.035	3702.212158	335	218.327255	15	244.5	10	0	-103	7632
10/12/09 02:44:40	60.04	3700.397461	335	218.327255	16	245	10	0	-103	7632
10/12/09 02:44:44	60.035	3700.366455	335	218.327255	16	245.5	10	0	-103	7632
10/12/09 02:44:48	60.04	3700.661621	335	218.327255	16	246	10	0	-103	7632
10/12/09 02:44:52	60.045	3695.688232	335	217.379425	16	246.5	10	0	-103	7632
10/12/09 02:44:56	60.042	3693.824219	335	217.379425	16	247	10	0	-103	7632
10/12/09 02:45:00	60.044	3696.896973	335	217.379425	16	247.5	10	0	-103	7631
10/12/09 02:45:04	60.041	3697.502441	335	217.379425	16	248	10	0	-103	7625
10/12/09 02:45:08	60.04	3699.426758	335	217.379425	16	248.5	10	0	-103	7623
10/12/09 02:45:12	60.044	3699.806396	335	214.830353	16	249	10	0	-103	7621
10/12/09 02:45:16	60.039	3697.680664	335	214.830353	16	249.5	10	0	-103	7623
10/12/09 02:45:20	60.042	3698.358887	335	214.830353	16	250	10	0	-103	7625
10/12/09 02:45:24	60.038	3699.077148	335	214.830353	16	250.5	10	0	-103	7627
10/12/09 02:45:28	60.037	3701.591797	335	214.830353	16	251	10	0	-103	7628
10/12/09 02:45:32	60.038	3700.142822	335	227.655914	16	251.5	10	0	-103	7628
10/12/09 02:45:36	60.039	3701.139404	335	227.655914	16	252	10	0	-103	7629
10/12/09 02:45:40	60.038	3700.264404	335	227.655914	16	252.5	10	0	-103	7630
10/12/09 02:45:44	60.04	3699.721191	335	227.655914	16	253	10	0	-103	7631
10/12/09 02:45:48	60.037	3699.505127	335	227.655914	16	253.5	10	0	-103	7635
10/12/09 02:45:52	60.039	3699.216064	335	225.018082	16	254	10	0	-103	7638
10/12/09 02:45:56	60.036	3700.661377	335	225.018082	16	254.5	10	0	-103	7639
10/12/09 02:46:00	60.033	3702.967529	335	225.018082	16	255	10	0	-103	7642
10/12/09 02:46:04	60.03	3704.95166	335	225.018082	16	255.5	10	0	-103	7644
10/12/09 02:46:08	60.032	3705.621338	335	225.018082	16	256	10	0	-103	7645
10/12/09 02:46:12	60.042	3701.981201	335	228.365158	16	256.5	10	0	-103	7647
10/12/09 02:46:16	60.036	3700.74707	335	228.365158	16	257	10	0	-103	7648

10/12/09 02:46:20	60.032	3705.059326	335	228.365158	16	257.5	10	0	-103	7649
10/12/09 02:46:24	60.034	3704.44873	335	228.365158	16	258	10	0	-103	7650
10/12/09 02:46:28	60.032	3703.619629	335	228.365158	16	258.5	10	0	-103	7651
10/12/09 02:46:32	60.043	3701.431641	335	234.075333	16	259	10	0	-103	7652
10/12/09 02:46:36	60.042	3696.249512	335	234.075333	16	259.5	10	0	-103	7653
10/12/09 02:46:40	60.04	3693.518066	335	234.075333	16	260	10	0	-103	7654
10/12/09 02:46:44	60.043	3695.197021	335	234.075333	16	260.5	10	0	-103	7655
10/12/09 02:46:48	60.041	3693.786133	335	234.075333	16	261	10	0	-103	7655
10/12/09 02:46:52	60.038	3694.92627	335	228.798157	16	261.5	10	0	-103	7656
10/12/09 02:46:56	60.044	3694.159424	335	228.798157	16	262	10	0	-103	7656
10/12/09 02:47:00	60.036	3692.686279	335	228.798157	16	262.5	10	0	-103	7657
10/12/09 02:47:04	60.041	3693.390137	335	228.798157	16	263	10	0	-103	7657
10/12/09 02:47:08	60.043	3690.951416	335	228.798157	16	263.5	10	0	-103	7658
10/12/09 02:47:12	60.036	3692.042236	335	229.466965	16	264	10	0	-103	7658
10/12/09 02:47:16	60.039	3694.117188	335	229.466965	16	264.5	10	0	-103	7659
10/12/09 02:47:20	60.034	3695.580811	335	229.466965	16	265	10	0	-103	7659
10/12/09 02:47:24	60.035	3695.491211	335	229.466965	16	265.5	10	0	-103	7659
10/12/09 02:47:28	60.036	3696.486328	335	229.466965	16	266	10	0	-103	7660
10/12/09 02:47:32	60.03	3699.170898	335	228.980164	16	266.5	10	0	-103	7660
10/12/09 02:47:36	60.031	3699.251221	335	228.980164	16	267	10	0	-103	7661
10/12/09 02:47:40	60.032	3699.105225	335	228.980164	16	267.5	10	0	-103	7661
10/12/09 02:47:44	60.032	3698.954346	335	228.980164	16	268	10	0	-103	7662
10/12/09 02:47:48	60.032	3698.277344	335	228.980164	16	268.5	10	0	-103	7662
10/12/09 02:47:52	60.037	3695.94043	335	219.975555	16	269	10	0	-103	7663
10/12/09 02:47:56	60.039	3693.223633	335	219.975555	16	269.5	10	0	-103	7663
10/12/09 02:48:00	60.036	3691.918945	335	219.975555	16	270	10	0	-103	7664
10/12/09 02:48:04	60.041	3691.581543	335	219.975555	16	270.5	10	0	-103	7664
10/12/09 02:48:08	60.035	3693.301758	335	219.975555	16	271	10	0	-103	7665
10/12/09 02:48:12	60.038	3694.331299	335	229.089249	16	271.5	10	0	-103	7666
10/12/09 02:48:16	60.041	3693.617188	335	229.089249	16	272	10	0	-103	7666
10/12/09 02:48:20	60.036	3694.27002	335	229.089249	16	272.5	10	0	-103	7667
10/12/09 02:48:24	60.034	3693.747559	335	229.089249	16	273	10	0	-103	7668
10/12/09 02:48:28	60.04	3691.445313	335	229.089249	16	273.5	10	0	-103	7668
10/12/09 02:48:32	60.037	3691.798828	335	229.663269	16	274	10	0	-103	7669
10/12/09 02:48:36	60.036	3693.727051	335	229.663269	16	274.5	10	0	-103	7669
10/12/09 02:48:40	60.038	3692.640625	335	229.663269	16	275	10	0	-103	7670
10/12/09 02:48:44	60.038	3689.019531	335	229.663269	16	275.5	10	0	-103	7670
10/12/09 02:48:48	60.033	3690.091797	335	229.663269	16	276	10	0	-103	7671
10/12/09 02:48:52	60.034	3693.320801	335	229.233856	16	276.5	10	0	-103	7671
10/12/09 02:48:56	60.029	3695.224854	335	229.233856	16	277	10	0	-103	7672

10/12/09 02:49:00	60.03	3693.411621	335	229.233856	16	277.5	10	0	-103	7673
10/12/09 02:49:04	60.026	3696.025879	335	229.233856	16	278	10	0	-103	7673
10/12/09 02:49:08	60.021	3699.061523	350	229.233856	16	278.5	10	0	-103	7673
10/12/09 02:49:12	60.023	3698.935059	350	231.409882	16	279	10	0	-103	7673
10/12/09 02:49:16	60.021	3700.544189	350	231.409882	16	279.5	10	0	-103	7673
10/12/09 02:49:20	60.025	3698.595703	350	231.409882	16	280	10	0	-103	7673
10/12/09 02:49:24	60.026	3699.913818	350	231.409882	16	280.5	10	0	-103	7673
10/12/09 02:49:28	60.024	3701.30127	350	231.409882	16	281	10	0	-103	7673
10/12/09 02:49:32	60.025	3701.348633	350	218.622284	16	281.5	10	0	-103	7673
10/12/09 02:49:36	60.023	3701.70166	350	218.622284	16	282	10	0	-103	7673
10/12/09 02:49:40	60.026	3701.964844	350	218.622284	16	282.5	10	0	-103	7673
10/12/09 02:49:44	60.026	3700.241211	350	218.622284	16	283	10	0	-103	7673
10/12/09 02:49:48	60.021	3701.268066	350	218.622284	16	283.5	10	0	-103	7673
10/12/09 02:49:52	60.025	3700.587402	350	213.535858	16	284	10	0	-103	7673
10/12/09 02:49:56	60.023	3700.176758	350	213.535858	16	284.5	10	0	-103	7673
10/12/09 02:50:00	60.024	3700.277344	350	213.535858	16	285	10	0	-103	7673
10/12/09 02:50:04	60.023	3700.862793	350	213.535858	16	285.5	10	0	-103	7674
10/12/09 02:50:08	60.025	3700.05249	350	213.535858	16	286	10	0	-103	7675
10/12/09 02:50:12	60.02	3700.964844	350	225.651855	16	286.5	10	0	-103	7676
10/12/09 02:50:16	60.015	3703.516113	350	225.651855	16	287	10	0	-103	7677
10/12/09 02:50:20	60.017	3703.672363	350	225.651855	16	287.5	10	0	-103	7678
10/12/09 02:50:24	60.015	3703.003418	350	225.651855	16	288	10	0	-103	7679
10/12/09 02:50:28	60.017	3702.999512	350	225.651855	16	288.5	10	0	-103	7680
10/12/09 02:50:32	60.01	3703.918213	350	212.573639	16	289	10	0	-103	7681
10/12/09 02:50:36	60.002	3703.775391	350	212.573639	16	289.5	10	0	-103	7682
10/12/09 02:50:40	59.999	3701.533691	350	212.573639	16	290	10	0	-103	7684
10/12/09 02:50:44	60.003	3700.880371	350	212.573639	16	290.5	10	0	-103	7685
10/12/09 02:50:48	60.001	3701.388916	350	212.573639	16	291	10	0	-103	7687
10/12/09 02:50:52	59.993	3700.671387	350	219.897293	16	291.5	10	0	-103	7689
10/12/09 02:50:56	59.989	3700.977051	350	219.897293	16	292	10	0	-103	7690
10/12/09 02:51:00	59.985	3699.85376	350	219.897293	16	292.5	10	0	-103	7692
10/12/09 02:51:04	59.986	3700.342285	350	219.897293	16	293	10	0	-103	7692
10/12/09 02:51:08	59.981	3700.789307	350	219.897293	16	293.5	10	0	-103	7693
10/12/09 02:51:12	59.977	3703.165771	350	231.1754	16	294	10	0	-103	7693
10/12/09 02:51:16	59.976	3704.784668	350	231.1754	16	294.5	10	0	-103	7694
10/12/09 02:51:20	59.974	3706.958008	350	231.1754	16	295	10	0	-103	7694
10/12/09 02:51:24	59.975	3706.542969	350	231.1754	16	295.5	10	0	-103	7695
10/12/09 02:51:28	59.971	3707.026611	350	231.1754	16	296	10	0	-103	7695
10/12/09 02:51:32	59.976	3710.53125	350	226.634125	16	296.5	10	0	-103	7695
10/12/09 02:51:36	59.98	3708.018066	350	226.634125	16	297	10	0	-103	7696

10/12/09 02:51:40	59.982	3706.342529	350	226.634125	16	297.5	10	0	-103	7696
10/12/09 02:51:44	59.983	3706.310547	350	226.634125	16	298	10	0	-103	7697
10/12/09 02:51:48	59.979	3706.19043	350	226.634125	16	298.5	10	0	-103	7697
10/12/09 02:51:52	59.976	3709.408936	350	227.255066	16	299	10	0	-103	7697
10/12/09 02:51:56	59.977	3708.530518	350	227.255066	16	299.5	10	0	-103	7698
10/12/09 02:52:00	59.978	3707.23999	350	227.255066	16	300	10	0	-103	7698
10/12/09 02:52:04	59.971	3709.961182	350	227.255066	16	300.5	10	0	-103	7698.33
10/12/09 02:52:08	59.97	3711.980469	350	227.255066	16	301	10	0	-103	7698.66
10/12/09 02:52:12	59.99	3707.866699	350	229.290222	16	301.5	10	0	-103	7698.99
10/12/09 02:52:16	59.999	3705.63916	350	229.290222	16	302	10	0	-103	7699.32
10/12/09 02:52:20	59.998	3703.190918	350	229.290222	16	302.5	10	0	-103	7699.65
10/12/09 02:52:24	60.003	3699.51001	350	229.290222	16	303	10	0	-103	7699.98
10/12/09 02:52:28	60.005	3698.136719	350	229.290222	16	303.5	10	0	-103	7700.31
10/12/09 02:52:32	60.013	3698.668213	350	221.461365	16	304	10	0	-103	7700.64
10/12/09 02:52:36	60.022	3697.868408	350	221.461365	16	304.5	10	0	-103	7700.97
10/12/09 02:52:40	60.025	3693.912109	350	221.461365	16	305	10	0	-103	7701.3
10/12/09 02:52:44	60.024	3688.30127	350	221.461365	16	305.5	10	0	-103	7701.63
10/12/09 02:52:48	60.029	3689.143066	350	221.461365	16	306	10	0	-103	7701.96
10/12/09 02:52:52	60.029	3687.87793	350	241.274368	16	306.5	10	0	-103	7702.29
10/12/09 02:52:56	60.028	3686.683105	350	241.274368	16	307	10	0	-103	7702.62
10/12/09 02:53:00	60.032	3685.576172	350	241.274368	16	307.5	10	0	-103	7702.95
10/12/09 02:53:04	60.031	3686.417969	350	241.274368	16	308	10	0	-103	7703.28
10/12/09 02:53:08	60.022	3687.873047	350	241.274368	16	308.5	10	0	-103	7703.61
10/12/09 02:53:12	60.019	3690.425781	350	243.071854	16	309	10	0	-103	7703.94
10/12/09 02:53:16	60.017	3692.715332	350	243.071854	16	309.5	10	0	-103	7704.27
10/12/09 02:53:20	60.016	3692.46167	350	243.071854	16	310	10	0	-103	7704.6
10/12/09 02:53:24	60.015	3693.248779	350	243.071854	16	310.5	10	0	-103	7704.93
10/12/09 02:53:28	60.009	3695.124268	350	243.071854	16	311	10	0	-103	7705.26
10/12/09 02:53:32	60.008	3694.740723	350	241.670212	16	311.5	10	0	-103	7705.59
10/12/09 02:53:36	60.005	3693.749512	350	241.670212	16	312	10	0	-103	7705.92
10/12/09 02:53:40	59.999	3692.806152	350	241.670212	16	312.5	10	0	-103	7706.25
10/12/09 02:53:44	59.999	3691.406738	350	241.670212	16	313	10	0	-103	7706.58
10/12/09 02:53:48	59.998	3690.587646	350	241.670212	16	313.5	10	0	-103	7706.91
10/12/09 02:53:52	59.994	3688.482666	350	228.149307	16	314	10	0	-103	7707.24
10/12/09 02:53:56	59.993	3689.553467	350	228.149307	16	314.5	10	0	-103	7707.57
10/12/09 02:54:00	59.985	3689.735596	350	228.149307	16	315	10	0	-103	7707.9
10/12/09 02:54:04	59.988	3688.240234	350	228.149307	16	315.5	10	0	-103	7708.23
10/12/09 02:54:08	59.985	3687.475342	350	228.149307	16	316	10	0	-103	7708.56
10/12/09 02:54:12	59.983	3685.659668	350	235.128983	16	316.5	10	0	-103	7708.89
10/12/09 02:54:16	59.986	3684.333496	350	235.128983	16	317	10	0	-103	7709.22

10/12/09 02:54:20	59.99	3683.734863	350	235.128983	16	317.5	10	0	-103	7709.55
10/12/09 02:54:24	59.985	3683.811035	350	235.128983	16	318	10	0	-103	7709.88
10/12/09 02:54:28	59.983	3684.257813	350	235.128983	16	318.5	10	0	-103	7710.21
10/12/09 02:54:32	59.982	3685.091797	350	246.433136	16	319	10	0	-103	7710.54
10/12/09 02:54:36	59.978	3685.086914	350	246.433136	16	319.5	10	0	-103	7710.87
10/12/09 02:54:40	59.975	3685.196045	350	246.433136	16	320	10	0	-103	7711.2
10/12/09 02:54:44	59.975	3688.416992	350	246.433136	16	320.5	10	0	-103	7711.53
10/12/09 02:54:48	59.976	3687.847656	350	246.433136	16	321	10	0	-103	7711.86
10/12/09 02:54:52	59.982	3685.782227	350	236.553543	16	321.5	10	0	-103	7712.19
10/12/09 02:54:56	59.979	3685.142578	350	236.553543	16	322	10	0	-103	7712.52
10/12/09 02:55:00	59.977	3684.093262	350	236.553543	16	322.5	10	0	-103	7712.85
10/12/09 02:55:04	59.978	3682.814209	350	236.553543	16	323	10	0	-103	7713.18
10/12/09 02:55:08	59.979	3682.365723	350	236.553543	16	323.5	10	0	-103	7713.51
10/12/09 02:55:12	59.981	3682.855469	350	230.297562	16	324	10	0	-103	7713.84
10/12/09 02:55:16	59.978	3684.051758	350	230.297562	16	324.5	10	0	-103	7714.17
10/12/09 02:55:20	59.978	3686.048828	350	230.297562	16	325	10	0	-103	7714.5
10/12/09 02:55:24	59.983	3685.286377	350	230.297562	16	325.5	10	0	-103	7714.83
10/12/09 02:55:28	59.99	3682.416016	350	230.297562	16	326	10	0	-103	7715.16
10/12/09 02:55:32	59.993	3679.012451	350	231.175537	16	326.5	10	0	-103	7715.49
10/12/09 02:55:36	59.988	3671.76123	350	231.175537	16	327	10	0	-103	7715.82
10/12/09 02:55:40	59.99	3670.159424	350	231.175537	16	327.5	10	0	-103	7716.15
10/12/09 02:55:44	59.994	3680.17627	350	231.175537	16	328	10	0	-103	7716.48
10/12/09 02:55:48	59.994	3682.700439	350	231.175537	16	328.5	10	0	-103	7716.81
10/12/09 02:55:52	59.993	3685.030273	350	225.61763	16	329	10	0	-103	7717.14
10/12/09 02:55:56	59.984	3684.165039	350	225.61763	16	329.5	10	0	-103	7717.47
10/12/09 02:56:00	59.985	3685.58374	350	225.61763	16	330	10	0	-103	7717.8
10/12/09 02:56:04	59.987	3684.58667	350	225.61763	16	330.5	10	0	-103	7718.13
10/12/09 02:56:08	59.987	3683.674316	350	225.61763	16	331	10	0	-103	7718.46
10/12/09 02:56:12	59.982	3684.244629	350	230.734421	16	331.5	10	0	-103	7718.79
10/12/09 02:56:16	59.982	3685.589111	350	230.734421	16	332	10	0	-103	7719.12
10/12/09 02:56:20	59.992	3682.578857	350	230.734421	16	332.5	10	0	-103	7719.45
10/12/09 02:56:24	60	3682.137695	350	230.734421	16	333	10	0	-103	7719.78
10/12/09 02:56:28	60.003	3681.688965	350	230.734421	16	333.5	10	0	-103	7720.11
10/12/09 02:56:32	60.002	3681.650391	350	234.847107	16	334	10	0	-103	7720.44
10/12/09 02:56:36	60.002	3680.166992	350	234.847107	16	334.5	10	0	-103	7720.77
10/12/09 02:56:40	60.004	3679.429199	350	234.847107	16	335	10	0	-103	7721.1
10/12/09 02:56:44	60.006	3678.981201	350	234.847107	16	335.5	10	0	-103	7721.43
10/12/09 02:56:48	60.012	3676.796143	350	234.847107	16	336	10	0	-103	7721.76
10/12/09 02:56:52	60.021	3674.797607	350	228.960922	16	336.5	10	0	-103	7722.09
10/12/09 02:56:56	60.021	3671.14502	350	228.960922	16	337	10	0	-103	7722.42

10/12/09 02:57:00	60.018	3673.647949	350	228.960922	16	337.5	10	0	-103	7722.75
10/12/09 02:57:04	60.02	3675.864746	350	228.960922	16	338	10	0	-103	7723.08
10/12/09 02:57:08	60.018	3676.403809	350	228.960922	16	338.5	10	0	-103	7723.41
10/12/09 02:57:12	60.019	3677.184814	350	231.177917	16	339	10	0	-103	7723.74
10/12/09 02:57:16	60.018	3678.828369	350	231.177917	16	339.5	10	0	-103	7724.07
10/12/09 02:57:20	60.016	3678.914551	350	231.177917	16	340	10	0	-103	7724.4
10/12/09 02:57:24	60.016	3678.598633	350	231.177917	16	340.5	10	0	-103	7724.73
10/12/09 02:57:28	60.014	3678.250488	350	231.177917	16	341	10	0	-103	7725.06
10/12/09 02:57:32	60.013	3677.250977	350	236.489288	16	341.5	10	0	-103	7725.39
10/12/09 02:57:36	60.015	3674.669434	350	236.489288	16	342	10	0	-103	7725.72
10/12/09 02:57:40	60.016	3674.401855	350	236.489288	16	342.5	10	0	-103	7726.05
10/12/09 02:57:44	60.021	3672.96875	350	236.489288	16	343	10	0	-103	7726.38
10/12/09 02:57:48	60.02	3671.981934	350	236.489288	16	343.5	10	0	-103	7726.71
10/12/09 02:57:52	60.024	3670.821045	350	245.038925	16	344	10	0	-103	7727.04
10/12/09 02:57:56	60.025	3671.538574	350	245.038925	16	344.5	10	0	-103	7727.37
10/12/09 02:58:00	60.022	3674.009521	350	245.038925	16	345	10	0	-103	7727.7
10/12/09 02:58:04	60.022	3675.28418	350	245.038925	16	345.5	10	0	-103	7728.03
10/12/09 02:58:08	60.027	3675.703613	350	245.038925	16	346	10	0	-103	7728.36
10/12/09 02:58:12	60.028	3671.342773	350	223.605682	16	346.5	10	0	-103	7728.69
10/12/09 02:58:16	60.032	3668.653809	350	223.605682	16	347	10	0	-103	7729.02
10/12/09 02:58:20	60.03	3666.312256	350	223.605682	16	347.5	10	0	-103	7729.35
10/12/09 02:58:24	60.021	3657.164063	350	223.605682	16	348	10	0	-103	7729.68
10/12/09 02:58:28	60.024	3668.637451	350	223.605682	16	348.5	10	0	-103	7730.01
10/12/09 02:58:32	60.024	3670.112305	350	231.119354	16	349	10	0	-103	7730.34
10/12/09 02:58:36	60.023	3671.332031	350	231.119354	16	349.5	10	0	-103	7730.67
10/12/09 02:58:40	60.02	3672.683105	350	231.119354	16	350	10	0	-103	7731
10/12/09 02:58:44	60.02	3674.644775	350	231.119354	16	350.5	10	0	-103	7731.33
10/12/09 02:58:48	60.017	3675.970703	350	231.119354	16	351	10	0	-103	7731.66
10/12/09 02:58:52	60.012	3678.313721	350	237.20665	16	351.5	10	0	-103	7731.99
10/12/09 02:58:56	60.011	3680.020264	350	237.20665	16	352	10	0	-103	7732.32
10/12/09 02:59:00	60.01	3679.59668	350	237.20665	16	352.5	10	0	-103	7732.65
10/12/09 02:59:04	60.012	3680.110352	350	237.20665	16	353	10	0	-103	7732.98
10/12/09 02:59:08	60.013	3679.127197	350	237.20665	16	353.5	10	0	-103	7733.31
10/12/09 02:59:12	60.013	3679.636719	350	240.516373	16	354	10	0	-103	7733.64
10/12/09 02:59:16	60.011	3678.417725	350	240.516373	16	354.5	10	0	-103	7733.97
10/12/09 02:59:20	60.008	3679.680908	350	240.516373	16	355	10	0	-103	7734.3
10/12/09 02:59:24	60.011	3679.138184	350	240.516373	16	355.5	10	0	-103	7734.63
10/12/09 02:59:28	60.016	3678.498535	350	240.516373	16	356	10	0	-103	7734.96
10/12/09 02:59:32	60.019	3677.615234	350	237.566055	16	356.5	10	0	-103	7735.29
10/12/09 02:59:36	60.019	3677.431396	350	237.566055	16	357	10	0	-103	7735.62

10/12/09 02:59:40	60.02	3677.31543	350	237.566055	16	357.5	10	0	-103	7735.95
10/12/09 02:59:44	60.018	3678.362061	350	237.566055	16	358	10	0	-103	7736.28
10/12/09 02:59:48	60.016	3680.770752	350	237.566055	16	358.5	10	0	-103	7736.61
10/12/09 02:59:52	60.023	3680.353027	350	231.581421	16	359	10	0	-103	7736.94
10/12/09 02:59:56	60.018	3679.553223	350	231.581421	16	359.5	10	0	-103	7737.27
10/12/09 03:00:00	60.016	3682.729736	350	231.581421	16	360	10	0	-103	7737.6
10/12/09 03:00:04	60.015	3681.914551	350	231.581421	16	360.5	10	0	-103	7737.93
10/12/09 03:00:08	60.004	3682.483398	350	231.581421	16	361	10	0	-103	7738.26
10/12/09 03:00:12	59.995	3685.306396	350	235.850845	16	361.5	10	0	-103	7738.59
10/12/09 03:00:16	59.982	3684.642578	350	235.850845	16	362	10	0	-103	7738.92
10/12/09 03:00:20	59.97	3689.403809	350	235.850845	16	362.5	10	0	-103	7739.25
10/12/09 03:00:24	59.968	3692.966309	350	235.850845	16	363	10	0	-103	7739.58
10/12/09 03:00:28	59.968	3694.397217	350	235.850845	16	363.5	10	0	-103	7739.91
10/12/09 03:00:32	59.967	3697.406982	350	233.559982	16	364	10	0	-103	7740.24
10/12/09 03:00:36	59.964	3698.616943	350	233.559982	16	364.5	10	0	-103	7740.57
10/12/09 03:00:40	59.966	3699.850098	350	233.559982	16	365	10	0	-103	7740.9
10/12/09 03:00:44	59.963	3701.988525	350	233.559982	16	365.5	10	0	-103	7741.23
10/12/09 03:00:48	59.968	3704.023438	350	233.559982	16	366	10	0	-103	7741.56
10/12/09 03:00:52	59.97	3702.988281	350	219.009995	16	366.5	10	0	-103	7741.89
10/12/09 03:00:56	59.973	3704.899414	350	219.009995	16	367	10	0	-103	7742.22
10/12/09 03:01:00	59.976	3704.293457	350	219.009995	16	367.5	10	0	-103	7742.55
10/12/09 03:01:04	59.975	3701.943848	350	219.009995	16	368	10	0	-103	7742.88
10/12/09 03:01:08	59.976	3704.668945	350	219.009995	16	368.5	10	0	-103	7743.21
10/12/09 03:01:12	59.974	3705.662354	350	205.338913	16	369	10	0	-103	7743.54
10/12/09 03:01:16	59.974	3706.776367	350	205.338913	16	369.5	10	0	-103	7743.87
10/12/09 03:01:20	59.976	3706.928223	350	205.338913	16	370	10	0	-103	7744.2
10/12/09 03:01:24	59.979	3706.334961	350	205.338913	16	370.5	10	0	-103	7744.53
10/12/09 03:01:28	59.983	3705.943115	350	205.338913	16	371	10	0	-103	7744.86
10/12/09 03:01:32	59.983	3704.777344	350	236.285355	16	371.5	10	0	-103	7745.19
10/12/09 03:01:36	59.979	3705.967529	350	236.285355	16	372	10	0	-103	7745.52
10/12/09 03:01:40	59.987	3704.683105	350	236.285355	16	372.5	10	0	-103	7745.85
10/12/09 03:01:44	59.984	3704.360596	350	236.285355	16	373	10	0	-103	7746.18
10/12/09 03:01:48	59.982	3705.049805	350	236.285355	16	373.5	10	0	-103	7746.51
10/12/09 03:01:52	59.985	3703.740723	350	223.015732	16	374	10	0	-103	7746.84
10/12/09 03:01:56	59.989	3701.795166	350	223.015732	16	374.5	10	0	-103	7747.17
10/12/09 03:02:00	59.996	3701.308105	350	223.015732	16	375	10	0	-103	7747.5
10/12/09 03:02:04	59.997	3700.912842	350	223.015732	16	375.5	10	0	-103	7747.83
10/12/09 03:02:08	59.997	3699.926514	350	223.015732	16	376	10	0	-103	7748.16
10/12/09 03:02:12	59.996	3700.548584	350	223.015732	16	376.5	10	0	-103	7748.49
10/12/09 03:02:16	59.996	3700.223877	350	223.015732	16	377	10	0	-103	7748.82

10/12/09 03:02:20	60.003	3698.031738	350	223.015732	16	377.5	10	0	-103	7749.15
10/12/09 03:02:24	60.01	3699.408691	350	223.015732	16	378	10	0	-103	7749.48
10/12/09 03:02:28	60.005	3700.738281	350	223.015732	16	378.5	10	0	-103	7749.81
10/12/09 03:02:32	60.006	3701.237793	350	223.015732	16	379	10	0	-103	7750.14
10/12/09 03:02:36	60.001	3700.220215	350	223.015732	16	379.5	10	0	-103	7750.47
10/12/09 03:02:40	60.004	3702.554199	350	223.015732	16	380	10	0	-103	7750.8
10/12/09 03:02:44	60.007	3701.026367	350	223.015732	16	380.5	10	0	-103	7751.13
10/12/09 03:02:48	60.008	3702.943115	350	223.015732	16	381	10	0	-103	7751.46
10/12/09 03:02:52	60.006	3703.960449	350	223.015732	16	381.5	10	0	-103	7751.79
10/12/09 03:02:56	60.005	3704.455078	350	223.015732	16	382	10	0	-103	7752.12
10/12/09 03:03:00	59.999	3705.329102	350	223.015732	16	382.5	10	0	-103	7752.45
10/12/09 03:03:04	60	3704.404785	350	223.015732	16	383	10	0	-103	7752.78
10/12/09 03:03:08	60.008	3702.748047	350	223.015732	16	383.5	10	0	-103	7753.11
10/12/09 03:03:12	60.015	3703.016602	350	223.015732	16	384	10	0	-103	7753.44
10/12/09 03:03:16	60.012	3703.297363	350	223.015732	16	384.5	10	0	-103	7753.77
10/12/09 03:03:20	60.005	3705.279053	350	223.015732	16	385	10	0	-103	7754.1
10/12/09 03:03:24	60.011	3704.05127	350	223.015732	16	385.5	10	0	-103	7754.43
10/12/09 03:03:28	60.013	3704.255127	350	223.015732	16	386	10	0	-103	7754.76
10/12/09 03:03:32	60.018	3703.830322	350	223.015732	16	386.5	10	0	-103	7755.09
10/12/09 03:03:36	60.019	3704.13916	350	223.015732	16	387	10	0	-103	7755.42
10/12/09 03:03:40	60.013	3705.429443	350	223.015732	16	387.5	10	0	-103	7755.75
10/12/09 03:03:44	60.009	3705.539795	350	223.015732	16	388	10	0	-103	7756.08
10/12/09 03:03:48	60.008	3705.748535	350	223.015732	16	388.5	10	0	-103	7756.41
10/12/09 03:03:52	60.011	3706.945313	350	223.015732	16	389	10	0	-103	7756.74
10/12/09 03:03:56	60.02	3705.654541	350	223.015732	16	389.5	10	0	-103	7757.07
10/12/09 03:04:00	60.018	3704.223877	350	223.015732	16	390	10	0	-103	7757.4
10/12/09 03:04:04	60.019	3704.648438	350	223.015732	16	390.5	10	0	-103	7757.73
10/12/09 03:04:08	60.021	3704.166504	350	223.015732	16	391	10	0	-103	7758.06
10/12/09 03:04:12	60.025	3702.008301	350	223.015732	16	391.5	10	0	-103	7758.39
10/12/09 03:04:16	60.03	3701.062988	350	223.015732	16	392	10	0	-103	7758.72
10/12/09 03:04:20	60.023	3699.369385	350	223.015732	16	392.5	10	0	-103	7759.05
10/12/09 03:04:24	60.023	3702.95874	350	223.015732	16	393	10	0	-103	7759.38
10/12/09 03:04:28	60.02	3703.621094	350	223.015732	16	393.5	10	0	-103	7759.71
10/12/09 03:04:32	60.024	3703.035889	350	223.015732	16	394	10	0	-103	7760.04
10/12/09 03:04:36	60.022	3704.947266	350	223.015732	16	394.5	10	0	-103	7760.37
10/12/09 03:04:40	60.025	3703.54126	350	223.015732	16	395	10	0	-103	7760.7
10/12/09 03:04:44	60.024	3703.397461	350	223.015732	16	395.5	10	0	-103	7761.03
10/12/09 03:04:48	60.018	3705.441162	350	223.015732	16	396	10	0	-103	7761.36
10/12/09 03:04:52	60.008	3710.072021	350	223.015732	16	396.5	10	0	-103	7761.69
10/12/09 03:04:56	60.017	3707.76709	350	223.015732	16	397	10	0	-103	7762.02

10/12/09 03:05:00	60.019	3708.831055	350	223.015732	16	397.5	10	0	-103	7762.35
10/12/09 03:05:04	60.016	3709.813477	350	223.015732	16	398	10	0	-103	7762.68
10/12/09 03:05:08	60.016	3709.990479	350	223.015732	16	398.5	10	0	-103	7763.01
10/12/09 03:05:12	60.016	3709.641602	350	223.015732	16	399	10	0	-103	7763.34
10/12/09 03:05:16	60.019	3709.933105	350	223.015732	16	399.5	10	0	-103	7763.67
10/12/09 03:05:20	60.014	3710.591064	350	223.015732	16	400	10	0	-103	7764
10/12/09 03:05:24	60.018	3707.696045	350	223.015732	16	400.5	10	0	-103	7764.33
10/12/09 03:05:28	60.023	3707.120117	350	223.015732	16	401	10	0	-103	7764.66
10/12/09 03:05:32	60.026	3705.848145	350	223.015732	16	401.5	10	0	-103	7764.99
10/12/09 03:05:36	60.024	3704.405762	350	223.015732	16	402	10	0	-103	7765.32
10/12/09 03:05:40	60.02	3706.567383	350	223.015732	16	402.5	10	0	-103	7765.65
10/12/09 03:05:44	60.022	3704.868652	350	223.015732	16	403	10	0	-103	7765.98
10/12/09 03:05:48	60.028	3704.773438	350	223.015732	16	403.5	10	0	-103	7766.31
10/12/09 03:05:52	60.031	3702.685547	350	223.015732	16	404	10	0	-103	7766.64
10/12/09 03:05:56	60.026	3703.169189	350	223.015732	16	404.5	10	0	-103	7766.97
10/12/09 03:06:00	60.029	3701.519531	350	223.015732	16	405	10	0	-103	7767.3
10/12/09 03:06:04	60.033	3698.22168	350	223.015732	16	405.5	10	0	-103	7767.63
10/12/09 03:06:08	60.022	3700.279785	350	223.015732	16	406	10	0	-103	7767.96
10/12/09 03:06:12	60.019	3703.814697	350	223.015732	16	406.5	10	0	-103	7768.29
10/12/09 03:06:16	60.028	3699.956055	350	223.015732	16	407	10	0	-103	7768.62
10/12/09 03:06:20	60.015	3703.802246	350	223.015732	16	407.5	10	0	-103	7768.95
10/12/09 03:06:24	60.012	3708.527344	350	223.015732	16	408	10	0	-103	7769.28
10/12/09 03:06:28	60.014	3707.647461	350	223.015732	16	408.5	10	0	-103	7769.61
10/12/09 03:06:32	60.014	3707.494873	350	223.015732	16	409	10	0	-103	7769.94
10/12/09 03:06:36	60.016	3705.397949	350	223.015732	16	409.5	10	0	-103	7770.27
10/12/09 03:06:40	60.013	3709.144043	350	223.015732	16	410	10	0	-103	7770.6
10/12/09 03:06:44	59.997	3708.291016	350	223.015732	16	410.5	10	0	-103	7770.93
10/12/09 03:06:48	59.993	3707.303711	350	223.015732	16	411	10	0	-103	7771.26
10/12/09 03:06:52	59.993	3706.760254	350	223.015732	16	411.5	10	0	-103	7771.59
10/12/09 03:06:56	59.993	3706.683105	350	223.015732	16	412	10	0	-103	7771.92
10/12/09 03:07:00	59.993	3704.933594	350	223.015732	16	412.5	10	0	-103	7772.25
10/12/09 03:07:04	59.988	3706.480957	350	223.015732	16	413	10	0	-103	7772.58
10/12/09 03:07:08	59.983	3706.696289	350	223.015732	16	413.5	10	0	-103	7772.91
10/12/09 03:07:12	59.98	3708.24585	350	223.015732	16	414	10	0	-103	7773.24
10/12/09 03:07:16	59.981	3710.419434	350	223.015732	16	414.5	10	0	-103	7773.57
10/12/09 03:07:20	59.978	3708.707764	350	223.015732	16	415	10	0	-103	7773.9
10/12/09 03:07:24	59.98	3709.191895	350	223.015732	16	415.5	10	0	-103	7774.23
10/12/09 03:07:28	59.98	3709.399414	350	223.015732	16	416	10	0	-103	7774.56
10/12/09 03:07:32	59.984	3709.003906	350	223.015732	16	416.5	10	0	-103	7774.89
10/12/09 03:07:36	59.981	3709.688965	350	223.015732	16	417	10	0	-103	7775.22

10/12/09 03:07:40	59.981	3706.541016	350	223.015732	16	417.5	10	0	-103	7775.55
10/12/09 03:07:44	59.981	3711.362061	350	223.015732	16	418	10	0	-103	7775.88
10/12/09 03:07:48	59.978	3712.012207	350	223.015732	16	418.5	10	0	-103	7776.21
10/12/09 03:07:52	59.979	3712.092773	350	223.015732	16	419	10	0	-103	7776.54
10/12/09 03:07:56	59.976	3714.612061	350	223.015732	16	419.5	10	0	-103	7776.87
10/12/09 03:08:00	59.975	3715.322754	350	223.015732	16	420	10	0	-103	7777.2
10/12/09 03:08:04	59.975	3714.717285	350	223.015732	16	420.5	10	0	-103	7777.53
10/12/09 03:08:08	59.978	3715.001221	350	223.015732	16	421	10	0	-103	7777.86
10/12/09 03:08:12	59.976	3714.062744	350	223.015732	16	421.5	10	0	-103	7778.19
10/12/09 03:08:16	59.977	3715.631104	350	223.015732	16	422	10	0	-103	7778.52
10/12/09 03:08:20	59.976	3715.567383	350	223.015732	16	422.5	10	0	-103	7778.85
10/12/09 03:08:24	59.98	3714.848145	350	223.015732	16	423	10	0	-103	7779.18
10/12/09 03:08:28	59.978	3713.358398	350	223.015732	16	423.5	10	0	-103	7779.51
10/12/09 03:08:32	59.982	3712.619385	350	223.015732	16	424	10	0	-103	7779.84
10/12/09 03:08:36	59.987	3710.050293	350	223.015732	16	424.5	10	0	-103	7780.17
10/12/09 03:08:40	59.984	3710.471924	350	223.015732	16	425	10	0	-103	7780.5
10/12/09 03:08:44	59.979	3710.946289	350	223.015732	16	425.5	10	0	-103	7780.83
10/12/09 03:08:48	59.979	3710.474609	350	223.015732	16	426	10	0	-103	7781.16
10/12/09 03:08:52	59.975	3710.802979	350	223.015732	16	426.5	10	0	-103	7781.49
10/12/09 03:08:56	59.982	3710.572998	350	223.015732	16	427	10	0	-103	7781.82
10/12/09 03:09:00	59.983	3708.371094	350	223.015732	16	427.5	10	0	-103	7782.15
10/12/09 03:09:04	59.99	3706.511963	350	223.015732	16	428	10	0	-103	7782.48
10/12/09 03:09:08	59.984	3708.962402	350	223.015732	16	428.5	10	0	-103	7782.81
10/12/09 03:09:12	59.979	3712.303467	350	223.015732	16	429	10	0	-103	7783.14
10/12/09 03:09:16	59.983	3711.627197	350	223.015732	16	429.5	10	0	-103	7783.47
10/12/09 03:09:20	59.981	3712.392578	350	223.015732	16	430	10	0	-103	7783.8
10/12/09 03:09:24	59.975	3713.510254	350	223.015732	16	430.5	10	0	-103	7784.13
10/12/09 03:09:28	59.989	3715.442871	350	223.015732	16	431	10	0	-103	7784.46
10/12/09 03:09:32	59.994	3713.906006	350	223.015732	16	431.5	10	0	-103	7784.79
10/12/09 03:09:36	59.986	3714.953125	350	223.015732	16	432	10	0	-103	7785.12
10/12/09 03:09:40	59.983	3716.30835	350	223.015732	16	432.5	10	0	-103	7785.45
10/12/09 03:09:44	59.98	3714.763672	350	223.015732	16	433	10	0	-103	7785.78
10/12/09 03:09:48	59.995	3715.067627	350	223.015732	16	433.5	10	0	-103	7786.11
10/12/09 03:09:52	59.99	3715.79126	350	223.015732	16	434	10	0	-103	7786.44
10/12/09 03:09:56	59.991	3715.324463	350	223.015732	16	434.5	10	0	-103	7786.77
10/12/09 03:10:00	60	3711.708496	350	223.015732	16	435	10	0	-103	7787.1
10/12/09 03:10:04	60.004	3712.850586	350	223.015732	16	435.5	10	0	-103	7787.43
10/12/09 03:10:08	60.002	3716.641357	350	223.015732	16	436	10	0	-103	7787.76
10/12/09 03:10:12	59.998	3719.079102	350	223.015732	16	436.5	10	0	-103	7788.09
10/12/09 03:10:16	59.996	3717.815186	350	223.015732	16	437	10	0	-103	7788.42

10/12/09 03:10:20	60.002	3718.560303	350	223.015732	16	437.5	10	0	-103	7788.75
10/12/09 03:10:24	60.003	3719.02124	350	223.015732	16	438	10	0	-103	7789.08
10/12/09 03:10:28	60.004	3719.897461	350	223.015732	16	438.5	10	0	-103	7789.41
10/12/09 03:10:32	60.004	3719.642822	350	223.015732	16	439	10	0	-103	7789.74
10/12/09 03:10:36	60.003	3719.730957	350	223.015732	16	439.5	10	0	-103	7790.07
10/12/09 03:10:40	60.006	3718.57959	350	223.015732	16	440	10	0	-103	7790.4
10/12/09 03:10:44	60.009	3718.982178	350	223.015732	16	440.5	10	0	-103	7790.73
10/12/09 03:10:48	60.009	3720.608887	350	223.015732	16	441	10	0	-103	7791.06
10/12/09 03:10:52	60.015	3721.23877	350	223.015732	16	441.5	10	0	-103	7791.39
10/12/09 03:10:56	60.009	3719.447266	350	223.015732	16	442	10	0	-103	7791.72
10/12/09 03:11:00	60.008	3721.272217	350	223.015732	16	442.5	10	0	-103	7792.05
10/12/09 03:11:04	60.01	3721.244629	350	223.015732	16	443	10	0	-103	7792.38
10/12/09 03:11:08	60.013	3722.17627	350	223.015732	16	443.5	10	0	-103	7792.71
10/12/09 03:11:12	60.014	3721.645996	350	223.015732	16	444	10	0	-103	7793.04
10/12/09 03:11:16	60.012	3720.859619	350	223.015732	16	444.5	10	0	-103	7793.37
10/12/09 03:11:20	60.011	3723.815674	350	223.015732	16	445	10	0	-103	7793.7
10/12/09 03:11:24	60.003	3724.656006	350	223.015732	16	445.5	10	0	-103	7794.03
10/12/09 03:11:28	60	3724.660645	350	223.015732	16	446	10	0	-103	7794.36
10/12/09 03:11:32	59.998	3723.580078	350	223.015732	16	446.5	10	0	-103	7794.69
10/12/09 03:11:36	60.002	3721.878906	350	223.015732	16	447	10	0	-103	7795.02
10/12/09 03:11:40	60.003	3722.906494	350	223.015732	16	447.5	10	0	-103	7795.35
10/12/09 03:11:44	59.998	3723.650391	350	223.015732	16	448	10	0	-103	7795.68
10/12/09 03:11:48	59.995	3723.638916	350	223.015732	16	448.5	10	0	-103	7796.01
10/12/09 03:11:52	59.987	3724.654297	350	223.015732	16	449	10	0	-103	7796.34
10/12/09 03:11:56	59.988	3724.943848	350	223.015732	16	449.5	10	0	-103	7796.67
10/12/09 03:12:00	59.992	3723.692627	350	223.015732	16	450	10	0	-103	7797

Note: See "Instruction" tab for more detailed instructions.

Balancing Authority My BA
Grid Nominal Frequency $\quad 60.000 \mathrm{~Hz}$
Capacity @ Droop for Minimum Performance 2400.0 MW
Droop Setting $\quad 5.00 \% \quad 3.00000 \mathrm{~Hz}$
Deadband Setting $\quad 0.000 \mathrm{~Hz}$
Hz Span 3.00000 Hz
Frequency Response Obligation (FRO) $\quad-80 \mathrm{MW} / 0.1 \mathrm{~Hz}$

EPFR = Expected Primary Frequency Response
3765.22 Actual Interchange MW Average during frequency recovery period 3779.78 Target Interchange MW Average during frequency recovery period 3727.48 Interchange Average Ramp MW during frequency recovery period 3641.19 Actual MW @ T(-4)
107.36 Starting and Ending Difference in Interchange MW during frequency recovery peI 0:05:44 Event Duration (h:mm:ss)

No Target MW Average minus MW @ T(-4) less than zero
138.59 Interchange Target Relative Average Change - MW (Low Frequency Event)
124.03 Interchange Actual Relative Average Change - MW (Low Frequency Event)

No Interchange Actual Average minus MW @ $\mathrm{T}(-4)$ less than zero
Yes Interchange Average MW minus MW @ $\mathrm{T}(-4)$ greater than zero
Yes Interchange Target MW Average minus MW @ T(-4) greater than zero
31.23 Interchange Target Relative Average Change - MW (High Frequency Event)
16.68 Interchange Actual Relative Average Change - MW (High Frequency Event)

Up Ramp Direction during frequency recovery period
1.363 P.U.
0.895 P.U. Sustianed Response P.U. Performance

					Initial									Generator
					FRO		Measure			Average	AverageTarget		Average Ramp	Trip MW
	Value B				(EPFR)	(TC)	Final			Output				
					Expected	Delayed	Expected		Recovery	During	During	Recovery	During	
			20 to 52 sec		Primary	Delivery	Primary	Average	Period	Recovery	Recovery	Period	Recovery	
	Frequency	Interchange	Average	Average	Frequency	Frequency	Frequency	Ramp	Target	Period	Period	Ramp	Period	
T	Hz	MW	Frequency	MW	Response	Response	Response	MW/scan	MW	MW	MW	MW	MW	

T-72 sec	$2: 26: 12$	60.027	3668.611	-21.600	-7.560
T-70 sec	$2: 26: 14$	60.027	3668.611	-21.600	-12.474
T-68 sec	$2: 26: 16$	60.026	3664.495	-20.801	-15.389

T-66 sec	2:26:18	60.026	3664.495			-20.801	-17.283
T-64 sec	2:26:20	60.019	3666.821			-15.201	-16.554
T-62 sec	2:26:22	60.019	3666.821			-15.201	-16.080
T-60 sec	2:26:24	60.019	3670.454			-15.201	-15.773
T-58 sec	2:26:26	60.019	3670.454			-15.201	-15.572
T-56 sec	2:26:28	60.019	3671.668			-15.201	-15.442
T-54 sec	2:26:30	60.019	3671.668			-15.201	-15.358
T-52 sec	2:26:32	60.021	3672.685			-16.800	-15.863
T-50 sec	2:26:34	60.021	3672.685			-16.800	-16.191
T-48 sec	2:26:36	60.019	3672.164			-15.201	-15.844
T-46 sec	2:26:38	60.019	3672.164			-15.201	-15.619
T-44 sec	2:26:40	60.022	3669.983			-17.599	-16.312
T-42 sec	2:26:42	60.022	3669.983			-17.599	-16.763
T-40 sec	2:26:44	60.037	3663.758			-29.599	-21.255
T-38 sec	2:26:46	60.037	3663.758			-29.599	-24.176
T-36 sec	2:26:48	60.036	3660.672			-28.799	-25.794
T-34 sec	2:26:50	60.036	3660.672			-28.799	-26.846
T-32 sec	2:26:52	60.046	3649.190			-36.801	-30.330
T-30 sec	2:26:54	60.046	3649.190			-36.801	-32.595
T-28 sec	2:26:56	60.048	3648.246			-38.400	-34.627
T-26 sec	2:26:58	60.048	3648.246			-38.400	-35.948
T-24 sec	2:27:00	60.041	3654.294			-32.800	-34.846
T-22 sec	2:27:02	60.041	3654.294			-32.800	-34.130
T-20 sec	2:27:04	60.041	3651.874			-32.800	-33.665
T-18 sec	2:27:06	60.041	3651.874			-32.800	-33.362
$\mathrm{T}-16 \mathrm{sec}$	2:27:08	60.041	3649.187	60.042	3645.303	-32.800	-33.165
T-14 sec	2:27:10	60.041	3649.187	60.042	3645.303	-32.800	-33.038
T-12 sec	2:27:12	60.045	3645.387	60.042	3645.303	-35.999	-34.074
T-10 sec	2:27:14	60.045	3645.387	60.042	3645.303	-35.999	-34.748
T-08 sec	2:27:16	60.041	3645.446	60.042	3645.303	-32.800	-34.066
T-06 sec	2:27:18	60.041	3645.446	60.042	3645.303	-32.800	-33.623
T-04 sec	2:27:20	60.041	3641.191	60.042	3645.303	-32.800	-33.335
T-02 sec	2:27:22	60.041	3641.191	60.042	3645.303	-32.800	-33.148
T+0 sec	2:27:24	59.978	3696.362			17.599	-15.386
T+02 sec	2:27:26	59.978	3696.362			17.599	-3.841
T+04 sec	2:27:28	59.978	3696.362			17.599	3.663
T+06 sec	2:27:30	59.836	3734.673			131.201	48.301
T+08 sec	2:27:32	59.836	3734.673			131.201	77.316
T+10 sec	2:27:34	59.892	3761.250			86.401	80.496
T+12 sec	2:27:36	59.892	3761.250			86.401	82.563
T+14 sec	2:27:38	59.88	3766.194			95.999	87.266
T+16 sec	2:27:40	59.88	3766.194			95.999	90.322
T+18 sec	2:27:42	59.875	3769.925			100.000	93.710
T+20 sec	2:27:44	59.875	3769.925	59.889	3788.847	100.000	95.911
T+22 sec	2:27:46	59.887	3781.592	59.889	3788.847	90.399	93.982
T+24 sec	2:27:48	59.887	3781.592	59.889	3788.847	90.399	92.728

2728
$-0.410 \quad 3670.454$
$-0.410 \quad 3670.244$ $-0.410 \quad 3669.964$ $-0.410 \quad 3669.639$
$-0.410 \quad 3668.724$
$-0.410 \quad 3667.986$
$-0.410 \quad 3667.923$
$-0.410 \quad 3667.738$
$\begin{array}{rl}-0.410 & 3667.738 \\ -0.410 & 3666.635\end{array}$
$\begin{array}{ll}-0.410 & 3666.635 \\ -0.410 & 3665.774\end{array}$
$\begin{array}{ll}-0.410 & 3665.774 \\ -0.410 & 3660.872\end{array}$
$\begin{array}{ll}-0.410 & 3660.872 \\ -0.410 & 3657.542\end{array}$
$\begin{array}{ll}0.410 & 3657.542 \\ -0.410 & 3655.513\end{array}$
$\begin{array}{ll}-0.410 & 3655.513 \\ -0.410 & 3654.052\end{array}$
$\begin{array}{ll}-0.410 & 3654.052 \\ -0.410 & 3650.157\end{array}$
$\begin{array}{rl}-0.410 & 3647.483\end{array}$
$-0.410 \quad 3645.041$
$-0.410 \quad 3643.310$
$-0.410 \quad 3644.002$
$-0.410 \quad 3644.308$
$-0.410 \quad 3644.364$
$-0.410 \quad 3644.256$
$-0.410 \quad 3644.043$
$-0.410 \quad 3643.761$
$-0.410 \quad 3642.315$
$-0.410 \quad 3641.231$
$-0.410 \quad 3641.503$
$-0.410 \quad 3641.536$
0.4103641 .414
0.0003658 .953
$\begin{array}{lllllll}0.624 & 3671.122 & 3696.362 & 3665.037 & 3674.116 & 3674.116\end{array}$ $\begin{array}{lllllll}0.624 & 3679.250 & 3696.362 & 3669.775 & 3674.740 & 3674.428\end{array}$ $\begin{array}{lllllll}0.624 & 36724.513 & 3705.940 & 3683.459 & 3675.365 & 3674.740\end{array}$ $\begin{array}{lllllll}0.624 & 3754.152 & 3711.686 & 3697.598 & 3675.989 & 3675.053\end{array}$ $\begin{array}{lllllll}0.624 & 3757.956 & 3719.947 & 3707.658 & 3676.613 & 3675.365\end{array}$ $\begin{array}{lllllll}0.624 & 3760.647 & 3725.847 & 3715.228 & 3677.237 & 3675.677\end{array}$ $\begin{array}{llllllll}0.624 & 3765.974 & 3730.891 & 3721.571 & 3677.861 & 3675.989\end{array}$ $\begin{array}{lllllll}0.624 & 3769.655 & 3734.813 & 3726.914 & 3678.486 & 3676.301\end{array}$ $\begin{array}{llllllll}0.624 & 3773.666 & 3738.324 & 3731.589 & 3679.110 & 3676.613\end{array}$ $\begin{array}{llllllll}0.624 & 3776.492 & 3741.197 & 3735.671 & 3679.734 & 3676.925\end{array}$ $\begin{array}{llllll}0.624 & 3776.492 & 3741.197 & 3735.671 & 3679.734 & 3676.925 \\ 0.624 & 3775.187 & 3744.563 & 3738.964 & 3680.358 & 3677.237\end{array}$ $\begin{array}{llllll}0.624 & 3775.187 & 3744.563 & 3738.964 & 3680.358 & 3677.237 \\ 0.624 & 3774.557 & 3747.412 & 3741.702 & 3680.982 & 3677.549\end{array}$

T+26 sec	2:27:50	59.885	3784.962	59.889	3788.847	92.001	92.474	3750.626
T+28 sec	2:27:52	59.885	3784.962	59.889	3788.847	92.001	92.308	3750.626
T+30 sec	2:27:54	59.888	3784.419	59.889	3788.847	89.600	91.360	3750.626
T+32 sec	2:27:56	59.888	3784.419	59.889	3788.847	89.600	90.744	3750.626
T+34 sec	2:27:58	59.895	3788.328	59.889	3788.847	84.000	88.384	3750.626
T+36 sec	2:28:00	59.895	3788.328	59.889	3788.847	84.000	86.849	3750.626
$\mathrm{T}+38 \mathrm{sec}$	2:28:02	59.893	3788.472	59.889	3788.847	85.599	86.412	3750.626
T+40 sec	2:28:04	59.893	3788.472	59.889	3788.847	85.599	86.127	3750.626
$\mathrm{T}+42 \mathrm{sec}$	2:28:06	59.894	3793.074	59.889	3788.847	84.799	85.662	3750.626
T+44 sec	2:28:08	59.894	3793.074	59.889	3788.847	84.799	85.360	3750.626
T+46 sec	2:28:10	59.89	3799.428	59.889	3788.847	88.000	86.284	3750.626
$\mathrm{T}+48 \mathrm{sec}$	2:28:12	59.89	3799.428	59.889	3788.847	88.000	86.885	3750.626
T+50 sec	2:28:14	59.885	3799.959	59.889	3788.847	92.001	88.676	3750.626
T+52 sec	2:28:16	59.885	3799.959	59.889	3788.847	92.001	89.840	3750.626
T+54 sec	2:28:18	59.887	3802.925			90.399	90.035	
T+56 sec	2:28:20	59.887	3802.925			90.399	90.163	
T+58 sec	2:28:22	59.888	3804.388			89.600	89.966	
T+60 sec	2:28:24	59.888	3804.388			89.600	89.838	
T+62 sec	2:28:26	59.889	3805.617			88.800	89.474	
T+64 sec	2:28:28	59.889	3805.617			88.800	89.238	
T+66 sec	2:28:30	59.873	3811.503			101.599	93.565	
T+68 sec	2:28:32	59.873	3811.503			101.599	96.377	
T+70 sec	2:28:34	59.849	3815.889			120.801	104.925	
T+72 sec	2:28:36	59.849	3815.889			120.801	110.482	
T+74 sec	2:28:38	59.858	3826.053			113.599	111.573	
T+76 sec	2:28:40	59.858	3826.053			113.599	112.282	
T+78 sec	2:28:42	59.866	3827.524			107.199	110.503	
T+80 sec	2:28:44	59.866	3827.524			107.199	109.346	
	2:28:46	59.867	3826.783			106.400	108.315	
	2:28:48	59.867	3826.783			106.400	107.645	
	2:28:50	59.871	3825.713			103.201	106.089	
	2:28:52	59.871	3825.713			103.201	105.079	
	2:28:54	59.879	3822.505			96.799	102.181	
	2:28:56	59.879	3822.505			96.799	100.297	
	2:28:58	59.883	3818.055			93.600	97.953	
	2:29:00	59.883	3818.055			93.600	96.430	
	2:29:02	59.89	3815.010			88.000	93.479	
	2:29:04	59.89	3815.010			88.000	91.562	
	2:29:06	59.889	3811.838			88.800	90.595	
	2:29:08	59.889	3811.838			88.800	89.967	
	2:29:10	59.899	3806.972			80.801	86.759	
	2:29:12	59.899	3806.972			80.801	84.674	
	2:29:14	59.902	3804.188			78.400	82.478	
	2:29:16	59.902	3804.188			78.400	81.050	
	2:29:18	59.904	3793.975			76.801	79.563	

$\begin{array}{lllllll}0.624 & 3774.927 & 3750.094 & 3744.075 & 3681.606 & 3677.861\end{array}$ $\begin{array}{llllll}0.624 & 3774.927 & 3750.094 & 3744.075 & 3681.606 & 3677.861 \\ 0.624 & 3775.386 & 3752.418 & 3746.162 & 3682.231 & 3678.173\end{array}$ $\begin{array}{lllllll}0.624 & 3775.386 & 3752.418 & 3746.162 & 3682.231 & 3678.173 \\ 0.624 & 3775.062 & 3754.418 & 3747.969 & 3682.855 & 3678.486\end{array}$ $\begin{array}{lllllll}0.624 & 3775.062 & 3754.418 & 3747.969 & 3682.855 & 3678.486 \\ 0.624 & 3775.070 & 3756.183 & 3749.563 & 3683.479 & 3678.798\end{array}$ $\begin{array}{lllllll}0.624 & 3773.333 & 3757.969 & 3750.883 & 3684.103 & 3679.110\end{array}$ $\begin{array}{lllllll}0.624 & 3772.423 & 3759.567 & 3752.017 & 3684.727 & 3679.422\end{array}$ $\begin{array}{llllllll}0.624 & 3772.610 & 3761.012 & 3753.047 & 3685.351 & 3679.734\end{array}$ $\begin{array}{lllllll}0.624 & 3772.950 & 3762.320 & 3753.994 & 3685.976 & 3680.046\end{array}$ $\begin{array}{lllllll}0.624 & 3773.109 & 3763.718 & 3754.863 & 3686.600 & 3680.358\end{array}$ $\begin{array}{lllllll}0.624 & 3773.431 & 3764.994 & 3755.671 & 3687.224 & 3680.670\end{array}$ $\begin{array}{lllllll}0.624 & 3774.979 & 3766.429 & 3756.475 & 3687.848 & 3680.982\end{array}$ $\begin{array}{llllllll}0.624 & 3776.204 & 3767.749 & 3757.264 & 3688.472 & 3681.294\end{array}$ $\begin{array}{lllllll}0.624 & 3776.204 & 3767.749 & 3757.264 & 3688.472 & 3681.294 \\ 0.624 & 3778.619 & 3768.988 & 3758.086 & 3689.096 & 3681.606\end{array}$ $\begin{array}{llllllll}0.624 & 3778.619 & 3768.988 & 3758.086 & 3689.096 & 3681.606\end{array}$ $\begin{array}{lllllll}0.624 & 3780.407 & 3780.135 & 3758.912 & 3689.721 & 3681.918\end{array}$ $\begin{array}{lllllll}0.624 & 3781.227 & 371.306 & 3759.709 & 3690.345 & 3682.231\end{array}$ $\begin{array}{lllllll}0.624 & 3781.979 & 3772.396 & 3760.477 & 3690.969 & 3682.543 \\ 0.624 & 3782.406 & 3773.462 & 3761.208 & 3691.593 & 3682.855\end{array}$ $\begin{array}{lllllll}0.624 & 3782.406 & 3773.462 & 3761.208 & 3691.593 & 3682.855\end{array}$ $\begin{array}{lllllll}0.624 & 3782.902 & 3774.460 & 3761.908 & 3692.217 & 3683.167\end{array}$ $\begin{array}{lllllll}0.624 & 3783.163 & 3775.434 & 3762.572 & 3692.841 & 3683.479\end{array}$ $\begin{array}{lllllll}0.624 & 3783.551 & 3776.348 & 3763.208 & 3693.466 & 3683.791\end{array}$ $\begin{array}{llllllll}0.624 & 3788.501 & 3777.382 & 3763.952 & 3694.090 & 3684.103\end{array}$ $\begin{array}{lllllll}0.624 & 3791.938 & 3778.357 & 3764.751 & 3694.714 & 3684.415\end{array}$ $\begin{array}{llllllll}0.624 & 3801.110 & 3779.400 & 3765.761 & 3695.338 & 3684.727\end{array}$ $\begin{array}{llllllll}0.624 & 3807.291 & 3780.386 & 3766.884 & 3695.962 & 3685.039\end{array}$ $\begin{array}{lllllll}0.624 & 3809.006 & 3781.588 & 3767.992 & 3696.586 & 3685.351\end{array}$ $\begin{array}{lllllll}0.624 & 3810.339 & 3782.728 & 3769.078 & 3697.211 & 3685.663\end{array}$ $\begin{array}{lllllll}0.624 & 3809.184 & 3783.848 & 3770.081 & 3697.835 & 3685.976\end{array}$ $\begin{array}{lllllll}0.624 & 3808.652 & 3784.913 & 3771.022 & 3698.459 & 3686.288\end{array}$ $\begin{array}{lllllll}0.624 & 3808.245 & 3785.910 & 3771.908 & 3699.083 & 3686.600\end{array}$ $\begin{array}{lllllll}0.624 & 3808.199 & 3786.860 & 3772.752 & 3699.707 & 3686.912\end{array}$ $\begin{array}{lllllll}0.624 & 3807.268 & 3787.743 & 3773.536 & 3700.331 & 3687.224\end{array}$ $\begin{array}{lllllll}0.624 & 3806.881 & 3788.587 & 3774.277 & 3700.956 & 3687.536\end{array}$ $\begin{array}{lllllll}0.624 & 3804.607 & 3789.325 & 3774.937 & 3701.580 & 3687.848\end{array}$ $\begin{array}{lllllll}0.624 & 3803.348 & 3790.031 & 3775.541 & 3702.204 & 3688.160\end{array}$ $\begin{array}{lllllll}0.624 & 3803.348 & 3790.031 & 3775.541 & 3702.204 & 3688.160 \\ 0.624 & 3801.628 & 3790.614 & 3776.085 & 3702.828 & 3688.472\end{array}$ $\begin{array}{lllllll}0.624 & 3801.628 & 3790.614 & 3776.085 & 3702.828 & 3688.47 \\ 0.624 & 3800.729 & 3791.174 & 3776.588 & 3703.452 & 3688.784\end{array}$ $\begin{array}{lllllll}0.624 & 3798.403 & 3791.651 & 3777.024 & 3704.077 & 3689.096\end{array}$ $\begin{array}{lllllll}0.624 & 3797.109 & 3792.109 & 3777.418 & 3704.701 & 3689.408\end{array}$ $\begin{array}{lllllll}0.624 & 3796.767 & 3792.489 & 3777.790 & 3705.325 & 3689.721\end{array}$ $\begin{array}{lllllll}0.624 & 3796.763 & 3792.854 & 3778.148 & 3705.949 & 3690.033\end{array}$ $\begin{array}{lllllll}0.624 & 3794.179 & 3793.115 & 3778.445 & 3706.573 & 3690.345\end{array}$ $\begin{array}{lllllll}0.624 & 3792.718 & 3793.367 & 3778.704 & 3707.197 & 3690.657\end{array}$ $\begin{array}{lllllll}0.624 & 3791.146 & 3793.560 & 3778.926 & 3707.822 & 3690.969\end{array}$ $\begin{array}{lllllll}0.624 & 3790.343 & 3793.747 & 3779.127 & 3708.446 & 3691.281\end{array}$ $\begin{array}{llllllllll}0.624 & 3789.480 & 3793.751 & 3779.305 & 3709.070 & 3691.593\end{array}$

2:29:20	59.904	3793.975	76.801	78.596
2:29:22	59.911	3791.502	71.201	76.008
2:29:24	59.911	3791.502	71.201	74.325
2:29:26	59.916	3788.132	67.200	71.831
2:29:28	59.916	3788.132	67.200	70.210
2:29:30	59.918	3783.028	65.601	68.597
2:29:32	59.918	3783.028	65.601	67.548
2:29:34	59.921	3776.358	63.199	66.026
2:29:36	59.921	3776.358	63.199	65.036
2:29:38	59.917	3774.604	66.400	65.514
2:29:40	59.917	3774.604	66.400	65.824
2:29:42	59.921	3773.958	63.199	64.905
2:29:44	59.921	3773.958	63.199	64.308
2:29:46	59.926	3771.670	59.201	62.521
2:29:48	59.926	3771.670	59.201	61.359
2:29:50	59.928	3768.707	57.599	60.043
2:29:52	59.928	3768.707	57.599	59.187
2:29:54	59.932	3767.021	54.401	57.512
2:29:56	59.932	3767.021	54.401	56.423
2:29:58	59.928	3766.788	57.599	56.835
2:30:00	59.928	3766.788	57.599	57.102
2:30:02	59.929	3765.672	56.799	56.996
2:30:04	59.929	3765.672	56.799	56.927
2:30:06	59.933	3764.243	53.601	55.763
2:30:08	59.933	3764.243	53.601	55.006
2:30:10	59.937	3762.935	50.400	53.394
2:30:12	59.937	3762.935	50.400	52.346
2:30:14	59.949	3753.922	40.799	48.305
2:30:16	59.949	3753.922	40.799	45.678
2:30:18	59.942	3746.889	46.399	45.930
2:30:20	59.942	3746.889	46.399	46.094
2:30:22	59.942	3749.593	46.399	46.201
2:30:24	59.942	3749.593	46.399	46.270
2:30:26	59.948	3746.706	41.599	44.635
2:30:28	59.948	3746.706	41.599	43.572
2:30:30	59.949	3742.741	40.799	42.602
2:30:32	59.949	3742.741	40.799	41.971
2:30:34	59.952	3736.139	38.400	40.721
2:30:36	59.952	3736.139	38.400	39.909
2:30:38	59.951	3727.838	39.200	39.661
2:30:40	59.951	3727.838	39.200	39.499
2:30:42	59.952	3722.649	38.400	39.115
2:30:44	59.952	3722.649	38.400	38.865
2:30:46	59.955	3717.996	35.999	37.861
2:30:48	59.955	3717.996	35.999	37.209
2:30:50	59.954	3715.753	36.801	37.067

$\begin{array}{llllll}0.624 & 3789.137 & 3793.755 & 3779.472 & 3709.694 & 3691.905\end{array}$ $\begin{array}{llllll}0.624 & 3789.137 & 3793.755 & 3779.472 & 3709.694 & 3691.905 \\ 0.624 & 3787.173 & 3793.717 & 3779.600 & 3710.318 & 3692.217\end{array}$ $\begin{array}{lllllll}0.624 & 3787.173 & 3793.717 & 3779.600 & 3710.318 & 3692.217 \\ 0.624 & 3786.114 & 3793.681 & 3779.707 & 3710.942 & 3692.529\end{array}$ $\begin{array}{llllll}0.624 & 3786.114 & 3793.681 & 3779.707 & 3710.942 & 3692.529 \\ 0.624 & 3784.245 & 3793.591 & 3779.780 & 3711.567 & 3692.841\end{array}$ $\begin{array}{llllll}0.624 & 3784.245 & 3793.591 & 3779.780 & 3711.567 & 3692.841 \\ 0.624 & 3783.248 & 3793.505 & 3779.835 & 3712.191 & 3693.154\end{array}$ $\begin{array}{lllllll}0.624 & 3784.245 & 3793.505 & 3779.835 & 3712.191 & 3693.14 \\ 0.624 & 3782.259 & 3793.341 & 3779.873 & 3712.815 & 3693.466\end{array}$ $\begin{array}{llllllll}0.624 & 3781.834 & 3793.182 & 3779.903 & 3713.439 & 3693.778\end{array}$ $\begin{array}{llllllll}0.624 & 3780.936 & 3792.927 & 3779.919 & 3714.063 & 3694.090\end{array}$ $\begin{array}{lllllll}0.624 & 3780.571 & 3792.680 & 3779.929 & 3714.687 & 3694.402\end{array}$ $\begin{array}{lllllll}0.624 & 3781.672 & 3792.414 & 3779.954 & 3715.312 & 3694.714\end{array}$ $\begin{array}{lllllll}0.624 & 3782.607 & 3792.156 & 3779.993 & 3715.936 & 3695.026\end{array}$ $\begin{array}{llllllll}0.624 & 3782.312 & 3791.896 & 3780.026 & 3716.560 & 3695.338\end{array}$ $\begin{array}{lllllll}0.624 & 3782.312 & 3791.896 & 3780.026 & 3716.560 & 3695.338 \\ 0.624 & 3782.339 & 3791.643 & 3780.058 & 3717.184 & 3695.650\end{array}$ $\begin{array}{lllllll}0.624 & 3782.339 & 3791.643 & 3780.058 & 3717.184 & 3695.650 \\ 0.624 & 3781.176 & 3791.366 & 3780.074 & 3717.808 & 3695.962\end{array}$ $\begin{array}{lllllll}0.624 & 3781.176 & 3791.366 & 3780.074 & 3717.808 & 3695.962\end{array}$ $\begin{array}{lllllll}0.624 & 3780.638 & 3791.096 & 3780.082 & 3718.432 & 3696.274\end{array}$ $\begin{array}{lllllll}0.624 & 3779.946 & 3790.794 & 3780.080 & 3719.057 & 3696.586\end{array}$ $\begin{array}{llllllll}0.624 & 3779.715 & 3790.499 & 3780.075 & 3719.681 & 3696.899\end{array}$ $\begin{array}{lllllll}0.624 & 3778.664 & 3790.190 & 3780.056 & 3720.305 & 3697.211\end{array}$ $\begin{array}{lllllll}0.624 & 3778.199 & 3789.889 & 3780.032 & 3720.929 & 3697.523\end{array}$ $\begin{array}{lllllll}0.624 & 3779.235 & 3789.593 & 3780.022 & 3721.553 & 3697.835\end{array}$ $\begin{array}{lllllll}0.624 & 3780.126 & 3789.304 & 3780.023 & 3722.177 & 3698.147\end{array}$ $\begin{array}{lllllll}0.624 & 3780.645 & 3789.009 & 3780.031 & 3722.802 & 3698.459\end{array}$ $\begin{array}{lllllll}0.624 & 3781.200 & 3788.721 & 3780.046 & 3723.426 & 3698.771\end{array}$ $\begin{array}{lllllll}0.624 & 3780.660 & 3788.422 & 3780.053 & 3724.050 & 3699.083\end{array}$ $\begin{array}{lllllll}0.624 & 3780.527 & 3788.131 & 3780.059 & 3724.674 & 3699.395\end{array}$ $\begin{array}{lllllll}0.624 & 3779.539 & 3787.831 & 3780.053 & 3725.298 & 3699.707\end{array}$ $\begin{array}{lllllll}0.624 & 3779.115 & 3787.538 & 3780.042 & 3725.922 & 3700.019\end{array}$ $\begin{array}{lllllll}0.624 & 3775.698 & 3787.147 & 3779.991 & 3726.547 & 3700.331\end{array}$ $\begin{array}{llllllll}0.624 & 377.698 & 3787.147 & 37979.919 & 3725.547 & 3700.331\end{array}$ | 0.624 | 3773.695 | 3786.766 | 3779.919 | 3727.171 | 3700.644 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| .624 | 3774.572 | 3786.312 | 3779.858 | 3727.795 | 3700.956 | $\begin{array}{lllllll}0.624 & 3774.572 & 3786.312 & 3779.858 & 3727.795 & 3700.956\end{array}$ $\begin{array}{lllllll}0.624 & 3775.360 & 3785.869 & 3779.807 & 3728.419 & 3701.268\end{array}$ | 0.624 | 3776.091 | 3785.466 | 3779.766 | 3729.043 | 3701.580 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.624 | 3776.785 | 3785.072 | 3779.733 | 3729.667 | 3701.892 |

 | 0.624 | 3775.774 | 3784.655 | 3779.690 | 3730.292 | 3702.204 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll}0.624 & 3775.335 & 3784.247 & 3779.643 & 3730.916 & 3702.516\end{array}$ $\begin{array}{lllllll}0.624 & 3774.989 & 3783.805 & 3779.594 & 3731.540 & 3702.828\end{array}$ $\begin{array}{lllllll}0.624 & 3774.982 & 3783.373 & 3779.545 & 3732.164 & 3703.140\end{array}$ $\begin{array}{lllllll}0.624 & 3774.356 & 3782.881 & 3779.491 & 3732.788 & 3703.452\end{array}$ $\begin{array}{lllllll}0.624 & 3774.168 & 3782.399 & 3779.436 & 3733.413 & 3703.764\end{array}$ $\begin{array}{lllllll}0.624 & 3774.544 & 3781.843 & 3779.387 & 3734.037 & 3704.077\end{array}$ $\begin{array}{lllllll}0.624 & 3775.007 & 3781.297 & 3779.342 & 3734.661 & 3704.389\end{array}$ $\begin{array}{lllllll}0.624 & 3775.247 & 3780.711 & 3779.301 & 3735.285 & 3704.701\end{array}$ $\begin{array}{lllllll}0.624 & 3775.621 & 3780.136 & 3779.265 & 3735.909 & 3705.013\end{array}$ $\begin{array}{lllllll}0.624 & 3775.242 & 3779.527 & 3779.225 & 3736.533 & 3705.325\end{array}$ $\begin{array}{lllllll}0.624 & 3775.214 & 3778.929 & 3779.186 & 3737.158 & 3705.637\end{array}$ $\begin{array}{llllll}0.624 & 3775.695 & 3778.322 & 3779.153 & 3737.782 & 3705.949\end{array}$

2:30:52	59.954	3715.753	36.801	36.974
2:30:54	59.953	3713.484	37.601	37.193
2:30:56	59.953	3713.484	37.601	37.336
2:30:58	59.952	3710.810	38.400	37.708
2:31:00	59.952	3710.810	38.400	37.951
2:31:02	59.954	3714.623	36.801	37.548
2:31:04	59.954	3714.623	36.801	37.287
2:31:06	59.957	3716.168	34.399	36.276
2:31:08	59.957	3716.168	34.399	35.619
2:31:10	59.954	3716.980	36.801	36.033
2:31:12	59.954	3716.980	36.801	36.302
2:31:14	59.955	3722.361	35.999	36.196
2:31:16	59.955	3722.361	35.999	36.127
2:31:18	59.961	3722.658	31.201	34.403
2:31:20	59.961	3722.658	31.201	33.282
2:31:22	59.962	3722.278	30.399	32.273
2:31:24	59.962	3722.278	30.399	31.617
2:31:26	59.966	3723.091	27.200	30.071
2:31:28	59.966	3723.091	27.200	29.066
2:31:30	59.968	3723.435	25.601	27.854
2:31:32	59.968	3723.435	25.601	27.065
2:31:34	59.974	3725.403	20.801	24.873
2:31:36	59.974	3725.403	20.801	23.448
2:31:38	59.969	3728.053	24.799	23.920
2:31:40	59.969	3728.053	24.799	24.228
2:31:42	59.97	3732.530	23.999	24.148
2:31:44	59.97	3732.530	23.999	24.096
2:31:46	59.973	3736.535	21.600	23.222
2:31:48	59.973	3736.535	21.600	22.655
2:31:50	59.976	3736.822	19.199	21.445
2:31:52	59.976	3736.822	19.199	20.659
2:31:54	59.978	3739.944	17.599	19.588
2:31:56	59.978	3739.944	17.599	18.892
2:31:58	59.978	3741.794	17.599	18.440
2:32:00	59.978	3741.794	17.599	18.146
2:32:02	59.978	3746.608	17.599	17.954
2:32:04	59.978	3746.608	17.599	17.830
2:32:06	59.98	3750.716	16.000	17.190
2:32:08	59.98	3750.716	16.000	16.773
2:32:10	59.981	3752.748	15.201	16.223
2:32:12	59.981	3752.748	15.201	15.865
2:32:14	59.979	3756.407	16.800	16.192
2:32:16	59.979	3756.407	16.800	16.405
2:32:18	59.979	3760.405	16.800	16.543
2:32:20	59.979	3760.405	16.800	16.633
2:32:22	59.983	3761.407	13.599	15.571

$\begin{array}{llllll}0.624 & 3776.226 & 3777.726 & 3779.125 & 3738.406 & 3706.261\end{array}$ $\begin{array}{llllll}0.624 & 3776.226 & 3777.726 & 3779.125 & 3738.406 & 3706.261 \\ 0.624 & 3777.070 & 3777.120 & 3779.106 & 3739.030 & 3706.573\end{array}$ $\begin{array}{lllllll}0.624 & 3777.070 & 3777.120 & 3779.106 & 3739.030 & 3706.573 \\ 0.624 & 3777.837 & 3776.525 & 3779.094 & 3739.654 & 3706.885\end{array}$ $\begin{array}{lllllll}0.624 & 3777.837 & 37776.525 & 3779.094 & 3739.654 & 3706.885 \\ 0.624 & 3778.834 & 3775.917 & 3779.091 & 3740.278 & 3707.197\end{array}$ $\begin{array}{lllllll}0.624 & 3778.834 & 3775.917 & 3779.091 & 3740.278 & 3707.197 \\ 0.624 & 3779.700 & 3775.319 & 3779.097 & 3740.903 & 3707.509\end{array}$ $\begin{array}{llllll}0.624 & 3779.700 & 3775.319 & 3779.097 & 3740.903 & 3707.509 \\ 0.624 & 3779.922 & 3774.767 & 3779.104 & 3741.527 & 3707.822\end{array}$ $\begin{array}{lllllll}0.624 & 3779.922 & 3774.767 & 3779.104 & 3741.527 & 3707.822 \\ 0.624 & 3780.285 & 3774.226 & 3779.115 & 3742.151 & 3708.134\end{array}$ $\begin{array}{lllllll}0.624 & 3779.898 & 3773.707 & 3779.122 & 3742.775 & 3708.446\end{array}$ $\begin{array}{lllllll}0.624 & 3779.865 & 3773.198 & 3779.129 & 3743.399 & 3708.758\end{array}$ $\begin{array}{lllllll}0.624 & 3780.903 & 3772.705 & 3779.144 & 3744.023 & 3709.070\end{array}$ $\begin{array}{lllllll}0.624 & 3781.796 & 3772.220 & 3779.167 & 3744.648 & 3709.382\end{array}$ $\begin{array}{lllllll}0.624 & 3782314 & 3771.791 & 3779.194 & 3745.272 & 3709.694\end{array}$ $\begin{array}{lllllll}0.624 & 3782.314 & 3771.791 & 3779.194 & 3745.272 & 3709.694 \\ 0.624 & 3782.869 & 3771.368 & 3779.226 & 3745.896 & 3710.006\end{array}$ $\begin{array}{llllll}0.624 & 3782.869 & 3771.368 & 3799.226 & 3745.896 & 3710.006 \\ 0.624 & 3781.770 & 3770.955 & 3779.247 & 3746.520 & 3710.318\end{array}$ $\begin{array}{lllllll}0.624 & 3781.770 & 3770.955 & 3779.247 & 3746.520 & 3710.318\end{array}$ $\begin{array}{llllll}0.624 & 3781.273 & 3770.549 & 3779.264 & 3747.144 & 3710.630\end{array}$ $\begin{array}{lllllll}0.624 & 3780.888 & 3770.147 & 3779.278 & 3747.768 & 3710.942\end{array}$ $\begin{array}{llllll}0.624 & 3780.856 & 3769.751 & 3779.291 & 3748.393 & 3711.254\end{array}$ $\begin{array}{lllllll}0.624 & 3779.935 & 3769.369 & 3779.296 & 3749.017 & 3711.567\end{array}$ $\begin{array}{lllllll}0.624 & 3779.554 & 3768.993 & 3779.298 & 3749.641 & 3711.879\end{array}$ $\begin{array}{lllllll}0.624 & 3778.966 & 3768.625 & 3779.296 & 3750.265 & 3712.191\end{array}$ $\begin{array}{lllllll}0.624 & 3778.801 & 3768.264 & 3779.292 & 3750.889 & 3712.503\end{array}$ $\begin{array}{lllllll}0.624 & 3777.233 & 3767.924 & 3779.275 & 3751.513 & 3712.815\end{array}$ $\begin{array}{lllllll}0.624 & 3776.432 & 3767.589 & 3779.253 & 3752.138 & 3713.127\end{array}$ $\begin{array}{llllllll}0.624 & 3777.529 & 3767.280 & 3779.240 & 3752.762 & 3713.439\end{array}$ $\begin{array}{lllllll}0.624 & 3778.461 & 3766.976 & 3779.233 & 3753.386 & 3713.751\end{array}$ $\begin{array}{lllllll}0.624 & 3779.005 & 3766.711 & 3779.232 & 3754.010 & 3714.063\end{array}$ $\begin{array}{lllllll}0.624 & 3779.577 & 3766.450 & 3779.234 & 3754.634 & 3714.375\end{array}$ $\begin{array}{lllllll}0.624 & 3779.328 & 3766.223 & 3779.235 & 3755.258 & 3714.687\end{array}$ $\begin{array}{lllllll}0.624 & 3779.328 & 3766.223 & 379.235 & 3755.258 & 3714.687 \\ 0.624 & 3779.384 & 3766.000 & 3779.236 & 3755.883 & 3714.999\end{array}$ $\begin{array}{llllllll}0.624 & 3779.384 & 3766.223 .999 & 379.236 & 3755.883 & 3714.987\end{array}$ | 0.624 | 3778.75 | 3765.782 | 379.233 | 3756.507 | 3715.312 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0.624 | 3778.637 | 3755.568 | 379.229 | 3757.131 | 3715.624 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.624 3778.118 3765.194779 .221 375.936 $\begin{array}{llllllll}0.624 & 3778.118 & 3765.194 & 3779.213 & 3758.35 & -3716.248\end{array}$ $\begin{array}{lllllll}0.624 & 3778.290 & 3765.024 & 3779.206 & 3759.003 & 3716.560\end{array}$ $\begin{array}{lllllll}0.624 & 3778.620 & 3764.857 & 3779.202 & 3759.628 & 3716.872\end{array}$ $\begin{array}{lllllll}0.624 & 3779.053 & 3764.727 & 3779.201 & 3760.252 & 3717.184\end{array}$ $\begin{array}{lllllll}0.624 & 3779.553 & 3764.598 & 3779.203 & 3760.876 & 3717.496\end{array}$ $\begin{array}{lllllll}0.624 & 3779.537 & 3764.501 & 3779.206 & 3761.500 & 3717.808\end{array}$ $\begin{array}{lllllll}0.624 & 3779.745 & 3764.404 & 3779.209 & 3762.124 & 3718.120\end{array}$ $\begin{array}{lllllll}0.624 & 3779.818 & 3764.323 & 3779.214 & 3762.749 & 3718.432\end{array}$ $\begin{array}{lllllll}0.624 & 3780.085 & 3764.243 & 3779.220 & 3763.373 & 3718.745\end{array}$ $\begin{array}{lllllll}0.624 & 3781.036 & 3764.190 & 3779.232 & 3763.997 & 3719.057\end{array}$ $\begin{array}{lllllll}0.624 & 3781.873 & 3764.137 & 3779.250 & 3764.621 & 3719.369\end{array}$ $\begin{array}{lllllll}0.624 & 3782.635 & 3764.112 & 3779.273 & 3765.245 & 3719.681\end{array}$ $\begin{array}{lllllll}0.624 & 3783.349 & 3764.087 & 3779.300 & 3765.869 & 3719.993\end{array}$ $\begin{array}{lllllll}0.624 & 3782.911 & 3764.069 & 3779.324 & 3766.494 & 3720.305\end{array}$

$2: 32: 24$	59.983	3761.407	13.599	14.881	
$2: 32: 26$	59.988	3763.212	9.601	13.033	
$2: 32: 28$	59.988	3763.212	9.601	11.832	
$2: 32: 30$	59.987	3766.085	10.400	11.331	
$2: 32: 32$	59.987	3766.085	10.400	11.005	
$2: 32: 34$	59.991	3767.251	7.199	9.673	
$2: 32: 36$	59.991	3767.251	7.199	8.807	
$2: 32: 38$	59.992	3768.634	6.400	7.964	
$2: 32: 40$	59.992	3768.634	6.400	7.417	
$2: 32: 42$	59.989	3772.445	8.801	7.901	
$2: 32: 44$	59.989	3772.445	8.801	8.216	
$2: 32: 46$	59.983	3774.668	13.599	10.100	
$2: 32: 48$	59.983	3774.668	13.599	11.325	
$2: 32: 50$	59.988	3775.363	9.601	10.721	
$2: 32: 52$	59.988	3775.363	9.601	10.329	
$2: 32: 54$	59.996	3775.492	3.201	7.834	
$2: 32: 56$	59.996	3775.492	3.201	6.213	
$2: 32: 58$	59.999	3778.554	0.800	4.318	
$2: 33: 00$	59.999	3778.554	0.800	3.087	
$2: 33: 02$	59.999	3781.256	0.800	2.286	
$2: 33: 04$	59.999	3781.256	0.800	1.766	
$2: 33: 06$	59.999	3783.092	0.800	1.428	
$2: 33: 08$	59.999	3783.092	0.800	1.208	
$2: 33: 10$	60.005	3784.421	-4.001	-0.615	
$2: 33: 12$	60.005	3784.421	-4.001	-1.800	
$2: 33: 14$	60.008	3785.463	-6.400	-3.410	
$2: 33: 16$	60.008	3785.463	-6.400	-4.456	
$2: 33: 18$	60.014	3786.304	-11.200	-6.817	
$2: 33: 20$	60.014	3786.304	-11.200	-8.351	
$2: 33: 22$	60.019	3787.516	-15.201	-10.748	
$2: 33: 24$	60.019	3787.516	-15.201	-12.307	
$2: 33: 26$	60.017	3788.030	-13.599	-12.759	
$2: 33: 28$	60.017	3788.030	-13.599	-13.053	
$2: 33: 30$	60.019	3789.216	-15.201	-13.805	
$2: 33: 32$	60.019	3789.216	-15.201	-14.293	
$2: 33: 34$	60.024	3785.842	-19.199	-16.010	
$2: 33: 36$	60.024	3785.842	-19.199	-17.126	
$2: 33: 38$	60.021	3787.930	-16.800	-17.012	
$2: 33: 40$	60.021	3787.930	-16.800	-16.938	
$2: 33: 42$	60.024	3786.875	-19.199	-17.729	
$2: 33: 44$	60.024	3786.875	-19.199	-18.243	
$2: 33: 46$	60.021	3787.358	-16.800	-17.738	
$2: 33: 48$	60.021	3787.358	-16.800	-17.410	
$2: 33: 50$	60.025	3785.614	-20.001	-18.317	
$2: 33: 52$	60.025	3785.614	-20.001	-18.906	
$2: 33: 54$	60.02	3785.804	-16.000	-17.889	

$\begin{array}{lllllll}0.624 & 3782.845 & 3764.051 & 3779.348 & 3767.118 & 3720.617\end{array}$ $\begin{array}{llllll}0.624 & 3782.845 & 3764.051 & 3779.348 & 3767.118 & 3720.617 \\ 0.624 & 3781.622 & 3764.046 & 3779.363 & 3767.742 & 3720.929\end{array}$ $\begin{array}{llllll}0.624 & 3781.622 & 3764.046 & 3779.363 & 3767.742 & 3720.929 \\ 0.624 & 3781.045 & 3764.040 & 3779.374 & 3768.366 & 3721.241\end{array}$ $\begin{array}{llllll}0.624 & 3781.045 & 3764.040 & 3779.374 & 3768.366 & 3721.241 \\ 0.624 & 3781.168 & 3764.053 & 3779.385 & 3768.990 & 3721.553\end{array}$ $\begin{array}{lllllll}0.624 & 3781.168 & 3764.053 & 3779.385 & 3768.990 & 3721.553 \\ 0.624 & 3781.466 & 3764.067 & 3779.399 & 3769.614 & 3721.865\end{array}$ $\begin{array}{lllllll}0.624 & 3781.466 & 3764.067 & 3779.399 & 3769.614 & 3721.865 \\ 0.624 & 3780.758 & 3764.087 & 3779.407 & 3770.239 & 3722.177\end{array}$ $\begin{array}{llllllll}0.624 & 3780.517 & 3764.107 & 3779.415 & 3770.863 & 3722.490\end{array}$ $\begin{array}{lllllll}0.624 & 3780.298 & 3764.136 & 3799.420 & 3771.487 & 3722.802\end{array}$ $\begin{array}{lllllll}0.624 & 3780.375 & 3764.164 & 3779.426 & 3772.111 & 3723.114\end{array}$ $\begin{array}{lllllll}0.624 & 3781.483 & 3764.216 & 3779.439 & 3772.735 & 3723.426\end{array}$ $\begin{array}{lllllll}0.624 & 3782.423 & 3764.267 & 3779.458 & 3773.359 & 3723.738\end{array}$ $\begin{array}{llllllll}0.624 & 3784.931 & 3764.331 & 3779.491 & 3773.984 & 3724.050\end{array}$ $\begin{array}{lllllll}0.624 & 3784.931 & 3764.331 & 3799.491 & 3773.984 & 3724.050 \\ 0.624 & 3786.779 & 3764.395 & 3779.536 & 3774.608 & 3724.362\end{array}$ $\begin{array}{llllll}0.624 & 3786.779 & 3764.395 & 3779.536 & 3774.608 & 3724.362 \\ 0.624 & 3786.800 & 3764.461 & 3779.580 & 3775.232 & 3724.674\end{array}$ $\begin{array}{lllllll}0.624 & 3786.800 & 3764.461 & 3779.580 & 3775.232 & 3724.674\end{array}$ $\begin{array}{lllllll}0.624 & 3787.032 & 3764.528 & 3779.625 & 3775.856 & 3724.986 \\ 0.624 & 3785.162 & 3764.594 & 3779.659 & 3776.480 & 3725.298\end{array}$ $\begin{array}{lllllll}0.624 & 3785.162 & 3764.594 & 3779.659 & 3776.480 & 3725.298\end{array}$ $\begin{array}{lllllll}0.624 & 3784.164 & 3764.659 & 3779.686 & 3777.104 & 3725.610\end{array}$ $\begin{array}{lllllll}0.624 & 3782.894 & 3764.742 & 3779.705 & 3777.729 & 3725.922\end{array}$ $\begin{array}{lllllll}0.624 & 3782.286 & 3764.823 & 3779.720 & 3778.353 & 3726.235\end{array}$ $\begin{array}{lllllll}0.624 & 3782.110 & 3764.920 & 3779.734 & 3778.977 & 3726.547\end{array}$ $\begin{array}{lllllll}0.624 & 3782.214 & 3765.015 & 3779.749 & 3779.601 & 3726.859\end{array}$ $\begin{array}{lllllll}0.624 & 3782.500 & 3765.121 & 3779.765 & 3780.225 & 3727.171\end{array}$ $\begin{array}{lllllll}0.624 & 3782.904 & 3765.224 & 3779.783 & 3780.849 & 3727.483\end{array}$ $\begin{array}{lllllll}0.000 & 3781.081 & 3765.335 & 3779.790 & 3780.849 & 3727.791\end{array}$ $\begin{array}{lllllll}0.000 & 3779.896 & 3765.444 & 3779.791 & 3780.849 & 3728.096\end{array}$ $\begin{array}{lllllll}0.000 & 3778.286 & 3765.558 & 3779.782 & 3780.849 & 3728.398\end{array}$ $\begin{array}{lllllll}0.000 & 3777.240 & 3765.670 & 3779.768 & 3780.849 & 3728.696\end{array}$ $\begin{array}{llllllll}07728.000 & 3774.880 & 3765.786 & 3779.741 & 3780.849 & 3728.90\end{array}$ $\begin{array}{lllllll}0.000 & 3774.880 & 3765.786 & 3779.741 & 3780.849 & 3728.990 \\ 0.000 & 3773.346 & 3765.901 & 3779.705 & 3780.849 & 3729.282\end{array}$ $\begin{array}{lllllll}0.000 & 3773.346 & 3765.901 & 3779.705 & 3780.849 & 3729.282 \\ 0.000 & 3770.948 & 3766.021 & 3779.656 & 3780.849 & 372.570\end{array}$ $\begin{array}{lllllll}0.000 & 3770.948 & 3766.021 & 3779.656 & 3780.849 & 3729.570\end{array}$	0.000	3769.390	3766.139	3779.599	3780.849	3729.855
000	3768.938	3766.260	3779.541	3780.849	3730.136	
:---	:---	:---	:---	:---	:---	:---

2:33:56	60.02	3785.804	-16.000	-17.228
2:33:58	60.022	3786.877	-17.599	-17.358
2:34:00	60.022	3786.877	-17.599	-17.443
2:34:02	60.022	3785.726	-17.599	-17.498
2:34:04	60.022	3785.726	-17.599	-17.533
2:34:06	60.021	3785.821	-16.800	-17.277
2:34:08	60.021	3785.821	-16.800	-17.110
2:34:10	60.023	3786.284	-18.399	-17.561
2:34:12	60.023	3786.284	-18.399	-17.854
2:34:14	60.019	3787.627	-15.201	-16.926
2:34:16	60.019	3787.627	-15.201	-16.322
2:34:18	60.018	3789.673	-14.401	-15.650
2:34:20	60.018	3789.673	-14.401	-15.213
2:34:22	60.018	3788.479	-14.401	-14.929
2:34:24	60.018	3788.479	-14.401	-14.744
2:34:26	60.019	3789.369	-15.201	-14.904
2:34:28	60.019	3789.369	-15.201	-15.008
2:34:30	60.015	3788.665	-12.000	-13.955
2:34:32	60.015	3788.665	-12.000	-13.271
2:34:34	60.014	3790.667	-11.200	-12.546
2:34:36	60.014	3790.667	-11.200	-12.075
2:34:38	60.012	3790.411	-9.601	-11.209
2:34:40	60.012	3790.411	-9.601	-10.646
2:34:42	60.01	3791.540	-7.999	-9.719
2:34:44	60.01	3791.540	-7.999	-9.117
2:34:46	60.007	3791.027	-5.600	-7.886
2:34:48	60.007	3791.027	-5.600	-7.086
2:34:50	60.009	3791.426	-7.199	-7.126
2:34:52	60.009	3791.426	-7.199	-7.151
2:34:54	60.003	3790.457	-2.399	-5.488
2:34:56	60.003	3790.457	-2.399	-4.407
2:34:58	59.995	3789.585	4.001	-1.464
2:35:00	59.995	3789.585	4.001	0.449
2:35:02	59.991	3788.105	7.199	2.811
2:35:04	59.991	3788.105	7.199	4.347
2:35:06	59.992	3788.189	6.400	5.065
2:35:08	59.992	3788.189	6.400	5.532
2:35:10	59.986	3788.540	11.200	7.516
2:35:12	59.986	3788.540	11.200	8.805
2:35:14	59.984	3788.101	12.799	10.203
2:35:16	59.984	3788.101	12.799	11.112
2:35:18	59.984	3786.453	12.799	11.702
2:35:20	59.984	3786.453	12.799	12.086
2:35:22	59.981	3788.813	15.201	13.176
2:35:24	59.981	3788.813	15.201	13.885
2:35:26	59.979	3788.256	16.800	14.905

$\begin{array}{lllllll}0.000 & 3764.468 & 3767.840 & 3778.427 & 3780.849 & 3734.018\end{array}$ $\begin{array}{llllll}0.000 & 3764.468 & 3767.840 & 3778.427 & 3780.849 & 3734.018 \\ 0.000 & 3764.338 & 3767.937 & 3778.356 & 3780.849 & 3734.255\end{array}$ $\begin{array}{llllll}0.000 & 3764.338 & 3767.937 & 3778.356 & 3780.849 & 3734.255 \\ 0.000 & 3764.254 & 3768.032 & 3778.285 & 3780.849 & 3734.491\end{array}$ $\begin{array}{llllll}0.000 & 3764.254 & 3768.032 & 3778.285 & 3780.849 & 3734.491 \\ 0.000 & 3764.199 & 3768.120 & 3778.215 & 3780.849 & 3734.724\end{array}$ $\begin{array}{llllll}0.000 & 3764.199 & 3768.120 & 3778.215 & 3780.849 & 3734.724 \\ 0.000 & 3764.163 & 3768.208 & 3778.145 & 3780.849 & 3734.954\end{array}$ $\begin{array}{llllll}0.000 & 3764.420 & 3768.295 & 3778.077 & 3780.849 & 3735.183\end{array}$ $\begin{array}{lllllll}0.000 & 3764.587 & 3768.381 & 3778.011 & 3780.849 & 3735.409\end{array}$ $\begin{array}{lllllll}0.000 & 3764.135 & 3768.469 & 3777.943 & 3780.849 & 3735.632\end{array}$ $\begin{array}{lllllll}0.000 & 3763.842 & 3768.556 & 3777.874 & 3780.849 & 3735.854\end{array}$ $\begin{array}{lllllll}0.000 & 3764.771 & 3768.649 & 3777.810 & 3780.849 & 3736.074\end{array}$ $\begin{array}{lllllll}0.000 & 3765.374 & 3768.740 & 3777.750 & 3780.849 & 3736.291\end{array}$ $\begin{array}{llllllll}0.000 & 3766.047 & 3768.841 & 3777.694 & 3780.849 & 3736.506\end{array}$ $\begin{array}{llllll}0.000 & 3766.047 & 3768.841 & 3777.694 & 3780.849 & 3736.506 \\ 0.000 & 3766.484 & 3768.941 & 3777.640 & 3780.849 & 3736.719\end{array}$ $\begin{array}{lllllll}0.000 & 3766.484 & 3768.941 & 3777.640 & 3780.849 & 3736.719\end{array}$ $\begin{array}{lllllll}0.000 & 3766.768 & 3769.034 & 3777.588 & 3780.849 & 3736.931 \\ 0.000 & 3766.952 & 3769.126 & 3777.538 & 3780.849 & 3737.140\end{array}$ $\begin{array}{llllll}0.000 & 3766.952 & 3769.126 & 3777.538 & 3780.849 & 3737.140 \\ 0.000 & 3766.792 & 3769.221 & 3777.487 & 3780.849 & 3737.347\end{array}$ $\begin{array}{llllll}0.000 & 3766.792 & 3769.221 & 3777.487 & 3780.849 & 3737.347 \\ 0.000 & 3766.689 & 3769.316 & 3777.437 & 3780.849 & 3737.552\end{array}$ $\begin{array}{llllll}0.000 & 3766.689 & 3769.316 & 3777.437 & 3780.849 & 3737.552\end{array}$ $\begin{array}{llllll}0.000 & 3767.741 & 3769.406 & 3777.391 & 3780.849 & 3737.755\end{array}$ $\begin{array}{lllllll}0.000 & 3768.426 & 3769.496 & 3777.350 & 3780.849 & 3737.957\end{array}$ $\begin{array}{llllllll}0.000 & 3769.151 & 3769.594 & 3777.312 & 3780.849 & 3738.156\end{array}$ $\begin{array}{lllllll}0.000 & 3769.622 & 3769.691 & 3777.276 & 3780.849 & 3738.354\end{array}$ $\begin{array}{lllllll}0.000 & 3770.487 & 3769.786 & 3777.245 & 3780.849 & 3738.550\end{array}$ $\begin{array}{lllllll}0.000 & 3771.050 & 3769.880 & 3777.217 & 3780.849 & 3738.744\end{array}$ $\begin{array}{lllllll}0.000 & 3771.977 & 3769.979 & 3777.193 & 3780.849 & 3738.936\end{array}$ $\begin{array}{lllllll}0.000 & 3772.579 & 3770.076 & 3777.172 & 3780.849 & 3739.127\end{array}$ $\begin{array}{lllllll}0.000 & 3773.810 & 3770.171 & 3777.157 & 3780.849 & 3739.315\end{array}$ $\begin{array}{llllllll}0.000 & 3774.610 & 3770.264 & 3777.146 & 3780.849 & 3739.502\end{array}$ $\begin{array}{lllllll}0.000 & 3774.571 & 3770.359 & 3777.134 & 3780.849 & 3739.688\end{array}$ $\begin{array}{llllll}0.000 & 3774.571 & 3770.359 & 3777.134 & 3780.849 & 3739.688 \\ 0.000 & 3774.545 & 3770.452 & 3777.123 & 3780.849 & 3739.872\end{array}$ $\begin{array}{lllllll}0.000 & 3774.545 & 3770.452 & 3777.123 & 3780.849 & 3739.872 \\ 0.000 & 3776.208 & 3770.541 & 3777.119 & 3780.849 & 3740.054\end{array}$ $\begin{array}{lllllll}0.000 & 3776.208 & 3770.541 & 3777.119 & 3780.849 & 3740.054\end{array}$ $\begin{array}{llllll}0.000 & 3777.290 & 3770.629 & 3777.119 & 3780.849 & 3740.234\end{array}$ $\begin{array}{lllllll}0.000 & 3780.232 & 3770.712 & 3777.133 & 3780.849 & 3740.413\end{array}$ $\begin{array}{lllllll}0.000 & 3782.145 & 3770.794 & 3777.155 & 3780.849 & 3740.590\end{array}$ $\begin{array}{llllll}0.000 & 3784.508 & 3770.869 & 3777.187 & 3780.849 & 3740.766\end{array}$ $\begin{array}{lllllll}0.000 & 3786.043 & 3770.944 & 3777.225 & 3780.849 & 3740.941\end{array}$ $\begin{array}{lllllll}0.000 & 3786.762 & 3771.018 & 3777.266 & 3780.849 & 3741.113\end{array}$ $\begin{array}{llllllll}0.000 & 3787.229 & 3771.092 & 3777.309 & 3780.849 & 3741.285\end{array}$ $\begin{array}{lllllll}0.000 & 3789.212 & 3771.167 & 3777.360 & 3780.849 & 3741.454\end{array}$ $\begin{array}{lllllll}0.000 & 3790.502 & 3771.240 & 3777.416 & 3780.849 & 3741.623\end{array}$ $\begin{array}{lllllll}0.000 & 3791.900 & 3771.312 & 3777.477 & 3780.849 & 3741.790\end{array}$ $\begin{array}{lllllll}0.000 & 3792.808 & 3771.383 & 3777.542 & 3780.849 & 3741.955\end{array}$ $\begin{array}{lllllll}0.000 & 3793.399 & 3771.446 & 3777.608 & 3780.849 & 3742.119\end{array}$ $\begin{array}{lllllll}0.000 & 3793.783 & 3771.509 & 3777.676 & 3780.849 & 3742.282\end{array}$ $\begin{array}{lllllll}0.000 & 3794.873 & 3771.581 & 3777.748 & 3780.849 & 3742.443\end{array}$ $\begin{array}{lllllll}0.000 & 3795.581 & 3771.652 & 3777.822 & 3780.849 & 3742.603\end{array}$ $\begin{array}{llllllll}0.000 & 3796.602 & 3771.721 & 3777.899 & 3780.849 & 3742.762\end{array}$

2:35:28	59.979	3788.256	16.800	15.568
2:35:30	59.976	3790.467	19.199	16.839
2:35:32	59.976	3790.467	19.199	17.665
2:35:34	59.979	3790.420	16.800	17.362
2:35:36	59.979	3790.420	16.800	17.165
2:35:38	59.978	3789.267	17.599	17.317
2:35:40	59.978	3789.267	17.599	17.416
2:35:42	59.974	3790.430	20.801	18.601
2:35:44	59.974	3790.430	20.801	19.371
2:35:46	59.977	3786.243	18.399	19.031
2:35:48	59.977	3786.243	18.399	18.810
2:35:50	59.975	3788.963	20.001	19.227
2:35:52	59.975	3788.963	20.001	19.498
2:35:54	59.969	3791.877	24.799	21.353
2:35:56	59.969	3791.877	24.799	22.559
2:35:58	59.971	3792.311	23.199	22.783
2:36:00	59.971	3792.311	23.199	22.929
2:36:02	59.978	3788.080	17.599	21.064
2:36:04	59.978	3788.080	17.599	19.851
2:36:06	59.978	3787.135	17.599	19.063
2:36:08	59.978	3787.135	17.599	18.551
2:36:10	59.972	3786.996	22.400	19.898
2:36:12	59.972	3786.996	22.400	20.774
2:36:14	59.975	3786.487	20.001	20.503
2:36:16	59.975	3786.487	20.001	20.328
2:36:18	59.969	3789.214	24.799	21.892
2:36:20	59.969	3789.214	24.799	22.910
2:36:22	59.965	3791.221	28.000	24.691
2:36:24	59.965	3791.221	28.000	25.849
2:36:26	59.969	3790.959	24.799	25.482
2:36:28	59.969	3790.959	24.799	25.242
2:36:30	59.968	3789.026	25.601	25.368
2:36:32	59.968	3789.026	25.601	25.450
2:36:34	59.964	3787.394	28.799	26.622
2:36:36	59.964	3787.394	28.799	27.384
2:36:38	59.972	3784.831	22.400	25.640
2:36:40	59.972	3784.831	22.400	24.506
2:36:42	59.967	3784.320	26.401	25.169
2:36:44	59.967	3784.320	26.401	25.600
2:36:46	59.968	3782.110	25.601	25.600
2:36:48	59.968	3782.110	25.601	25.601
2:36:50	59.967	3779.056	26.401	25.881
2:36:52	59.967	3779.056	26.401	26.063
2:36:54	59.966	3779.212	27.200	26.461
2:36:56	59.966	3779.212	27.200	26.720
2:36:58	59.971	3776.429	23.199	25.488

Abstract

$\begin{array}{lllllll}073 & 3797.265 & 3771.789 & 3777.979 & 3780.849 & 3742.920\end{array}$ $\begin{array}{llllll}0.000 & 3797.265 & 3771.789 & 3777.979 & 3780.849 & 3742.920 \\ 0.000 & 3798.535 & 3771.866 & 3778.063 & 3780.849 & 3743.076\end{array}$ $\begin{array}{lllllll}0.000 & 3799.361 & 3771.942 & 3778.150 & 3780.849 & 3743.230\end{array}$ $\begin{array}{lllllll}0.000 & 3799.361 & 3771.942 & 3778.150 & 3780.849 & 3743.230 \\ 0.000 & 3799.058 & 3772.017 & 3778.235 & 3780.849 & 3743.384\end{array}$ $\begin{array}{lllllll}0.000 & 3798.862 & 3772.091 & 3778.335 & 3780.849 & 3780.849 & 3743.536\end{array}$ $\begin{array}{lllllll}0.000 & 3798.862 & 3772.091 & 3778.319 & 3780.849 & 3743.536 \\ 0.000 & 3799.014 & 3772.160 & 3778.402 & 3780.849 & 3743.687\end{array}$ $\begin{array}{lllllll}0.000 & 3799.112 & 3772.229 & 3778.485 & 3780.849 & 3743.837\end{array}$ $\begin{array}{lllllll}0.000 & 3800.297 & 3772.302 & 3778.573 & 3780.849 & 3743.986\end{array}$ $\begin{array}{lllllll}0.000 & 3801.067 & 3772.374 & 3778.662 & 3780.849 & 3744.133\end{array}$ $\begin{array}{lllllll}0.000 & 3800.727 & 3772.429 & 3778.750 & 3780.849 & 3744.280\end{array}$ $\begin{array}{lllllll}0.000 & 3800.506 & 3772.484 & 3778.836 & 3780.849 & 3744.425\end{array}$ $\begin{array}{lllllll}0.000 & 3800.923 & 3772.549 & 3778.923 & 3780.849 & 3744.569\end{array}$ $\begin{array}{llllll}0.000 & 3800.923 & 3772.549 & 3778.923 & 3780.849 & 3744.569 \\ 0 & 3801.194 & 3772.613 & 3779.010 & 3780.849 & 3744.711\end{array}$ | 0.000 | 3807.146 | 3773.829 | 3780.829 | 3780.849 | 3747.349 |
| :--- | :--- | :--- | :--- | :--- | :--- | 07477.471 $\begin{array}{lllllll}0.000 & 3809.081 & 3773.927 & 3781.030 & 3780.849 & 3747.592\end{array}$ $\begin{array}{lllllll}0.000 & 3807.336 & 3773.966 & 3781.125 & 3780.849 & 3747.712\end{array}$ $\begin{array}{lllllll}0.000 & 3806.202 & 3774.005 & 3781.215 & 3780.849 & 3747.831\end{array}$ $\begin{array}{lllllll}0.000 & 3806.865 & 3774.042 & 3781.307 & 3780.849 & 3747.950\end{array}$ $\begin{array}{lllllll}0.000 & 3807.296 & 3774.078 & 3781.399 & 3780.849 & 3748.067\end{array}$ $\begin{array}{lllllll}0.000 & 3807.297 & 3774.107 & 3781.491 & 3780.849 & 3748.184\end{array}$ $\begin{array}{lllllll}0.000 & 3807.297 & 3774.135 & 3781.582 & 3780.849 & 3748.300\end{array}$ $\begin{array}{lllllll}0.000 & 3807.577 & 3774.153 & 3781.674 & 3780.849 & 3748.415\end{array}$ $\begin{array}{lllllll}0.000 & 3807.759 & 3774.170 & 3781.765 & 3780.849 & 3748.529\end{array}$ $\begin{array}{lllllll}0.000 & 3808.157 & 3774.187 & 3781.857 & 3780.849 & 3748.642\end{array}$ 07878.642

 $\begin{array}{lllllll}0.000 & 3807.184 & 3774.213 & 3782.038 & 3780.849 & 3748.867\end{array}$| 2:37:00 | 59.971 | 3776.429 | 23.199 | 24.687 |
| :---: | :---: | :---: | :---: | :---: |
| 2:37:02 | 59.965 | 3776.597 | 28.000 | 25.846 |
| 2:37:04 | 59.965 | 3776.597 | 28.000 | 26.600 |
| 2:37:06 | 59.964 | 3776.023 | 28.799 | 27.370 |
| 2:37:08 | 59.964 | 3776.023 | 28.799 | 27.870 |
| 2:37:10 | 59.967 | 3771.730 | 26.401 | 27.356 |
| 2:37:12 | 59.967 | 3771.730 | 26.401 | 27.022 |
| 2:37:14 | 59.968 | 3768.503 | 25.601 | 26.524 |
| 2:37:16 | 59.968 | 3768.503 | 25.601 | 26.201 |
| 2:37:18 | 59.965 | 3767.366 | 28.000 | 26.831 |
| 2:37:20 | 59.965 | 3767.366 | 28.000 | 27.240 |
| 2:37:22 | 59.973 | 3760.295 | 21.600 | 25.266 |
| 2:37:24 | 59.973 | 3760.295 | 21.600 | 23.983 |
| 2:37:26 | 59.965 | 3761.894 | 28.000 | 25.389 |
| 2:37:28 | 59.965 | 3761.894 | 28.000 | 26.303 |
| 2:37:30 | 59.969 | 3760.583 | 24.799 | 25.776 |
| 2:37:32 | 59.969 | 3760.583 | 24.799 | 25.434 |
| 2:37:34 | 59.964 | 3759.781 | 28.799 | 26.612 |
| 2:37:36 | 59.964 | 3759.781 | 28.799 | 27.378 |
| 2:37:38 | 59.979 | 3757.773 | 16.800 | 23.675 |
| 2:37:40 | 59.979 | 3757.773 | 16.800 | 21.269 |
| 2:37:42 | 59.983 | 3753.087 | 13.599 | 18.584 |
| 2:37:44 | 59.983 | 3753.087 | 13.599 | 16.839 |
| 2:37:46 | 59.967 | 3753.751 | 26.401 | 20.186 |
| 2:37:48 | 59.967 | 3753.751 | 26.401 | 22.361 |
| 2:37:50 | 59.962 | 3759.250 | 30.399 | 25.174 |
| 2:37:52 | 59.962 | 3759.250 | 30.399 | 27.003 |
| 2:37:54 | 59.961 | 3760.965 | 31.201 | 28.472 |
| 2:37:56 | 59.961 | 3760.965 | 31.201 | 29.427 |
| 2:37:58 | 59.96 | 3763.822 | 32.001 | 30.328 |
| 2:38:00 | 59.96 | 3763.822 | 32.001 | 30.913 |
| 2:38:02 | 59.959 | 3763.858 | 32.800 | 31.574 |
| 2:38:04 | 59.959 | 3763.858 | 32.800 | 32.003 |
| 2:38:06 | 59.951 | 3766.127 | 39.200 | 34.522 |
| 2:38:08 | 59.951 | 3766.127 | 39.200 | 36.159 |
| 2:38:10 | 59.954 | 3767.972 | 36.801 | 36.384 |
| 2:38:12 | 59.954 | 3767.972 | 36.801 | 36.530 |
| 2:38:14 | 59.956 | 3765.606 | 35.199 | 36.064 |
| 2:38:16 | 59.956 | 3765.606 | 35.199 | 35.761 |
| 2:38:18 | 59.963 | 3761.570 | 29.599 | 33.604 |
| 2:38:20 | 59.963 | 3761.570 | 29.599 | 32.203 |
| 2:38:22 | 59.959 | 3759.627 | 32.800 | 32.412 |
| 2:38:24 | 59.959 | 3759.627 | 32.800 | 32.548 |
| 2:38:26 | 59.963 | 3752.429 | 29.599 | 31.516 |
| 2:38:28 | 59.963 | 3752.429 | 29.599 | 30.845 |
| 2:38:30 | 59.968 | 3753.830 | 25.601 | 29.010 |

$\begin{array}{llllll}0.000 & 3806.383 & 3774.220 & 3782 & 122 & 3780.849\end{array} \quad 3748.978$ $\begin{array}{llllll}0.000 & 3806.383 & 3774.220 & 3782.122 & 3780.849 & 3748.978 \\ 0.000 & 3807.543 & 3774.228 & 3782.209 & 3780.849 & 3749.088\end{array}$ $\begin{array}{lllllll}0.000 & 3808.296 & 3774.237 & 3782.299 & 3780.849 & 3749.198\end{array}$ $\begin{array}{lllllll}0.000 & 3808.296 & 3774.237 & 3782.299 & 3780.84 & 3774.243 & 3782.391\end{array} 3780.849 \quad 3749.306$ $\begin{array}{lllllll}0.000 & 3809.567 & 3774.249 & 3782.484 & 3780.849 & 3749.414\end{array}$ $\begin{array}{lllllll}0.000 & 3809.052 & 3774.240 & 3782.574 & 3780.849 & 3749.522\end{array}$ $\begin{array}{lllllll}0.000 & 3808.718 & 3774.232 & 3782.663 & 3780.849 & 3749.628\end{array}$ $\begin{array}{lllllll}0.000 & 3808.221 & 3774.212 & 3782.749 & 3780.849 & 3749.734\end{array}$ $\begin{array}{lllllll}0.000 & 3807.898 & 3774.193 & 3782.834 & 3780.849 & 3749.839\end{array}$ $\begin{array}{lllllll}0.000 & 3808.527 & 3774.170 & 3782.920 & 3780.849 & 3749.944\end{array}$ $\begin{array}{lllllll}0.000 & 3808.936 & 3774.147 & 3783.007 & 3780.849 & 3750.047\end{array}$ $\begin{array}{llllllll}0.000 & 3806.962 & 3774.101 & 3783.087 & 3780.849 & 3750.150\end{array}$ $\begin{array}{llllll}0.000 & 3806.962 & 3774.101 & 3783.087 & 3780.849 & 3750.150 \\ 0.000 & 3805.679 & 3774.055 & 3783.162 & 3780.849 & 3750.253\end{array}$ $\begin{array}{lllllll}0.000 & 3805.679 & 3774.055 & 3783.162 & 3780.849 & 3750.253 \\ 0.000 & 3807.085 & 3774.015 & 3783.241 & 3780.849 & 3750.354\end{array}$ $\begin{array}{lllllll}0.000 & 3807.085 & 3774.015 & 3783.241 & 3780.849 & 3750.354 \\ 0.000 & 3807.999 & 3773.975 & 3783.323 & 3780.849 & 3750.455\end{array}$ $\begin{array}{lllllll}0.000 & 3807.999 & 3773.975 & 3783.323 & 3780.849 & 3750.455\end{array}$ $\begin{array}{lllllll}0.000 & 3807.473 & 3773.931 & 3783.402 & 3780.849 & 3750.556\end{array}$ $\begin{array}{lllllll}0.000 & 3807.130 & 3773.887 & 3783.480 & 3780.849 & 3750.655\end{array}$ $\begin{array}{lllllll}0.000 & 3808.308 & 3773.841 & 3783.561 & 3780.849 & 3750.754\end{array}$ $\begin{array}{lllllll}0.000 & 3809.074 & 3773.795 & 3783.644 & 3780.849 & 3750.853\end{array}$ $\begin{array}{llllll}0.000 & 3805.372 & 3773.743 & 3783.715 & 3780.849 & 3750.950\end{array}$ $\begin{array}{llllllll}0.000 & 3802.965 & 3773.692 & 3783.777 & 3780.849 & 3751.047\end{array}$ $\begin{array}{lllllll}0.000 & 3800.281 & 3773.625 & 3783.830 & 3780.849 & 3751.144\end{array}$ $\begin{array}{lllllll}0.000 & 3798.536 & 3773.559 & 3783.877 & 3780.849 & 3751.240\end{array}$ $\begin{array}{lllllll}0.000 & 3801.882 & 3773.496 & 3783.935 & 3780.849 & 3751.335\end{array}$ $\begin{array}{lllllll}0.000 & 3804.057 & 3773.433 & 3783.999 & 3780.849 & 3751.429\end{array}$ $\begin{array}{lllllll}0.000 & 3806.871 & 3773.387 & 3784.072 & 3780.849 & 3751.523\end{array}$ $\begin{array}{lllllll}0.000 & 3808.699 & 3773.343 & 3784.151 & 3780.849 & 3751.617\end{array}$ $\begin{array}{lllllll}0.000 & 3810.169 & 3773.303 & 3784.233 & 3780.849 & 3751.710\end{array}$ $\begin{array}{lllllll}0.000 & 3810.169 & 3773.303 & 3784.233 & 3780.849 & 3751.710 \\ 0.000 & 3811.124 & 3773.265 & 3784.318 & 3780.849 & 3751.802\end{array}$ $\begin{array}{lllllll}0.000 & 3811.124 & 3773.265 & 3784.318 & 3780.849 & 3751.802 \\ 000 & 3812.024 & 3773.235 & 3784.405 & 3780.849 & 3751.893\end{array}$ $\begin{array}{lllllll}0.000 & 3812.024 & 3773.235 & 3784.405 & 3780.849 & 3751.893\end{array}$ $\begin{array}{lllllll}0.000 & 3812.610 & 3773.205 & 3784.493 & 3780.849 & 3751.985 \\ 0.000 & 3813.270 & 3773176 & 378.583 & 3780849 & 3752.075\end{array}$ $\begin{array}{lllllll}0.000 & 3813.270 & 3773.176 & 3784.583 & 3780.849 & 3752.075 \\ 0.000 & 3813.699 & 3773.147 & 3784.674 & 378.849 & 3752165\end{array}$ $\begin{array}{lllllll}0.000 & 3813.699 & 3773.147 & 3784.674 & 3780.849 & 3752.165\end{array}$ $\begin{array}{lllllll}0.000 & 3816.218 & 3773.125 & 3784.772 & 3780.849 & 3752.254\end{array}$ $\begin{array}{lllllll}0.000 & 3817.856 & 3773.104 & 3784.874 & 3780.849 & 3752.343\end{array}$ $\begin{array}{lllllll}0.000 & 3818.080 & 3773.088 & 3784.977 & 3780.849 & 3752.431\end{array}$ $\begin{array}{lllllll}0.000 & 3818.226 & 3773.072 & 3785.079 & 3780.849 & 3752.519\end{array}$ $\begin{array}{lllllll}0.000 & 3817.760 & 3773.049 & 3785.179 & 3780.849 & 3752.606\end{array}$ $\begin{array}{lllllll}0.000 & 3817.458 & 3773.026 & 3785.278 & 3780.849 & 3752.693\end{array}$ $\begin{array}{llllllll}0.000 & 3815.301 & 3772.991 & 3785.370 & 3780.849 & 3752.779\end{array}$ $\begin{array}{lllllll}0.000 & 3813.899 & 3772.957 & 3785.456 & 3780.849 & 3752.865\end{array}$ $\begin{array}{lllllll}0.000 & 3814.108 & 3772.916 & 3785.543 & 3780.849 & 3752.950\end{array}$ $\begin{array}{lllllll}0.000 & 3814.244 & 3772.876 & 3785.630 & 3780.849 & 3753.034\end{array}$ $\begin{array}{lllllll}0.000 & 3813.212 & 3772.815 & 3785.713 & 3780.849 & 3753.118\end{array}$ $\begin{array}{lllllll}0.000 & 3812.541 & 3772.753 & 3785.793 & 3780.849 & 3753.202\end{array}$ $\begin{array}{lllllll}0.000 & 3810.706 & 3772.697 & 3785.868 & 3780.849 & 3753.285\end{array}$

2:38:32	59.968	3753.830	25.601	27.817
2:38:34	59.968	3753.523	25.601	27.041
2:38:36	59.968	3753.523	25.601	26.537
2:38:38	59.973	3753.178	21.600	24.809
2:38:40	59.973	3753.178	21.600	23.686
2:38:42	59.965	3753.291	28.000	25.196
2:38:44	59.965	3753.291	28.000	26.177
2:38:46	59.967	3752.359	26.401	26.256
2:38:48	59.967	3752.359	26.401	26.306
2:38:50	59.976	3747.476	19.199	23.819
2:38:52	59.976	3747.476	19.199	22.202
2:38:54	59.969	3741.285	24.799	23.111
2:38:56	59.969	3741.285	24.799	23.701
2:38:58	59.974	3745.738	20.801	22.686
2:39:00	59.974	3745.738	20.801	22.026
2:39:02	59.981	3741.618	15.201	19.637
2:39:04	59.981	3741.618	15.201	18.085
2:39:06	59.981	3738.484	15.201	17.075
2:39:08	59.981	3738.484	15.201	16.419
2:39:10	59.982	3737.404	14.401	15.713
2:39:12	59.982	3737.404	14.401	15.254
2:39:14	59.982	3736.308	14.401	14.955
2:39:16	59.982	3736.308	14.401	14.761
2:39:18	59.979	3735.448	16.800	15.475
2:39:20	59.979	3735.448	16.800	15.939
2:39:22	59.978	3737.541	17.599	16.520
2:39:24	59.978	3737.541	17.599	16.898
2:39:26	59.98	3736.748	16.000	16.584
2:39:28	59.98	3736.748	16.000	16.380
2:39:30	59.98	3736.067	16.000	16.247
2:39:32	59.98	3736.067	16.000	16.161
2:39:34	59.976	3736.575	19.199	17.224
2:39:36	59.976	3736.575	19.199	17.915
2:39:38	59.971	3738.875	23.199	19.765
2:39:40	59.971	3738.875	23.199	20.967
2:39:42	59.974	3738.647	20.801	20.909
2:39:44	59.974	3738.647	20.801	20.871
2:39:46	59.976	3737.382	19.199	20.286
2:39:48	59.976	3737.382	19.199	19.905
2:39:50	59.969	3740.017	24.799	21.618
2:39:52	59.969	3740.017	24.799	22.731
2:39:54	59.974	3742.053	20.801	22.055
2:39:56	59.974	3742.053	20.801	21.616
2:39:58	59.972	3742.524	22.400	21.891
2:40:00	59.972	3742.524	22.400	22.069
2:40:02	59.977	3741.723	18.399	20.784

$\begin{array}{lllllll}0.000 & 3809.513 & 3772.640 & 3785.939 & 3780.849 & 3753.367\end{array}$ $\begin{array}{llllll}0.000 & 3809.513 & 3772.640 & 3785.939 & 3780.849 & 3753.367 \\ 0.000 & 3808.738 & 3772.584 & 3786.006 & 3780.849 & 3753.449\end{array}$ $\begin{array}{lllllll}0.000 & 3808.738 & 3772.584 & 3786.006 & 3780.849 & 3753.449 \\ 0.000 & 3808.234 & 3772.527 & 3786.072 & 3780.849 & 3753.531\end{array}$ $\begin{array}{lllllll}0.000 & 3808.234 & 3772.527 & 3786.072 & 3780.849 & 3753.531 \\ 0.000 & 3806.506 & 3772.470 & 3786.133 & 3780.849 & 3753.612\end{array}$ $\begin{array}{lllllll}0.000 & 3806.506 & 3772.470 & 3786.133 & 3780.849 & 3753.612 \\ 0.000 & 3805.383 & 3772.413 & 3786.190 & 3780.849 & 3753.693\end{array}$ $\begin{array}{lllllll}0.000 & 3805.383 & 3772.413 & 3786.190 & 3780.849 & 3753.693 \\ 0.000 & 3806.892 & 3772.357 & 3786.251 & 3780.849 & 3753.773\end{array}$ $\begin{array}{lllllll}0.000 & 3807.874 & 3772.301 & 3786.314 & 3780.849 & 3753.852\end{array}$ $\begin{array}{lllllll}0.000 & 3807.952 & 3772.242 & 3786.377 & 3780.849 & 3753.931\end{array}$ $\begin{array}{lllllll}0.000 & 3808.003 & 3772.184 & 3786.440 & 3780.849 & 3754.010\end{array}$ $\begin{array}{lllllll}0.000 & 3805.515 & 3772.113 & 3786.496 & 3780.849 & 3754.088\end{array}$ $\begin{array}{lllllll}0.000 & 3803.898 & 3772.041 & 3786.546 & 3780.849 & 3754.166\end{array}$ $\begin{array}{lllllll}0.000 & 3804.807 & 3771.952 & 3786.599 & 3780.849 & 3754.244\end{array}$ $\begin{array}{llllll}0.000 & 3804.807 & 3771.952 & 3786.599 & 3780.849 & 3754.244 \\ 0.000 & 3805.398 & 3771.864 & 3786.653 & 3780.849 & 3754.320\end{array}$ $\begin{array}{lllllll}0.000 & 3805.398 & 3771.864 & 3786.653 & 3780.849 & 3754.320 \\ 0.000 & 3804.383 & 3771.789 & 3786.704 & 3780.849 & 3754.397\end{array}$ $\begin{array}{lllllll}0.000 & 3804.383 & 3771.789 & 3786.704 & 3780.849 & 3754.397 \\ 0.000 & 3803.723 & 3771.714 & 3786.753 & 3780.849 & 3754.473\end{array}$ $\begin{array}{llllll}0.000 & 3803.723 & 3771.714 & 3786.753 & 3780.849 & 3754.473 \\ 0.000 & 3801.334 & 3771.628 & 378.794 & 3780.84 & 3754.548\end{array}$ $\begin{array}{llllll}0.000 & 3801.334 & 3771.628 & 3786.794 & 3780.849 & 3754.548 \\ 0.000 & 3799.781 & 3771.543 & 3786.831 & 3780.849 & 3754.624\end{array}$ $\begin{array}{lllllll}0.000 & 3799.781 & 3771.543 & 3786.831 & 3780.849 & 3754.624\end{array}$ $\begin{array}{lllllll}0.000 & 3798.772 & 3771.449 & 3786.865 & 3780.849 & 3754.698\end{array}$ $\begin{array}{lllllll}0.000 & 3798.116 & 3771.355 & 3786.897 & 3780.849 & 3754.773\end{array}$ $\begin{array}{llllllll}0.000 & 3797.409 & 3771.259 & 3786.927 & 3780.849 & 3754.846\end{array}$ $\begin{array}{lllllll}0.000 & 3796.950 & 3771.164 & 3786.955 & 3780.849 & 3754.920\end{array}$ $\begin{array}{lllllll}0.000 & 3796.652 & 3771.066 & 3786.982 & 3780.849 & 3754.993\end{array}$ $\begin{array}{lllllll}0.000 & 3796.458 & 3770.969 & 3787.009 & 3780.849 & 3755.066\end{array}$ $\begin{array}{lllllll}0.000 & 3797.171 & 3770.870 & 3787.037 & 3780.849 & 3755.138\end{array}$ $\begin{array}{lllllll}0.000 & 3797.635 & 3770.771 & 3787.067 & 3780.849 & 3755.210\end{array}$ $\begin{array}{lllllll}0.000 & 3798.216 & 3770.679 & 3787.098 & 3780.849 & 3755.281\end{array}$ $\begin{array}{llllllll}0.000 & 3798.594 & 3770.587 & 3787.130 & 3780.849 & 3755.352\end{array}$ $\begin{array}{lllllll}0.000 & 3798.280 & 3770.493 & 3787.160 & 3780.849 & 3755.423\end{array}$ $\begin{array}{llllll}0.000 & 3798.280 & 3770.493 & 3787.160 & 3780.849 & 3755.423 \\ 078750 & 3798.076 & 3770.400 & 3787.191 & 3780.849 & 3755.493\end{array}$ $\begin{array}{llllll}0.000 & 3798.076 & 3770.400 & 3787.191 & 3780.849 & 3755.493\end{array}$ 078755.563 $\begin{array}{llllll}0.000 & 3797.857 & 3770.212 & 3787.249 & 3780.849 & 3755.632 \\ 0 & 000 & 3798.920 & 3770.120 & 3787.281 & 3780.849\end{array} 3755.701$ | 0.000 | 3798.520 | 370.120 | 3787.281 | 3780.849 | 3755.701 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | .000 | 3799.611 | 3770.029 | 3787.315 | 3780.849 | 3755.770 |
| :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll}0.000 & 3801.461 & 3769.944 & 3787.353 & 3780.849 & 3755.838\end{array}$ $\begin{array}{lllllll}0.000 & 3802.663 & 3769.860 & 3787.395 & 3780.849 & 3755.906\end{array}$ $\begin{array}{lllllll}0.000 & 3802.605 & 3769.776 & 3787.436 & 3780.849 & 3755.974\end{array}$ $\begin{array}{lllllll}0.000 & 3802.567 & 3769.692 & 3787.477 & 3780.849 & 3756.041\end{array}$ $\begin{array}{lllllll}0.000 & 3801.982 & 3769.605 & 3787.516 & 3780.849 & 3756.108\end{array}$ $\begin{array}{lllllll}0.000 & 3801.602 & 3769.519 & 3787.553 & 3780.849 & 3756.175\end{array}$ $\begin{array}{lllllll}0.000 & 3803.314 & 3769.440 & 3787.595 & 3780.849 & 3756.241\end{array}$ $\begin{array}{lllllll}0.000 & 3804.427 & 3769.361 & 3787.640 & 3780.849 & 3756.307\end{array}$ $\begin{array}{lllllll}0.000 & 3803.752 & 3769.289 & 3787.683 & 3780.849 & 3756.372\end{array}$ $\begin{array}{lllllll}0.000 & 3803.313 & 3769.216 & 3787.725 & 3780.849 & 3756.437\end{array}$ $\begin{array}{lllllll}0.000 & 3803.587 & 3769.146 & 3787.767 & 3780.849 & 3756.502\end{array}$ $\begin{array}{lllllll}0.000 & 3803.765 & 3769.076 & 3787.809 & 3780.849 & 3756.566\end{array}$ $\begin{array}{lllllll}0.000 & 3802.481 & 3769.004 & 3787.847 & 3780.849 & 3756.630\end{array}$

2:40:04	59.977	3741.723	18.399	19.950
2:40:06	59.978	3740.629	17.599	19.127
2:40:08	59.978	3740.629	17.599	18.592
2:40:10	59.973	3740.775	21.600	19.645
2:40:12	59.973	3740.775	21.600	20.329
2:40:14	59.977	3741.268	18.399	19.654
2:40:16	59.977	3741.268	18.399	19.215
2:40:18	59.978	3738.966	17.599	18.649
2:40:20	59.978	3738.966	17.599	18.282
2:40:22	59.981	3738.879	15.201	17.204
2:40:24	59.981	3738.879	15.201	16.503
2:40:26	59.974	3738.102	20.801	18.007
2:40:28	59.974	3738.102	20.801	18.985
2:40:30	59.971	3743.507	23.199	20.460
2:40:32	59.971	3743.507	23.199	21.419
2:40:34	59.972	3745.251	22.400	21.762
2:40:36	59.972	3745.251	22.400	21.985
2:40:38	59.966	3747.340	27.200	23.811
2:40:40	59.966	3747.340	27.200	24.997
2:40:42	59.971	3749.750	23.199	24.368
2:40:44	59.971	3749.750	23.199	23.959
2:40:46	59.972	3744.683	22.400	23.413
2:40:48	59.972	3744.683	22.400	23.059
2:40:50	59.972	3743.149	22.400	22.828
2:40:52	59.972	3743.149	22.400	22.678
2:40:54	59.973	3739.453	21.600	22.301
2:40:56	59.973	3739.453	21.600	22.056
2:40:58	59.971	3731.830	23.199	22.456
2:41:00	59.971	3731.830	23.199	22.716
2:41:02	59.982	3736.229	14.401	19.806
2:41:04	59.982	3736.229	14.401	17.914
2:41:06	59.985	3733.434	12.000	15.844
2:41:08	59.985	3733.434	12.000	14.499
2:41:10	59.987	3730.510	10.400	13.064
2:41:12	59.987	3730.510	10.400	12.132
2:41:14	59.989	3725.459	8.801	10.966
2:41:16	59.989	3725.459	8.801	10.208
2:41:18	59.987	3720.108	10.400	10.276
2:41:20	59.987	3720.108	10.400	10.319
2:41:22	59.994	3725.661	4.800	8.388
2:41:24	59.994	3725.661	4.800	7.132
2:41:26	60.001	3727.754	-0.800	4.356
2:41:28	60.001	3727.754	-0.800	2.552
2:41:30	60.004	3727.683	-3.201	0.538
2:41:32	60.004	3727.683	-3.201	-0.771
2:41:34	60.012	3725.012	-9.601	-3.861

$\begin{array}{lllllll}0.000 & 3801.646 & 3768.932 & 3787.884 & 3780.849 & 3756.694\end{array}$ $\begin{array}{llllll}0.000 & 3801.646 & 3768.932 & 3787.884 & 3780.849 & 3756.694 \\ 0.000 & 3800.823 & 3768.858 & 3787.918 & 3780.849 & 3756.757\end{array}$ $\begin{array}{lllllll}0.000 & 3800.823 & 3768.858 & 3787.918 & 3780.849 & 3756.757 \\ 0.000 & 3800.289 & 3768.784 & 3787.950 & 3780.849 & 3756.821\end{array}$ $\begin{array}{lllllll}0.000 & 3800.289 & 3768.784 & 3787.950 & 3780.849 & 3756.821 \\ 0.000 & 3801.342 & 3768.711 & 3787.985 & 3780.849 & 3756.883\end{array}$ $\begin{array}{lllllll}0.000 & 3801.342 & 3768.711 & 3787.985 & 3780.849 & 3756.883 \\ 0.000 & 3802.026 & 3768.639 & 3788.021 & 3780.849 & 3756.946\end{array}$ $\begin{array}{llllll}0.000 & 3802.026 & 3768.639 & 3788.021 & 3780.849 & 3756.946 \\ 0.000 & 3801.350 & 3768.568 & 3788.056 & 3780.849 & 3757.008\end{array}$ $\begin{array}{lllllll}0.000 & 3800.911 & 3768.497 & 3788.089 & 3780.849 & 3757.070\end{array}$ $\begin{array}{lllllll}0.000 & 3800.346 & 3768.421 & 3788.121 & 3780.849 & 3757.131\end{array}$ $\begin{array}{lllllll}0.000 & 3799.978 & 3768.345 & 3788.151 & 3780.849 & 3757.192\end{array}$ $\begin{array}{lllllll}0.000 & 3798.900 & 3768.270 & 3788.179 & 3780.849 & 3757.253\end{array}$ $\begin{array}{lllllll}0.000 & 3798.199 & 3768.195 & 3788.204 & 3780.849 & 3757.313\end{array}$ $\begin{array}{lllllll}0.000 & 3799.703 & 3768.118 & 3788.234 & 3780.849 & 3757.374\end{array}$ $\begin{array}{lllllll}0.000 & 3799.703 & 3768.118 & 3788.234 & 3780.849 & 3757.374 \\ 0.000 & 3800.681 & 3768.041 & 3788.265 & 3780.849 & 3757.434\end{array}$ $\begin{array}{lllllll}0.000 & 3800.681 & 3768.041 & 3788.265 & 3780.849 & 3757.434 \\ 000 & 3802.156 & 3767.979 & 3788.300 & 3780.849 & 3757.493\end{array}$ $\begin{array}{lllllll}07 & 000 & 3802.156 & 3767.979 & 3788.300 & 3780.849 & 3757.493\end{array}$ $\begin{array}{lllllll}0.000 & 3803.115 & 3767.917 & 3788.338 & 3780.849 & 3757.552 \\ 0.000 & 3803.459 & 3767.860 & 3788.376 & 3780.849 & 3757.611\end{array}$ $\begin{array}{lllllll}0.000 & 3803.459 & 3767.860 & 3788.376 & 3780.849 & 3757.611 \\ 0.000 & 3803.682 & 3767.803 & 3788.415 & 3788.84 & 3757.670\end{array}$ $\begin{array}{lllllll}0.000 & 3803.682 & 3767.803 & 3788.415 & 3780.849 & 3757.670\end{array}$ $\begin{array}{lllllll}0.000 & 3805.507 & 3767.752 & 3788.458 & 3780.849 & 3757.728\end{array}$ $\begin{array}{lllllll}0.000 & 3806.693 & 3767.700 & 3788.503 & 3780.849 & 3757.787\end{array}$ $\begin{array}{lllllll}0.000 & 3806.064 & 3767.656 & 3788.547 & 3780.849 & 3757.844\end{array}$ $\begin{array}{lllllll}0.000 & 3805.655 & 3767.611 & 3788.590 & 3780.849 & 3757.902\end{array}$ $\begin{array}{lllllll}0.000 & 3805.110 & 3767.554 & 3788.631 & 3780.849 & 3757.959\end{array}$ $\begin{array}{lllllll}0.000 & 3804.755 & 3767.497 & 3788.671 & 3780.849 & 3758.016\end{array}$ $\begin{array}{lllllll}0.000 & 3804.524 & 3767.437 & 3788.710 & 3780.849 & 3758.073\end{array}$ $\begin{array}{lllllll}0.000 & 3804.375 & 3767.377 & 3788.749 & 3780.849 & 3758.129\end{array}$ $\begin{array}{lllllll}0.000 & 3803.997 & 3767.308 & 3788.786 & 3780.849 & 3758.185\end{array}$ $\begin{array}{lllllll}0.000 & 3803.752 & 3767.240 & 3788.823 & 3780.849 & 3758.241\end{array}$ $\begin{array}{lllllll}0.000 & 3804.152 & 3767.153 & 3788.861 & 3780.849 & 3758.297\end{array}$ $\begin{array}{lllllll}0.000 & 3804.152 & 3767.153 & 3788.861 & 3780.849 & 3758.297 \\ 0 & 3804.413 & 3767.067 & 3788.899 & 3780.849 & 3758.352\end{array}$ $\begin{array}{lllllll}0.000 & 3804.413 & 3767.067 & 3788.899 & 3780.849 & 3758.352 \\ 000 & 3801.502 & 3766.991 & 3788.930 & 3780.849 & 3758.407\end{array}$ $\begin{array}{lllllll}0.000 & 3801.502 & 3766.991 & 3788.930 & 3780.849 & 3758.407\end{array}$ $\begin{array}{lllllll}0.000 & 3799.611 & 3766.916 & 3788.956 & 3780.849 & 3758.462 \\ 0.000 & 3797.541 & 3766.835 & 3788.976 & 3780.849 & 3758.516\end{array}$ | 0.000 | 3797.541 | 3766.835 | 3788.976 | 3780.849 | 3758.516 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll}0.000 & 3796.195 & 3766.754 & 3788.994 & 3780.849 & 3758.570\end{array}$ $\begin{array}{lllllll}0.000 & 3794.761 & 3766.667 & 3789.008 & 3780.849 & 3758.624\end{array}$ $\begin{array}{lllllll}0.000 & 3793.828 & 3766.580 & 3789.019 & 3780.849 & 3758.678\end{array}$ $\begin{array}{lllllll}0.000 & 3792.663 & 3766.481 & 3789.028 & 3780.849 & 3758.731\end{array}$ $\begin{array}{lllllll}0.000 & 3791.905 & 3766.382 & 3789.035 & 3780.849 & 3758.784\end{array}$ $\begin{array}{lllllll}0.000 & 3791.972 & 3766.272 & 3789.042 & 3780.849 & 3758.837\end{array}$ $\begin{array}{lllllll}0.000 & 3792.016 & 3766.162 & 3789.049 & 3780.849 & 3758.890\end{array}$ $\begin{array}{lllllll}0.000 & 3790.084 & 3766.065 & 3789.052 & 3780.849 & 3758.942\end{array}$ $\begin{array}{lllllll}0.000 & 3788.829 & 3765.969 & 3789.051 & 3780.849 & 3758.995\end{array}$ $\begin{array}{lllllll}0.000 & 3786.052 & 3765.879 & 3789.044 & 3780.849 & 3759.046\end{array}$ $\begin{array}{lllllll}0.000 & 3784.248 & 3765.788 & 3789.033 & 3780.849 & 3759.098\end{array}$ $\begin{array}{lllllll}0.000 & 3782.234 & 3765.699 & 3789.017 & 3780.849 & 3759.150\end{array}$ $\begin{array}{lllllll}0.000 & 3780.926 & 3765.609 & 3788.998 & 3780.849 & 3759.201\end{array}$ $\begin{array}{llllllll}0.000 & 3777.835 & 3765.514 & 3788.971 & 3780.849 & 3759.252\end{array}$

| $2: 41: 36$ | 60.012 | 3725.012 | -9.601 | -5.870 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $2: 41: 38$ | 60.019 | 3726.016 | -15.201 | -9.136 |
| $2: 41: 40$ | 60.019 | 3726.016 | -15.201 | -11.259 |
| $2: 41: 42$ | 60.025 | 3716.375 | -20.001 | -14.319 |
| $2: 41: 44$ | 60.025 | 3716.375 | -20.001 | -16.307 |
| $2: 41: 46$ | 60.027 | 3717.560 | -21.600 | -18.160 |
| $2: 41: 48$ | 60.027 | 3717.560 | -21.600 | -19.364 |
| $2: 41: 50$ | 60.029 | 3715.166 | -23.199 | -20.706 |
| $2: 41: 52$ | 60.029 | 3715.166 | -23.199 | -21.579 |
| $2: 41: 54$ | 60.036 | 3710.283 | -28.799 | -24.106 |
| $2: 41: 56$ | 60.036 | 3710.283 | -28.799 | -25.749 |
| $2: 41: 58$ | 60.037 | 3699.356 | -29.599 | -27.096 |
| $2: 42: 00$ | 60.037 | 3699.356 | -29.599 | -27.972 |
| $2: 42: 02$ | 60.041 | 3704.591 | -32.800 | -29.662 |
| $2: 42: 04$ | 60.041 | 3704.591 | -32.800 | -30.760 |
| $2: 42: 06$ | 60.044 | 3702.482 | -35.199 | -32.314 |
| $2: 42: 08$ | 60.044 | 3702.482 | -35.199 | -33.324 |
| $2: 42: 10$ | 60.046 | 3700.826 | -36.801 | -34.541 |
| $2: 42: 12$ | 60.046 | 3700.826 | -36.801 | -35.332 |
| $2: 42: 14$ | 60.046 | 3699.726 | -36.801 | -35.846 |
| $2: 42: 16$ | 60.046 | 3699.726 | -36.801 | -36.180 |
| $2: 42: 18$ | 60.043 | 3690.477 | -34.399 | -35.557 |
| $2: 42: 20$ | 60.043 | 3690.477 | -34.399 | -35.152 |
| $2: 42: 22$ | 60.044 | 3696.877 | -35.199 | -35.168 |
| $2: 42: 24$ | 60.044 | 3696.877 | -35.199 | -35.179 |

$\begin{array}{llllll}0.000 & 3775.826 & 3765.419 & 3788.941 & 3780.849 & 3759.302\end{array}$ $\begin{array}{llllll}0.000 & 3775.826 & 3765.419 & 3788.941 & 3780.849 & 3759.302 \\ 0.000 & 3772.561 & 3765.327 & 3788.902 & 3780.849 & 3759.353\end{array}$ $\begin{array}{llllll}0.000 & 3772.561 & 3765.327 & 3788.902 & 3780.849 & 3759.353 \\ 0.000 & 3770.438 & 3765.235 & 3788.859 & 3780.849 & 3759.403\end{array}$ $\begin{array}{llllll}0.000 & 3770.438 & 3765.235 & 3788.859 & 3780.849 & 3759.403 \\ 0.000 & 3767.378 & 3765.122 & 3788.809 & 3780.849 & 3759.453\end{array}$ $\begin{array}{llllll}0.000 & 3767.378 & 3765.122 & 3788.809 & 3780.849 & 3759.453 \\ 0.000 & 3765.389 & 3765.009 & 3788.755 & 3780.849 & 3759.503\end{array}$ $\begin{array}{lllllll}0788.828 & 3765.389 & 3765.009 & 3788.755 & 3780.849 & 3759.503 \\ 0.000 & 3763.536 & 3764.899 & 3788.697 & 3780.849 & 3759.552\end{array}$ $\begin{array}{llllllll}0.000 & 3762.332 & 3764.789 & 3788.636 & 3780.849 & 3759.602\end{array}$ $\begin{array}{lllllll}0.000 & 3760.990 & 3764.675 & 3788.572 & 3780.849 & 3759.651\end{array}$ $\begin{array}{llllllll}0.000 & 3760.117 & 3764.561 & 3788.507 & 3780.849 & 3759.700\end{array}$ $\begin{array}{lllllll}0.000 & 3757.590 & 3764.437 & 3788.436 & 3780.849 & 3759.748\end{array}$ $\begin{array}{lllllll}0.000 & 3755.948 & 3764.313 & 3788.361 & 3780.849 & 3759.797\end{array}$ $\begin{array}{llllllll}0.000 & 3754.600 & 3764.165 & 3788.284 & 3780.849 & 3759.845\end{array}$ $\begin{array}{llllll}0.000 & 3754.600 & 3764.165 & 3788.284 & 3780.849 & 3759.845 \\ 0.000 & 3753.724 & 3764.017 & 3788.206 & 3780.849 & 3759.893\end{array}$ $\begin{array}{llllllll}0.000 & 3753.724 & 3764.017 & 3788.206 & 3780.849 & 3759.893\end{array}$ $\begin{array}{lllllll}0.000 & 3752.034 & 3763.882 & 3788.123 & 3780.849 & 3759.940 \\ 0.000 & 3750.936 & 3763.747 & 3788.039 & 3788.849 & 3759.988\end{array}$ $\begin{array}{lllllll}0.000 & 3750.936 & 3763.747 & 3788.039 & 3780.849 & 3759.988\end{array}$ $\begin{array}{lllllll}0.000 & 3749.382 & 3763.609 & 3787.952 & 3780.849 & 3760.035\end{array}$ $\begin{array}{lllllll}0.000 & 3748.373 & 3763.471 & 3787.862 & 3780.849 & 3760.082\end{array}$ $\begin{array}{llllll}0.000 & 3747.156 & 3763.330 & 3787.771 & 3780.849 & 3760.129\end{array}$ $\begin{array}{llllll}0.000 & 3746.364 & 3763.189 & 3787.678 & 3780.849 & 3760.176\end{array}$ $\begin{array}{lllllll}0.000 & 3745.850 & 3763.047 & 3787.584 & 3780.849 & 3760.222\end{array}$ $\begin{array}{lllllll}0.000 & 3745.516 & 3762.905 & 3787.490 & 3780.849 & 3760.269\end{array}$ $\begin{array}{lllllll}0.000 & 3746.139 & 3762.744 & 3787.397 & 3780.849 & 3760.315\end{array}$ $\begin{array}{llllll}0.000 & 3746.544 & 3762.583 & 3787.306 & 3780.849 & 3760.361\end{array}$ $\begin{array}{lllllll}0.000 & 3746.528 & 3762.437 & 3787.216 & 3780.849 & 3760.406\end{array}$ $\begin{array}{lllllll}0.000 & 3746.517 & 3762.291 & 3787.125 & 3780.849 & 3760.452\end{array}$

riod (indicates ramp direction during recovery period)

Frequency and Interconnection Frequency Response @ different Average periods of B

0	633	-403.181	-413.5197194	T+26 sec		59.8831	-398.895	59.8888	-412.288	59.8880	-411.604	59.8888
0	633	-403.181	-413.5197194	T+28 sec		59.8831	-398.895	59.8888	-412.288	59.8880	-411.604	59.8888
0	633	-411.041	-413.5197194	T+30 sec		59.8831	-398.895	59.8888	-412.288	59.8880	-411.604	59.8888
0	633	-411.041	-413.5197194	T+32 sec				59.8888	-412.288	59.8880	-411.604	59.8888
0	633	-430.614	-413.5197194	T+34 sec				59.8888	-412.288	59.8880	-411.604	59.8888
0	633	-430.614	-413.5197194	T+36 sec				59.8888	-412.288	59.8880	-411.604	59.8888
0	633	-424.837	-413.5197194	T+38 sec				59.8888	-412.288	59.8880	-411.604	59.8888
0	633	-424.837	-413.5197194	$\mathrm{T}+40 \mathrm{sec}$				59.8888	-412.288	59.8880	-411.604	59.8888
0	633	-427.706	-413.5197194	T+42 sec						59.8880	-411.604	59.8888
0	633	-427.706	-413.5197194	T+44 sec						59.8880	-411.604	59.8888
0	633	-416.446	-413.5197194	T+46 sec						59.8880	-411.604	59.8888
0	633	-416.446	-413.5197194	T+48 sec						59.8880	-411.604	59.8888
0	633	-403.181	-413.5197194	T+50 sec						59.8880	-411.604	59.8888
0	633	-403.181	-413.5197194	T+52 sec						59.8880	-411.604	59.8888
0	633	-408.39		T+54 sec								
0	633	-408.39		T+56 sec								
0	633	-411.041		T+58 sec								
0	633	-411.041		T+60 sec								
0	633	-413.726		T+62 sec								
0	633	-413.726		T+64 sec								
0	633	-374.559		T+66 sec								
0	633	-374.559		T+68 sec								
0	633	-327.978		T+70 sec								
0	633	-327.978		T+72 sec								
0	633	-344.025		T+74 sec								
0	633	-344.025		T+76 sec								
0	633	-359.662		T+78 sec								
0	633	-359.662		T+80 sec								
0	633	-361.716										
0	633	-361.716										
0	633	-370.172										
0	633	-370.172										
0	633	-388.348										
0	633	-388.348										
0	633	-398.112										
0	633	-398.112										
0	633	-416.446										
0	633	-416.446										
0	633	-413.726										
0	633	-413.726										
0	633	-442.653										
0	633	-442.653										
0	633	-452.145										
0	633	-452.145										
0	633	-458.694										

633	-458.694
633	-483.204
633	-483.204
633	-502.383
633	-502.383
633	-510.482
633	-510.482
633	-523.147
633	-523.147
633	-506.4
633	-506.4
633	-523.147
633	-523.147
633	-545.684
633	-545.684
633	-555.271
633	-555.271
633	-575.451
633	-575.451
633	-555.271
633	-555.271
633	-560.182
633	-560.182
633	-580.728
633	-580.728
633	-602.86
633	-602.86
633	-680.656
633	-680.656
633	-633.01
633	-633.01
633	-633.01
633	-633.01
633	-673.419
633	-673.419
633	-680.656
633	-680.656
633	-703.332
633	-703.332
633	-695.607
633	-695.607
633	-703.332
633	-703.332
633	-727.603
633	-727.603
633	-719.308

633	-719.308
633	-711.23
633	-711.23
633	-703.332
633	-703.332
633	-719.308
633	-719.308
633	-744.714
633	-744.714
633	-719.308
633	-719.308
633	-727.603
633	-727.603
633	-781.469
633	-781.469
633	-791.27
633	-791.27
633	-832.892
633	-832.892
633	-855.39
633	-855.39
633	-930.871
633	-930.871
633	-867.146
633	-867.146
633	-879.184
633	-879.184
633	-917.388
633	-917.388
633	-959.119
633	-959.119
633	-989.075
633	-989.075
633	-989.075
633	-989.075
633	-989.075
633	-989.075
633	-1020.96
633	-1020.96
633	-1037.69
633	-1037.69
633	-1004.77
633	-1004.77
633	-1004.77
633	-1004.77
633	-1072.92

633	-1072.92
633	-1172.2
633	-1172.2
633	-1150.9
633	-1150.9
633	-1241.21
633	-1241.21
633	-1266.02
633	-1266.02
633	-1194.31
633	-1194.31
633	-1072.92
633	-1072.92
633	-1172.2
633	-1172.2
633	-1376.04
633	-1376.04
633	-1472.12
633	-1472.12
633	-1472.12
633	-1472.12
633	-1472.12
633	-1472.12
633	-1710.87
633	-1710.87
633	-1861.74
633	-1861.74
633	-2260.72
633	-2260.72
633	-2752.32
633	-2752.32
633	-2531.85
633	-2531.85
633	-2752.32
633	-2752.32
633	-3516.36
633	-3516.36
633	-3014.3
633	-3014.3
633	-3516.36
633	-3516.36
633	-3014.3
633	-3014.3
633	-3723.9
633	-3723.9
633	-2877.36

633	-2877.36
633	-3164.93
633	-3164.93
633	-3164.93
633	-3164.93
633	-3014.3
633	-3014.3
633	-3331.4
633	-3331.4
633	-2752.32
633	-2752.32
633	-2637.69
633	-2637.69
633	-2637.69
633	-2637.69
633	-2752.32
633	-2752.32
633	-2344.41
633	-2344.41
633	-2260.72
633	-2260.72
633	-2110.09
633	-2110.09
633	-1978.03
633	-1978.03
633	-1808.58
633	-1808.58
633	-1918.13
633	-1918.13
633	-1623.02
633	-1623.02
633	-1346.78
633	-1346.78
633	-1241.21
633	-1241.21
633	-1266.02
633	-1266.02
633	-1130.36
633	-1130.36
633	-1091.4
633	-1091.4
633	-1091.4
633	-1091.4
633	-1037.69
633	-1037.69
633	-1004.77

633	-1004.77
633	-959.119
633	-959.119
633	-1004.77
633	-1004.77
633	-989.075
633	-989.075
633	-930.871
633	-930.871
633	-973.867
633	-973.867
633	-944.757
633	-944.757
633	-867.146
633	-867.146
633	-891.56
633	-891.56
633	-989.075
633	-989.075
633	-989.075
633	-989.075
633	-904.29
633	-904.29
633	-944.757
633	-944.757
633	-867.146
633	-867.146
633	-822.082
633	-822.082
633	-867.146
633	-867.146
633	-855.39
633	-859.39
633	-811.548
633	-811.548
633	-904.29
633	-904.29
633	-843.991
633	-843.991
633	-855.39
633	-855.39
633	-843.991
633	-843.991
633	-832.892
633	-832.892
633	-891.56

633	-891.56
633	-822.082
633	-822.082
633	-811.548
633	-811.548
633	-843.991
633	-843.991
633	-855.39
633	-855.39
633	-822.082
633	-822.082
633	-917.388
633	-917.388
633	-822.082
633	-822.082
633	-867.146
633	-867.146
633	-811.548
633	-811.548
633	-1004.77
633	-1004.77
633	-1072.92
633	-1072.92
633	-843.991
633	-843.991
633	-791.27
633	-791.27
633	-781.469
633	-781.469
633	-771.944
633	-771.944
633	-762.649
633	-762.649
633	-695.607
633	-695.607
633	-719.308
633	-719.308
633	-736.059
633	-736.059
633	-801.28
633	-801.28
633	-762.649
633	-762.649
633	-801.28
633	-801.28
633	-855.39

633	-855.39
633	-855.39
633	-855.39
633	-917.388
633	-917.388
633	-822.082
633	-822.082
633	-843.991
633	-843.991
633	-959.119
633	-959.119
633	-867.146
633	-867.146
633	-930.871
633	-930.871
633	-1037.69
633	-1037.69
633	-1037.69
633	-1037.69
633	-1054.98
633	-1054.98
633	-1054.98
633	-1054.98
633	-1004.77
633	-1004.77
633	-989.075
633	-989.075
633	-1020.96
633	-1020.96
633	-1020.96
633	-1020.96
633	-959.119
633	-959.119
633	-891.56
633	-891.56
633	-930.871
633	-930.871
633	-959.119
633	-959.119
633	-867.146
633	-867.146
633	-930.871
633	-930.871
633	-904.29
633	-9004.29
633	-973.867

|

$$
\begin{array}{rr}
633 & -2110.09 \\
633 & -2752.32 \\
633 & -2752.32 \\
633 & -3723.9 \\
633 & -3723.9 \\
633 & -4220.17 \\
633 & -4220.17 \\
633 & -4869.05 \\
633 & -4869.05 \\
633 & -10549.1 \\
633 & -10549.1 \\
633 & -12657.3 \\
633 & -12657.3 \\
633 & -63334.8 \\
633 & -63334.8 \\
633 & 31667.4 \\
633 & 31667.4 \\
633 & 15818.6 \\
633 & 15818.6 \\
633 & 15818.6 \\
633 & 15818.6 \\
633 & 63334.79 \\
633 & 63334.79 \\
633 & 31667.4 \\
633 & 31667.4
\end{array}
$$

	T-66 sec	2:26:18	60.0260	3664.50	350.00	-257.42	0.00	107.00	10.00	15.00	-103.00	7570.62	-20.801	T-66 sec	2:26:18	
	T-64 sec	2:26:20	60.0190	3666.82	350.00	-257.42	0.00	107.50	10.00	15.00	-103.00	7570.95	-15.201	T-64 sec	2:26:20	
	T-62 sec	2:26:22	60.0190	3666.82	350.00	-257.42	0.00	107.50	10.00	15.00	-103.00	7570.95	-15.201	T-62 sec	2:26:22	
	T-60 sec	2:26:24	60.0190	3670.45	350.00	-257.42	0.00	108.00	10.00	15.00	-103.00	7571.28	-15.201	T-60 sec	2:26:24	
	T-58 sec	2:26:26	60.0190	3670.45	350.00	-257.42	0.00	108.00	10.00	15.00	-103.00	7571.28	-15.201	T-58 sec	2:26:26	
	T-56 sec	2:26:28	60.0190	3671.67	350.00	-257.42	0.00	108.50	10.00	15.00	-103.00	7571.61	-15.201	T-56 sec	2:26:28	
	T-54 sec	2:26:30	60.0190	3671.67	350.00	-257.42	0.00	108.50	10.00	15.00	-103.00	7571.61	-15.201	T-54 sec	2:26:30	
	T-52 sec	2:26:32	60.0210	3672.69	350.00	-261.74	0.00	109.00	10.00	15.00	-103.00	7571.94	-16.800	T-52 sec	2:26:32	
	T-50 sec	2:26:34	60.0210	3672.69	350.00	-261.74	0.00	109.00	10.00	15.00	-103.00	7571.94	-16.800	T-50 sec	2:26:34	
	T-48 sec	2:26:36	60.0190	3672.16	350.00	-261.74	0.00	109.50	10.00	15.00	-103.00	7572.27	-15.201	T-48 sec	2:26:36	
	T-46 sec	2:26:38	60.0190	3672.16	350.00	-261.74	0.00	109.50	10.00	15.00	-103.00	7572.27	-15.201	T-46 sec	2:26:38	
	T-44 sec	2:26:40	60.0220	3669.98	350.00	-165.10	0.00	110.00	10.00	15.00	-103.00	7572.60	-17.599	T-44 sec	2:26:40	
	T-42 sec	2:26:42	60.0220	3669.98	350.00	-165.10	0.00	110.00	10.00	15.00	-103.00	7572.60	-17.599	T-42 sec	2:26:42	
	T-40 sec	2:26:44	60.0370	3663.76	350.00	-165.48	0.00	110.50	10.00	15.00	-103.00	7572.93	-29.599	T-40 sec	2:26:44	
	T-38 sec	2:26:46	60.0370	3663.76	350.00	-165.48	0.00	110.50	10.00	15.00	-103.00	7572.93	-29.599	T-38 sec	2:26:46	
	T-36 sec	2:26:48	60.0360	3660.67	350.00	-165.48	0.00	111.00	10.00	15.00	-103.00	7573.26	-28.799	T-36 sec	2:26:48	
	T-34 sec	2:26:50	60.0360	3660.67	350.00	-165.48	0.00	111.00	10.00	15.00	-103.00	7573.26	-28.799	T-34 sec	2:26:50	
	T-32 sec	2:26:52	60.0460	3649.19	350.00	-165.48	0.00	111.50	10.00	15.00	-103.00	7573.59	-36.801	T-32 sec	2:26:52	
	T-30 sec	2:26:54	60.0460	3649.19	350.00	-165.48	0.00	111.50	10.00	15.00	-103.00	7573.59	-36.801	T-30 sec	2:26:54	
	T-28 sec	2:26:56	60.0480	3648.25	350.00	-165.48	0.00	112.00	10.00	15.00	-103.00	7573.92	-38.400	T-28 sec	2:26:56	
	T-26 sec	2:26:58	60.0480	3648.25	350.00	-165.48	0.00	112.00	10.00	15.00	-103.00	7573.92	-38.400	T-26 sec	2:26:58	
	T-24 sec	2:27:00	60.0410	3654.29	350.00	-165.10	0.00	112.50	10.00	15.00	-103.00	7574.25	-32.800	T-24 sec	2:27:00	
	T-22 sec	2:27:02	60.0410	3654.29	350.00	-165.10	0.00	112.50	10.00	15.00	-103.00	7574.25	-32.800	T-22 sec	2:27:02	
	T-20 sec	2:27:04	60.0410	3651.87	350.00	-165.48	0.00	113.00	10.00	15.00	-103.00	7574.58	-32.800	T-20 sec	2:27:04	
	T-18 sec	2:27:06	60.0410	3651.87	350.00	-165.48	0.00	113.00	10.00	15.00	-103.00	7574.58	-32.800	T-18 sec	2:27:06	
	T-16 sec	2:27:08	60.0410	3649.19	350.00	-165.48	0.00	113.50	10.00	15.00	-103.00	7574.91	-32.800	T-16 sec	2:27:08	60.042
	T-14 sec	2:27:10	60.0410	3649.19	350.00	-165.48	0.00	113.50	10.00	15.00	-103.00	7574.91	-32.800	T-14 sec	2:27:10	60.042
	T-12 sec	2:27:12	60.0450	3645.39	350.00	-165.48	0.00	114.00	10.00	15.00	-103.00	7575.24	-35.999	T-12 sec	2:27:12	60.042
	T-10 sec	2:27:14	60.0450	3645.39	350.00	-165.48	0.00	114.00	10.00	15.00	-103.00	7575.24	-35.999	T-10 sec	2:27:14	60.042
	T-08 sec	2:27:16	60.0410	3645.45	350.00	-165.48	0.00	114.50	10.00	15.00	-103.00	7575.57	-32.800	T-08 sec	2:27:16	60.042
	T-06 sec	2:27:18	60.0410	3645.45	350.00	-165.48	0.00	114.50	10.00	15.00	-103.00	7575.57	-32.800	T-06 sec	2:27:18	60.042
	T-04 sec	2:27:20	60.0410	3641.19	350.00	-165.48	0.00	115.00	10.00	15.00	-103.00	7575.90	-32.800	T-04 sec	2:27:20	60.042
	T-02 sec	2:27:22	60.0410	3641.19	350.00	-165.48	0.00	115.00	10.00	15.00	-103.00	7575.90	-32.800	T-02 sec	2:27:22	60.042
	T+0 sec	2:27:24	59.9780	3696.36	350.00	-206.46	1.00	115.50	10.00	15.00	-103.00	7576.23	17.599	T+0 sec	2:27:24	
	T+02 sec	2:27:26	59.9780	3696.36	350.00	-206.46	1.00	115.50	10.00	15.00	-103.00	7576.23	17.599	T+02 sec	2:27:26	
	T+04 sec	2:27:28	59.9780	3696.36	350.00	-206.46	1.00	115.50	10.00	15.00	-103.00	7576.23	17.599	T+04 sec	2:27:28	
	T+06 sec	2:27:30	59.8360	3734.67	335.00	-206.46	1.00	116.00	10.00	0.00	-103.00	7576.56	131.201	T+06 sec	2:27:30	
	T+08 sec	2:27:32	59.8360	3734.67	335.00	-206.46	1.00	116.00	10.00	0.00	-103.00	7576.56	131.201	T+08 sec	2:27:32	
	$\mathrm{T}+10 \mathrm{sec}$	2:27:34	59.8920	3761.25	335.00	-206.46	1.00	116.50	10.00	0.00	-103.00	7576.89	86.401	T+10 sec	2:27:34	
	$\mathrm{T}+12 \mathrm{sec}$	2:27:36	59.8920	3761.25	335.00	-206.46	1.00	116.50	10.00	0.00	-103.00	7576.89	86.401	$\mathrm{T}+12 \mathrm{sec}$	2:27:36	59.882
	T+14 sec	2:27:38	59.8800	3766.19	335.00	-206.46	1.00	117.00	10.00	0.00	-103.00	7577.22	95.999	$\mathrm{T}+14 \mathrm{sec}$	2:27:38	59.882
	$\mathrm{T}+16 \mathrm{sec}$	2:27:40	59.8800	3766.19	335.00	-206.46	1.00	117.00	10.00	0.00	-103.00	7577.22	95.999	$\mathrm{T}+16 \mathrm{sec}$	2:27:40	59.882
	T+18 sec	2:27:42	59.8750	3769.93	335.00	-206.46	1.00	117.50	10.00	0.00	-103.00	7577.55	100.000	$\mathrm{T}+18 \mathrm{sec}$	2:27:42	59.882
-413.520	T+20 sec	2:27:44	59.8750	3769.93	335.00	-206.46	1.00	117.50	10.00	0.00	-103.00	7577.55	100.000	$\mathrm{T}+20 \mathrm{sec}$	2:27:44	59.882
-413.520	T+22 sec	2:27:46	59.8870	3781.59	335.00	-211.26	1.00	118.00	10.00	0.00	-103.00	7577.88	90.399	$\mathrm{T}+22 \mathrm{sec}$	2:27:46	59.882
-413.520	T+24 sec	2:27:48	59.8870	3781.59	335.00	-211.26	1.00	118.00	10.00	0.00	-103.00	7577.88	90.399	T+24 sec	2:27:48	59.882

-413.520	T+26 sec	2:27:50	59.8850	3784.96	335.00	-211.26	1.00	118.50	10.00	0.00	-103.00	7578.21	92.001	T+26 sec	2:27:50
-413.520	T+28 sec	2:27:52	59.8850	3784.96	335.00	-211.26	1.00	118.50	10.00	0.00	-103.00	7578.21	92.001	T+28 sec	2:27:52
-413.520	T+30 sec	2:27:54	59.8880	3784.42	335.00	-211.26	2.00	119.00	10.00	0.00	-103.00	7578.54	89.600	T+30 sec	2:27:54
-413.520	T+32 sec	2:27:56	59.8880	3784.42	335.00	-211.26	2.00	119.00	10.00	0.00	-103.00	7578.54	89.600	T+32 sec	2:27:56
-413.520	T+34 sec	2:27:58	59.8950	3788.33	335.00	-211.26	3.00	119.50	10.00	0.00	-103.00	7578.87	84.000	T+34 sec	2:27:58
-413.520	T+36 sec	2:28:00	59.8950	3788.33	335.00	-211.26	3.00	119.50	10.00	0.00	-103.00	7578.87	84.000	T+36 sec	2:28:00
-413.520	T+38 sec	2:28:02	59.8930	3788.47	335.00	-211.26	4.00	120.00	10.00	0.00	-103.00	7579.20	85.599	T+38 sec	2:28:02
-413.520	T+40 sec	2:28:04	59.8930	3788.47	335.00	-211.26	4.00	120.00	10.00	0.00	-103.00	7579.20	85.599	$\mathrm{T}+40 \mathrm{sec}$	2:28:04
-413.520	T+42 sec	2:28:06	59.8940	3793.07	335.00	-214.35	5.00	120.50	10.00	0.00	-103.00	7579.53	84.799	T+42 sec	2:28:06
-413.520	T+44 sec	2:28:08	59.8940	3793.07	335.00	-214.35	5.00	120.50	10.00	0.00	-103.00	7579.53	84.799	T+44 sec	2:28:08
-413.520	T+46 sec	2:28:10	59.8900	3799.43	335.00	-214.35	6.00	121.00	10.00	0.00	-103.00	7579.86	88.000	T+46 sec	2:28:10
-413.520	T+48 sec	2:28:12	59.8900	3799.43	335.00	-214.35	6.00	121.00	10.00	0.00	-103.00	7579.86	88.000	$\mathrm{T}+48 \mathrm{sec}$	2:28:12
-413.520	T+50 sec	2:28:14	59.8850	3799.96	335.00	-214.35	7.00	121.50	10.00	0.00	-103.00	7580.19	92.001	T+50 sec	2:28:14
-413.520	T+52 sec	2:28:16	59.8850	3799.96	335.00	-214.35	7.00	121.50	10.00	0.00	-103.00	7580.19	92.001	T+52 sec	2:28:16
	T+54 sec	2:28:18	59.8870	3802.93	335.00	-214.35	8.00	122.00	10.00	0.00	-103.00	7580.52	90.399	T+54 sec	2:28:18
	T+56 sec	2:28:20	59.8870	3802.93	335.00	-214.35	8.00	122.00	10.00	0.00	-103.00	7580.52	90.399	T+56 sec	2:28:20
	T+58 sec	2:28:22	59.8880	3804.39	335.00	-214.35	9.00	122.50	10.00	0.00	-103.00	7580.85	89.600	T+58 sec	2:28:22
	T+60 sec	2:28:24	59.8880	3804.39	335.00	-214.35	9.00	122.50	10.00	0.00	-103.00	7580.85	89.600	T+60 sec	2:28:24
	T+62 sec	2:28:26	59.8890	3805.62	335.00	-212.17	10.00	123.00	10.00	0.00	-103.00	7581.18	88.800	T+62 sec	2:28:26
	T+64 sec	2:28:28	59.8890	3805.62	335.00	-212.17	10.00	123.00	10.00	0.00	-103.00	7581.18	88.800	T+64 sec	2:28:28
	T+66 sec	2:28:30	59.8730	3811.50	335.00	-212.17	11.00	123.50	10.00	0.00	-103.00	7581.51	101.599	T+66 sec	2:28:30
	T+68 sec	2:28:32	59.8730	3811.50	335.00	-212.17	11.00	123.50	10.00	0.00	-103.00	7581.51	101.599	T+68 sec	2:28:32
	T+70 sec	2:28:34	59.8490	3815.89	335.00	-212.17	12.00	124.00	10.00	0.00	-103.00	7581.84	120.801	T+70 sec	2:28:34
	T+72 sec	2:28:36	59.8490	3815.89	335.00	-212.17	12.00	124.00	10.00	0.00	-103.00	7581.84	120.801	T+72 sec	2:28:36
	T+74 sec	2:28:38	59.8580	3826.05	335.00	-212.17	13.00	124.50	10.00	0.00	-103.00	7582.17	113.599	T+74 sec	2:28:38
	T+76 sec	2:28:40	59.8580	3826.05	335.00	-212.17	13.00	124.50	10.00	0.00	-103.00	7582.17	113.599	T+76 sec	2:28:40
	T+78 sec	2:28:42	59.8660	3827.52	335.00	-212.17	14.00	125.00	10.00	0.00	-103.00	7582.50	107.199	T+78 sec	2:28:42
	T+80 sec	2:28:44	59.8660	3827.52	335.00	-212.17	14.00	125.00	10.00	0.00	-103.00	7582.50	107.199	T+80 sec	2:28:44
		2:28:46	59.8670	3826.78	335.00	-215.60	15.00	125.50	10.00	0.00	-103.00	7582.83	106.400		
		2:28:48	59.8670	3826.78	335.00	-215.60	15.00	125.50	10.00	0.00	-103.00	7582.83	106.400		
		2:28:50	59.8710	3825.71	335.00	-215.60	16.00	126.00	10.00	0.00	-103.00	7583.16	103.201		
		2:28:52	59.8710	3825.71	335.00	-215.60	16.00	126.00	10.00	0.00	-103.00	7583.16	103.201		
		2:28:54	59.8790	3822.51	335.00	-215.60	16.00	126.50	10.00	0.00	-103.00	7583.49	96.799		
		2:28:56	59.8790	3822.51	335.00	-215.60	16.00	126.50	10.00	0.00	-103.00	7583.49	96.799		
		2:28:58	59.8830	3818.06	335.00	-215.60	16.00	127.00	10.00	0.00	-103.00	7583.82	93.600		
		2:29:00	59.8830	3818.06	335.00	-215.60	16.00	127.00	10.00	0.00	-103.00	7583.82	93.600		
		2:29:02	59.8900	3815.01	335.00	-215.60	16.00	127.50	10.00	0.00	-103.00	7584.15	88.000		
		2:29:04	59.8900	3815.01	335.00	-215.60	16.00	127.50	10.00	0.00	-103.00	7584.15	88.000		
		2:29:06	59.8890	3811.84	335.00	-218.33	16.00	128.00	10.00	0.00	-103.00	7584.48	88.800		
		2:29:08	59.8890	3811.84	335.00	-218.33	16.00	128.00	10.00	0.00	-103.00	7584.48	88.800		
		2:29:10	59.8990	3806.97	335.00	-218.33	16.00	128.50	10.00	0.00	-103.00	7584.81	80.801		
		2:29:12	59.8990	3806.97	335.00	-218.33	16.00	128.50	10.00	0.00	-103.00	7584.81	80.801		
		2:29:14	59.9020	3804.19	335.00	-218.33	16.00	129.00	10.00	0.00	-103.00	7585.14	78.400		
		2:29:16	59.9020	3804.19	335.00	-218.33	16.00	129.00	10.00	0.00	-103.00	7585.14	78.400		
		2:29:18	59.9040	3793.98	335.00	-218.33	16.00	129.50	10.00	0.00	-103.00	7585.47	76.801		

2:29:20	59.9040	3793.98	335.00	-218.33	16.00	129.50	10.00	0.00	-103.00	7585.47	76.801
2:29:22	59.9110	3791.50	335.00	-218.33	16.00	130.00	10.00	0.00	-103.00	7585.80	71.201
2:29:24	59.9110	3791.50	335.00	-218.33	16.00	130.00	10.00	0.00	-103.00	7585.80	71.201
2:29:26	59.9160	3788.13	335.00	-217.38	16.00	130.50	10.00	0.00	-103.00	7586.13	67.200
2:29:28	59.9160	3788.13	335.00	-217.38	16.00	130.50	10.00	0.00	-103.00	7586.13	67.200
2:29:30	59.9180	3783.03	335.00	-217.38	16.00	131.00	10.00	0.00	-103.00	7586.46	65.601
2:29:32	59.9180	3783.03	335.00	-217.38	16.00	131.00	10.00	0.00	-103.00	7586.46	65.601
2:29:34	59.9210	3776.36	335.00	-217.38	16.00	131.50	10.00	0.00	-103.00	7586.79	63.199
2:29:36	59.9210	3776.36	335.00	-217.38	16.00	131.50	10.00	0.00	-103.00	7586.79	63.199
2:29:38	59.9170	3774.60	335.00	-217.38	16.00	132.00	10.00	0.00	-103.00	7587.12	66.400
2:29:40	59.9170	3774.60	335.00	-217.38	16.00	132.00	10.00	0.00	-103.00	7587.12	66.400
2:29:42	59.9210	3773.96	335.00	-217.38	16.00	132.50	10.00	0.00	-103.00	7587.45	63.199
2:29:44	59.9210	3773.96	335.00	-217.38	16.00	132.50	10.00	0.00	-103.00	7587.45	63.199
2:29:46	59.9260	3771.67	335.00	-214.83	16.00	133.00	10.00	0.00	-103.00	7587.78	59.201
2:29:48	59.9260	3771.67	335.00	-214.83	16.00	133.00	10.00	0.00	-103.00	7587.78	59.201
2:29:50	59.9280	3768.71	335.00	-214.83	16.00	133.50	10.00	0.00	-103.00	7588.11	57.599
2:29:52	59.9280	3768.71	335.00	-214.83	16.00	133.50	10.00	0.00	-103.00	7588.11	57.599
2:29:54	59.9320	3767.02	335.00	-214.83	16.00	134.00	10.00	0.00	-103.00	7588.44	54.401
2:29:56	59.9320	3767.02	335.00	-214.83	16.00	134.00	10.00	0.00	-103.00	7588.44	54.401
2:29:58	59.9280	3766.79	335.00	-214.83	16.00	134.50	10.00	0.00	-103.00	7588.77	57.599
2:30:00	59.9280	3766.79	335.00	-214.83	16.00	134.50	10.00	0.00	-103.00	7588.77	57.599
2:30:02	59.9290	3765.67	335.00	-214.83	16.00	135.00	10.00	0.00	-103.00	7589.10	56.799
2:30:04	59.9290	3765.67	335.00	-214.83	16.00	135.00	10.00	0.00	-103.00	7589.10	56.799
2:30:06	59.9330	3764.24	335.00	-227.66	16.00	135.50	10.00	0.00	-103.00	7589.43	53.601
2:30:08	59.9330	3764.24	335.00	-227.66	16.00	135.50	10.00	0.00	-103.00	7589.43	53.601
2:30:10	59.9370	3762.94	335.00	-227.66	16.00	136.00	10.00	0.00	-103.00	7589.76	50.400
2:30:12	59.9370	3762.94	335.00	-227.66	16.00	136.00	10.00	0.00	-103.00	7589.76	50.400
2:30:14	59.9490	3753.92	335.00	-227.66	0.00	136.50	10.00	0.00	-103.00	7590.09	40.799
2:30:16	59.9490	3753.92	335.00	-227.66	0.00	136.50	10.00	0.00	-103.00	7590.09	40.799
2:30:18	59.9420	3746.89	335.00	-227.66	0.00	137.00	10.00	0.00	-103.00	7590.42	46.399
2:30:20	59.9420	3746.89	335.00	-227.66	0.00	137.00	10.00	0.00	-103.00	7590.42	46.399
2:30:22	59.9420	3749.59	335.00	-227.66	0.00	137.50	10.00	0.00	-103.00	7590.75	46.399
2:30:24	59.9420	3749.59	335.00	-227.66	0.00	137.50	10.00	0.00	-103.00	7590.75	46.399
2:30:26	59.9480	3746.71	335.00	-225.02	0.00	138.00	10.00	0.00	-103.00	7591.08	41.599
2:30:28	59.9480	3746.71	335.00	-225.02	0.00	138.00	10.00	0.00	-103.00	7591.08	41.599
2:30:30	59.9490	3742.74	335.00	-225.02	0.00	138.50	10.00	0.00	-103.00	7591.41	40.799
2:30:32	59.9490	3742.74	335.00	-225.02	0.00	138.50	10.00	0.00	-103.00	7591.41	40.799
2:30:34	59.9520	3736.14	335.00	-225.02	0.00	139.00	10.00	0.00	-103.00	7591.74	38.400
2:30:36	59.9520	3736.14	335.00	-225.02	0.00	139.00	10.00	0.00	-103.00	7591.74	38.400
2:30:38	59.9510	3727.84	335.00	-225.02	0.00	139.50	10.00	0.00	-103.00	7592.07	39.200
2:30:40	59.9510	3727.84	335.00	-225.02	0.00	139.50	10.00	0.00	-103.00	7592.07	39.200
2:30:42	59.9520	3722.65	335.00	-225.02	0.00	140.00	10.00	0.00	-103.00	7592.40	38.400
2:30:44	59.9520	3722.65	335.00	-225.02	0.00	140.00	10.00	0.00	-103.00	7592.40	38.400
2:30:46	59.9550	3718.00	335.00	-228.37	0.00	140.50	10.00	0.00	-103.00	7592.73	35.999
2:30:48	59.9550	3718.00	335.00	-228.37	0.00	140.50	10.00	0.00	-103.00	7592.73	35.999
2:30:50	59.9540	3715.75	335.00	-228.37	0.00	141.00	10.00	0.00	-103.00	7593.06	36.801

2:30:52	59.9540	3715.75	335.00	-228.37	0.00	141.00	10.00	0.00	-103.00	7593.06	36.801
2:30:54	59.9530	3713.48	335.00	-228.37	0.00	141.50	10.00	0.00	-103.00	7593.39	37.601
2:30:56	59.9530	3713.48	335.00	-228.37	0.00	141.50	10.00	0.00	-103.00	7593.39	37.601
2:30:58	59.9520	3710.81	335.00	-228.37	0.00	142.00	10.00	0.00	-103.00	7593.72	38.400
2:31:00	59.9520	3710.81	335.00	-228.37	0.00	142.00	10.00	0.00	-103.00	7593.72	38.400
2:31:02	59.9540	3714.62	335.00	-228.37	0.00	142.50	10.00	0.00	-103.00	7594.05	36.801
2:31:04	59.9540	3714.62	335.00	-228.37	0.00	142.50	10.00	0.00	-103.00	7594.05	36.801
2:31:06	59.9570	3716.17	335.00	-234.08	0.00	143.00	10.00	0.00	-103.00	7594.38	34.399
2:31:08	59.9570	3716.17	335.00	-234.08	0.00	143.00	10.00	0.00	-103.00	7594.38	34.399
2:31:10	59.9540	3716.98	335.00	-234.08	0.00	143.50	10.00	0.00	-103.00	7594.71	36.801
2:31:12	59.9540	3716.98	335.00	-234.08	0.00	143.50	10.00	0.00	-103.00	7594.71	36.801
2:31:14	59.9550	3722.36	335.00	-234.08	0.00	144.00	10.00	0.00	-103.00	7595.04	35.999
2:31:16	59.9550	3722.36	335.00	-234.08	0.00	144.00	10.00	0.00	-103.00	7595.04	35.999
2:31:18	59.9610	3722.66	335.00	-234.08	0.00	144.50	10.00	0.00	-103.00	7595.37	31.201
2:31:20	59.9610	3722.66	335.00	-234.08	0.00	144.50	10.00	0.00	-103.00	7595.37	31.201
2:31:22	59.9620	3722.28	335.00	-234.08	0.00	145.00	10.00	0.00	-103.00	7595.70	30.399
2:31:24	59.9620	3722.28	335.00	-234.08	0.00	145.00	10.00	0.00	-103.00	7595.70	30.399
2:31:26	59.9660	3723.09	335.00	-228.80	0.00	145.50	10.00	0.00	-103.00	7596.03	27.200
2:31:28	59.9660	3723.09	335.00	-228.80	0.00	145.50	10.00	0.00	-103.00	7596.03	27.200
2:31:30	59.9680	3723.43	335.00	-228.80	0.00	146.00	10.00	0.00	-103.00	7596.36	25.601
2:31:32	59.9680	3723.43	335.00	-228.80	0.00	146.00	10.00	0.00	-103.00	7596.36	25.601
2:31:34	59.9740	3725.40	335.00	-228.80	0.00	146.50	10.00	0.00	-103.00	7596.69	20.801
2:31:36	59.9740	3725.40	335.00	-228.80	0.00	146.50	10.00	0.00	-103.00	7596.69	20.801
2:31:38	59.9690	3728.05	335.00	-228.80	0.00	147.00	10.00	0.00	-103.00	7597.02	24.799
2:31:40	59.9690	3728.05	335.00	-228.80	0.00	147.00	10.00	0.00	-103.00	7597.02	24.799
2:31:42	59.9700	3732.53	335.00	-228.80	0.00	147.50	10.00	0.00	-103.00	7597.35	23.999
2:31:44	59.9700	3732.53	335.00	-228.80	0.00	147.50	10.00	0.00	-103.00	7597.35	23.999
2:31:46	59.9730	3736.54	335.00	-229.47	0.00	148.00	10.00	0.00	-103.00	7597.68	21.600
2:31:48	59.9730	3736.54	335.00	-229.47	0.00	148.00	10.00	0.00	-103.00	7597.68	21.600
2:31:50	59.9760	3736.82	335.00	-229.47	0.00	148.50	10.00	0.00	-103.00	7598.01	19.199
2:31:52	59.9760	3736.82	335.00	-229.47	0.00	148.50	10.00	0.00	-103.00	7598.01	19.199
2:31:54	59.9780	3739.94	335.00	-229.47	0.00	149.00	10.00	0.00	-103.00	7598.34	17.599
2:31:56	59.9780	3739.94	335.00	-229.47	0.00	149.00	10.00	0.00	-103.00	7598.34	17.599
2:31:58	59.9780	3741.79	335.00	-229.47	0.00	149.50	10.00	0.00	-103.00	7598.67	17.599
2:32:00	59.9780	3741.79	335.00	-229.47	0.00	149.50	10.00	0.00	-103.00	7598.67	17.599
2:32:02	59.9780	3746.61	335.00	-229.47	0.00	150.00	10.00	0.00	-103.00	7599.00	17.599
2:32:04	59.9780	3746.61	335.00	-229.47	0.00	150.00	10.00	0.00	-103.00	7599.00	17.599
2:32:06	59.9800	3750.72	335.00	-228.98	0.00	150.50	10.00	0.00	-103.00	7599.33	16.000
2:32:08	59.9800	3750.72	335.00	-228.98	0.00	150.50	10.00	0.00	-103.00	7599.33	16.000
2:32:10	59.9810	3752.75	335.00	-228.98	0.00	151.00	10.00	0.00	-103.00	7599.66	15.201
2:32:12	59.9810	3752.75	335.00	-228.98	0.00	151.00	10.00	0.00	-103.00	7599.66	15.201
2:32:14	59.9790	3756.41	335.00	-228.98	0.00	151.50	10.00	0.00	-103.00	7599.99	16.800
2:32:16	59.9790	3756.41	335.00	-228.98	0.00	151.50	10.00	0.00	-103.00	7599.99	16.800
2:32:18	59.9790	3760.41	335.00	-228.98	0.00	152.00	10.00	0.00	-103.00	7600.32	16.800
2:32:20	59.9790	3760.41	335.00	-228.98	0.00	152.00	10.00	0.00	-103.00	7600.32	16.800
2:32:22	59.9830	3761.41	335.00	-228.98	0.00	152.50	10.00	0.00	-103.00	7600.65	13.599

2:32:24	59.9830	3761.41	335.00	-228.98	0.00	152.50	10.00	0.00	-103.00	7600.65	13.599
2:32:26	59.9880	3763.21	335.00	-219.98	0.00	153.00	10.00	0.00	-103.00	7600.98	9.601
2:32:28	59.9880	3763.21	335.00	-219.98	0.00	153.00	10.00	0.00	-103.00	7600.98	9.601
2:32:30	59.9870	3766.09	335.00	-219.98	0.00	153.50	10.00	0.00	-103.00	7601.31	10.400
2:32:32	59.9870	3766.09	335.00	-219.98	0.00	153.50	10.00	0.00	-103.00	7601.31	10.400
2:32:34	59.9910	3767.25	335.00	-219.98	0.00	154.00	10.00	0.00	-103.00	7601.64	7.199
2:32:36	59.9910	3767.25	335.00	-219.98	0.00	154.00	10.00	0.00	-103.00	7601.64	7.199
2:32:38	59.9920	3768.63	335.00	-219.98	0.00	154.50	10.00	0.00	-103.00	7601.97	6.400
2:32:40	59.9920	3768.63	335.00	-219.98	0.00	154.50	10.00	0.00	-103.00	7601.97	6.400
2:32:42	59.9890	3772.44	335.00	-219.98	0.00	155.00	10.00	0.00	-103.00	7602.30	8.801
2:32:44	59.9890	3772.44	335.00	-219.98	0.00	155.00	10.00	0.00	-103.00	7602.30	8.801
2:32:46	59.9830	3774.67	335.00	-229.09	0.00	155.50	10.00	0.00	-103.00	7602.63	13.599
2:32:48	59.9830	3774.67	335.00	-229.09	0.00	155.50	10.00	0.00	-103.00	7602.63	13.599
2:32:50	59.9880	3775.36	335.00	-229.09	0.00	156.00	10.00	0.00	-103.00	7602.96	9.601
2:32:52	59.9880	3775.36	335.00	-229.09	0.00	156.00	10.00	0.00	-103.00	7602.96	9.601
2:32:54	59.9960	3775.49	335.00	-229.09	0.00	156.50	10.00	0.00	-103.00	7603.29	3.201
2:32:56	59.9960	3775.49	335.00	-229.09	0.00	156.50	10.00	0.00	-103.00	7603.29	3.201
2:32:58	59.9990	3778.55	335.00	-229.09	0.00	157.00	10.00	0.00	-103.00	7603.62	0.800
2:33:00	59.9990	3778.55	335.00	-229.09	0.00	157.00	10.00	0.00	-103.00	7603.62	0.800
2:33:02	59.9990	3781.26	335.00	-229.09	0.00	157.50	10.00	0.00	-103.00	7603.95	0.800
2:33:04	59.9990	3781.26	335.00	-229.09	0.00	157.50	10.00	0.00	-103.00	7603.95	0.800
2:33:06	59.9990	3783.09	335.00	-229.66	0.00	158.00	10.00	0.00	-103.00	7604.28	0.800
2:33:08	59.9990	3783.09	335.00	-229.66	0.00	158.00	10.00	0.00	-103.00	7604.28	0.800
2:33:10	60.0050	3784.42	335.00	-229.66	0.00	158.50	10.00	0.00	-103.00	7604.61	-4.001
2:33:12	60.0050	3784.42	335.00	-229.66	0.00	158.50	10.00	0.00	-103.00	7604.61	-4.001
2:33:14	60.0080	3785.46	335.00	-229.66	0.00	159.00	10.00	0.00	-103.00	7604.94	-6.400
2:33:16	60.0080	3785.46	335.00	-229.66	0.00	159.00	10.00	0.00	-103.00	7604.94	-6.400
2:33:18	60.0140	3786.30	335.00	-229.66	0.00	159.50	10.00	0.00	-103.00	7605.27	-11.200
2:33:20	60.0140	3786.30	335.00	-229.66	0.00	159.50	10.00	0.00	-103.00	7605.27	-11.200
2:33:22	60.0190	3787.52	335.00	-229.66	0.00	160.00	10.00	0.00	-103.00	7605.60	-15.201
2:33:24	60.0190	3787.52	335.00	-229.66	0.00	160.00	10.00	0.00	-103.00	7605.60	-15.201
2:33:26	60.0170	3788.03	335.00	-229.23	0.00	160.50	10.00	0.00	-103.00	7605.93	-13.599
2:33:28	60.0170	3788.03	335.00	-229.23	0.00	160.50	10.00	0.00	-103.00	7605.93	-13.599
2:33:30	60.0190	3789.22	335.00	-229.23	0.00	161.00	10.00	0.00	-103.00	7606.26	-15.201
2:33:32	60.0190	3789.22	335.00	-229.23	0.00	161.00	10.00	0.00	-103.00	7606.26	-15.201
2:33:34	60.0240	3785.84	335.00	-229.23	0.00	161.50	10.00	0.00	-103.00	7606.59	-19.199
2:33:36	60.0240	3785.84	335.00	-229.23	0.00	161.50	10.00	0.00	-103.00	7606.59	-19.199
2:33:38	60.0210	3787.93	335.00	-229.23	0.00	162.00	10.00	0.00	-103.00	7606.92	-16.800
2:33:40	60.0210	3787.93	335.00	-229.23	0.00	162.00	10.00	0.00	-103.00	7606.92	-16.800
2:33:42	60.0240	3786.87	335.00	-262.10	0.00	162.50	10.00	0.00	-103.00	7607.25	-19.199
2:33:44	60.0240	3786.87	335.00	-262.10	0.00	162.50	10.00	0.00	-103.00	7607.25	-19.199
2:33:46	60.0210	3787.36	335.00	-262.10	0.00	163.00	10.00	0.00	-103.00	7607.58	-16.800
2:33:48	60.0210	3787.36	335.00	-262.10	0.00	163.00	10.00	0.00	-103.00	7607.58	-16.800
2:33:50	60.0250	3785.61	335.00	-262.10	0.00	163.50	10.00	0.00	-103.00	7607.91	-20.001
2:33:52	60.0250	3785.61	335.00	-262.10	0.00	163.50	10.00	0.00	-103.00	7607.91	-20.001
2:33:54	60.0200	3785.80	335.00	-262.72	0.00	164.00	10.00	0.00	-103.00	7608.24	-16.000

2:33:56	60.0200	3785.80	335.00	-262.72	0.00	164.00	10.00	0.00	-103.00	7608.24	-16.000
2:33:58	60.0220	3786.88	335.00	-262.72	0.00	164.50	10.00	0.00	-103.00	7608.57	-17.599
2:34:00	60.0220	3786.88	335.00	-262.72	0.00	164.50	10.00	0.00	-103.00	7608.57	-17.599
2:34:02	60.0220	3785.73	335.00	-262.72	0.00	165.00	10.00	0.00	-103.00	7608.90	-17.599
2:34:04	60.0220	3785.73	335.00	-262.72	0.00	165.00	10.00	0.00	-103.00	7608.90	-17.599
2:34:06	60.0210	3785.82	335.00	-262.72	0.00	165.50	10.00	0.00	-103.00	7609.23	-16.800
2:34:08	60.0210	3785.82	335.00	-262.72	0.00	165.50	10.00	0.00	-103.00	7609.23	-16.800
2:34:10	60.0230	3786.28	335.00	-262.72	0.00	166.00	10.00	0.00	-103.00	7609.56	-18.399
2:34:12	60.0230	3786.28	335.00	-262.72	0.00	166.00	10.00	0.00	-103.00	7609.56	-18.399
2:34:14	60.0190	3787.63	335.00	-260.02	0.00	166.50	10.00	0.00	-103.00	7609.89	-15.201
2:34:16	60.0190	3787.63	335.00	-260.02	0.00	166.50	10.00	0.00	-103.00	7609.89	-15.201
2:34:18	60.0180	3789.67	335.00	-260.02	0.00	167.00	10.00	0.00	-103.00	7610.22	-14.401
2:34:20	60.0180	3789.67	335.00	-260.02	0.00	167.00	10.00	0.00	-103.00	7610.22	-14.401
2:34:22	60.0180	3788.48	335.00	-260.02	0.00	167.50	10.00	0.00	-103.00	7610.55	-14.401
2:34:24	60.0180	3788.48	335.00	-260.02	0.00	167.50	10.00	0.00	-103.00	7610.55	-14.401
2:34:26	60.0190	3789.37	335.00	-260.02	0.00	168.00	10.00	0.00	-103.00	7610.88	-15.201
2:34:28	60.0190	3789.37	335.00	-260.02	0.00	168.00	10.00	0.00	-103.00	7610.88	-15.201
2:34:30	60.0150	3788.66	335.00	-260.02	0.00	168.50	10.00	0.00	-103.00	7611.21	-12.000
2:34:32	60.0150	3788.66	335.00	-260.02	0.00	168.50	10.00	0.00	-103.00	7611.21	-12.000
2:34:34	60.0140	3790.67	335.00	-263.87	0.00	169.00	10.00	0.00	-103.00	7611.54	-11.200
2:34:36	60.0140	3790.67	335.00	-263.87	0.00	169.00	10.00	0.00	-103.00	7611.54	-11.200
2:34:38	60.0120	3790.41	335.00	-263.87	0.00	169.50	10.00	0.00	-103.00	7611.87	-9.601
2:34:40	60.0120	3790.41	335.00	-263.87	0.00	169.50	10.00	0.00	-103.00	7611.87	-9.601
2:34:42	60.0100	3791.54	335.00	-263.87	0.00	170.00	10.00	0.00	-103.00	7612.20	-7.999
2:34:44	60.0100	3791.54	335.00	-263.87	0.00	170.00	10.00	0.00	-103.00	7612.20	-7.999
2:34:46	60.0070	3791.03	335.00	-263.87	0.00	170.50	10.00	0.00	-103.00	7612.53	-5.600
2:34:48	60.0070	3791.03	335.00	-263.87	0.00	170.50	10.00	0.00	-103.00	7612.53	-5.600
2:34:50	60.0090	3791.43	335.00	-263.87	0.00	171.00	10.00	0.00	-103.00	7612.86	-7.199
2:34:52	60.0090	3791.43	335.00	-263.87	0.00	171.00	10.00	0.00	-103.00	7612.86	-7.199
2:34:54	60.0030	3790.46	335.00	-264.60	0.00	171.50	10.00	0.00	-103.00	7613.19	-2.399
2:34:56	60.0030	3790.46	335.00	-264.60	0.00	171.50	10.00	0.00	-103.00	7613.19	-2.399
2:34:58	59.9950	3789.58	335.00	-264.60	0.00	172.00	10.00	0.00	-103.00	7613.52	4.001
2:35:00	59.9950	3789.58	335.00	-264.60	0.00	172.00	10.00	0.00	-103.00	7613.52	4.001
2:35:02	59.9910	3788.10	335.00	-264.60	0.00	172.50	10.00	0.00	-103.00	7613.85	7.199
2:35:04	59.9910	3788.10	335.00	-264.60	0.00	172.50	10.00	0.00	-103.00	7613.85	7.199
2:35:06	59.9920	3788.19	335.00	-264.60	0.00	173.00	10.00	0.00	-103.00	7614.18	6.400
2:35:08	59.9920	3788.19	335.00	-264.60	0.00	173.00	10.00	0.00	-103.00	7614.18	6.400
2:35:10	59.9860	3788.54	335.00	-264.60	0.00	173.50	10.00	0.00	-103.00	7614.51	11.200
2:35:12	59.9860	3788.54	335.00	-264.60	0.00	173.50	10.00	0.00	-103.00	7614.51	11.200
2:35:14	59.9840	3788.10	335.00	-262.42	0.00	174.00	10.00	0.00	-103.00	7614.84	12.799
2:35:16	59.9840	3788.10	335.00	-262.42	0.00	174.00	10.00	0.00	-103.00	7614.84	12.799
2:35:18	59.9840	3786.45	335.00	-262.42	0.00	174.50	10.00	0.00	-103.00	7615.17	12.799
2:35:20	59.9840	3786.45	335.00	-262.42	0.00	174.50	10.00	0.00	-103.00	7615.17	12.799
2:35:22	59.9810	3788.81	335.00	-262.42	0.00	175.00	10.00	0.00	-103.00	7615.50	15.201
2:35:24	59.9810	3788.81	335.00	-262.42	0.00	175.00	10.00	0.00	-103.00	7615.50	15.201
2:35:26	59.9790	3788.26	335.00	-262.42	0.00	175.50	10.00	0.00	-103.00	7615.83	16.800

2:35:28	59.9790	3788.26	335.00	-262.42	0.00	175.50	10.00	0.00	-103.00	7615.83	16.800
2:35:30	59.9760	3790.47	335.00	-262.42	0.00	176.00	10.00	0.00	-103.00	7616.16	19.199
2:35:32	59.9760	3790.47	335.00	-262.42	0.00	176.00	10.00	0.00	-103.00	7616.16	19.199
2:35:34	59.9790	3790.42	335.00	-259.69	0.00	176.50	10.00	0.00	-103.00	7616.49	16.800
2:35:36	59.9790	3790.42	335.00	-259.69	0.00	176.50	10.00	0.00	-103.00	7616.49	16.800
2:35:38	59.9780	3789.27	335.00	-259.69	0.00	177.00	10.00	0.00	-103.00	7616.82	17.599
2:35:40	59.9780	3789.27	335.00	-259.69	0.00	177.00	10.00	0.00	-103.00	7616.82	17.599
2:35:42	59.9740	3790.43	335.00	-259.69	0.00	177.50	10.00	0.00	-103.00	7617.15	20.801
2:35:44	59.9740	3790.43	335.00	-259.69	0.00	177.50	10.00	0.00	-103.00	7617.15	20.801
2:35:46	59.9770	3786.24	335.00	-259.69	0.00	178.00	10.00	0.00	-103.00	7617.48	18.399
2:35:48	59.9770	3786.24	335.00	-259.69	0.00	178.00	10.00	0.00	-103.00	7617.48	18.399
2:35:50	59.9750	3788.96	335.00	-259.69	0.00	178.50	10.00	0.00	-103.00	7617.81	20.001
2:35:52	59.9750	3788.96	335.00	-259.69	0.00	178.50	10.00	0.00	-103.00	7617.81	20.001
2:35:54	59.9690	3791.88	335.00	-255.91	0.00	179.00	10.00	0.00	-103.00	7618.14	24.799
2:35:56	59.9690	3791.88	335.00	-255.91	0.00	179.00	10.00	0.00	-103.00	7618.14	24.799
2:35:58	59.9710	3792.31	335.00	-255.91	0.00	179.50	10.00	0.00	-103.00	7618.47	23.199
2:36:00	59.9710	3792.31	335.00	-255.91	0.00	179.50	10.00	0.00	-103.00	7618.47	23.199
2:36:02	59.9780	3788.08	335.00	-255.91	0.00	180.00	10.00	0.00	-103.00	7618.80	17.599
2:36:04	59.9780	3788.08	335.00	-255.91	0.00	180.00	10.00	0.00	-103.00	7618.80	17.599
2:36:06	59.9780	3787.14	335.00	-255.91	0.00	180.50	10.00	0.00	-103.00	7619.13	17.599
2:36:08	59.9780	3787.14	335.00	-255.91	0.00	180.50	10.00	0.00	-103.00	7619.13	17.599
2:36:10	59.9720	3787.00	335.00	-255.91	0.00	181.00	10.00	0.00	-103.00	7619.46	22.400
2:36:12	59.9720	3787.00	335.00	-255.91	0.00	181.00	10.00	0.00	-103.00	7619.46	22.400
2:36:14	59.9750	3786.49	335.00	-258.15	0.00	181.50	10.00	0.00	-103.00	7619.79	20.001
2:36:16	59.9750	3786.49	335.00	-258.15	0.00	181.50	10.00	0.00	-103.00	7619.79	20.001
2:36:18	59.9690	3789.21	335.00	-258.15	0.00	182.00	10.00	0.00	-103.00	7620.12	24.799
2:36:20	59.9690	3789.21	335.00	-258.15	0.00	182.00	10.00	0.00	-103.00	7620.12	24.799
2:36:22	59.9650	3791.22	335.00	-258.15	0.00	182.50	10.00	0.00	-103.00	7620.45	28.000
2:36:24	59.9650	3791.22	335.00	-258.15	0.00	182.50	10.00	0.00	-103.00	7620.45	28.000
2:36:26	59.9690	3790.96	335.00	-258.15	0.00	183.00	10.00	0.00	-103.00	7620.78	24.799
2:36:28	59.9690	3790.96	335.00	-258.15	0.00	183.00	10.00	0.00	-103.00	7620.78	24.799
2:36:30	59.9680	3789.03	335.00	-258.15	0.00	183.50	10.00	0.00	-103.00	7621.11	25.601
2:36:32	59.9680	3789.03	335.00	-258.15	0.00	183.50	10.00	0.00	-103.00	7621.11	25.601
2:36:34	59.9640	3787.39	335.00	-258.87	0.00	184.00	10.00	0.00	-103.00	7621.44	28.799
2:36:36	59.9640	3787.39	335.00	-258.87	0.00	184.00	10.00	0.00	-103.00	7621.44	28.799
2:36:38	59.9720	3784.83	335.00	-258.87	0.00	184.50	10.00	0.00	-103.00	7621.77	22.400
2:36:40	59.9720	3784.83	335.00	-258.87	0.00	184.50	10.00	0.00	-103.00	7621.77	22.400
2:36:42	59.9670	3784.32	335.00	-258.87	0.00	185.00	10.00	0.00	-103.00	7622.10	26.401
2:36:44	59.9670	3784.32	335.00	-258.87	0.00	185.00	10.00	0.00	-103.00	7622.10	26.401
2:36:46	59.9680	3782.11	335.00	-258.87	0.00	185.50	10.00	0.00	-103.00	7622.43	25.601
2:36:48	59.9680	3782.11	335.00	-258.87	0.00	185.50	10.00	0.00	-103.00	7622.43	25.601
2:36:50	59.9670	3779.06	335.00	-258.87	0.00	186.00	10.00	0.00	-103.00	7622.76	26.401
2:36:52	59.9670	3779.06	335.00	-258.87	0.00	186.00	10.00	0.00	-103.00	7622.76	26.401
2:36:54	59.9660	3779.21	335.00	-249.34	0.00	186.50	10.00	0.00	-103.00	7623.09	27.200
2:36:56	59.9660	3779.21	335.00	-249.34	0.00	186.50	10.00	0.00	-103.00	7623.09	27.200
2:36:58	59.9710	3776.43	335.00	-249.34	0.00	187.00	10.00	0.00	-103.00	7623.42	23.199

2:37:00	59.9710	3776.43	335.00	-249.34	0.00	187.00	10.00	0.00	-103.00	7623.42	23.199
2:37:02	59.9650	3776.60	335.00	-249.34	0.00	187.50	10.00	0.00	-103.00	7623.75	28.000
2:37:04	59.9650	3776.60	335.00	-249.34	0.00	187.50	10.00	0.00	-103.00	7623.75	28.000
2:37:06	59.9640	3776.02	335.00	-249.34	0.00	188.00	10.00	0.00	-103.00	7624.08	28.799
2:37:08	59.9640	3776.02	335.00	-249.34	0.00	188.00	10.00	0.00	-103.00	7624.08	28.799
2:37:10	59.9670	3771.73	335.00	-249.34	0.00	188.50	10.00	0.00	-103.00	7624.41	26.401
2:37:12	59.9670	3771.73	335.00	-249.34	0.00	188.50	10.00	0.00	-103.00	7624.41	26.401
2:37:14	59.9680	3768.50	335.00	-258.28	0.00	189.00	10.00	0.00	-103.00	7624.74	25.601
2:37:16	59.9680	3768.50	335.00	-258.28	0.00	189.00	10.00	0.00	-103.00	7624.74	25.601
2:37:18	59.9650	3767.37	335.00	-258.28	0.00	189.50	10.00	0.00	-103.00	7625.07	28.000
2:37:20	59.9650	3767.37	335.00	-258.28	0.00	189.50	10.00	0.00	-103.00	7625.07	28.000
2:37:22	59.9730	3760.30	335.00	-258.28	0.00	190.00	10.00	0.00	-103.00	7625.40	21.600
2:37:24	59.9730	3760.30	335.00	-258.28	0.00	190.00	10.00	0.00	-103.00	7625.40	21.600
2:37:26	59.9650	3761.89	335.00	-258.28	0.00	190.50	10.00	0.00	-103.00	7625.73	28.000
2:37:28	59.9650	3761.89	335.00	-258.28	0.00	190.50	10.00	0.00	-103.00	7625.73	28.000
2:37:30	59.9690	3760.58	335.00	-258.28	0.00	191.00	10.00	0.00	-103.00	7626.06	24.799
2:37:32	59.9690	3760.58	335.00	-258.28	0.00	191.00	10.00	0.00	-103.00	7626.06	24.799
2:37:34	59.9640	3759.78	335.00	-258.41	0.00	191.50	10.00	0.00	-103.00	7626.39	28.799
2:37:36	59.9640	3759.78	335.00	-258.41	0.00	191.50	10.00	0.00	-103.00	7626.39	28.799
2:37:38	59.9790	3757.77	335.00	-258.41	0.00	192.00	10.00	0.00	-103.00	7626.72	16.800
2:37:40	59.9790	3757.77	335.00	-258.41	0.00	192.00	10.00	0.00	-103.00	7626.72	16.800
2:37:42	59.9830	3753.09	335.00	-258.41	0.00	192.50	10.00	0.00	-103.00	7627.05	13.599
2:37:44	59.9830	3753.09	335.00	-258.41	0.00	192.50	10.00	0.00	-103.00	7627.05	13.599
2:37:46	59.9670	3753.75	335.00	-258.41	0.00	193.00	10.00	0.00	-103.00	7627.38	26.401
2:37:48	59.9670	3753.75	335.00	-258.41	0.00	193.00	10.00	0.00	-103.00	7627.38	26.401
2:37:50	59.9620	3759.25	335.00	-258.41	0.00	193.50	10.00	0.00	-103.00	7627.71	30.399
2:37:52	59.9620	3759.25	335.00	-258.41	0.00	193.50	10.00	0.00	-103.00	7627.71	30.399
2:37:54	59.9610	3760.96	335.00	-260.54	0.00	194.00	10.00	0.00	-103.00	7628.04	31.201
2:37:56	59.9610	3760.96	335.00	-260.54	0.00	194.00	10.00	0.00	-103.00	7628.04	31.201
2:37:58	59.9600	3763.82	335.00	-260.54	0.00	194.50	10.00	0.00	-103.00	7628.37	32.001
2:38:00	59.9600	3763.82	335.00	-260.54	0.00	194.50	10.00	0.00	-103.00	7628.37	32.001
2:38:02	59.9590	3763.86	335.00	-260.54	0.00	195.00	10.00	0.00	-103.00	7628.70	32.800
2:38:04	59.9590	3763.86	335.00	-260.54	0.00	195.00	10.00	0.00	-103.00	7628.70	32.800
2:38:06	59.9510	3766.13	335.00	-260.54	0.00	195.50	10.00	0.00	-103.00	7629.03	39.200
2:38:08	59.9510	3766.13	335.00	-260.54	0.00	195.50	10.00	0.00	-103.00	7629.03	39.200
2:38:10	59.9540	3767.97	335.00	-260.54	0.00	196.00	10.00	0.00	-103.00	7629.36	36.801
2:38:12	59.9540	3767.97	335.00	-260.54	0.00	196.00	10.00	0.00	-103.00	7629.36	36.801
2:38:14	59.9560	3765.61	335.00	-257.88	0.00	196.50	10.00	0.00	-103.00	7629.69	35.199
2:38:16	59.9560	3765.61	335.00	-257.88	0.00	196.50	10.00	0.00	-103.00	7629.69	35.199
2:38:18	59.9630	3761.57	335.00	-257.88	0.00	197.00	10.00	0.00	-103.00	7630.02	29.599
2:38:20	59.9630	3761.57	335.00	-257.88	0.00	197.00	10.00	0.00	-103.00	7630.02	29.599
2:38:22	59.9590	3759.63	335.00	-257.88	0.00	197.50	10.00	0.00	-103.00	7630.35	32.800
2:38:24	59.9590	3759.63	335.00	-257.88	0.00	197.50	10.00	0.00	-103.00	7630.35	32.800
2:38:26	59.9630	3752.43	335.00	-257.88	0.00	198.00	10.00	0.00	-103.00	7630.68	29.599
2:38:28	59.9630	3752.43	335.00	-257.88	0.00	198.00	10.00	0.00	-103.00	7630.68	29.599
2:38:30	59.9680	3753.83	335.00	-257.88	0.00	198.50	10.00	0.00	-103.00	7631.01	25.601

2:38:32	59.9680	3753.83	335.00	-257.88	0.00	198.50	10.00	0.00	-103.00	7631.01	25.601
2:38:34	59.9680	3753.52	335.00	-258.59	0.00	199.00	10.00	0.00	-103.00	7631.34	25.601
2:38:36	59.9680	3753.52	335.00	-258.59	0.00	199.00	10.00	0.00	-103.00	7631.34	25.601
2:38:38	59.9730	3753.18	335.00	-258.59	0.00	199.50	10.00	0.00	-103.00	7631.67	21.600
2:38:40	59.9730	3753.18	335.00	-258.59	0.00	199.50	10.00	0.00	-103.00	7631.67	21.600
2:38:42	59.9650	3753.29	335.00	-258.59	0.00	200.00	10.00	0.00	-103.00	7632.00	28.000
2:38:44	59.9650	3753.29	335.00	-258.59	0.00	200.00	10.00	0.00	-103.00	7632.00	28.000
2:38:46	59.9670	3752.36	335.00	-258.59	0.00	200.50	10.00	0.00	-103.00	7632.33	26.401
2:38:48	59.9670	3752.36	335.00	-258.59	0.00	200.50	10.00	0.00	-103.00	7632.33	26.401
2:38:50	59.9760	3747.48	335.00	-258.59	0.00	201.00	10.00	0.00	-103.00	7632.66	19.199
2:38:52	59.9760	3747.48	335.00	-258.59	0.00	201.00	10.00	0.00	-103.00	7632.66	19.199
2:38:54	59.9690	3741.29	335.00	-261.91	0.00	201.50	10.00	0.00	-103.00	7632.99	24.799
2:38:56	59.9690	3741.29	335.00	-261.91	0.00	201.50	10.00	0.00	-103.00	7632.99	24.799
2:38:58	59.9740	3745.74	335.00	-261.91	0.00	202.00	10.00	0.00	-103.00	7633.32	20.801
2:39:00	59.9740	3745.74	335.00	-261.91	0.00	202.00	10.00	0.00	-103.00	7633.32	20.801
2:39:02	59.9810	3741.62	335.00	-261.91	0.00	202.50	10.00	0.00	-103.00	7633.65	15.201
2:39:04	59.9810	3741.62	335.00	-261.91	0.00	202.50	10.00	0.00	-103.00	7633.65	15.201
2:39:06	59.9810	3738.48	335.00	-261.91	0.00	203.00	10.00	0.00	-103.00	7633.98	15.201
2:39:08	59.9810	3738.48	335.00	-261.91	0.00	203.00	10.00	0.00	-103.00	7633.98	15.201
2:39:10	59.9820	3737.40	335.00	-261.91	0.00	203.50	10.00	0.00	-103.00	7634.31	14.401
2:39:12	59.9820	3737.40	335.00	-261.91	0.00	203.50	10.00	0.00	-103.00	7634.31	14.401
2:39:14	59.9820	3736.31	335.00	-256.75	0.00	204.00	10.00	0.00	-103.00	7634.64	14.401
2:39:16	59.9820	3736.31	335.00	-256.75	0.00	204.00	10.00	0.00	-103.00	7634.64	14.401
2:39:18	59.9790	3735.45	335.00	-256.75	0.00	204.50	10.00	0.00	-103.00	7634.97	16.800
2:39:20	59.9790	3735.45	335.00	-256.75	0.00	204.50	10.00	0.00	-103.00	7634.97	16.800
2:39:22	59.9780	3737.54	335.00	-256.75	0.00	205.00	10.00	0.00	-103.00	7635.30	17.599
2:39:24	59.9780	3737.54	335.00	-256.75	0.00	205.00	10.00	0.00	-103.00	7635.30	17.599
2:39:26	59.9800	3736.75	350.00	-256.75	0.00	205.50	10.00	0.00	-103.00	7635.63	16.000
2:39:28	59.9800	3736.75	350.00	-256.75	0.00	205.50	10.00	0.00	-103.00	7635.63	16.000
2:39:30	59.9800	3736.07	350.00	-256.75	0.00	206.00	10.00	0.00	-103.00	7635.96	16.000
2:39:32	59.9800	3736.07	350.00	-256.75	0.00	206.00	10.00	0.00	-103.00	7635.96	16.000
2:39:34	59.9760	3736.57	350.00	-167.43	0.00	206.50	10.00	0.00	-103.00	7636.29	19.199
2:39:36	59.9760	3736.57	350.00	-167.43	0.00	206.50	10.00	0.00	-103.00	7636.29	19.199
2:39:38	59.9710	3738.87	350.00	-167.43	0.00	207.00	10.00	0.00	-103.00	7636.62	23.199
2:39:40	59.9710	3738.87	350.00	-167.43	0.00	207.00	10.00	0.00	-103.00	7636.62	23.199
2:39:42	59.9740	3738.65	350.00	-167.43	0.00	207.50	10.00	0.00	-103.00	7636.95	20.801
2:39:44	59.9740	3738.65	350.00	-167.43	0.00	207.50	10.00	0.00	-103.00	7636.95	20.801
2:39:46	59.9760	3737.38	350.00	-167.43	0.00	208.00	10.00	0.00	-103.00	7637.28	19.199
2:39:48	59.9760	3737.38	350.00	-167.43	0.00	208.00	10.00	0.00	-103.00	7637.28	19.199
2:39:50	59.9690	3740.02	350.00	-167.43	0.00	208.50	10.00	0.00	-103.00	7637.61	24.799
2:39:52	59.9690	3740.02	350.00	-167.43	0.00	208.50	10.00	0.00	-103.00	7637.61	24.799
2:39:54	59.9740	3742.05	350.00	-164.97	0.00	209.00	10.00	0.00	-103.00	7637.94	20.801
2:39:56	59.9740	3742.05	350.00	-164.97	0.00	209.00	10.00	0.00	-103.00	7637.94	20.801
2:39:58	59.9720	3742.52	350.00	-164.97	0.00	209.50	10.00	0.00	-103.00	7638.27	22.400
2:40:00	59.9720	3742.52	350.00	-164.97	0.00	209.50	10.00	0.00	-103.00	7638.27	22.400
2:40:02	59.9770	3741.72	350.00	-164.97	0.00	210.00	10.00	0.00	-103.00	7638.60	18.399

2:40:04	59.9770	3741.72	350.00	-164.97	0.00	210.00	10.00	0.00	-103.00	7638.60	18.399
2:40:06	59.9780	3740.63	350.00	-164.97	0.00	210.50	10.00	0.00	-103.00	7638.93	17.599
2:40:08	59.9780	3740.63	350.00	-164.97	0.00	210.50	10.00	0.00	-103.00	7638.93	17.599
2:40:10	59.9730	3740.78	350.00	-164.97	0.00	211.00	10.00	0.00	-103.00	7639.26	21.600
2:40:12	59.9730	3740.78	350.00	-164.97	0.00	211.00	10.00	0.00	-103.00	7639.26	21.600
2:40:14	59.9770	3741.27	350.00	-157.63	0.00	211.50	10.00	0.00	-103.00	7639.59	18.399
2:40:16	59.9770	3741.27	350.00	-157.63	0.00	211.50	10.00	0.00	-103.00	7639.59	18.399
2:40:18	59.9780	3738.97	350.00	-157.63	0.00	212.00	10.00	0.00	-103.00	7639.92	17.599
2:40:20	59.9780	3738.97	350.00	-157.63	0.00	212.00	10.00	0.00	-103.00	7639.92	17.599
2:40:22	59.9810	3738.88	350.00	-157.63	0.00	212.50	10.00	0.00	-103.00	7640.25	15.201
2:40:24	59.9810	3738.88	350.00	-157.63	0.00	212.50	10.00	0.00	-103.00	7640.25	15.201
2:40:26	59.9740	3738.10	350.00	-157.63	0.00	213.00	10.00	0.00	-103.00	7640.58	20.801
2:40:28	59.9740	3738.10	350.00	-157.63	0.00	213.00	10.00	0.00	-103.00	7640.58	20.801
2:40:30	59.9710	3743.51	350.00	-157.63	0.00	213.50	10.00	0.00	-103.00	7640.91	23.199
2:40:32	59.9710	3743.51	350.00	-157.63	0.00	213.50	10.00	0.00	-103.00	7640.91	23.199
2:40:34	59.9720	3745.25	350.00	-155.53	0.00	214.00	10.00	0.00	-103.00	7641.24	22.400
2:40:36	59.9720	3745.25	350.00	-155.53	0.00	214.00	10.00	0.00	-103.00	7641.24	22.400
2:40:38	59.9660	3747.34	350.00	-155.53	0.00	214.50	10.00	0.00	-103.00	7641.57	27.200
2:40:40	59.9660	3747.34	350.00	-155.53	0.00	214.50	10.00	0.00	-103.00	7641.57	27.200
2:40:42	59.9710	3749.75	350.00	-155.53	0.00	215.00	10.00	0.00	-103.00	7641.90	23.199
2:40:44	59.9710	3749.75	350.00	-155.53	0.00	215.00	10.00	0.00	-103.00	7641.90	23.199
2:40:46	59.9720	3744.68	350.00	-155.53	0.00	215.50	10.00	0.00	-103.00	7642.23	22.400
2:40:48	59.9720	3744.68	350.00	-155.53	0.00	215.50	10.00	0.00	-103.00	7642.23	22.400
2:40:50	59.9720	3743.15	350.00	-155.53	0.00	216.00	10.00	0.00	-103.00	7642.56	22.400
2:40:52	59.9720	3743.15	350.00	-155.53	0.00	216.00	10.00	0.00	-103.00	7642.56	22.400
2:40:54	59.9730	3739.45	350.00	-160.45	0.00	216.50	10.00	0.00	-103.00	7642.89	21.600
2:40:56	59.9730	3739.45	350.00	-160.45	0.00	216.50	10.00	0.00	-103.00	7642.89	21.600
2:40:58	59.9710	3731.83	350.00	-160.45	0.00	217.00	10.00	0.00	-103.00	7643.22	23.199
2:41:00	59.9710	3731.83	350.00	-160.45	0.00	217.00	10.00	0.00	-103.00	7643.22	23.199
2:41:02	59.9820	3736.23	350.00	-160.45	0.00	217.50	10.00	0.00	-103.00	7643.55	14.401
2:41:04	59.9820	3736.23	350.00	-160.45	0.00	217.50	10.00	0.00	-103.00	7643.55	14.401
2:41:06	59.9850	3733.43	350.00	-160.45	0.00	218.00	10.00	0.00	-103.00	7643.88	12.000
2:41:08	59.9850	3733.43	350.00	-160.45	0.00	218.00	10.00	0.00	-103.00	7643.88	12.000
2:41:10	59.9870	3730.51	350.00	-160.45	0.00	218.50	10.00	0.00	-103.00	7644.21	10.400
2:41:12	59.9870	3730.51	350.00	-160.45	0.00	218.50	10.00	0.00	-103.00	7644.21	10.400
2:41:14	59.9890	3725.46	350.00	-163.96	0.00	219.00	10.00	0.00	-103.00	7644.54	8.801
2:41:16	59.9890	3725.46	350.00	-163.96	0.00	219.00	10.00	0.00	-103.00	7644.54	8.801
2:41:18	59.9870	3720.11	350.00	-163.96	0.00	219.50	10.00	0.00	-103.00	7644.87	10.400
2:41:20	59.9870	3720.11	350.00	-163.96	0.00	219.50	10.00	0.00	-103.00	7644.87	10.400
2:41:22	59.9940	3725.66	350.00	-163.96	0.00	220.00	10.00	0.00	-103.00	7645.20	4.800
2:41:24	59.9940	3725.66	350.00	-163.96	0.00	220.00	10.00	0.00	-103.00	7645.20	4.800
2:41:26	60.0010	3727.75	350.00	-163.96	0.00	220.50	10.00	0.00	-103.00	7645.53	-0.800
2:41:28	60.0010	3727.75	350.00	-163.96	0.00	220.50	10.00	0.00	-103.00	7645.53	-0.800
2:41:30	60.0040	3727.68	350.00	-163.96	0.00	221.00	10.00	0.00	-103.00	7645.86	-3.201
2:41:32	60.0040	3727.68	350.00	-163.96	0.00	221.00	10.00	0.00	-103.00	7645.86	-3.201
2:41:34	60.0120	3725.01	350.00	-166.07	0.00	221.50	10.00	0.00	-103.00	7646.19	-9.601

2:41:36	60.0120	3725.01	350.00	-166.07	0.00	221.50	10.00	0.00	-103.00	7646.19	-9.601
2:41:38	60.0190	3726.02	350.00	-166.07	0.00	222.00	10.00	0.00	-103.00	7646.52	-15.201
2:41:40	60.0190	3726.02	350.00	-166.07	0.00	222.00	10.00	0.00	-103.00	7646.52	-15.201
2:41:42	60.0250	3716.37	350.00	-166.07	0.00	222.50	10.00	0.00	-103.00	7646.85	-20.001
2:41:44	60.0250	3716.37	350.00	-166.07	0.00	222.50	10.00	0.00	-103.00	7646.85	-20.001
2:41:46	60.0270	3717.56	350.00	-166.07	0.00	223.00	10.00	0.00	-103.00	7647.18	-21.600
2:41:48	60.0270	3717.56	350.00	-166.07	0.00	223.00	10.00	0.00	-103.00	7647.18	-21.600
2:41:50	60.0290	3715.17	350.00	-166.07	0.00	223.50	10.00	0.00	-103.00	7647.51	-23.199
2:41:52	60.0290	3715.17	350.00	-166.07	0.00	223.50	10.00	0.00	-103.00	7647.51	-23.199
2:41:54	60.0360	3710.28	350.00	-163.77	0.00	224.00	10.00	0.00	-103.00	7647.84	-28.799
2:41:56	60.0360	3710.28	350.00	-163.77	0.00	224.00	10.00	0.00	-103.00	7647.84	-28.799
2:41:58	60.0370	3699.36	350.00	-163.77	0.00	224.50	10.00	0.00	-103.00	7648.17	-29.599
2:42:00	60.0370	3699.36	350.00	-163.77	0.00	224.50	10.00	0.00	-103.00	7648.17	-29.599
2:42:02	60.0410	3704.59	350.00	-163.77	0.00	225.00	10.00	0.00	-103.00	7648.50	-32.800
2:42:04	60.0410	3704.59	350.00	-163.77	0.00	225.00	10.00	0.00	-103.00	7648.50	-32.800
2:42:06	60.0440	3702.48	350.00	-163.77	0.00	225.50	10.00	0.00	-103.00	7648.83	-35.199
2:42:08	60.0440	3702.48	350.00	-163.77	0.00	225.50	10.00	0.00	-103.00	7648.83	-35.199
2:42:10	60.0460	3700.83	350.00	-163.77	0.00	226.00	10.00	0.00	-103.00	7649.16	-36.801
2:42:12	60.0460	3700.83	350.00	-163.77	0.00	226.00	10.00	0.00	-103.00	7649.16	-36.801
2:42:14	60.0460	3699.73	350.00	-165.10	0.00	226.50	10.00	0.00	-103.00	7649.49	-36.801
2:42:16	60.0460	3699.73	350.00	-165.10	0.00	226.50	10.00	0.00	-103.00	7649.49	-36.801
2:42:18	60.0430	3690.48	350.00	-165.10	0.00	227.00	10.00	0.00	-103.00	7649.82	-34.399
2:42:20	60.0430	3690.48	350.00	-165.10	0.00	227.00	10.00	0.00	-103.00	7649.82	-34.399
2:42:22	60.0440	3696.88	350.00	-165.10	0.00	227.50	10.00	0.00	-103.00	7650.15	-35.199
2:42:24	60.0440	3696.88	350.00	-165.10	0.00	227.50	10.00	0.00	-103.00	7650.15	-35.199

											T-66 sec	2:26:18			
											T-64 sec	2:26:20			
											T-62 sec	2:26:22			
											T-60 sec	2:26:24			
											T-58 sec	2:26:26			
											T-56 sec	2:26:28			
											T-54 sec	2:26:30			
											T-52 sec	2:26:32			
											T-50 sec	2:26:34			
											T-48 sec	2:26:36			
											T-46 sec	2:26:38			
											T-44 sec	2:26:40			
											T-42 sec	2:26:42			
											T-40 sec	2:26:44			
											T-38 sec	2:26:46			
											T-36 sec	2:26:48			
											T-34 sec	2:26:50			
											T-32 sec	2:26:52			
											T-30 sec	2:26:54			
											T-28 sec	2:26:56			
											T-26 sec	2:26:58			
											T-24 sec	2:27:00			
											T-22 sec	2:27:02			
											T-20 sec	2:27:04			
											T-18 sec	2:27:06			
3645.303	350.000	-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-16 sec	2:27:08	60.042	3645.303	350.000
3645.303	350.000	-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-14 sec	2:27:10	60.042	3645.303	350.000
3645.303	350.000	-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		$\mathrm{T}-12 \mathrm{sec}$	2:27:12	60.042	3645.303	350.000
3645.303	350.000	-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-10 sec	2:27:14	60.042	3645.303	350.000
3645.303	350.000	-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-08 sec	2:27:16	60.042	3645.303	350.000
3645.303	350.000	-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-06 sec	2:27:18	60.042	3645.303	350.000
3645.303	350.000	-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-04 sec	2:27:20	60.042	3645.303	350.000
3645.303	350.000	-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-02 sec	2:27:22	60.042	3645.303	350.000
											T+0 sec	2:27:24			
											T+02 sec	2:27:26			
											T+04 sec	2:27:28			
											T+06 sec	2:27:30			
											T+08 sec	2:27:32			
											T+10 sec	2:27:34			
3770.953	335.000	-207.830	1.000	117.357	10.000	0.000	-103.000	7577.456	94.171	3720.799	T+12 sec	2:27:36			
3770.953	335.000	-207.830	1.000	117.357	10.000	0.000	-103.000	7577.456	94.171	3720.799	T+14 sec	2:27:38			
3770.953	335.000	-207.830	1.000	117.357	10.000	0.000	-103.000	7577.456	94.171	3720.799	T+16 sec	2:27:40			
3770.953	335.000	-207.830	1.000	117.357	10.000	0.000	-103.000	7577.456	94.171	3720.799	$\mathrm{T}+18 \mathrm{sec}$	2:27:42	59.883	3779.625	335.000
3770.953	335.000	-207.830	1.000	117.357	10.000	0.000	-103.000	7577.456	94.171	3720.799	T+20 sec	2:27:44	59.883	3779.625	335.000
3770.953	335.000	-207.830	1.000	117.357	10.000	0.000	-103.000	7577.456	94.171	3720.799	T+22 sec	2:27:46	59.883	3779.625	335.000
3770.953	335.000	-207.830	1.000	117.357	10.000	0.000	-103.000	7577.456	94.171	3720.799	T+24 sec	2:27:48	59.883	3779.625	335.000

									$\begin{array}{\|l} \mathrm{T}-20 \mathrm{sec} \\ \mathrm{~T}-18 \mathrm{sec} \end{array}$	$\begin{aligned} & \text { 2:27:04 } \\ & \text { 2:27:06 } \end{aligned}$					
-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-16 sec	2:27:08	60.042	3645.303	350.000	-165.476	0.000
-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-14 sec	2:27:10	60.042	3645.303	350.000	-165.476	0.000
-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-12 sec	2:27:12	60.042	3645.303	350.000	-165.476	0.000
-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-10 sec	2:27:14	60.042	3645.303	350.000	-165.476	0.000
-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-08 sec	2:27:16	60.042	3645.303	350.000	-165.476	0.000
-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-06 sec	2:27:18	60.042	3645.303	350.000	-165.476	0.000
-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-04 sec	2:27:20	60.042	3645.303	350.000	-165.476	0.000
-165.476	0.000	114.250	10.000	15.000	-103.000	7575.405	-33.600		T-02 sec	2:27:22	60.042	3645.303	350.000	-165.476	0.000
									T+0 sec	2:27:24					
									T+02 sec	2:27:26					
									T+04 sec	2:27:28					
									T+06 sec	2:27:30					
									T+08 sec	2:27:32					
									T+10 sec	2:27:34					
									T+12 sec	2:27:36					
									T+14 sec	2:27:38					
									T+16 sec	2:27:40					
-209.885	1.143	118.143	10.000	0.000	-103.000	7577.974	93.486	3718.901	T+18 sec	2:27:42					
-209.885	1.143	118.143	10.000	0.000	-103.000	7577.974	93.486	3718.901	$\mathrm{T}+20 \mathrm{sec}$	2:27:44	59.888	3784.134	335.000	-210.820	2.091
-209.885	1.143	118.143	10.000	0.000	-103.000	7577.974	93.486	3718.901	T+22 sec	2:27:46	59.888	3784.134	335.000	-210.820	2.091
-209.885	1.143	118.143	10.000	0.000	-103.000	7577.974	93.486	3718.901	T+24 sec	2:27:48	59.888	3784.134	335.000	-210.820	2.091

-209.885	1.143	118.143	10.000	0.000	-103.000	7577.974	93.486	3718.901	T+26 sec	2:27:50	59.888	3784.134	335.000	-210.820	2.091
-209.885	1.143	118.143	10.000	0.000	-103.000	7577.974	93.486	3718.901	$\mathrm{T}+28 \mathrm{sec}$	2:27:52	59.888	3784.134	335.000	-210.820	2.091
-209.885	1.143	118.143	10.000	0.000	-103.000	7577.974	93.486	3718.901	$\mathrm{T}+30 \mathrm{sec}$	2:27:54	59.888	3784.134	335.000	-210.820	2.091
									$\mathrm{T}+32 \mathrm{sec}$	2:27:56	59.888	3784.134	335.000	-210.820	2.091
									$\mathrm{T}+34 \mathrm{sec}$	2:27:58	59.888	3784.134	335.000	-210.820	2.091
									$\mathrm{T}+36 \mathrm{sec}$	2:28:00	59.888	3784.134	335.000	-210.820	2.091
									$\mathrm{T}+38 \mathrm{sec}$	2:28:02	59.888	3784.134	335.000	-210.820	2.091
									$\mathrm{T}+40 \mathrm{sec}$	2:28:04	59.888	3784.134	335.000	-210.820	2.091
									$\mathrm{T}+42 \mathrm{sec}$	2:28:06					
									T+44 sec	2:28:08					
									$\mathrm{T}+46 \mathrm{sec}$	2:28:10					
									$\mathrm{T}+48 \mathrm{sec}$	2:28:12					
									T+50 sec	2:28:14					
									T+52 sec	2:28:16					
									T+54 sec	2:28:18					
									T+56 sec	2:28:20					
									T+58 sec	2:28:22					
									T+60 sec	2:28:24					
									T+62 sec	2:28:26					
									T+64 sec	2:28:28					
									T+66 sec	2:28:30					
									T+68 sec	2:28:32					
									T+70 sec	2:28:34					
									T+72 sec	2:28:36					
									T+74 sec	2:28:38					
									T+76 sec	2:28:40					
									T+78 sec	2:28:42					
									T+80 sec	2:28:44					

							T-66 sec	2:26:18							
							T-64 sec	2:26:20							
							T-62 sec	2:26:22							
							T-60 sec	2:26:24							
							T-58 sec	2:26:26							
							T-56 sec	2:26:28							
							T-54 sec	2:26:30							
							T-52 sec	2:26:32							
							T-50 sec	2:26:34							
							T-48 sec	2:26:36							
							T-46 sec	2:26:38							
							T-44 sec	2:26:40							
							T-42 sec	2:26:42							
							T-40 sec	2:26:44							
							T-38 sec	2:26:46							
							T-36 sec	2:26:48							
							T-34 sec	2:26:50							
							T-32 sec	2:26:52							
							T-30 sec	2:26:54							
							T-28 sec	2:26:56							
							T-26 sec	2:26:58							
							T-24 sec	2:27:00							
							T-22 sec	2:27:02							
							T-20 sec	2:27:04							
							T-18 sec	2:27:06							
114.250	10.000	15.000	-103.000	7575.405	-33.600		$\mathrm{T}-16 \mathrm{sec}$	2:27:08	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000
114.250	10.000	15.000	-103.000	7575.405	-33.600		T-14 sec	2:27:10	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000
114.250	10.000	15.000	-103.000	7575.405	-33.600		T-12 sec	2:27:12	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000
114.250	10.000	15.000	-103.000	7575.405	-33.600		T-10 sec	2:27:14	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000
114.250	10.000	15.000	-103.000	7575.405	-33.600		T-08 sec	2:27:16	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000
114.250	10.000	15.000	-103.000	7575.405	-33.600		T-06 sec	2:27:18	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000
114.250	10.000	15.000	-103.000	7575.405	-33.600		T-04 sec	2:27:20	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000
114.250	10.000	15.000	-103.000	7575.405	-33.600		T-02 sec	2:27:22	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000
							T+0 sec	2:27:24							
							T+02 sec	2:27:26							
							T+04 sec	2:27:28							
							T+06 sec	2:27:30							
							T+08 sec	2:27:32							
							T+10 sec	2:27:34							
							T+12 sec	2:27:36							
							$\mathrm{T}+14 \mathrm{sec}$	2:27:38							
							T+16 sec	2:27:40							
							T+18 sec	2:27:42	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
118.864	10.000	0.000	-103.000	7578.450	89.382	3715.018	T+20 sec	2:27:44	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
118.864	10.000	0.000	-103.000	7578.450	89.382	3715.018	$\mathrm{T}+22 \mathrm{sec}$	2:27:46	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
118.864	10.000	0.000	-103.000	7578.450	89.382	3715.018	$\mathrm{T}+24 \mathrm{sec}$	2:27:48	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000

118.864	10.000	0.000	-103.000	7578.450	89.382	3715.018	T+26 sec	2:27:50	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
118.864	10.000	0.000	-103.000	7578.450	89.382	3715.018	T+28 sec	2:27:52	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
118.864	10.000	0.000	-103.000	7578.450	89.382	3715.018	T+30 sec	2:27:54	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
118.864	10.000	0.000	-103.000	7578.450	89.382	3715.018	T+32 sec	2:27:56	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
118.864	10.000	0.000	-103.000	7578.450	89.382	3715.018	T+34 sec	2:27:58	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
118.864	10.000	0.000	-103.000	7578.450	89.382	3715.018	T+36 sec	2:28:00	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
118.864	10.000	0.000	-103.000	7578.450	89.382	3715.018	T+38 sec	2:28:02	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
118.864	10.000	0.000	-103.000	7578.450	89.382	3715.018	$\mathrm{T}+40 \mathrm{sec}$	2:28:04	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
							$\mathrm{T}+42 \mathrm{sec}$	2:28:06	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
							T+44 sec	2:28:08	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
							T+46 sec	2:28:10	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
							T+48 sec	2:28:12	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
							T+50 sec	2:28:14	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
							T+52 sec	2:28:16	59.888	3787.795	335.000	-211.753	3.333	119.500	10.000
							T+54 sec	2:28:18							
							T+56 sec	2:28:20							
							T+58 sec	2:28:22							
							T+60 sec	2:28:24							
							T+62 sec	2:28:26							
							T+64 sec	2:28:28							
							T+66 sec	2:28:30							
							T+68 sec	2:28:32							
							T+70 sec	2:28:34							
							T+72 sec	2:28:36							
							T+74 sec	2:28:38							
							T+76 sec	2:28:40							
							T+78 sec	2:28:42							
							T+80 sec	2:28:44							

					T-66 sec	2:26:18								
					T-64 sec	2:26:20								
					T-62 sec	2:26:22								
					T-60 sec	2:26:24								
					T-58 sec	2:26:26								
					T-56 sec	2:26:28								
					T-54 sec	2:26:30								
					T-52 sec	2:26:32								
					T-50 sec	2:26:34								
					T-48 sec	2:26:36								
					T-46 sec	2:26:38								
					T-44 sec	2:26:40								
					T-42 sec	2:26:42								
					T-40 sec	2:26:44								
					T-38 sec	2:26:46								
					T-36 sec	2:26:48								
					T-34 sec	2:26:50								
					T-32 sec	2:26:52								
					T-30 sec	2:26:54								
					T-28 sec	2:26:56								
					T-26 sec	2:26:58								
					T-24 sec	2:27:00								
					T-22 sec	2:27:02								
					T-20 sec	2:27:04								
					T-18 sec	2:27:06								
15.000	-103.000	7575.405	-33.600		T-16 sec	2:27:08	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000	15.000
15.000	-103.000	7575.405	-33.600		T-14 sec	2:27:10	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000	15.000
15.000	-103.000	7575.405	-33.600		T-12 sec	2:27:12	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000	15.000
15.000	-103.000	7575.405	-33.600		T-10 sec	2:27:14	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000	15.000
15.000	-103.000	7575.405	-33.600		T-08 sec	2:27:16	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000	15.000
15.000	-103.000	7575.405	-33.600		T-06 sec	2:27:18	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000	15.000
15.000	-103.000	7575.405	-33.600		T-04 sec	2:27:20	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000	15.000
15.000	-103.000	7575.405	-33.600		T-02 sec	2:27:22	60.042	3645.303	350.000	-165.476	0.000	114.250	10.000	15.000
					T+0 sec	2:27:24								
					T+02 sec	2:27:26								
					T+04 sec	2:27:28								
					T+06 sec	2:27:30								
					T+08 sec	2:27:32								
					T+10 sec	2:27:34								
					T+12 sec	2:27:36								
					$\mathrm{T}+14 \mathrm{sec}$	2:27:38								
					$\mathrm{T}+16 \mathrm{sec}$	2:27:40								
0.000	-103.000	7578.870	89.600	3716.209	$\mathrm{T}+18 \mathrm{sec}$	2:27:42								
0.000	-103.000	7578.870	89.600	3716.209	$\mathrm{T}+20 \mathrm{sec}$	2:27:44	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	T+22 sec	2:27:46	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	T+24 sec	2:27:48	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000

0.000	-103.000	7578.870	89.600	3716.209	T+26 sec	2:27:50	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	$\mathrm{T}+28 \mathrm{sec}$	2:27:52	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	T+30 sec	2:27:54	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	T+32 sec	2:27:56	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	$\mathrm{T}+34 \mathrm{sec}$	2:27:58	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	T+36 sec	2:28:00	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	T+38 sec	2:28:02	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	$\mathrm{T}+40 \mathrm{sec}$	2:28:04	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	$\mathrm{T}+42 \mathrm{sec}$	2:28:06	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	$\mathrm{T}+44 \mathrm{sec}$	2:28:08	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	T+46 sec	2:28:10	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	T+48 sec	2:28:12	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	T+50 sec	2:28:14	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
0.000	-103.000	7578.870	89.600	3716.209	T+52 sec	2:28:16	59.889	3788.847	335.000	-212.065	3.471	119.618	10.000	0.000
					T+54 sec	2:28:18								
					T+56 sec	2:28:20								
					T+58 sec	2:28:22								
					T+60 sec	2:28:24								
					T+62 sec	2:28:26								
					T+64 sec	2:28:28								
					T+66 sec	2:28:30								
					T+68 sec	2:28:32								
					T+70 sec	2:28:34								
					T+72 sec	2:28:36								
					T+74 sec	2:28:38								
					T+76 sec	2:28:40								
					T+78 sec	2:28:42								
					T+80 sec	2:28:44								

$\begin{array}{lll}-103.000 & 7575.405 & -33.600\end{array}$
103.000
103.000
103.000
-103.000
-103.000
-103.000
103.000
-103.000
$\begin{array}{ll}7575.405 & -33.600\end{array}$
$\begin{array}{ll}7575.405 & -33.600 \\ 7575.405 & -33.600\end{array}$
$\begin{array}{ll}7575.405 & -33.600\end{array}$
$\begin{array}{ll}7575.405 & -33.600\end{array}$
7575.405
7575.405 7575.405 7575.405 33.600 3715.464
3715.464

-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464
-103.000	7578.948	88.988	3715.464

Date	A Point Time	FPointA Hz	A Value Hz	$\mathrm{t}(0)$ Time	C Value Hz
Monday, October 12, 2009	$2: 27: 22$	60.0410	60.0420	$2: 27: 24$	59.8360

Value B	FR B								
12 to 24 sec	12 to 24 sec	18 to 30 sec	18 to 30 sec	20 to 40 sec	20 to 40 sec	18 to 52 sec	18 to 52 sec	20 to 52 sec	20 to 52 sec
Average									
Frequency	MW								
59.8822861	-396.90693	59.8831427	-398.8954	59.8887648	-412.28807	59.8880001	-411.60431	59.8887648	-413.51972

Value A	ta	BA Performance									Value B		12 to 24 second Average Period Evaluation				
		JOU	Non-			Transferred	Contingent						JOU	Non-			Transferred
	Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency
	Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response
Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	Rec (-) Del (+)	Load (-) Gen (+)	Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-)$ Del (+)
Hz	MW	MW/0.1 Hz	MW	MW	Hz	MW	MW	MW	MW	MW	MW						
60.042	3645.30	350.00	-165.48	0.00	114.25	-4.20	15.00	-103	7575.405	-43.2598	59.882286	3770.95	335.00	-207.83	1.00	117.36	11.77

Value B															
Contingent									Jou	Non-			Transferred	Contingent	
BA	Initial	Initial	Sustained	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial
Lost Generation	Performance	Performance	Performance	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance
Load (-) Gen (+)	Adjusted	Unadjusted		Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	Rec (-) Del (+)	Load (-) Gen (+)	Adjusted
MW	P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW	Hz	MW	MW	MW	MW	MW	MW/0.1 Hz	MW	P.U.
0.00	1.393	0.983	0.895	-103	7577.456	121.2453	59.883143	3779.63	335.00	-209.89	1.14	118.14	11.69	0.00	1.478

Value B															
							JOU	Non-			Transferred	Contingent			
Initial	Sustained	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained
Performance	Performance	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance
Unadjusted		Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-)$ Del (+)	Load (-) Gen (+)	Adjusted	Unadjusted	
P.U.	P.U.	MW	MW	MW	Hz	MW	MW	MW	MW	MW	MW/0.1 Hz	MW	P.U.	P.U.	P.U.
1.057	0.895	-103	7577.974	120.363	59.888273	3784.13	335.00	-210.82	2.09	118.86	11.17	0.00	1.562	1.129	0.895

Steps To be completed for each event evaluated.

1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Column A: Date and Time in this format, mm/dd/yy HH:MM:SS
Column B: Frequency Hz
Column C: Net Actual Interchange
Column D: Joint Owned Unit dynamic schedule
Column E: Non Conforming Load
Column F: Pumped Hydro
Column G: Ramping units
Column H: Transferred Frequency Response
Column I: Contingent BA Lost load or generatio
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D, E, F, G and H are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign ($+/-$) convention defined in FRS Form 1 .
3 Note: Columns $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are optional data. If you choose not to use these, leave the columns blank. Do not der
4 Data must be at 5 second sample rate for the full 25 minute minimum collection period that starts a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event.
The spreadsheet will work with up to 60 minutes of data. Be sure "Data" worksheet is clear of any old data.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data. The data must be numbers not text.
5 Once data is in place in the "Data" worksheet, determine when the beginning of the event occurred. This is accomplished by knowing the UTC event time from the master event list
Convert the UTC event time to your PI data time and then scroll through the Data worksheet column B data of frequency and observe when frequency moves from the normal, pre-event frequency. This will usually be a single change in frequency of 0.008 to 0.010 Hz more or less. Note the row number in the worksheet that this change occurs. In this sample data spreadsheet this occurs in row 190 of the data.
6 Edit cell "C8" of the "Entry Data" worksheet, change the formula in the cell "C8" to reference the row number identified in step 5 above. In the sample data of this workbook this formula is: "=Data! A190" If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency of the event on the center vertical grid line of the graph (Red Trend).
7 Determine the end of the event to be evaluated. Use the same rules that are used for DCS only look at frequency instead of ACE. Scroll down the frequency data in column B of the "Data" worksheet until frequency reaches 60 Hz or the pre-disturbance value. Note the row number in the worksheet that this occurs. In this sample data spreadsheet this occurs in row 258
8 Edit cell "C11" of the "Entry Data" worksheet, change the formula in the cell "C11" to reference the row number identified in step 7 above. In the sample data of this workbook this formula is: "=Data! A258"
In cell "R41" of the "Evaluation" spreadsheet, enter the MW value of the unit(s) that tripped (from the Master Event List). This is only necessary for the "Interconnection" evaluation if you're interested. It is not necessary to do this for the BA evaluation but it will provide a comparison of the BA frequency response as compared to the Interconnection frequency response.
10 Use the "copy" button provided to copy the evaluation and event specific data for the "FRS Form 1" of this field trial. This data is summarized in the correct order on worksheet "Form 1 Summary Data" of this workbook. Use PasteSpecial/Values when pasting the data into FRS Form 1 on the appropriate event row.

Steps To be completed once at the initial setup of the evaluation spreadsheet for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Entry Data" worksheet. For example: "NYISO".
C Enter your Balancing Authorities Frequency Response Obligation in cell "B2" of the "Entry Data" worksheet. For example: - $80 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (This value could change annually) The time constant is located in cell "L13" of the "Evaluation" spreadsheet and should be edited for the types of generators in your BA. Presently this time constant is set at 0.35
The higher the value of the time constant, the faster the delivery of frequency response is expected. Setting the TC to 1.0 effectively turns off the delay and instantaneous frequency response will be modeled. Do not set higher than 1.0 this time constant is only used in the "Sustained" evaluation and is not used for the Field Trial evaluation of performance to the FRO
A typical setting for this time constant is 0.08 to 0.15 for hydro units, 0.10 to 0.20 for large steam turbines and 0.20 to 0.40 for combustion turbines.
By observing the slope of your "Interchange Actual" on the "Sustained" Graph, adjust the time constant until the initial slope of the "Target" is similar.
When set appropriately, the "Target" trend on the "Sustained" graph will model what Interchange Actual should have done during the event recovery period based on your minimum FRO
Note: For ease of use, only the necessary worksheets are displayed. If you are interested in viewing graphs and other hidden worksheets, select the "tab" at the bottom, right click, select unhide and select the worksheet you wish to unhide.

10/12/09 02:14:25	60.002	3670.513	350	322.826294	0	14.5	10	15	-103	7509.57
10/12/09 02:14:30	59.999	3672.713	350	322.826294	0	15	10	15	-103	7509.9
10/12/09 02:14:35	60.007	3670.826	350	322.826294	0	15.5	10	15	-103	7510.23
10/12/09 02:14:40	60.009	3671.809	350	322.826294	0	16	10	15	-103	7510.56
10/12/09 02:14:45	59.997	3673.255	350	321.544403	0	16.5	10	15	-103	7510.89
10/12/09 02:14:50	59.994	3675.426	350	321.544403	0	17	10	15	-103	7511.22
10/12/09 02:14:55	60.001	3675.311	350	321.544403	0	17.5	10	15	-103	7511.55
10/12/09 02:15:00	59.995	3675.166	350	321.544403	0	18	10	15	-103	7511.88
10/12/09 02:15:05	59.986	3674.906	350	321.544403	0	18.5	10	15	-103	7512.21
10/12/09 02:15:10	59.988	3676.714	350	362.136261	0	19	10	15	-103	7512.54
10/12/09 02:15:15	59.988	3675.543	350	362.136261	0	19.5	10	15	-103	7512.87
10/12/09 02:15:20	59.984	3676.931	350	362.136261	0	20	10	15	-103	7513.2
10/12/09 02:15:25	59.982	3677.361	350	362.136261	0	20.5	10	15	-103	7513.53
10/12/09 02:15:30	59.985	3679.228	350	362.136261	0	21	10	15	-103	7513.86
10/12/09 02:15:35	59.987	3677.627	350	336.311798	0	21.5	10	15	-103	7514.19
10/12/09 02:15:40	59.987	3676.409	350	336.311798	0	22	10	15	-103	7514.52
10/12/09 02:15:45	59.98	3676.915	350	336.311798	0	22.5	10	15	-103	7514.85
10/12/09 02:15:50	59.987	3679.233	350	336.311798	0	23	10	15	-103	7515.18
10/12/09 02:15:55	59.988	3678.344	350	336.311798	0	23.5	10	15	-103	7515.51
10/12/09 02:16:00	59.978	3677.678	350	316.443054	0	24	10	15	-103	7515.84
10/12/09 02:16:05	59.979	3678.729	350	316.443054	0	24.5	10	15	-103	7516.17
10/12/09 02:16:10	59.988	3680.287	350	316.443054	0	25	10	15	-103	7516.5
10/12/09 02:16:15	59.989	3678.489	350	316.443054	0	25.5	10	15	-103	7516.83
10/12/09 02:16:20	59.992	3678.74	350	316.443054	0	26	10	15	-103	7517.16
10/12/09 02:16:25	59.995	3677.063	350	325.464294	0	26.5	10	15	-103	7517.49
10/12/09 02:16:30	59.998	3678.49	350	325.464294	0	27	10	15	-103	7517.82
10/12/09 02:16:35	59.999	3678.951	350	325.464294	0	27.5	10	15	-103	7518.15
10/12/09 02:16:40	59.992	3679.148	350	325.464294	0	28	10	15	-103	7518.48
10/12/09 02:16:45	59.998	3678.997	350	325.464294	0	28.5	10	15	-103	7518.81
10/12/09 02:16:50	60.006	3678.493	350	336.614166	0	29	10	15	-103	7519.14
10/12/09 02:16:55	60.009	3677.899	350	336.614166	0	29.5	10	15	-103	7519.47
10/12/09 02:17:00	60.011	3679.209	350	336.614166	0	30	10	15	-103	7519.8
10/12/09 02:17:05	60.008	3679.057	350	336.614166	0	30.5	10	15	-103	7520.13
10/12/09 02:17:10	60.012	3680.604	350	336.614166	0	31	10	15	-103	7520.46

10/12/09 02:17:15	60.01	3680.263	350	316.726166	0	31.5	10	15	-103	7520.79
10/12/09 02:17:20	60.009	3679.561	350	316.726166	0	32	10	15	-103	7521.12
10/12/09 02:17:25	60.006	3679.912	350	316.726166	0	32.5	10	15	-103	7521.45
10/12/09 02:17:30	60.009	3679.888	350	316.726166	0	33	10	15	-103	7521.78
10/12/09 02:17:35	60.009	3679.261	350	316.726166	0	33.5	10	15	-103	7522.11
10/12/09 02:17:40	60.004	3679.025	350	320.195526	0	34	10	15	-103	7522.44
10/12/09 02:17:45	59.999	3678.295	350	320.195526	0	34.5	10	15	-103	7522.77
10/12/09 02:17:50	59.994	3678.236	350	320.195526	0	35	10	15	-103	7523.1
10/12/09 02:17:55	59.994	3677.772	350	320.195526	0	35.5	10	15	-103	7523.43
10/12/09 02:18:00	59.995	3677.093	350	320.195526	0	36	10	15	-103	7523.76
10/12/09 02:18:05	59.99	3678.516	350	341.86615	0	36.5	10	15	-103	7524.09
10/12/09 02:18:10	59.983	3680.197	350	341.86615	0	37	10	15	-103	7524.42
10/12/09 02:18:15	59.977	3677.921	350	341.86615	0	37.5	10	15	-103	7524.75
10/12/09 02:18:20	59.999	3682.07	350	341.86615	0	38	10	15	-103	7525.08
10/12/09 02:18:25	59.989	3678.077	350	341.86615	0	38.5	10	15	-103	7525.41
10/12/09 02:18:30	59.984	3678.427	350	348.597839	0	39	10	15	-103	7525.74
10/12/09 02:18:35	59.985	3677.822	350	348.597839	0	39.5	10	15	-103	7526.07
10/12/09 02:18:40	59.986	3677.397	350	348.597839	0	40	10	15	-103	7526.4
10/12/09 02:18:45	59.981	3678.617	350	348.597839	0	40.5	10	15	-103	7526.73
10/12/09 02:18:50	59.998	3681.252	350	348.597839	0	41	10	15	-103	7527.06
10/12/09 02:18:55	60.007	3678.161	350	329.085022	0	41.5	10	15	-103	7527.39
10/12/09 02:19:00	59.981	3676.222	350	329.085022	0	42	10	15	-103	7527.72
10/12/09 02:19:05	59.974	3677.49	350	329.085022	0	42.5	10	15	-103	7528.05
10/12/09 02:19:10	59.974	3675.437	350	329.085022	0	43	10	15	-103	7528.38
10/12/09 02:19:15	59.979	3683.829	350	329.085022	0	43.5	10	15	-103	7528.71
10/12/09 02:19:20	59.984	3681.108	350	342.418243	0	44	10	15	-103	7529.04
10/12/09 02:19:25	59.988	3676.752	350	342.418243	0	44.5	10	15	-103	7529.37
10/12/09 02:19:30	59.987	3671.942	350	342.418243	0	45	10	15	-103	7529.7
10/12/09 02:19:35	59.985	3670.129	350	342.418243	0	45.5	10	15	-103	7530.03
10/12/09 02:19:40	59.983	3672.048	350	342.418243	0	46	10	15	-103	7530.36
10/12/09 02:19:45	59.989	3672.414	350	338.794647	0	46.5	10	15	-103	7530.69
10/12/09 02:19:50	59.982	3671.837	350	338.794647	0	47	10	15	-103	7531.02
10/12/09 02:19:55	59.981	3670.372	350	338.794647	0	47.5	10	15	-103	7531.35
10/12/09 02:20:00	59.986	3671.401	350	338.794647	0	48	10	15	-103	7531.68

10/12/09 02:20:05	59.987	3670.296	350	338.794647	0	48.5	10	15	-103	7532.01
10/12/09 02:20:10	59.98	3668.59	350	335.931	0	49	10	15	-103	7532.34
10/12/09 02:20:15	59.98	3670.263	350	335.931	0	49.5	10	15	-103	7532.67
10/12/09 02:20:20	59.981	3670.102	350	335.931	0	50	10	15	-103	7533
10/12/09 02:20:25	59.98	3672.442	350	335.931	0	50.5	10	15	-103	7533.33
10/12/09 02:20:30	59.98	3671.947	350	335.931	0	51	10	15	-103	7533.66
10/12/09 02:20:35	59.977	3670.137	350	339.712402	0	51.5	10	15	-103	7533.99
10/12/09 02:20:40	59.979	3672.391	350	339.712402	0	52	10	15	-103	7534.32
10/12/09 02:20:45	59.977	3672.626	350	339.712402	0	52.5	10	15	-103	7534.65
10/12/09 02:20:50	59.973	3673.183	350	339.712402	0	53	10	15	-103	7534.98
10/12/09 02:20:55	59.973	3676.623	350	339.712402	0	53.5	10	15	-103	7535.31
10/12/09 02:21:00	59.975	3676.543	350	332.024658	0	54	10	15	-103	7535.64
10/12/09 02:21:05	59.977	3675.256	350	332.024658	0	54.5	10	15	-103	7535.97
10/12/09 02:21:10	59.98	3671.277	350	332.024658	0	55	10	15	-103	7536.3
10/12/09 02:21:15	59.981	3669.963	350	332.024658	0	55.5	10	15	-103	7536.63
10/12/09 02:21:20	59.982	3669.497	350	332.024658	0	56	10	15	-103	7536.96
10/12/09 02:21:25	59.981	3666.482	350	330.759033	0	56.5	10	15	-103	7537.29
10/12/09 02:21:30	59.985	3666.911	350	330.759033	0	57	10	15	-103	7537.62
10/12/09 02:21:35	59.989	3667.456	350	330.759033	0	57.5	10	15	-103	7537.95
10/12/09 02:21:40	59.998	3665.262	350	330.759033	0	58	10	15	-103	7538.28
10/12/09 02:21:45	60.004	3663.229	350	330.759033	0	58.5	10	15	-103	7538.61
10/12/09 02:21:50	60.013	3661.695	350	323.419952	0	59	10	15	-103	7538.94
10/12/09 02:21:55	60.013	3662.959	350	323.419952	0	59.5	10	15	-103	7539.27
10/12/09 02:22:00	60.01	3664.139	350	323.419952	0	60	10	15	-103	7539.6
10/12/09 02:22:05	60.019	3663.265	350	323.419952	0	60.5	10	15	-103	7539.93
10/12/09 02:22:10	60.02	3661.929	350	323.419952	0	61	10	15	-103	7540.26
10/12/09 02:22:15	60.021	3658.661	350	342.350922	0	61.5	10	15	-103	7540.59
10/12/09 02:22:20	60.019	3657.571	350	342.350922	0	62	10	15	-103	7540.92
10/12/09 02:22:25	60.025	3658.015	350	342.350922	0	62.5	10	15	-103	7541.25
10/12/09 02:22:30	60.02	3659.224	350	342.350922	0	63	10	15	-103	7541.58
10/12/09 02:22:35	60.018	3658.155	350	342.350922	0	63.5	10	15	-103	7541.91
10/12/09 02:22:40	60.019	3659.778	350	345.081818	0	64	10	15	-103	7542.24
10/12/09 02:22:45	60.023	3662.387	350	345.081818	0	64.5	10	15	-103	7542.57
10/12/09 02:22:50	60.025	3662.39	350	345.081818	0	65	10	15	-103	7542.9

10/12/09 02:22:55	60.02	3663.539	350	345.081818	0	65.5	10	15	-103	7543.23
10/12/09 02:23:00	60.02	3662.552	350	345.081818	0	66	10	15	-103	7543.56
10/12/09 02:23:05	60.021	3663.91	350	346.537384	0	66.5	10	15	-103	7543.89
10/12/09 02:23:10	60.014	3662.791	350	346.537384	0	67	10	15	-103	7544.22
10/12/09 02:23:15	60.013	3664.315	350	346.537384	0	67.5	10	15	-103	7544.55
10/12/09 02:23:20	60.008	3665.798	350	346.537384	0	68	10	15	-103	7544.88
10/12/09 02:23:25	60.011	3667.677	350	346.537384	0	68.5	10	15	-103	7545.21
10/12/09 02:23:30	60.009	3666.688	350	342.905762	0	69	10	15	-103	7545.54
10/12/09 02:23:35	60.009	3667.696	350	342.905762	0	69.5	10	15	-103	7545.87
10/12/09 02:23:40	60.002	3667.043	350	342.905762	0	70	10	15	-103	7546.2
10/12/09 02:23:45	59.996	3665.88	350	342.905762	0	70.5	10	15	-103	7546.53
10/12/09 02:23:50	59.998	3665.802	350	342.905762	0	71	10	15	-103	7546.86
10/12/09 02:23:55	59.998	3664.948	350	340.094391	0	71.5	10	15	-103	7547.19
10/12/09 02:24:00	59.995	3666.133	350	340.094391	0	72	10	15	-103	7547.52
10/12/09 02:24:05	59.993	3667.084	350	340.094391	0	72.5	10	15	-103	7547.85
10/12/09 02:24:10	59.982	3667.337	350	340.094391	0	73	10	15	-103	7548.18
10/12/09 02:24:15	59.982	3668.691	350	340.094391	0	73.5	10	15	-103	7548.51
10/12/09 02:24:20	59.982	3669.606	350	342.771179	0	74	10	15	-103	7548.84
10/12/09 02:24:25	59.978	3670.265	350	342.771179	0	74.5	10	15	-103	7549.17
10/12/09 02:24:30	59.974	3673.243	350	342.771179	0	75	10	15	-103	7549.5
10/12/09 02:24:35	59.979	3676.418	350	342.771179	0	75.5	10	15	-103	7549.83
10/12/09 02:24:40	59.98	3674.637	350	342.771179	0	76	10	15	-103	7550.16
10/12/09 02:24:45	59.987	3674.768	350	342.909912	0	76.5	10	15	-103	7550.49
10/12/09 02:24:50	59.99	3673.514	350	342.909912	0	77	10	15	-103	7550.82
10/12/09 02:24:55	59.991	3673.056	350	342.909912	0	77.5	10	15	-103	7551.15
10/12/09 02:25:00	59.993	3671.493	350	342.909912	0	78	10	15	-103	7551.48
10/12/09 02:25:05	59.996	3670.028	350	342.909912	0	78.5	10	15	-103	7551.81
10/12/09 02:25:10	60.003	3671.578	350	343.286011	0	79	10	15	-103	7552.14
10/12/09 02:25:15	60.005	3673.819	350	343.286011	0	79.5	10	15	-103	7552.47
10/12/09 02:25:20	60.004	3673.182	350	343.286011	0	80	10	15	-103	7552.8
10/12/09 02:25:25	60.01	3672.363	350	343.286011	0	80.5	10	15	-103	7553.13
10/12/09 02:25:30	60.011	3672.261	350	343.286011	0	81	10	15	-103	7553.46
10/12/09 02:25:35	60.014	3673.553	350	331.852966	0	81.5	10	15	-103	7553.79
10/12/09 02:25:40	60.011	3674.537	350	331.852966	0	82	10	15	-103	7554.12

10/12/09 02:25:45	60.017	3672.563	350	331.852966	0	82.5	10	15	-103	7554.45
10/12/09 02:25:50	60.014	3672.388	350	331.852966	0	83	10	15	-103	7554.78
10/12/09 02:25:55	60.014	3671.288	350	331.852966	0	83.5	10	15	-103	7555.11
10/12/09 02:26:00	60.019	3672.982	350	329.98822	0	84	10	15	-103	7555.44
10/12/09 02:26:05	60.019	3671.193	350	329.98822	0	84.5	10	15	-103	7555.77
10/12/09 02:26:10	60.026	3671.189	350	329.98822	0	85	10	15	-103	7556.1
10/12/09 02:26:15	60.019	3664.495	350	329.98822	0	85.5	10	15	-103	7556.43
10/12/09 02:26:20	60.02	3666.821	350	329.98822	0	86	10	15	-103	7556.76
10/12/09 02:26:25	60.021	3670.267	350	255.444168	0	86.5	10	15	-103	7557.09
10/12/09 02:26:30	60.019	3672.493	350	165.101685	0	87	10	15	-103	7557.42
10/12/09 02:26:35	60.022	3672.164	350	165.101685	0	87.5	10	15	-103	7557.75
10/12/09 02:26:40	60.037	3669.983	350	165.101685	0	88	10	15	-103	7558.08
10/12/09 02:26:45	60.037	3661.599	350	165.101685	0	88.5	10	15	-103	7558.41
10/12/09 02:26:50	60.048	3651.492	350	165.101685	0	89	10	15	-103	7558.74
10/12/09 02:26:55	60.041	3648.246	350	165.476395	0	89.5	10	15	-103	7559.07
10/12/09 02:27:00	60.039	3654.294	350	165.476395	0	90	10	15	-103	7559.4
10/12/09 02:27:05	60.043	3651.059	350	165.476395	0	90.5	10	15	-103	7559.73
10/12/09 02:27:10	60.041	3648.236	350	165.476395	0	91	10	15	-103	7560.06
10/12/09 02:27:15	60.041	3645.446	350	165.476395	0	91.5	10	15	-103	7560.39
10/12/09 02:27:20	59.852	3641.191	335	206.459106	1	92	10	0	-103	7560.72
10/12/09 02:27:25	59.869	3734.904	335	206.459106	1	92.5	10	0	-103	7561.05
10/12/09 02:27:30	59.88	3737.157	335	206.459106	1	93	10	0	-103	7561.38
10/12/09 02:27:35	59.875	3766.194	335	206.459106	1	93.5	10	0	-103	7561.71
10/12/09 02:27:40	59.886	3769.925	335	206.459106	1	94	10	0	-103	7562.04
10/12/09 02:27:45	59.887	3782.5	335	211.256042	1	94.5	10	0	-103	7562.37
10/12/09 02:27:50	59.895	3784.73	335	211.256042	1	95	10	0	-103	7562.7
10/12/09 02:27:55	59.893	3788.328	335	211.256042	2	95.5	10	0	-103	7563.03
10/12/09 02:28:00	59.891	3788.472	335	211.256042	3	96	10	0	-103	7563.36
10/12/09 02:28:05	59.885	3794.374	335	211.256042	4	96.5	10	0	-103	7563.69
10/12/09 02:28:10	59.887	3800.427	335	214.346695	5	97	10	0	-103	7564.02
10/12/09 02:28:15	59.888	3802.925	335	214.346695	6	97.5	10	0	-103	7564.35
10/12/09 02:28:20	59.882	3804.388	335	214.346695	7	98	10	0	-103	7564.68
10/12/09 02:28:25	59.857	3809.237	335	214.346695	8	98.5	10	0	-103	7565.01
10/12/09 02:28:30	59.858	3814.862	335	214.346695	9	99	10	0	-103	7565.34

10/12/09 02:28:35	59.866	3826.053	335	212.172699	10	99.5	10	0	-103	7565.67
10/12/09 02:28:40	59.866	3827.524	335	212.172699	11	100	10	0	-103	7566
10/12/09 02:28:45	59.874	3826.454	335	212.172699	12	100.5	10	0	-103	7566.33
10/12/09 02:28:50	59.883	3823.826	335	212.172699	13	101	10	0	-103	7566.66
10/12/09 02:28:55	59.89	3818.055	335	212.172699	14	101.5	10	0	-103	7566.99
10/12/09 02:29:00	59.893	3815.01	335	215.598175	15	102	10	0	-103	7567.32
10/12/09 02:29:05	59.903	3809.652	335	215.598175	16	102.5	10	0	-103	7567.65
10/12/09 02:29:10	59.904	3805.593	335	215.598175	16	103	10	0	-103	7567.98
10/12/09 02:29:15	59.911	3793.975	335	215.598175	16	103.5	10	0	-103	7568.31
10/12/09 02:29:20	59.917	3791.502	335	215.598175	16	104	10	0	-103	7568.64
10/12/09 02:29:25	59.92	3784.563	335	218.327255	16	104.5	10	0	-103	7568.97
10/12/09 02:29:30	59.917	3781.701	335	218.327255	16	105	10	0	-103	7569.3
10/12/09 02:29:35	59.921	3774.604	335	218.327255	16	105.5	10	0	-103	7569.63
10/12/09 02:29:40	59.925	3773.958	335	218.327255	16	106	10	0	-103	7569.96
10/12/09 02:29:45	59.927	3769.63	335	218.327255	16	106.5	10	0	-103	7570.29
10/12/09 02:29:50	59.928	3767.643	335	217.379425	0	107	10	0	-103	7570.62
10/12/09 02:29:55	59.929	3766.788	335	217.379425	0	107.5	10	0	-103	7570.95
10/12/09 02:30:00	59.937	3765.672	335	217.379425	0	108	10	0	-103	7571.28
10/12/09 02:30:05	59.945	3765.105	335	217.379425	0	108.5	10	0	-103	7571.61
10/12/09 02:30:10	59.942	3758.387	335	217.379425	0	109	10	0	-103	7571.94
10/12/09 02:30:15	59.942	3746.889	335	214.830353	0	109.5	10	0	-103	7572.27
10/12/09 02:30:20	59.947	3749.593	335	214.830353	0	110	10	0	-103	7572.6
10/12/09 02:30:25	59.951	3749.077	335	214.830353	0	110.5	10	0	-103	7572.93
10/12/09 02:30:30	59.951	3740.259	335	214.830353	0	111	10	0	-103	7573.26
10/12/09 02:30:35	59.952	3727.838	335	214.830353	0	111.5	10	0	-103	7573.59
10/12/09 02:30:40	59.952	3722.649	335	227.655914	0	112	10	0	-103	7573.92
10/12/09 02:30:45	59.952	3718.142	335	227.655914	0	112.5	10	0	-103	7574.25
10/12/09 02:30:50	59.952	3713.694	335	227.655914	0	113	10	0	-103	7574.58
10/12/09 02:30:55	59.954	3710.81	335	227.655914	0	113.5	10	0	-103	7574.91
10/12/09 02:31:00	59.956	3714.623	335	227.655914	0	114	10	0	-103	7575.24
10/12/09 02:31:05	59.956	3716.461	335	225.018082	0	114.5	10	0	-103	7575.57
10/12/09 02:31:10	59.961	3717.759	335	225.018082	0	115	10	0	-103	7575.9
10/12/09 02:31:15	59.962	3722.658	335	225.018082	0	115.5	10	0	-103	7576.23
10/12/09 02:31:20	59.966	3722.278	335	225.018082	0	116	10	0	-103	7576.56

10/12/09 02:31:25	59.97	3723.984	335	225.018082	0	116.5	10	0	-103	7576.89
10/12/09 02:31:30	59.969	3723.893	335	228.365158	0	117	10	0	-103	7577.22
10/12/09 02:31:35	59.97	3728.053	335	228.365158	0	117.5	10	0	-103	7577.55
10/12/09 02:31:40	59.973	3732.53	335	228.365158	0	118	10	0	-103	7577.88
10/12/09 02:31:45	59.978	3736.907	335	228.365158	0	118.5	10	0	-103	7578.21
10/12/09 02:31:50	59.978	3738.699	335	228.365158	0	119	10	0	-103	7578.54
10/12/09 02:31:55	59.978	3741.794	335	234.075333	0	119.5	10	0	-103	7578.87
10/12/09 02:32:00	59.982	3746.608	335	234.075333	0	120	10	0	-103	7579.2
10/12/09 02:32:05	59.98	3751.558	335	234.075333	0	120.5	10	0	-103	7579.53
10/12/09 02:32:10	59.979	3755.599	335	234.075333	0	121	10	0	-103	7579.86
10/12/09 02:32:15	59.983	3760.405	335	234.075333	0	121.5	10	0	-103	7580.19
10/12/09 02:32:20	59.989	3761.407	335	228.798157	0	122	10	0	-103	7580.52
10/12/09 02:32:25	59.987	3764.958	335	228.798157	0	122.5	10	0	-103	7580.85
10/12/09 02:32:30	59.992	3766.433	335	354.89566	0	123	10	0	-103	7581.18
10/12/09 02:32:35	59.989	3768.634	335	354.89566	0	123.5	10	0	-103	7581.51
10/12/09 02:32:40	59.983	3772.445	335	340.46936	0	124	10	0	-103	7581.84
10/12/09 02:32:45	59.993	3775.841	335	340.46936	0	124.5	10	0	-103	7582.17
10/12/09 02:32:50	59.999	3774.866	335	340.46936	0	125	10	0	-103	7582.5
10/12/09 02:32:55	59.999	3778.554	335	340.46936	0	125.5	10	0	-103	7582.83
10/12/09 02:33:00	60.002	3781.256	335	340.46936	0	126	10	0	-103	7583.16
10/12/09 02:33:05	60.007	3783.896	335	337.642914	0	126.5	10	0	-103	7583.49
10/12/09 02:33:10	60.014	3785.768	335	337.642914	0	127	10	0	-103	7583.82
10/12/09 02:33:15	60.019	3786.304	335	337.642914	0	127.5	10	0	-103	7584.15
10/12/09 02:33:20	60.017	3787.516	335	337.642914	0	128	10	0	-103	7584.48
10/12/09 02:33:25	60.023	3788.607	335	337.642914	0	128.5	10	0	-103	7584.81
10/12/09 02:33:30	60.021	3787.537	335	284.36084	0	129	10	0	-103	7585.14
10/12/09 02:33:35	60.024	3787.93	335	284.36084	0	129.5	10	0	-103	7585.47
10/12/09 02:33:40	60.02	3786.875	350	284.36084	0	130	10	0	-103	7585.8
10/12/09 02:33:45	60.024	3785.018	350	284.36084	0	130.5	10	0	-103	7586.13
10/12/09 02:33:50	60.022	3785.949	350	284.36084	0	131	10	0	-103	7586.46
10/12/09 02:33:55	60.022	3786.877	350	260.467987	0	131.5	10	0	-103	7586.79
10/12/09 02:34:00	60.023	3785.726	350	260.467987	0	132	10	0	-103	7587.12
10/12/09 02:34:05	60.022	3785.798	350	260.467987	0	132.5	10	0	-103	7587.45
10/12/09 02:34:10	60.018	3786.939	350	260.467987	0	133	10	0	-103	7587.78

10/12/09 02:34:15	60.018	3789.673	350	260.467987	0	133.5	10	0	-103	7588.11
10/12/09 02:34:20	60.016	3788.479	350	253.141541	0	134	10	0	-103	7588.44
10/12/09 02:34:25	60.016	3789.005	350	253.141541	0	134.5	10	0	-103	7588.77
10/12/09 02:34:30	60.012	3788.933	350	253.141541	0	135	10	0	-103	7589.1
10/12/09 02:34:35	60.01	3790.411	350	253.141541	0	135.5	10	0	-103	7589.43
10/12/09 02:34:40	60.009	3791.54	350	253.141541	0	136	10	0	-103	7589.76
10/12/09 02:34:45	60.01	3791.443	350	251.929871	0	136.5	10	0	-103	7590.09
10/12/09 02:34:50	59.995	3790.603	350	251.929871	0	137	10	0	-103	7590.42
10/12/09 02:34:55	59.991	3789.585	350	251.929871	0	137.5	10	0	-103	7590.75
10/12/09 02:35:00	59.988	3788.105	350	251.929871	0	138	10	0	-103	7591.08
10/12/09 02:35:05	59.985	3788.497	350	251.929871	0	138.5	10	0	-103	7591.41
10/12/09 02:35:10	59.984	3788.571	350	250.674194	0	139	10	0	-103	7591.74
10/12/09 02:35:15	59.981	3786.453	350	250.674194	0	139.5	10	0	-103	7592.07
10/12/09 02:35:20	59.977	3788.813	350	250.674194	0	140	10	0	-103	7592.4
10/12/09 02:35:25	59.976	3788.41	350	250.674194	0	140.5	10	0	-103	7592.73
10/12/09 02:35:30	59.978	3790.665	350	250.674194	0	141	10	0	-103	7593.06
10/12/09 02:35:35	59.974	3789.267	350	253.631866	0	141.5	10	0	-103	7593.39
10/12/09 02:35:40	59.977	3790.43	350	253.631866	0	142	10	0	-103	7593.72
10/12/09 02:35:45	59.973	3787.442	350	253.631866	0	142.5	10	0	-103	7594.05
10/12/09 02:35:50	59.971	3790.602	350	253.631866	0	143	10	0	-103	7594.38
10/12/09 02:35:55	59.978	3792.311	350	253.631866	0	143.5	10	0	-103	7594.71
10/12/09 02:36:00	59.975	3788.08	350	246.957306	0	144	10	15	-103	7595.04
10/12/09 02:36:05	59.976	3787.164	350	246.957306	0	144.5	10	15	-103	7595.37
10/12/09 02:36:10	59.969	3787.405	350	246.957306	0	145	10	15	-103	7595.7
10/12/09 02:36:15	59.965	3789.214	350	246.957306	0	145.5	10	15	-103	7596.03
10/12/09 02:36:20	59.97	3791.221	350	246.957306	0	146	10	15	-103	7596.36
10/12/09 02:36:25	59.965	3788.824	350	254.541779	0	146.5	10	15	-103	7596.69
10/12/09 02:36:30	59.972	3789.167	350	254.541779	0	147	10	15	-103	7597.02
10/12/09 02:36:35	59.967	3784.831	350	254.541779	0	147.5	10	15	-103	7597.35
10/12/09 02:36:40	59.969	3784.32	350	254.541779	0	148	10	15	-103	7597.68
10/12/09 02:36:45	59.967	3779.352	350	254.541779	0	148.5	10	15	-103	7598.01
10/12/09 02:36:50	59.971	3778.633	350	256.571594	0	149	10	15	-103	7598.34
10/12/09 02:36:55	59.965	3776.429	350	256.571594	0	149.5	10	15	-103	7598.67
10/12/09 02:37:00	59.97	3776.597	350	256.571594	0	150	10	15	-103	7599

10/12/09 02:37:05	59.969	3773.17	350	256.571594	0	150.5	10	15	-103	7599.33
10/12/09 02:37:10	59.965	3768.793	350	256.571594	0	151	10	15	-103	7599.66
10/12/09 02:37:15	59.973	3767.366	350	258.37262	0	151.5	10	15	-103	7599.99
10/12/09 02:37:20	59.968	3760.295	350	258.37262	0	152	10	15	-103	7600.32
10/12/09 02:37:25	59.967	3761.777	350	258.37262	0	152.5	10	15	-103	7600.65
10/12/09 02:37:30	59.979	3760.157	350	258.37262	0	153	10	15	-103	7600.98
10/12/09 02:37:35	59.983	3757.773	350	258.37262	0	153.5	10	15	-103	7601.31
10/12/09 02:37:40	59.965	3753.087	350	263.047363	0	154	10	15	-103	7601.64
10/12/09 02:37:45	59.962	3758.225	350	263.047363	0	154.5	10	15	-103	7601.97
10/12/09 02:37:50	59.96	3758.041	350	263.047363	0	155	10	15	-103	7602.3
10/12/09 02:37:55	59.959	3763.822	350	263.047363	0	155.5	10	15	-103	7602.63
10/12/09 02:38:00	59.953	3763.858	350	263.047363	0	156	10	15	-103	7602.96
10/12/09 02:38:05	59.957	3768.339	350	260.984375	0	156.5	10	15	-103	7603.29
10/12/09 02:38:10	59.963	3767.438	350	260.984375	0	157	10	15	-103	7603.62
10/12/09 02:38:15	59.959	3761.57	350	260.984375	0	157.5	10	15	-103	7603.95
10/12/09 02:38:20	59.965	3759.627	350	260.984375	0	158	10	15	-103	7604.28
10/12/09 02:38:25	59.968	3750.102	350	260.984375	0	158.5	10	15	-103	7604.61
10/12/09 02:38:30	59.973	3753.51	350	261.318329	0	159	10	15	-103	7604.94
10/12/09 02:38:35	59.965	3753.178	350	261.318329	0	159.5	10	15	-103	7605.27
10/12/09 02:38:40	59.972	3753.291	350	261.318329	0	160	10	15	-103	7605.6
10/12/09 02:38:45	59.975	3749.398	350	261.318329	0	160.5	10	15	-103	7605.93
10/12/09 02:38:50	59.974	3740.37	350	261.318329	0	161	10	15	-103	7606.26
10/12/09 02:38:55	59.981	3745.738	350	262.1026	0	161.5	10	15	-103	7606.59
10/12/09 02:39:00	59.982	3741.618	350	262.1026	0	162	10	15	-103	7606.92
10/12/09 02:39:05	59.984	3738.901	350	262.1026	0	162.5	10	15	-103	7607.25
10/12/09 02:39:10	59.979	3737.273	350	262.1026	0	163	10	15	-103	7607.58
10/12/09 02:39:15	59.978	3735.448	350	262.1026	0	163.5	10	15	-103	7607.91
10/12/09 02:39:20	59.981	3737.541	350	262.71701	0	164	10	15	-103	7608.24
10/12/09 02:39:25	59.978	3736.693	350	262.71701	0	164.5	10	15	-103	7608.57
10/12/09 02:39:30	59.971	3736.094	350	262.71701	0	165	10	15	-103	7608.9
10/12/09 02:39:35	59.974	3738.875	350	262.71701	0	165.5	10	15	-103	7609.23
10/12/09 02:39:40	59.972	3738.647	350	262.71701	0	166	10	15	-103	7609.56
10/12/09 02:39:45	59.971	3737.892	350	260.016479	0	166.5	10	15	-103	7609.89
10/12/09 02:39:50	59.972	3740.329	350	260.016479	0	167	10	15	-103	7610.22

10/12/09 02:39:55	59.977	3742.524	350	260.016479	0	167.5	10	15	-103	7610.55
10/12/09 02:40:00	59.976	3741.723	350	260.016479	0	168	10	15	-103	7610.88
10/12/09 02:40:05	59.974	3739.964	350	260.016479	0	168.5	10	15	-103	7611.21
10/12/09 02:40:10	59.978	3742.833	350	263.87323	0	169	10	15	-103	7611.54
10/12/09 02:40:15	59.981	3738.966	350	263.87323	0	169.5	10	15	-103	7611.87
10/12/09 02:40:20	59.971	3738.879	350	263.87323	0	170	10	15	-103	7612.2
10/12/09 02:40:25	59.971	3738.558	350	263.87323	0	170.5	10	15	-103	7612.53
10/12/09 02:40:30	59.966	3743.419	350	263.87323	0	171	10	15	-103	7612.86
10/12/09 02:40:35	59.971	3747.34	350	264.5979	0	171.5	10	15	-103	7613.19
10/12/09 02:40:40	59.969	3749.75	350	264.5979	0	172	10	15	-103	7613.52
10/12/09 02:40:45	59.974	3743.745	350	264.5979	0	172.5	10	15	-103	7613.85
10/12/09 02:40:50	59.971	3740.299	350	264.5979	0	173	10	15	-103	7614.18
10/12/09 02:40:55	59.982	3731.83	350	264.5979	0	173.5	10	15	-103	7614.51
10/12/09 02:41:00	59.985	3736.229	350	262.415924	0	174	10	15	-103	7614.84
10/12/09 02:41:05	59.989	3733.115	350	262.415924	0	174.5	10	15	-103	7615.17
10/12/09 02:41:10	59.987	3729.18	350	262.415924	0	175	10	15	-103	7615.5
10/12/09 02:41:15	59.994	3720.108	350	262.415924	0	175.5	10	15	-103	7615.83
10/12/09 02:41:20	60.003	3725.661	350	262.415924	0	176	10	15	-103	7616.16
10/12/09 02:41:25	60.006	3727.825	350	259.685242	0	176.5	10	15	-103	7616.49
10/12/09 02:41:30	60.019	3727.231	350	259.685242	0	177	10	15	-103	7616.82
10/12/09 02:41:35	60.025	3726.016	350	259.685242	0	177.5	10	15	-103	7617.15
10/12/09 02:41:40	60.029	3716.375	350	259.685242	0	178	10	15	-103	7617.48
10/12/09 02:41:45	60.037	3717.142	350	259.685242	0	178.5	10	15	-103	7617.81
10/12/09 02:41:50	60.037	3713.632	350	255.911011	0	179	10	15	-103	7618.14
10/12/09 02:41:55	60.041	3699.356	350	255.911011	0	179.5	10	15	-103	7618.47
10/12/09 02:42:00	60.043	3704.591	350	255.911011	0	180	10	15	-103	7618.8
10/12/09 02:42:05	60.048	3701.316	350	255.911011	0	180.5	10	15	-103	7619.13
10/12/09 02:42:10	60.043	3699.529	350	255.911011	0	181	10	15	-103	7619.46
10/12/09 02:42:15	60.044	3690.477	350	258.148193	0	181.5	10	15	-103	7619.79
10/12/09 02:42:20	60.045	3696.877	350	258.148193	0	182	10	15	-103	7620.12
10/12/09 02:42:25	60.041	3696.968	350	258.148193	0	182.5	10	15	-103	7620.45
10/12/09 02:42:30	60.036	3699.631	350	258.148193	0	183	10	15	-103	7620.78
10/12/09 02:42:35	60.033	3700.106	350	258.148193	0	183.5	10	15	-103	7621.11
10/12/09 02:42:40	60.037	3701.122	350	258.873596	0	184	10	15	-103	7621.44

10/12/09 02:42:45	60.03	3701.998	350	258.873596	0	184.5	10	15	-103	7621.77
10/12/09 02:42:50	60.033	3703.909	350	258.873596	0	185	10	15	-103	7622.1
10/12/09 02:42:55	60.032	3704.087	350	258.873596	0	185.5	10	15	-103	7622.43
10/12/09 02:43:00	60.033	3703.706	350	258.873596	0	186	10	15	-103	7622.76
10/12/09 02:43:05	60.035	3704.36	350	249.33757	0	186.5	10	15	-103	7623.09
10/12/09 02:43:10	60.039	3702.204	350	249.33757	0	187	10	15	-103	7623.42
10/12/09 02:43:15	60.039	3703.318	350	249.33757	0	187.5	10	15	-103	7623.75
10/12/09 02:43:20	60.038	3702.525	350	249.33757	0	188	10	15	-103	7624.08
10/12/09 02:43:25	60.037	3702.865	350	249.33757	0	188.5	10	15	-103	7624.41
10/12/09 02:43:30	60.04	3702.28	350	258.278168	0	189	10	15	-103	7624.74
10/12/09 02:43:35	60.045	3700.276	350	258.278168	0	189.5	10	15	-103	7625.07
10/12/09 02:43:40	60.043	3697.729	350	258.278168	0	190	10	15	-103	7625.4
10/12/09 02:43:45	60.044	3697.346	350	258.278168	0	190.5	10	15	-103	7625.73
10/12/09 02:43:50	60.034	3694.763	350	258.278168	0	191	10	15	-103	7626.06
10/12/09 02:43:55	60.039	3696.798	350	258.406372	0	191.5	10	15	-103	7626.39
10/12/09 02:44:00	60.034	3701.791	350	258.406372	0	192	10	15	-103	7626.72
10/12/09 02:44:05	60.032	3702.148	350	258.406372	0	192.5	10	15	-103	7627.05
10/12/09 02:44:10	60.027	3707.521	350	258.406372	0	193	10	15	-103	7627.38
10/12/09 02:44:15	60.032	3707.34	350	258.406372	0	193.5	10	15	-103	7627.71
10/12/09 02:44:20	60.033	3707.384	350	260.538879	0	194	10	15	-103	7628.04
10/12/09 02:44:25	60.039	3706.823	350	260.538879	0	194.5	10	15	-103	7628.37
10/12/09 02:44:30	60.035	3701.582	350	260.538879	0	195	10	15	-103	7628.7
10/12/09 02:44:35	60.04	3702.212	350	260.538879	0	195.5	10	15	-103	7629.03
10/12/09 02:44:40	60.036	3700.397	350	260.538879	0	196	10	15	-103	7629.36
10/12/09 02:44:45	60.045	3700.827	350	257.88208	0	196.5	10	15	-103	7629.69
10/12/09 02:44:50	60.042	3696.935	350	257.88208	0	197	10	15	-103	7630.02
10/12/09 02:44:55	60.044	3693.824	350	257.88208	0	197.5	10	15	-103	7630.35
10/12/09 02:45:00	60.041	3696.897	350	257.88208	0	198	10	15	-103	7630.68
10/12/09 02:45:05	60.045	3697.502	350	257.88208	0	198.5	10	15	-103	7631.01
10/12/09 02:45:10	60.039	3700.177	350	258.588654	0	199	10	15	-103	7631.34
10/12/09 02:45:15	60.042	3697.681	350	258.588654	0	199.5	10	15	-103	7631.67
10/12/09 02:45:20	60.036	3698.359	350	258.588654	0	200	10	15	-103	7632
10/12/09 02:45:25	60.039	3700.262	350	258.588654	0	200.5	10	15	-103	7632.33
10/12/09 02:45:30	60.039	3700.902	350	258.588654	0	201	10	15	-103	7632.66

10/12/09 02:45:35	60.038	3701.139	350	261.906158	0	201.5	10	15	-103	7632.99
10/12/09 02:45:40	60.037	3700.264	350	261.906158	0	202	10	15	-103	7633.32
10/12/09 02:45:45	60.037	3700.458	350	261.906158	0	202.5	10	15	-103	7633.65
10/12/09 02:45:50	60.036	3698.794	350	261.906158	0	203	10	15	-103	7633.98
10/12/09 02:45:55	60.033	3700.661	350	261.906158	0	203.5	10	15	-103	7634.31
10/12/09 02:46:00	60.032	3702.968	350	256.747803	0	204	10	15	-103	7634.64
10/12/09 02:46:05	60.037	3705.775	350	256.747803	0	204.5	10	15	-103	7634.97
10/12/09 02:46:10	60.036	3703.744	350	256.747803	0	205	10	15	-103	7635.3
10/12/09 02:46:15	60.032	3700.747	350	256.747803	0	205.5	10	15	-103	7635.63
10/12/09 02:46:20	60.034	3705.059	350	256.747803	0	206	10	15	-103	7635.96
10/12/09 02:46:25	60.038	3703.831	350	167.431976	0	206.5	10	15	-103	7636.29
10/12/09 02:46:30	60.042	3702.795	350	167.431976	0	207	10	15	-103	7636.62
10/12/09 02:46:35	60.04	3696.25	350	167.431976	0	207.5	10	15	-103	7636.95
10/12/09 02:46:40	60.043	3693.518	350	167.431976	0	208	10	15	-103	7637.28
10/12/09 02:46:45	60.04	3695.186	350	167.431976	0	208.5	10	15	-103	7637.61
10/12/09 02:46:50	60.044	3694.753	350	164.973404	0	209	10	15	-103	7637.94
10/12/09 02:46:55	60.036	3694.159	350	164.973404	0	209.5	10	15	-103	7638.27
10/12/09 02:47:00	60.042	3692.686	350	164.973404	0	210	10	15	-103	7638.6
10/12/09 02:47:05	60.043	3692.357	350	164.973404	0	210.5	10	15	-103	7638.93
10/12/09 02:47:10	60.039	3690.836	350	164.973404	0	211	10	15	-103	7639.26
10/12/09 02:47:15	60.034	3694.117	350	157.628082	0	211.5	10	15	-103	7639.59
10/12/09 02:47:20	60.035	3695.581	350	157.628082	0	212	10	15	-103	7639.92
10/12/09 02:47:25	60.03	3696.305	350	157.628082	0	212.5	10	15	-103	7640.25
10/12/09 02:47:30	60.031	3697.336	350	157.628082	0	213	10	15	-103	7640.58
10/12/09 02:47:35	60.032	3699.251	350	157.628082	0	213.5	10	15	-103	7640.91
10/12/09 02:47:40	60.032	3699.105	350	155.531708	0	214	10	15	-103	7641.24
10/12/09 02:47:45	60.033	3698.136	350	155.531708	0	214.5	10	15	-103	7641.57
10/12/09 02:47:50	60.039	3697.412	350	155.531708	0	215	10	15	-103	7641.9
10/12/09 02:47:55	60.036	3693.224	350	155.531708	0	215.5	10	15	-103	7642.23
10/12/09 02:48:00	60.04	3691.919	350	155.531708	0	216	10	15	-103	7642.56
10/12/09 02:48:05	60.036	3692.374	350	160.447235	0	216.5	10	15	-103	7642.89
10/12/09 02:48:10	60.041	3694.71	350	160.447235	0	217	10	15	-103	7643.22
10/12/09 02:48:15	60.036	3693.617	350	160.447235	0	217.5	10	15	-103	7643.55
10/12/09 02:48:20	60.038	3694.27	350	160.447235	0	218	10	15	-103	7643.88

10/12/09 02:48:25	60.041	3692.532	350	160.447235	0	218.5	10	15	-103	7644.21
10/12/09 02:48:30	60.036	3691.012	350	163.958603	0	219	10	15	-103	7644.54
10/12/09 02:48:35	60.038	3693.727	350	163.958603	0	219.5	10	15	-103	7644.87
10/12/09 02:48:40	60.034	3692.641	350	163.958603	0	220	10	15	-103	7645.2
10/12/09 02:48:45	60.031	3688.208	350	163.958603	0	220.5	10	15	-103	7645.53
10/12/09 02:48:50	60.029	3693.172	350	163.958603	0	221	10	15	-103	7645.86
10/12/09 02:48:55	60.03	3695.225	350	166.072449	0	221.5	10	15	-103	7646.19
10/12/09 02:49:00	60.022	3693.412	350	166.072449	0	222	10	15	-103	7646.52
10/12/09 02:49:05	60.024	3698.012	350	166.072449	0	222.5	10	15	-103	7646.85
10/12/09 02:49:10	60.021	3699.414	350	166.072449	0	223	10	15	-103	7647.18
10/12/09 02:49:15	60.025	3700.544	350	166.072449	0	223.5	10	15	-103	7647.51
10/12/09 02:49:20	60.025	3698.596	350	163.766586	0	224	10	15	-103	7647.84
10/12/09 02:49:25	60.024	3700.802	350	163.766586	0	224.5	10	15	-103	7648.17
10/12/09 02:49:30	60.023	3701.45	350	163.766586	0	225	10	15	-103	7648.5
10/12/09 02:49:35	60.026	3701.702	350	163.766586	0	225.5	10	15	-103	7648.83
10/12/09 02:49:40	60.024	3701.965	350	163.766586	0	226	10	15	-103	7649.16
10/12/09 02:49:45	60.025	3701.09	350	165.101685	0	226.5	10	15	-103	7649.49
10/12/09 02:49:50	60.023	3701.205	350	165.101685	0	227	10	15	-103	7649.82
10/12/09 02:49:55	60.024	3700.177	350	165.101685	0	227.5	10	15	-103	7650.15
10/12/09 02:50:00	60.026	3700.277	350	165.101685	0	228	10	15	-103	7650.48
10/12/09 02:50:05	60.02	3700.26	350	165.101685	0	228.5	10	15	-103	7650.81
10/12/09 02:50:10	60.015	3699.926	350	165.476395	0	229	10	15	-103	7651.14
10/12/09 02:50:15	60.017	3703.516	350	165.476395	0	229.5	10	15	-103	7651.47
10/12/09 02:50:20	60.017	3703.672	350	165.476395	0	230	10	15	-103	7651.8
10/12/09 02:50:25	60.012	3702.921	350	165.476395	0	230.5	10	15	-103	7652.13
10/12/09 02:50:30	60.002	3703.167	350	165.476395	0	231	10	15	-103	7652.46
10/12/09 02:50:35	59.999	3703.775	350	206.459106	0	231.5	10	15	-103	7652.79
10/12/09 02:50:40	60.004	3701.534	350	206.459106	0	232	10	0	-103	7616
10/12/09 02:50:45	59.996	3700.625	335	206.459106	0	232.5	10	0	-103	7626
10/12/09 02:50:50	59.989	3701.737	335	206.459106	0	233	10	0	-103	7632
10/12/09 02:50:55	59.985	3700.977	335	206.459106	0	233.5	10	0	-103	7632
10/12/09 02:51:00	59.984	3699.854	335	211.256042	0	234	10	0	-103	7632
10/12/09 02:51:05	59.98	3700.77	335	211.256042	1	234.5	10	0	-103	7632
10/12/09 02:51:10	59.976	3701.625	335	211.256042	1	235	10	0	-103	7632

10/12/09 02:51:15	59.974	3704.785	335	211.256042	1	235.5	10	0	-103	7632
10/12/09 02:51:20	59.973	3706.958	335	211.256042	1	236	10	0	-103	7632
10/12/09 02:51:25	59.971	3706.257	335	214.346695	1	236.5	10	0	-103	7632
10/12/09 02:51:30	59.98	3710.118	335	214.346695	1	237	10	0	-103	7632
10/12/09 02:51:35	59.982	3708.018	335	214.346695	1	237.5	10	0	-103	7632
10/12/09 02:51:40	59.981	3706.343	335	214.346695	2	238	10	0	-103	7632
10/12/09 02:51:45	59.978	3706.119	335	214.346695	3	238.5	10	0	-103	7632
10/12/09 02:51:50	59.977	3707.721	335	212.172699	4	239	10	0	-103	7632
10/12/09 02:51:55	59.978	3708.531	335	212.172699	5	239.5	10	0	-103	7632
10/12/09 02:52:00	59.97	3707.24	335	212.172699	6	240	10	0	-103	7632
10/12/09 02:52:05	59.971	3711.75	335	212.172699	7	240.5	10	0	-103	7632
10/12/09 02:52:10	59.999	3710.695	335	212.172699	8	241	10	0	-103	7632
10/12/09 02:52:15	59.998	3705.639	335	215.598175	9	241.5	10	0	-103	7632
10/12/09 02:52:20	60.005	3703.191	335	215.598175	10	242	10	0	-103	7632
10/12/09 02:52:25	60.01	3698.658	335	215.598175	11	242.5	10	0	-103	7632
10/12/09 02:52:30	60.022	3697.882	335	215.598175	12	243	10	0	-103	7632
10/12/09 02:52:35	60.025	3697.868	335	215.598175	13	243.5	10	0	-103	7632
10/12/09 02:52:40	60.023	3693.912	335	218.327255	14	244	10	0	-103	7632
10/12/09 02:52:45	60.029	3688.021	335	218.327255	15	244.5	10	0	-103	7632
10/12/09 02:52:50	60.028	3688.237	335	218.327255	16	245	10	0	-103	7632
10/12/09 02:52:55	60.032	3686.683	335	218.327255	16	245.5	10	0	-103	7632
10/12/09 02:53:00	60.031	3685.576	335	218.327255	16	246	10	0	-103	7632
10/12/09 02:53:05	60.021	3686.418	335	217.379425	16	246.5	10	0	-103	7632
10/12/09 02:53:10	60.017	3688.997	335	217.379425	16	247	10	0	-103	7632
10/12/09 02:53:15	60.016	3692.715	335	217.379425	16	247.5	10	0	-103	7631
10/12/09 02:53:20	60.012	3692.462	335	217.379425	16	248	10	0	-103	7625
10/12/09 02:53:25	60.008	3693.743	335	217.379425	16	248.5	10	0	-103	7623
10/12/09 02:53:30	60.005	3694.681	335	214.830353	16	249	10	0	-103	7621
10/12/09 02:53:35	59.999	3693.75	335	214.830353	16	249.5	10	0	-103	7623
10/12/09 02:53:40	60	3692.806	335	214.830353	16	250	10	0	-103	7625
10/12/09 02:53:45	59.995	3691.077	335	214.830353	16	250.5	10	0	-103	7627
10/12/09 02:53:50	59.993	3689.797	335	214.830353	16	251	10	0	-103	7628
10/12/09 02:53:55	59.985	3689.553	335	227.655914	16	251.5	10	0	-103	7628
10/12/09 02:54:00	59.988	3689.736	335	227.655914	16	252	10	0	-103	7629

10/12/09 02:54:05	59.983	3687.494	335	227.655914	16	252.5	10	0	-103	7630
10/12/09 02:54:10	59.986	3686.707	335	227.655914	16	253	10	0	-103	7631
10/12/09 02:54:15	59.99	3684.333	335	227.655914	16	253.5	10	0	-103	7635
10/12/09 02:54:20	59.984	3683.735	335	225.018082	16	254	10	0	-103	7638
10/12/09 02:54:25	59.982	3683.473	335	225.018082	16	254.5	10	0	-103	7639
10/12/09 02:54:30	59.978	3684.884	335	225.018082	16	255	10	0	-103	7642
10/12/09 02:54:35	59.975	3685.087	335	225.018082	16	255.5	10	0	-103	7644
10/12/09 02:54:40	59.976	3685.196	335	225.018082	16	256	10	0	-103	7645
10/12/09 02:54:45	59.979	3688.599	335	228.365158	16	256.5	10	0	-103	7647
10/12/09 02:54:50	59.979	3686.678	335	228.365158	16	257	10	0	-103	7648
10/12/09 02:54:55	59.977	3685.143	335	228.365158	16	257.5	10	0	-103	7649
10/12/09 02:55:00	59.978	3684.093	335	228.365158	16	258	10	0	-103	7650
10/12/09 02:55:05	59.983	3682.318	335	228.365158	16	258.5	10	0	-103	7651
10/12/09 02:55:10	59.978	3682.647	335	234.075333	16	259	10	0	-103	7652
10/12/09 02:55:15	59.978	3684.052	335	234.075333	16	259.5	10	0	-103	7653
10/12/09 02:55:20	59.987	3686.049	335	234.075333	16	260	10	0	-103	7654
10/12/09 02:55:25	59.992	3683.415	335	234.075333	16	260.5	10	0	-103	7655
10/12/09 02:55:30	59.988	3681.403	335	234.075333	16	261	10	0	-103	7655
10/12/09 02:55:35	59.99	3671.761	335	228.798157	16	261.5	10	0	-103	7656
10/12/09 02:55:40	59.993	3670.159	335	228.798157	16	262	10	0	-103	7656
10/12/09 02:55:45	59.994	3681.799	335	228.798157	16	262.5	10	0	-103	7657
10/12/09 02:55:50	59.984	3684.116	335	228.798157	16	263	10	0	-103	7657
10/12/09 02:55:55	59.985	3684.165	335	228.798157	16	263.5	10	0	-103	7658
10/12/09 02:56:00	59.986	3685.584	335	229.466965	16	264	10	0	-103	7658
10/12/09 02:56:05	59.985	3684.976	335	229.466965	16	264.5	10	0	-103	7659
10/12/09 02:56:10	59.982	3684.872	335	229.466965	16	265	10	0	-103	7659
10/12/09 02:56:15	59.992	3685.589	335	229.466965	16	265.5	10	0	-103	7659
10/12/09 02:56:20	60.003	3682.579	335	229.466965	16	266	10	0	-103	7660
10/12/09 02:56:25	60.003	3682.224	335	228.980164	16	266.5	10	0	-103	7660
10/12/09 02:56:30	60.002	3681.458	335	228.980164	16	267	10	0	-103	7661
10/12/09 02:56:35	60.004	3680.167	335	228.980164	16	267.5	10	0	-103	7661
10/12/09 02:56:40	60.009	3679.429	335	228.980164	16	268	10	0	-103	7662
10/12/09 02:56:45	60.017	3678.267	335	228.980164	16	268.5	10	0	-103	7662
10/12/09 02:56:50	60.021	3676.81	335	219.975555	16	269	10	0	-103	7663

10/12/09 02:56:55	60.018	3671.145	335	219.975555	16	269.5	10	0	-103	7663
10/12/09 02:57:00	60.02	3673.648	335	219.975555	16	270	10	0	-103	7664
10/12/09 02:57:05	60.018	3676.676	335	219.975555	16	270.5	10	0	-103	7664
10/12/09 02:57:10	60.018	3676.437	335	219.975555	16	271	10	0	-103	7665
10/12/09 02:57:15	60.016	3678.828	335	229.089249	16	271.5	10	0	-103	7666
10/12/09 02:57:20	60.015	3678.915	335	229.089249	16	272	10	0	-103	7666
10/12/09 02:57:25	60.014	3678.367	335	229.089249	16	272.5	10	0	-103	7667
10/12/09 02:57:30	60.015	3678.589	335	229.089249	16	273	10	0	-103	7668
10/12/09 02:57:35	60.016	3674.669	335	229.089249	16	273.5	10	0	-103	7668
10/12/09 02:57:40	60.021	3674.402	335	229.663269	16	274	10	0	-103	7669
10/12/09 02:57:45	60.022	3671.914	335	229.663269	16	274.5	10	0	-103	7669
10/12/09 02:57:50	60.025	3670.946	335	229.663269	16	275	10	0	-103	7670
10/12/09 02:57:55	60.022	3671.539	335	229.663269	16	275.5	10	0	-103	7670
10/12/09 02:58:00	60.024	3674.01	335	229.663269	16	276	10	0	-103	7671
10/12/09 02:58:05	60.029	3676.051	335	229.233856	16	276.5	10	0	-103	7671
10/12/09 02:58:10	60.032	3672.583	335	229.233856	16	277	10	0	-103	7672
10/12/09 02:58:15	60.03	3668.654	335	229.233856	16	277.5	10	0	-103	7673
10/12/09 02:58:20	60.021	3666.312	335	229.233856	16	278	10	0	-103	7673
10/12/09 02:58:25	60.025	3657.714	350	229.233856	16	278.5	10	0	-103	7673
10/12/09 02:58:30	60.023	3669.309	350	231.409882	16	279	10	0	-103	7673
10/12/09 02:58:35	60.02	3671.332	350	231.409882	16	279.5	10	0	-103	7673
10/12/09 02:58:40	60.02	3672.683	350	231.409882	16	280	10	0	-103	7673
10/12/09 02:58:45	60.014	3675.641	350	231.409882	16	280.5	10	0	-103	7673
10/12/09 02:58:50	60.011	3677.009	350	231.409882	16	281	10	0	-103	7673
10/12/09 02:58:55	60.01	3680.02	350	218.622284	16	281.5	10	0	-103	7673
10/12/09 02:59:00	60.012	3679.597	350	218.622284	16	282	10	0	-103	7673
10/12/09 02:59:05	60.014	3679.062	350	218.622284	16	282.5	10	0	-103	7673
10/12/09 02:59:10	60.011	3679.587	350	218.622284	16	283	10	0	-103	7673
10/12/09 02:59:15	60.008	3678.418	350	218.622284	16	283.5	10	0	-103	7673
10/12/09 02:59:20	60.013	3679.681	350	213.535858	16	284	10	0	-103	7673
10/12/09 02:59:25	60.018	3678.469	350	213.535858	16	284.5	10	0	-103	7673
10/12/09 02:59:30	60.019	3678.456	350	213.535858	16	285	10	0	-103	7673
10/12/09 02:59:35	60.02	3677.431	350	213.535858	16	285.5	10	0	-103	7674
10/12/09 02:59:40	60.016	3677.315	350	213.535858	16	286	10	0	-103	7675

10/12/09 02:59:45	60.019	3678.874	350	225.651855	16	286.5	10	0	-103	7676
10/12/09 02:59:50	60.018	3681.058	350	225.651855	16	287	10	0	-103	7677
10/12/09 02:59:55	60.016	3679.553	350	225.651855	16	287.5	10	0	-103	7678
10/12/09 03:00:00	60.015	3682.73	350	225.651855	16	288	10	0	-103	7679
10/12/09 03:00:05	59.999	3681.915	350	225.651855	16	288.5	10	0	-103	7680
10/12/09 03:00:10	59.982	3683.813	350	212.573639	16	289	10	0	-103	7681
10/12/09 03:00:15	59.97	3684.643	350	212.573639	16	289.5	10	0	-103	7682
10/12/09 03:00:20	59.968	3689.404	350	212.573639	16	290	10	0	-103	7684
10/12/09 03:00:25	59.972	3693.793	350	212.573639	16	290.5	10	0	-103	7685
10/12/09 03:00:30	59.964	3694.974	350	212.573639	16	291	10	0	-103	7687
10/12/09 03:00:35	59.966	3698.617	350	219.897293	16	291.5	10	0	-103	7689
10/12/09 03:00:40	59.965	3699.85	350	219.897293	16	292	10	0	-103	7690
10/12/09 03:00:45	59.97	3702.218	350	219.897293	16	292.5	10	0	-103	7692
10/12/09 03:00:50	59.973	3703.365	350	219.897293	16	293	10	0	-103	7692
10/12/09 03:00:55	59.976	3704.899	350	219.897293	16	293.5	10	0	-103	7693
10/12/09 03:01:00	59.977	3704.293	350	231.1754	16	294	10	0	-103	7693
10/12/09 03:01:05	59.976	3703.142	350	231.1754	16	294.5	10	0	-103	7694
10/12/09 03:01:10	59.974	3705.376	350	231.1754	16	295	10	0	-103	7694
10/12/09 03:01:15	59.976	3706.776	350	231.1754	16	295.5	10	0	-103	7695
10/12/09 03:01:20	59.981	3706.928	350	231.1754	16	296	10	0	-103	7695
10/12/09 03:01:25	59.985	3706.771	350	226.634125	16	296.5	10	0	-103	7695
10/12/09 03:01:30	59.979	3704.127	350	226.634125	16	297	10	0	-103	7696
10/12/09 03:01:35	59.987	3705.968	350	226.634125	16	297.5	10	0	-103	7696
10/12/09 03:01:40	59.98	3704.683	350	226.634125	16	298	10	0	-103	7697
10/12/09 03:01:45	59.984	3704.988	350	226.634125	16	298.5	10	0	-103	7697
10/12/09 03:01:50	59.989	3704.893	350	227.255066	16	299	10	0	-103	7697
10/12/09 03:01:55	59.996	3701.795	350	227.255066	16	299.5	10	0	-103	7698
10/12/09 03:02:00	59.997	3701.308	350	227.255066	16	300	10	0	-103	7698
10/12/09 03:02:05	59.997	3700.541	350	227.255066	16	300.5	10	0	-103	7698.33
10/12/09 03:02:10	59.996	3700.858	350	227.255066	16	301	10	0	-103	7698.66
10/12/09 03:02:15	60.003	3700.224	350	229.290222	16	301.5	10	0	-103	7698.99
10/12/09 03:02:20	60.008	3698.032	350	229.290222	16	302	10	0	-103	7699.32
10/12/09 03:02:25	60.004	3699.241	350	229.290222	16	302.5	10	0	-103	7699.65
10/12/09 03:02:30	60.001	3701.11	350	229.290222	16	303	10	0	-103	7699.98

10/12/09 03:02:35	60.004	3700.22	350	229.290222	16	303.5	10	0	-103	7700.31
10/12/09 03:02:40	60.008	3702.554	350	221.461365	16	304	10	0	-103	7700.64
10/12/09 03:02:45	60.006	3701.923	350	221.461365	16	304.5	10	0	-103	7700.97
10/12/09 03:02:50	60.005	3704.093	350	221.461365	16	305	10	0	-103	7701.3
10/12/09 03:02:55	59.999	3704.455	350	221.461365	16	305.5	10	0	-103	7701.63
10/12/09 03:03:00	60.004	3705.329	350	221.461365	16	306	10	0	-103	7701.96
10/12/09 03:03:05	60.013	3703.675	350	241.274368	16	306.5	10	0	-103	7702.29
10/12/09 03:03:10	60.012	3702.669	350	241.274368	16	307	10	0	-103	7702.62
10/12/09 03:03:15	60.005	3703.297	350	241.274368	16	307.5	10	0	-103	7702.95
10/12/09 03:03:20	60.011	3705.279	350	241.274368	16	308	10	0	-103	7703.28
10/12/09 03:03:25	60.016	3703.438	350	241.274368	16	308.5	10	0	-103	7703.61
10/12/09 03:03:30	60.019	3703.708	350	243.071854	16	309	10	0	-103	7703.94
10/12/09 03:03:35	60.013	3704.139	350	243.071854	16	309.5	10	0	-103	7704.27
10/12/09 03:03:40	60.009	3705.429	350	243.071854	16	310	10	0	-103	7704.6
10/12/09 03:03:45	60.009	3705.634	350	243.071854	16	310.5	10	0	-103	7704.93
10/12/09 03:03:50	60.02	3707.267	350	243.071854	16	311	10	0	-103	7705.26
10/12/09 03:03:55	60.018	3705.655	350	241.670212	16	311.5	10	0	-103	7705.59
10/12/09 03:04:00	60.019	3704.224	350	241.670212	16	312	10	0	-103	7705.92
10/12/09 03:04:05	60.022	3704.795	350	241.670212	16	312.5	10	0	-103	7706.25
10/12/09 03:04:10	60.03	3702.764	350	241.670212	16	313	10	0	-103	7706.58
10/12/09 03:04:15	60.023	3701.063	350	241.670212	16	313.5	10	0	-103	7706.91
10/12/09 03:04:20	60.023	3699.369	350	228.149307	16	314	10	0	-103	7707.24
10/12/09 03:04:25	60.024	3704.25	350	228.149307	16	314.5	10	0	-103	7707.57
10/12/09 03:04:30	60.022	3703.374	350	228.149307	16	315	10	0	-103	7707.9
10/12/09 03:04:35	60.025	3704.947	350	228.149307	16	315.5	10	0	-103	7708.23
10/12/09 03:04:40	60.02	3703.541	350	228.149307	16	316	10	0	-103	7708.56
10/12/09 03:04:45	60.013	3704.376	350	235.128983	16	316.5	10	0	-103	7708.89
10/12/09 03:04:50	60.017	3706.995	350	235.128983	16	317	10	0	-103	7709.22
10/12/09 03:04:55	60.019	3707.767	350	235.128983	16	317.5	10	0	-103	7709.55
10/12/09 03:05:00	60.015	3708.831	350	235.128983	16	318	10	0	-103	7709.88
10/12/09 03:05:05	60.014	3709.817	350	235.128983	16	318.5	10	0	-103	7710.21
10/12/09 03:05:10	60.019	3709.094	350	246.433136	16	319	10	0	-103	7710.54
10/12/09 03:05:15	60.014	3709.933	350	246.433136	16	319.5	10	0	-103	7710.87
10/12/09 03:05:20	60.022	3710.591	350	246.433136	16	320	10	0	-103	7711.2

10/12/09 03:05:25	60.024	3707.38	350	246.433136	16	320.5	10	0	-103	7711.53
10/12/09 03:05:30	60.024	3706.99	350	246.433136	16	321	10	0	-103	7711.86
10/12/09 03:05:35	60.02	3704.406	350	236.553543	16	321.5	10	0	-103	7712.19
10/12/09 03:05:40	60.025	3706.567	350	236.553543	16	322	10	0	-103	7712.52
10/12/09 03:05:45	60.03	3704.428	350	236.553543	16	322.5	10	0	-103	7712.85
10/12/09 03:05:50	60.026	3703.532	350	236.553543	16	323	10	0	-103	7713.18
10/12/09 03:05:55	60.029	3703.169	350	236.553543	16	323.5	10	0	-103	7713.51
10/12/09 03:06:00	60.03	3701.52	350	230.297562	16	324	10	0	-103	7713.84
10/12/09 03:06:05	60.016	3698.009	350	230.297562	16	324.5	10	0	-103	7714.17
10/12/09 03:06:10	60.028	3703.192	350	230.297562	16	325	10	0	-103	7714.5
10/12/09 03:06:15	60.015	3699.956	350	230.297562	16	325.5	10	0	-103	7714.83
10/12/09 03:06:20	60.011	3703.802	350	230.297562	16	326	10	0	-103	7715.16
10/12/09 03:06:25	60.013	3707.49	350	231.175537	16	326.5	10	0	-103	7715.49
10/12/09 03:06:30	60.016	3706.991	350	231.175537	16	327	10	0	-103	7715.82
10/12/09 03:06:35	60.013	3705.398	350	231.175537	16	327.5	10	0	-103	7716.15
10/12/09 03:06:40	59.994	3709.144	350	231.175537	16	328	10	0	-103	7716.48
10/12/09 03:06:45	59.99	3706.193	350	231.175537	16	328.5	10	0	-103	7716.81
10/12/09 03:06:50	59.993	3707.903	350	225.61763	16	329	10	0	-103	7717.14
10/12/09 03:06:55	59.993	3706.683	350	225.61763	16	329.5	10	0	-103	7717.47
10/12/09 03:07:00	59.985	3704.934	350	225.61763	16	330	10	0	-103	7717.8
10/12/09 03:07:05	59.982	3707.071	350	225.61763	16	330.5	10	0	-103	7718.13
10/12/09 03:07:10	59.981	3707.479	350	225.61763	16	331	10	0	-103	7718.46
10/12/09 03:07:15	59.978	3710.419	350	230.734421	16	331.5	10	0	-103	7718.79
10/12/09 03:07:20	59.977	3708.708	350	230.734421	16	332	10	0	-103	7719.12
10/12/09 03:07:25	59.983	3708.335	350	230.734421	16	332.5	10	0	-103	7719.45
10/12/09 03:07:30	59.981	3707.911	350	230.734421	16	333	10	0	-103	7719.78
10/12/09 03:07:35	59.981	3709.689	350	230.734421	16	333.5	10	0	-103	7720.11
10/12/09 03:07:40	59.98	3706.541	350	234.847107	16	334	10	0	-103	7720.44
10/12/09 03:07:45	59.978	3712.303	350	234.847107	16	334.5	10	0	-103	7720.77
10/12/09 03:07:50	59.976	3711.703	350	234.847107	16	335	10	0	-103	7721.1
10/12/09 03:07:55	59.975	3714.612	350	234.847107	16	335.5	10	0	-103	7721.43
10/12/09 03:08:00	59.975	3715.323	350	234.847107	16	336	10	0	-103	7721.76
10/12/09 03:08:05	59.975	3714.717	350	228.960922	16	336.5	10	0	-103	7722.09
10/12/09 03:08:10	59.977	3713.996	350	228.960922	16	337	10	0	-103	7722.42

10/12/09 03:08:15	59.976	3715.631	350	228.960922	16	337.5	10	0	-103	7722.75
10/12/09 03:08:20	59.979	3715.567	350	228.960922	16	338	10	0	-103	7723.08
10/12/09 03:08:25	59.979	3713.142	350	228.960922	16	338.5	10	0	-103	7723.41
10/12/09 03:08:30	59.987	3712.275	350	231.177917	16	339	10	0	-103	7723.74
10/12/09 03:08:35	59.984	3710.05	350	231.177917	16	339.5	10	0	-103	7724.07
10/12/09 03:08:40	59.98	3710.472	350	231.177917	16	340	10	0	-103	7724.4
10/12/09 03:08:45	59.978	3710.2	350	231.177917	16	340.5	10	0	-103	7724.73
10/12/09 03:08:50	59.982	3709.462	350	231.177917	16	341	10	0	-103	7725.06
10/12/09 03:08:55	59.983	3710.573	350	236.489288	16	341.5	10	0	-103	7725.39
10/12/09 03:09:00	59.987	3708.371	350	236.489288	16	342	10	0	-103	7725.72
10/12/09 03:09:05	59.976	3707.49	350	236.489288	16	342.5	10	0	-103	7726.05
10/12/09 03:09:10	59.983	3709.894	350	236.489288	16	343	10	0	-103	7726.38
10/12/09 03:09:15	59.981	3711.627	350	236.489288	16	343.5	10	0	-103	7726.71
10/12/09 03:09:20	59.978	3712.393	350	245.038925	16	344	10	0	-103	7727.04
10/12/09 03:09:25	59.999	3716.626	350	245.038925	16	344.5	10	0	-103	7727.37
10/12/09 03:09:30	59.986	3712.092	350	245.038925	16	345	10	0	-103	7727.7
10/12/09 03:09:35	59.983	3714.953	350	245.038925	16	345.5	10	0	-103	7728.03
10/12/09 03:09:40	59.99	3716.308	350	245.038925	16	346	10	0	-103	7728.36
10/12/09 03:09:45	59.995	3714.714	350	223.605682	16	346.5	10	0	-103	7728.69
10/12/09 03:09:50	59.991	3715.927	350	223.605682	16	347	10	0	-103	7729.02
10/12/09 03:09:55	60	3715.324	350	223.605682	16	347.5	10	0	-103	7729.35
10/12/09 03:10:00	60.004	3711.708	350	223.605682	16	348	10	0	-103	7729.68
10/12/09 03:10:05	59.999	3713.362	350	223.605682	16	348.5	10	0	-103	7730.01
10/12/09 03:10:10	59.996	3718.292	350	231.119354	16	349	10	0	-103	7730.34
10/12/09 03:10:15	60.002	3717.815	350	231.119354	16	349.5	10	0	-103	7730.67
10/12/09 03:10:20	60.005	3718.56	350	231.119354	16	350	10	0	-103	7731
10/12/09 03:10:25	60.004	3718.821	350	231.119354	16	350.5	10	0	-103	7731.33
10/12/09 03:10:30	60.003	3719.299	350	231.119354	16	351	10	0	-103	7731.66
10/12/09 03:10:35	60.006	3719.731	350	237.20665	16	351.5	10	0	-103	7731.99
10/12/09 03:10:40	60.01	3718.58	350	237.20665	16	352	10	0	-103	7732.32
10/12/09 03:10:45	60.013	3720.034	350	237.20665	16	352.5	10	0	-103	7732.65
10/12/09 03:10:50	60.009	3720.811	350	237.20665	16	353	10	0	-103	7732.98
10/12/09 03:10:55	60.008	3719.447	350	237.20665	16	353.5	10	0	-103	7733.31
10/12/09 03:11:00	60.009	3721.272	350	240.516373	16	354	10	0	-103	7733.64

10/12/09 03:11:05	60.013	3721.594	350	240.516373	16	354.5	10	0	-103	7733.97
10/12/09 03:11:10	60.012	3721.999	350	240.516373	16	355	10	0	-103	7734.3
10/12/09 03:11:15	60.011	3720.86	350	240.516373	16	355.5	10	0	-103	7734.63
10/12/09 03:11:20	60.001	3723.816	350	240.516373	16	356	10	0	-103	7734.96
10/12/09 03:11:25	59.998	3724.869	350	237.566055	16	356.5	10	0	-103	7735.29
10/12/09 03:11:30	60.002	3723.696	350	237.566055	16	357	10	0	-103	7735.62
10/12/09 03:11:35	60.003	3721.879	350	237.566055	16	357.5	10	0	-103	7735.95
10/12/09 03:11:40	60.001	3722.906	350	237.566055	16	358	10	0	-103	7736.28
10/12/09 03:11:45	59.989	3723.201	350	237.566055	16	358.5	10	0	-103	7736.61
10/12/09 03:11:50	59.988	3723.881	350	231.581421	16	359	10	0	-103	7736.94
10/12/09 03:11:55	59.992	3724.944	350	231.581421	16	359.5	10	0	-103	7737.27
10/12/09 03:12:00	60.04	3723.693	350	231.581421	16	360	10	0	-103	7737.6

Note: See "Instruction" tab for more detailed instructions.

Step 1.	Copy and Paste Event Data into the appropriate cells of the "Data" worksheet. Maintain date and time format of $\mathrm{mm} / \mathrm{dd} / \mathrm{yy} \mathrm{hh}: \mathrm{mm}: \mathrm{ss}$.
Step 2.	Determine Time of $\mathrm{T}(0)$ and edit formula in cell "C8" to reference the correct row of the "Data" worksheet. $T(0)$ is the first change in frequency of about $0.010 \mathrm{~Hz}(10 \mathrm{mHz})$ which should be the first scan of frequency data of the event.
Step 3.	Time of Frequency Recovery to 60 Hz or Pre-Perturbation Hz
Step 4.	Enter MW output of generator or load that caused event (+ for gen loss, - for load loss) (Value from NERC Event List. If multiple units, enter total MW loss.) If MW loss value is not known, enter a default 1000 MW.
Step 5.	Hit the big blue button to copy your data for pasting into FRS Form 1 "BA Event Data" worksheet. Copy Form 2 Data for Pasting into Form 1
Step 6.	Paste data into "FRS Form 1" in the appropriate row on the "BA Event Data" worksheet.

Step 7. Save this workbook using the following file name format:MyBA_yymmdd_hhmm_FRS_Form2.xlsm
09/10/12 Date yymmdd
2:27 Time hh:ss of $\mathrm{T}(0)$

2 seconds Date: Date:
Time of $\mathrm{T}(0)$ Time of Frequency Recovery to 60 Hz or Pre-Perturbation Hz Value A Pre-Perturbation Average Frequency [$T(-2)$ to $T(-16)]$ Value B Post-Perturbation Average Frequency [$\mathrm{T}(+20$ to $\mathrm{T}(+52)$]

Pre to Post Perturbation Delta Frequency Actual Value A Pre-Perturbation Average Interchange MW [T(-2) to $\mathrm{T}(-16)]$ Value B Post-Perturbation Average Interchange MW [T(+20 to T(+52)]

Pre to Post Perturbation Interchange Delta MW Actual
Initial Performance Ramp Magnitude Adjustment EPFR Pre-Perturbation Average EPFR Post-Perturbation Average EPFR Delta

EPFR = Expected Primary Frequency Response EPFR(Final) MW Response in right direction for frequency delta

Monday, October 12, 2009
2:27:20 2:33:00 60.0413 Hz 59.8883 Hz $-0.153 \mathrm{~Hz}$ 3649.00 MW 3785.20 MW 3785.20 MW
136.20 MW -12.61 MW -12.61 MW
-33.00 MW -33.00 MW 122.36 MW

Balancing Authority My BA

Grid Nominal Frequency			60.000 Hz
Capacity @ Droop for Minimum Performance	2400.0 MW		

Droop Setting $\quad 5.00 \% \quad 3.00000 \mathrm{~Hz}$
Deadband Setting $\quad 0.000 \mathrm{~Hz}$
Hz Span 3.00000 Hz
Frequency Response Obligation (FRO) $\quad-80 \mathrm{MW} / 0.1 \mathrm{~Hz}$

TC (frequency response filter constant)
0.350 Time Constant for delayed delivery of PFR during Sustained Measure

Low Hz Delta Hz Even
3763.51 Actual Interchange MW Average during frequency recovery period 3781.52 Target Interchange MW Average during frequency recovery period 3727.24 Interchange Average Ramp MW during frequency recovery period 3645.45 Actual MW @ T(-4)
98.66 Starting and Ending Difference in Interchange MW during frequency recovery pel 0:05:40 Event Duration (h:mm:ss)

No Target MW Average minus MW @ T(-4) less than zero
136.07 Interchange Target Relative Average Change - MW (Low Frequency Event)
118.06 Interchange Actual Relative Average Change - MW (Low Frequency Event)

No Interchange Actual Average minus MW @ $\mathrm{T}(-4)$ less than zero
Yes Interchange Average MW minus MW @ $\mathrm{T}(-4)$ greater than zero
Yes Interchange Target MW Average minus MW @ T(-4) greater than zero
37.41 Interchange Target Relative Average Change - MW (High Frequency Event)
19.40 Interchange Actual Relative Average Change - MW (High Frequency Event)

Up Ramp Direction during frequency recovery period
0.868 P.U. Sustianed Response P.U. Performance

							Initial							${ }_{\text {Generator }}^{\text {Trip }}$
					FRO		Measure			Average	Average		Average	
					(EPFR)	(TC)	Final			Output	Target		Ramp	MW
			Value B		Expected	Delayed	Expected		Recovery	During	During	Recovery	During	
			20 to 52 sec		Primary	Delivery	Primary	Average	Period	Recovery	Recovery	Period	Recovery	
	Frequency	Interchange	Average	Average	Frequency	Frequency	Frequency	Ramp	Target	Period	Period	Ramp	Period	
T	Hz	MW	Frequency	MW	Response	Response	Response	MW/scan	MW	MW	MW	MW	MW	633

$\mathrm{T}-72$ sec	$2: 26: 08$	60.019	3671.193	-15.201	-5.320
T-70 sec	$2: 26610$	60.026	3671.189	-20.801	-10.738
T-68 sec	$2: 26: 12$	60.026	3671.189	-20.801	-14.260

$\mathrm{T}-66$ sec	$2: 26: 14$	60.026	3671.189		-20.801	-16.549
$\mathrm{~T}-64$ sec	$2: 26: 16$	60.019	3664.495		-15.201	-16.077
$\mathrm{~T}-62$ sec	$2: 26: 18$	60.019	3664.495		-15.201	-15.771
$\mathrm{~T}-60$ sec	$2: 26: 20$	60.02	3666.821		-16.000	-15.851
$\mathrm{~T}-58$ sec	$2: 26: 22$	60.02	3666.821		-16.000	-15.903
$\mathrm{~T}-56$ sec	$2: 26: 24$	60.02	3666.821		-16.000	-15.937
$\mathrm{~T}-54$ sec	$2: 26: 26$	60.021	3670.267		-16.800	-16.239
$\mathrm{~T}-52$ sec	$2: 26: 28$	60.021	3670.267		-16.800	-16.435
$\mathrm{~T}-50$ sec	$2: 26: 30$	60.019	3672.493		-15.201	-16.003
$\mathrm{~T}-48$ sec	$2: 26: 32$	60.019	3672.493		-15.201	-15.722
$\mathrm{~T}-46$ sec	$2: 26: 34$	60.019	3672.493		-15.201	-15.540
$\mathrm{~T}-44$ sec	$2: 26: 36$	60.022	3672.164		-17.599	-16.261
$\mathrm{~T}-42$ sec	$2: 26: 38$	60.022	3672.164		-17.599	-16.729
$\mathrm{~T}-40$ sec	$2: 26: 40$	60.037	3669.983		-29.599	-21.234
$\mathrm{~T}-38$ sec	$2: 26: 42$	60.037	3669.983		-29.599	-24.162
$\mathrm{~T}-36$ sec	$2: 26: 44$	60.037	3669.983		-29.599	-26.065
$\mathrm{~T}-34$ sec	$2: 26: 46$	60.037	3661.599		-29.599	-27.302
$\mathrm{~T}-32$ sec	$2: 26: 48$	60.037	3661.599		-29.599	-28.106
$\mathrm{~T}-30$ sec	$2: 26: 50$	60.048	3651.492		-38.400	-31.709
$\mathrm{~T}-28$ sec	$2: 26: 52$	60.048	3651.492		-38.400	-34.051
$\mathrm{~T}-26$ sec	$2: 26: 54$	60.048	3651.492		-38.400	-35.573
$\mathrm{~T}-24$ sec	$2: 26: 56$	60.041	3648.246		-32.800	-34.603
$\mathrm{~T}-22$ sec	$2: 26: 58$	60.041	3648.246		-32.800	-33.972
$\mathrm{~T}-20$ sec	$2: 27: 00$	60.039	3654.294			-31.201

3758.755 3758.755

 3758.7553758.755
$-0.150 \quad 3666.821$
$-0.150 \quad 3666.618$
$-0.150 \quad 3666.434$
$-0.150 \quad 3665.982$
$-0.150 \quad 3665.635$
$-0.150 \quad 3665.917$
$-0.1503666 .047$
$-0.150 \quad 3666.080$
-0.150 3665.208
$\begin{array}{ll}-0.150 & 3665.208 \\ -0.150 & 3664.590\end{array}$
$\begin{array}{ll}-0.150 & 3664.590 \\ -0.150 & 3659.935\end{array}$
$\begin{array}{ll}-0.150 & 3659.935 \\ -0.150 & 3656.857\end{array}$
$\begin{array}{ll}-0.150 & 3656.857 \\ -0.150 & 3654.803\end{array}$
$\begin{array}{ll}-0.150 & 3654.803 \\ -0.150 & 3653.416\end{array}$
$\begin{array}{ll}-0.150 & 3653.416 \\ -0.150 & 3652.461\end{array}$
$\begin{array}{rr}-0.150 & 3648.708\end{array}$
$\begin{array}{lll}-0.150 & 3646.216\end{array}$
$-0.150 \quad 3644.543$
$-0.150 \quad 3645.363$
$-0.1503645 .844$
$-0.150 \quad 3646.663$
$-0.150 \quad 3647.143$
$-0.150 \quad 3647.402$
$-0.150 \quad 3646.399$
$-0.150 \quad 3645.694$
$-0.150 \quad 3645.743$
$-0.150 \quad 3645.722$
$-0.150 \quad 3645.656$
$-0.150 \quad 3645.561$
$-0.150 \quad 3645.446$
$0.000 \quad 3698.389$
$\begin{array}{lllllll}0.580 & 3733.382 & 3641.191 & 3715.885 & 3678.197 & 3678.197\end{array}$ $\begin{array}{lllllll}0.580 & 3756.331 & 3641.191 & 3729.367 & 3678.778 & 3678.488\end{array}$ $\begin{array}{lllllll}0.580 & 3766.691 & 3664.619 & 3738.698 & 3679.358 & 3678.778\end{array}$ $\begin{array}{lllllll}0.580 & 3773.628 & 3678.676 & 3745.684 & 3679.938 & 3679.068\end{array}$ $\begin{array}{lllllll}0.580 & 3778.341 & 3688.048 & 3751.127 & 3680.519 & 3679.358\end{array}$ $\begin{array}{lllllll}0.580 & 3778.526 & 3695.063 & 3755.041 & 3681.099 & 3679.648\end{array}$ $\begin{array}{lllllll}0.580 & 3778.850 & 3700.325 & 3758.017 & 3681.680 & 3679.938\end{array}$ $\begin{array}{lllllll}0.580 & 3780.664 & 3707.644 & 3760.534 & 3682.260 & 3680.229\end{array}$ $\begin{array}{lllllll}0.580 & 3782.046 & 3713.499 & 3762.685 & 3682.840 & 3680.519\end{array}$ $\begin{array}{lllllll}0.580 & 3783.148 & 3718.289 & 3764.545 & 3683.421 & 3680.809\end{array}$ $\begin{array}{lllllll}0.580 & 3783.148 & 3718.289 & 3764.545 & 3683.421 & 3680.809 \\ 0.580 & 3780.987 & 3722.592 & 3765.915 & 3684.001 & 3681.099\end{array}$ $\begin{array}{lllllll}0.580 & 3779.785 & 3726.233 & 3766.982 & 3684.581 & 3681.389\end{array}$

T+26 sec	2:27:46	59.887	3782.500	59.888	3785.205	90.399	93.070	3758.755
T+28 sec	2:27:48	59.887	3782.500	59.888	3785.205	90.399	92.135	3758.755
T+30 sec	2:27:50	59.887	3782.500	59.888	3785.205	90.399	91.528	3758.755
T+32 sec	2:27:52	59.895	3784.730	59.888	3785.205	84.000	88.893	3758.755
T+34 sec	2:27:54	59.895	3784.730	59.888	3785.205	84.000	87.180	3758.755
T+36 sec	2:27:56	59.893	3788.328	59.888	3785.205	85.599	86.627	3758.755
T+38 sec	2:27:58	59.893	3788.328	59.888	3785.205	85.599	86.267	3758.755
T+40 sec	2:28:00	59.893	3788.328	59.888	3785.205	85.599	86.033	3758.755
$\mathrm{T}+42 \mathrm{sec}$	2:28:02	59.891	3788.472	59.888	3785.205	87.201	86.442	3758.755
$\mathrm{T}+44 \mathrm{sec}$	2:28:04	59.891	3788.472	59.888	3785.205	87.201	86.708	3758.755
T+46 sec	2:28:06	59.885	3794.374	59.888	3785.205	92.001	88.560	3758.755
T+48 sec	2:28:08	59.885	3794.374	59.888	3785.205	92.001	89.765	3758.755
T+50 sec	2:28:10	59.885	3794.374	59.888	3785.205	92.001	90.548	3758.755
T+52 sec	2:28:12	59.887	3800.427	59.888	3785.205	90.399	90.496	3758.755
T+54 sec	2:28:14	59.887	3800.427			90.399	90.462	
T+56 sec	2:28:16	59.888	3802.925			89.600	90.160	
T+58 sec	2:28:18	59.888	3802.925			89.600	89.964	
T+60 sec	2:28:20	59.888	3802.925			89.600	89.836	
T+62 sec	2:28:22	59.882	3804.388			94.400	91.434	
T+64 sec	2:28:24	59.882	3804.388			94.400	92.472	
T+66 sec	2:28:26	59.857	3809.237			114.401	100.147	
T+68 sec	2:28:28	59.857	3809.237			114.401	105.136	
T+70 sec	2:28:30	59.857	3809.237			114.401	108.379	
T+72 sec	2:28:32	59.858	3814.862			113.599	110.206	
T+74 sec	2:28:34	59.858	3814.862			113.599	111.393	
T+76 sec	2:28:36	59.866	3826.053			107.199	109.925	
T+78 sec	2:28:38	59.866	3826.053			107.199	108.971	
T+80 sec	2:28:40	59.866	3826.053			107.199	108.351	
	2:28:42	59.866	3827.524			107.199	107.948	
	2:28:44	59.866	3827.524			107.199	107.686	
	2:28:46	59.874	3826.454			100.800	105.276	
	2:28:48	59.874	3826.454			100.800	103.709	
	2:28:50	59.874	3826.454			100.800	102.691	
	2:28:52	59.883	3823.826			93.600	99.509	
	2:28:54	59.883	3823.826			93.600	97.441	
	2:28:56	59.89	3818.055			88.000	94.137	
	2:28:58	59.89	3818.055			88.000	91.989	
	2:29:00	59.89	3818.055			88.000	90.593	
	2:29:02	59.893	3815.010			85.599	88.845	
	2:29:04	59.893	3815.010			85.599	87.709	
	2:29:06	59.903	3809.652			77.600	84.171	
	2:29:08	59.903	3809.652			77.600	81.871	
	2:29:10	59.903	3809.652			77.600	80.376	
	2:29:12	59.904	3805.593			76.801	79.125	
	2:29:14	59.904	3805.593			76.801	78.311	

$\begin{array}{lllllll}0.580 & 3778.927 & 3730.252 & 3767.835 & 3685.162 & 3681.680\end{array}$ $\begin{array}{llllll}0.580 & 3778.927 & 3730.252 & 3767.835 & 3685.162 & 3681.680 \\ 0.580 & 3778.572 & 3733.735 & 3768.551 & 3685.742 & 3681.970\end{array}$ $\begin{array}{lllllll}0.580 & 3778.572 & 3733.735 & 3768.551 & 3685.742 & 3681.970 \\ 0.580 & 3778.545 & 3736.783 & 3769.176 & 3686.322 & 3682.260\end{array}$ $\begin{array}{lllllll}0.580 & 378.545 & 3736.783 & 3769.176 & 3686.322 & 3682.260 \\ 0.580 & 3776.491 & 3739.604 & 3769.606 & 3686.903 & 3682.550\end{array}$ $\begin{array}{llllll}0.580 & 3776.491 & 3739.604 & 3769.606 & 3686.903 & 3682.550 \\ 0.580 & 3775.358 & 3742.111 & 3769.926 & 3687.483 & 3682.840\end{array}$ $\begin{array}{lllllll}0.580 & 3775.358 & 3742.111 & 3769.926 & 3687.483 & 3682.840 \\ 0.580 & 3775.385 & 3744.543 & 3770.213 & 3688.063 & 3683.130\end{array}$ $\begin{array}{lllllll}0.580 & 3775.606 & 3746.732 & 3770.483 & 3688.644 & 3683.421\end{array}$ $\begin{array}{lllllll}0.580 & 3775.952 & 3748.713 & 3770.743 & 3689.224 & 3683.711\end{array}$ $\begin{array}{lllllll}0.580 & 3776.941 & 3750.520 & 3771.025 & 3689.805 & 3684.001\end{array}$ $\begin{array}{lllllll}0.580 & 3777.788 & 3752.170 & 3771.319 & 3690.385 & 3684.291\end{array}$ $\begin{array}{lllllll}0.580 & 3780.221 & 3753.929 & 3771.690 & 3690.965 & 3684.581\end{array}$ $\begin{array}{llllllll}0.580 & 3782.005 & 3755.547 & 3772.102 & 3691.546 & 3684.872\end{array}$ $\begin{array}{lllllll}0.580 & 3783.269 & 3757.040 & 3772.536 & 3692.126 & 3685.162\end{array}$ $\begin{array}{llllllll}0.580 & 3783.369 & 3757.040 & 3772.536 & 3692.126 & 3685.162\end{array}$	0.580	3783.897	3758.647	3772.956	3692.706	3685.452
.580	3784.444	3760.139	3773.367	3693.287	3685.742	$\begin{array}{llllllll}0.580 & 3784.44 & 3780.139 & 3773.367 & 3693.287 & 3685.742\end{array}$ $\begin{array}{llllllll}0.580 & 3784.722 & 3761.614 & 3773.758 & 3695.867 & 3686.032\end{array}$
:---	:---	:---	:---	:---	:---	:---
.580	3785.559	364.280	374.55	369.48	3686.613	$\begin{array}{lllllll}0.580 & 3785.559 & 3764.280 & 3774.505 & 3695.028 & 3686.613\end{array}$ $\begin{array}{lllllll}0.580 & 3787.737 & 3765.533 & 3774.919 & 3695.608 & 3686.903\end{array}$ $\begin{array}{lllllll}0.580 & 3789.355 & 3766.710 & 3775.356 & 3696.188 & 3687.193\end{array}$ $\begin{array}{llllllll}0.580 & 3797.611 & 3767.961 & 3776.011 & 3696.769 & 3687.483\end{array}$ $\begin{array}{lllllll}0.580 & 3803.180 & 3769.141 & 3776.787 & 3697.349 & 3687.773\end{array}$ $\begin{array}{lllllll}0.580 & 3807.004 & 3770.254 & 3777.626 & 3697.930 & 3688.063\end{array}$ $\begin{array}{lllllll}0.580 & 3809.411 & 3771.460 & 3778.485 & 3698.510 & 3688.354\end{array}$ $\begin{array}{lllllll}0.580 & 3811.179 & 3772.602 & 3779.346 & 3699.090 & 3688.644\end{array}$ $\begin{array}{lllllll}0.580 & 3810.291 & 3773.973 & 3780.139 & 3699.671 & 3688.934\end{array}$ $\begin{array}{lllllll}0.580 & 3809.917 & 3775.275 & 3780.884 & 3700.251 & 3689.224\end{array}$ $\begin{array}{lllllll}0.580 & 3809.877 & 3776.513 & 3781.591 & 3700.831 & 3689.514\end{array}$ $\begin{array}{lllllll}0.580 & 3810.055 & 3777.728 & 3782.268 & 3701.412 & 3689.805\end{array}$ $\begin{array}{lllllll}0.580 & 3810.373 & 3778.886 & 3782.922 & 3701.992 & 3690.095\end{array}$ $\begin{array}{lllllll}0.580 & 3808.543 & 3779.967 & 3783.504 & 3702.572 & 3690.385\end{array}$ $\begin{array}{lllllll}0.580 & 3807.557 & 3781.000 & 3784.039 & 3703.153 & 3690.675\end{array}$ $\begin{array}{lllllll}0.580 & 3807.119 & 3781.988 & 3784.541 & 3703.733 & 3690.965\end{array}$ $\begin{array}{lllllll}08880 & 3804.518 & 3782.878 & 3784.966 & 3704.313 & 3691.255\end{array}$ $\begin{array}{lllllll}0.580 & 3804.518 & 3782.878 & 3784.966 & 3704.313 & 3691.255 \\ 0.580 & 3803.030 & 3783.731 & 3785.342 & 3704.894 & 3691.546\end{array}$ $\begin{array}{llllll}0.580 & 3803.030 & 3783.731 & 3785.342 & 3704.894 & 3691.546 \\ 0.580 & 3800.306 & 3784.432 & 3785.647 & 3705.474 & 3691.836\end{array}$ $\begin{array}{lllllll}0.580 & 3798.739 & 3785.104 & 3785.909 & 3706.055 & 3692.126\end{array}$ $\begin{array}{lllllll}0.580 & 3797.923 & 3785.750 & 3786.145 & 3706.635 & 3692.416\end{array}$ $\begin{array}{lllllll}0.580 & 3796.755 & 3786.313 & 3786.349 & 3707.215 & 3692.706\end{array}$ $\begin{array}{llllllll}0.580 & 3796.200 & 3786.854 & 3786.535 & 3707.796 & 3692.997\end{array}$ $\begin{array}{llllllll}0.580 & 3793.242 & 3787.277 & 3786.659 & 3708.376 & 3693.287\end{array}$ $\begin{array}{lllllll}0.580 & 3791.523 & 3787.683 & 3786.747 & 3708.956 & 3693.577\end{array}$ $\begin{array}{lllllll}0.580 & 3790.608 & 3788.076 & 3786.816 & 3709.537 & 3693.867\end{array}$ $\begin{array}{llllllll}0.580 & 3789.937 & 3788.383 & 3786.871 & 3710.117 & 3694.157\end{array}$ $\begin{array}{lllllll}0.580 & 3789.704 & 3788.680 & 3786.920 & 3710.697 & 3694.447\end{array}$

2:29:16	59.911	3793.975	71.201	75.823
2:29:18	59.911	3793.975	71.201	74.205
2:29:20	59.911	3793.975	71.201	73.153
2:29:22	59.917	3791.502	66.400	70.790
2:29:24	59.917	3791.502	66.400	69.253
2:29:26	59.92	3784.563	64.001	67.415
2:29:28	59.92	3784.563	64.001	66.220
2:29:30	59.92	3784.563	64.001	65.444
2:29:32	59.917	3781.701	66.400	65.779
2:29:34	59.917	3781.701	66.400	65.996
2:29:36	59.921	3774.604	63.199	65.017
2:29:38	59.921	3774.604	63.199	64.381
2:29:40	59.921	3774.604	63.199	63.967
2:29:42	59.925	3773.958	60.001	62.579
2:29:44	59.925	3773.958	60.001	61.676
2:29:46	59.927	3769.630	58.401	60.530
2:29:48	59.927	3769.630	58.401	59.785
2:29:50	59.927	3769.630	58.401	59.301
2:29:52	59.928	3767.643	57.599	58.705
2:29:54	59.928	3767.643	57.599	58.318
2:29:56	59.929	3766.788	56.799	57.786
2:29:58	59.929	3766.788	56.799	57.441
2:30:00	59.929	3766.788	56.799	57.216
2:30:02	59.937	3765.672	50.400	54.831
2:30:04	59.937	3765.672	50.400	53.280
2:30:06	59.945	3765.105	44.000	50.032
2:30:08	59.945	3765.105	44.000	47.921
2:30:10	59.945	3765.105	44.000	46.549
2:30:12	59.942	3758.387	46.399	46.496
2:30:14	59.942	3758.387	46.399	46.462
2:30:16	59.942	3746.889	46.399	46.440
2:30:18	59.942	3746.889	46.399	46.426
2:30:20	59.942	3746.889	46.399	46.416
2:30:22	59.947	3749.593	42.401	45.011
2:30:24	59.947	3749.593	42.401	44.098
2:30:26	59.951	3749.077	39.200	42.383
2:30:28	59.951	3749.077	39.200	41.269
2:30:30	59.951	3749.077	39.200	40.545
2:30:32	59.951	3740.259	39.200	40.074
2:30:34	59.951	3740.259	39.200	39.768
2:30:36	59.952	3727.838	38.400	39.289
2:30:38	59.952	3727.838	38.400	38.978
2:30:40	59.952	3727.838	38.400	38.776
2:30:42	59.952	3722.649	38.400	38.644
2:30:44	59.952	3722.649	38.400	38.559
2:30:46	59.952	3718.142	38.400	38.503

$\begin{array}{lllllll}0.580 & 3787.795 & 3788.770 & 3786.935 & 3711.278 & 3694.738\end{array}$ $\begin{array}{llllll}0.580 & 3787.795 & 3788.770 & 3786.935 & 3711.278 & 3694.738 \\ 0.580 & 3786.758 & 3788.856 & 3786.932 & 3711.858 & 3695.028\end{array}$ $\begin{array}{lllllll}0.580 & 3786.287 & 3788.940 & 3786.921 & 3712.439 & 3695.318\end{array}$ $\begin{array}{lllllll}0.580 & 3784.504 & 3788.982 & 3786.882 & 3713.019 & 3695.608\end{array}$ $\begin{array}{llllllll}0.580 & 3783.548 & 3789.022 & 3786.829 & 3713.599 & 3695.898\end{array}$ $\begin{array}{lllllll}0.580 & 3782.290 & 3788.952 & 3786.758 & 3714.180 & 3696.188\end{array}$ $\begin{array}{lllllll}0.580 & 3781.675 & 3788.884 & 3786.680 & 3714.760 & 3696.479\end{array}$ $\begin{array}{lllllll}0.580 & 3781.479 & 3788.819 & 3786.601 & 3715.340 & 3696.769\end{array}$ $\begin{array}{lllllll}0.580 & 3782.394 & 3788.713 & 3786.539 & 3715.921 & 3697.059\end{array}$ $\begin{array}{lllllll}0.580 & 3783.192 & 3788.610 & 3786.489 & 3716.501 & 3697.349\end{array}$ $\begin{array}{lllllll}0.580 & 3782.794 & 3788.407 & 3786.436 & 3717.081 & 3697.639\end{array}$ $\begin{array}{lllllll}0.580 & 3782.738 & 3788.209 & 3786.383 & 3717.662 & 3697.930\end{array}$ $\begin{array}{lllllll}0.580 & 3782.904 & 3788.018 & 3786.334 & 3718.242 & 3698.220\end{array}$ $\begin{array}{lllllll}0.580 & 3782.096 & 3787.823 & 3786.275 & 3718.822 & 3698.510\end{array}$ $\begin{array}{lllllll}5880 & 3781.774 & 3787.633 & 3786.213 & 3719.403 & 3698.800\end{array}$ $\begin{array}{llllllll}5880 & 3781.208 & 3787.389 & 3786146 & 3719.983 & 3699.090\end{array}$ $\begin{array}{llllll}0.580 & 3781.044 & 3787.153 & 3786.078 & 3720.564 & 3699.380\end{array}$ $\begin{array}{llllll}0.580 & 3781.044 & 3787.153 & 3786.078 & 3720.564 & 3699.380 \\ 0.580 & 3781.140 & 3786.922 & 3786.013 & 3721.144 & 3699.671\end{array}$ $\begin{array}{lllllll}0.580 & 3781.140 & 3786.922 & 3786.013 & 3721.144 & 3699.671 \\ 0.580 & 3781.125 & 3786.672 & 3785.949 & 3721.724 & 3699.961\end{array}$ $\begin{array}{lllllll}0.580 & 3781.125 & 3786.672 & 3785.949 & 3721.724 & 3699.961 \\ 0.580 & 3781.318 & 3786.428 & 3785.890 & 3722.305 & 3700.251\end{array}$ $\begin{array}{lllllll}0.580 & 3781.318 & 3786.428 & 3785.890 & 3722.305 & 3700.251 \\ 0.580 & 3781.367 & 3786.179 & 3785.833 & 3722.885 & 3700.541\end{array}$ $\begin{array}{lllllll}0.580 & 3781.601 & 3785.937 & 3785.780 & 3723.465 & 3700.831\end{array}$ $\begin{array}{lllllll}0.580 & 3781.957 & 3785.700 & 3785.733 & 3724.046 & 3701.122\end{array}$ $\begin{array}{lllllll}0.580 & 3780.152 & 3785.456 & 3785.665 & 3724.626 & 3701.412\end{array}$ $\begin{array}{llllllll}0.580 & 3779.181 & 3785.218 & 3785.586 & 3725.206 & 3701.702\end{array}$ $\begin{array}{lllllll}0.580 & 3776.514 & 3784.978 & 3785.478 & 3725.787 & 3701.992\end{array}$ $\begin{array}{lllllll}0.580 & 3774.983 & 3784.744 & 3785.355 & 3726.367 & 3702.282\end{array}$ $\begin{array}{lllllll}0.580 & 3774.191 & 3784.516 & 3785.225 & 3726.947 & 3702.572\end{array}$ $\begin{array}{lllllll}0.580 & 3774.719 & 3784.216 & 3785.104 & 3727.528 & 3702.863\end{array}$ $\begin{array}{lllllll}0.580 & 3775.265 & 3783.922 & 3784.993 & 3728.108 & 3703.153\end{array}$ $\begin{array}{llllllll}0.580 & 3775.824 & 3783.506 & 3784.890 & 3728.689 & 3703.443\end{array}$ $\begin{array}{llllllll}0.580 & 3776.390 & 3783.099 & 3784.795 & 3729.269 & 3703.733\end{array}$ $\begin{array}{lllllll}0.580 & 3776.961 & 3782.701 & 3784.709 & 3729.849 & 3704.023\end{array}$ $\begin{array}{lllllll}580 & 3776.136 & 3782.341 & 3784.616 & 3730.430 & 3704.313\end{array}$ | .580 | 3775.803 | 3781.989 | 3784.521 | 3731.010 | 3704.604 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll}07880 & 3774.669 & 3781.639 & 3784.416 & 3731.590 & 3704.894\end{array}$ $\begin{array}{llllll}0.580 & 3774.669 & 3781.639 & 3784.416 & 3731.590 & 3704.894 \\ 0.580 & 3774.135 & 3781.296 & 3784.308 & 3732.171 & 3705.184\end{array}$ $\begin{array}{lllllll}0.580 & 3773.991 & 3780.961 & 3784.201 & 3732.751 & 3705.474\end{array}$ $\begin{array}{lllllll}0.580 & 3774.101 & 3780.541 & 3784.096 & 3733.331 & 3705.764\end{array}$ $\begin{array}{lllllll}0.580 & 3774.375 & 3780.130 & 3783.997 & 3733.912 & 3706.055\end{array}$ $\begin{array}{lllllll}0.580 & 3774.477 & 3779.602 & 3783.901 & 3734.492 & 3706.345\end{array}$ $\begin{array}{lllllll}0.580 & 3774.746 & 3779.084 & 3783.809 & 3735.072 & 3706.635\end{array}$ $\begin{array}{lllllll}0.580 & 3775.124 & 3778.577 & 3783.723 & 3735.653 & 3706.925\end{array}$ $\begin{array}{lllllll}0.580 & 3775.573 & 3778.029 & 3783.644 & 3736.233 & 3707.215\end{array}$ $\begin{array}{lllllll}0.580 & 3776.068 & 3777.491 & 3783.570 & 3736.814 & 3707.505\end{array}$ $\begin{array}{lllllll}0.580 & 3776.592 & 3776.920 & 3783.503 & 3737.394 & 3707.796\end{array}$

2:30:48	59.952	3718.142	38.400	38.467
2:30:50	59.952	3718.142	38.400	38.444
2:30:52	59.952	3713.694	38.400	38.429
2:30:54	59.952	3713.694	38.400	38.419
2:30:56	59.954	3710.810	36.801	37.853
2:30:58	59.954	3710.810	36.801	37.485
2:31:00	59.954	3710.810	36.801	37.245
2:31:02	59.956	3714.623	35.199	36.529
2:31:04	59.956	3714.623	35.199	36.064
2:31:06	59.956	3716.461	35.199	35.761
2:31:08	59.956	3716.461	35.199	35.564
2:31:10	59.956	3716.461	35.199	35.436
2:31:12	59.961	3717.759	31.201	33.954
2:31:14	59.961	3717.759	31.201	32.991
2:31:16	59.962	3722.658	30.399	32.083
2:31:18	59.962	3722.658	30.399	31.494
2:31:20	59.962	3722.658	30.399	31.110
2:31:22	59.966	3722.278	27.200	29.742
2:31:24	59.966	3722.278	27.200	28.852
2:31:26	59.97	3723.984	23.999	27.154
2:31:28	59.97	3723.984	23.999	26.050
2:31:30	59.97	3723.984	23.999	25.332
2:31:32	59.969	3723.893	24.799	25.145
2:31:34	59.969	3723.893	24.799	25.024
2:31:36	59.97	3728.053	23.999	24.665
2:31:38	59.97	3728.053	23.999	24.432
2:31:40	59.97	3728.053	23.999	24.280
2:31:42	59.973	3732.530	21.600	23.342
2:31:44	59.973	3732.530	21.600	22.733
2:31:46	59.978	3736.907	17.599	20.936
2:31:48	59.978	3736.907	17.599	19.768
2:31:50	59.978	3736.907	17.599	19.009
2:31:52	59.978	3738.699	17.599	18.516
2:31:54	59.978	3738.699	17.599	18.195
2:31:56	59.978	3741.794	17.599	17.987
2:31:58	59.978	3741.794	17.599	17.851
2:32:00	59.978	3741.794	17.599	17.763
2:32:02	59.982	3746.608	14.401	16.586
2:32:04	59.982	3746.608	14.401	15.822
2:32:06	59.98	3751.558	16.000	15.884
2:32:08	59.98	3751.558	16.000	15.925
2:32:10	59.98	3751.558	16.000	15.951
2:32:12	59.979	3755.599	16.800	16.248
2:32:14	59.979	3755.599	16.800	16.441
2:32:16	59.983	3760.405	13.599	15.446
2:32:18	59.983	3760.405	13.599	14.800

$\begin{array}{lllllll}580 & 3777.137 & 3776.360 & 3783.442 & 3737.974 & 3708.086\end{array}$ $\begin{array}{llllll}0.580 & 3777.137 & 3776.360 & 3783.442 & 3737.974 & 3708.086 \\ 0.580 & 3777.694 & 3775.811 & 3783.388 & 3738.555 & 3708.376\end{array}$ $\begin{array}{lllllll}0.580 & 3777.694 & 3775.811 & 3783.388 & 3738.555 & 3708.376 \\ 0.580 & 3778.259 & 3775.231 & 3783.340 & 3739.135 & 3708.666\end{array}$ $\begin{array}{lllllll}0.580 & 3778.259 & 3775.231 & 3783.340 & 3739.135 & 3708.666 \\ 0.580 & 3778.829 & 3774.661 & 3783.298 & 3739.715 & 3708.956\end{array}$ $\begin{array}{lllllll}0.580 & 3778.829 & 3774.661 & 3783.298 & 3739.715 & 3708.956 \\ 0.580 & 3778.843 & 3774.075 & 3783.257 & 3740.296 & 3709.247\end{array}$ $\begin{array}{llllll}0.580 & 3778.843 & 3774.075 & 3783.257 & 3740.296 & 379.243 \\ 0.580 & 3779.056 & 3773.500 & 3783.219 & 3740.876 & 3709.537\end{array}$ $\begin{array}{lllllll}0.580 & 3779.397 & 3772.935 & 3783.185 & 3741.456 & 3709.827\end{array}$ $\begin{array}{llllllll}0.580 & 3779.261 & 3772.415 & 3783.150 & 3742.037 & 3710.117\end{array}$ $\begin{array}{lllllll}0.580 & 3779.376 & 3771.903 & 3783.116 & 3742.617 & 3710.407\end{array}$ $\begin{array}{lllllllll}0.580 & 3779.654 & 3771.417 & 3783.086 & 3743.197 & 3710.697\end{array}$ $\begin{array}{lllllll}0.580 & 3780.037 & 3770.939 & 3783.060 & 3743.778 & 3710.988\end{array}$ $\begin{array}{lllllll}0.580 & 3780.490 & 3770.469 & 3783.037 & 3744.358 & 3711.278\end{array}$ $\begin{array}{llllll}0.580 & 3780.490 & 3770.469 & 3783.037 & 3744.358 & 3711.278 \\ 0.580 & 3779.588 & 3770.019 & 3783.008 & 3744.939 & 3711.568\end{array}$ $\begin{array}{lllllll}0.580 & 3779.588 & 3770.019 & 3783.008 & 3744.939 & 3711.568 \\ 0.580 & 3779.205 & 3769.576 & 3782.976 & 3745.519 & 3711.858\end{array}$ $\begin{array}{lllllll}0.580 & 3779.205 & 3769.576 & 3782.976 & 3745.519 & 3711.858\end{array}$ $\begin{array}{lllllll}0.580 & 3778.878 & 3769.182 & 3782.941 & 3746.099 & 3712.148 \\ .580 & 3778.868 & 3768.794 & 3782.907 & 3746.680 & 3712.439\end{array}$ $\begin{array}{lllllll}0.580 & 3778.868 & 3768.794 & 3782.907 & 3746.680 & 3712.439\end{array}$	0.580	3779.065	3768.413	3782.876	3747.260	3712.729
.580	3778.277	3768.034	3782.838	3747.840	371.019	$\begin{array}{llllll}0.580 & 3778.277 & 3768.034 & 3782.838 & 3747.840 & 3713.019\end{array}$ $\begin{array}{lllllll}0.580 & 3777.968 & 3767.662 & 3782.798 & 3748.421 & 3713.309\end{array}$ $\begin{array}{lllllll}0.580 & 3776.850 & 3767.310 & 3782.750 & 3749.001 & 3713.599\end{array}$ $\begin{array}{lllllll}0.580 & 3776.326 & 3766.964 & 3782.699 & 3749.581 & 3713.889\end{array}$ $\begin{array}{lllllll}0.580 & 3776.189 & 3766.623 & 3782.647 & 3750.162 & 3714.180\end{array}$ $\begin{array}{lllllll}0.580 & 3776.582 & 3766.286 & 3782.599 & 3750.742 & 3714.470\end{array}$ $\begin{array}{lllllll}0.580 & 3777.041 & 3765.955 & 3782.556 & 3751.322 & 3714.760\end{array}$ $\begin{array}{lllllll}0.580 & 3777.263 & 3765.661 & 3782.515 & 3751.903 & 3715.050\end{array}$ $\begin{array}{lllllll}0.580 & 3777.610 & 3765.372 & 3782.477 & 3752.483 & 3715.340\end{array}$ $\begin{array}{lllllll}0.580 & 3778.039 & 3765.087 & 3782.443 & 3753.064 & 3715.630\end{array}$ $\begin{array}{lllllll}0.580 & 3777.681 & 3764.840 & 3782.407 & 3753.644 & 3715.921\end{array}$ $\begin{array}{llllll}0.580 & 3777.681 & 3764.840 & 3782.407 & 3753.644 & 3715.921 \\ 0.580 & 3777.652 & 3764.597 & 3782.372 & 3754.224 & 3716.211\end{array}$
:---	:---	:---	:---	:---	:---	:---
.580	3776.436	3764.391	3782.327	3754.805	3716.501	
:---	:---	:---	:---	:---	:---	:---
580	3775.848	3764.187	3782.279	3755.385	3716.791	$\begin{array}{lllllll}0.580 & 3775.848 & 3764.187 & 3782.279 & 3755.385 & 3716.791 \\ 0.580 & 3775.670 & 3763.986 & 3782.231 & 3755.965 & 3717.081\end{array}$

 \begin{tabular}{llllllll}
\hline 580 \& 377.757 \& 3763.802 \& 3782.183 \& 3756.546 \& 3717.372

\hline

\hline .580 \& 3776.016 \& 3763.620 \& 3782.139 \& 3757.126 \& 3717.662
\end{tabular} $\begin{array}{lllllll}.580 & 3776.388 & 3763.463 & 3782.097 & 3757.706 & 3717.952\end{array}$ $\begin{array}{lllllll}0.580 & 3776.833 & 3763.308 & 3782.060 & 3758.287 & 3718.242\end{array}$ $\begin{array}{lllllll}0.580 & 3777.325 & 3763.156 & 3782.026 & 3758.867 & 3718.532\end{array}$ $\begin{array}{lllllll}0.580 & 3776.729 & 3763.039 & 3781.989 & 3759.447 & 3718.822\end{array}$ $\begin{array}{lllllll}0.580 & 3776.545 & 3762.924 & 3781.951 & 3760.028 & 3719.113\end{array}$ $\begin{array}{lllllll}0.580 & 3777.187 & 3762.845 & 3781.918 & 3760.608 & 3719.403\end{array}$ $\begin{array}{lllllll}0.580 & 3777.809 & 3762.767 & 3781.889 & 3761.189 & 3719.693\end{array}$ $\begin{array}{lllllll}0.580 & 3778.415 & 3762.691 & 3781.866 & 3761.769 & 3719.983\end{array}$ $\begin{array}{lllllll}0.580 & 3779.293 & 3762.642 & 3781.848 & 3762.349 & 3720.273\end{array}$ $\begin{array}{lllllll}0.580 & 3780.066 & 3762.595 & 3781.836 & 3762.930 & 3720.564\end{array}$ $\begin{array}{lllllll}0.580 & 3779.652 & 3762.580 & 3781.821 & 3763.510 & 3720.854\end{array}$ $\begin{array}{lllllll}0.580 & 3779.585 & 3762.566 & 3781.806 & 3764.090 & 3721.144\end{array}$

$2: 32: 20$	59.983	3760.405	13.599	14.379	
$2: 32: 22$	59.989	3761.407	8.801	12.427	
$2: 32: 24$	59.989	3761.407	8.801	11.158	
$2: 32: 26$	59.987	3764.958	10.400	10.893	
$2: 32: 28$	59.987	3764.958	10.400	10.720	
$2: 32: 30$	59.987	3764.958	10.400	10.608	
$2: 32: 32$	59.992	3766.433	6.400	9.135	
$2: 32: 34$	59.992	3766.433	6.400	8.178	
$2: 32: 36$	59.989	3768.634	8.801	8.396	
$2: 32: 38$	59.989	3768.634	8.801	8.538	
$2: 32: 40$	59.989	3768.634	8.801	8.630	
$2: 32: 42$	59.983	3772.445	13.599	10.369	
$2: 32: 44$	59.983	3772.445	13.599	11.499	
$2: 32: 46$	59.993	3775.841	5.600	9.435	
$2: 32: 48$	59.993	3775.841	5.600	8.092	
$2: 32: 50$	59.993	3775.841	5.600	7.220	
$2: 32: 52$	59.999	3774.866	0.800	4.973	
$2: 32: 54$	59.999	3774.866	0.800	3.512	
$2: 32: 56$	59.999	3778.554	0.800	2.563	
$2: 32: 58$	59.999	3778.554	0.800	1.946	
$2: 33: 00$	59.999	3778.554	0.800	1.545	
$2: 33: 02$	60.002	3781.256	-1.599	0.444	
$2: 33: 04$	60.002	3781.256	-1.599	-0.271	
$2: 33: 06$	60.007	3783.896	-5.600	-2.136	
$2: 33: 08$	60.007	3783.896	-5.600	-3.348	
$2: 33: 10$	60.007	3783.896	-5.600	-4.136	
$2: 33: 12$	60.014	3785.768	-11.200	-6.609	
$2: 33: 14$	60.014	3785.768	-11.200	-8.216	
$2: 33: 16$	60.019	3786.304	-15.201	-10.660	
$2: 33: 18$	60.019	3786.304	-15.201	-12.250	
$2: 33: 20$	60.019	3786.304	-15.201	-13.283	
$2: 33: 22$	60.017	3787.516	-13.599	-13.393	
$2: 33: 24$	60.017	3787.516	-13.599	-13.465	
$2: 33: 26$	60.023	3788.607	-18.399	-15.192	
$2: 33: 28$	60.023	3788.607	-18.399	-16.314	
$2: 33: 30$	60.023	3788.607	-18.399	-17.044	
$2: 33: 32$	60.021	3787.537	-16.800	-16.959	
$2: 33: 34$	60.021	3787.537	-16.800	-16.903	
$2: 33: 36$	60.024	3787.930	-19.199	-17.707	
$2: 33: 38$	60.024	3787.930	-19.199	-18.229	
$2: 33: 40$	60.024	3787.930	-19.199	-18.568	
$2: 33: 42$	60.02	3786.875	-16.000	-17.669	
$2: 33: 44$	60.02	3786.875	-16.000	-17.085	
$2: 33: 46$	60.024	3785.018	-19.199	-17.825	
$2: 33: 48$	60.024	3785.018	-19.199	-18.306	
$2: 33: 50$	60.024	3785.018	-19.199	-18.618	

$\begin{array}{lllllll}0.580 & 3779.745 & 3762.551 & 3781793 & 3764.671 & 3721.434\end{array}$ $\begin{array}{llllll}0.580 & 3779.745 & 3762.551 & 3781.793 & 3764.671 & 3721.434 \\ 0.580 & 3778.373 & 3762.544 & 3781.770 & 3765.251 & 3721.724\end{array}$ $\begin{array}{lllllll}0.580 & 3777.685 & 3762.536 & 3781.744 & 3765.831 & 3722.014\end{array}$ $\begin{array}{lllllll}0.580 & 3778.000 & 3762.552 & 3781.719 & 3766.412 & 3722.305\end{array}$ $\begin{array}{lllllll}0.580 & 3778.408 & 3762.568 & 3781.698 & 3766.992 & 3722.595\end{array}$ $\begin{array}{lllllll}0.580 & 3778.876 & 3762.583 & 3781.680 & 3767.572 & 3722.885\end{array}$ $\begin{array}{lllllll}0.580 & 3777.983 & 3762.607 & 3781.656 & 3768.153 & 3723.175\end{array}$ $\begin{array}{lllllll}0.580 & 3777.606 & 3762.632 & 3781.631 & 3768.733 & 3723.465\end{array}$ $\begin{array}{lllllll}0.580 & 3778.405 & 3762.669 & 3781.610 & 3769.314 & 3723.755\end{array}$ $\begin{array}{lllllll}0.580 & 3779.127 & 3762.707 & 3781.595 & 3769.894 & 3724.046\end{array}$ $\begin{array}{lllllll}0.580 & 3779.799 & 3762.743 & 3781.584 & 3770.474 & 3724.336\end{array}$ $\begin{array}{lllllll}0.580 & 3782.119 & 3762.803 & 3781.587 & 3771.055 & 3724.626\end{array}$ $\begin{array}{lllllll}0.580 & 3782.119 & 3762.803 & 3781.587 & 3771.055 & 3724.626 \\ 0.580 & 3783.830 & 3762.862 & 3781.601 & 3771.635 & 3724.916\end{array}$ $\begin{array}{lllllll}0.580 & 3783.830 & 3762.862 & 3781.601 & 3771.635 & 3724.916 \\ 0.580 & 3782.345 & 3762.942 & 3781.605 & 3772.215 & 3725.206\end{array}$	0.580	3782.345	3762.942	3781.605	3772.215	3725.206
580	3781.583	3763.020	3781.605	3772.796	3725.497	$\begin{array}{lllllll}0.580 & 3781.583 & 3763.020 & 3781.605 & 3772.796 & 3725.497\end{array}$ $\begin{array}{lllllll}0.580 & 3781.291 & 3763.097 & 3781.603 & 3773.376 & 3725.787\end{array}$ $\begin{array}{lllllll}0.580 & 3779.624 & 3763.168 & 3781.591 & 3773.956 & 3726.077 \\ 0.580 & 3778.744 & 3763.237 & 378.575 & 3774537 & 372.367\end{array}$ $\begin{array}{lllllll}0.580 & 3778.744 & 3763.237 & 3781.575 & 3774.537 & 3726.367\end{array}$ $\begin{array}{lllllll}0.580 & 3778.375 & 3763.328 & 3781.556 & 3775.117 & 3726.657\end{array}$ $\begin{array}{lllllll}0.580 & 3778.338 & 3763.417 & 3781.537 & 3775.698 & 3726.947\end{array}$ $\begin{array}{lllllll}0.580 & 3778.518 & 3763.506 & 3781.519 & 3776.278 & 3727.238\end{array}$ $\begin{array}{lllllll}0.000 & 3777.417 & 3763.609 & 3781.495 & 3776.278 & 3727.524\end{array}$ $\begin{array}{lllllll}0.000 & 3776.702 & 3763.711 & 3781.467 & 3776.278 & 3727.808\end{array}$ $\begin{array}{lllllll}0.000 & 3774.837 & 3763.827 & 3781.429 & 3776.278 & 3728.088\end{array}$ $\begin{array}{lllllll}0.000 & 3773.625 & 3763.942 & 3781.385 & 3776.278 & 3728.365\end{array}$ $\begin{array}{lllllll}0.000 & 3772.836 & 3764.055 & 3781.336 & 3776.278 & 3728.639\end{array}$ $\begin{array}{lllllll}0.000 & 3770.364 & 3764.178 & 3781.274 & 3776.278 & 3728.909\end{array}$ $\begin{array}{llllllll}07000 & 3768.757 & 3764.299 & 3781.204 & 3776.278 & 3729.177\end{array}$
:---	:---	:---	:---	:---	:---	:---
000	3766.313	3764.422	3781.121	3776.278	3729.442	$\begin{array}{lllllll}0.000 & 3766.313 & 3764.422 & 3781.121 & 3776.278 & 3729.442 \\ 000 & 3764.723 & 3764.544 & 3781.030 & 3776.278 & 3729.703\end{array}$ $\begin{array}{lllllll}0.000 & 3764.723 & 3764.544 & 3781.030 & 3776.278 & 3729.703\end{array}$ $\begin{array}{lllllll}0.000 & 3763.690 & 3764.664 & 3780.934 & 3776.278 & 3729.962 \\ 0.000 & 3763.580 & 3764.789 & 3780.838 & 3776278 & 373.218\end{array}$
:---	:---	:---	:---	:---	:---	:---

2:33:52	60.022	3785.949	-17.599	-18.262
2:33:54	60.022	3785.949	-17.599	-18.030
2:33:56	60.022	3786.877	-17.599	-17.879
2:33:58	60.022	3786.877	-17.599	-17.781
2:34:00	60.022	3786.877	-17.599	-17.718
2:34:02	60.023	3785.726	-18.399	-17.956
2:34:04	60.023	3785.726	-18.399	-18.111
2:34:06	60.022	3785.798	-17.599	-17.932
2:34:08	60.022	3785.798	-17.599	-17.816
2:34:10	60.022	3785.798	-17.599	-17.740
2:34:12	60.018	3786.939	-14.401	-16.571
2:34:14	60.018	3786.939	-14.401	-15.812
2:34:16	60.018	3789.673	-14.401	-15.318
2:34:18	60.018	3789.673	-14.401	-14.997
2:34:20	60.018	3789.673	-14.401	-14.789
2:34:22	60.016	3788.479	-12.799	-14.092
2:34:24	60.016	3788.479	-12.799	-13.640
2:34:26	60.016	3789.005	-12.799	-13.345
2:34:28	60.016	3789.005	-12.799	-13.154
2:34:30	60.016	3789.005	-12.799	-13.030
2:34:32	60.012	3788.933	-9.601	-11.830
2:34:34	60.012	3788.933	-9.601	-11.050
2:34:36	60.01	3790.411	-7.999	-9.982
2:34:38	60.01	3790.411	-7.999	-9.288
2:34:40	60.01	3790.411	-7.999	-8.837
2:34:42	60.009	3791.540	-7.199	-8.263
2:34:44	60.009	3791.540	-7.199	-7.891
2:34:46	60.01	3791.443	-7.999	-7.929
2:34:48	60.01	3791.443	-7.999	-7.953
2:34:50	60.01	3791.443	-7.999	-7.969
2:34:52	59.995	3790.603	4.001	-3.780
2:34:54	59.995	3790.603	4.001	-1.056
2:34:56	59.991	3789.585	7.199	1.833
2:34:58	59.991	3789.585	7.199	3.711
2:35:00	59.991	3789.585	7.199	4.932
2:35:02	59.988	3788.105	9.601	6.566
2:35:04	59.988	3788.105	9.601	7.628
2:35:06	59.985	3788.497	12.000	9.158
2:35:08	59.985	3788.497	12.000	10.153
2:35:10	59.985	3788.497	12.000	10.799
2:35:12	59.984	3788.571	12.799	11.499
2:35:14	59.984	3788.571	12.799	11.954
2:35:16	59.981	3786.453	15.201	13.090
2:35:18	59.981	3786.453	15.201	13.829
2:35:20	59.981	3786.453	15.201	14.309
2:35:22	59.977	3788.813	18.399	15.741

$\begin{array}{lllllll}0.000 & 3758.711 & 3766.490 & 3779.234 & 3776.278 & 3733.743\end{array}$ $\begin{array}{llllll}0.000 & 3758.711 & 3766.490 & 3779.234 & 3776.278 & 3733.743 \\ 0.000 & 3758.943 & 3766.589 & 3779.131 & 3776.278 & 3733.959\end{array}$ $\begin{array}{lllllll}0.000 & 3759.094 & 3766.691 & 3779.031 & 3776.278 & 3734.173\end{array}$ $\begin{array}{llllllll}0.000 & 3759.192 & 3766.792 & 3778.931 & 3776.278 & 3734.384\end{array}$ $\begin{array}{lllllll}0.000 & 3759.255 & 3766.892 & 3778.833 & 3776.278 & 3734.594\end{array}$ $\begin{array}{lllllll}0.000 & 3759.017 & 3766.985 & 3778.735 & 3776.278 & 3734.801\end{array}$ $\begin{array}{lllllll}0.000 & 3758.862 & 3767.077 & 3778.637 & 3776.278 & 3735.006\end{array}$ $\begin{array}{lllllll}0.000 & 3759.041 & 3767.169 & 3778.541 & 3776.278 & 3735.210\end{array}$ $\begin{array}{lllllll}0.000 & 3759.157 & 3767.260 & 3778.447 & 3776.278 & 3735.411\end{array}$ $\begin{array}{lllllll}0.000 & 3759.233 & 3767.350 & 3778.354 & 3776.278 & 3735.610\end{array}$ $\begin{array}{lllllll}0.000 & 3760.402 & 3767.444 & 3778.267 & 3776.278 & 3735.808\end{array}$ $\begin{array}{lllllll}0.000 & 3761.161 & 3767.538 & 3778.185 & 3776.278 & 3736.003\end{array}$ $\begin{array}{lllllll}0.000 & 3761.161 & 3767.538 & 3778.185 & 3776.278 & 3736.003 \\ 0.000 & 3761.655 & 3767.644 & 3778.106 & 3776.278 & 3736.197\end{array}$ $\begin{array}{lllllll}0.000 & 3761.655 & 3767.644 & 3778.106 & 3776.278 & 3736.197 \\ 0.000 & 3761.976 & 3767.749 & 3778.029 & 3776.278 & 3736.389\end{array}$ $\begin{array}{llllll}0.000 & 3761.976 & 3767.749 & 3778.029 & 3776.278 & 3736.389 \\ 0 & 000 & 3762.184 & 3767.853 & 3777.954 & 3776.278 \\ 3736579\end{array}$ | 073762.3769 | 3762.184 | 3767.853 | 3777.954 | 3776.278 | 3736.579 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 000 | 3762.881 | 3767.950 | 3777.883 | 3776.278 | 3736767 | $\begin{array}{lllllll}0.000 & 3762.881 & 3767.950 & 3777.883 & 3776.278 & 3736.767\end{array}$ $\begin{array}{lllllll}0.000 & 3763.333 & 3768.046 & 3777.814 & 3776.278 & 3736.953\end{array}$ $\begin{array}{lllllll}0.000 & 3763.628 & 3768.144 & 3777.748 & 3776.278 & 3737.138\end{array}$ $\begin{array}{lllllll}0.000 & 3763.819 & 3768.241 & 3777.683 & 3776.278 & 3737.321\end{array}$ $\begin{array}{lllllll}0.000 & 3763.943 & 3768.338 & 3777.620 & 3776.278 & 3737.502\end{array}$ $\begin{array}{lllllll}0.000 & 3765.143 & 3768.432 & 3777.562 & 3776.278 & 3737.681\end{array}$ $\begin{array}{lllllll}0.000 & 3765.923 & 3768.527 & 3777.509 & 3776.278 & 3737.859\end{array}$ $\begin{array}{lllllll}0.000 & 3766.991 & 3768.626 & 3777.461 & 3776.278 & 3738.035\end{array}$ $\begin{array}{lllllll}0.000 & 3767.685 & 3768.725 & 3777.416 & 3776.278 & 3738.210\end{array}$ $\begin{array}{lllllll}0.000 & 3768.136 & 3768.824 & 3777.374 & 3776.278 & 3738.383\end{array}$ $\begin{array}{lllllll}0.000 & 3768.710 & 3768.926 & 3777.335 & 3776.278 & 3738.555\end{array}$ $\begin{array}{lllllll}0.000 & 3769.082 & 3769.027 & 3777.298 & 3776.278 & 3738.725\end{array}$ $\begin{array}{llllllll}0.000 & 3769.044 & 3769.127 & 3777.261 & 3776.278 & 3738.893\end{array}$ $\begin{array}{lllllll}0.000 & 3769.044 & 3769.127 & 3777.261 & 3776.278 & 3738.893 \\ 0 & 3769.020 & 3769.227 & 3777.225 & 3776.278 & 3739.060\end{array}$ $\begin{array}{llllllll}0.000 & 3769.020 & 3769.227 & 3777.225 & 3776.278 & 3739.060\end{array}$ $\begin{array}{lllllll}07600 & 3769.004 & 3769.325 & 3777.188 & 3776.278 & 3739.225\end{array}$ $\begin{array}{llllllllll}0.000 & 3773.193 & 3769.419 & 3777.111 & 3776.278 & 3739.389\end{array}$ $\begin{array}{llllllllllllll}0.000 & 3779.552\end{array}$ | 0.000 | 378.806 | 3769.59513 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll}0.000 & 3780.684 & 3769.686 & 3777.188 & 3776.278 & 3739.872\end{array}$ $\begin{array}{lllllll}0.000 & 3781.905 & 3769.772 & 3777.208 & 3776.278 & 3740.031\end{array}$ $\begin{array}{lllllll}0.000 & 3783.539 & 3769.851 & 3777.235 & 3776.278 & 3740.188\end{array}$ $\begin{array}{llllllll}0.000 & 3784.601 & 3769.930 & 3777.267 & 3776.278 & 3740.343\end{array}$ $\begin{array}{lllllll}0.000 & 3786.131 & 3770.009 & 3777.305 & 3776.278 & 3740.497\end{array}$ $\begin{array}{lllllll}0.000 & 3787.126 & 3770.088 & 3777.347 & 3776.278 & 3740.650\end{array}$ $\begin{array}{llllllll}0.000 & 3787.772 & 3770.166 & 3777.391 & 3776.278 & 3740.802\end{array}$ $\begin{array}{lllllll}0.000 & 3788.472 & 3770.243 & 3777.438 & 3776.278 & 3740.952\end{array}$ $\begin{array}{lllllll}0.000 & 3788.927 & 3770.320 & 3777.486 & 3776.278 & 3741.101\end{array}$ $\begin{array}{lllllll}0.000 & 3790.063 & 3770.388 & 3777.538 & 3776.278 & 3741.249\end{array}$ $\begin{array}{lllllll}0.000 & 3790.802 & 3770.455 & 3777.594 & 3776.278 & 3741.396\end{array}$ $\begin{array}{lllllll}0.000 & 3791.282 & 3770.521 & 3777.651 & 3776.278 & 3741.541\end{array}$ $\begin{array}{lllllll}0.000 & 3792.714 & 3770.597 & 3777.713 & 3776.278 & 3741.685\end{array}$

2:35:24	59.977	3788.813	18.399	16.671
2:35:26	59.976	3788.410	19.199	17.556
2:35:28	59.976	3788.410	19.199	18.131
2:35:30	59.976	3788.410	19.199	18.504
2:35:32	59.978	3790.665	17.599	18.188
2:35:34	59.978	3790.665	17.599	17.982
2:35:36	59.974	3789.267	20.801	18.968
2:35:38	59.974	3789.267	20.801	19.610
2:35:40	59.974	3789.267	20.801	20.027
2:35:42	59.977	3790.430	18.399	19.457
2:35:44	59.977	3790.430	18.399	19.087
2:35:46	59.973	3787.442	21.600	19.966
2:35:48	59.973	3787.442	21.600	20.538
2:35:50	59.973	3787.442	21.600	20.910
2:35:52	59.971	3790.602	23.199	21.711
2:35:54	59.971	3790.602	23.199	22.232
2:35:56	59.978	3792.311	17.599	20.611
2:35:58	59.978	3792.311	17.599	19.557
2:36:00	59.978	3792.311	17.599	18.872
2:36:02	59.975	3788.080	20.001	19.267
2:36:04	59.975	3788.080	20.001	19.524
2:36:06	59.976	3787.164	19.199	19.410
2:36:08	59.976	3787.164	19.199	19.336
2:36:10	59.976	3787.164	19.199	19.288
2:36:12	59.969	3787.405	24.799	21.217
2:36:14	59.969	3787.405	24.799	22.470
2:36:16	59.965	3789.214	28.000	24.406
2:36:18	59.965	3789.214	28.000	25.664
2:36:20	59.965	3789.214	28.000	26.481
2:36:22	59.97	3791.221	23.999	25.613
2:36:24	59.97	3791.221	23.999	25.048
2:36:26	59.965	3788.824	28.000	26.081
2:36:28	59.965	3788.824	28.000	26.753
2:36:30	59.965	3788.824	28.000	27.189
2:36:32	59.972	3789.167	22.400	25.513
2:36:34	59.972	3789.167	22.400	24.423
2:36:36	59.967	3784.831	26.401	25.115
2:36:38	59.967	3784.831	26.401	25.565
2:36:40	59.967	3784.831	26.401	25.858
2:36:42	59.969	3784.320	24.799	25.487
2:36:44	59.969	3784.320	24.799	25.246
2:36:46	59.967	3779.352	26.401	25.650
2:36:48	59.967	3779.352	26.401	25.913
2:36:50	59.967	3779.352	26.401	26.084
2:36:52	59.971	3778.633	23.199	25.074
2:36:54	59.971	3778.633	23.199	24.418

$\begin{array}{lllllll}0.000 & 3793.644 & 3770.672 & 3777.778 & 3776.278 & 3741.828\end{array}$ $\begin{array}{llllll}0.000 & 3793.644 & 3770.672 & 3777.778 & 3776.278 & 3741.828 \\ 0.000 & 3794.529 & 3770.744 & 3777.847 & 3776.278 & 3741.970\end{array}$ $\begin{array}{lllllll}0.000 & 3795.104 & 3770.816 & 3777.917 & 3776.278 & 3742.110\end{array}$ $\begin{array}{lllllll}0.000 & 3795.477 & 3770.888 & 3777.989 & 3776.278 & 3742.250\end{array}$ $\begin{array}{lllllll}0.000 & 3795.161 & 3770.968 & 3778.058 & 3776.278 & 3742.388\end{array}$ $\begin{array}{lllllll}0.000 & 3794.955 & 3771.047 & 3778.126 & 3776.278 & 3742.525\end{array}$ $\begin{array}{lllllll}0.000 & 3795.941 & 3771.121 & 3778.198 & 3776.278 & 3742.662\end{array}$ $\begin{array}{lllllll}0.000 & 3796.583 & 3771.193 & 3778.272 & 3776.278 & 3742.797\end{array}$ $\begin{array}{lllllll}0.000 & 3797.000 & 3771.265 & 3778.346 & 3776.278 & 3742.930\end{array}$ $\begin{array}{lllllll}0.000 & 3796.430 & 3771.341 & 3778.418 & 3776.278 & 3743.063\end{array}$ $\begin{array}{lllllll}0.000 & 3796.060 & 3771.417 & 3778.488 & 3776.278 & 3743.195\end{array}$ $\begin{array}{llllll}0.000 & 3796.939 & 3771.480 & 3778.560 & 3776.278 & 3743.326\end{array}$ $\begin{array}{llllll}0.000 & 3796.939 & 3771.480 & 3778.560 & 3776.278 & 3743.326 \\ 0.000 & 3797.511 & 3771.542 & 3778.635 & 3776.278 & 3743.456\end{array}$ $\begin{array}{lllllll}0.000 & 3797.511 & 3771.542 & 3778.635 & 3776.278 & 3743.456 \\ 0.000 & 3797.883 & 3771.605 & 3778.710 & 3776.278 & 3743.584\end{array}$ $\begin{array}{llllll}0.000 & 3797.883 & 3771.605 & 3778.710 & 3776.278 & 3743.584 \\ 0.000 & 3798.684 & 3771.678 & 3778.788 & 3776.278 & 3743.712\end{array}$ $\begin{array}{lllllll}0.000 & 3798.684 & 3771.678 & 3778.788 & 3776.278 & 3743.712\end{array}$ $\begin{array}{llllll}0.000 & 3799.205 & 3771.752 & 3778.867 & 3776.278 & 3743.839 \\ 0.000 & 3797.584 & 3771.831 & 3778.939 & 3776.278 & 3743.965\end{array}$ $\begin{array}{lllllll}0.000 & 3797.584 & 3771.831 & 3778.939 & 3776.278 & 3743.965\end{array}$ $\begin{array}{lllllll}0.000 & 3796.530 & 3771.910 & 3779.007 & 3776.278 & 3744.089\end{array}$ $\begin{array}{lllllll}0.000 & 3795.845 & 3771.988 & 3779.071 & 3776.278 & 3744.213\end{array}$ $\begin{array}{lllllll}0.000 & 3796.240 & 3772.050 & 3779.137 & 3776.278 & 3744.336\end{array}$ $\begin{array}{llllll}0.000 & 3796.497 & 3772.110 & 3779.203 & 3776.278 & 3744.458\end{array}$ $\begin{array}{lllllll}0.000 & 3796.383 & 3772.168 & 3779.268 & 3776.278 & 3744.579\end{array}$ $\begin{array}{lllllll}0.000 & 3796.309 & 3772.224 & 3779.332 & 3776.278 & 3744.699\end{array}$ $\begin{array}{lllllll}0.000 & 3796.261 & 3772.280 & 3779.396 & 3776.278 & 3744.818\end{array}$ $\begin{array}{lllllll}0.000 & 3798.190 & 3772.337 & 3779.466 & 3776.278 & 3744.936\end{array}$ $\begin{array}{llllllll}0.000 & 3799.443 & 3772.393 & 3779.541 & 3776.278 & 3745.054\end{array}$ $\begin{array}{lllllll}0.000 & 3801.379 & 3772.456 & 3779.622 & 3776.278 & 3745.170\end{array}$ $\begin{array}{llllllll}0.000 & 3802.637 & 3772.518 & 3779.707 & 3776.278 & 3745.286\end{array}$ $\begin{array}{llllll}0.000 & 3802.637 & 3772.518 & 3779.707 & 3776.278 & 3745.286 \\ 0.000 & 3803.454 & 3772.579 & 3779.795 & 3776.278 & 3745.401\end{array}$ $\begin{array}{lllllll}0.000 & 3803.454 & 3772.579 & 3779.795 & 3776.278 & 3745.401 \\ 0.000 & 3802.586 & 3772.648 & 3779.878 & 3776.278 & 3745.515\end{array}$ $\begin{array}{llllll}0.000 & 3802.586 & 3772.648 & 3779.878 & 3776.278 & 3745.515\end{array}$ $\begin{array}{llllll}0.000 & 3802.021 & 3772.716 & 3779.960 & 3776.278 & 3745.628 \\ 0.000 & 3803.054 & 3772.775 & 3780.044 & 3776278 & 3745.740\end{array}$ $\begin{array}{lllllll}0.000 & 3803.054 & 372.775 & 3780.044 & 3776.278 & 3745.740\end{array}$ $\begin{array}{lllllll}0.000 & 3803.726 & 3772.833 & 3780.130 & 3776.278 & 3745.851\end{array}$ $\begin{array}{lllllll}0.000 & 3804.162 & 3772.891 & 3780.217 & 3776.278 & 3745.962\end{array}$ $\begin{array}{lllllll}0.000 & 3802.486 & 3772.950 & 3780.297 & 3776.278 & 3746.072\end{array}$ $\begin{array}{lllllll}0.000 & 3801.396 & 3773.008 & 3780.373 & 3776.278 & 3746.181\end{array}$ $\begin{array}{lllllll}0.000 & 3802.088 & 3773.050 & 3780.451 & 3776.278 & 3746.289\end{array}$ $\begin{array}{llllllll}0.000 & 3802.538 & 3773.093 & 3780.530 & 3776.278 & 3746.397\end{array}$ $\begin{array}{lllllll}0.000 & 3802.831 & 3773.134 & 3780.609 & 3776.278 & 3746.503\end{array}$ $\begin{array}{lllllll}0.000 & 3802.460 & 3773.174 & 3780.687 & 3776.278 & 3746.609\end{array}$ $\begin{array}{lllllll}0.000 & 3802.219 & 3773.213 & 3780.763 & 3776.278 & 3746.715\end{array}$ $\begin{array}{lllllll}0.000 & 3802.623 & 3773.235 & 3780.840 & 3776.278 & 3746.819\end{array}$ $\begin{array}{llllllll}0.000 & 3802.886 & 3773.256 & 3780.917 & 3776.278 & 3746.923\end{array}$ $\begin{array}{lllllll}0.000 & 3803.057 & 3773.278 & 3780.995 & 3776.278 & 3747.026\end{array}$ $\begin{array}{lllllll}0.000 & 3802.047 & 3773.296 & 3781.068 & 3776.278 & 3747.128\end{array}$ $\begin{array}{lllllll}0.000 & 3801.391 & 3773.315 & 3781.139 & 3776.278 & 3747.230\end{array}$

2:36:56	59.965	3776.429	28.000	25.672
2:36:58	59.965	3776.429	28.000	26.487
2:37:00	59.965	3776.429	28.000	27.016
2:37:02	59.97	3776.597	23.999	25.960
2:37:04	59.97	3776.597	23.999	25.274
2:37:06	59.969	3773.170	24.799	25.107
2:37:08	59.969	3773.170	24.799	24.999
2:37:10	59.969	3773.170	24.799	24.929
2:37:12	59.965	3768.793	28.000	26.004
2:37:14	59.965	3768.793	28.000	26.702
2:37:16	59.973	3767.366	21.600	24.917
2:37:18	59.973	3767.366	21.600	23.756
2:37:20	59.973	3767.366	21.600	23.002
2:37:22	59.968	3760.295	25.601	23.911
2:37:24	59.968	3760.295	25.601	24.503
2:37:26	59.967	3761.777	26.401	25.167
2:37:28	59.967	3761.777	26.401	25.599
2:37:30	59.967	3761.777	26.401	25.880
2:37:32	59.979	3760.157	16.800	22.702
2:37:34	59.979	3760.157	16.800	20.636
2:37:36	59.983	3757.773	13.599	18.173
2:37:38	59.983	3757.773	13.599	16.572
2:37:40	59.983	3757.773	13.599	15.531
2:37:42	59.965	3753.087	28.000	19.895
2:37:44	59.965	3753.087	28.000	22.732
2:37:46	59.962	3758.225	30.399	25.415
2:37:48	59.962	3758.225	30.399	27.159
2:37:50	59.962	3758.225	30.399	28.293
2:37:52	59.96	3758.041	32.001	29.591
2:37:54	59.96	3758.041	32.001	30.434
2:37:56	59.959	3763.822	32.800	31.262
2:37:58	59.959	3763.822	32.800	31.801
2:38:00	59.959	3763.822	32.800	32.151
2:38:02	59.953	3763.858	37.601	34.058
2:38:04	59.953	3763.858	37.601	35.298
2:38:06	59.957	3768.339	34.399	34.983
2:38:08	59.957	3768.339	34.399	34.779
2:38:10	59.957	3768.339	34.399	34.646
2:38:12	59.963	3767.438	29.599	32.880
2:38:14	59.963	3767.438	29.599	31.731
2:38:16	59.959	3761.570	32.800	32.106
2:38:18	59.959	3761.570	32.800	32.349
2:38:20	59.959	3761.570	32.800	32.507
2:38:22	59.965	3759.627	28.000	30.929
2:38:24	59.965	3759.627	28.000	29.904
2:38:26	59.968	3750.102	25.601	28.398

$\begin{array}{lllllll}0.000 & 3802.645 & 3773.326 & 3781.213 & 3776.278 & 3747.330\end{array}$ $\begin{array}{llllll}0.000 & 3803.460 & 3773.336 & 3781.290 & 3776.278 & 3747.431\end{array}$ $\begin{array}{lllllll}0.000 & 3803.989 & 3773.347 & 3781.368 & 3776.278 & 3747.530\end{array}$ $\begin{array}{lllllll}0.000 & 3802.933 & 3773.358 & 3781.442 & 3776.278 & 3747.629\end{array}$ $\begin{array}{lllllll}0.000 & 3802.247 & 3773.369 & 3781.513 & 3776.278 & 3747.727\end{array}$ $\begin{array}{lllllll}0.000 & 3802.080 & 3773.369 & 3781.583 & 3776.278 & 3747.824\end{array}$ $\begin{array}{lllllll}0.000 & 3801.972 & 3773.368 & 3781.652 & 3776.278 & 3747.921\end{array}$ $\begin{array}{llllllll}0.000 & 3801.902 & 3773.367 & 3781.720 & 3776.278 & 3748.017\end{array}$ $\begin{array}{lllllll}0.000 & 3802.977 & 3773.352 & 3781.792 & 3776.278 & 3748.113\end{array}$ $\begin{array}{lllllll}0.000 & 3803.675 & 3773.337 & 3781.865 & 3776.278 & 3748.208\end{array}$ $\begin{array}{lllllll}0.000 & 3801.890 & 3773.317 & 3781.932 & 3776.278 & 3748.302\end{array}$ $\begin{array}{llllllll}0.000 & 3800.729 & 3773.297 & 3781.995 & 3776.278 & 3748.395\end{array}$ $\begin{array}{lllllll}0.000 & 3800.729 & 3773.297 & 3781.995 & 3776.278 & 3748.395 \\ 0.000 & 3799.974 & 3773.277 & 3782.054 & 3776.278 & 3748.488\end{array}$ $\begin{array}{lllllll}0.000 & 3799.974 & 3773.277 & 3782.054 & 3776.278 & 3748.488 \\ 0.000 & 3800.884 & 3773.234 & 3782.117 & 3776.278 & 3748.581\end{array}$ $\begin{array}{lllllll}0.000 & 3800.884 & 3773.234 & 3782.117 & 3776.278 & 3748.581\end{array}$ $\begin{array}{lllllll}0.000 & 3801.476 & 3773.191 & 3782.181 & 3776.278 & 3748.672 \\ 0.000 & 3802.140 & 3773.154 & 3782.246 & 3776.278 & 3748.764\end{array}$ $\begin{array}{lllllll}0.000 & 3802.140 & 3773.154 & 3782.246 & 3776.278 & 3748.764\end{array}$ $\begin{array}{lllllll}0.000 & 3802.572 & 3773.116 & 3782.313 & 3776.278 & 3748.854\end{array}$ $\begin{array}{lllllll}0.000 & 3802.853 & 3773.079 & 3782.380 & 3776.278 & 3748.944\end{array}$ $\begin{array}{lllllll}0.000 & 3799.675 & 3773.037 & 3782.436 & 3776.278 & 3749.033\end{array}$ $\begin{array}{lllllll}0.000 & 3797.609 & 3772.996 & 3782.486 & 3776.278 & 3749.122\end{array}$ $\begin{array}{lllllll}0.000 & 3795.146 & 3772.946 & 3782.527 & 3776.278 & 3749.210\end{array}$ $\begin{array}{lllllll}0.000 & 3793.545 & 3772.897 & 3782.562 & 3776.278 & 3749.298\end{array}$ $\begin{array}{lllllll}0.000 & 3792.504 & 3772.849 & 3782.594 & 3776.278 & 3749.385\end{array}$ $\begin{array}{lllllll}0.000 & 3796.868 & 3772.785 & 3782.640 & 3776.278 & 3749.471\end{array}$ $\begin{array}{llllllll}0.000 & 3799.705 & 3772.722 & 3782.694 & 3776.278 & 3749.557\end{array}$ $\begin{array}{lllllll}0.000 & 3802.388 & 3772.676 & 3782.757 & 3776.278 & 3749.643\end{array}$ $\begin{array}{lllllll}0.000 & 3804.132 & 3772.630 & 3782.825 & 3776.278 & 3749.727\end{array}$ $\begin{array}{lllllll}0.000 & 3805.266 & 3772.585 & 3782.896 & 3776.278 & 3749.812\end{array}$ $\begin{array}{lllllll}0.000 & 3805.266 & 3772.585 & 3782.896 & 3776.278 & 3749.812\end{array}$
 $\begin{array}{llllll}0.000 & 3807.407 & 3772.493 & 3783.048 & 3776.278 & 3749.979\end{array}$ $\begin{array}{lllllll}0.000 & 3808.235 & 3772.466 & 3783.127 & 3776.278 & 3750.061 \\ 0 & 3708 & 3774 & 3772.439 & 3783.207 & 3776.278 & 3750.144\end{array}$ $\begin{array}{llllllll}0.000 & 3808.77 & 3772.43 & 3783.207 & 3776.278 & 3750.144\end{array}$
 $\begin{array}{lllllll}0.000 & 3811.031 & 3772.386 & 3783.374 & 3776.278 & 3750.306\end{array}$ $\begin{array}{lllllll}0.000 & 3812.271 & 3772.359 & 3783.463 & 3776.278 & 3750.387\end{array}$ $\begin{array}{lllllll}0.000 & 3811.956 & 3772.347 & 3783.551 & 3776.278 & 3750.467\end{array}$ $\begin{array}{lllllll}0.000 & 3811.752 & 3772.335 & 3783.638 & 3776.278 & 3750.547\end{array}$ $\begin{array}{lllllll}0.000 & 3811.619 & 3772.322 & 3783.724 & 3776.278 & 3750.626\end{array}$ $\begin{array}{lllllll}0.000 & 3809.853 & 3772.307 & 3783.803 & 3776.278 & 3750.705\end{array}$ $\begin{array}{lllllll}0.000 & 3808.704 & 3772.293 & 3783.879 & 3776.278 & 3750.783\end{array}$ $\begin{array}{lllllll}0.000 & 3809.079 & 3772.260 & 3783.956 & 3776.278 & 3750.861\end{array}$ $\begin{array}{lllllll}0.000 & 3809.322 & 3772.228 & 3784.033 & 3776.278 & 3750.938\end{array}$ $\begin{array}{lllllll}0.000 & 3809.480 & 3772.195 & 3784.110 & 3776.278 & 3751.015\end{array}$ $\begin{array}{lllllll}0.000 & 3807.902 & 3772.157 & 3784.181 & 3776.278 & 3751.091\end{array}$ $\begin{array}{lllllll}0.000 & 3807.902 & 3772.157 & 3784.181 & 3776.278 & 3751.091 \\ 0.000 & 3806.877 & 3772.120 & 3784.250 & 3776.278 & 3751.167\end{array}$ $\begin{array}{lllllll}0.000 & 3805.371 & 3772.054 & 3784.313 & 3776.278 & 3751.242\end{array}$

2:38:28	59.968	3750.102	25.601	27.419
2:38:30	59.968	3750.102	25.601	26.783
2:38:32	59.973	3753.510	21.600	24.969
2:38:34	59.973	3753.510	21.600	23.790
2:38:36	59.965	3753.178	28.000	25.263
2:38:38	59.965	3753.178	28.000	26.221
2:38:40	59.965	3753.178	28.000	26.844
2:38:42	59.972	3753.291	22.400	25.288
2:38:44	59.972	3753.291	22.400	24.277
2:38:46	59.975	3749.398	20.001	22.781
2:38:48	59.975	3749.398	20.001	21.808
2:38:50	59.975	3749.398	20.001	21.176
2:38:52	59.974	3740.370	20.801	21.044
2:38:54	59.974	3740.370	20.801	20.959
2:38:56	59.981	3745.738	15.201	18.944
2:38:58	59.981	3745.738	15.201	17.634
2:39:00	59.981	3745.738	15.201	16.782
2:39:02	59.982	3741.618	14.401	15.949
2:39:04	59.982	3741.618	14.401	15.407
2:39:06	59.984	3738.901	12.799	14.494
2:39:08	59.984	3738.901	12.799	13.901
2:39:10	59.984	3738.901	12.799	13.515
2:39:12	59.979	3737.273	16.800	14.665
2:39:14	59.979	3737.273	16.800	15.412
2:39:16	59.978	3735.448	17.599	16.178
2:39:18	59.978	3735.448	17.599	16.675
2:39:20	59.978	3735.448	17.599	16.999
2:39:22	59.981	3737.541	15.201	16.370
2:39:24	59.981	3737.541	15.201	15.960
2:39:26	59.978	3736.693	17.599	16.534
2:39:28	59.978	3736.693	17.599	16.907
2:39:30	59.978	3736.693	17.599	17.149
2:39:32	59.971	3736.094	23.199	19.267
2:39:34	59.971	3736.094	23.199	20.643
2:39:36	59.974	3738.875	20.801	20.698
2:39:38	59.974	3738.875	20.801	20.734
2:39:40	59.974	3738.875	20.801	20.758
2:39:42	59.972	3738.647	22.400	21.332
2:39:44	59.972	3738.647	22.400	21.706
2:39:46	59.971	3737.892	23.199	22.229
2:39:48	59.971	3737.892	23.199	22.568
2:39:50	59.971	3737.892	23.199	22.789
2:39:52	59.972	3740.329	22.400	22.653
2:39:54	59.972	3740.329	22.400	22.564
2:39:56	59.977	3742.524	18.399	21.107
2:39:58	59.977	3742.524	18.399	20.159

$\begin{array}{lllllll}0.000 & 3804.392 & 3771.988 & 3784.373 & 3776.278 & 3751.317\end{array}$ $\begin{array}{llllll}0.000 & 3803.392 & 3771.988 & 3784.373 & 3776.278 & 3751.317 \\ 0.0023 & 3784.430 & 3776.278 & 3751.392\end{array}$ $\begin{array}{lllllll}0.000 & 3803.756 & 3771.923 & 3784.430 & 3776.278 & 3751.392 \\ 0.000 & 3801.942 & 3771.869 & 3784.482 & 3776.278 & 3751.466\end{array}$ $\begin{array}{lllllll}0.000 & 3801.942 & 3771.869 & 3784.482 & 3776.278 & 3751.466 \\ 0.000 & 3800.763 & 3771.814 & 3784.531 & 3776.278 & 3751.539\end{array}$ $\begin{array}{lllllll}0.000 & 3800.763 & 3771.814 & 3784.531 & 3776.278 & 3751.539 \\ 0.000 & 3802.236 & 3771.759 & 3784.583 & 3776.278 & 3751.613\end{array}$ $\begin{array}{llllll}0.000 & 3802.236 & 3771.759 & 3784.583 & 3776.278 & 3751.613 \\ 0.000 & 3803.194 & 3771.705 & 3784.638 & 3776.278 & 3751.685\end{array}$ $\begin{array}{lllllll}0.000 & 3803.194 & 3771.705 & 3784.638 & 3776.278 & 3751.685 \\ 0.000 & 3803.817 & 3771.650 & 3784.694 & 3776.278 & 3751.758\end{array}$ $\begin{array}{lllllll}0.000 & 3802.261 & 3771.597 & 3784.745 & 3776.278 & 3751.830\end{array}$ $\begin{array}{lllllll}0.000 & 3801.250 & 3771.543 & 3784.793 & 3776.278 & 3751.901\end{array}$ $\begin{array}{lllllll}0.000 & 3799.754 & 3771.479 & 3784.837 & 3776.278 & 3751.972\end{array}$ $\begin{array}{lllllll}0.000 & 3798.781 & 3771.415 & 3784.877 & 3776.278 & 3752.043\end{array}$ $\begin{array}{lllllll}0.000 & 3798.149 & 3771.351 & 3784.916 & 3776.278 & 3752.113\end{array}$ $\begin{array}{llllll}0.000 & 3798.149 & 3771.351 & 3784.916 & 3776.278 & 3752.113 \\ 0.000 & 3798.017 & 3771.262 & 3784.953 & 3776.278 & 3752.183\end{array}$ $\begin{array}{lllllll}0.000 & 3798.017 & 3771.262 & 3784.953 & 3776.278 & 3752.183 \\ 0.000 & 3797.932 & 3771.173 & 3784.991 & 3776.278 & 3752.252\end{array}$ $\begin{array}{lllllll}0.000 & 3797.932 & 3771.173 & 3784.991 & 3776.278 & 3752.252\end{array}$ $\begin{array}{lllllll}0.000 & 3795.917 & 3771.100 & 3785.022 & 3776.278 & 3752.321\end{array}$ $\begin{array}{lllllll}0.000 & 3794.607 & 3771.028 & 3785.049 & 3776.278 & 3752.390\end{array}$ $\begin{array}{lllllll}0.000 & 3793.755 & 3770.956 & 3785.074 & 3776.278 & 3752.458\end{array}$ $\begin{array}{lllllll}0.000 & 3792.922 & 3770.872 & 3785.096 & 3776.278 & 3752.526\end{array}$ $\begin{array}{lllllll}0.000 & 3792.380 & 3770.790 & 3785.117 & 3776.278 & 3752.594\end{array}$ $\begin{array}{llllll}0.000 & 3791.467 & 3770.700 & 3785.135 & 3776.278 & 3752.661\end{array}$ $\begin{array}{lllllll}0.000 & 3790.874 & 3770.610 & 3785.151 & 3776.278 & 3752.727\end{array}$ $\begin{array}{lllllll}0.000 & 3790.488 & 3770.521 & 3785.166 & 3776.278 & 3752.794\end{array}$ $\begin{array}{lllllll}0.000 & 3791.638 & 3770.428 & 3785.184 & 3776.278 & 3752.860\end{array}$ $\begin{array}{lllllll}0.000 & 3792.385 & 3770.335 & 3785.204 & 3776.278 & 3752.925\end{array}$ $\begin{array}{lllllll}0.000 & 3793.151 & 3770.238 & 3785.226 & 3776.278 & 3752.991\end{array}$ $\begin{array}{lllllll}0.000 & 3793.648 & 3770.141 & 3785.250 & 3776.278 & 3753.055\end{array}$ $\begin{array}{llllllll}0.000 & 3793.972 & 3770.045 & 3785.274 & 3776.278 & 3753.120\end{array}$ $\begin{array}{lllllll}0.000 & 3793.342 & 3769.955 & 3785.296 & 3776.278 & 3753.184\end{array}$ $\begin{array}{lllllll}0.000 & 3793.342 & 3769.955 & 3785.296 & 3776.278 & 3753.184 \\ 0.000 & 3792.933 & 3769.866 & 3785.317 & 3776.278 & 3753.248\end{array}$ $\begin{array}{llllll}0.000 & 3792.933 & 3769.866 & 3785.317 & 3776.278 & 3753.248 \\ 0.000 & 3793.507 & 3769.775 & 3785.340 & 3776.278 & 3753.311\end{array}$ $\begin{array}{lllllll}0.000 & 3793.507 & 3769.775 & 3785.340 & 3776.278 & 3753.311\end{array}$ $\begin{array}{lllllll}0.000 & 3793.880 & 3769.684 & 3785.363 & 3776.278 & 3753.374\end{array}$ $\begin{array}{lllllll}0.000 & 3794.122 & 3769.594 & 3785.387 & 3776.278 & 3753.437\end{array}$ $\begin{array}{lllllll}0.000 & 3796.240 & 3769.503 & 3785.417 & 3776.278 & 3753.500\end{array}$ $\begin{array}{lllllll}0.000 & 3797.616 & 3769.412 & 3785.450 & 3776.278 & 3753.562\end{array}$ $\begin{array}{lllllll}0.000 & 3797.671 & 3769.329 & 3785.483 & 3776.278 & 3753.623\end{array}$ $\begin{array}{llllllll}0.000 & 3797.707 & 3769.247 & 3785.516 & 3776.278 & 3753.685\end{array}$ $\begin{array}{lllllll}0.000 & 3797.731 & 3769.165 & 3785.549 & 3776.278 & 3753.746\end{array}$ $\begin{array}{lllllll}0.000 & 3798.305 & 3769.083 & 3785.583 & 3776.278 & 3753.807\end{array}$ $\begin{array}{lllllll}0.000 & 3798.679 & 3769.002 & 3785.618 & 3776.278 & 3753.867\end{array}$ $\begin{array}{llllllll}0.000 & 3799.202 & 3768.918 & 3785.655 & 3776.278 & 3753.927\end{array}$ $\begin{array}{lllllll}0.000 & 3799.541 & 3768.836 & 3785.692 & 3776.278 & 3753.987\end{array}$ $\begin{array}{lllllll}0.000 & 3799.762 & 3768.753 & 3785.729 & 3776.278 & 3754.046\end{array}$ $\begin{array}{lllllll}0.000 & 3799.626 & 3768.678 & 3785.766 & 3776.278 & 3754.105\end{array}$ $\begin{array}{lllllll}0.000 & 3799.537 & 3768.603 & 3785.802 & 3776.278 & 3754.164\end{array}$ $\begin{array}{lllllll}0.000 & 3798.080 & 3768.534 & 3785.835 & 3776.278 & 3754.223\end{array}$ $\begin{array}{lllllll}0.000 & 3797.132 & 3768.466 & 3785.865 & 3776.278 & 3754.281\end{array}$

2:40:00	59.977	3742.524	18.399	19.543
2:40:02	59.976	3741.723	19.199	19.422
2:40:04	59.976	3741.723	19.199	19.344
2:40:06	59.974	3739.964	20.801	19.854
2:40:08	59.974	3739.964	20.801	20.185
2:40:10	59.974	3739.964	20.801	20.401
2:40:12	59.978	3742.833	17.599	19.420
2:40:14	59.978	3742.833	17.599	18.783
2:40:16	59.981	3738.966	15.201	17.529
2:40:18	59.981	3738.966	15.201	16.714
2:40:20	59.981	3738.966	15.201	16.185
2:40:22	59.971	3738.879	23.199	18.640
2:40:24	59.971	3738.879	23.199	20.236
2:40:26	59.971	3738.558	23.199	21.273
2:40:28	59.971	3738.558	23.199	21.947
2:40:30	59.971	3738.558	23.199	22.386
2:40:32	59.966	3743.419	27.200	24.071
2:40:34	59.966	3743.419	27.200	25.166
2:40:36	59.971	3747.340	23.199	24.478
2:40:38	59.971	3747.340	23.199	24.030
2:40:40	59.971	3747.340	23.199	23.740
2:40:42	59.969	3749.750	24.799	24.110
2:40:44	59.969	3749.750	24.799	24.351
2:40:46	59.974	3743.745	20.801	23.109
2:40:48	59.974	3743.745	20.801	22.301
2:40:50	59.974	3743.745	20.801	21.776
2:40:52	59.971	3740.299	23.199	22.274
2:40:54	59.971	3740.299	23.199	22.598
2:40:56	59.982	3731.830	14.401	19.729
2:40:58	59.982	3731.830	14.401	17.864
2:41:00	59.982	3731.830	14.401	16.652
2:41:02	59.985	3736.229	12.000	15.024
2:41:04	59.985	3736.229	12.000	13.965
2:41:06	59.989	3733.115	8.801	12.158
2:41:08	59.989	3733.115	8.801	10.983
2:41:10	59.989	3733.115	8.801	10.219
2:41:12	59.987	3729.180	10.400	10.283
2:41:14	59.987	3729.180	10.400	10.324
2:41:16	59.994	3720.108	4.800	8.391
2:41:18	59.994	3720.108	4.800	7.134
2:41:20	59.994	3720.108	4.800	6.317
2:41:22	60.003	3725.661	-2.399	3.267
2:41:24	60.003	3725.661	-2.399	1.284
2:41:26	60.006	3727.825	-4.800	-0.846
2:41:28	60.006	3727.825	-4.800	-2.230
2:41:30	60.006	3727.825	-4.800	-3.130

$\begin{array}{lllllll}0.000 & 3796.516 & 3768.398 & 3785.893 & 3776.278 & 3754.339\end{array}$ $\begin{array}{lllllll}0.000 & 3796.395 & 3768.328 & 3785.920 & 3776.278 & 3754.396\end{array}$ $\begin{array}{lllllll}0.000 & 3796.317 & 3768.258 & 3785.947 & 3776.278 & 3754.454\end{array}$ $\begin{array}{lllllll}0.000 & 3796.827 & 3768.185 & 3785.976 & 3776.278 & 3754.511\end{array}$ $\begin{array}{lllllll}0.000 & 3797.158 & 3768.111 & 3786.005 & 3776.278 & 3754.567\end{array}$ $\begin{array}{lllllll}0.000 & 3797.374 & 3768.038 & 3786.034 & 3776.278 & 3754.624\end{array}$ $\begin{array}{llllllll}0.000 & 3796.393 & 3767.973 & 3786.061 & 3776.278 & 3754.680\end{array}$ $\begin{array}{llllllll}0.000 & 3795.756 & 3767.909 & 3786.086 & 3776.278 & 3754.736\end{array}$ $\begin{array}{lllllll}0.000 & 3794.502 & 3767.834 & 3786.107 & 3776.278 & 3754.791\end{array}$ $\begin{array}{lllllll}0.000 & 3793.687 & 3767.760 & 3786.127 & 3776.278 & 3754.846\end{array}$ $\begin{array}{lllllll}0.000 & 3793.158 & 3767.686 & 3786.145 & 3776.278 & 3754.901\end{array}$ $\begin{array}{lllllll}0.000 & 3795.613 & 3767.613 & 3786.169 & 3776.278 & 3754.956\end{array}$ $\begin{array}{lllllll}0.000 & 3795.613 & 3767.613 & 3786.169 & 3776.278 & 3754.956 \\ 0.000 & 3797.209 & 3767.540 & 3786.197 & 3776.278 & 3755.010\end{array}$

0.000	3798.246	3767.466	3786.228	3776.278	3755.065	
0750		3798.920	3767.393	3786.260	3776.278	3755.118

 $\begin{array}{lllllll}0.000 & 3789.131 & 3766.184 & 3786.799 & 3776.278 & 3756.092\end{array}$ $\begin{array}{lllllll}0.000 & 3787.956 & 3766.104 & 3786.802 & 3776.278 & 3756.141\end{array}$ $\begin{array}{lllllll}0.000 & 3787.192 & 3766.025 & 3786.803 & 3776.278 & 3756.189\end{array}$ $\begin{array}{llllllll}0.000 & 3787.256 & 3765.936 & 3786.804 & 3776.278 & 3756.237\end{array}$ $\begin{array}{lllllll}0.000 & 3787.297 & 3765.849 & 3786.805 & 3776.278 & 3756.285\end{array}$ $\begin{array}{lllllll}0.000 & 3785.364 & 3765.739 & 3786.802 & 3776.278 & 3756.333\end{array}$ $\begin{array}{llllllll}0.000 & 3784.107 & 3765.631 & 3786.795 & 3776.278 & 3756.381\end{array}$ $\begin{array}{lllllll}0.000 & 3783.290 & 3765.523 & 3786.787 & 3776.278 & 3756.428\end{array}$ $\begin{array}{lllllll}0.000 & 3780.240 & 3765.428 & 3786.772 & 3776.278 & 3756.475\end{array}$ $\begin{array}{lllllll}0.000 & 3778.257 & 3765.334 & 3786.751 & 3776.278 & 3756.522\end{array}$ $\begin{array}{lllllll}0.000 & 3776.127 & 3765.246 & 3786.726 & 3776.278 & 3756.569\end{array}$ $\begin{array}{lllllll}0.000 & 3774.743 & 3765.158 & 3786.698 & 3776.278 & 3756.616\end{array}$ $\begin{array}{lllllll}0.000 & 3773.843 & 3765.070 & 3786.668 & 3776.278 & 3756.662\end{array}$

| $2: 41: 32$ | 60.019 | 3727.231 | -15.201 | -7.354 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $2: 41: 34$ | 60.019 | 3727.231 | -15.201 | -10.101 |
| $2: 41: 36$ | 60.025 | 3726.016 | -20.001 | -13.566 |
| $2: 41: 38$ | 60.025 | 3726.016 | -20.001 | -15.818 |
| $2: 41: 40$ | 60.025 | 3726.016 | -20.001 | -17.282 |
| $2: 41: 42$ | 60.029 | 3716.375 | -23.199 | -19.353 |
| $2: 41: 44$ | 60.029 | 3716.375 | -23.199 | -20.699 |
| $2: 41: 46$ | 60.037 | 3717.142 | -29.599 | -23.814 |
| $2: 41: 48$ | 60.037 | 3717.142 | -29.599 | -25.839 |
| $2: 41: 50$ | 60.037 | 3717.142 | -29.599 | -27.155 |
| $2: 41: 52$ | 60.037 | 3713.632 | -29.599 | -28.010 |
| $2: 41: 54$ | 60.037 | 3713.632 | -29.599 | -28.566 |
| $2: 41: 56$ | 60.041 | 3699.356 | -32.800 | -30.048 |
| $2: 41: 58$ | 60.041 | 3699.356 | -32.800 | -31.011 |
| $2: 42: 00$ | 60.041 | 3699.356 | -32.800 | -31.638 |
| $2: 42: 02$ | 60.043 | 3704.591 | -34.399 | -32.604 |
| $2: 42: 04$ | 60.043 | 3704.591 | -34.399 | -33.233 |
| $2: 42: 06$ | 60.048 | 3701.316 | -38.400 | -35.041 |
| $2: 42: 08$ | 60.048 | 3701.316 | -38.400 | -36.217 |
| $2: 42: 10$ | 60.048 | 3701.316 | -38.400 | -36.981 |
| $2: 42: 12$ | 60.043 | 3699.529 | -34.399 | -36.077 |
| $2: 42: 14$ | 60.043 | 3699.529 | -34.399 | -35.490 |
| $2: 42: 16$ | 60.044 | 3690.477 | -35.199 | -35.388 |
| $2: 4: 18$ | 60.044 | 3690.477 | -35.199 | -35.322 |
| $2: 4: 20$ | 60.044 | 3690.477 | -35.199 | -35.279 |

[^54]
riod (indicates ramp direction during recovery period)

Frequency and Interconnection Frequency Response @ different Average periods of B

633	-709.239
633	-709.239
633	-709.239
633	-709.239
633	-725.488
633	-725.488
633	-725.488
633	-742.531
633	-742.531
633	-742.531
633	-742.531
633	-742.531
633	-788.768
633	-788.768
633	-798.754
633	-798.754
633	-798.754
633	-841.189
633	-841.189
633	-888.433
633	-888.433
633	-888.433
633	-876.143
633	-876.143
633	-888.433
633	-888.433
633	-888.433
633	-927.464
633	-927.464
633	-1000.8
633	-1000.8
633	-1000.8
633	-1000.8
633	-1000.8
633	-1000.8
633	-1000.8
633	-1000.8
633	-1068.32
633	-1068.32
633	-1033.46
633	-1033.46
633	-1033.46
633	-1016.87
633	-1016.87
633	-1086.72
633	-1086.72

633	-1086.72
633	-1211.44
633	-1211.44
633	-1166.8
633	-1166.8
633	-1166.8
633	-1285.29
633	-1285.29
633	-1211.44
633	-1211.44
633	-1211.44
633	-1086.72
633	-1086.72
633	-1311.91
633	-1311.91
633	-1311.91
633	-1498.24
633	-1498.24
633	-1498.24
633	-1498.24
633	-1498.24
633	-1612.68
633	-1612.68
633	-1848.16
633	-1848.16
633	-1848.16
633	-2322.91
633	-2322.91
633	-2845.04
633	-2845.04
633	-2845.04
633	-2610.1
633	-2610.1
633	-3468.22
633	-3468.22
633	-3468.22
633	-3125.88
633	-3125.88
633	-3669.15
633	-3669.15
633	-3669.15
633	-2978.86
633	-2978.86
633	-3669.15
633	-3669.15
633	-3669.15

633	-3288.16
633	-3288.16
633	-3288.16
633	-3288.16
633	-3288.16
633	-3468.22
633	-3468.22
633	-3288.16
633	-3288.16
633	-3288.16
633	-2722.74
633	-2722.74
633	-2722.74
633	-2722.74
633	-2722.74
633	-2506.79
633	-2506.79
633	-2506.79
633	-2506.79
633	-2506.79
633	-2164.16
633	-2164.16
633	-2025.48
633	-2025.48
633	-2025.48
633	-1962.71
633	-1962.71
633	-2025.48
633	-2025.48
633	-2025.48
633	-1368.61
633	-1368.61
633	-1259.72
633	-1259.72
633	-1259.72
633	-1188.7
633	-1188.7
633	-1125.34
633	-1125.34
633	-1125.34
633	-1105.69
633	-1105.69
633	-1050.6
633	-1050.6
633	-1050.6
633	-985.229

633	-830.163
633	-830.163
633	-830.163
633	-888.433
633	-888.433
633	-876.143
633	-876.143
633	-876.143
633	-830.163
633	-830.163
633	-927.464
633	-927.464
633	-927.464
633	-864.143
633	-864.143
633	-852.512
633	-852.512
633	-852.512
633	-1016.87
633	-1016.87
633	-1086.72
633	-1086.72
633	-1086.72
633	-830.163
633	-830.163
633	-798.754
633	-798.754
633	-798.754
633	-779.066
633	-779.066
633	-769.599
633	-769.599
633	-769.599
633	-717.271
633	-717.271
633	-751.34
633	-751.34
633	-751.34
633	-808.956
633	-808.956
633	-769.599
633	-769.599
633	-769.999
633	-830.163
633	-830.163
633	-864.143

633	-985.229
633	-970.137
633	-970.137
633	-941.247
633	-941.247
633	-941.247
633	-1000.8
633	-1000.8
633	-1050.6
633	-1050.6
633	-1050.6
633	-901.073
633	-901.073
633	-901.073
633	-901.073
633	-901.073
633	-841.189
633	-841.189
633	-901.073
633	-901.073
633	-901.073
633	-876.143
633	-876.143
633	-941.247
633	-941.247
633	-941.247
633	-901.073
633	-901.073
633	-1068.32
633	-1068.32
633	-1068.32
633	-1125.34
633	-1125.34
633	-1211.44
633	-1211.44
633	-1211.44
633	-1166.8
633	-1166.8
633	-1339.66
633	-1339.66
633	-1339.66
633	-1654.82
633	-1654.82
633	-1795.76
633	-1795.76
633	-1795.76

$$
\begin{array}{lr}
633 & -2845.04 \\
633 & -2845.04 \\
633 & -3895.7 \\
633 & -3895.7 \\
633 & -3895.7 \\
633 & -5166.97 \\
633 & -5166.97 \\
633 & -14888.9 \\
633 & -14888.9 \\
633 & -14888.9 \\
633 & -14888.9 \\
633 & -14888.9 \\
633 & -253339 \\
633 & -253339 \\
633 & -253339 \\
633 & 36191.31 \\
633 & 36191.31 \\
633 & 9377.629 \\
633 & 9377.629 \\
633 & 9377.629 \\
633 & 36191.31 \\
633 & 36191.31 \\
633 & 23030.83 \\
633 & 23030.83 \\
633 & 23030.83
\end{array}
$$

	T-66 sec	2:26:14	60.0260	3671.19	350.00	-329.99	0.00	85.00	10.00	15.00	-103.00	7556.10	-20.801	T-66 sec	2:26:14	
	T-64 sec	2:26:16	60.0190	3664.50	350.00	-329.99	0.00	85.50	10.00	15.00	-103.00	7556.43	-15.201	T-64 sec	2:26:16	
	T-62 sec	2:26:18	60.0190	3664.50	350.00	-329.99	0.00	85.50	10.00	15.00	-103.00	7556.43	-15.201	T-62 sec	2:26:18	
	T-60 sec	2:26:20	60.0200	3666.82	350.00	-329.99	0.00	86.00	10.00	15.00	-103.00	7556.76	-16.000	T-60 sec	2:26:20	
	T-58 sec	2:26:22	60.0200	3666.82	350.00	-329.99	0.00	86.00	10.00	15.00	-103.00	7556.76	-16.000	T-58 sec	2:26:22	
	T-56 sec	2:26:24	60.0200	3666.82	350.00	-329.99	0.00	86.00	10.00	15.00	-103.00	7556.76	-16.000	T-56 sec	2:26:24	
	T-54 sec	2:26:26	60.0210	3670.27	350.00	-255.44	0.00	86.50	10.00	15.00	-103.00	7557.09	-16.800	T-54 sec	2:26:26	
	T-52 sec	2:26:28	60.0210	3670.27	350.00	-255.44	0.00	86.50	10.00	15.00	-103.00	7557.09	-16.800	T-52 sec	2:26:28	
	T-50 sec	2:26:30	60.0190	3672.49	350.00	-165.10	0.00	87.00	10.00	15.00	-103.00	7557.42	-15.201	T-50 sec	2:26:30	
	T-48 sec	2:26:32	60.0190	3672.49	350.00	-165.10	0.00	87.00	10.00	15.00	-103.00	7557.42	-15.201	T-48 sec	2:26:32	
	T-46 sec	2:26:34	60.0190	3672.49	350.00	-165.10	0.00	87.00	10.00	15.00	-103.00	7557.42	-15.201	T-46 sec	2:26:34	
	T-44 sec	2:26:36	60.0220	3672.16	350.00	-165.10	0.00	87.50	10.00	15.00	-103.00	7557.75	-17.599	T-44 sec	2:26:36	
	T-42 sec	2:26:38	60.0220	3672.16	350.00	-165.10	0.00	87.50	10.00	15.00	-103.00	7557.75	-17.599	T-42 sec	2:26:38	
	T-40 sec	2:26:40	60.0370	3669.98	350.00	-165.10	0.00	88.00	10.00	15.00	-103.00	7558.08	-29.599	T-40 sec	2:26:40	
	T-38 sec	2:26:42	60.0370	3669.98	350.00	-165.10	0.00	88.00	10.00	15.00	-103.00	7558.08	-29.599	T-38 sec	2:26:42	
	T-36 sec	2:26:44	60.0370	3669.98	350.00	-165.10	0.00	88.00	10.00	15.00	-103.00	7558.08	-29.599	T-36 sec	2:26:44	
	T-34 sec	2:26:46	60.0370	3661.60	350.00	-165.10	0.00	88.50	10.00	15.00	-103.00	7558.41	-29.599	T-34 sec	2:26:46	
	T-32 sec	2:26:48	60.0370	3661.60	350.00	-165.10	0.00	88.50	10.00	15.00	-103.00	7558.41	-29.599	T-32 sec	2:26:48	
	T-30 sec	2:26:50	60.0480	3651.49	350.00	-165.10	0.00	89.00	10.00	15.00	-103.00	7558.74	-38.400	T-30 sec	2:26:50	
	T-28 sec	2:26:52	60.0480	3651.49	350.00	-165.10	0.00	89.00	10.00	15.00	-103.00	7558.74	-38.400	T-28 sec	2:26:52	
	T-26 sec	2:26:54	60.0480	3651.49	350.00	-165.10	0.00	89.00	10.00	15.00	-103.00	7558.74	-38.400	T-26 sec	2:26:54	
	T-24 sec	2:26:56	60.0410	3648.25	350.00	-165.48	0.00	89.50	10.00	15.00	-103.00	7559.07	-32.800	T-24 sec	2:26:56	
	T-22 sec	2:26:58	60.0410	3648.25	350.00	-165.48	0.00	89.50	10.00	15.00	-103.00	7559.07	-32.800	T-22 sec	2:26:58	
	T-20 sec	2:27:00	60.0390	3654.29	350.00	-165.48	0.00	90.00	10.00	15.00	-103.00	7559.40	-31.201	T-20 sec	2:27:00	
	T-18 sec	2:27:02	60.0390	3654.29	350.00	-165.48	0.00	90.00	10.00	15.00	-103.00	7559.40	-31.201	T-18 sec	2:27:02	
	$\mathrm{T}-16 \mathrm{sec}$	2:27:04	60.0390	3654.29	350.00	-165.48	0.00	90.00	10.00	15.00	-103.00	7559.40	-31.201	T-16 sec	2:27:04	60.041
	T-14 sec	2:27:06	60.0430	3651.06	350.00	-165.48	0.00	90.50	10.00	15.00	-103.00	7559.73	-34.399	T-14 sec	2:27:06	60.041
	T-12 sec	2:27:08	60.0430	3651.06	350.00	-165.48	0.00	90.50	10.00	15.00	-103.00	7559.73	-34.399	T-12 sec	2:27:08	60.041
	$\mathrm{T}-10 \mathrm{sec}$	2:27:10	60.0410	3648.24	350.00	-165.48	0.00	91.00	10.00	15.00	-103.00	7560.06	-32.800	T-10 sec	2:27:10	60.041
	T-08 sec	2:27:12	60.0410	3648.24	350.00	-165.48	0.00	91.00	10.00	15.00	-103.00	7560.06	-32.800	T-08 sec	2:27:12	60.041
	T-06 sec	2:27:14	60.0410	3648.24	350.00	-165.48	0.00	91.00	10.00	15.00	-103.00	7560.06	-32.800	T-06 sec	2:27:14	60.041
	T-04 sec	2:27:16	60.0410	3645.45	350.00	-165.48	0.00	91.50	10.00	15.00	-103.00	7560.39	-32.800	T-04 sec	2:27:16	60.041
	T-02 sec	2:27:18	60.0410	3645.45	350.00	-165.48	0.00	91.50	10.00	15.00	-103.00	7560.39	-32.800	T-02 sec	2:27:18	60.041
	T+0 sec	2:27:20	59.8520	3641.19	335.00	-206.46	1.00	92.00	10.00	0.00	-103.00	7560.72	118.399	T+0 sec	2:27:20	
	T+02 sec	2:27:22	59.8520	3641.19	335.00	-206.46	1.00	92.00	10.00	0.00	-103.00	7560.72	118.399	T+02 sec	2:27:22	
	T+04 sec	2:27:24	59.8520	3641.19	335.00	-206.46	1.00	92.00	10.00	0.00	-103.00	7560.72	118.399	T+04 sec	2:27:24	
	T+06 sec	2:27:26	59.8690	3734.90	335.00	-206.46	1.00	92.50	10.00	0.00	-103.00	7561.05	104.800	T+06 sec	2:27:26	
	T+08 sec	2:27:28	59.8690	3734.90	335.00	-206.46	1.00	92.50	10.00	0.00	-103.00	7561.05	104.800	T+08 sec	2:27:28	
	T+10 sec	2:27:30	59.8690	3734.90	335.00	-206.46	1.00	92.50	10.00	0.00	-103.00	7561.05	104.800	$\mathrm{T}+10 \mathrm{sec}$	2:27:30	
	T+12 sec	2:27:32	59.8800	3737.16	335.00	-206.46	1.00	93.00	10.00	0.00	-103.00	7561.38	95.999	$\mathrm{T}+12 \mathrm{sec}$	2:27:32	59.880
	$\mathrm{T}+14 \mathrm{sec}$	2:27:34	59.8800	3737.16	335.00	-206.46	1.00	93.00	10.00	0.00	-103.00	7561.38	95.999	T+14 sec	2:27:34	59.880
	$\mathrm{T}+16 \mathrm{sec}$	2:27:36	59.8750	3766.19	335.00	-206.46	1.00	93.50	10.00	0.00	-103.00	7561.71	100.000	$\mathrm{T}+16 \mathrm{sec}$	2:27:36	59.880
	T+18 sec	2:27:38	59.8750	3766.19	335.00	-206.46	1.00	93.50	10.00	0.00	-103.00	7561.71	100.000	$\mathrm{T}+18 \mathrm{sec}$	2:27:38	59.880
-414.250	T+20 sec	2:27:40	59.8750	3766.19	335.00	-206.46	1.00	93.50	10.00	0.00	-103.00	7561.71	100.000	T+20 sec	2:27:40	59.880
-414.250	T+22 sec	2:27:42	59.8860	3769.93	335.00	-206.46	1.00	94.00	10.00	0.00	-103.00	7562.04	91.199	T+22 sec	2:27:42	59.880
-414.250	T+24 sec	2:27:44	59.8860	3769.93	335.00	-206.46	1.00	94.00	10.00	0.00	-103.00	7562.04	91.199	T+24 sec	2:27:44	59.880

-414.250	T+26 sec	2:27:46	59.8870	3782.50	335.00	-211.26	1.00	94.50	10.00	0.00	-103.00	7562.37	90.399	T+26 sec	2:27:46
-414.250	T+28 sec	2:27:48	59.8870	3782.50	335.00	-211.26	1.00	94.50	10.00	0.00	-103.00	7562.37	90.399	T+28 sec	2:27:48
-414.250	T+30 sec	2:27:50	59.8870	3782.50	335.00	-211.26	1.00	94.50	10.00	0.00	-103.00	7562.37	90.399	T+30 sec	2:27:50
-414.250	T+32 sec	2:27:52	59.8950	3784.73	335.00	-211.26	1.00	95.00	10.00	0.00	-103.00	7562.70	84.000	T+32 sec	2:27:52
-414.250	T+34 sec	2:27:54	59.8950	3784.73	335.00	-211.26	1.00	95.00	10.00	0.00	-103.00	7562.70	84.000	T+34 sec	2:27:54
-414.250	T+36 sec	2:27:56	59.8930	3788.33	335.00	-211.26	2.00	95.50	10.00	0.00	-103.00	7563.03	85.599	T+36 sec	2:27:56
-414.250	T+38 sec	2:27:58	59.8930	3788.33	335.00	-211.26	2.00	95.50	10.00	0.00	-103.00	7563.03	85.599	T+38 sec	2:27:58
-414.250	T+40 sec	2:28:00	59.8930	3788.33	335.00	-211.26	2.00	95.50	10.00	0.00	-103.00	7563.03	85.599	$\mathrm{T}+40 \mathrm{sec}$	2:28:00
-414.250	T+42 sec	2:28:02	59.8910	3788.47	335.00	-211.26	3.00	96.00	10.00	0.00	-103.00	7563.36	87.201	$\mathrm{T}+42 \mathrm{sec}$	2:28:02
-414.250	T+44 sec	2:28:04	59.8910	3788.47	335.00	-211.26	3.00	96.00	10.00	0.00	-103.00	7563.36	87.201	T+44 sec	2:28:04
-414.250	T+46 sec	2:28:06	59.8850	3794.37	335.00	-211.26	4.00	96.50	10.00	0.00	-103.00	7563.69	92.001	$\mathrm{T}+46 \mathrm{sec}$	2:28:06
-414.250	T+48 sec	2:28:08	59.8850	3794.37	335.00	-211.26	4.00	96.50	10.00	0.00	-103.00	7563.69	92.001	$\mathrm{T}+48 \mathrm{sec}$	2:28:08
-414.250	T+50 sec	2:28:10	59.8850	3794.37	335.00	-211.26	4.00	96.50	10.00	0.00	-103.00	7563.69	92.001	T+50 sec	2:28:10
-414.250	T+52 sec	2:28:12	59.8870	3800.43	335.00	-214.35	5.00	97.00	10.00	0.00	-103.00	7564.02	90.399	T+52 sec	2:28:12
	T+54 sec	2:28:14	59.8870	3800.43	335.00	-214.35	5.00	97.00	10.00	0.00	-103.00	7564.02	90.399	T+54 sec	2:28:14
	T+56 sec	2:28:16	59.8880	3802.93	335.00	-214.35	6.00	97.50	10.00	0.00	-103.00	7564.35	89.600	T+56 sec	2:28:16
	T+58 sec	2:28:18	59.8880	3802.93	335.00	-214.35	6.00	97.50	10.00	0.00	-103.00	7564.35	89.600	T+58 sec	2:28:18
	T+60 sec	2:28:20	59.8880	3802.93	335.00	-214.35	6.00	97.50	10.00	0.00	-103.00	7564.35	89.600	T+60 sec	2:28:20
	T+62 sec	2:28:22	59.8820	3804.39	335.00	-214.35	7.00	98.00	10.00	0.00	-103.00	7564.68	94.400	T+62 sec	2:28:22
	T+64 sec	2:28:24	59.8820	3804.39	335.00	-214.35	7.00	98.00	10.00	0.00	-103.00	7564.68	94.400	T+64 sec	2:28:24
	T+66 sec	2:28:26	59.8570	3809.24	335.00	-214.35	8.00	98.50	10.00	0.00	-103.00	7565.01	114.401	T+66 sec	2:28:26
	T+68 sec	2:28:28	59.8570	3809.24	335.00	-214.35	8.00	98.50	10.00	0.00	-103.00	7565.01	114.401	T+68 sec	2:28:28
	T+70 sec	2:28:30	59.8570	3809.24	335.00	-214.35	8.00	98.50	10.00	0.00	-103.00	7565.01	114.401	T+70 sec	2:28:30
	T+72 sec	2:28:32	59.8580	3814.86	335.00	-214.35	9.00	99.00	10.00	0.00	-103.00	7565.34	113.599	T+72 sec	2:28:32
	T+74 sec	2:28:34	59.8580	3814.86	335.00	-214.35	9.00	99.00	10.00	0.00	-103.00	7565.34	113.599	T+74 sec	2:28:34
	T+76 sec	2:28:36	59.8660	3826.05	335.00	-212.17	10.00	99.50	10.00	0.00	-103.00	7565.67	107.199	T+76 sec	2:28:36
	T+78 sec	2:28:38	59.8660	3826.05	335.00	-212.17	10.00	99.50	10.00	0.00	-103.00	7565.67	107.199	T+78 sec	2:28:38
	T+80 sec	2:28:40	59.8660	3826.05	335.00	-212.17	10.00	99.50	10.00	0.00	-103.00	7565.67	107.199	T+80 sec	2:28:40
		2:28:42	59.8660	3827.52	335.00	-212.17	11.00	100.00	10.00	0.00	-103.00	7566.00	107.199		
		2:28:44	59.8660	3827.52	335.00	-212.17	11.00	100.00	10.00	0.00	-103.00	7566.00	107.199		
		2:28:46	59.8740	3826.45	335.00	-212.17	12.00	100.50	10.00	0.00	-103.00	7566.33	100.800		
		2:28:48	59.8740	3826.45	335.00	-212.17	12.00	100.50	10.00	0.00	-103.00	7566.33	100.800		
		2:28:50	59.8740	3826.45	335.00	-212.17	12.00	100.50	10.00	0.00	-103.00	7566.33	100.800		
		2:28:52	59.8830	3823.83	335.00	-212.17	13.00	101.00	10.00	0.00	-103.00	7566.66	93.600		
		2:28:54	59.8830	3823.83	335.00	-212.17	13.00	101.00	10.00	0.00	-103.00	7566.66	93.600		
		2:28:56	59.8900	3818.06	335.00	-212.17	14.00	101.50	10.00	0.00	-103.00	7566.99	88.000		
		2:28:58	59.8900	3818.06	335.00	-212.17	14.00	101.50	10.00	0.00	-103.00	7566.99	88.000		
		2:29:00	59.8900	3818.06	335.00	-212.17	14.00	101.50	10.00	0.00	-103.00	7566.99	88.000		
		2:29:02	59.8930	3815.01	335.00	-215.60	15.00	102.00	10.00	0.00	-103.00	7567.32	85.599		
		2:29:04	59.8930	3815.01	335.00	-215.60	15.00	102.00	10.00	0.00	-103.00	7567.32	85.599		
		2:29:06	59.9030	3809.65	335.00	-215.60	16.00	102.50	10.00	0.00	-103.00	7567.65	77.600		
		2:29:08	59.9030	3809.65	335.00	-215.60	16.00	102.50	10.00	0.00	-103.00	7567.65	77.600		
		2:29:10	59.9030	3809.65	335.00	-215.60	16.00	102.50	10.00	0.00	-103.00	7567.65	77.600		
		2:29:12	59.9040	3805.59	335.00	-215.60	16.00	103.00	10.00	0.00	-103.00	7567.98	76.801		
		2:29:14	59.9040	3805.59	335.00	-215.60	16.00	103.00	10.00	0.00	-103.00	7567.98	76.801		

2:29:16	59.9110	3793.98	335.00	-215.60	16.00	103.50	10.00	0.00	-103.00	7568.31	71.201
2:29:18	59.9110	3793.98	335.00	-215.60	16.00	103.50	10.00	0.00	-103.00	7568.31	71.201
2:29:20	59.9110	3793.98	335.00	-215.60	16.00	103.50	10.00	0.00	-103.00	7568.31	71.201
2:29:22	59.9170	3791.50	335.00	-215.60	16.00	104.00	10.00	0.00	-103.00	7568.64	66.400
2:29:24	59.9170	3791.50	335.00	-215.60	16.00	104.00	10.00	0.00	-103.00	7568.64	66.400
2:29:26	59.9200	3784.56	335.00	-218.33	16.00	104.50	10.00	0.00	-103.00	7568.97	64.001
2:29:28	59.9200	3784.56	335.00	-218.33	16.00	104.50	10.00	0.00	-103.00	7568.97	64.001
2:29:30	59.9200	3784.56	335.00	-218.33	16.00	104.50	10.00	0.00	-103.00	7568.97	64.001
2:29:32	59.9170	3781.70	335.00	-218.33	16.00	105.00	10.00	0.00	-103.00	7569.30	66.400
2:29:34	59.9170	3781.70	335.00	-218.33	16.00	105.00	10.00	0.00	-103.00	7569.30	66.400
2:29:36	59.9210	3774.60	335.00	-218.33	16.00	105.50	10.00	0.00	-103.00	7569.63	63.199
2:29:38	59.9210	3774.60	335.00	-218.33	16.00	105.50	10.00	0.00	-103.00	7569.63	63.199
2:29:40	59.9210	3774.60	335.00	-218.33	16.00	105.50	10.00	0.00	-103.00	7569.63	63.199
2:29:42	59.9250	3773.96	335.00	-218.33	16.00	106.00	10.00	0.00	-103.00	7569.96	60.001
2:29:44	59.9250	3773.96	335.00	-218.33	16.00	106.00	10.00	0.00	-103.00	7569.96	60.001
2:29:46	59.9270	3769.63	335.00	-218.33	16.00	106.50	10.00	0.00	-103.00	7570.29	58.401
2:29:48	59.9270	3769.63	335.00	-218.33	16.00	106.50	10.00	0.00	-103.00	7570.29	58.401
2:29:50	59.9270	3769.63	335.00	-218.33	16.00	106.50	10.00	0.00	-103.00	7570.29	58.401
2:29:52	59.9280	3767.64	335.00	-217.38	0.00	107.00	10.00	0.00	-103.00	7570.62	57.599
2:29:54	59.9280	3767.64	335.00	-217.38	0.00	107.00	10.00	0.00	-103.00	7570.62	57.599
2:29:56	59.9290	3766.79	335.00	-217.38	0.00	107.50	10.00	0.00	-103.00	7570.95	56.799
2:29:58	59.9290	3766.79	335.00	-217.38	0.00	107.50	10.00	0.00	-103.00	7570.95	56.799
2:30:00	59.9290	3766.79	335.00	-217.38	0.00	107.50	10.00	0.00	-103.00	7570.95	56.799
2:30:02	59.9370	3765.67	335.00	-217.38	0.00	108.00	10.00	0.00	-103.00	7571.28	50.400
2:30:04	59.9370	3765.67	335.00	-217.38	0.00	108.00	10.00	0.00	-103.00	7571.28	50.400
2:30:06	59.9450	3765.10	335.00	-217.38	0.00	108.50	10.00	0.00	-103.00	7571.61	44.000
2:30:08	59.9450	3765.10	335.00	-217.38	0.00	108.50	10.00	0.00	-103.00	7571.61	44.000
2:30:10	59.9450	3765.10	335.00	-217.38	0.00	108.50	10.00	0.00	-103.00	7571.61	44.000
2:30:12	59.9420	3758.39	335.00	-217.38	0.00	109.00	10.00	0.00	-103.00	7571.94	46.399
2:30:14	59.9420	3758.39	335.00	-217.38	0.00	109.00	10.00	0.00	-103.00	7571.94	46.399
2:30:16	59.9420	3746.89	335.00	-214.83	0.00	109.50	10.00	0.00	-103.00	7572.27	46.399
2:30:18	59.9420	3746.89	335.00	-214.83	0.00	109.50	10.00	0.00	-103.00	7572.27	46.399
2:30:20	59.9420	3746.89	335.00	-214.83	0.00	109.50	10.00	0.00	-103.00	7572.27	46.399
2:30:22	59.9470	3749.59	335.00	-214.83	0.00	110.00	10.00	0.00	-103.00	7572.60	42.401
2:30:24	59.9470	3749.59	335.00	-214.83	0.00	110.00	10.00	0.00	-103.00	7572.60	42.401
2:30:26	59.9510	3749.08	335.00	-214.83	0.00	110.50	10.00	0.00	-103.00	7572.93	39.200
2:30:28	59.9510	3749.08	335.00	-214.83	0.00	110.50	10.00	0.00	-103.00	7572.93	39.200
2:30:30	59.9510	3749.08	335.00	-214.83	0.00	110.50	10.00	0.00	-103.00	7572.93	39.200
2:30:32	59.9510	3740.26	335.00	-214.83	0.00	111.00	10.00	0.00	-103.00	7573.26	39.200
2:30:34	59.9510	3740.26	335.00	-214.83	0.00	111.00	10.00	0.00	-103.00	7573.26	39.200
2:30:36	59.9520	3727.84	335.00	-214.83	0.00	111.50	10.00	0.00	-103.00	7573.59	38.400
2:30:38	59.9520	3727.84	335.00	-214.83	0.00	111.50	10.00	0.00	-103.00	7573.59	38.400
2:30:40	59.9520	3727.84	335.00	-214.83	0.00	111.50	10.00	0.00	-103.00	7573.59	38.400
2:30:42	59.9520	3722.65	335.00	-227.66	0.00	112.00	10.00	0.00	-103.00	7573.92	38.400
2:30:44	59.9520	3722.65	335.00	-227.66	0.00	112.00	10.00	0.00	-103.00	7573.92	38.400
2:30:46	59.9520	3718.14	335.00	-227.66	0.00	112.50	10.00	0.00	-103.00	7574.25	38.400

2:30:48	59.9520	3718.14	335.00	-227.66	0.00	112.50	10.00	0.00	-103.00	7574.25	38.400
2:30:50	59.9520	3718.14	335.00	-227.66	0.00	112.50	10.00	0.00	-103.00	7574.25	38.400
2:30:52	59.9520	3713.69	335.00	-227.66	0.00	113.00	10.00	0.00	-103.00	7574.58	38.400
2:30:54	59.9520	3713.69	335.00	-227.66	0.00	113.00	10.00	0.00	-103.00	7574.58	38.400
2:30:56	59.9540	3710.81	335.00	-227.66	0.00	113.50	10.00	0.00	-103.00	7574.91	36.801
2:30:58	59.9540	3710.81	335.00	-227.66	0.00	113.50	10.00	0.00	-103.00	7574.91	36.801
2:31:00	59.9540	3710.81	335.00	-227.66	0.00	113.50	10.00	0.00	-103.00	7574.91	36.801
2:31:02	59.9560	3714.62	335.00	-227.66	0.00	114.00	10.00	0.00	-103.00	7575.24	35.199
2:31:04	59.9560	3714.62	335.00	-227.66	0.00	114.00	10.00	0.00	-103.00	7575.24	35.199
2:31:06	59.9560	3716.46	335.00	-225.02	0.00	114.50	10.00	0.00	-103.00	7575.57	35.199
2:31:08	59.9560	3716.46	335.00	-225.02	0.00	114.50	10.00	0.00	-103.00	7575.57	35.199
2:31:10	59.9560	3716.46	335.00	-225.02	0.00	114.50	10.00	0.00	-103.00	7575.57	35.199
2:31:12	59.9610	3717.76	335.00	-225.02	0.00	115.00	10.00	0.00	-103.00	7575.90	31.201
2:31:14	59.9610	3717.76	335.00	-225.02	0.00	115.00	10.00	0.00	-103.00	7575.90	31.201
2:31:16	59.9620	3722.66	335.00	-225.02	0.00	115.50	10.00	0.00	-103.00	7576.23	30.399
2:31:18	59.9620	3722.66	335.00	-225.02	0.00	115.50	10.00	0.00	-103.00	7576.23	30.399
2:31:20	59.9620	3722.66	335.00	-225.02	0.00	115.50	10.00	0.00	-103.00	7576.23	30.399
2:31:22	59.9660	3722.28	335.00	-225.02	0.00	116.00	10.00	0.00	-103.00	7576.56	27.200
2:31:24	59.9660	3722.28	335.00	-225.02	0.00	116.00	10.00	0.00	-103.00	7576.56	27.200
2:31:26	59.9700	3723.98	335.00	-225.02	0.00	116.50	10.00	0.00	-103.00	7576.89	23.999
2:31:28	59.9700	3723.98	335.00	-225.02	0.00	116.50	10.00	0.00	-103.00	7576.89	23.999
2:31:30	59.9700	3723.98	335.00	-225.02	0.00	116.50	10.00	0.00	-103.00	7576.89	23.999
2:31:32	59.9690	3723.89	335.00	-228.37	0.00	117.00	10.00	0.00	-103.00	7577.22	24.799
2:31:34	59.9690	3723.89	335.00	-228.37	0.00	117.00	10.00	0.00	-103.00	7577.22	24.799
2:31:36	59.9700	3728.05	335.00	-228.37	0.00	117.50	10.00	0.00	-103.00	7577.55	23.999
2:31:38	59.9700	3728.05	335.00	-228.37	0.00	117.50	10.00	0.00	-103.00	7577.55	23.999
2:31:40	59.9700	3728.05	335.00	-228.37	0.00	117.50	10.00	0.00	-103.00	7577.55	23.999
2:31:42	59.9730	3732.53	335.00	-228.37	0.00	118.00	10.00	0.00	-103.00	7577.88	21.600
2:31:44	59.9730	3732.53	335.00	-228.37	0.00	118.00	10.00	0.00	-103.00	7577.88	21.600
2:31:46	59.9780	3736.91	335.00	-228.37	0.00	118.50	10.00	0.00	-103.00	7578.21	17.599
2:31:48	59.9780	3736.91	335.00	-228.37	0.00	118.50	10.00	0.00	-103.00	7578.21	17.599
2:31:50	59.9780	3736.91	335.00	-228.37	0.00	118.50	10.00	0.00	-103.00	7578.21	17.599
2:31:52	59.9780	3738.70	335.00	-228.37	0.00	119.00	10.00	0.00	-103.00	7578.54	17.599
2:31:54	59.9780	3738.70	335.00	-228.37	0.00	119.00	10.00	0.00	-103.00	7578.54	17.599
2:31:56	59.9780	3741.79	335.00	-234.08	0.00	119.50	10.00	0.00	-103.00	7578.87	17.599
2:31:58	59.9780	3741.79	335.00	-234.08	0.00	119.50	10.00	0.00	-103.00	7578.87	17.599
2:32:00	59.9780	3741.79	335.00	-234.08	0.00	119.50	10.00	0.00	-103.00	7578.87	17.599
2:32:02	59.9820	3746.61	335.00	-234.08	0.00	120.00	10.00	0.00	-103.00	7579.20	14.401
2:32:04	59.9820	3746.61	335.00	-234.08	0.00	120.00	10.00	0.00	-103.00	7579.20	14.401
2:32:06	59.9800	3751.56	335.00	-234.08	0.00	120.50	10.00	0.00	-103.00	7579.53	16.000
2:32:08	59.9800	3751.56	335.00	-234.08	0.00	120.50	10.00	0.00	-103.00	7579.53	16.000
2:32:10	59.9800	3751.56	335.00	-234.08	0.00	120.50	10.00	0.00	-103.00	7579.53	16.000
2:32:12	59.9790	3755.60	335.00	-234.08	0.00	121.00	10.00	0.00	-103.00	7579.86	16.800
2:32:14	59.9790	3755.60	335.00	-234.08	0.00	121.00	10.00	0.00	-103.00	7579.86	16.800
2:32:16	59.9830	3760.41	335.00	-234.08	0.00	121.50	10.00	0.00	-103.00	7580.19	13.599
2:32:18	59.9830	3760.41	335.00	-234.08	0.00	121.50	10.00	0.00	-103.00	7580.19	13.599

2:32:20	59.9830	3760.41	335.00	-234.08	0.00	121.50	10.00	0.00	-103.00	7580.19	13.599
2:32:22	59.9890	3761.41	335.00	-228.80	0.00	122.00	10.00	0.00	-103.00	7580.52	8.801
2:32:24	59.9890	3761.41	335.00	-228.80	0.00	122.00	10.00	0.00	-103.00	7580.52	8.801
2:32:26	59.9870	3764.96	335.00	-228.80	0.00	122.50	10.00	0.00	-103.00	7580.85	10.400
2:32:28	59.9870	3764.96	335.00	-228.80	0.00	122.50	10.00	0.00	-103.00	7580.85	10.400
2:32:30	59.9870	3764.96	335.00	-228.80	0.00	122.50	10.00	0.00	-103.00	7580.85	10.400
2:32:32	59.9920	3766.43	335.00	-354.90	0.00	123.00	10.00	0.00	-103.00	7581.18	6.400
2:32:34	59.9920	3766.43	335.00	-354.90	0.00	123.00	10.00	0.00	-103.00	7581.18	6.400
2:32:36	59.9890	3768.63	335.00	-354.90	0.00	123.50	10.00	0.00	-103.00	7581.51	8.801
2:32:38	59.9890	3768.63	335.00	-354.90	0.00	123.50	10.00	0.00	-103.00	7581.51	8.801
2:32:40	59.9890	3768.63	335.00	-354.90	0.00	123.50	10.00	0.00	-103.00	7581.51	8.801
2:32:42	59.9830	3772.44	335.00	-340.47	0.00	124.00	10.00	0.00	-103.00	7581.84	13.599
2:32:44	59.9830	3772.44	335.00	-340.47	0.00	124.00	10.00	0.00	-103.00	7581.84	13.599
2:32:46	59.9930	3775.84	335.00	-340.47	0.00	124.50	10.00	0.00	-103.00	7582.17	5.600
2:32:48	59.9930	3775.84	335.00	-340.47	0.00	124.50	10.00	0.00	-103.00	7582.17	5.600
2:32:50	59.9930	3775.84	335.00	-340.47	0.00	124.50	10.00	0.00	-103.00	7582.17	5.600
2:32:52	59.9990	3774.87	335.00	-340.47	0.00	125.00	10.00	0.00	-103.00	7582.50	0.800
2:32:54	59.9990	3774.87	335.00	-340.47	0.00	125.00	10.00	0.00	-103.00	7582.50	0.800
2:32:56	59.9990	3778.55	335.00	-340.47	0.00	125.50	10.00	0.00	-103.00	7582.83	0.800
2:32:58	59.9990	3778.55	335.00	-340.47	0.00	125.50	10.00	0.00	-103.00	7582.83	0.800
2:33:00	59.9990	3778.55	335.00	-340.47	0.00	125.50	10.00	0.00	-103.00	7582.83	0.800
2:33:02	60.0020	3781.26	335.00	-340.47	0.00	126.00	10.00	0.00	-103.00	7583.16	-1.599
2:33:04	60.0020	3781.26	335.00	-340.47	0.00	126.00	10.00	0.00	-103.00	7583.16	-1.599
2:33:06	60.0070	3783.90	335.00	-337.64	0.00	126.50	10.00	0.00	-103.00	7583.49	-5.600
2:33:08	60.0070	3783.90	335.00	-337.64	0.00	126.50	10.00	0.00	-103.00	7583.49	-5.600
2:33:10	60.0070	3783.90	335.00	-337.64	0.00	126.50	10.00	0.00	-103.00	7583.49	-5.600
2:33:12	60.0140	3785.77	335.00	-337.64	0.00	127.00	10.00	0.00	-103.00	7583.82	-11.200
2:33:14	60.0140	3785.77	335.00	-337.64	0.00	127.00	10.00	0.00	-103.00	7583.82	-11.200
2:33:16	60.0190	3786.30	335.00	-337.64	0.00	127.50	10.00	0.00	-103.00	7584.15	-15.201
2:33:18	60.0190	3786.30	335.00	-337.64	0.00	127.50	10.00	0.00	-103.00	7584.15	-15.201
2:33:20	60.0190	3786.30	335.00	-337.64	0.00	127.50	10.00	0.00	-103.00	7584.15	-15.201
2:33:22	60.0170	3787.52	335.00	-337.64	0.00	128.00	10.00	0.00	-103.00	7584.48	-13.599
2:33:24	60.0170	3787.52	335.00	-337.64	0.00	128.00	10.00	0.00	-103.00	7584.48	-13.599
2:33:26	60.0230	3788.61	335.00	-337.64	0.00	128.50	10.00	0.00	-103.00	7584.81	-18.399
2:33:28	60.0230	3788.61	335.00	-337.64	0.00	128.50	10.00	0.00	-103.00	7584.81	-18.399
2:33:30	60.0230	3788.61	335.00	-337.64	0.00	128.50	10.00	0.00	-103.00	7584.81	-18.399
2:33:32	60.0210	3787.54	335.00	-284.36	0.00	129.00	10.00	0.00	-103.00	7585.14	-16.800
2:33:34	60.0210	3787.54	335.00	-284.36	0.00	129.00	10.00	0.00	-103.00	7585.14	-16.800
2:33:36	60.0240	3787.93	335.00	-284.36	0.00	129.50	10.00	0.00	-103.00	7585.47	-19.199
2:33:38	60.0240	3787.93	335.00	-284.36	0.00	129.50	10.00	0.00	-103.00	7585.47	-19.199
2:33:40	60.0240	3787.93	335.00	-284.36	0.00	129.50	10.00	0.00	-103.00	7585.47	-19.199
2:33:42	60.0200	3786.87	350.00	-284.36	0.00	130.00	10.00	0.00	-103.00	7585.80	-16.000
2:33:44	60.0200	3786.87	350.00	-284.36	0.00	130.00	10.00	0.00	-103.00	7585.80	-16.000
2:33:46	60.0240	3785.02	350.00	-284.36	0.00	130.50	10.00	0.00	-103.00	7586.13	-19.199
2:33:48	60.0240	3785.02	350.00	-284.36	0.00	130.50	10.00	0.00	-103.00	7586.13	-19.199
2:33:50	60.0240	3785.02	350.00	-284.36	0.00	130.50	10.00	0.00	-103.00	7586.13	-19.199

2:33:52	60.0220	3785.95	350.00	-284.36	0.00	131.00	10.00	0.00	-103.00	7586.46	-17.599
2:33:54	60.0220	3785.95	350.00	-284.36	0.00	131.00	10.00	0.00	-103.00	7586.46	-17.599
2:33:56	60.0220	3786.88	350.00	-260.47	0.00	131.50	10.00	0.00	-103.00	7586.79	-17.599
2:33:58	60.0220	3786.88	350.00	-260.47	0.00	131.50	10.00	0.00	-103.00	7586.79	-17.599
2:34:00	60.0220	3786.88	350.00	-260.47	0.00	131.50	10.00	0.00	-103.00	7586.79	-17.599
2:34:02	60.0230	3785.73	350.00	-260.47	0.00	132.00	10.00	0.00	-103.00	7587.12	-18.399
2:34:04	60.0230	3785.73	350.00	-260.47	0.00	132.00	10.00	0.00	-103.00	7587.12	-18.399
2:34:06	60.0220	3785.80	350.00	-260.47	0.00	132.50	10.00	0.00	-103.00	7587.45	-17.599
2:34:08	60.0220	3785.80	350.00	-260.47	0.00	132.50	10.00	0.00	-103.00	7587.45	-17.599
2:34:10	60.0220	3785.80	350.00	-260.47	0.00	132.50	10.00	0.00	-103.00	7587.45	-17.599
2:34:12	60.0180	3786.94	350.00	-260.47	0.00	133.00	10.00	0.00	-103.00	7587.78	-14.401
2:34:14	60.0180	3786.94	350.00	-260.47	0.00	133.00	10.00	0.00	-103.00	7587.78	-14.401
2:34:16	60.0180	3789.67	350.00	-260.47	0.00	133.50	10.00	0.00	-103.00	7588.11	-14.401
2:34:18	60.0180	3789.67	350.00	-260.47	0.00	133.50	10.00	0.00	-103.00	7588.11	-14.401
2:34:20	60.0180	3789.67	350.00	-260.47	0.00	133.50	10.00	0.00	-103.00	7588.11	-14.401
2:34:22	60.0160	3788.48	350.00	-253.14	0.00	134.00	10.00	0.00	-103.00	7588.44	-12.799
2:34:24	60.0160	3788.48	350.00	-253.14	0.00	134.00	10.00	0.00	-103.00	7588.44	-12.799
2:34:26	60.0160	3789.00	350.00	-253.14	0.00	134.50	10.00	0.00	-103.00	7588.77	-12.799
2:34:28	60.0160	3789.00	350.00	-253.14	0.00	134.50	10.00	0.00	-103.00	7588.77	-12.799
2:34:30	60.0160	3789.00	350.00	-253.14	0.00	134.50	10.00	0.00	-103.00	7588.77	-12.799
2:34:32	60.0120	3788.93	350.00	-253.14	0.00	135.00	10.00	0.00	-103.00	7589.10	-9.601
2:34:34	60.0120	3788.93	350.00	-253.14	0.00	135.00	10.00	0.00	-103.00	7589.10	-9.601
2:34:36	60.0100	3790.41	350.00	-253.14	0.00	135.50	10.00	0.00	-103.00	7589.43	-7.999
2:34:38	60.0100	3790.41	350.00	-253.14	0.00	135.50	10.00	0.00	-103.00	7589.43	-7.999
2:34:40	60.0100	3790.41	350.00	-253.14	0.00	135.50	10.00	0.00	-103.00	7589.43	-7.999
2:34:42	60.0090	3791.54	350.00	-253.14	0.00	136.00	10.00	0.00	-103.00	7589.76	-7.199
2:34:44	60.0090	3791.54	350.00	-253.14	0.00	136.00	10.00	0.00	-103.00	7589.76	-7.199
2:34:46	60.0100	3791.44	350.00	-251.93	0.00	136.50	10.00	0.00	-103.00	7590.09	-7.999
2:34:48	60.0100	3791.44	350.00	-251.93	0.00	136.50	10.00	0.00	-103.00	7590.09	-7.999
2:34:50	60.0100	3791.44	350.00	-251.93	0.00	136.50	10.00	0.00	-103.00	7590.09	-7.999
2:34:52	59.9950	3790.60	350.00	-251.93	0.00	137.00	10.00	0.00	-103.00	7590.42	4.001
2:34:54	59.9950	3790.60	350.00	-251.93	0.00	137.00	10.00	0.00	-103.00	7590.42	4.001
2:34:56	59.9910	3789.58	350.00	-251.93	0.00	137.50	10.00	0.00	-103.00	7590.75	7.199
2:34:58	59.9910	3789.58	350.00	-251.93	0.00	137.50	10.00	0.00	-103.00	7590.75	7.199
2:35:00	59.9910	3789.58	350.00	-251.93	0.00	137.50	10.00	0.00	-103.00	7590.75	7.199
2:35:02	59.9880	3788.10	350.00	-251.93	0.00	138.00	10.00	0.00	-103.00	7591.08	9.601
2:35:04	59.9880	3788.10	350.00	-251.93	0.00	138.00	10.00	0.00	-103.00	7591.08	9.601
2:35:06	59.9850	3788.50	350.00	-251.93	0.00	138.50	10.00	0.00	-103.00	7591.41	12.000
2:35:08	59.9850	3788.50	350.00	-251.93	0.00	138.50	10.00	0.00	-103.00	7591.41	12.000
2:35:10	59.9850	3788.50	350.00	-251.93	0.00	138.50	10.00	0.00	-103.00	7591.41	12.000
2:35:12	59.9840	3788.57	350.00	-250.67	0.00	139.00	10.00	0.00	-103.00	7591.74	12.799
2:35:14	59.9840	3788.57	350.00	-250.67	0.00	139.00	10.00	0.00	-103.00	7591.74	12.799
2:35:16	59.9810	3786.45	350.00	-250.67	0.00	139.50	10.00	0.00	-103.00	7592.07	15.201
2:35:18	59.9810	3786.45	350.00	-250.67	0.00	139.50	10.00	0.00	-103.00	7592.07	15.201
2:35:20	59.9810	3786.45	350.00	-250.67	0.00	139.50	10.00	0.00	-103.00	7592.07	15.201
2:35:22	59.9770	3788.81	350.00	-250.67	0.00	140.00	10.00	0.00	-103.00	7592.40	18.399

2:35:24	59.9770	3788.81	350.00	-250.67	0.00	140.00	10.00	0.00	-103.00	7592.40	18.399
2:35:26	59.9760	3788.41	350.00	-250.67	0.00	140.50	10.00	0.00	-103.00	7592.73	19.199
2:35:28	59.9760	3788.41	350.00	-250.67	0.00	140.50	10.00	0.00	-103.00	7592.73	19.199
2:35:30	59.9760	3788.41	350.00	-250.67	0.00	140.50	10.00	0.00	-103.00	7592.73	19.199
2:35:32	59.9780	3790.66	350.00	-250.67	0.00	141.00	10.00	0.00	-103.00	7593.06	17.599
2:35:34	59.9780	3790.66	350.00	-250.67	0.00	141.00	10.00	0.00	-103.00	7593.06	17.599
2:35:36	59.9740	3789.27	350.00	-253.63	0.00	141.50	10.00	0.00	-103.00	7593.39	20.801
2:35:38	59.9740	3789.27	350.00	-253.63	0.00	141.50	10.00	0.00	-103.00	7593.39	20.801
2:35:40	59.9740	3789.27	350.00	-253.63	0.00	141.50	10.00	0.00	-103.00	7593.39	20.801
2:35:42	59.9770	3790.43	350.00	-253.63	0.00	142.00	10.00	0.00	-103.00	7593.72	18.399
2:35:44	59.9770	3790.43	350.00	-253.63	0.00	142.00	10.00	0.00	-103.00	7593.72	18.399
2:35:46	59.9730	3787.44	350.00	-253.63	0.00	142.50	10.00	0.00	-103.00	7594.05	21.600
2:35:48	59.9730	3787.44	350.00	-253.63	0.00	142.50	10.00	0.00	-103.00	7594.05	21.600
2:35:50	59.9730	3787.44	350.00	-253.63	0.00	142.50	10.00	0.00	-103.00	7594.05	21.600
2:35:52	59.9710	3790.60	350.00	-253.63	0.00	143.00	10.00	0.00	-103.00	7594.38	23.199
2:35:54	59.9710	3790.60	350.00	-253.63	0.00	143.00	10.00	0.00	-103.00	7594.38	23.199
2:35:56	59.9780	3792.31	350.00	-253.63	0.00	143.50	10.00	0.00	-103.00	7594.71	17.599
2:35:58	59.9780	3792.31	350.00	-253.63	0.00	143.50	10.00	0.00	-103.00	7594.71	17.599
2:36:00	59.9780	3792.31	350.00	-253.63	0.00	143.50	10.00	0.00	-103.00	7594.71	17.599
2:36:02	59.9750	3788.08	350.00	-246.96	0.00	144.00	10.00	15.00	-103.00	7595.04	20.001
2:36:04	59.9750	3788.08	350.00	-246.96	0.00	144.00	10.00	15.00	-103.00	7595.04	20.001
2:36:06	59.9760	3787.16	350.00	-246.96	0.00	144.50	10.00	15.00	-103.00	7595.37	19.199
2:36:08	59.9760	3787.16	350.00	-246.96	0.00	144.50	10.00	15.00	-103.00	7595.37	19.199
2:36:10	59.9760	3787.16	350.00	-246.96	0.00	144.50	10.00	15.00	-103.00	7595.37	19.199
2:36:12	59.9690	3787.40	350.00	-246.96	0.00	145.00	10.00	15.00	-103.00	7595.70	24.799
2:36:14	59.9690	3787.40	350.00	-246.96	0.00	145.00	10.00	15.00	-103.00	7595.70	24.799
2:36:16	59.9650	3789.21	350.00	-246.96	0.00	145.50	10.00	15.00	-103.00	7596.03	28.000
2:36:18	59.9650	3789.21	350.00	-246.96	0.00	145.50	10.00	15.00	-103.00	7596.03	28.000
2:36:20	59.9650	3789.21	350.00	-246.96	0.00	145.50	10.00	15.00	-103.00	7596.03	28.000
2:36:22	59.9700	3791.22	350.00	-246.96	0.00	146.00	10.00	15.00	-103.00	7596.36	23.999
2:36:24	59.9700	3791.22	350.00	-246.96	0.00	146.00	10.00	15.00	-103.00	7596.36	23.999
2:36:26	59.9650	3788.82	350.00	-254.54	0.00	146.50	10.00	15.00	-103.00	7596.69	28.000
2:36:28	59.9650	3788.82	350.00	-254.54	0.00	146.50	10.00	15.00	-103.00	7596.69	28.000
2:36:30	59.9650	3788.82	350.00	-254.54	0.00	146.50	10.00	15.00	-103.00	7596.69	28.000
2:36:32	59.9720	3789.17	350.00	-254.54	0.00	147.00	10.00	15.00	-103.00	7597.02	22.400
2:36:34	59.9720	3789.17	350.00	-254.54	0.00	147.00	10.00	15.00	-103.00	7597.02	22.400
2:36:36	59.9670	3784.83	350.00	-254.54	0.00	147.50	10.00	15.00	-103.00	7597.35	26.401
2:36:38	59.9670	3784.83	350.00	-254.54	0.00	147.50	10.00	15.00	-103.00	7597.35	26.401
2:36:40	59.9670	3784.83	350.00	-254.54	0.00	147.50	10.00	15.00	-103.00	7597.35	26.401
2:36:42	59.9690	3784.32	350.00	-254.54	0.00	148.00	10.00	15.00	-103.00	7597.68	24.799
2:36:44	59.9690	3784.32	350.00	-254.54	0.00	148.00	10.00	15.00	-103.00	7597.68	24.799
2:36:46	59.9670	3779.35	350.00	-254.54	0.00	148.50	10.00	15.00	-103.00	7598.01	26.401
2:36:48	59.9670	3779.35	350.00	-254.54	0.00	148.50	10.00	15.00	-103.00	7598.01	26.401
2:36:50	59.9670	3779.35	350.00	-254.54	0.00	148.50	10.00	15.00	-103.00	7598.01	26.401
2:36:52	59.9710	3778.63	350.00	-256.57	0.00	149.00	10.00	15.00	-103.00	7598.34	23.199
2:36:54	59.9710	3778.63	350.00	-256.57	0.00	149.00	10.00	15.00	-103.00	7598.34	23.199

2:36:56	59.9650	3776.43	350.00	-256.57	0.00	149.50	10.00	15.00	-103.00	7598.67	28.000
2:36:58	59.9650	3776.43	350.00	-256.57	0.00	149.50	10.00	15.00	-103.00	7598.67	28.000
2:37:00	59.9650	3776.43	350.00	-256.57	0.00	149.50	10.00	15.00	-103.00	7598.67	28.000
2:37:02	59.9700	3776.60	350.00	-256.57	0.00	150.00	10.00	15.00	-103.00	7599.00	23.999
2:37:04	59.9700	3776.60	350.00	-256.57	0.00	150.00	10.00	15.00	-103.00	7599.00	23.999
2:37:06	59.9690	3773.17	350.00	-256.57	0.00	150.50	10.00	15.00	-103.00	7599.33	24.799
2:37:08	59.9690	3773.17	350.00	-256.57	0.00	150.50	10.00	15.00	-103.00	7599.33	24.799
2:37:10	59.9690	3773.17	350.00	-256.57	0.00	150.50	10.00	15.00	-103.00	7599.33	24.799
2:37:12	59.9650	3768.79	350.00	-256.57	0.00	151.00	10.00	15.00	-103.00	7599.66	28.000
2:37:14	59.9650	3768.79	350.00	-256.57	0.00	151.00	10.00	15.00	-103.00	7599.66	28.000
2:37:16	59.9730	3767.37	350.00	-258.37	0.00	151.50	10.00	15.00	-103.00	7599.99	21.600
2:37:18	59.9730	3767.37	350.00	-258.37	0.00	151.50	10.00	15.00	-103.00	7599.99	21.600
2:37:20	59.9730	3767.37	350.00	-258.37	0.00	151.50	10.00	15.00	-103.00	7599.99	21.600
2:37:22	59.9680	3760.30	350.00	-258.37	0.00	152.00	10.00	15.00	-103.00	7600.32	25.601
2:37:24	59.9680	3760.30	350.00	-258.37	0.00	152.00	10.00	15.00	-103.00	7600.32	25.601
2:37:26	59.9670	3761.78	350.00	-258.37	0.00	152.50	10.00	15.00	-103.00	7600.65	26.401
2:37:28	59.9670	3761.78	350.00	-258.37	0.00	152.50	10.00	15.00	-103.00	7600.65	26.401
2:37:30	59.9670	3761.78	350.00	-258.37	0.00	152.50	10.00	15.00	-103.00	7600.65	26.401
2:37:32	59.9790	3760.16	350.00	-258.37	0.00	153.00	10.00	15.00	-103.00	7600.98	16.800
2:37:34	59.9790	3760.16	350.00	-258.37	0.00	153.00	10.00	15.00	-103.00	7600.98	16.800
2:37:36	59.9830	3757.77	350.00	-258.37	0.00	153.50	10.00	15.00	-103.00	7601.31	13.599
2:37:38	59.9830	3757.77	350.00	-258.37	0.00	153.50	10.00	15.00	-103.00	7601.31	13.599
2:37:40	59.9830	3757.77	350.00	-258.37	0.00	153.50	10.00	15.00	-103.00	7601.31	13.599
2:37:42	59.9650	3753.09	350.00	-263.05	0.00	154.00	10.00	15.00	-103.00	7601.64	28.000
2:37:44	59.9650	3753.09	350.00	-263.05	0.00	154.00	10.00	15.00	-103.00	7601.64	28.000
2:37:46	59.9620	3758.22	350.00	-263.05	0.00	154.50	10.00	15.00	-103.00	7601.97	30.399
2:37:48	59.9620	3758.22	350.00	-263.05	0.00	154.50	10.00	15.00	-103.00	7601.97	30.399
2:37:50	59.9620	3758.22	350.00	-263.05	0.00	154.50	10.00	15.00	-103.00	7601.97	30.399
2:37:52	59.9600	3758.04	350.00	-263.05	0.00	155.00	10.00	15.00	-103.00	7602.30	32.001
2:37:54	59.9600	3758.04	350.00	-263.05	0.00	155.00	10.00	15.00	-103.00	7602.30	32.001
2:37:56	59.9590	3763.82	350.00	-263.05	0.00	155.50	10.00	15.00	-103.00	7602.63	32.800
2:37:58	59.9590	3763.82	350.00	-263.05	0.00	155.50	10.00	15.00	-103.00	7602.63	32.800
2:38:00	59.9590	3763.82	350.00	-263.05	0.00	155.50	10.00	15.00	-103.00	7602.63	32.800
2:38:02	59.9530	3763.86	350.00	-263.05	0.00	156.00	10.00	15.00	-103.00	7602.96	37.601
2:38:04	59.9530	3763.86	350.00	-263.05	0.00	156.00	10.00	15.00	-103.00	7602.96	37.601
2:38:06	59.9570	3768.34	350.00	-260.98	0.00	156.50	10.00	15.00	-103.00	7603.29	34.399
2:38:08	59.9570	3768.34	350.00	-260.98	0.00	156.50	10.00	15.00	-103.00	7603.29	34.399
2:38:10	59.9570	3768.34	350.00	-260.98	0.00	156.50	10.00	15.00	-103.00	7603.29	34.399
2:38:12	59.9630	3767.44	350.00	-260.98	0.00	157.00	10.00	15.00	-103.00	7603.62	29.599
2:38:14	59.9630	3767.44	350.00	-260.98	0.00	157.00	10.00	15.00	-103.00	7603.62	29.599
2:38:16	59.9590	3761.57	350.00	-260.98	0.00	157.50	10.00	15.00	-103.00	7603.95	32.800
2:38:18	59.9590	3761.57	350.00	-260.98	0.00	157.50	10.00	15.00	-103.00	7603.95	32.800
2:38:20	59.9590	3761.57	350.00	-260.98	0.00	157.50	10.00	15.00	-103.00	7603.95	32.800
2:38:22	59.9650	3759.63	350.00	-260.98	0.00	158.00	10.00	15.00	-103.00	7604.28	28.000
2:38:24	59.9650	3759.63	350.00	-260.98	0.00	158.00	10.00	15.00	-103.00	7604.28	28.000
2:38:26	59.9680	3750.10	350.00	-260.98	0.00	158.50	10.00	15.00	-103.00	7604.61	25.601

2:38:28	59.9680	3750.10	350.00	-260.98	0.00	158.50	10.00	15.00	-103.00	7604.61	25.601
2:38:30	59.9680	3750.10	350.00	-260.98	0.00	158.50	10.00	15.00	-103.00	7604.61	25.601
2:38:32	59.9730	3753.51	350.00	-261.32	0.00	159.00	10.00	15.00	-103.00	7604.94	21.600
2:38:34	59.9730	3753.51	350.00	-261.32	0.00	159.00	10.00	15.00	-103.00	7604.94	21.600
2:38:36	59.9650	3753.18	350.00	-261.32	0.00	159.50	10.00	15.00	-103.00	7605.27	28.000
2:38:38	59.9650	3753.18	350.00	-261.32	0.00	159.50	10.00	15.00	-103.00	7605.27	28.000
2:38:40	59.9650	3753.18	350.00	-261.32	0.00	159.50	10.00	15.00	-103.00	7605.27	28.000
2:38:42	59.9720	3753.29	350.00	-261.32	0.00	160.00	10.00	15.00	-103.00	7605.60	22.400
2:38:44	59.9720	3753.29	350.00	-261.32	0.00	160.00	10.00	15.00	-103.00	7605.60	22.400
2:38:46	59.9750	3749.40	350.00	-261.32	0.00	160.50	10.00	15.00	-103.00	7605.93	20.001
2:38:48	59.9750	3749.40	350.00	-261.32	0.00	160.50	10.00	15.00	-103.00	7605.93	20.001
2:38:50	59.9750	3749.40	350.00	-261.32	0.00	160.50	10.00	15.00	-103.00	7605.93	20.001
2:38:52	59.9740	3740.37	350.00	-261.32	0.00	161.00	10.00	15.00	-103.00	7606.26	20.801
2:38:54	59.9740	3740.37	350.00	-261.32	0.00	161.00	10.00	15.00	-103.00	7606.26	20.801
2:38:56	59.9810	3745.74	350.00	-262.10	0.00	161.50	10.00	15.00	-103.00	7606.59	15.201
2:38:58	59.9810	3745.74	350.00	-262.10	0.00	161.50	10.00	15.00	-103.00	7606.59	15.201
2:39:00	59.9810	3745.74	350.00	-262.10	0.00	161.50	10.00	15.00	-103.00	7606.59	15.201
2:39:02	59.9820	3741.62	350.00	-262.10	0.00	162.00	10.00	15.00	-103.00	7606.92	14.401
2:39:04	59.9820	3741.62	350.00	-262.10	0.00	162.00	10.00	15.00	-103.00	7606.92	14.401
2:39:06	59.9840	3738.90	350.00	-262.10	0.00	162.50	10.00	15.00	-103.00	7607.25	12.799
2:39:08	59.9840	3738.90	350.00	-262.10	0.00	162.50	10.00	15.00	-103.00	7607.25	12.799
2:39:10	59.9840	3738.90	350.00	-262.10	0.00	162.50	10.00	15.00	-103.00	7607.25	12.799
2:39:12	59.9790	3737.27	350.00	-262.10	0.00	163.00	10.00	15.00	-103.00	7607.58	16.800
2:39:14	59.9790	3737.27	350.00	-262.10	0.00	163.00	10.00	15.00	-103.00	7607.58	16.800
2:39:16	59.9780	3735.45	350.00	-262.10	0.00	163.50	10.00	15.00	-103.00	7607.91	17.599
2:39:18	59.9780	3735.45	350.00	-262.10	0.00	163.50	10.00	15.00	-103.00	7607.91	17.599
2:39:20	59.9780	3735.45	350.00	-262.10	0.00	163.50	10.00	15.00	-103.00	7607.91	17.599
2:39:22	59.9810	3737.54	350.00	-262.72	0.00	164.00	10.00	15.00	-103.00	7608.24	15.201
2:39:24	59.9810	3737.54	350.00	-262.72	0.00	164.00	10.00	15.00	-103.00	7608.24	15.201
2:39:26	59.9780	3736.69	350.00	-262.72	0.00	164.50	10.00	15.00	-103.00	7608.57	17.599
2:39:28	59.9780	3736.69	350.00	-262.72	0.00	164.50	10.00	15.00	-103.00	7608.57	17.599
2:39:30	59.9780	3736.69	350.00	-262.72	0.00	164.50	10.00	15.00	-103.00	7608.57	17.599
2:39:32	59.9710	3736.09	350.00	-262.72	0.00	165.00	10.00	15.00	-103.00	7608.90	23.199
2:39:34	59.9710	3736.09	350.00	-262.72	0.00	165.00	10.00	15.00	-103.00	7608.90	23.199
2:39:36	59.9740	3738.87	350.00	-262.72	0.00	165.50	10.00	15.00	-103.00	7609.23	20.801
2:39:38	59.9740	3738.87	350.00	-262.72	0.00	165.50	10.00	15.00	-103.00	7609.23	20.801
2:39:40	59.9740	3738.87	350.00	-262.72	0.00	165.50	10.00	15.00	-103.00	7609.23	20.801
2:39:42	59.9720	3738.65	350.00	-262.72	0.00	166.00	10.00	15.00	-103.00	7609.56	22.400
2:39:44	59.9720	3738.65	350.00	-262.72	0.00	166.00	10.00	15.00	-103.00	7609.56	22.400
2:39:46	59.9710	3737.89	350.00	-260.02	0.00	166.50	10.00	15.00	-103.00	7609.89	23.199
2:39:48	59.9710	3737.89	350.00	-260.02	0.00	166.50	10.00	15.00	-103.00	7609.89	23.199
2:39:50	59.9710	3737.89	350.00	-260.02	0.00	166.50	10.00	15.00	-103.00	7609.89	23.199
2:39:52	59.9720	3740.33	350.00	-260.02	0.00	167.00	10.00	15.00	-103.00	7610.22	22.400
2:39:54	59.9720	3740.33	350.00	-260.02	0.00	167.00	10.00	15.00	-103.00	7610.22	22.400
2:39:56	59.9770	3742.52	350.00	-260.02	0.00	167.50	10.00	15.00	-103.00	7610.55	18.399
2:39:58	59.9770	3742.52	350.00	-260.02	0.00	167.50	10.00	15.00	-103.00	7610.55	18.399

2:40:00	59.9770	3742.52	350.00	-260.02	0.00	167.50	10.00	15.00	-103.00	7610.55	18.399
2:40:02	59.9760	3741.72	350.00	-260.02	0.00	168.00	10.00	15.00	-103.00	7610.88	19.199
2:40:04	59.9760	3741.72	350.00	-260.02	0.00	168.00	10.00	15.00	-103.00	7610.88	19.199
2:40:06	59.9740	3739.96	350.00	-260.02	0.00	168.50	10.00	15.00	-103.00	7611.21	20.801
2:40:08	59.9740	3739.96	350.00	-260.02	0.00	168.50	10.00	15.00	-103.00	7611.21	20.801
2:40:10	59.9740	3739.96	350.00	-260.02	0.00	168.50	10.00	15.00	-103.00	7611.21	20.801
2:40:12	59.9780	3742.83	350.00	-263.87	0.00	169.00	10.00	15.00	-103.00	7611.54	17.599
2:40:14	59.9780	3742.83	350.00	-263.87	0.00	169.00	10.00	15.00	-103.00	7611.54	17.599
2:40:16	59.9810	3738.97	350.00	-263.87	0.00	169.50	10.00	15.00	-103.00	7611.87	15.201
2:40:18	59.9810	3738.97	350.00	-263.87	0.00	169.50	10.00	15.00	-103.00	7611.87	15.201
2:40:20	59.9810	3738.97	350.00	-263.87	0.00	169.50	10.00	15.00	-103.00	7611.87	15.201
2:40:22	59.9710	3738.88	350.00	-263.87	0.00	170.00	10.00	15.00	-103.00	7612.20	23.199
2:40:24	59.9710	3738.88	350.00	-263.87	0.00	170.00	10.00	15.00	-103.00	7612.20	23.199
2:40:26	59.9710	3738.56	350.00	-263.87	0.00	170.50	10.00	15.00	-103.00	7612.53	23.199
2:40:28	59.9710	3738.56	350.00	-263.87	0.00	170.50	10.00	15.00	-103.00	7612.53	23.199
2:40:30	59.9710	3738.56	350.00	-263.87	0.00	170.50	10.00	15.00	-103.00	7612.53	23.199
2:40:32	59.9660	3743.42	350.00	-263.87	0.00	171.00	10.00	15.00	-103.00	7612.86	27.200
2:40:34	59.9660	3743.42	350.00	-263.87	0.00	171.00	10.00	15.00	-103.00	7612.86	27.200
2:40:36	59.9710	3747.34	350.00	-264.60	0.00	171.50	10.00	15.00	-103.00	7613.19	23.199
2:40:38	59.9710	3747.34	350.00	-264.60	0.00	171.50	10.00	15.00	-103.00	7613.19	23.199
2:40:40	59.9710	3747.34	350.00	-264.60	0.00	171.50	10.00	15.00	-103.00	7613.19	23.199
2:40:42	59.9690	3749.75	350.00	-264.60	0.00	172.00	10.00	15.00	-103.00	7613.52	24.799
2:40:44	59.9690	3749.75	350.00	-264.60	0.00	172.00	10.00	15.00	-103.00	7613.52	24.799
2:40:46	59.9740	3743.75	350.00	-264.60	0.00	172.50	10.00	15.00	-103.00	7613.85	20.801
2:40:48	59.9740	3743.75	350.00	-264.60	0.00	172.50	10.00	15.00	-103.00	7613.85	20.801
2:40:50	59.9740	3743.75	350.00	-264.60	0.00	172.50	10.00	15.00	-103.00	7613.85	20.801
2:40:52	59.9710	3740.30	350.00	-264.60	0.00	173.00	10.00	15.00	-103.00	7614.18	23.199
2:40:54	59.9710	3740.30	350.00	-264.60	0.00	173.00	10.00	15.00	-103.00	7614.18	23.199
2:40:56	59.9820	3731.83	350.00	-264.60	0.00	173.50	10.00	15.00	-103.00	7614.51	14.401
2:40:58	59.9820	3731.83	350.00	-264.60	0.00	173.50	10.00	15.00	-103.00	7614.51	14.401
2:41:00	59.9820	3731.83	350.00	-264.60	0.00	173.50	10.00	15.00	-103.00	7614.51	14.401
2:41:02	59.9850	3736.23	350.00	-262.42	0.00	174.00	10.00	15.00	-103.00	7614.84	12.000
2:41:04	59.9850	3736.23	350.00	-262.42	0.00	174.00	10.00	15.00	-103.00	7614.84	12.000
2:41:06	59.9890	3733.12	350.00	-262.42	0.00	174.50	10.00	15.00	-103.00	7615.17	8.801
2:41:08	59.9890	3733.12	350.00	-262.42	0.00	174.50	10.00	15.00	-103.00	7615.17	8.801
2:41:10	59.9890	3733.12	350.00	-262.42	0.00	174.50	10.00	15.00	-103.00	7615.17	8.801
2:41:12	59.9870	3729.18	350.00	-262.42	0.00	175.00	10.00	15.00	-103.00	7615.50	10.400
2:41:14	59.9870	3729.18	350.00	-262.42	0.00	175.00	10.00	15.00	-103.00	7615.50	10.400
2:41:16	59.9940	3720.11	350.00	-262.42	0.00	175.50	10.00	15.00	-103.00	7615.83	4.800
2:41:18	59.9940	3720.11	350.00	-262.42	0.00	175.50	10.00	15.00	-103.00	7615.83	4.800
2:41:20	59.9940	3720.11	350.00	-262.42	0.00	175.50	10.00	15.00	-103.00	7615.83	4.800
2:41:22	60.0030	3725.66	350.00	-262.42	0.00	176.00	10.00	15.00	-103.00	7616.16	-2.399
2:41:24	60.0030	3725.66	350.00	-262.42	0.00	176.00	10.00	15.00	-103.00	7616.16	-2.399
2:41:26	60.0060	3727.82	350.00	-259.69	0.00	176.50	10.00	15.00	-103.00	7616.49	-4.800
2:41:28	60.0060	3727.82	350.00	-259.69	0.00	176.50	10.00	15.00	-103.00	7616.49	-4.800
2:41:30	60.0060	3727.82	350.00	-259.69	0.00	176.50	10.00	15.00	-103.00	7616.49	-4.800

2:41:32	60.0190	3727.23	350.00	-259.69	0.00	177.00	10.00	15.00	-103.00	7616.82	-15.201
2:41:34	60.0190	3727.23	350.00	-259.69	0.00	177.00	10.00	15.00	-103.00	7616.82	-15.201
2:41:36	60.0250	3726.02	350.00	-259.69	0.00	177.50	10.00	15.00	-103.00	7617.15	-20.001
2:41:38	60.0250	3726.02	350.00	-259.69	0.00	177.50	10.00	15.00	-103.00	7617.15	-20.001
2:41:40	60.0250	3726.02	350.00	-259.69	0.00	177.50	10.00	15.00	-103.00	7617.15	-20.001
2:41:42	60.0290	3716.37	350.00	-259.69	0.00	178.00	10.00	15.00	-103.00	7617.48	-23.199
2:41:44	60.0290	3716.37	350.00	-259.69	0.00	178.00	10.00	15.00	-103.00	7617.48	-23.199
2:41:46	60.0370	3717.14	350.00	-259.69	0.00	178.50	10.00	15.00	-103.00	7617.81	-29.599
2:41:48	60.0370	3717.14	350.00	-259.69	0.00	178.50	10.00	15.00	-103.00	7617.81	-29.599
2:41:50	60.0370	3717.14	350.00	-259.69	0.00	178.50	10.00	15.00	-103.00	7617.81	-29.599
2:41:52	60.0370	3713.63	350.00	-255.91	0.00	179.00	10.00	15.00	-103.00	7618.14	-29.599
2:41:54	60.0370	3713.63	350.00	-255.91	0.00	179.00	10.00	15.00	-103.00	7618.14	-29.599
2:41:56	60.0410	3699.36	350.00	-255.91	0.00	179.50	10.00	15.00	-103.00	7618.47	-32.800
2:41:58	60.0410	3699.36	350.00	-255.91	0.00	179.50	10.00	15.00	-103.00	7618.47	-32.800
2:42:00	60.0410	3699.36	350.00	-255.91	0.00	179.50	10.00	15.00	-103.00	7618.47	-32.800
2:42:02	60.0430	3704.59	350.00	-255.91	0.00	180.00	10.00	15.00	-103.00	7618.80	-34.399
2:42:04	60.0430	3704.59	350.00	-255.91	0.00	180.00	10.00	15.00	-103.00	7618.80	-34.399
2:42:06	60.0480	3701.32	350.00	-255.91	0.00	180.50	10.00	15.00	-103.00	7619.13	-38.400
2:42:08	60.0480	3701.32	350.00	-255.91	0.00	180.50	10.00	15.00	-103.00	7619.13	-38.400
2:42:10	60.0480	3701.32	350.00	-255.91	0.00	180.50	10.00	15.00	-103.00	7619.13	-38.400
2:42:12	60.0430	3699.53	350.00	-255.91	0.00	181.00	10.00	15.00	-103.00	7619.46	-34.399
2:42:14	60.0430	3699.53	350.00	-255.91	0.00	181.00	10.00	15.00	-103.00	7619.46	-34.399
2:42:16	60.0440	3690.48	350.00	-258.15	0.00	181.50	10.00	15.00	-103.00	7619.79	-35.199
2:42:18	60.0440	3690.48	350.00	-258.15	0.00	181.50	10.00	15.00	-103.00	7619.79	-35.199
2:42:20	60.0440	3690.48	350.00	-258.15	0.00	181.50	10.00	15.00	-103.00	7619.79	-35.199

											T-66 sec	2:26:14			
											T-64 sec	2:26:16			
											T-62 sec	2:26:18			
											T-60 sec	2:26:20			
											T-58 sec	2:26:22			
											T-56 sec	2:26:24			
											T-54 sec	2:26:26			
											T-52 sec	2:26:28			
											T-50 sec	2:26:30			
											T-48 sec	2:26:32			
											T-46 sec	2:26:34			
											T-44 sec	2:26:36			
											T-42 sec	2:26:38			
											T-40 sec	2:26:40			
											T-38 sec	2:26:42			
											T-36 sec	2:26:44			
											T-34 sec	2:26:46			
											T-32 sec	2:26:48			
											T-30 sec	2:26:50			
											T-28 sec	2:26:52			
											T-26 sec	2:26:54			
											T-24 sec	2:26:56			
											T-22 sec	2:26:58			
											T-20 sec	2:27:00			
											T-18 sec	2:27:02			
3649.002	350.000	-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-16 sec	2:27:04	60.041	3649.002	350.000
3649.002	350.000	-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-14 sec	2:27:06	60.041	3649.002	350.000
3649.002	350.000	-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		$\mathrm{T}-12 \mathrm{sec}$	2:27:08	60.041	3649.002	350.000
3649.002	350.000	-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-10 sec	2:27:10	60.041	3649.002	350.000
3649.002	350.000	-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-08 sec	2:27:12	60.041	3649.002	350.000
3649.002	350.000	-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-06 sec	2:27:14	60.041	3649.002	350.000
3649.002	350.000	-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-04 sec	2:27:16	60.041	3649.002	350.000
3649.002	350.000	-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-02 sec	2:27:18	60.041	3649.002	350.000
											T+0 sec	2:27:20			
											T+02 sec	2:27:22			
											T+04 sec	2:27:24			
											T+06 sec	2:27:26			
											T+08 sec	2:27:28			
											T+10 sec	2:27:30			
3758.964	335.000	-206.459	1.000	93.500	10.000	0.000	-103.000	7561.710	96.342	3727.154	T+12 sec	2:27:32			
3758.964	335.000	-206.459	1.000	93.500	10.000	0.000	-103.000	7561.710	96.342	3727.154	T+14 sec	2:27:34			
3758.964	335.000	-206.459	1.000	93.500	10.000	0.000	-103.000	7561.710	96.342	3727.154	T+16 sec	2:27:36			
3758.964	335.000	-206.459	1.000	93.500	10.000	0.000	-103.000	7561.710	96.342	3727.154	$\mathrm{T}+18 \mathrm{sec}$	2:27:38	59.883	3774.248	335.000
3758.964	335.000	-206.459	1.000	93.500	10.000	0.000	-103.000	7561.710	96.342	3727.154	T+20 sec	2:27:40	59.883	3774.248	335.000
3758.964	335.000	-206.459	1.000	93.500	10.000	0.000	-103.000	7561.710	96.342	3727.154	T+22 sec	2:27:42	59.883	3774.248	335.000
3758.964	335.000	-206.459	1.000	93.500	10.000	0.000	-103.000	7561.710	96.342	3727.154	$\mathrm{T}+24 \mathrm{sec}$	2:27:44	59.883	3774.248	335.000

$\mathrm{T}+26$ sec	$2: 27: 46$	59.883	3774.248	335.000
$\mathrm{~T}+28$ sec	$2: 27: 48$	59.883	3774.248	335.000
$\mathrm{~T}+30 \mathrm{sec}$	$2: 27: 50$	59.883	3774.248	335.000
$\mathrm{~T}+32$ sec	$2: 27: 52$			
$\mathrm{~T}+34$ sec	$2: 27: 54$			
$\mathrm{~T}+36$ sec	$2: 27: 56$			
$\mathrm{~T}+38$ sec	$2: 27: 58$			
$\mathrm{~T}+40 \mathrm{sec}$	$2: 28: 00$			
$\mathrm{~T}+42$ sec	$2: 28: 02$			
$\mathrm{~T}+44$ sec	$2: 28: 04$			
$\mathrm{~T}+46$ sec	$2: 28: 06$			
$\mathrm{~T}+48$ sec	$2: 28: 08$			
$\mathrm{~T}+50$ sec	$2: 28: 10$			
$\mathrm{~T}+52$ sec	$2: 28: 12$			
$\mathrm{~T}+54$ sec	$2: 28: 14$			
$\mathrm{~T}+56$ sec	$2: 28: 16$			
$\mathrm{~T}+58$ sec	$2: 28: 18$			
$\mathrm{~T}+60$ sec	$2: 28: 20$			
$\mathrm{~T}+62$ sec	$2: 28: 22$			
$\mathrm{~T}+64$ sec	$2: 28: 24$			
$\mathrm{~T}+66$ sec	$2: 28: 26$			
$\mathrm{~T}+68$ sec	$2: 28: 28$			
$\mathrm{~T}+70$ sec	$2: 28: 30$			
$\mathrm{~T}+72$ sec	$2: 28: 32$			
$\mathrm{~T}+74$ sec	$2: 28: 34$			
$\mathrm{~T}+76$ sec	$2: 28: 36$			
$\mathrm{~T}+78$ sec	$2: 28: 38$			
$\mathrm{~T}+80$ sec	$2: 28: 40$			

									$\begin{array}{\|l} \mathrm{T}-20 \mathrm{sec} \\ \mathrm{~T}-18 \mathrm{sec} \end{array}$	$\begin{aligned} & \text { 2:27:00 } \\ & \text { 2:27:02 } \end{aligned}$					
-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-16 sec	2:27:04	60.041	3649.002	350.000	-165.476	0.000
-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-14 sec	2:27:06	60.041	3649.002	350.000	-165.476	0.000
-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-12 sec	2:27:08	60.041	3649.002	350.000	-165.476	0.000
-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-10 sec	2:27:10	60.041	3649.002	350.000	-165.476	0.000
-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-08 sec	2:27:12	60.041	3649.002	350.000	-165.476	0.000
-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-06 sec	2:27:14	60.041	3649.002	350.000	-165.476	0.000
-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-04 sec	2:27:16	60.041	3649.002	350.000	-165.476	0.000
-165.476	0.000	90.875	10.000	15.000	-103.000	7559.978	-33.000		T-02 sec	2:27:18	60.041	3649.002	350.000	-165.476	0.000
									T+0 sec	2:27:20					
									T+02 sec	2:27:22					
									T+04 sec	2:27:24					
									T+06 sec	2:27:26					
									T+08 sec	2:27:28					
									T+10 sec	2:27:30					
									T+12 sec	2:27:32					
									T+14 sec	2:27:34					
									T+16 sec	2:27:36					
-208.515	1.000	94.071	10.000	0.000	-103.000	7562.087	93.371	3722.327	$\mathrm{T}+18 \mathrm{sec}$	2:27:38					
-208.515	1.000	94.071	10.000	0.000	-103.000	7562.087	93.371	3722.327	$\mathrm{T}+20 \mathrm{sec}$	2:27:40	59.889	3780.726	335.000	-209.948	1.273
-208.515	1.000	94.071	10.000	0.000	-103.000	7562.087	93.371	3722.327	$\mathrm{T}+22 \mathrm{sec}$	2:27:42	59.889	3780.726	335.000	-209.948	1.273
-208.515	1.000	94.071	10.000	0.000	-103.000	7562.087	93.371	3722.327	T+24 sec	2:27:44	59.889	3780.726	335.000	-209.948	1.273

-208.515	1.000	94.071	10.000	0.000	-103.000	7562.087	93.371	3722.327	T+26 sec	2:27:46	59.889	3780.726	335.000	-209.948	1.273
-208.515	1.000	94.071	10.000	0.000	-103.000	7562.087	93.371	3722.327	$\mathrm{T}+28 \mathrm{sec}$	2:27:48	59.889	3780.726	335.000	-209.948	1.273
-208.515	1.000	94.071	10.000	0.000	-103.000	7562.087	93.371	3722.327	$\mathrm{T}+30 \mathrm{sec}$	2:27:50	59.889	3780.726	335.000	-209.948	1.273
									$\mathrm{T}+32 \mathrm{sec}$	2:27:52	59.889	3780.726	335.000	-209.948	1.273
									$\mathrm{T}+34 \mathrm{sec}$	2:27:54	59.889	3780.726	335.000	-209.948	1.273
									$\mathrm{T}+36 \mathrm{sec}$	2:27:56	59.889	3780.726	335.000	-209.948	1.273
									$\mathrm{T}+38 \mathrm{sec}$	2:27:58	59.889	3780.726	335.000	-209.948	1.273
									$\mathrm{T}+40 \mathrm{sec}$	2:28:00	59.889	3780.726	335.000	-209.948	1.273
									T+42 sec	2:28:02					
									T+44 sec	2:28:04					
									T+46 sec	2:28:06					
									T+48 sec	2:28:08					
									T+50 sec	2:28:10					
									T+52 sec	2:28:12					
									T+54 sec	2:28:14					
									T+56 sec	2:28:16					
									T+58 sec	2:28:18					
									T+60 sec	2:28:20					
									T+62 sec	2:28:22					
									T+64 sec	2:28:24					
									T+66 sec	2:28:26					
									T+68 sec	2:28:28					
									T+70 sec	2:28:30					
									T+72 sec	2:28:32					
									T+74 sec	2:28:34					
									T+76 sec	2:28:36					
									T+78 sec	2:28:38					
									T+80 sec	2:28:40					

							T-66 sec	2:26:14							
							T-64 sec	2:26:16							
							T-62 sec	2:26:18							
							T-60 sec	2:26:20							
							T-58 sec	2:26:22							
							T-56 sec	2:26:24							
							T-54 sec	2:26:26							
							T-52 sec	2:26:28							
							T-50 sec	2:26:30							
							T-48 sec	2:26:32							
							T-46 sec	2:26:34							
							T-44 sec	2:26:36							
							T-42 sec	2:26:38							
							T-40 sec	2:26:40							
							T-38 sec	2:26:42							
							T-36 sec	2:26:44							
							T-34 sec	2:26:46							
							T-32 sec	2:26:48							
							T-30 sec	2:26:50							
							T-28 sec	2:26:52							
							T-26 sec	2:26:54							
							T-24 sec	2:26:56							
							T-22 sec	2:26:58							
							T-20 sec	2:27:00							
							T-18 sec	2:27:02							
90.875	10.000	15.000	-103.000	7559.978	-33.000		T-16 sec	2:27:04	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000
90.875	10.000	15.000	-103.000	7559.978	-33.000		T-14 sec	2:27:06	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000
90.875	10.000	15.000	-103.000	7559.978	-33.000		T-12 sec	2:27:08	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000
90.875	10.000	15.000	-103.000	7559.978	-33.000		T-10 sec	2:27:10	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000
90.875	10.000	15.000	-103.000	7559.978	-33.000		T-08 sec	2:27:12	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000
90.875	10.000	15.000	-103.000	7559.978	-33.000		T-06 sec	2:27:14	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000
90.875	10.000	15.000	-103.000	7559.978	-33.000		T-04 sec	2:27:16	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000
90.875	10.000	15.000	-103.000	7559.978	-33.000		T-02 sec	2:27:18	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000
							T+0 sec	2:27:20							
							T+02 sec	2:27:22							
							T+04 sec	2:27:24							
							T+06 sec	2:27:26							
							T+08 sec	2:27:28							
							T+10 sec	2:27:30							
							$\mathrm{T}+12 \mathrm{sec}$	2:27:32							
							$\mathrm{T}+14 \mathrm{sec}$	2:27:34							
							$\mathrm{T}+16 \mathrm{sec}$	2:27:36							
							$\mathrm{T}+18 \mathrm{sec}$	2:27:38	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
94.682	10.000	0.000	-103.000	7562.490	88.945	3716.798	$\mathrm{T}+20 \mathrm{sec}$	2:27:40	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
94.682	10.000	0.000	-103.000	7562.490	88.945	3716.798	T+22 sec	2:27:42	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
94.682	10.000	0.000	-103.000	7562.490	88.945	3716.798	T+24 sec	2:27:44	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000

94.682	10.000	0.000	-103.000	7562.490	88.945	3716.798	T+26 sec	2:27:46	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
94.682	10.000	0.000	-103.000	7562.490	88.945	3716.798	T+28 sec	2:27:48	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
94.682	10.000	0.000	-103.000	7562.490	88.945	3716.798	T+30 sec	2:27:50	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
94.682	10.000	0.000	-103.000	7562.490	88.945	3716.798	T+32 sec	2:27:52	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
94.682	10.000	0.000	-103.000	7562.490	88.945	3716.798	T+34 sec	2:27:54	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
94.682	10.000	0.000	-103.000	7562.490	88.945	3716.798	T+36 sec	2:27:56	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
94.682	10.000	0.000	-103.000	7562.490	88.945	3716.798	T+38 sec	2:27:58	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
94.682	10.000	0.000	-103.000	7562.490	88.945	3716.798	$\mathrm{T}+40 \mathrm{sec}$	2:28:00	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
							T+42 sec	2:28:02	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
							T+44 sec	2:28:04	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
							$\mathrm{T}+46 \mathrm{sec}$	2:28:06	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
							$\mathrm{T}+48 \mathrm{sec}$	2:28:08	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
							T+50 sec	2:28:10	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
							T+52 sec	2:28:12	59.888	3784.148	335.000	-210.362	2.111	95.194	10.000
							T+54 sec	2:28:14							
							T+56 sec	2:28:16							
							T+58 sec	2:28:18							
							T+60 sec	2:28:20							
							T+62 sec	2:28:22							
							T+64 sec	2:28:24							
							T+66 sec	2:28:26							
							T+68 sec	2:28:28							
							T+70 sec	2:28:30							
							T+72 sec	2:28:32							
							T+74 sec	2:28:34							
							T+76 sec	2:28:36							
							T+78 sec	2:28:38							
							T+80 sec	2:28:40							

| | | |
| :--- | :--- | :--- | :--- |

					T-66 sec	2:26:14								
					T-64 sec	2:26:16								
					T-62 sec	2:26:18								
					T-60 sec	2:26:20								
					T-58 sec	2:26:22								
					T-56 sec	2:26:24								
					T-54 sec	2:26:26								
					T-52 sec	2:26:28								
					T-50 sec	2:26:30								
					T-48 sec	2:26:32								
					T-46 sec	2:26:34								
					T-44 sec	2:26:36								
					T-42 sec	2:26:38								
					T-40 sec	2:26:40								
					T-38 sec	2:26:42								
					T-36 sec	2:26:44								
					T-34 sec	2:26:46								
					T-32 sec	2:26:48								
					T-30 sec	2:26:50								
					T-28 sec	2:26:52								
					T-26 sec	2:26:54								
					T-24 sec	2:26:56								
					T-22 sec	2:26:58								
					T-20 sec	2:27:00								
					T-18 sec	2:27:02								
15.000	-103.000	7559.978	-33.000		$\mathrm{T}-16 \mathrm{sec}$	2:27:04	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000	15.000
15.000	-103.000	7559.978	-33.000		T-14 sec	2:27:06	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000	15.000
15.000	-103.000	7559.978	-33.000		T-12 sec	2:27:08	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000	15.000
15.000	-103.000	7559.978	-33.000		T-10 sec	2:27:10	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000	15.000
15.000	-103.000	7559.978	-33.000		T-08 sec	2:27:12	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000	15.000
15.000	-103.000	7559.978	-33.000		T-06 sec	2:27:14	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000	15.000
15.000	-103.000	7559.978	-33.000		T-04 sec	2:27:16	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000	15.000
15.000	-103.000	7559.978	-33.000		T-02 sec	2:27:18	60.041	3649.002	350.000	-165.476	0.000	90.875	10.000	15.000
					T+0 sec	2:27:20								
					T+02 sec	2:27:22								
					T+04 sec	2:27:24								
					T+06 sec	2:27:26								
					T+08 sec	2:27:28								
					T+10 sec	2:27:30								
					T+12 sec	2:27:32								
					$\mathrm{T}+14 \mathrm{sec}$	2:27:34								
					$\mathrm{T}+16 \mathrm{sec}$	2:27:36								
0.000	-103.000	7562.828	89.955	3718.872	$\mathrm{T}+18 \mathrm{sec}$	2:27:38								
0.000	-103.000	7562.828	89.955	3718.872	$\mathrm{T}+20 \mathrm{sec}$	2:27:40	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	T+22 sec	2:27:42	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	T+24 sec	2:27:44	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000

0.000	-103.000	7562.828	89.955	3718.872	T+26 sec	2:27:46	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	$\mathrm{T}+28 \mathrm{sec}$	2:27:48	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	$\mathrm{T}+30 \mathrm{sec}$	2:27:50	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	T+32 sec	2:27:52	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	$\mathrm{T}+34 \mathrm{sec}$	2:27:54	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	T+36 sec	2:27:56	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	$\mathrm{T}+38 \mathrm{sec}$	2:27:58	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	$\mathrm{T}+40 \mathrm{sec}$	2:28:00	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	$\mathrm{T}+42 \mathrm{sec}$	2:28:02	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	$\mathrm{T}+44 \mathrm{sec}$	2:28:04	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	T+46 sec	2:28:06	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	$\mathrm{T}+48 \mathrm{sec}$	2:28:08	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	T+50 sec	2:28:10	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
0.000	-103.000	7562.828	89.955	3718.872	T+52 sec	2:28:12	59.888	3785.205	335.000	-210.591	2.176	95.294	10.000	0.000
					T+54 sec	2:28:14								
					T+56 sec	2:28:16								
					T+58 sec	2:28:18								
					T+60 sec	2:28:20								
					T+62 sec	2:28:22								
					T+64 sec	2:28:24								
					T+66 sec	2:28:26								
					T+68 sec	2:28:28								
					T+70 sec	2:28:30								
					T+72 sec	2:28:32								
					T+74 sec	2:28:34								
					T+76 sec	2:28:36								
					T+78 sec	2:28:38								
					T+80 sec	2:28:40								

erturbation Bias Setting	-103.000 MW/0.1 Hz		
erturbation Bias Setting	-103.000 MW/0.1 Hz		
e-Perturbation Average	-42.4877 MW		
it-Perturbation Average	115.0567 MW		
:R for Bias Setting Delta :sponse Delivery of Bias	$\begin{aligned} & \text { 157.5445 MW } \\ & 86.45 \% \end{aligned}$		
e-Perturbation BA Load ;t-Perturbation BA Load bation BA Load Change ng Frequency Response 3A Frequency Response	7559 7562 2 1 -2.		
			Expected
BA	BA		Net
Bias	Load		Actual
Setting		EPFR	Interchange
MW/0.1 Hz	MW	MW	MW

$-103.000 \quad 7559.978-33.000$
$-103.000 \quad 7559.978-33.000$
$\begin{array}{lll}103.000 & 75559.978 & -33.000\end{array}$
$\begin{array}{lll}103.000 & 7559.978 & -33.000 \\ 103.000 & 7559.978 & -33.000\end{array}$

103.000	7559.978	-33.00
103.000	7559.978	-33.00

103.000	7559.978	-33.00
103.000	7559.978	-33.00

$\begin{array}{lll}103.000 & 7559.978 & -33.000\end{array}$ $\begin{array}{lll}103.000 & 7559.978 & -33.000 \\ & 7559.978 & -33.000\end{array}$

-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143
-103.000	7562.894	89.364	3718.143

| Date | A Point
 Time | FPointA
 Hz | A Value
 Hz | $\mathrm{t}(0)$ Time | C Value
 Hz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| Monday, October 12, 2009 | 2:27:18 | 60.0410 | 60.0413 | $2: 27: 20$ | 59.8520 |

B	FR B	Value B	FR B						
12	12 to 24 s	18	o 30 s	20 to 40 sec	to 40	18 to 52 sec	to 52	20 to 52 sec	20 to 52 sec
Average	Average	rage	rag	硣	,	erage	Averas	verage	ver
Frequency	W	Frequency	MW	Frequency	MW	Frequency	MW	Frequency	MW
5.879572	-391.8	59.883286	-401.15622	8882	415.812	88755	412.3	888	-414.2499

Value A D	ta	BA Performance									Value B		12 to 24 second Average Period Evaluation				
		JOU	Non-			Transferred	Contingent						JOU	Non-			Transferred
	Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency
	Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response
Frequency	Interchange	$\operatorname{lmp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-) \operatorname{Del}(+)$	Load (-) Gen (+)	Setting		EPFR	Frequency	Interchange	Imp(-) Exp (+)	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-) \mathrm{Del}(+)$
Hz	MW	MW/0.1 Hz	MW	MW	Hz	MW	MW	MW	MW	MW	MW						
60.04125	3649.00	350.00	-165.48	0.00	90.88	-4.13	15.00	-103	7559.978	-42.4877	59.879572	3758.96	335.00	-206.46	1.00	93.50	12.04

Value B															
Contingent									Jou	Non-			Transferred	Contingent	
BA	Initial	Initial	Sustained	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial
Lost Generation	Performance	Performance	Performance	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance
Load (-) Gen (+)	Adjusted	Unadjusted		Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-) \mathrm{Del}(+)$	Load (-) Gen (+)	Adjusted
MW	P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW	Hz	MW	MW	MW	MW	MW	MW/0.1 Hz	MW	P.U.
0.00	1.246	0.850	0.868	-103	7561.71	124.0406	59.883287	3774.25	335.00	-208.51	1.00	94.07	11.67	0.00	1.411

Value B															
							JOU	Non-			Transferred	Contingent			
Initial	Sustained	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained
Performance	Performance	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance
Unadjusted		Setting		EPFR	Frequency	Interchange	$1 m p(-)$ Exp (+)	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-)$ Del (+)	Load (-) Gen (+)	Adjusted	Unadjusted	
P.U.	P.U.	MW	MW	MW	Hz	MW	MW	MW	MW	MW	MW/0.1 Hz	MW	P.U.	P.U.	P.U.
0.991	0.868	-103	7562.087	120.2148	59.888819	3780.73	335.00	-209.95	1.27	94.68	11.12	0.00	1.524	1.080	0.868

	Jou	Non-			Transferred	Contingent						
Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained	BA	BA	Bias
Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance	Bias	Load	Setting
Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-)$ Del (+)	Load (-) Gen (+)	Adjusted	Unadjusted		Setting		EPFR
MW	P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW						
3785.20	335.00	-165.48	2.18	95.29	11.17	0.00	1.548	1.113	0.868	-103	7562.894	115.0567

Steps To be completed for each event evaluated.

1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Column A: Date and Time in this format, mm/dd/yy HH:MM:SS
Column B: Frequency Hz
Column C: Net Actual Interchange
Column D: Joint Owned Unit dynamic schedule
Column E: Non Conforming Load
Column F: Pumped Hydro
Column G: Ramping units
Column H: Transferred Frequency Response
Column I: Contingent BA Lost load or generatio
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D, E, F, G and H are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign ($+/-$) convention defined in FRS Form 1 .
3 Note: Columns $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are optional data. If you choose not to use these, leave the columns blank. Do not der
4 Data must be at 6 second sample rate for the full 25 minute minimum collection period that starts a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event.
The spreadsheet will work with up to 60 minutes of data. Be sure "Data" worksheet is clear of any old data.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data. The data must be numbers not text.
5 Once data is in place in the "Data" worksheet, determine when the beginning of the event occurred. This is accomplished by knowing the UTC event time from the master event list.
Convert the UTC event time to your PI data time and then scroll through the Data worksheet column B data of frequency and observe when frequency moves from the normal, pre-event frequency. This will usually be a single change in frequency of 0.008 to 0.010 Hz more or less. Note the row number in the worksheet that this change occurs. In this sample data spreadsheet this occurs in row 160 of the data.
6 Edit cell "C8" of the "Entry Data" worksheet, change the formula in the cell "C8" to reference the row number identified in step 5 above. In the sample data of this workbook this formula is: "=Data! A160" If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency of the event on the center vertical grid line of the graph (Red Trend).
7 Determine the end of the event to be evaluated. Use the same rules that are used for DCS only look at frequency instead of ACE. Scroll down the frequency data in column B of the "Data" worksheet until frequency reaches 60 Hz or the pre-disturbance value. Note the row number in the worksheet that this occurs. In this sample data spreadsheet this occurs in row 217
8 Edit cell "C11" of the "Entry Data" worksheet, change the formula in the cell "C11" to reference the row number identified in step 7 above. In the sample data of this workbook this formula is: "=Data! A217"
In cell "R41" of the "Evaluation" spreadsheet, enter the MW value of the unit(s) that tripped (from the Master Event List). This is only necessary for the "Interconnection" evaluation if your interested. It is not necessary to do this for the BA evaluation but it will provide a comparison of the BA frequency response as compared to the Interconnection frequency response.
10 Use the "copy" button provided to copy the evaluation and event specific data for the "FRS Form 1" of this field trial. This data is summarized in the correct order on worksheet "Form 1 Summary Data" of this workbook. Use PasteSpecial/Values when pasting the data into FRS Form 1 on the appropriate event row.

Steps To be completed once at the initial setup of the evaluation spreadsheet for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Entry Data" worksheet. For example: "NYISO".
C Enter your Balancing Authorities Frequency Response Obligation in cell "B2" of the "Entry Data" worksheet. For example: - $80 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (This value could change annually) The time constant is located in cell "L13" of the "Evaluation" spreadsheet and should be edited for the types of generators in your BA. Presently this time constant is set at 0.35
The higher the value of the time constant, the faster the delivery of frequency response is expected. Setting the TC to 1.0 effectively turns off the delay and instantaneous frequency response will be modeled. Do not set higher than 1.0 this time constant is only used in the "Sustained" evaluation and is not used for the Field Trial evaluation of performance to the FRO
A typical setting for this time constant is 0.08 to 0.15 for hydro units, 0.10 to 0.20 for large steam turbines and 0.20 to 0.40 for combustion turbines.
A typical setting for this time constant is 0.08 to 0.15 for hydro units, 0.10 to 0.20 for large steam torbars of your "Interchange Actual" on the "Sustained" Graph, adjust the time constant until the initial slope of the "Target" is similar.
When set appropriately, the "Target" trend on the "Sustained" graph will model what Interchange Actual should have done during the event recovery period.
Note: For ease of use, only the necessary worksheets are displayed. If you are interested in viewing graphs and other hidded worksheets, select the "tab" at the bottom, right click, select unhide and select the worksheet you wish to unhide.

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Ramping Units Gen (+) MW	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting $\mathrm{MW} / 0.1 \mathrm{~Hz}$	BA Load MW
10/12/09 02:12:00	59.981	3669.878	350	351.361511	0	0	10	15	-103	7500
10/12/09 02:12:06	59.98	3670.949	350	351.361511	0	0.5	10	15	-103	7500.99
10/12/09 02:12:12	59.981	3672.31	350	351.361511	0	1	10	15	-103	7501.98
10/12/09 02:12:18	59.982	3672.276	350	357.94751	0	1.5	10	15	-103	7502.97
10/12/09 02:12:24	59.98	3673.844	350	357.94751	0	2	10	15	-103	7503.96
10/12/09 02:12:30	59.986	3669.33	350	357.94751	0	2.5	10	15	-103	7504.95
10/12/09 02:12:36	59.976	3673.56	350	357.94751	0	3	10	15	-103	7505.94
10/12/09 02:12:42	59.981	3671.887	350	357.94751	0	3.5	10	15	-103	7506.93
10/12/09 02:12:48	59.99	3671.56	350	360.234741	0	4	10	15	-103	7507.92
10/12/09 02:12:54	59.995	3668.362	350	360.234741	0	4.5	10	15	-103	7508.91
10/12/09 02:13:00	59.995	3669.291	350	360.234741	0	5	10	15	-103	7509.9
10/12/09 02:13:06	59.994	3670.683	350	360.234741	0	5.5	10	15	-103	7510.89
10/12/09 02:13:12	60.001	3670.712	350	360.234741	0	6	10	15	-103	7511.88
10/12/09 02:13:18	60.003	3671.227	350	346.525879	0	6.5	10	15	-103	7512.87
10/12/09 02:13:24	60.003	3671.092	350	346.525879	0	7	10	15	-103	7513.86
10/12/09 02:13:30	60.003	3669.899	350	346.525879	0	7.5	10	15	-103	7514.85
10/12/09 02:13:36	60.001	3671.628	350	346.525879	0	8	10	15	-103	7515.84
10/12/09 02:13:42	60.004	3671.444	350	346.525879	0	8.5	10	15	-103	7516.83
10/12/09 02:13:48	60.004	3671.066	350	296.443359	0	9	10	15	-103	7517.82
10/12/09 02:13:54	60.002	3673.498	350	296.443359	0	9.5	10	15	-103	7518.81
10/12/09 02:14:00	59.999	3673.186	350	296.443359	0	10	10	15	-103	7519.8
10/12/09 02:14:06	59.998	3673.365	350	296.443359	0	10.5	10	15	-103	7520.79
10/12/09 02:14:12	59.993	3671.998	350	296.443359	0	11	10	15	-103	7521.78
10/12/09 02:14:18	59.999	3670.957	350	341.061157	0	11.5	10	15	-103	7522.77
10/12/09 02:14:24	60.007	3670.162	350	341.061157	0	12	10	15	-103	7523.76
10/12/09 02:14:30	60.002	3672.713	350	341.061157	0	12.5	10	15	-103	7524.75
10/12/09 02:14:36	59.999	3670.826	350	341.061157	0	13	10	15	-103	7525.74
10/12/09 02:14:42	60.01	3673.363	350	341.061157	0	13.5	10	15	-103	7526.73
10/12/09 02:14:48	60.003	3674.415	350	322.826294	0	14	10	15	-103	7527.72
10/12/09 02:14:54	59.994	3674.29	350	322.826294	0	14.5	10	15	-103	7528.71
10/12/09 02:15:00	60.001	3675.166	350	322.826294	0	15	10	15	-103	7529.7
10/12/09 02:15:06	59.995	3674.906	350	322.826294	0	15.5	10	15	-103	7530.69
10/12/09 02:15:12	59.986	3677.791	350	322.826294	0	16	10	15	-103	7531.68
10/12/09 02:15:18	59.989	3676.593	350	321.544403	0	16.5	10	15	-103	7532.67
10/12/09 02:15:24	59.985	3677.067	350	321.544403	0	17	10	15	-103	7533.66
10/12/09 02:15:30	59.982	3679.228	350	321.544403	0	17.5	10	15	-103	7534.65
10/12/09 02:15:36	59.985	3677.627	350	321.544403	0	18	10	15	-103	7535.64
10/12/09 02:15:42	59.99	3677.528	350	321.544403	0	18.5	10	15	-103	7536.63
10/12/09 02:15:48	59.983	3678.086	350	362.136261	0	19	10	15	-103	7537.62
10/12/09 02:15:54	59.983	3679.213	350	362.136261	0	19.5	10	15	-103	7538.61
10/12/09 02:16:00	59.988	3677.678	350	362.136261	0	20	10	15	-103	7539.6

10/12/09 02:16:06	59.978	3678.729	350	362.136261	0	20.5	10	15	-103	7540.59
10/12/09 02:16:12	59.989	3679.026	350	362.136261	0	21	10	15	-103	7541.58
10/12/09 02:16:18	59.983	3678.72	350	336.311798	0	21.5	10	15	-103	7542.57
10/12/09 02:16:24	59.989	3679.39	350	336.311798	0	22	10	15	-103	7543.56
10/12/09 02:16:30	59.995	3678.49	350	336.311798	0	22.5	10	15	-103	7544.55
10/12/09 02:16:36	59.998	3678.951	350	336.311798	0	23	10	15	-103	7545.54
10/12/09 02:16:42	59.995	3679.903	350	336.311798	0	23.5	10	15	-103	7546.53
10/12/09 02:16:48	59.995	3677.86	350	316.443054	0	24	10	15	-103	7547.52
10/12/09 02:16:54	60.003	3677.686	350	316.443054	0	24.5	10	15	-103	7548.51
10/12/09 02:17:00	60.009	3679.209	350	316.443054	0	25	10	15	-103	7549.5
10/12/09 02:17:06	60.011	3679.057	350	316.443054	0	25.5	10	15	-103	7550.49
10/12/09 02:17:12	60.007	3679.806	350	316.443054	0	26	10	15	-103	7551.48
10/12/09 02:17:18	60.013	3679.851	350	325.464294	0	26.5	10	15	-103	7552.47
10/12/09 02:17:24	60.007	3679.44	350	325.464294	0	27	10	15	-103	7553.46
10/12/09 02:17:30	60.006	3679.888	350	325.464294	0	27.5	10	15	-103	7554.45
10/12/09 02:17:36	60.009	3679.261	350	325.464294	0	28	10	15	-103	7555.44
10/12/09 02:17:42	60.009	3679.152	350	325.464294	0	28.5	10	15	-103	7556.43
10/12/09 02:17:48	60.001	3678.249	350	336.614166	0	29	10	15	-103	7557.42
10/12/09 02:17:54	59.991	3677.955	350	336.614166	0	29.5	10	15	-103	7558.41
10/12/09 02:18:00	59.994	3677.093	350	336.614166	0	30	10	15	-103	7559.4
10/12/09 02:18:06	59.995	3678.516	350	336.614166	0	30.5	10	15	-103	7560.39
10/12/09 02:18:12	59.99	3678.743	350	336.614166	0	31	10	15	-103	7561.38
10/12/09 02:18:18	59.977	3680.254	350	316.726166	0	31.5	10	15	-103	7562.37
10/12/09 02:18:24	59.995	3678.656	350	316.726166	0	32	10	15	-103	7563.36
10/12/09 02:18:30	59.989	3678.427	350	316.726166	0	32.5	10	15	-103	7564.35
10/12/09 02:18:36	59.984	3677.822	350	316.726166	0	33	10	15	-103	7565.34
10/12/09 02:18:42	59.986	3677.917	350	316.726166	0	33.5	10	15	-103	7566.33
10/12/09 02:18:48	59.98	3678.963	350	320.195526	0	34	10	15	-103	7567.32
10/12/09 02:18:54	59.989	3680.045	350	320.195526	0	34.5	10	15	-103	7568.31
10/12/09 02:19:00	60.007	3676.222	350	320.195526	0	35	10	15	-103	7569.3
10/12/09 02:19:06	59.981	3677.49	350	320.195526	0	35.5	10	15	-103	7570.29
10/12/09 02:19:12	59.976	3680.451	350	320.195526	0	36	10	15	-103	7571.28
10/12/09 02:19:18	59.977	3682.843	350	341.86615	0	36.5	10	15	-103	7572.27
10/12/09 02:19:24	59.982	3678.229	350	341.86615	0	37	10	15	-103	7573.26
10/12/09 02:19:30	59.988	3671.942	350	341.86615	0	37.5	10	15	-103	7574.25
10/12/09 02:19:36	59.987	3670.129	350	341.86615	0	38	10	15	-103	7575.24
10/12/09 02:19:42	59.984	3671.576	350	341.86615	0	38.5	10	15	-103	7576.23
10/12/09 02:19:48	59.989	3671.882	350	348.597839	0	39	10	15	-103	7577.22
10/12/09 02:19:54	59.984	3670.726	350	348.597839	0	39.5	10	15	-103	7578.21
10/12/09 02:20:00	59.981	3671.401	350	348.597839	0	40	10	15	-103	7579.2
10/12/09 02:20:06	59.986	3670.296	350	348.597839	0	40.5	10	15	-103	7580.19
10/12/09 02:20:12	59.985	3669.908	350	348.597839	0	41	10	15	-103	7581.18
10/12/09 02:20:18	59.983	3669.382	350	329.085022	0	41.5	10	15	-103	7582.17
10/12/09 02:20:24	59.979	3671.403	350	329.085022	0	42	10	15	-103	7583.16
10/12/09 02:20:30	59.98	3671.947	350	329.085022	0	42.5	10	15	-103	7584.15
10/12/09 02:20:36	59.98	3670.137	350	329.085022	0	43	10	15	-103	7585.14

10/12/09 02:20:42	59.979	3672.558	350	329.085022	0	43.5	10	15	-103	7586.13
10/12/09 02:20:48	59.976	3671.8	350	342.418243	0	44	10	15	-103	7587.12
10/12/09 02:20:54	59.971	3676.263	350	342.418243	0	44.5	10	15	-103	7588.11
10/12/09 02:21:00	59.973	3676.543	350	342.418243	0	45	10	15	-103	7589.1
10/12/09 02:21:06	59.975	3675.256	350	342.418243	0	45.5	10	15	-103	7590.09
10/12/09 02:21:12	59.975	3671.593	350	342.418243	0	46	10	15	-103	7591.08
10/12/09 02:21:18	59.979	3669.54	350	338.794647	0	46.5	10	15	-103	7592.07
10/12/09 02:21:24	59.982	3667.677	350	338.794647	0	47	10	15	-103	7593.06
10/12/09 02:21:30	59.981	3666.911	350	338.794647	0	47.5	10	15	-103	7594.05
10/12/09 02:21:36	59.985	3667.456	350	338.794647	0	48	10	15	-103	7595.04
10/12/09 02:21:42	59.993	3664.031	350	338.794647	0	48.5	10	15	-103	7596.03
10/12/09 02:21:48	59.998	3662.055	350	335.931	0	49	10	15	-103	7597.02
10/12/09 02:21:54	60.01	3662.224	350	335.931	0	49.5	10	15	-103	7598.01
10/12/09 02:22:00	60.013	3664.139	350	335.931	0	50	10	15	-103	7599
10/12/09 02:22:06	60.01	3663.265	350	335.931	0	50.5	10	15	-103	7599.99
10/12/09 02:22:12	60.023	3661.512	350	335.931	0	51	10	15	-103	7600.98
10/12/09 02:22:18	60.021	3656.785	350	339.712402	0	51.5	10	15	-103	7601.97
10/12/09 02:22:24	60.019	3657.71	350	339.712402	0	52	10	15	-103	7602.96
10/12/09 02:22:30	60.025	3659.224	350	339.712402	0	52.5	10	15	-103	7603.95
10/12/09 02:22:36	60.02	3658.155	350	339.712402	0	53	10	15	-103	7604.94
10/12/09 02:22:42	60.018	3660.82	350	339.712402	0	53.5	10	15	-103	7605.93
10/12/09 02:22:48	60.019	3662.079	350	332.024658	0	54	10	15	-103	7606.92
10/12/09 02:22:54	60.022	3663.577	350	332.024658	0	54.5	10	15	-103	7607.91
10/12/09 02:23:00	60.02	3662.552	350	332.024658	0	55	10	15	-103	7608.9
10/12/09 02:23:06	60.02	3663.91	350	332.024658	0	55.5	10	15	-103	7609.89
10/12/09 02:23:12	60.018	3663.396	350	332.024658	0	56	10	15	-103	7610.88
10/12/09 02:23:18	60.014	3665.313	350	330.759033	0	56.5	10	15	-103	7611.87
10/12/09 02:23:24	60.01	3666.726	350	330.759033	0	57	10	15	-103	7612.86
10/12/09 02:23:30	60.011	3666.688	350	330.759033	0	57.5	10	15	-103	7613.85
10/12/09 02:23:36	60.009	3667.696	350	330.759033	0	58	10	15	-103	7614.84
10/12/09 02:23:42	60.009	3666.624	350	330.759033	0	58.5	10	15	-103	7615.83
10/12/09 02:23:48	59.999	3665.403	350	323.419952	0	59	10	15	-103	7616.82
10/12/09 02:23:54	59.997	3665.352	350	323.419952	0	59.5	10	15	-103	7617.81
10/12/09 02:24:00	59.998	3666.133	350	323.419952	0	60	10	15	-103	7618.8
10/12/09 02:24:06	59.995	3667.084	350	323.419952	0	60.5	10	15	-103	7619.79
10/12/09 02:24:12	59.988	3667.853	350	323.419952	0	61	10	15	-103	7620.78
10/12/09 02:24:18	59.982	3669.399	350	342.350922	0	61.5	10	15	-103	7621.77
10/12/09 02:24:24	59.984	3670.25	350	342.350922	0	62	10	15	-103	7622.76
10/12/09 02:24:30	59.978	3673.243	350	342.350922	0	62.5	10	15	-103	7623.75
10/12/09 02:24:36	59.974	3676.418	350	342.350922	0	63	10	15	-103	7624.74
10/12/09 02:24:42	59.98	3675.329	350	342.350922	0	63.5	10	15	-103	7625.73
10/12/09 02:24:48	59.984	3674.399	350	345.081818	0	64	10	15	-103	7626.72
10/12/09 02:24:54	59.988	3672.442	350	345.081818	0	64.5	10	15	-103	7627.71
10/12/09 02:25:00	59.991	3671.493	350	345.081818	0	65	10	15	-103	7628.7
10/12/09 02:25:06	59.993	3670.028	350	345.081818	0	65.5	10	15	-103	7629.69
10/12/09 02:25:12	60.002	3672.625	350	345.081818	0	66	10	15	-103	7630.68

10/12/09 02:25:18	60.004	3673.25	350	346.537384	0	66.5	10	15	-103	7631.67
10/12/09 02:25:24	60.002	3672.418	350	346.537384	0	67	10	15	-103	7632.66
10/12/09 02:25:30	60.01	3672.261	350	346.537384	0	67.5	10	15	-103	7633.65
10/12/09 02:25:36	60.011	3673.553	350	346.537384	0	68	10	15	-103	7634.64
10/12/09 02:25:42	60.013	3673.813	350	346.537384	0	68.5	10	15	-103	7635.63
10/12/09 02:25:48	60.011	3673.068	350	342.905762	0	69	10	15	-103	7636.62
10/12/09 02:25:54	60.017	3671.25	350	342.905762	0	69.5	10	15	-103	7637.61
10/12/09 02:26:00	60.014	3672.982	350	342.905762	0	70	10	15	-103	7638.6
10/12/09 02:26:06	60.019	3671.193	350	342.905762	0	70.5	10	15	-103	7639.59
10/12/09 02:26:12	60.027	3668.611	350	165.476395	0	71	10	15	-103	7640.58
10/12/09 02:26:18	60.022	3666.062	350	165.476395	0	71.5	10	15	-103	7641.57
10/12/09 02:26:24	60.019	3670.454	350	165.476395	0	72	10	15	-103	7642.56
10/12/09 02:26:30	60.021	3672.493	350	165.476395	0	72.5	10	15	-103	7643.55
10/12/09 02:26:36	60.019	3672.164	350	165.476395	0	73	10	15	-103	7644.54
10/12/09 02:26:42	60.031	3666.467	350	165.476395	0	73.5	10	15	-103	7645.53
10/12/09 02:26:48	60.036	3660.672	350	165.476395	0	74	10	15	-103	7646.52
10/12/09 02:26:54	60.048	3650.025	350	165.476395	0	74.5	10	15	-103	7647.51
10/12/09 02:27:00	60.041	3654.294	350	165.476395	0	75	10	15	-103	7648.5
10/12/09 02:27:06	60.039	3651.059	350	165.476395	0	75.5	10	15	-103	7649.49
10/12/09 02:27:12	60.045	3645.387	350	165.476395	0	76	10	15	-103	7650.48
10/12/09 02:27:18	60.041	3640.682	350	165.476395	0	76.5	10	15	-103	7651.47
10/12/09 02:27:24	59.978	3696.362	350	206.459106	0	77	10	15	-103	7645
10/12/09 02:27:30	59.869	3737.157	335	206.459106	0	77.5	10	0	-103	7639
10/12/09 02:27:36	59.88	3766.194	335	206.459106	0	78	10	0	-103	7631
10/12/09 02:27:42	59.883	3780.621	335	206.459106	0	78.5	10	0	-103	7630
10/12/09 02:27:48	59.885	3784.962	335	206.459106	0	79	10	0	-103	7631
10/12/09 02:27:54	59.89	3788.072	335	211.256042	0	79.5	10	0	-103	7630
10/12/09 02:28:00	59.893	3788.472	335	211.256042	0	80	10	0	-103	7632
10/12/09 02:28:06	59.891	3794.374	335	211.256042	0	80.5	10	0	-103	7633
10/12/09 02:28:12	59.885	3799.959	335	211.256042	0	81	10	0	-103	7634
10/12/09 02:28:18	59.888	3802.951	335	211.256042	0	81.5	10	0	-103	7635
10/12/09 02:28:24	59.889	3805.617	335	214.346695	0	82	10	0	-103	7636
10/12/09 02:28:30	59.857	3814.862	335	214.346695	0	82.5	10	0	-103	7637
10/12/09 02:28:36	59.858	3826.053	335	214.346695	0	83	10	0	-103	7638
10/12/09 02:28:42	59.865	3826.753	335	214.346695	0	83.5	10	0	-103	7641
10/12/09 02:28:48	59.871	3825.713	335	214.346695	0	84	10	0	-103	7642
10/12/09 02:28:54	59.88	3819.081	335	212.172699	0	84.5	10	0	-103	7629
10/12/09 02:29:00	59.89	3815.01	335	212.172699	0	85	10	0	-103	7630
10/12/09 02:29:06	59.893	3809.652	335	212.172699	0	85.5	10	0	-103	7630
10/12/09 02:29:12	59.902	3804.188	335	329.98822	0	86	10	0	-103	7631
10/12/09 02:29:18	59.907	3792.169	335	255.444168	0	86.5	10	0	-103	7633
10/12/09 02:29:24	59.916	3788.132	335	255.444168	0	87	10	0	-103	7636
10/12/09 02:29:30	59.92	3781.701	335	255.444168	0	87.5	10	0	-103	7640
10/12/09 02:29:36	59.917	3774.604	335	255.444168	0	88	10	0	-103	7644
10/12/09 02:29:42	59.923	3772.722	335	255.444168	0	88.5	10	0	-103	7648
10/12/09 02:29:48	59.928	3768.707	335	254.838303	0	89	10	0	-103	7652

10/12/09 02:29:54	59.927	3767.408	335	254.838303	0	89.5	10	0	-103	7656
10/12/09 02:30:00	59.929	3765.672	350	254.838303	0	90	10	0	-103	7662
10/12/09 02:30:06	59.937	3765.105	350	254.838303	0	90.5	10	0	-103	7665
10/12/09 02:30:12	59.949	3753.922	350	254.838303	0	91	10	0	-103	7670
10/12/09 02:30:18	59.941	3747.875	350	257.146973	0	91.5	10	0	-103	7674
10/12/09 02:30:24	59.948	3746.706	350	257.146973	0	92	10	0	-103	7679
10/12/09 02:30:30	59.951	3740.259	350	257.146973	0	92.5	10	0	-103	7682
10/12/09 02:30:36	59.951	3727.838	350	257.146973	0	93	10	0	-103	7684
10/12/09 02:30:42	59.952	3720.578	350	257.146973	0	93.5	10	0	-103	7686
10/12/09 02:30:48	59.954	3715.753	350	262.289368	0	94	10	0	-103	7688
10/12/09 02:30:54	59.953	3710.848	350	262.289368	0	94.5	10	0	-103	7689
10/12/09 02:31:00	59.954	3714.623	350	262.289368	0	95	10	0	-103	7689
10/12/09 02:31:06	59.956	3716.461	350	262.289368	0	95.5	10	0	-103	7690
10/12/09 02:31:12	59.955	3722.361	350	262.289368	0	96	10	0	-103	7690.08
10/12/09 02:31:18	59.962	3722.267	350	256.647949	0	96.5	10	0	-103	7690
10/12/09 02:31:24	59.966	3723.091	350	256.647949	0	97	10	0	-103	7692.06
10/12/09 02:31:30	59.97	3723.893	350	256.647949	0	97.5	10	0	-103	7693.05
10/12/09 02:31:36	59.969	3728.053	350	256.647949	0	98	10	0	-103	7694.04
10/12/09 02:31:42	59.971	3733.327	350	256.647949	0	98.5	10	0	-103	7695.03
10/12/09 02:31:48	59.976	3736.822	350	256.307251	0	99	10	0	-103	7696.02
10/12/09 02:31:54	59.976	3740.877	350	256.307251	0	99.5	10	0	-103	7697.01
10/12/09 02:32:00	59.978	3746.608	350	256.307251	0	100	10	0	-103	7698
10/12/09 02:32:06	59.982	3751.558	350	256.307251	0	100.5	10	0	-103	7699
10/12/09 02:32:12	59.979	3756.407	350	256.307251	0	101	10	0	-103	7699.98
10/12/09 02:32:18	59.983	3760.982	350	249.086395	0	101.5	10	0	-103	7700.97
10/12/09 02:32:24	59.988	3763.212	350	249.086395	0	102	10	0	-103	7701.96
10/12/09 02:32:30	59.987	3766.433	350	249.086395	0	102.5	10	0	-103	7702.95
10/12/09 02:32:36	59.992	3768.634	350	249.086395	0	103	10	0	-103	7703.94
10/12/09 02:32:42	59.986	3773.695	350	249.086395	0	103.5	10	0	-103	7704.93
10/12/09 02:32:48	59.988	3775.363	350	253.742477	0	104	10	0	-103	7705.92
10/12/09 02:32:54	59.998	3776.42	350	253.742477	0	104.5	10	0	-103	7706.91
10/12/09 02:33:00	59.999	3781.256	350	253.742477	0	105	10	0	-103	7707.9
10/12/09 02:33:06	60.002	3783.896	350	253.742477	0	105.5	10	0	-103	7708.89
10/12/09 02:33:12	60.008	3785.463	350	253.742477	0	106	10	0	-103	7709.88
10/12/09 02:33:18	60.017	3787.259	350	257.421204	0	106.5	10	0	-103	7710.87
10/12/09 02:33:24	60.017	3788.03	350	257.421204	0	107	10	0	-103	7711.86
10/12/09 02:33:30	60.023	3787.537	350	257.421204	0	107.5	10	0	-103	7712.85
10/12/09 02:33:36	60.021	3787.93	350	257.421204	0	108	10	0	-103	7713.84
10/12/09 02:33:42	60.024	3786.55	350	257.421204	0	108.5	10	0	-103	7714.83
10/12/09 02:33:48	60.025	3785.614	350	261.73822	0	109	10	0	-103	7715.82
10/12/09 02:33:54	60.02	3786.864	350	261.73822	0	109.5	10	0	-103	7716.81
10/12/09 02:34:00	60.022	3785.726	350	261.73822	0	110	10	0	-103	7717.8
10/12/09 02:34:06	60.023	3785.798	350	261.73822	0	110.5	10	0	-103	7718.79
10/12/09 02:34:12	60.019	3787.627	350	261.73822	0	111	10	0	-103	7719.78
10/12/09 02:34:18	60.018	3789.404	350	271.875977	0	111.5	10	0	-103	7720.77
10/12/09 02:34:24	60.019	3789.369	350	271.875977	0	112	10	0	-103	7721.76

10/12/09 02:34:30	60.016	3788.933	350	271.875977	0	112.5	10	0	-103	7722.75
10/12/09 02:34:36	60.012	3790.411	350	271.875977	0	113	10	0	-103	7723.74
10/12/09 02:34:42	60.007	3792.945	350	271.875977	0	113.5	10	0	-103	7724.73
10/12/09 02:34:48	60.009	3791.426	350	262.073486	0	114	10	0	-103	7725.72
10/12/09 02:34:54	59.999	3790.216	350	262.073486	0	114.5	10	0	-103	7726.71
10/12/09 02:35:00	59.991	3788.105	350	262.073486	0	115	10	0	-103	7727.7
10/12/09 02:35:06	59.988	3788.497	350	262.073486	0	115.5	10	0	-103	7728.69
10/12/09 02:35:12	59.984	3788.101	350	262.073486	0	116	10	0	-103	7729.68
10/12/09 02:35:18	59.982	3787.732	350	260.36441	0	116.5	10	0	-103	7730.67
10/12/09 02:35:24	59.979	3788.256	350	260.36441	0	117	10	0	-103	7731.66
10/12/09 02:35:30	59.976	3790.665	350	260.36441	0	117.5	10	0	-103	7732.65
10/12/09 02:35:36	59.978	3789.267	350	260.36441	0	118	10	0	-103	7733.64
10/12/09 02:35:42	59.976	3789.914	350	260.36441	0	118.5	10	0	-103	7734.63
10/12/09 02:35:48	59.975	3788.963	350	352.644379	0	119	10	0	-103	7735.62
10/12/09 02:35:54	59.97	3792.911	350	352.644379	0	119.5	10	0	-103	7736.61
10/12/09 02:36:00	59.978	3788.08	350	352.644379	0	120	10	0	-103	7737.6
10/12/09 02:36:06	59.975	3787.164	350	352.644379	0	120.5	10	0	-103	7738.59
10/12/09 02:36:12	59.975	3786.487	350	352.644379	0	121	10	0	-103	7739.58
10/12/09 02:36:18	59.966	3790.512	350	354.89566	0	121.5	10	0	-103	7740.57
10/12/09 02:36:24	59.969	3790.959	350	354.89566	0	122	10	0	-103	7741.56
10/12/09 02:36:30	59.965	3789.167	350	354.89566	0	122.5	10	0	-103	7742.55
10/12/09 02:36:36	59.972	3784.831	350	354.89566	0	123	10	0	-103	7743.54
10/12/09 02:36:42	59.969	3782.809	350	354.89566	0	123.5	10	0	-103	7744.53
10/12/09 02:36:48	59.967	3779.056	350	340.46936	0	124	10	0	-103	7745.52
10/12/09 02:36:54	59.965	3779.335	350	340.46936	0	124.5	10	0	-103	7746.51
10/12/09 02:37:00	59.965	3776.597	350	340.46936	0	125	10	0	-103	7747.5
10/12/09 02:37:06	59.97	3773.17	350	340.46936	0	125.5	10	0	-103	7748.49
10/12/09 02:37:12	59.968	3768.503	350	340.46936	0	126	10	0	-103	7749.48
10/12/09 02:37:18	59.97	3764.786	350	337.642914	0	126.5	10	0	-103	7750.47
10/12/09 02:37:24	59.965	3761.894	350	337.642914	0	127	10	0	-103	7751.46
10/12/09 02:37:30	59.967	3760.157	350	337.642914	0	127.5	10	0	-103	7752.45
10/12/09 02:37:36	59.979	3757.773	350	337.642914	0	128	10	0	-103	7753.44
10/12/09 02:37:42	59.974	3751.637	350	337.642914	0	128.5	10	0	-103	7754.43
10/12/09 02:37:48	59.962	3759.25	350	284.36084	0	129	10	0	-103	7755.42
10/12/09 02:37:54	59.961	3762.022	350	284.36084	0	129.5	10	0	-103	7756.41
10/12/09 02:38:00	59.959	3763.858	350	284.36084	0	130	10	0	-103	7757.4
10/12/09 02:38:06	59.953	3768.339	350	284.36084	0	130.5	10	0	-103	7758.39
10/12/09 02:38:12	59.956	3765.606	350	284.36084	0	131	10	0	-103	7759.38
10/12/09 02:38:18	59.961	3761.92	350	260.467987	0	131.5	10	0	-103	7760.37
10/12/09 02:38:24	59.963	3752.429	350	260.467987	0	132	10	0	-103	7761.36
10/12/09 02:38:30	59.968	3753.51	350	260.467987	0	132.5	10	0	-103	7762.35
10/12/09 02:38:36	59.973	3753.178	350	260.467987	0	133	10	0	-103	7763.34
10/12/09 02:38:42	59.967	3752.872	350	260.467987	0	133.5	10	0	-103	7764.33
10/12/09 02:38:48	59.976	3747.476	350	253.141541	0	134	10	0	-103	7765.32
10/12/09 02:38:54	59.973	3746.651	350	253.141541	0	134.5	10	0	-103	7766.31
10/12/09 02:39:00	59.981	3741.618	350	253.141541	0	135	10	0	-103	7767.3

10/12/09 02:39:06	59.982	3738.901	350	253.141541	0	135.5	10	0	-103	7768.29
10/12/09 02:39:12	59.982	3736.308	350	253.141541	0	136	10	0	-103	7769.28
10/12/09 02:39:18	59.98	3735.65	350	251.929871	0	136.5	10	0	-103	7770.27
10/12/09 02:39:24	59.98	3736.748	350	251.929871	0	137	10	0	-103	7771.26
10/12/09 02:39:30	59.978	3736.094	350	251.929871	0	137.5	10	0	-103	7772.25
10/12/09 02:39:36	59.971	3738.875	350	251.929871	0	138	10	0	-103	7773.24
10/12/09 02:39:42	59.975	3737.684	350	251.929871	0	138.5	10	0	-103	7774.23
10/12/09 02:39:48	59.969	3740.017	350	250.674194	0	139	10	0	-103	7775.22
10/12/09 02:39:54	59.972	3742.424	350	250.674194	0	139.5	10	0	-103	7776.21
10/12/09 02:40:00	59.977	3741.723	350	250.674194	0	140	10	0	-103	7777.2
10/12/09 02:40:06	59.976	3739.964	350	250.674194	0	140.5	10	0	-103	7778.19
10/12/09 02:40:12	59.977	3741.268	350	250.674194	0	141	10	0	-103	7779.18
10/12/09 02:40:18	59.979	3738.706	350	253.631866	0	141.5	10	0	-103	7780.17
10/12/09 02:40:24	59.974	3738.102	350	253.631866	0	142	10	0	-103	7781.16
10/12/09 02:40:30	59.971	3743.419	350	253.631866	0	142.5	10	0	-103	7782.15
10/12/09 02:40:36	59.966	3747.34	350	253.631866	0	143	10	0	-103	7783.14
10/12/09 02:40:42	59.973	3746.217	350	253.631866	0	143.5	10	0	-103	7784.13
10/12/09 02:40:48	59.972	3743.149	350	246.957306	0	144	10	0	-103	7785.12
10/12/09 02:40:54	59.97	3733.376	350	246.957306	0	144.5	10	0	-103	7786.11
10/12/09 02:41:00	59.982	3736.229	350	246.957306	0	145	10	0	-103	7787.1
10/12/09 02:41:06	59.985	3733.115	350	246.957306	0	145.5	10	0	-103	7788.09
10/12/09 02:41:12	59.989	3725.459	350	246.957306	0	146	10	0	-103	7789.08
10/12/09 02:41:18	59.99	3720.938	350	254.541779	0	146.5	10	0	-103	7790.07
10/12/09 02:41:24	60.001	3727.754	350	254.541779	0	147	10	0	-103	7791.06
10/12/09 02:41:30	60.006	3727.231	350	254.541779	0	147.5	10	0	-103	7792.05
10/12/09 02:41:36	60.019	3726.016	350	254.541779	0	148	10	0	-103	7793.04
10/12/09 02:41:42	60.026	3717.333	350	254.541779	0	148.5	10	0	-103	7794.03
10/12/09 02:41:48	60.029	3715.166	350	256.571594	0	149	10	0	-103	7795.02
10/12/09 02:41:54	60.037	3710.158	350	256.571594	0	149.5	10	0	-103	7796.01
10/12/09 02:42:00	60.041	3704.591	350	256.571594	0	150	10	0	-103	7797
10/12/09 02:42:06	60.043	3701.316	350	256.571594	0	150.5	10	0	-103	7797.99
10/12/09 02:42:12	60.046	3699.726	350	256.571594	0	151	10	0	-103	7798.98
10/12/09 02:42:18	60.043	3696.865	350	258.37262	0	151.5	10	0	-103	7799.97
10/12/09 02:42:24	60.043	3696.541	350	258.37262	0	152	10	0	-103	7800.96
10/12/09 02:42:30	60.041	3699.631	350	258.37262	0	152.5	10	0	-103	7801.95
10/12/09 02:42:36	60.036	3700.106	350	258.37262	0	153	10	0	-103	7802.94
10/12/09 02:42:42	60.034	3701.865	350	258.37262	0	153.5	10	0	-103	7803.93
10/12/09 02:42:48	60.035	3702.913	350	263.047363	0	154	10	0	-103	7804.92
10/12/09 02:42:54	60.036	3704.967	350	263.047363	0	154.5	10	0	-103	7805.91
10/12/09 02:43:00	60.032	3703.706	350	263.047363	0	155	10	0	-103	7806.9
10/12/09 02:43:06	60.033	3704.36	350	263.047363	0	155.5	10	0	-103	7807.89
10/12/09 02:43:12	60.035	3701.942	350	263.047363	0	156	10	0	-103	7808.88
10/12/09 02:43:18	60.037	3702.457	350	260.984375	0	156.5	10	0	-103	7809.87
10/12/09 02:43:24	60.034	3703.844	350	260.984375	0	157	10	0	-103	7810.86
10/12/09 02:43:30	60.037	3702.28	350	260.984375	0	157.5	10	0	-103	7811.85
10/12/09 02:43:36	60.04	3700.276	350	260.984375	0	158	10	0	-103	7812.84

10/12/09 02:43:42	60.045	3696.916	350	260.984375	0	158.5	10	0	-103	7813.83
10/12/09 02:43:48	60.04	3698.429	350	261.318329	0	159	10	0	-103	7814.82
10/12/09 02:43:54	60.042	3693.241	350	261.318329	0	159.5	10	0	-103	7815.81
10/12/09 02:44:00	60.039	3701.791	350	261.318329	0	160	10	0	-103	7816.8
10/12/09 02:44:06	60.034	3702.148	350	261.318329	0	160.5	10	0	-103	7817.79
10/12/09 02:44:12	60.031	3707.287	350	261.318329	0	161	10	0	-103	7818.78
10/12/09 02:44:18	60.031	3707.917	350	262.1026	0	161.5	10	0	-103	7819.77
10/12/09 02:44:24	60.031	3707.615	350	262.1026	0	162	10	0	-103	7820.76
10/12/09 02:44:30	60.039	3701.582	350	262.1026	0	162.5	10	0	-103	7821.75
10/12/09 02:44:36	60.035	3702.212	350	262.1026	0	163	10	0	-103	7822.74
10/12/09 02:44:42	60.042	3699.69	350	262.1026	0	163.5	10	0	-103	7823.73
10/12/09 02:44:48	60.04	3700.662	350	262.71701	0	164	10	0	-103	7824.72
10/12/09 02:44:54	60.048	3695.819	350	262.71701	0	164.5	10	0	-103	7825.71
10/12/09 02:45:00	60.044	3696.897	350	262.71701	0	165	10	0	-103	7826.7
10/12/09 02:45:06	60.04	3698.424	350	262.71701	0	165.5	10	0	-103	7827.69
10/12/09 02:45:12	60.044	3699.806	350	262.71701	0	166	10	0	-103	7828.68
10/12/09 02:45:18	60.042	3698.507	350	260.016479	0	166.5	10	0	-103	7829.67
10/12/09 02:45:24	60.038	3699.077	350	260.016479	0	167	10	0	-103	7830.66
10/12/09 02:45:30	60.039	3700.902	350	260.016479	0	167.5	10	0	-103	7831.65
10/12/09 02:45:36	60.039	3701.139	350	260.016479	0	168	10	0	-103	7832.64
10/12/09 02:45:42	60.039	3699.458	350	260.016479	0	168.5	10	0	-103	7833.63
10/12/09 02:45:48	60.037	3699.505	350	263.87323	0	169	10	0	-103	7834.62
10/12/09 02:45:54	60.038	3699.4	350	263.87323	0	169.5	10	0	-103	7835.61
10/12/09 02:46:00	60.033	3702.968	350	263.87323	0	170	10	0	-103	7836.6
10/12/09 02:46:06	60.032	3705.775	350	263.87323	0	170.5	10	0	-103	7837.59
10/12/09 02:46:12	60.042	3701.981	350	263.87323	0	171	10	0	-103	7838.58
10/12/09 02:46:18	60.031	3702.213	350	264.5979	0	171.5	10	0	-103	7839.57
10/12/09 02:46:24	60.034	3704.449	350	264.5979	0	172	10	0	-103	7840.56
10/12/09 02:46:30	60.038	3702.795	350	264.5979	0	172.5	10	0	-103	7841.55
10/12/09 02:46:36	60.042	3696.25	350	264.5979	0	173	10	0	-103	7842.54
10/12/09 02:46:42	60.04	3693.577	350	264.5979	0	173.5	10	0	-103	7843.53
10/12/09 02:46:48	60.041	3693.786	350	262.415924	0	174	10	0	-103	7844.52
10/12/09 02:46:54	60.043	3694.938	350	262.415924	0	174.5	10	0	-103	7845.51
10/12/09 02:47:00	60.036	3692.686	350	262.415924	0	175	10	0	-103	7846.5
10/12/09 02:47:06	60.042	3692.357	350	262.415924	0	175.5	10	0	-103	7847.49
10/12/09 02:47:12	60.036	3692.042	350	262.415924	0	176	10	0	-103	7848.48
10/12/09 02:47:18	60.037	3695.258	350	259.685242	0	176.5	10	0	-103	7849.47
10/12/09 02:47:24	60.035	3695.491	350	259.685242	0	177	10	0	-103	7850.46
10/12/09 02:47:30	60.03	3697.336	350	259.685242	0	177.5	10	0	-103	7851.45
10/12/09 02:47:36	60.031	3699.251	350	259.685242	0	178	10	0	-103	7852.44
10/12/09 02:47:42	60.031	3699.126	350	259.685242	0	178.5	10	0	-103	7853.43
10/12/09 02:47:48	60.032	3698.277	350	255.911011	0	179	10	0	-103	7854.42
10/12/09 02:47:54	60.04	3693.736	350	255.911011	0	179.5	10	0	-103	7855.41
10/12/09 02:48:00	60.036	3691.919	350	255.911011	0	180	10	0	-103	7856.4
10/12/09 02:48:06	60.04	3692.374	350	255.911011	0	180.5	10	0	-103	7857.39
10/12/09 02:48:12	60.038	3694.331	350	255.911011	0	181	10	0	-103	7858.38

10/12/09 02:48:18	60.04	3694.324	350	258.148193	0	181.5	10	0	-103	7859.37
10/12/09 02:48:24	60.034	3693.748	350	258.148193	0	182	10	0	-103	7860.36
10/12/09 02:48:30	60.041	3691.012	350	258.148193	0	182.5	10	0	-103	7861.35
10/12/09 02:48:36	60.036	3693.727	350	258.148193	0	183	10	0	-103	7862.34
10/12/09 02:48:42	60.039	3688.159	350	258.148193	0	183.5	10	0	-103	7863.33
10/12/09 02:48:48	60.033	3690.092	350	258.873596	0	184	10	0	-103	7864.32
10/12/09 02:48:54	60.029	3694.593	350	258.873596	0	184.5	10	0	-103	7865.31
10/12/09 02:49:00	60.03	3693.412	350	258.873596	0	185	10	0	-103	7866.3
10/12/09 02:49:06	60.022	3698.012	350	258.873596	0	185.5	10	0	-103	7867.29
10/12/09 02:49:12	60.023	3698.935	350	258.873596	0	186	10	0	-103	7868.28
10/12/09 02:49:18	60.023	3700.486	350	249.33757	0	186.5	10	0	-103	7869.27
10/12/09 02:49:24	60.026	3699.914	350	249.33757	0	187	10	0	-103	7870.26
10/12/09 02:49:30	60.024	3701.45	350	249.33757	0	187.5	10	0	-103	7871.25
10/12/09 02:49:36	60.023	3701.702	350	249.33757	0	188	10	0	-103	7872.24
10/12/09 02:49:42	60.029	3700.269	350	249.33757	0	188.5	10	0	-103	7873.23
10/12/09 02:49:48	60.021	3701.268	350	258.278168	0	189	10	0	-103	7874.22
10/12/09 02:49:54	60.025	3700.532	350	258.278168	0	189.5	10	0	-103	7875.21
10/12/09 02:50:00	60.024	3700.277	350	258.278168	0	190	10	0	-103	7876.2
10/12/09 02:50:06	60.026	3700.26	350	258.278168	0	190.5	10	0	-103	7877.19
10/12/09 02:50:12	60.02	3700.965	350	258.278168	0	191	10	0	-103	7878.18
10/12/09 02:50:18	60.016	3703.824	350	258.406372	0	191.5	10	0	-103	7879.17
10/12/09 02:50:24	60.015	3703.003	350	258.406372	0	192	10	0	-103	7880.16
10/12/09 02:50:30	60.012	3703.167	350	258.406372	0	192.5	10	0	-103	7881.15
10/12/09 02:50:36	60.002	3703.775	350	258.406372	0	193	10	0	-103	7882.14
10/12/09 02:50:42	60.002	3700.617	350	258.406372	0	193.5	10	0	-103	7883.13
10/12/09 02:50:48	60.001	3701.389	350	260.538879	0	194	10	0	-103	7884.12
10/12/09 02:50:54	59.992	3700.826	350	260.538879	0	194.5	10	0	-103	7885.11
10/12/09 02:51:00	59.985	3699.854	350	260.538879	0	195	10	0	-103	7886.1
10/12/09 02:51:06	59.984	3700.77	350	260.538879	0	195.5	10	0	-103	7887.09
10/12/09 02:51:12	59.977	3703.166	350	260.538879	0	196	10	0	-103	7888.08
10/12/09 02:51:18	59.972	3705.811	350	257.88208	0	196.5	10	0	-103	7889.07
10/12/09 02:51:24	59.975	3706.543	350	257.88208	0	197	10	0	-103	7890.06
10/12/09 02:51:30	59.971	3710.118	350	257.88208	0	197.5	10	0	-103	7891.05
10/12/09 02:51:36	59.98	3708.018	350	257.88208	0	198	10	0	-103	7892.04
10/12/09 02:51:42	59.982	3706.125	350	257.88208	0	198.5	10	0	-103	7893.03
10/12/09 02:51:48	59.979	3706.19	350	258.588654	0	199	10	0	-103	7894.02
10/12/09 02:51:54	59.978	3708.971	350	258.588654	0	199.5	10	0	-103	7895.01
10/12/09 02:52:00	59.978	3707.24	350	258.588654	0	200	10	0	-103	7896
10/12/09 02:52:06	59.97	3711.75	350	258.588654	0	200.5	10	0	-103	7896.99
10/12/09 02:52:12	59.99	3707.867	350	258.588654	0	201	10	0	-103	7897.98
10/12/09 02:52:18	59.999	3703.787	350	261.906158	0	201.5	10	0	-103	7898.97
10/12/09 02:52:24	60.003	3699.51	350	261.906158	0	202	10	0	-103	7899.96
10/12/09 02:52:30	60.01	3697.882	350	261.906158	0	202.5	10	0	-103	7900.95
10/12/09 02:52:36	60.022	3697.868	350	261.906158	0	203	10	0	-103	7901.94
10/12/09 02:52:42	60.025	3693.418	350	261.906158	0	203.5	10	0	-103	7902.93
10/12/09 02:52:48	60.029	3689.143	350	256.747803	0	204	10	0	-103	7903.92

10/12/09 02:52:54	60.028	3687.026	350	256.747803	0	204.5	10	0	-103	7904.91
10/12/09 02:53:00	60.032	3685.576	350	256.747803	0	205	10	0	-103	7905.9
10/12/09 02:53:06	60.03	3687.159	350	256.747803	0	205.5	10	0	-103	7906.89
10/12/09 02:53:12	60.019	3690.426	350	256.747803	0	206	10	0	-103	7907.88
10/12/09 02:53:18	60.017	3692.578	350	167.431976	0	206.5	10	0	-103	7908.87
10/12/09 02:53:24	60.015	3693.249	350	167.431976	0	207	10	0	-103	7909.86
10/12/09 02:53:30	60.008	3694.681	350	167.431976	0	207.5	10	0	-103	7910.85
10/12/09 02:53:36	60.005	3693.75	350	167.431976	0	208	10	0	-103	7911.84
10/12/09 02:53:42	59.997	3691.15	350	167.431976	0	208.5	10	0	-103	7912.83
10/12/09 02:53:48	59.998	3690.588	350	164.973404	0	209	10	0	-103	7913.82
10/12/09 02:53:54	59.992	3689.445	350	164.973404	0	209.5	10	0	-103	7914.81
10/12/09 02:54:00	59.985	3689.736	350	164.973404	0	210	10	0	-103	7915.8
10/12/09 02:54:06	59.988	3687.494	350	164.973404	0	210.5	10	0	-103	7916.79
10/12/09 02:54:12	59.983	3685.66	350	164.973404	0	211	10	0	-103	7917.78
10/12/09 02:54:18	59.987	3683.911	350	157.628082	0	211.5	10	0	-103	7918.77
10/12/09 02:54:24	59.985	3683.811	350	157.628082	0	212	10	0	-103	7919.76
10/12/09 02:54:30	59.982	3684.884	350	157.628082	0	212.5	10	0	-103	7920.75
10/12/09 02:54:36	59.978	3685.087	350	157.628082	0	213	10	0	-103	7921.74
10/12/09 02:54:42	59.973	3687.412	350	157.628082	0	213.5	10	0	-103	7922.73
10/12/09 02:54:48	59.976	3687.848	350	155.531708	0	214	10	0	-103	7923.72
10/12/09 02:54:54	59.979	3684.89	350	155.531708	0	214.5	10	0	-103	7924.71
10/12/09 02:55:00	59.977	3684.093	350	155.531708	0	215	10	0	-103	7925.7
10/12/09 02:55:06	59.978	3682.318	350	155.531708	0	215.5	10	0	-103	7926.69
10/12/09 02:55:12	59.981	3682.855	350	155.531708	0	216	10	0	-103	7927.68
10/12/09 02:55:18	59.979	3684.318	350	160.447235	0	216.5	10	0	-103	7928.67
10/12/09 02:55:24	59.983	3685.286	350	160.447235	0	217	10	0	-103	7929.66
10/12/09 02:55:30	59.992	3681.403	350	160.447235	0	217.5	10	0	-103	7930.65
10/12/09 02:55:36	59.988	3671.761	350	160.447235	0	218	10	0	-103	7931.64
10/12/09 02:55:42	59.993	3679	350	160.447235	0	218.5	10	0	-103	7932.63
10/12/09 02:55:48	59.994	3682.7	350	163.958603	0	219	10	0	-103	7933.62
10/12/09 02:55:54	59.989	3684.878	350	163.958603	0	219.5	10	0	-103	7934.61
10/12/09 02:56:00	59.985	3685.584	350	163.958603	0	220	10	0	-103	7935.6
10/12/09 02:56:06	59.986	3684.976	350	163.958603	0	220.5	10	0	-103	7936.59
10/12/09 02:56:12	59.982	3684.245	350	163.958603	0	221	10	0	-103	7937.58
10/12/09 02:56:18	59.987	3683.736	350	166.072449	0	221.5	10	0	-103	7938.57
10/12/09 02:56:24	60	3682.138	350	166.072449	0	222	10	0	-103	7939.56
10/12/09 02:56:30	60.003	3681.458	350	166.072449	0	222.5	10	0	-103	7940.55
10/12/09 02:56:36	60.002	3680.167	350	166.072449	0	223	10	0	-103	7941.54
10/12/09 02:56:42	60.005	3679.669	350	166.072449	0	223.5	10	0	-103	7942.53
10/12/09 02:56:48	60.012	3676.796	350	163.766586	0	224	10	0	-103	7943.52
10/12/09 02:56:54	60.022	3673.906	350	163.766586	0	224.5	10	0	-103	7944.51
10/12/09 02:57:00	60.018	3673.648	350	163.766586	0	225	10	0	-103	7945.5
10/12/09 02:57:06	60.02	3676.676	350	163.766586	0	225.5	10	0	-103	7946.49
10/12/09 02:57:12	60.019	3677.185	350	163.766586	0	226	10	0	-103	7947.48
10/12/09 02:57:18	60.017	3679.289	350	165.101685	0	226.5	10	0	-103	7948.47
10/12/09 02:57:24	60.016	3678.599	350	165.101685	0	227	10	0	-103	7949.46

10/12/09 02:57:30	60.014	3678.589	350	165.101685	0	227.5	10	0	-103	7950.45
10/12/09 02:57:36	60.015	3674.669	350	165.101685	0	228	10	0	-103	7951.44
10/12/09 02:57:42	60.019	3674.546	350	165.101685	0	228.5	10	0	-103	7952.43
10/12/09 02:57:48	60.02	3671.982	350	165.476395	0	229	10	0	-103	7953.42
10/12/09 02:57:54	60.026	3671.06	350	165.476395	0	229.5	10	0	-103	7954.41
10/12/09 02:58:00	60.022	3674.01	350	165.476395	0	230	10	0	-103	7955.4
10/12/09 02:58:06	60.024	3676.051	350	165.476395	0	230.5	10	0	-103	7956.39
10/12/09 02:58:12	60.028	3671.343	350	165.476395	0	231	10	0	-103	7957.38
10/12/09 02:58:18	60.035	3668.767	350	206.459106	0	231.5	10	0	-103	7958.37
10/12/09 02:58:24	60.021	3657.164	350	206.459106	0	232	10	0	-103	7959.36
10/12/09 02:58:30	60.025	3669.309	335	206.459106	0	232.5	10	0	-103	7960.35
10/12/09 02:58:36	60.023	3671.332	335	206.459106	0	233	10	0	-103	7961.34
10/12/09 02:58:42	60.02	3673.833	335	206.459106	0	233.5	10	0	-103	7962.33
10/12/09 02:58:48	60.017	3675.971	335	211.256042	0	234	10	0	-103	7963.32
10/12/09 02:58:54	60.01	3679.393	335	211.256042	1	234.5	10	0	-103	7964.31
10/12/09 02:59:00	60.01	3679.597	335	211.256042	1	235	10	0	-103	7965.3
10/12/09 02:59:06	60.012	3679.062	335	211.256042	1	235.5	10	0	-103	7966.29
10/12/09 02:59:12	60.013	3679.637	335	211.256042	1	236	10	0	-103	7967.28
10/12/09 02:59:18	60.01	3679.383	335	214.346695	1	236.5	10	0	-103	7968.27
10/12/09 02:59:24	60.011	3679.138	335	214.346695	1	237	10	0	-103	7969.26
10/12/09 02:59:30	60.018	3678.456	335	214.346695	1	237.5	10	0	-103	7970.25
10/12/09 02:59:36	60.019	3677.431	335	214.346695	2	238	10	0	-103	7971.24
10/12/09 02:59:42	60.018	3678.151	335	214.346695	3	238.5	10	0	-103	7972.23
10/12/09 02:59:48	60.016	3680.771	335	212.172699	4	239	10	0	-103	7973.22
10/12/09 02:59:54	60.022	3679.167	335	212.172699	5	239.5	10	0	-103	7974.21
10/12/09 03:00:00	60.016	3682.73	335	212.172699	6	240	10	0	-103	7975.2
10/12/09 03:00:06	60.01	3682.01	335	212.172699	7	240.5	10	0	-103	7976.19
10/12/09 03:00:12	59.995	3685.306	335	212.172699	8	241	10	0	-103	7977.18
10/12/09 03:00:18	59.974	3687.527	335	215.598175	9	241.5	10	0	-103	7978.17
10/12/09 03:00:24	59.968	3692.966	335	215.598175	10	242	10	0	-103	7979.16
10/12/09 03:00:30	59.972	3694.974	335	215.598175	11	242.5	10	0	-103	7980.15
10/12/09 03:00:36	59.964	3698.617	335	215.598175	12	243	10	0	-103	7981.14
10/12/09 03:00:42	59.963	3702.645	335	215.598175	13	243.5	10	0	-103	7982.13
10/12/09 03:00:48	59.968	3704.023	335	218.327255	14	244	10	0	-103	7983.12
10/12/09 03:00:54	59.97	3703.814	335	218.327255	15	244.5	10	0	-103	7984.11
10/12/09 03:01:00	59.976	3704.293	335	218.327255	16	245	10	0	-103	7985.1
10/12/09 03:01:06	59.977	3703.142	335	218.327255	16	245.5	10	0	-103	7986.09
10/12/09 03:01:12	59.974	3705.662	335	218.327255	16	246	10	0	-103	7987.08
10/12/09 03:01:18	59.974	3707.514	335	217.379425	16	246.5	10	0	-103	7988.07
10/12/09 03:01:24	59.979	3706.335	335	217.379425	16	247	10	0	-103	7989.06
10/12/09 03:01:30	59.985	3704.127	335	217.379425	16	247.5	10	0	-103	7990.05
10/12/09 03:01:36	59.979	3705.968	335	217.379425	16	248	10	0	-103	7991.04
10/12/09 03:01:42	59.986	3703.913	335	217.379425	16	248.5	10	0	-103	7992.03
10/12/09 03:01:48	59.982	3705.05	335	214.830353	16	249	10	0	-103	7993.02
10/12/09 03:01:54	59.987	3701.831	335	214.830353	16	249.5	10	0	-103	7994.01
10/12/09 03:02:00	59.996	3701.308	335	214.830353	16	250	10	0	-103	7995

10/12/09 03:02:06	59.997	3700.541	335	214.830353	16	250.5	10	0	-103	7995.99
10/12/09 03:02:12	59.996	3700.549	335	214.830353	16	251	10	0	-103	7996.98
10/12/09 03:02:18	59.998	3699.5	335	227.655914	16	251.5	10	0	-103	7997.97
10/12/09 03:02:24	60.01	3699.409	335	227.655914	16	252	10	0	-103	7998.96
10/12/09 03:02:30	60.004	3701.11	335	227.655914	16	252.5	10	0	-103	7999.95
10/12/09 03:02:36	60.001	3700.22	335	227.655914	16	253	10	0	-103	8000.94
10/12/09 03:02:42	60.007	3702.276	335	227.655914	16	253.5	10	0	-103	8001.93
10/12/09 03:02:48	60.008	3702.943	335	225.018082	16	254	10	0	-103	8002.92
10/12/09 03:02:54	60.006	3703.819	335	225.018082	16	254.5	10	0	-103	8003.91
10/12/09 03:03:00	59.999	3705.329	335	225.018082	16	255	10	0	-103	8004.9
10/12/09 03:03:06	60.004	3703.675	335	225.018082	16	255.5	10	0	-103	8005.89
10/12/09 03:03:12	60.015	3703.017	335	225.018082	16	256	10	0	-103	8006.88
10/12/09 03:03:18	60.009	3705.189	335	228.365158	16	256.5	10	0	-103	8007.87
10/12/09 03:03:24	60.011	3704.051	335	228.365158	16	257	10	0	-103	8008.86
10/12/09 03:03:30	60.016	3703.708	335	228.365158	16	257.5	10	0	-103	8009.85
10/12/09 03:03:36	60.019	3704.139	335	228.365158	16	258	10	0	-103	8010.84
10/12/09 03:03:42	60.011	3705.942	335	228.365158	16	258.5	10	0	-103	8011.83
10/12/09 03:03:48	60.008	3705.749	335	234.075333	16	259	10	0	-103	8012.82
10/12/09 03:03:54	60.015	3706.63	335	234.075333	16	259.5	10	0	-103	8013.81
10/12/09 03:04:00	60.018	3704.224	335	234.075333	16	260	10	0	-103	8014.8
10/12/09 03:04:06	60.019	3704.795	335	234.075333	16	260.5	10	0	-103	8015.79
10/12/09 03:04:12	60.025	3702.008	335	234.075333	16	261	10	0	-103	8016.78
10/12/09 03:04:18	60.027	3700.34	335	228.798157	16	261.5	10	0	-103	8017.77
10/12/09 03:04:24	60.023	3702.959	335	228.798157	16	262	10	0	-103	8018.76
10/12/09 03:04:30	60.024	3703.374	335	228.798157	16	262.5	10	0	-103	8019.75
10/12/09 03:04:36	60.022	3704.947	335	228.798157	16	263	10	0	-103	8020.74
10/12/09 03:04:42	60.023	3703.16	335	228.798157	16	263.5	10	0	-103	8021.73
10/12/09 03:04:48	60.018	3705.441	335	229.466965	16	264	10	0	-103	8022.72
10/12/09 03:04:54	60.012	3707.971	335	229.466965	16	264.5	10	0	-103	8023.71
10/12/09 03:05:00	60.019	3708.831	335	229.466965	16	265	10	0	-103	8024.7
10/12/09 03:05:06	60.015	3709.817	335	229.466965	16	265.5	10	0	-103	8025.69
10/12/09 03:05:12	60.016	3709.642	335	229.466965	16	266	10	0	-103	8026.68
10/12/09 03:05:18	60.016	3710.677	335	228.980164	16	266.5	10	0	-103	8027.67
10/12/09 03:05:24	60.018	3707.696	335	228.980164	16	267	10	0	-103	8028.66
10/12/09 03:05:30	60.024	3706.99	335	228.980164	16	267.5	10	0	-103	8029.65
10/12/09 03:05:36	60.024	3704.406	335	228.980164	16	268	10	0	-103	8030.64
10/12/09 03:05:42	60.019	3705.516	335	228.980164	16	268.5	10	0	-103	8031.63
10/12/09 03:05:48	60.028	3704.773	335	219.975555	16	269	10	0	-103	8032.62
10/12/09 03:05:54	60.029	3702.093	335	219.975555	16	269.5	10	0	-103	8033.61
10/12/09 03:06:00	60.029	3701.52	335	219.975555	16	270	10	0	-103	8034.6
10/12/09 03:06:06	60.03	3698.009	335	219.975555	16	270.5	10	0	-103	8035.59
10/12/09 03:06:12	60.019	3703.815	335	219.975555	16	271	10	0	-103	8036.58
10/12/09 03:06:18	60.021	3700.816	335	229.089249	16	271.5	10	0	-103	8037.57
10/12/09 03:06:24	60.012	3708.527	335	229.089249	16	272	10	0	-103	8038.56
10/12/09 03:06:30	60.013	3706.991	335	229.089249	16	272.5	10	0	-103	8039.55
10/12/09 03:06:36	60.016	3705.398	335	229.089249	16	273	10	0	-103	8040.54

10/12/09 03:06:42	60.007	3708.99	335	229.089249	16	273.5	10	0	-103	8041.53
10/12/09 03:06:48	59.993	3707.304	335	229.663269	16	274	10	0	-103	8042.52
10/12/09 03:06:54	59.994	3706.921	335	229.663269	16	274.5	10	0	-103	8043.51
10/12/09 03:07:00	59.993	3704.934	335	229.663269	16	275	10	0	-103	8044.5
10/12/09 03:07:06	59.985	3707.071	335	229.663269	16	275.5	10	0	-103	8045.49
10/12/09 03:07:12	59.98	3708.246	335	229.663269	16	276	10	0	-103	8046.48
10/12/09 03:07:18	59.982	3710.134	335	229.233856	16	276.5	10	0	-103	8047.47
10/12/09 03:07:24	59.98	3709.192	335	229.233856	16	277	10	0	-103	8048.46
10/12/09 03:07:30	59.983	3707.911	335	229.233856	16	277.5	10	0	-103	8049.45
10/12/09 03:07:36	59.981	3709.689	335	229.233856	16	278	10	0	-103	8050.44
10/12/09 03:07:42	59.981	3711.256	350	229.233856	16	278.5	10	0	-103	8051.43
10/12/09 03:07:48	59.978	3712.012	350	231.409882	16	279	10	0	-103	8052.42
10/12/09 03:07:54	59.978	3713.992	350	231.409882	16	279.5	10	0	-103	8053.41
10/12/09 03:08:00	59.975	3715.323	350	231.409882	16	280	10	0	-103	8054.4
10/12/09 03:08:06	59.979	3715.161	350	231.409882	16	280.5	10	0	-103	8055.39
10/12/09 03:08:12	59.976	3714.063	350	231.409882	16	281	10	0	-103	8056.38
10/12/09 03:08:18	59.975	3715.688	350	218.622284	16	281.5	10	0	-103	8057.37
10/12/09 03:08:24	59.98	3714.848	350	218.622284	16	282	10	0	-103	8058.36
10/12/09 03:08:30	59.979	3712.275	350	218.622284	16	282.5	10	0	-103	8059.35
10/12/09 03:08:36	59.987	3710.05	350	218.622284	16	283	10	0	-103	8060.34
10/12/09 03:08:42	59.98	3710.624	350	218.622284	16	283.5	10	0	-103	8061.33
10/12/09 03:08:48	59.979	3710.475	350	213.535858	16	284	10	0	-103	8062.32
10/12/09 03:08:54	59.979	3709.286	350	213.535858	16	284.5	10	0	-103	8063.31
10/12/09 03:09:00	59.983	3708.371	350	213.535858	16	285	10	0	-103	8064.3
10/12/09 03:09:06	59.987	3707.49	350	213.535858	16	285.5	10	0	-103	8065.29
10/12/09 03:09:12	59.979	3712.303	350	213.535858	16	286	10	0	-103	8066.28
10/12/09 03:09:18	59.979	3712.076	350	225.651855	16	286.5	10	0	-103	8067.27
10/12/09 03:09:24	59.975	3713.51	350	225.651855	16	287	10	0	-103	8068.26
10/12/09 03:09:30	59.999	3712.092	350	225.651855	16	287.5	10	0	-103	8069.25
10/12/09 03:09:36	59.986	3714.953	350	225.651855	16	288	10	0	-103	8070.24
10/12/09 03:09:42	59.982	3715.438	350	225.651855	16	288.5	10	0	-103	8071.23
10/12/09 03:09:48	59.995	3715.068	350	212.573639	16	289	10	0	-103	8072.22
10/12/09 03:09:54	59.989	3716.285	350	212.573639	16	289.5	10	0	-103	8073.21
10/12/09 03:10:00	60	3711.708	350	212.573639	16	290	10	0	-103	8074.2
10/12/09 03:10:06	60.004	3713.362	350	212.573639	16	290.5	10	0	-103	8075.19
10/12/09 03:10:12	59.998	3719.079	350	212.573639	16	291	10	0	-103	8076.18
10/12/09 03:10:18	60.001	3717.889	350	219.897293	16	291.5	10	0	-103	8077.17
10/12/09 03:10:24	60.003	3719.021	350	219.897293	16	292	10	0	-103	8078.16
10/12/09 03:10:30	60.004	3719.299	350	219.897293	16	292.5	10	0	-103	8079.15
10/12/09 03:10:36	60.003	3719.731	350	219.897293	16	293	10	0	-103	8080.14
10/12/09 03:10:42	60.009	3718.976	350	219.897293	16	293.5	10	0	-103	8081.13
10/12/09 03:10:48	60.009	3720.609	350	231.1754	16	294	10	0	-103	8082.12
10/12/09 03:10:54	60.014	3720.38	350	231.1754	16	294.5	10	0	-103	8083.11
10/12/09 03:11:00	60.008	3721.272	350	231.1754	16	295	10	0	-103	8084.1
10/12/09 03:11:06	60.009	3721.594	350	231.1754	16	295.5	10	0	-103	8085.09
10/12/09 03:11:12	60.014	3721.646	350	231.1754	16	296	10	0	-103	8086.08

$10 / 12 / 0903: 11: 18$	60.01	3721.645	350	226.634125	16	296.5	10	0	-103	8087.07
$10 / 12 / 0903: 11: 24$	60.003	3724.656	350	226.634125	16	297	10	0	-103	8088.06
$10 / 12 / 0903: 11: 30$	59.998	3723.696	350	226.634125	16	297.5	10	0	-103	8089.05
$10 / 12 / 0903: 11: 36$	60.002	3721.879	350	226.634125	16	298	10	0	-103	8090.04
$10 / 12 / 0903: 11: 42$	59.999	3724.142	350	226.634125	16	298.5	10	0	-103	8091.03
$10 / 12 / 0903: 11: 48$	59.995	3723.639	350	227.255066	16	299	10	0	-103	8092.02
$10 / 12 / 0903: 11: 54$	59.988	3725.361	350	227.255066	16	299.5	10	0	-103	8093.01
$10 / 12 / 0903: 12: 00$	59.992	3723.693	350	227.255066	16	300	10	0	-103	8094

Note: See "Instruction" tab for more detailed instructions.

Step 1.	Copy and Paste Event Data into the appropriate cells of the "Data" worksheet. Maintain date and time format of $\mathrm{mm} / \mathrm{dd} / \mathrm{yy} \mathrm{hh}: \mathrm{mm}: \mathrm{ss}$.
Step 2.	Determine Time of $\mathrm{T}(0)$ and edit formula in cell "C8" to reference the correct row of the "Data" worksheet. $\mathrm{T}(0)$ is the first change in frequency of about $0.010 \mathrm{~Hz}(10 \mathrm{mHz})$ which should be the first scan of frequency data of the event.
Step 3.	Time of Frequency Recovery to 60 Hz or Pre-Perturbation Hz
Step 4.	Enter MW output of generator or load that caused event (+ for gen loss, - for load loss) (Value from NERC Event List. If multiple units, enter total MW loss.) If MW loss value is not known, enter a default 1000 MW.
Step 5.	Hit the big blue button to copy your data for pasting into FRS Form 1 "BA Event Data" worksheet. Copy Form 2 Data for Pasting into Form 1
Step 6.	Paste data into "FRS Form 1" in the appropriate row on the "BA Event Data" worksheet.

Step 7. Save this workbook using the following file name format:MyBA_yymmdd_hhmm_FRS_Form2.xlsm
09/10/12 Date yymmdd
2:27 Time hh:ss of T(0)

2 seconds Date: Time of $\mathrm{T}(0)$ Time of Frequency Recovery to 60 Hz or Pre-Perturbation Hz Value A Pre-Perturbation Average Frequency [$T(-2)$ to $T(-16)]$ Value B Post-Perturbation Average Frequency [$T(+20$ to $T(+52)$]

Pre to Post Perturbation Delta Frequency Actual Value A Pre-Perturbation Average Interchange MW [T(-2) to $\mathrm{T}(-16)]$ Value B Post-Perturbation Average Interchange MW [T(+20 to T(+52)]

Pre to Post Perturbation Interchange Delta MW Actual
Initial Performance Ramp Magnitude Adjustment EPFR Pre-Perturbation Average EPFR Post-Perturbation Average EPFR Delta

EPFR = Expected Primary Frequency Response EPFR(Final) MW Response in right direction for frequency delta

Monday, October 12, 2009
2:27:24 2:33:06 60.0420 Hz 59.8880 Hz $-0.154 \mathrm{~Hz}$ 3645.04 MW 3788.79 MW 143.75 MW 143.75 MW
-17.57 MW -17.57 MW
-33.60 MW -33.60 MW 89.60 MW
123.20 MW

Balancing Authority My BA
Grid Nominal Frequency $\quad 60.000 \mathrm{~Hz}$
$\begin{aligned} \text { Grid Nominal Frequency } & 60.000 \mathrm{~Hz} \\ \text { Capacity @ Droop for Minimum Performance } & 2400.0 \mathrm{MW}\end{aligned}$
Droop Setting $\quad 5.00 \% \quad 3.00000 \mathrm{~Hz}$
Deadband Setting $\quad 0.000 \mathrm{~Hz}$
Hz Span 3.00000 Hz
Frequency Response Obligation (FRO) $\quad-80 \mathrm{MW} / 0.1 \mathrm{~Hz}$

TC (frequency response filter constant)
0.350 Time Constant for delayed delivery of PFR during Sustained Measure

Low Hz Delta Hz Event

3764.66 Actual Interchange MW Average during frequency recovery perio 3778.52 Target Interchange MW Average during frequency recovery period 3726.23 Interchange Average Ramp MW during frequency recovery period 3640.68 Actual MW @ T(-4)
105.27 Starting and Ending Difference in Interchange MW during frequency recovery pel 0:05:42 Event Duration (h:mm:ss)

No Target MW Average minus MW @ T(-4) less than zero
137.84 Interchange Target Relative Average Change - MW (Low Frequency Event)
123.98 Interchange Actual Relative Average Change - MW (Low Frequency Event)

No Interchange Actual Average minus MW @ $\mathrm{T}(-4)$ less than zero
Yes Interchange Average MW minus MW @ T(-4) greater than zero
Yes Interchange Target MW Average minus MW @ T(-4) greater than zero
32.57 Interchange Target Relative Average Change - MW (High Frequency Event)
8.71 Interchange Actual Relative Average Change - MW (High Frequency Event)

Up Ramp Direction during frequency recovery period
tial Response P.U. Performance

$\mathrm{T}-72$ sec	$2: 26: 12$	60.027	3668.611	-21.600	-7.560
$\mathrm{~T}-70$ sec	$2: 26: 14$	60.027	3668.611	-21.600	-12.474
$\mathrm{~T}-68$ sec	$2: 26: 16$	60.027	3668.611	-21.600	-15.668

$\mathrm{T}-66$ sec	$2: 26: 18$	60.022	3666.062
$\mathrm{~T}-64$ sec	$2: 26: 20$	60.022	3666.062
$\mathrm{~T}-62$ sec	$2: 26: 22$	60.022	3666.062
$\mathrm{~T}-60$ sec	$2: 26: 24$	60.019	3670.454
$\mathrm{~T}-58$ sec	$2: 26: 26$	60.019	3670.454
$\mathrm{~T}-56$ sec	$2: 26: 28$	60.019	3670.454
$\mathrm{~T}-54$ sec	$2: 26: 30$	60.021	3672.493
$\mathrm{~T}-52$ sec	$2: 26: 32$	60.021	3672.493
$\mathrm{~T}-50$ sec	$2: 26: 34$	60.021	3672.493
$\mathrm{~T}-48$ sec	$2: 26: 36$	60.019	3672.164
$\mathrm{~T}-46$ sec	$2: 26: 38$	60.019	3672.164
$\mathrm{~T}-44$ sec	$2: 26: 40$	60.019	3672.164
$\mathrm{~T}-42$ sec	$2: 26: 42$	60.031	3666.467
$\mathrm{~T}-40$ sec	$2: 26: 44$	60.031	3666.467
$\mathrm{~T}-38$ sec	$2: 26: 46$	60.031	3666.467
$\mathrm{~T}-36$ sec	$2: 26: 48$	60.036	3660.672
$\mathrm{~T}-34$ sec	$2: 26: 50$	60.036	3660.672
$\mathrm{~T}-32$ sec	$2: 26: 52$	60.036	3660.672
$\mathrm{~T}-30$ sec	$2: 26: 54$	60.048	3650.025
$\mathrm{~T}-28$ sec	$2: 26: 56$	60.048	3650.025
$\mathrm{~T}-26$ sec	$2: 26: 58$	60.048	3650.025
$\mathrm{~T}-24$ sec	$2: 27: 00$	60.041	3654.294
$\mathrm{~T}-22$ sec	$2: 27: 02$	60.041	3654.294
$\mathrm{~T}-20$ sec	$2: 27: 04$	60.041	3654.294
$\mathrm{~T}-18$ sec	$2: 27: 06$	60.039	3651.059
$\mathrm{~T}-16$ sec	$2: 27: 08$	60.039	3651.059
$\mathrm{~T}-14$ sec	$2: 27: 10$	60.039	3651.059
$\mathrm{~T}-12$ sec	$2: 27: 12$	60.045	3645.387
$\mathrm{~T}-10$ sec	$2: 27: 14$	60.045	3645.387
$\mathrm{~T}-08$ sec	$2: 27: 16$	60.045	3645.387
$\mathrm{~T}-06$ sec	$2: 27: 18$	60.041	3640.682
$\mathrm{~T}-04$ sec	$2: 27: 20$	60.041	3640.682
$\mathrm{~T}-02$ sec	$2: 27: 22$	60.041	3640.682
$\mathrm{~T}+0$ sec	$2: 27: 24$	59.978	3696.362
$\mathrm{~T}+02$ sec	$2: 27: 26$	59.978	3696.362
$\mathrm{~T}+04$ sec	$2: 27: 28$	59.978	3696.362
$\mathrm{~T}+06$ sec	$2: 27: 30$	59.978	3696.362
$\mathrm{~T}+08$ sec	$2: 27: 32$	59.869	3737.157
$\mathrm{~T}+10$ sec	$2: 27: 34$	59.869	3737.157
$\mathrm{~T}+12$ sec	$2: 27: 36$	59.869	3737.157
$\mathrm{~T}+14$ sec	$2: 27: 38$	59.88	3766.194
$\mathrm{~T}+16$ sec	$2: 27: 40$	59.88	3766.194
$\mathrm{~T}+18$ sec	$2: 27: 42$	59.88	3766.194
$\mathrm{~T}+20$ sec	$2: 27: 44$	59.883	3380.621
$\mathrm{~T}+22$ sec	$2: 27: 46$	59.883	3780.621
$\mathrm{~T}+24$ sec	$2: 27: 48$	59.883	3780.621

60.042	3645.041
60.042	3645.041
60.042	3645.041
60.042	3645.041
60.042	3645.041
60.042	3645.041
60.042	3645.041
60.042	3645.041
59.888	3788.789
59.888	3788.789
59.888	3788.789

-17.599	-16.344
-17.599	-16.784
-17.599	-17.069
-15.201	-16.415
-15.201	-15.990
-15.201	-15.714
-16.800	-16.094
-16.800	-16.341
-16.800	-16.502
-15.201	-16.046
-15.201	-15.750
-15.201	-15.558
-24.799	-18.792
-24.799	-20.894
-24.799	-22.261
-28.799	-24.549
-28.799	-26.037
-28.799	-27.004
-38.400	-30.993
-38.400	-33.585
-38.400	-35.271
-32.800	-34.406
-32.800	-33.844
-32.800	-33.479
-31.201	-32.682
-31.201	-32.163
-31.201	-31.827
-35.999	-33.287
-35.999	-34.236
-35.999	-34.853
-32.800	-34.134
-32.800	-33.667
-32.800	-33.364
17.599	-15.527
17.599	-3.933
17.599	3.604
17.599	8.502
104.800	42.207
104.800	64.114
104.800	78.355
9.999	84.530
9.999	88.544
9.999	91.153
93.600	92.010
93.600	92.567
93.600	92.928

3750.676
 3750.676 3750.676
 3750.676 3750.676

T+26 sec	2:27:50	59.885	3784.962	59.888	3788.789	92.001	92.604	3750.676
T+28 sec	2:27:52	59.885	3784.962	59.888	3788.789	92.001	92.393	3750.676
T+30 sec	2:27:54	59.885	3784.962	59.888	3788.789	92.001	92.256	3750.676
$\mathrm{T}+32 \mathrm{sec}$	2:27:56	59.89	3788.072	59.888	3788.789	88.000	90.767	3750.676
T+34 sec	2:27:58	59.89	3788.072	59.888	3788.789	88.000	89.798	3750.676
T+36 sec	2:28:00	59.89	3788.072	59.888	3788.789	88.000	89.169	3750.676
T+38 sec	2:28:02	59.893	3788.472	59.888	3788.789	85.599	87.920	3750.676
$\mathrm{T}+40 \mathrm{sec}$	2:28:04	59.893	3788.472	59.888	3788.789	85.599	87.107	3750.676
$\mathrm{T}+42 \mathrm{sec}$	2:28:06	59.893	3788.472	59.888	3788.789	85.599	86.579	3750.676
T+44 sec	2:28:08	59.891	3794.374	59.888	3788.789	87.201	86.797	3750.676
$\mathrm{T}+46 \mathrm{sec}$	2:28:10	59.891	3794.374	59.888	3788.789	87.201	86.938	3750.676
T+48 sec	2:28:12	59.891	3794.374	59.888	3788.789	87.201	87.030	3750.676
T+50 sec	2:28:14	59.885	3799.959	59.888	3788.789	92.001	88.770	3750.676
T+52 sec	2:28:16	59.885	3799.959	59.888	3788.789	92.001	89.901	3750.676
T+54 sec	2:28:18	59.885	3799.959			92.001	90.636	
T+56 sec	2:28:20	59.888	3802.951			89.600	90.273	
T+58 sec	2:28:22	59.888	3802.951			89.600	90.038	
T+60 sec	2:28:24	59.888	3802.951			89.600	89.884	
T+62 sec	2:28:26	59.889	3805.617			88.800	89.505	
T+64 sec	2:28:28	59.889	3805.617			88.800	89.258	
T+66 sec	2:28:30	59.889	3805.617			88.800	89.098	
T+68 sec	2:28:32	59.857	3814.862			114.401	97.954	
T+70 sec	2:28:34	59.857	3814.862			114.401	103.711	
T+72 sec	2:28:36	59.857	3814.862			114.401	107.452	
T+74 sec	2:28:38	59.858	3826.053			113.599	109.604	
T+76 sec	2:28:40	59.858	3826.053			113.599	111.002	
T+78 sec	2:28:42	59.858	3826.053			113.599	111.911	
T+80 sec	2:28:44	59.865	3826.753			107.999	110.541	
	2:28:46	59.865	3826.753			107.999	109.651	
	2:28:48	59.865	3826.753			107.999	109.073	
	2:28:50	59.871	3825.713			103.201	107.018	
	2:28:52	59.871	3825.713			103.201	105.682	
	2:28:54	59.871	3825.713			103.201	104.814	
	2:28:56	59.88	3819.081			95.999	101.729	
	2:28:58	59.88	3819.081			95.999	99.723	
	2:29:00	59.88	3819.081			95.999	98.420	
	2:29:02	59.89	3815.010			88.000	94.773	
	2:29:04	59.89	3815.010			88.000	92.403	
	2:29:06	59.89	3815.010			88.000	90.862	
	2:29:08	59.893	3809.652			85.599	89.020	
	2:29:10	59.893	3809.652			85.599	87.822	
	2:29:12	59.893	3809.652			85.599	87.044	
	2:29:14	59.902	3804.188			78.400	84.019	
	2:29:16	59.902	3804.188			78.400	82.052	
	2:29:18	59.902	3804.188			78.400	80.774	

$\begin{array}{lllllll}0.616 & 3774.653 & 3744.452 & 3736.023 & 3681.295 & 3677.601\end{array}$ $\begin{array}{llllll}0.616 & 3774.653 & 3744.452 & 3736.023 & 3681.295 & 3677.601 \\ 0.616 & 3775.058 & 3747.152 & 3738.626 & 3681.910 & 3677.909\end{array}$ $\begin{array}{llllll}0.616 & 3775.536 & 3749.516 & 3740.932 & 3682.526 & 3678.217\end{array}$ $\begin{array}{lllllll}0.616 & 3774.663 & 3751.784 & 3742.917 & 3683.142 & 3678.525\end{array}$ $\begin{array}{lllllll}0.616 & 3774.310 & 3753.800 & 3744.661 & 3683.757 & 3678.832\end{array}$ $\begin{array}{lllllll}0.616 & 3774.296 & 3755.603 & 3746.220 & 3684.373 & 3679.140\end{array}$ $\begin{array}{lllllll}0.616 & 3773.662 & 3757.247 & 3747.593 & 3684.989 & 3679.448\end{array}$ $\begin{array}{lllllll}0.616 & 3773.466 & 3758.734 & 3748.825 & 3685.604 & 3679.756\end{array}$ $\begin{array}{lllllll}0.616 & 3773.553 & 3760.086 & 3749.949 & 3686.220 & 3680.064\end{array}$ $\begin{array}{lllllll}0.616 & 3774.387 & 3761.576 & 3751.011 & 3686.835 & 3680.371\end{array}$ $\begin{array}{lllllll}0.616 & 3775.144 & 3762.943 & 3752.017 & 3687.451 & 3680.679\end{array}$ $\begin{array}{lllllll}0.616 & 3775.851 & 3764.200 & 3752.970 & 3688.067 & 3680.987\end{array}$ $\begin{array}{lllllll}0.616 & 3778.207 & 3765.576 & 3753.941 & 3688.682 & 3681.295\end{array}$ $\begin{array}{lllllllll}0616 & 3779.953 & 3766.849 & 3754.904 & 3689.298 & 3681.603\end{array}$ $\begin{array}{llllllll}0.616 & 3779.953 & 376.849 & 3754.904 & 3689.298 & 3681.603\end{array}$
 $\begin{array}{lllllll}0.616 & 3781.557 & 3769.236 & 3756.734 & 3690.529 & 3682.218\end{array}$ $\begin{array}{lllllll}0.616 & 3782.399 & 3771.411 & 3758.374 & 3691.760 & 3682.834\end{array}$ $\begin{array}{lllllll}0.616 & 3782.635 & 3772.480 & 3759.133 & 3692.376 & 3683.142\end{array}$ $\begin{array}{lllllll}0.616 & 3783.004 & 3773.484 & 3759.856 & 3692.992 & 3683.450\end{array}$ $\begin{array}{lllllll}0.616 & 3783.459 & 3774.429 & 3760.550 & 3693.607 & 3683.757\end{array}$ $\begin{array}{lllllll}0.616 & 3792.931 & 3775.584 & 3761.475 & 3694.223 & 3684.065\end{array}$ $\begin{array}{lllllll}0.616 & 3799.303 & 3776.675 & 3762.526 & 3694.838 & 3684.373\end{array}$ $\begin{array}{lllllll}0.616 & 3803.661 & 3777.707 & 3763.638 & 3695.454 & 3684.681\end{array}$ $\begin{array}{lllllll}0.616 & 3806.427 & 3778.980 & 3764.764 & 3696.070 & 3684.989\end{array}$ $\begin{array}{lllllll}0.616 & 3808.441 & 3780.187 & 3765.884 & 3696.685 & 3685.296\end{array}$ $\begin{array}{lllllll}0.616 & 3809.966 & 3781.333 & 3766.986 & 3697.301 & 3685.604\end{array}$ $\begin{array}{lllllll}0.616 & 3809.212 & 3782.441 & 3768.016 & 3697.917 & 3685.912\end{array}$ $\begin{array}{lllllll}0.616 & 3808.938 & 3783.496 & 3768.990 & 3698.532 & 3686.220\end{array}$ $\begin{array}{lllllll}0.616 & 3808.975 & 3784.502 & 3769.920 & 3699.148 & 3686.528\end{array}$ $\begin{array}{lllllll}0.616 & 3807.536 & 3785.439 & 3770.775 & 3699.763 & 3686.835\end{array}$ $\begin{array}{lllllll}0616 & 3806.815 & 3786.334 & 3771.576 & 3700.379 & 3687.143\end{array}$ $\begin{array}{lllllll}0.616 & 3806.563 & 3787.190 & 3772.336 & 3700.995 & 3687.451\end{array}$ $\begin{array}{llllllll}0.616 & 3804.093 & 3787.868 & 3773.012 & 3701.610 & 3687.759\end{array}$ $\begin{array}{lllllll}0.616 & 3802.703 & 3788.519 & 3773.631 & 3702.226 & 3688.067\end{array}$ $\begin{array}{lllllll}0.616 & 3802.016 & 3789.142 & 3774.210 & 3702.841 & 3688.374\end{array}$ $\begin{array}{lllllll}0.616 & 3798.984 & 3789.660 & 3774.705 & 3703.457 & 3688.682\end{array}$ $\begin{array}{lllllll}0.616 & 3797.230 & 3790.157 & 3775.147 & 3704.073 & 3688.990\end{array}$ $\begin{array}{lllllll}0.616 & 3796.305 & 3790.635 & 3775.554 & 3704.688 & 3689.298\end{array}$ $\begin{array}{llllllll}0.616 & 3795.078 & 3790.993 & 3775.922 & 3705.304 & 3689.606\end{array}$ $\begin{array}{lllllll}0.616 & 3794.496 & 3791.339 & 3776.266 & 3705.920 & 3689.914\end{array}$ $\begin{array}{lllllll}0.616 & 3794.334 & 3791.672 & 3776.595 & 3706.535 & 3690.221\end{array}$ $\begin{array}{lllllll}0.616 & 3791.924 & 3791.895 & 3776.869 & 3707.151 & 3690.529\end{array}$ $\begin{array}{lllllll}0.616 & 3790.573 & 3792.111 & 3777.109 & 3707.766 & 3690.837\end{array}$ $\begin{array}{lllllllll}0.616 & 3789.910 & 3792.319 & 3777.330 & 3708.382 & 3691.145\end{array}$

2:29:20	59.907	3792.169	74.399	78.542
2:29:22	59.907	3792.169	74.399	77.092
2:29:24	59.907	3792.169	74.399	76.149
2:29:26	59.916	3788.132	67.200	73.017
2:29:28	59.916	3788.132	67.200	70.981
2:29:30	59.916	3788.132	67.200	69.658
2:29:32	59.92	3781.701	64.001	67.678
2:29:34	59.92	3781.701	64.001	66.391
2:29:36	59.92	3781.701	64.001	65.555
2:29:38	59.917	3774.604	66.400	65.851
2:29:40	59.917	3774.604	66.400	66.043
2:29:42	59.917	3774.604	66.400	66.168
2:29:44	59.923	3772.722	61.600	64.569
2:29:46	59.923	3772.722	61.600	63.530
2:29:48	59.923	3772.722	61.600	62.854
2:29:50	59.928	3768.707	57.599	61.015
2:29:52	59.928	3768.707	57.599	59.819
2:29:54	59.928	3768.707	57.599	59.042
2:29:56	59.927	3767.408	58.401	58.818
2:29:58	59.927	3767.408	58.401	58.672
2:30:00	59.927	3767.408	58.401	58.577
2:30:02	59.929	3765.672	56.799	57.955
2:30:04	59.929	3765.672	56.799	57.551
2:30:06	59.929	3765.672	56.799	57.288
2:30:08	59.937	3765.105	50.400	54.877
2:30:10	59.937	3765.105	50.400	53.310
2:30:12	59.937	3765.105	50.400	52.291
2:30:14	59.949	3753.922	40.799	48.269
2:30:16	59.949	3753.922	40.799	45.654
2:30:18	59.949	3753.922	40.799	43.955
2:30:20	59.941	3747.875	47.198	45.090
2:30:22	59.941	3747.875	47.198	45.828
2:30:24	59.941	3747.875	47.198	46.308
2:30:26	59.948	3746.706	41.599	44.660
2:30:28	59.948	3746.706	41.599	43.588
2:30:30	59.948	3746.706	41.599	42.892
2:30:32	59.951	3740.259	39.200	41.600
2:30:34	59.951	3740.259	39.200	40.760
2:30:36	59.951	3740.259	39.200	40.214
2:30:38	59.951	3727.838	39.200	39.859
2:30:40	59.951	3727.838	39.200	39.628
2:30:42	59.951	3727.838	39.200	39.478
2:30:44	59.952	3720.578	38.400	39.101
2:30:46	59.952	3720.578	38.400	38.856
2:30:48	59.952	3720.578	38.400	38.696
2:30:50	59.954	3715.753	36.801	38.033

$\begin{array}{lllllll}0.616 & 3788.294 & 3792317 & 3777.515 & 3708.998 & 3691.453\end{array}$ $\begin{array}{llllll}0.616 & 3788.294 & 3792.317 & 3777.515 & 3708.998 & 3691.453 \\ 0.616 & 3787.460 & 3792.314 & 3777.681 & 3709.613 & 3691.760\end{array}$ $\begin{array}{llllll}0.616 & 3787.460 & 3792.314 & 3777.681 & 3709.613 & 3691.760 \\ 0.616 & 3787.133 & 3792.312 & 3777.836 & 3710.229 & 3692.068\end{array}$ $\begin{array}{llllll}0.616 & 3784.616 & 3792.245 & 3777.946 & 3710.845 & 3692.376\end{array}$ $\begin{array}{lllllll}0.616 & 3783.195 & 3792.179 & 3778.029 & 3711.460 & 3692.684\end{array}$ $\begin{array}{lllllll}0.616 & 3782.488 & 3792.116 & 3778.099 & 3712.076 & 3692.992\end{array}$ $\begin{array}{llllllll}0.616 & 3781.124 & 3791.956 & 3778.145 & 3712.691 & 3693.299\end{array}$ $\begin{array}{llllllll}0.616 & 3780.452 & 3791.800 & 3778.180 & 3713.307 & 3693.607\end{array}$ $\begin{array}{lllllll}0.616 & 3780.232 & 3791.650 & 3778.211 & 3713.923 & 3693.915\end{array}$ $\begin{array}{lllllll}0.616 & 3781.143 & 3791.399 & 3778.254 & 3714.538 & 3694.223\end{array}$ $\begin{array}{llllllllll}0.616 & 3781.951 & 3791.156 & 3778.307 & 3715.154 & 3694.531\end{array}$ $\begin{array}{lllllll}0.616 & 3782.692 & 3790.919 & 3778.370 & 3715.769 & 3694.838\end{array}$ $\begin{array}{llllll}0.616 & 3782.692 & 3790.919 & 3778.370 & 3715.769 & 3694.838 \\ 0.616 & 3781.708 & 3790.663 & 3778.417 & 3716.385 & 3695.146\end{array}$ $\begin{array}{lllllll}0.616 & 3781.708 & 3790.663 & 3778.417 & 3716.385 & 3695.146 \\ 0.616 & 3781.285 & 3790.414 & 3778.457 & 3717.001 & 3695.454\end{array}$ $\begin{array}{lllllll}0.616 & 3781.285 & 3790.414 & 3778.457 & 3717.001 & 3695.454 \\ 0.616 & 3781.225 & 3790.171 & 3778.495 & 3717.616 & 3695.762\end{array}$ $\begin{array}{lllllll}0.616 & 3781.225 & 3790.171 & 3778.495 & 3717.616 & 3695.762\end{array}$ $\begin{array}{lllllll}0.616 & 3780.001 & 3789.881 & 3778.515 & 3718.232 & 3696.070\end{array}$ $\begin{array}{lllllll}0.616 & 3779.421 & 3789.599 & 3778.527 & 3718.848 & 3696.378\end{array}$ $\begin{array}{llllll}0.616 & 3779.260 & 3789.324 & 3778.537 & 3719.463 & 3696.685\end{array}$ $\begin{array}{llllllll}0.616 & 3779.651 & 3789.039 & 3778.551 & 3720.079 & 3696.993\end{array}$ $\begin{array}{lllllll}0.616 & 3780.121 & 3788.762 & 3778.571 & 3720.694 & 3697.301\end{array}$ $\begin{array}{lllllll}0.616 & 3780.642 & 3788.492 & 3778.598 & 3721.310 & 3697.609\end{array}$ $\begin{array}{lllllll}0.616 & 3780.635 & 3788.207 & 3778.623 & 3721.926 & 3697.917\end{array}$ $\begin{array}{lllllll}0.616 & 3780.846 & 3787.928 & 3778.651 & 3722.541 & 3698.224\end{array}$ $\begin{array}{lllllll}0.616 & 3781.199 & 3787.657 & 3778.682 & 3723.157 & 3698.532\end{array}$ $\begin{array}{llllllll}0.616 & 3779.404 & 3787.385 & 3778.690 & 3723.773 & 3698.840\end{array}$ $\begin{array}{lllllll}0.616 & 3778.452 & 3787.120 & 3778.687 & 3724.388 & 3699.148\end{array}$ $\begin{array}{lllllll}0.616 & 3778.049 & 3786.861 & 3778.680 & 3725.004 & 3699.456\end{array}$ $\begin{array}{llllllll}0.616 & 3774.643 & 3786.478 & 3778.633 & 3725.619 & 3699.763\end{array}$ $\begin{array}{llllll}0.616 & 3774.643 & 3786.478 & 3778.633 & 3725.619 & 3699.763 \\ 0.616 & 3772.644 & 3786.104 & 3778.564 & 3726.235 & 3700.071\end{array}$ $\begin{array}{llllll}0.616 & 3772.644 & 3786.104 & 3778.564 & 3726.235 & 3700.071 \\ 0.616 & 3771.560 & 3785.738 & 3778.485 & 3726.851 & 3700.379\end{array}$ $\begin{array}{llllll}0.616 & 3771.560 & 3785.738 & 3778.485 & 3726.851 & 3700.379 \\ 0.616 & 3773.311 & 3785.313 & 3778.426 & 3727.466 & 3700.687\end{array}$ $\begin{array}{lllllll}0.616 & 3773.311 & 3785.313 & 3778.426 & 3727.466 & 3700.687\end{array}$ $\begin{array}{lllllll}0.616 & 3774.664 & 3784.897 & 3778.385 & 3728.082 & 3700.995 \\ 0.616 & 3775.759 & 3784.490 & 3778.356 & 3728.697 & 3701.302\end{array}$ $\begin{array}{lllllll}0.616 & 3775.759 & 3784.490 & 3778.356 & 3728.697 & 3701.302\end{array}$ $\begin{array}{lllllll}0.616 & 3774.727 & 3784.079 & 3778.316 & 3729.313 & 3701.610\end{array}$ $\begin{array}{lllllll}0.616 & 3774.271 & 3783.677 & 3778.273 & 3729.929 & 3701.918\end{array}$ $\begin{array}{lllllll}0.616 & 3774.190 & 3783.284 & 3778.229 & 3730.544 & 3702.226\end{array}$ $\begin{array}{lllllll}0.616 & 3773.514 & 3782.831 & 3778.180 & 3731.160 & 3702.534\end{array}$ $\begin{array}{lllllll}0.616 & 3773.289 & 3782.388 & 3778.129 & 3731.776 & 3702.841\end{array}$ $\begin{array}{lllllll}0.616 & 3773.359 & 3781.953 & 3778.080 & 3732.391 & 3703.149\end{array}$ $\begin{array}{lllllll}0.616 & 3773.620 & 3781.401 & 3778.034 & 3733.007 & 3703.457\end{array}$ $\begin{array}{lllllll}0.616 & 3774.005 & 3780.860 & 3777.993 & 3733.622 & 3703.765\end{array}$ $\begin{array}{lllllll}0.616 & 3774.471 & 3780.330 & 3777.958 & 3734.238 & 3704.073\end{array}$ $\begin{array}{lllllll}0.616 & 3774.709 & 3779.738 & 3777.926 & 3734.854 & 3704.381\end{array}$ $\begin{array}{lllllll}0.616 & 3775.079 & 3779.158 & 3777.898 & 3735.469 & 3704.688\end{array}$ $\begin{array}{llllllll}0.616 & 3775.535 & 3778.590 & 3777.875 & 3736.085 & 3704.996\end{array}$ $\begin{array}{llllllll}0.616 & 3775.488 & 3777.985 & 3777.852 & 3736.700 & 3705.304\end{array}$

2:30:52	59.954	3715.753	36.801	37.602
2:30:54	59.954	3715.753	36.801	37.322
2:30:56	59.953	3710.848	37.601	37.419
2:30:58	59.953	3710.848	37.601	37.483
2:31:00	59.953	3710.848	37.601	37.524
2:31:02	59.954	3714.623	36.801	37.271
2:31:04	59.954	3714.623	36.801	37.107
2:31:06	59.954	3714.623	36.801	37.000
2:31:08	59.956	3716.461	35.199	36.369
2:31:10	59.956	3716.461	35.199	35.960
2:31:12	59.956	3716.461	35.199	35.693
2:31:14	59.955	3722.361	35.999	35.800
2:31:16	59.955	3722.361	35.999	35.870
2:31:18	59.955	3722.361	35.999	35.915
2:31:20	59.962	3722.267	30.399	33.984
2:31:22	59.962	3722.267	30.399	32.729
2:31:24	59.962	3722.267	30.399	31.913
2:31:26	59.966	3723.091	27.200	30.264
2:31:28	59.966	3723.091	27.200	29.192
2:31:30	59.966	3723.091	27.200	28.495
2:31:32	59.97	3723.893	23.999	26.921
2:31:34	59.97	3723.893	23.999	25.898
2:31:36	59.97	3723.893	23.999	25.234
2:31:38	59.969	3728.053	24.799	25.081
2:31:40	59.969	3728.053	24.799	24.982
2:31:42	59.969	3728.053	24.799	24.918
2:31:44	59.971	3733.327	23.199	24.317
2:31:46	59.971	3733.327	23.199	23.926
2:31:48	59.971	3733.327	23.199	23.671
2:31:50	59.976	3736.822	19.199	22.106
2:31:52	59.976	3736.822	19.199	21.088
2:31:54	59.976	3736.822	19.199	20.427
2:31:56	59.976	3740.877	19.199	19.997
2:31:58	59.976	3740.877	19.199	19.718
2:32:00	59.976	3740.877	19.199	19.536
2:32:02	59.978	3746.608	17.599	18.858
2:32:04	59.978	3746.608	17.599	18.418
2:32:06	59.978	3746.608	17.599	18.131
2:32:08	59.982	3751.558	14.401	16.826
2:32:10	59.982	3751.558	14.401	15.977
2:32:12	59.982	3751.558	14.401	15.426
2:32:14	59.979	3756.407	16.800	15.907
2:32:16	59.979	3756.407	16.800	16.219
2:32:18	59.979	3756.407	16.800	16.423
2:32:20	59.983	3760.982	13.599	15.434
2:32:22	59.983	3760.982	13.599	14.792

$\begin{array}{llllll}0.616 & 3775.672 & 3777.393 & 3777.832 & 3737316 & 3705.612\end{array}$ $\begin{array}{llllll}0.616 & 3775.672 & 3777.393 & 3777.832 & 3737.316 & 3705.612 \\ 0.616 & 3776.008 & 3776.811 & 3777.814 & 3737.932 & 3705.920\end{array}$ $\begin{array}{lllllll}07616.008 & 3776.811 & 3777.814 & 3737.932 & 3705.920 \\ 0.616 & 3776.721 & 3776.195 & 3777.804 & 3738.547 & 3706.227\end{array}$ $\begin{array}{llllll}0.616 & 3776.721 & 3776.195 & 3777.804 & 3738.547 & 3706.227 \\ 0.616 & 3777.400 & 3775.590 & 3777.800 & 3739.163 & 3706.535\end{array}$ $\begin{array}{llllll}0.616 & 3777.400 & 3775.590 & 3777.800 & 3739.163 & 3706.535 \\ 0.616 & 3778.057 & 3774.996 & 3777.803 & 3739.779 & 3706.843\end{array}$ $\begin{array}{lllllll}07678.057 & 3774.996 & 3777.803 & 3739.779 & 3706.843 \\ 0.616 & 3778.419 & 3774.447 & 3777.808 & 3740.394 & 3707.151\end{array}$ $\begin{array}{lllllll}0.616 & 3778.871 & 3773.908 & 3777.818 & 3741.010 & 3707.459\end{array}$ $\begin{array}{lllllll}0.616 & 3779.379 & 3773.379 & 3777.832 & 3741.625 & 3707.766\end{array}$ $\begin{array}{lllllll}0.616 & 3779.365 & 3772.875 & 3777.845 & 3742.241 & 3708.074\end{array}$ $\begin{array}{lllllll}0.616 & 3779.571 & 3772.380 & 3777.861 & 3742.857 & 3708.382\end{array}$ $\begin{array}{lllllll}0.616 & 3779.920 & 3771.894 & 3777.878 & 3743.472 & 3708.690\end{array}$ $\begin{array}{lllllll}0.616 & 3780.642 & 3771.467 & 3777.902 & 3744.088 & 3708.998\end{array}$ $\begin{array}{lllllll}0.616 & 3780.642 & 3771.467 & 3777.902 & 3744.088 & 3708.998 \\ 0.616 & 3781.327 & 3771.047 & 3777.932 & 3744.704 & 3709.305\end{array}$	0.616	3781.327	3771.047	3777.932	3744.704	3709.305
616	3781.988	3770.634	3777.966	3745.319	3709.613	$\begin{array}{lllllll}0.616 & 3781.988 & 3770.634 & 3777.966 & 3745.319 & 3709.613\end{array}$
---	---	---	---	---	---	---
.616	3780.034	3769.828	3778.006	3746.550	3710229	$\begin{array}{lllllll}0.616 & 3780.034 & 3769.828 & 3778.006 & 3746.550 & 3710.229\end{array}$ $\begin{array}{lllllll}0.616 & 3779.834 & 3769.435 & 3778.021 & 3747.166 & 3710.537 \\ 0.616 & 3778.800 & 3769.055 & 3778.207 & 3747.782 & 3710.845\end{array}$ $\begin{array}{lllllll}0.616 & 3778.800 & 3769.055 & 3778.027 & 3747.782 & 3710.845\end{array}$ $\begin{array}{lllllll}0.616 & 3778.343 & 3768.682 & 3778.030 & 3748.397 & 3711.152\end{array}$ $\begin{array}{lllllll}0.616 & 3778.262 & 3768.314 & 3778.032 & 3749.013 & 3711.460\end{array}$ $\begin{array}{lllllll}0.616 & 3777.304 & 3767.959 & 3778.026 & 3749.628 & 3711.768\end{array}$ $\begin{array}{lllllll}0.616 & 3776.897 & 3767.609 & 3778.017 & 3750.244 & 3712.076\end{array}$ $\begin{array}{lllllll}0.616 & 3776.848 & 3767.265 & 3778.008 & 3750.860 & 3712.384\end{array}$ $\begin{array}{lllllll}0.616 & 3777.311 & 3766.958 & 3778.002 & 3751.475 & 3712.691\end{array}$ $\begin{array}{lllllll}0.616 & 3777.828 & 3766.657 & 3778.001 & 3752.091 & 3712.999\end{array}$ $\begin{array}{llllllll}0.616 & 3778.379 & 3766.360 & 3778.004 & 3752.707 & 3713.307\end{array}$ $\begin{array}{lllllll}0.616 & 3778.393 & 3766.108 & 3778.007 & 3753.322 & 3713.615\end{array}$ $\begin{array}{lllllll}0.616 & 3778.618 & 3765.859 & 3778.011 & 3753.938 & 3713.923\end{array}$ $\begin{array}{lllllll}0.616 & 3778.618 & 3765.859 & 37878.019 & 3754.553 & 3714.230\end{array}$
:---	:---	:---	:---	:---	:---	:---
:---	:---	:---	:---	:---	:---	:---
616	3777.581	3764.980	3778.013	3756.400	3715.154	
:---	:---	:---	:---	:---	:---	:---

$2: 32: 24$	59.983	3760.982	13.599	14.374
$2: 32: 26$	59.988	3763.212	9.601	12.703
$2: 32: 28$	59.988	3763.212	9.601	11.618
$2: 32: 30$	59.988	3763.212	9.601	10.912
$2: 32: 32$	59.987	3766.433	10.400	10.733
$2: 32: 34$	59.987	3766.433	10.400	10.616
$2: 32: 36$	59.987	3766.433	10.400	10.541
$2: 32: 38$	59.992	3768.634	6.400	9.091
$2: 32: 40$	59.992	3768.634	6.400	8.149
$2: 32: 42$	59.992	3768.634	6.400	7.537
$2: 32: 44$	59.986	3773.695	11.200	8.819
$2: 32: 46$	59.986	3773.695	11.200	9.652
$2: 32: 48$	59.986	3773.695	11.200	10.194
$2: 32: 50$	59.988	3775.363	9.601	9.986
$2: 32: 52$	59.988	3775.363	9.601	9.851
$2: 32: 54$	59.988	3775.363	9.601	9.764
$2: 32: 56$	59.998	3776.420	1.599	6.906
$2: 32: 58$	59.998	3776.420	1.599	5.049
$2: 33: 00$	59.998	3776.420	1.599	3.841
$2: 33: 02$	59.999	3781.256	0.800	2.777
$2: 33: 04$	59.999	3781.256	0.800	2.085
$2: 33: 06$	59.999	3781.256	0.800	1.635
$2: 33: 08$	60.002	3783.896	-1.599	0.503
$2: 33: 10$	60.002	3783.896	-1.599	-0.233
$2: 33: 12$	60.002	3783.896	-1.599	-0.711
$2: 33: 14$	60.008	3785.463	-6.400	-2.702
$2: 33: 16$	60.008	3785.463	-6.400	-3.996
$2: 33: 18$	60.008	3785.463	-6.400	-4.837
$2: 33: 20$	60.017	3787.259	-13.599	-7.904
$2: 33: 22$	60.017	3787.259	-13.599	-9.897
$2: 33: 24$	60.017	3787.259	-13.599	-11.193
$2: 33: 26$	60.017	3788.030	-13.599	-12.035
$2: 33: 28$	60.017	3788.030	-13.599	-12.582
$2: 33: 30$	60.017	3788.030	-13.599	-12.938
$2: 33: 32$	60.023	3787.537	-18.399	-14.849
$2: 33: 34$	60.023	3787.537	-18.399	-16.092
$2: 33: 36$	60.023	3787.537	-18.399	-16.899
$2: 33: 38$	60.021	3787.930	-16.800	-16.865
$2: 33: 40$	60.021	3787.930	-16.800	-16.842
$2: 33: 42$	60.021	3787.930	-16.800	-16.827
$2: 33: 44$	60.024	3786.550	-19.199	-17.657
$2: 33: 46$	60.024	3786.550	-19.199	-18.197
$2: 33: 48$	60.024	3786.550	-19.199	-18.547
$2: 33: 50$	60.025	3785.614	-20.001	-19.056
$2: 33: 52$	60.025	3785.614	-20.001	-19.387
$2: 33: 54$	60.025	3785.614	-20.001	-19.602

$\begin{array}{llllll}0.616 & 3780.763 & 3763.619 & 3778.125 & 3765.635 & 3719.771\end{array}$ $\begin{array}{llllll}0.616 & 3780.763 & 3763.619 & 3778.125 & 3765.635 & 3719.771 \\ 0.616 & 3779.708 & 3763.617 & 3778.136 & 3766.250 & 3720.079\end{array}$ $\begin{array}{llllll}0.676 & 3779.708 & 3763.617 & 3778.136 & 3766.250 & 3720.079 \\ 0.616 & 3779.238 & 3763.614 & 3778.143 & 3766.866 & 3720.387\end{array}$ $\begin{array}{lllllll}0.616 & 3779.147 & 3763.611 & 3778.150 & 3767.481 & 3720.694\end{array}$ $\begin{array}{llllllll}0.616 & 3779.584 & 3763.630 & 3778.159 & 3768.097 & 3721.002\end{array}$ $\begin{array}{lllllll}0.616 & 3780.083 & 3763.648 & 3778.171 & 3768.713 & 3721.310\end{array}$ $\begin{array}{lllllll}0.616 & 3780.623 & 3763.665 & 3778.187 & 3769.328 & 3721.618\end{array}$ $\begin{array}{lllllll}0.616 & 3779.789 & 3763.697 & 3778.197 & 3769.944 & 3721.926\end{array}$ $\begin{array}{lllllll}0.616 & 3779.463 & 3763.728 & 3778.205 & 3770.559 & 3722.233\end{array}$ $\begin{array}{lllllll}0.616 & 3779.466 & 3763.758 & 3778.213 & 3771.175 & 3722.541\end{array}$ $\begin{array}{llllllll}0.616 & 3781.364 & 3763.820 & 3778.232 & 3771.791 & 3722.849\end{array}$ $\begin{array}{llllllll}0.616 & 3782.813 & 3763.881 & 3778.261 & 3772.406 & 3723.157\end{array}$ $\begin{array}{llllll}0.616 & 3782.813 & 3763.881 & 3778.261 & 3772.406 & 3723.157 \\ 0.616 & 3783.970 & 3763.941 & 3778.296 & 3773.022 & 3723.465\end{array}$ $\begin{array}{lllllll}0.616 & 3783.970 & 3763.941 & 3778.296 & 3773.022 & 3723.465 \\ 0.616 & 3784.378 & 3764.011 & 3778.333 & 3773.638 & 3723.773\end{array}$ $\begin{array}{lllllll}0.616 & 3784.378 & 3764.011 & 3778.333 & 3773.638 & 3723.773\end{array}$ $\begin{array}{lllllll}0.616 & 3784.859 & 3764.080 & 3778.372 & 3774.253 & 3724.080 \\ 0.616 & 3785.387 & 3764.148 & 3778.415 & 3774.869 & 3724.388\end{array}$ $\begin{array}{lllllll}0.616 & 3785.387 & 3764.148 & 3778.415 & 3774.869 & 3724.388\end{array}$ $\begin{array}{lllllll}0.616 & 3783.145 & 3764.221 & 3778.443 & 3775.484 & 3724.696\end{array}$ $\begin{array}{lllllll}0.616 & 3781.903 & 3764.294 & 3778.463 & 3776.100 & 3725.004\end{array}$ $\begin{array}{lllllll}0.616 & 3781.311 & 3764.366 & 3778.480 & 3776.716 & 3725.312\end{array}$ $\begin{array}{lllllll}0.616 & 3780.862 & 3764.465 & 3778.494 & 3777.331 & 3725.619\end{array}$ $\begin{array}{lllllll}0.616 & 3780.862 & 3764.563 & 3778.508 & 3777.947 & 3725.927\end{array}$ $\begin{array}{lllllll}0.616 & 3780.952 & 3764.660 & 3778.522 & 3778.562 & 3726.235\end{array}$ $\begin{array}{lllllll}0.000 & 3779.820 & 3764.771 & 3778.529 & 3778.562 & 3726.539\end{array}$ $\begin{array}{lllllll}0.000 & 3779.084 & 3764.881 & 3778.533 & 3778.562 & 3726.840\end{array}$ $\begin{array}{lllllll}0.000 & 3778.606 & 3764.990 & 3778.533 & 3778.562 & 3727.137\end{array}$ $\begin{array}{lllllll}0.000 & 3776.615 & 3765.106 & 3778.522 & 3778.562 & 3727.431\end{array}$ $\begin{array}{lllllll}0.000 & 3775.321 & 3765.221 & 3778.504 & 3778.562 & 3727.722\end{array}$ $\begin{array}{llllllll}0.000 & 3774.479 & 3765.335 & 3778.481 & 3778.562 & 3728.009\end{array}$ $\begin{array}{llllll}0.000 & 3774.479 & 3765.335 & 3778.481 & 3778.562 & 3728.009 \\ 0.000 & 3771.413 & 3765.457 & 3778.442 & 3778.562 & 3728.293\end{array}$ $\begin{array}{llllll}0.000 & 3771.413 & 3765.457 & 3778.442 & 3778.562 & 3728.293 \\ 0.000 & 3769.420 & 3765.579 & 3778.392 & 3778.562 & 3728.574\end{array}$ $\begin{array}{llllll}0.000 & 3769.420 & 3765.579 & 3778.392 & 3778.562 & 3728.574 \\ 0.000 & 3768.124 & 3765.69 & 3778.335 & 3778.562 & 3728.851\end{array}$ $\begin{array}{lllllll}0.000 & 3768.124 & 3765.698 & 3778.335 & 3778.562 & 3728.851\end{array}$ $\begin{array}{llllll}0.000 & 3767.282 & 3765.821 & 3778.274 & 3778.562 & 3729.126\end{array}$ $\begin{array}{lllllll}0.000 & 3766.735 & 3765.942 & 3778.211 & 3778.562 & 3729.398\end{array}$ $\begin{array}{lllllll}0.000 & 3766.379 & 3766.062 & 3778.147 & 3778.562 & 3729.666\end{array}$ $\begin{array}{llllll}0.000 & 3764.467 & 3766.179 & 3778.073 & 3778.562 & 3729.932\end{array}$ $\begin{array}{llllll}0.000 & 3763.225 & 3766.293 & 3777.993 & 3778.562 & 3730.195\end{array}$ $\begin{array}{lllllll}0.000 & 3762.417 & 3766.407 & 3777.910 & 3778.562 & 3730.455\end{array}$ $\begin{array}{lllllll}0.000 & 3762.452 & 3766.521 & 3777.828 & 3778.562 & 3730.712\end{array}$ $\begin{array}{lllllll}0.000 & 3762.475 & 3766.635 & 3777.746 & 3778.562 & 3730.967\end{array}$ $\begin{array}{lllllll}0.000 & 3762.490 & 3766.747 & 3777.666 & 3778.562 & 3731.219\end{array}$ $\begin{array}{lllllll}0.000 & 3761.660 & 3766.851 & 3777.582 & 3778.562 & 3731.468\end{array}$ $\begin{array}{lllllll}0.000 & 3761.120 & 3766.953 & 3777.497 & 3778.562 & 3731.714\end{array}$ $\begin{array}{lllllll}0.000 & 3760.769 & 3767.055 & 3777.410 & 3778.562 & 3731.958\end{array}$ $\begin{array}{llllllll}0.000 & 3760.261 & 3767.150 & 3777.322 & 3778.562 & 3732.200\end{array}$ $\begin{array}{llllll}0.000 & 3760.261 & 3767.150 & 3777.322 & 3778.562 & 3732.200 \\ 0.000 & 3759.930 & 3767.245 & 3777.232 & 3778.562 & 3732.439\end{array}$ $\begin{array}{lllllll}0.000 & 3759.715 & 3767.339 & 3777.143 & 3778.562 & 3732.675\end{array}$

2:33:56	60.02	3786.864	-16.000	-18.341
2:33:58	60.02	3786.864	-16.000	-17.522
2:34:00	60.02	3786.864	-16.000	-16.989
2:34:02	60.022	3785.726	-17.599	-17.203
2:34:04	60.022	3785.726	-17.599	-17.342
2:34:06	60.022	3785.726	-17.599	-17.432
2:34:08	60.023	3785.798	-18.399	-17.770
2:34:10	60.023	3785.798	-18.399	-17.990
2:34:12	60.023	3785.798	-18.399	-18.133
2:34:14	60.019	3787.627	-15.201	-17.107
2:34:16	60.019	3787.627	-15.201	-16.440
2:34:18	60.019	3787.627	-15.201	-16.006
2:34:20	60.018	3789.404	-14.401	-15.444
2:34:22	60.018	3789.404	-14.401	-15.079
2:34:24	60.018	3789.404	-14.401	-14.842
2:34:26	60.019	3789.369	-15.201	-14.968
2:34:28	60.019	3789.369	-15.201	-15.049
2:34:30	60.019	3789.369	-15.201	-15.102
2:34:32	60.016	3788.933	-12.799	-14.296
2:34:34	60.016	3788.933	-12.799	-13.772
2:34:36	60.016	3788.933	-12.799	-13.432
2:34:38	60.012	3790.411	-9.601	-12.091
2:34:40	60.012	3790.411	-9.601	-11.219
2:34:42	60.012	3790.411	-9.601	-10.653
2:34:44	60.007	3792.945	-5.600	-8.884
2:34:46	60.007	3792.945	-5.600	-7.735
2:34:48	60.007	3792.945	-5.600	-6.988
2:34:50	60.009	3791.426	-7.199	-7.062
2:34:52	60.009	3791.426	-7.199	-7.110
2:34:54	60.009	3791.426	-7.199	-7.141
2:34:56	59.999	3790.216	0.800	-4.362
2:34:58	59.999	3790.216	0.800	-2.555
2:35:00	59.999	3790.216	0.800	-1.381
2:35:02	59.991	3788.105	7.199	1.622
2:35:04	59.991	3788.105	7.199	3.574
2:35:06	59.991	3788.105	7.199	4.843
2:35:08	59.988	3788.497	9.601	6.508
2:35:10	59.988	3788.497	9.601	7.591
2:35:12	59.988	3788.497	9.601	8.294
2:35:14	59.984	3788.101	12.799	9.871
2:35:16	59.984	3788.101	12.799	10.896
2:35:18	59.984	3788.101	12.799	11.562
2:35:20	59.982	3787.732	14.401	12.556
2:35:22	59.982	3787.732	14.401	13.202
2:35:24	59.982	3787.732	14.401	13.621
2:35:26	59.979	3788.256	16.800	14.734

$\begin{array}{llllll}0.000 & 3760.975 & 3767.438 & 3777.061 & 3778.562 & 3732.909\end{array}$ $\begin{array}{llllll}0.000 & 3760.975 & 3767.438 & 3777.061 & 3778.562 & 3732.909 \\ 0.000 & 3761.795 & 3767.536 & 3776.984 & 3778.562 & 3733.141\end{array}$ $\begin{array}{lllllll}0.000 & 3762.327 & 3767.633 & 3776.910 & 3778.562 & 3733.371\end{array}$ $\begin{array}{llllllll}0.000 & 3762.114 & 3767.724 & 3776.836 & 3778.562 & 3733.598\end{array}$ $\begin{array}{lllllll}0.000 & 3761.975 & 3767.813 & 3776.762 & 3778.562 & 3733.822\end{array}$ $\begin{array}{lllllll}0.000 & 3761.885 & 3767.902 & 3776.689 & 3778.562 & 3734.045\end{array}$ $\begin{array}{lllllll}0.000 & 3761.546 & 3767.990 & 3776.614 & 3778.562 & 3734.265\end{array}$ $\begin{array}{lllllll}0.000 & 3761.326 & 3768.077 & 3776.539 & 3778.562 & 3734.484\end{array}$ $\begin{array}{lllllll}0.000 & 3761.183 & 3768.164 & 3776.464 & 3778.562 & 3734.700\end{array}$ $\begin{array}{lllllll}0.000 & 3762.210 & 3768.258 & 3776.395 & 3778.562 & 3734.914\end{array}$ $\begin{array}{llllllll}0.000 & 3762.877 & 3768.352 & 3776.330 & 3778.562 & 3735.126\end{array}$ $\begin{array}{lllllll}0.000 & 3763.311 & 3768.444 & 3776.267 & 3778.562 & 3735.335\end{array}$ $\begin{array}{lllllll}0.000 & 3763.872 & 3768.545 & 3776.208 & 3778.562 & 3735.543\end{array}$ $\begin{array}{lllllll}0.000 & 3764.237 & 3768.644 & 3776.151 & 3778.562 & 3735.749\end{array}$ $\begin{array}{llllllllll}0 & 000 & 3764.475 & 3768.742 & 3776.095 & 3778.562 & 3735.953\end{array}$ $\begin{array}{lllllll}0.000 & 3764.349 & 3768.840 & 3776.040 & 3778.562 & 3736.155\end{array}$ $\begin{array}{lllllll}0.000 & 3764.268 & 3768.936 & 3775.985 & 3778.562 & 3736.355\end{array}$ $\begin{array}{lllllll}0.000 & 3764.214 & 3769.032 & 3775.930 & 3778.562 & 3736.553\end{array}$ $\begin{array}{lllllll}073650 & 3765.021 & 3769.124 & 3775.879 & 3778.562 & 3736.749\end{array}$ $\begin{array}{lllllll}0.000 & 3765.545 & 3769.216 & 3775.831 & 3778.562 & 3736.944\end{array}$ $\begin{array}{lllllll}0.000 & 3765.885 & 3769.307 & 3775.785 & 3778.562 & 3737.137\end{array}$ $\begin{array}{lllllll}0.000 & 3767.226 & 3769.404 & 3775.746 & 3778.562 & 3737.327\end{array}$ $\begin{array}{lllllll}0.000 & 3768.097 & 3769.499 & 3775.711 & 3778.562 & 3737.517\end{array}$ $\begin{array}{lllllll}0.000 & 3768.664 & 3769.595 & 3775.679 & 3778.562 & 3737.704\end{array}$ $\begin{array}{lllllll}0.000 & 3770.432 & 3769.700 & 3775.655 & 3778.562 & 3737.890\end{array}$ $\begin{array}{lllllll}0.000 & 3771.582 & 3769.805 & 3775.637 & 3778.562 & 3738.074\end{array}$ $\begin{array}{lllllll}0.000 & 3772.329 & 3769.909 & 3775.622 & 3778.562 & 3738.256\end{array}$ $\begin{array}{lllllll}0.000 & 3772.255 & 3770.005 & 3775.607 & 3778.562 & 3738.437\end{array}$ $\begin{array}{lllllll}0.000 & 3772.255 & 3770.005 & 3775.607 & 3778.562 & 3738.437 \\ 0.000 & 3772.207 & 3770.100 & 3775.592 & 3778.562 & 3738.616\end{array}$ $\begin{array}{lllllll}0.000 & 3772.207 & 3770.100 & 3755.592 & 3778.562 & 3738.616 \\ 0.000 & 3772.176 & 3770.194 & 3775.577 & 3778.562 & 3738.794\end{array}$ 073738.794 $\begin{array}{llllll}0.000 & 3774.955 & 3770.282 & 3775.574 & 3778.562 & 3738.970\end{array}$ | 0.000 | 3776.761 | 3770.370 | 3775.579 | 3778.562 | 3739.144 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllll}0.000 & 3777.936 & 3770.457 & 3775.590 & 3778.562 & 3739.317\end{array}$ $\begin{array}{lllllll}0.000 & 3780.939 & 3770.533 & 3775.613 & 3778.562 & 3739.488\end{array}$ $\begin{array}{lllllll}0.000 & 3782.891 & 3770.609 & 3775.644 & 3778.562 & 3739.658\end{array}$ $\begin{array}{lllllll}0.000 & 3784.160 & 3770.685 & 3775.681 & 3778.562 & 3739.827\end{array}$ $\begin{array}{llllll}0.000 & 3785.825 & 3770.761 & 3775.725 & 3778.562 & 3739.994\end{array}$ $\begin{array}{lllllll}0.000 & 3786.907 & 3770.837 & 3775.772 & 3778.562 & 3740.159\end{array}$ $\begin{array}{lllllll}0.000 & 3787.611 & 3770.912 & 3775.823 & 3778.562 & 3740.323\end{array}$ $\begin{array}{lllllll}0.000 & 3789.188 & 3770.985 & 3775.879 & 3778.562 & 3740.486\end{array}$ $\begin{array}{lllllll}0.000 & 3790.213 & 3771.057 & 3775.940 & 3778.562 & 3740.647\end{array}$ $\begin{array}{lllllll}0.000 & 3790.879 & 3771.129 & 3776.003 & 3778.562 & 3740.807\end{array}$ $\begin{array}{lllllll}0.000 & 3791.872 & 3771.198 & 3776.069 & 3778.562 & 3740.966\end{array}$ $\begin{array}{llllll}0.000 & 3792.518 & 3771.267 & 3776.138 & 3778.562 & 3741.123\end{array}$ $\begin{array}{lllllll}0.000 & 3792.938 & 3771.336 & 3776.207 & 3778.562 & 3741.279\end{array}$ $\begin{array}{lllllll}0.000 & 3794.051 & 3771.405 & 3776.281 & 3778.562 & 3741.434\end{array}$

2:35:28	59.979	3788.256	16.800	15.457
2:35:30	59.979	3788.256	16.800	15.927
2:35:32	59.976	3790.665	19.199	17.072
2:35:34	59.976	3790.665	19.199	17.816
2:35:36	59.976	3790.665	19.199	18.300
2:35:38	59.978	3789.267	17.599	18.055
2:35:40	59.978	3789.267	17.599	17.896
2:35:42	59.978	3789.267	17.599	17.792
2:35:44	59.976	3789.914	19.199	18.284
2:35:46	59.976	3789.914	19.199	18.604
2:35:48	59.976	3789.914	19.199	18.812
2:35:50	59.975	3788.963	20.001	19.228
2:35:52	59.975	3788.963	20.001	19.499
2:35:54	59.975	3788.963	20.001	19.675
2:35:56	59.97	3792.911	23.999	21.188
2:35:58	59.97	3792.911	23.999	22.172
2:36:00	59.97	3792.911	23.999	22.811
2:36:02	59.978	3788.080	17.599	20.987
2:36:04	59.978	3788.080	17.599	19.802
2:36:06	59.978	3788.080	17.599	19.031
2:36:08	59.975	3787.164	20.001	19.370
2:36:10	59.975	3787.164	20.001	19.591
2:36:12	59.975	3787.164	20.001	19.735
2:36:14	59.975	3786.487	20.001	19.828
2:36:16	59.975	3786.487	20.001	19.889
2:36:18	59.975	3786.487	20.001	19.928
2:36:20	59.966	3790.512	27.200	22.473
2:36:22	59.966	3790.512	27.200	24.128
2:36:24	59.966	3790.512	27.200	25.203
2:36:26	59.969	3790.959	24.799	25.062
2:36:28	59.969	3790.959	24.799	24.970
2:36:30	59.969	3790.959	24.799	24.910
2:36:32	59.965	3789.167	28.000	25.991
2:36:34	59.965	3789.167	28.000	26.694
2:36:36	59.965	3789.167	28.000	27.151
2:36:38	59.972	3784.831	22.400	25.488
2:36:40	59.972	3784.831	22.400	24.407
2:36:42	59.972	3784.831	22.400	23.705
2:36:44	59.969	3782.809	24.799	24.088
2:36:46	59.969	3782.809	24.799	24.336
2:36:48	59.969	3782.809	24.799	24.498
2:36:50	59.967	3779.056	26.401	25.164
2:36:52	59.967	3779.056	26.401	25.597
2:36:54	59.967	3779.056	26.401	25.878
2:36:56	59.965	3779.335	28.000	26.621
2:36:58	59.965	3779.335	28.000	27.103

Abstract

$\begin{array}{lllllll}0.000 & 3794.774 & 3771.475 & 3776.357 & 3778.562 & 3741.587\end{array}$ $\begin{array}{lllllll}0.000 & 3795.244 & 3771.544 & 3776.435 & 3778.562 & 3741.739\end{array}$ $\begin{array}{lllllll}0.000 & 3796.389 & 3771.622 & 3776.516 & 3778.562 & 3741.890\end{array}$ $\begin{array}{lllllll}0.000 & 3797.133 & 3771.699 & 3776.600 & 3778.562 & 3742.040\end{array}$ $\begin{array}{lllllll}0.000 & 3797.617 & 3771.776 & 3776.685 & 3778.562 & 3742.188\end{array}$ $\begin{array}{lllllll}0.000 & 3797.372 & 3771.846 & 3776.768 & 3778.562 & 3742.336\end{array}$ $\begin{array}{lllllll}0.000 & 3797.212 & 3771.916 & 3776.850 & 3778.562 & 3742.482\end{array}$ $\begin{array}{lllllll}0.000 & 3797.109 & 3771.986 & 3776.932 & 3778.562 & 3742.627\end{array}$ $\begin{array}{lllllll}0.000 & 3797.601 & 3772.057 & 3777.014 & 3778.562 & 3742.770\end{array}$ $\begin{array}{lllllll}0.000 & 3797.921 & 3772.128 & 3777.097 & 3778.562 & 3742.913\end{array}$ $\begin{array}{llllllll}0.000 & 3798.129 & 3772.198 & 3777.180 & 3778.562 & 3743.055\end{array}$ $\begin{array}{lllllll}0.000 & 3798.545 & 3772.264 & 3777.264 & 3778.562 & 3743.195\end{array}$ $\begin{array}{llllll}0.000 & 3798.545 & 3772.264 & 3777.264 & 3778.562 & 3743.195 \\ 0.000 & 3798.816 & 3772.330 & 3777.349 & 3778.562 & 3743.334\end{array}$ $\begin{array}{lllllll}0.000 & 3798.816 & 3772.330 & 3777.349 & 3778.562 & 3743.334\end{array}$ $\begin{array}{lllllll}0.000 & 3798.991 & 3772.395 & 3777.433 & 3778.562 & 3743.472\end{array}$ $\begin{array}{lllllll}0.000 & 3800.505 & 3772.475 & 3777.523 & 3778.562 & 3743.609 \\ 0.000 & 3801.489 & 3772.554 & 3777.616 & 3778.562 & 3743.745\end{array}$ $\begin{array}{lllllll}0.000 & 3801.489 & 3772.554 & 3777.616 & 3778.562 & 3743.745\end{array}$ $\begin{array}{llllll}0.000 & 3802.128 & 3772.632 & 3777.710 & 3778.562 & 3743.880 \\ 0.000 & 3800.304 & 3772.692 & 3777.797 & 3778.562 & 3744.014\end{array}$ $\begin{array}{lllllll}0.000 & 3800.304 & 3772.692 & 3777.797 & 3778.562 & 3744.014\end{array}$ $\begin{array}{lllllll}0.000 & 3799.118 & 3772.751 & 3777.879 & 3778.562 & 3744.147\end{array}$ $\begin{array}{lllllll}0.000 & 3798.348 & 3772.809 & 3777.957 & 3778.562 & 3744.279\end{array}$ $\begin{array}{llllll}0.000 & 3798.687 & 3772.864 & 3778.036 & 3778.562 & 3744.410\end{array}$ $\begin{array}{lllllll}0.000 & 3798.908 & 3772.918 & 3778.115 & 3778.562 & 3744.540\end{array}$ $\begin{array}{lllllll}0.000 & 3799.051 & 3772.972 & 3778.194 & 3778.562 & 3744.669\end{array}$ $\begin{array}{lllllll}0.000 & 3799.145 & 3773.023 & 3778.273 & 3778.562 & 3744.796\end{array}$ $\begin{array}{lllllll}0.000 & 3799.205 & 3773.073 & 3778.351 & 3778.562 & 3744.923\end{array}$ $\begin{array}{lllllll}0.000 & 3799.245 & 3773.123 & 3778.429 & 3778.562 & 3745.049\end{array}$ $\begin{array}{lllllll}0.000 & 3801.790 & 3773.188 & 3778.516 & 3778.562 & 3745.174\end{array}$ $\begin{array}{lllllll}0.000 & 3803.445 & 3773.252 & 3778.608 & 3778.562 & 3745.299\end{array}$ $\begin{array}{llllll}0.000 & 3803.445 & 3773.252 & 3778.608 & 3778.562 & 3745.299 \\ 0.000 & 3804.520 & 3773.316 & 3778.704 & 3778.562 & 3745.422\end{array}$ $\begin{array}{lllllll}0.000 & 3804.520 & 3773.316 & 3778.704 & 3778.562 & 3745.422 \\ 0.000 & 3804.378 & 3773.380 & 3778.798 & 3778.562 & 3745.544\end{array}$ $\begin{array}{lllllll}0.000 & 3804.378 & 3773.380 & 3778.798 & 3778.562 & 3745.544\end{array}$ $\begin{array}{lllllll}0.000 & 3804.286 & 3773.445 & 3778.892 & 3778.562 & 3745.665 \\ 0.000 & 3804.226 & 3773.509 & 3778.984 & 3778.562 & 3745.786\end{array}$	0.000	3804.226	3773.509	3778.984	3778.562	3745.786
000	3805.308	3773.566	3779.080	3778.562	3745.906	$\begin{array}{lllllll}07 & 000 & 3805.308 & 3773.566 & 3779.080 & 3778.562 & 3745.906\end{array}$ $\begin{array}{lllllll}0.000 & 3806.011 & 3773.622 & 3779.177 & 3778.562 & 3746.024\end{array}$ $\begin{array}{lllllll}0.000 & 3806.468 & 3773.678 & 3779.276 & 3778.562 & 3746.142\end{array}$ $\begin{array}{lllllll}0.000 & 3804.805 & 3773.718 & 3779.368 & 3778.562 & 3746.259\end{array}$ $\begin{array}{llllll}0.000 & 3803.724 & 3773.758 & 3779.455 & 3778.562 & 3746.375\end{array}$ $\begin{array}{lllllll}0.000 & 3803.021 & 3773.798 & 3779.539 & 3778.562 & 3746.491\end{array}$ $\begin{array}{lllllll}0.000 & 3803.404 & 3773.830 & 3779.624 & 3778.562 & 3746.605\end{array}$ $\begin{array}{lllllll}0.000 & 3803.653 & 3773.862 & 3779.709 & 3778.562 & 3746.719\end{array}$ $\begin{array}{lllllll}0.000 & 3803.815 & 3773.893 & 3779.795 & 3778.562 & 3746.832\end{array}$ $\begin{array}{lllllll}0.000 & 3804.481 & 3773.912 & 3779.882 & 3778.562 & 3746.944\end{array}$ $\begin{array}{lllllll}0.000 & 3804.914 & 3773.930 & 3779.969 & 3778.562 & 3747.055\end{array}$ $\begin{array}{llllllll}0.000 & 3805.195 & 3773.947 & 3780.058 & 3778.562 & 3747.166\end{array}$ $\begin{array}{lllllll}0.000 & 3805.938 & 3773.966 & 3780.148 & 3778.562 & 3747.276\end{array}$

 $\begin{array}{lllllll}0.000 & 3806.420 & 3773.985 & 3780.239 & 3778.562 & 3747.385\end{array}$| 2:37:00 | 59.965 | 3779.335 | 28.000 | 27.417 |
| :---: | :---: | :---: | :---: | :---: |
| 2:37:02 | 59.965 | 3776.597 | 28.000 | 27.621 |
| 2:37:04 | 59.965 | 3776.597 | 28.000 | 27.754 |
| 2:37:06 | 59.965 | 3776.597 | 28.000 | 27.840 |
| 2:37:08 | 59.97 | 3773.170 | 23.999 | 26.496 |
| 2:37:10 | 59.97 | 3773.170 | 23.999 | 25.622 |
| 2:37:12 | 59.97 | 3773.170 | 23.999 | 25.054 |
| 2:37:14 | 59.968 | 3768.503 | 25.601 | 25.245 |
| 2:37:16 | 59.968 | 3768.503 | 25.601 | 25.370 |
| 2:37:18 | 59.968 | 3768.503 | 25.601 | 25.451 |
| 2:37:20 | 59.97 | 3764.786 | 23.999 | 24.943 |
| 2:37:22 | 59.97 | 3764.786 | 23.999 | 24.612 |
| 2:37:24 | 59.97 | 3764.786 | 23.999 | 24.398 |
| 2:37:26 | 59.965 | 3761.894 | 28.000 | 25.658 |
| 2:37:28 | 59.965 | 3761.894 | 28.000 | 26.478 |
| 2:37:30 | 59.965 | 3761.894 | 28.000 | 27.011 |
| 2:37:32 | 59.967 | 3760.157 | 26.401 | 26.797 |
| 2:37:34 | 59.967 | 3760.157 | 26.401 | 26.658 |
| 2:37:36 | 59.967 | 3760.157 | 26.401 | 26.568 |
| 2:37:38 | 59.979 | 3757.773 | 16.800 | 23.149 |
| 2:37:40 | 59.979 | 3757.773 | 16.800 | 20.927 |
| 2:37:42 | 59.979 | 3757.773 | 16.800 | 19.483 |
| 2:37:44 | 59.974 | 3751.637 | 20.801 | 19.944 |
| 2:37:46 | 59.974 | 3751.637 | 20.801 | 20.244 |
| 2:37:48 | 59.974 | 3751.637 | 20.801 | 20.439 |
| 2:37:50 | 59.962 | 3759.250 | 30.399 | 23.925 |
| 2:37:52 | 59.962 | 3759.250 | 30.399 | 26.191 |
| 2:37:54 | 59.962 | 3759.250 | 30.399 | 27.663 |
| 2:37:56 | 59.961 | 3762.022 | 31.201 | 28.902 |
| 2:37:58 | 59.961 | 3762.022 | 31.201 | 29.706 |
| 2:38:00 | 59.961 | 3762.022 | 31.201 | 30.230 |
| 2:38:02 | 59.959 | 3763.858 | 32.800 | 31.129 |
| 2:38:04 | 59.959 | 3763.858 | 32.800 | 31.714 |
| 2:38:06 | 59.959 | 3763.858 | 32.800 | 32.094 |
| 2:38:08 | 59.953 | 3768.339 | 37.601 | 34.022 |
| 2:38:10 | 59.953 | 3768.339 | 37.601 | 35.274 |
| 2:38:12 | 59.953 | 3768.339 | 37.601 | 36.089 |
| 2:38:14 | 59.956 | 3765.606 | 35.199 | 35.777 |
| 2:38:16 | 59.956 | 3765.606 | 35.199 | 35.575 |
| 2:38:18 | 59.956 | 3765.606 | 35.199 | 35.443 |
| 2:38:20 | 59.961 | 3761.920 | 31.201 | 33.959 |
| 2:38:22 | 59.961 | 3761.920 | 31.201 | 32.993 |
| 2:38:24 | 59.961 | 3761.920 | 31.201 | 32.366 |
| 2:38:26 | 59.963 | 3752.429 | 29.599 | 31.398 |
| 2:38:28 | 59.963 | 3752.429 | 29.599 | 30.768 |
| 2:38:30 | 59.963 | 3752.429 | 29.599 | 30.359 |

$\begin{array}{llllll}0.000 & 3806.734 & 3774.003 & 3780.331 & 3778.562 & 3747.493\end{array}$ $\begin{array}{llllll}0.000 & 3806.734 & 3774.003 & 3780.331 & 3778.562 & 3747.493 \\ 0.000 & 3806.938 & 3774.012 & 3780.422 & 3778.562 & 3747.601\end{array}$ $\begin{array}{lllllll}0.000 & 3807.070 & 3774.021 & 3780.514 & 3778.562 & 3747.707\end{array}$ $\begin{array}{lllllll}0.000 & 3807.157 & 3774.030 & 3780.605 & 3778.562 & 3747.813\end{array}$ $\begin{array}{lllllll}0.000 & 3805.812 & 3774.027 & 3780.691 & 3778.562 & 3747.919\end{array}$ $\begin{array}{lllllll}0.000 & 3804.939 & 3774.024 & 3780.774 & 3778.562 & 3748.023\end{array}$ $\begin{array}{lllllll}0.000 & 3804.371 & 3774.021 & 3780.854 & 3778.562 & 3748.127\end{array}$ $\begin{array}{lllllll}0.000 & 3804.562 & 3774.003 & 3780.934 & 3778.562 & 3748.230\end{array}$ $\begin{array}{lllllll}0.000 & 3804.687 & 3773.984 & 3781.014 & 3778.562 & 3748.333\end{array}$ $\begin{array}{llllllll}0.000 & 3804.768 & 3773.966 & 3781.093 & 3778.562 & 3748.435\end{array}$ $\begin{array}{lllllll}0.000 & 3804.259 & 3773.935 & 3781.171 & 3778.562 & 3748.536\end{array}$ $\begin{array}{llllllll}0.000 & 3803.929 & 3773.905 & 3781.247 & 3778.562 & 3748.636\end{array}$ $\begin{array}{llllll}0.000 & 3803.929 & 3773.905 & 3781.247 & 3778.562 & 3748.636 \\ 0.000 & 3803.714 & 3773.874 & 3781.321 & 3778.562 & 3748.736\end{array}$ $\begin{array}{lllllll}0.000 & 3803.714 & 3773.874 & 3781.321 & 3778.562 & 3748.736 \\ 0.000 & 3804.975 & 3773.835 & 3781.400 & 3778.562 & 3748.835\end{array}$ $\begin{array}{llllll}0.000 & 3804.975 & 3773.835 & 3781.400 & 3778.562 & 3748.835 \\ 0.000 & 3805.795 & 3773.795 & 3781.480 & 3778.562 & 3748.933\end{array}$ $\begin{array}{lllllll}0.000 & 3805.795 & 3773.795 & 3781.480 & 3778.562 & 3748.933 \\ 0.000 & 3806327 & 3773756 & 3781.562 & 3778.562 & 3749.031\end{array}$ $\begin{array}{llllll}0.000 & 3806.327 & 3773.756 & 3781.562 & 3778.562 & 3749.031\end{array}$ $\begin{array}{lllllll}0.000 & 3806.114 & 3773.711 & 3781.643 & 3778.562 & 3749.128\end{array}$ $\begin{array}{llllll}0.000 & 3805.975 & 3773.667 & 3781.722 & 3778.562 & 3749.225\end{array}$ $\begin{array}{lllllll}0.000 & 3805.885 & 3773.623 & 3781.801 & 3778.562 & 3749.321\end{array}$ $\begin{array}{lllllll}0.000 & 3802.466 & 3773.572 & 3781.868 & 3778.562 & 3749.416\end{array}$ $\begin{array}{lllllll}0.000 & 3800.244 & 3773.521 & 3781.927 & 3778.562 & 3749.511\end{array}$ $\begin{array}{lllllll}0.000 & 3798.799 & 3773.470 & 3781.982 & 3778.562 & 3749.605\end{array}$ $\begin{array}{lllllll}0.000 & 3799.261 & 3773.400 & 3782.037 & 3778.562 & 3749.698\end{array}$ $\begin{array}{lllllll}0.000 & 3799.561 & 3773.330 & 3782.093 & 3778.562 & 3749.791\end{array}$ $\begin{array}{lllllll}0.000 & 3799.756 & 3773.261 & 3782.150 & 3778.562 & 3749.883\end{array}$ $\begin{array}{llllllll}0.000 & 3803.241 & 3773.216 & 3782.217 & 3778.562 & 3749.975\end{array}$ $\begin{array}{lllllll}0.000 & 3805.507 & 3773.172 & 3782.291 & 3778.562 & 3750.066\end{array}$ $\begin{array}{llllllll}0.000 & 3806.980 & 3773.127 & 3782.369 & 3778.562 & 3750.156\end{array}$ $\begin{array}{llllll}0.000 & 3806.980 & 3773.127 & 3782.369 & 3778.562 & 3750.156 \\ 0.000 & 3808.218 & 3773.092 & 3782.451 & 3778.562 & 3750.246\end{array}$ $\begin{array}{lllllll}0.000 & 3808.218 & 3773.092 & 3782.451 & 3778.562 & 3750.246 \\ 0.000 & 3809.023 & 3773.058 & 3782.534 & 3778.562 & 3750.335\end{array}$ $\begin{array}{lllllll}0.000 & 3809.023 & 3773.058 & 3782.534 & 3778.562 & 3750.335 \\ 0.000 & 3809.546 & 3773.023 & 3782.619 & 3778.562 & 3750.424\end{array}$ $\begin{array}{llllll}0.000 & 3809.546 & 3773.023 & 3782.619 & 3778.562 & 3750.424 \\ 0.000 & 3810.446 & 3772.994 & 3782.706 & 3778.562 & 3750.512\end{array}$ $\begin{array}{lllllll}0.000 & 3810.446 & 3772.994 & 3782.706 & 3778.562 & 3750.512\end{array}$ $\begin{array}{lllllll}0.000 & 3811.031 & 3772.966 & 3782.794 & 3778.562 & 3750.600\end{array}$ $\begin{array}{lllllll}0.000 & 3811.411 & 3772.938 & 3782.883 & 3778.562 & 3750.687\end{array}$ $\begin{array}{lllllll}0.000 & 3813.338 & 3772.923 & 3782.977 & 3778.562 & 3750.774\end{array}$ $\begin{array}{lllllll}0.000 & 3814.591 & 3772.909 & 3783.075 & 3778.562 & 3750.860\end{array}$ $\begin{array}{lllllll}0.000 & 3815.405 & 3772.895 & 3783.174 & 3778.562 & 3750.945\end{array}$ $\begin{array}{lllllll}0.000 & 3815.094 & 3772.873 & 3783.272 & 3778.562 & 3751.030\end{array}$ $\begin{array}{llllll}0.000 & 3814.892 & 3772.851 & 3783.369 & 3778.562 & 3751.115\end{array}$ $\begin{array}{lllllll}0.000 & 3814.760 & 3772.829 & 3783.465 & 3778.562 & 3751.199\end{array}$ $\begin{array}{lllllll}0.000 & 3813.275 & 3772.795 & 3783.555 & 3778.562 & 3751.282\end{array}$ $\begin{array}{lllllll}0.000 & 3812.310 & 3772.762 & 3783.642 & 3778.562 & 3751.365\end{array}$ $\begin{array}{lllllll}0.000 & 3811.683 & 3772.730 & 3783.727 & 3778.562 & 3751.447\end{array}$ $\begin{array}{llllllll}0.000 & 3810.714 & 3772.669 & 3783.808 & 3778.562 & 3751.529\end{array}$ $\begin{array}{lllllll}0.000 & 3810.085 & 3772.608 & 3783.887 & 3778.562 & 3751.611\end{array}$ $\begin{array}{llllllll}0.000 & 3809.676 & 3772.547 & 3783.965 & 3778.562 & 3751.692\end{array}$

$2: 38: 32$	59.968	3753.510
$2: 38: 34$	59.968	3753.510
$2: 38: 36$	59.968	3753.510
$2: 38: 38$	59.973	3753.178
$2: 388: 40$	59.973	3753.178
$2: 38: 42$	59.973	3753.178
$2: 38: 44$	59.967	3752.872
$2: 38: 46$	59.967	3752.872
$2: 38: 48$	59.967	3752.872
$2: 38: 50$	59.976	3747.476
$2: 38: 52$	59.976	3747.476
$2: 38: 54$	59.976	3747.476
$2: 38: 56$	59.973	3746.651
$2: 38: 58$	59.973	3746.651
$2: 39: 00$	59.973	3746.651
$2: 39: 02$	59.981	3741.618
$2: 39: 04$	59.981	3741.618
$2: 39: 06$	59.981	3741.618
$2: 39: 08$	59.982	3738.901
$2: 39: 10$	59.982	3738.901
$2: 39: 12$	59.982	3738.901
$2: 39: 14$	59.982	3736.308
$2: 39: 16$	59.982	3736.308
$2: 39: 18$	59.982	3736.308
$2: 39: 20$	59.98	3735.650
$2: 39: 22$	59.98	3735.650
$2: 39: 24$	59.98	3735.650
$2: 39: 26$	59.98	3736.748
$2: 39: 28$	59.98	3736.748
$2: 39: 30$	59.98	3736.748
$2: 39: 32$	59.978	3736.094
$2: 39: 34$	59.978	3736.094
$2: 39: 36$	59.978	3736.094
$2: 39: 38$	59.971	3738.875
$2: 39: 40$	59.971	3738.875
$2: 39: 42$	59.971	3738.875
$2: 39: 44$	59.975	3737.684
$2: 39: 46$	59.975	3737.684
$2: 39: 48$	59.975	3737.684
$2: 39: 50$	59.969	3740.017
$2: 39: 52$	59.969	3740.017
$2: 39: 54$	59.969	3740.017
$2: 39: 56$	59.972	3742.424
$2: 39: 58$	59.972	3742.424
$2: 40: 00$	59.972	3742.424
$2: 40: 02$	59.977	3741.723

25.601	28.694
25.601	27.611
25.601	26.908
21.600	25.050
21.600	23.843
21.600	23.058
26.401	24.228
26.401	24.988
26.401	25.483
19.199	23.283
19.199	21.854
19.199	20.924
21.600	21.161
21.600	21.315
21.600	21.415
15.201	19.240
15.201	17.826
15.201	16.907
14.401	16.030
14.401	15.460
14.401	15.089
14.401	14.849
14.401	14.692
14.401	14.590
16.000	15.084
16.000	15.405
16.000	15.613
16.000	15.749
16.000	15.837
16.000	15.894
17.599	16.491
17.599	16.879
17.599	17.131
23.199	19.255
23.199	20.636
23.199	21.533
20.001	20.997
20.001	20.648
20.001	20.422
24.799	21.954
24.799	22.949
24.799	23.597
22.400	23.178
22.400	22.906
22.400	22.729
18.399	21.213

[^55]| 2:40:04 | 59.977 | 3741.723 | 18.399 | 20.228 |
| :---: | :---: | :---: | :---: | :---: |
| 2:40:06 | 59.977 | 3741.723 | 18.399 | 19.588 |
| 2:40:08 | 59.976 | 3739.964 | 19.199 | 19.452 |
| 2:40:10 | 59.976 | 3739.964 | 19.199 | 19.363 |
| 2:40:12 | 59.976 | 3739.964 | 19.199 | 19.306 |
| 2:40:14 | 59.977 | 3741.268 | 18.399 | 18.988 |
| 2:40:16 | 59.977 | 3741.268 | 18.399 | 18.782 |
| 2:40:18 | 59.977 | 3741.268 | 18.399 | 18.648 |
| 2:40:20 | 59.979 | 3738.706 | 16.800 | 18.001 |
| 2:40:22 | 59.979 | 3738.706 | 16.800 | 17.581 |
| 2:40:24 | 59.979 | 3738.706 | 16.800 | 17.307 |
| 2:40:26 | 59.974 | 3738.102 | 20.801 | 18.530 |
| 2:40:28 | 59.974 | 3738.102 | 20.801 | 19.325 |
| 2:40:30 | 59.974 | 3738.102 | 20.801 | 19.841 |
| 2:40:32 | 59.971 | 3743.419 | 23.199 | 21.017 |
| 2:40:34 | 59.971 | 3743.419 | 23.199 | 21.781 |
| 2:40:36 | 59.971 | 3743.419 | 23.199 | 22.277 |
| 2:40:38 | 59.966 | 3747.340 | 27.200 | 24.000 |
| 2:40:40 | 59.966 | 3747.340 | 27.200 | 25.120 |
| 2:40:42 | 59.966 | 3747.340 | 27.200 | 25.848 |
| 2:40:44 | 59.973 | 3746.217 | 21.600 | 24.362 |
| 2:40:46 | 59.973 | 3746.217 | 21.600 | 23.395 |
| 2:40:48 | 59.973 | 3746.217 | 21.600 | 22.767 |
| 2:40:50 | 59.972 | 3743.149 | 22.400 | 22.638 |
| 2:40:52 | 59.972 | 3743.149 | 22.400 | 22.555 |
| 2:40:54 | 59.972 | 3743.149 | 22.400 | 22.501 |
| 2:40:56 | 59.97 | 3733.376 | 23.999 | 23.025 |
| 2:40:58 | 59.97 | 3733.376 | 23.999 | 23.366 |
| 2:41:00 | 59.97 | 3733.376 | 23.999 | 23.588 |
| 2:41:02 | 59.982 | 3736.229 | 14.401 | 20.372 |
| 2:41:04 | 59.982 | 3736.229 | 14.401 | 18.282 |
| 2:41:06 | 59.982 | 3736.229 | 14.401 | 16.924 |
| 2:41:08 | 59.985 | 3733.115 | 12.000 | 15.200 |
| 2:41:10 | 59.985 | 3733.115 | 12.000 | 14.080 |
| 2:41:12 | 59.985 | 3733.115 | 12.000 | 13.352 |
| 2:41:14 | 59.989 | 3725.459 | 8.801 | 11.759 |
| 2:41:16 | 59.989 | 3725.459 | 8.801 | 10.724 |
| 2:41:18 | 59.989 | 3725.459 | 8.801 | 10.051 |
| 2:41:20 | 59.99 | 3720.938 | 7.999 | 9.333 |
| 2:41:22 | 59.99 | 3720.938 | 7.999 | 8.866 |
| 2:41:24 | 59.99 | 3720.938 | 7.999 | 8.562 |
| 2:41:26 | 60.001 | 3727.754 | -0.800 | 5.286 |
| 2:41:28 | 60.001 | 3727.754 | -0.800 | 3.156 |
| 2:41:30 | 60.001 | 3727.754 | -0.800 | 1.771 |
| 2:41:32 | 60.006 | 3727.231 | -4.800 | -0.529 |
| 2:41:34 | 60.006 | 3727.231 | -4.800 | -2.024 |

$\begin{array}{llllll}0.000 & 3799.545 & 3768.841 & 3785.887 & 3778.562 & 3755.015\end{array}$ $\begin{array}{llllll}0.000 & 3799.545 & 3768.841 & 3785.887 & 3778.562 & 3755.015 \\ 0.000 & 3798.905 & 3768.770 & 3785.921 & 3778.562 & 3755.077\end{array}$ $\begin{array}{llllllll}0.000 & 3798.769 & 3768.694 & 3785.954 & 3778.562 & 3755.138\end{array}$ $\begin{array}{lllllll}0.000 & 3798.680 & 3768.620 & 3785.988 & 3778.562 & 3755.200\end{array}$ $\begin{array}{lllllll}0.000 & 3798.622 & 3768.545 & 3786.020 & 3778.562 & 3755.260\end{array}$ $\begin{array}{lllllll}0.000 & 3798.305 & 3768.474 & 3786.052 & 3778.562 & 3755.321\end{array}$ $\begin{array}{lllllll}0.000 & 3798.099 & 3768.404 & 3786.083 & 3778.562 & 3755.381\end{array}$ $\begin{array}{llllll}0.000 & 3797.965 & 3768.334 & 3786.114 & 3778.562 & 3755.441\end{array}$ $\begin{array}{lllllll}0.000 & 3797.318 & 3768.258 & 3786.143 & 3778.562 & 3755.501\end{array}$ $\begin{array}{lllllll}0.000 & 3796.897 & 3768.182 & 3786.170 & 3778.562 & 3755.560\end{array}$ $\begin{array}{lllllll}0.000 & 3796.624 & 3768.107 & 3786.197 & 3778.562 & 3755.619\end{array}$ $\begin{array}{llllllll}0.000 & 3797.847 & 3768.030 & 3786.227 & 3778.562 & 3755.678\end{array}$ $\begin{array}{llllll}0.000 & 3797.847 & 3768.030 & 3786.227 & 3778.562 & 3755.678 \\ 0.000 & 3798.642 & 3767.954 & 3786.258 & 3778.562 & 3755.736\end{array}$ $\begin{array}{lllllll}0.000 & 3798.642 & 3767.954 & 3786.258 & 3778.562 & 3755.736 \\ 0.000 & 3799.158 & 3767.878 & 3786.291 & 3778.562 & 3755.794\end{array}$ $\begin{array}{lllllll}0.000 & 3799.158 & 3767.878 & 3786.291 & 3778.562 & 3755.794\end{array}$ $\begin{array}{lllllll}0.000 & 3800.334 & 3767.817 & 3786.327 & 3778.562 & 3755.852\end{array}$ $\begin{array}{lllllll}0.000 & 3801.097 & 3767.755 & 3786.364 & 3778.562 & 3755.909\end{array}$ $\begin{array}{lllllll}0.000 & 3801.594 & 3767.694 & 3786.402 & 3778.562 & 3755.967\end{array}$ $\begin{array}{lllllll}0.000 & 3803.317 & 3767.642 & 3786.445 & 3778.562 & 3756.023\end{array}$ $\begin{array}{lllllll}0.000 & 3804.437 & 3767.592 & 3786.490 & 3778.562 & 3756.080\end{array}$ $\begin{array}{llllll}0.000 & 3805.165 & 3767.541 & 3786.537 & 3778.562 & 3756.136\end{array}$ $\begin{array}{lllllll}0.000 & 3803.678 & 3767.488 & 3786.579 & 3778.562 & 3756.192\end{array}$ $\begin{array}{lllllll}0.000 & 3802.712 & 3767.435 & 3786.619 & 3778.562 & 3756.248\end{array}$ $\begin{array}{lllllll}0.000 & 3802.084 & 3767.382 & 3786.658 & 3778.562 & 3756.304\end{array}$ $\begin{array}{lllllll}0.000 & 3801.955 & 3767.322 & 3786.696 & 3778.562 & 3756.359\end{array}$ $\begin{array}{lllllll}0.000 & 3801.872 & 3767.263 & 3786.733 & 3778.562 & 3756.414\end{array}$ $\begin{array}{lllllll}0.000 & 3801.817 & 3767.203 & 3786.770 & 3778.562 & 3756.469\end{array}$ $\begin{array}{lllllll}0.000 & 3802.342 & 3767.120 & 3786.809 & 3778.562 & 3756.523\end{array}$ $\begin{array}{lllllll}0.000 & 3802.683 & 3767.037 & 3786.847 & 3778.562 & 3756.577\end{array}$ $\begin{array}{lllllll}0.000 & 3802.683 & 3767.037 & 3786.847 & 3778.562 & 3756.577 \\ 0.000 & 3802.904 & 3766.955 & 3786.887 & 3778.562 & 3756.631\end{array}$ $\begin{array}{llllll}0.000 & 3802.904 & 3766.955 & 3786.887 & 3778.562 & 3756.631 \\ 0.000 & 3799.689 & 3766.880 & 3786.918 & 3778.562 & 3756685\end{array}$ $\begin{array}{lllllll}0.000 & 3799.689 & 3766.880 & 3786.918 & 3778.562 & 3756.685\end{array}$ $\begin{array}{lllllll}0.000 & 3797.599 & 3766.806 & 3786.944 & 3778.562 & 3756.738 \\ 0.000 & 3796.241 & 3766.731 & 3789697 & 377856 & 3756791\end{array}$ $\begin{array}{lllllll}0.000 & 3796.241 & 3766.731 & 3786.967 & 3778.562 & 3756.791\end{array}$ $\begin{array}{lllllll}0.000 & 3794.517 & 3766.650 & 3786.985 & 3778.562 & 3756.844\end{array}$ $\begin{array}{lllllll}0.000 & 3793.397 & 3766.569 & 3787.000 & 3778.562 & 3756.897 \\ 0 & 000 & 3792.669 & 3766.488 & 3787.014 & 3778.562 & 3756949\end{array}$ $\begin{array}{lllllll}0.000 & 3792.669 & 3766.488 & 3787.014 & 3778.562 & 3756.949\end{array}$ $\begin{array}{lllllll}0.000 & 3791.076 & 3766.390 & 3787.024 & 3778.562 & 3757.001\end{array}$ $\begin{array}{lllllll}0.000 & 3790.041 & 3766.292 & 3787.031 & 3778.562 & 3757.053\end{array}$ $\begin{array}{lllllll}0.000 & 3789.368 & 3766.194 & 3787.037 & 3778.562 & 3757.104\end{array}$ $\begin{array}{lllllll}0.000 & 3788.649 & 3766.086 & 3787.040 & 3778.562 & 3757.156\end{array}$ $\begin{array}{lllllll}0.000 & 3788.183 & 3765.978 & 3787.043 & 3778.562 & 3757.207\end{array}$ $\begin{array}{lllllll}0.000 & 3787.879 & 3765.871 & 3787.045 & 3778.562 & 3757.258\end{array}$ $\begin{array}{lllllll}0.000 & 3784.602 & 3765.781 & 3787.039 & 3778.562 & 3757.308\end{array}$ $\begin{array}{lllllll}0.000 & 3782.473 & 3765.691 & 3787.029 & 3778.562 & 3757.359\end{array}$ $\begin{array}{lllllll}0.000 & 3781.088 & 3765.602 & 3787.015 & 3778.562 & 3757.409\end{array}$ $\begin{array}{lllllll}0.000 & 3778.788 & 3765.511 & 3786.995 & 3778.562 & 3757.459\end{array}$ $\begin{array}{lllllll}0.000 & 3777.293 & 3765.422 & 3786.972 & 3778.562 & 3757.508\end{array}$

| $2: 41: 36$ | 60.006 | 3727.231 | -4.800 | -2.996 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $2: 41: 38$ | 60.019 | 3726.016 | -15.201 | -7.267 |
| $2: 41: 40$ | 60.019 | 3726.016 | -15.201 | -10.044 |
| $2: 41: 42$ | 60.019 | 3726.016 | -15.201 | -11.849 |
| $2: 41: 44$ | 60.026 | 3717.333 | -20.801 | -14.982 |
| $2: 41: 46$ | 60.026 | 3717.333 | -20.801 | -17.019 |
| $2: 41: 48$ | 60.026 | 3717.333 | -20.801 | -18.342 |
| $2: 41: 50$ | 60.029 | 3715.166 | -23.199 | -20.042 |
| $2: 41: 52$ | 60.029 | 3715.166 | -23.199 | -21.147 |
| $2: 41: 54$ | 60.029 | 3715.166 | -23.199 | -21.866 |
| $2: 41: 56$ | 60.037 | 3710.158 | -29.599 | -24.572 |
| $2: 41: 58$ | 60.037 | 3710.158 | -29.599 | -26.332 |
| $2: 42: 00$ | 60.037 | 3710.158 | -29.599 | -27.475 |
| $2: 42: 02$ | 60.041 | 3704.591 | -32.800 | -29.339 |
| $2: 42: 04$ | 60.041 | 3704.591 | -32.800 | -30.550 |
| $2: 42: 06$ | 60.041 | 3704.591 | -32.800 | -31.338 |
| $2: 42: 08$ | 60.043 | 3701.316 | -34.399 | -32.409 |
| $2: 42: 10$ | 60.043 | 3701.316 | -34.399 | -33.106 |
| $2: 42: 12$ | 60.043 | 3701.316 | -34.399 | -33.559 |
| $2: 42: 14$ | 60.046 | 3699.726 | -36.801 | -34.694 |
| $2: 42: 16$ | 60.046 | 3699.726 | -36.801 | -35.431 |
| $2: 42: 18$ | 60.046 | 3699.726 | -36.801 | -35.911 |
| $2: 42: 20$ | 60.043 | 3696.865 | -34.399 | -35.382 |
| $2: 42: 22$ | 60.043 | 3696.865 | -34.399 | -35.038 |
| $2: 42: 24$ | 60.043 | 3696.865 | -34.399 | -34.814 |

Abstract

$\begin{array}{lllllll}0.000 & 3776.321 & 3765.332 & 3786.947 & 3778.562 & 3757.558\end{array}$ $\begin{array}{llllll}0.000 & 3772.049 & 3765.240 & 3786.913 & 3778.562 & 3757.607\end{array}$ $\begin{array}{lllllll}0.000 & 3772.049 & 3765.240 & 3786.913 & 3778.562 & 3757.607\end{array}$ $\begin{array}{lllllll}0.000 & 3769.273 & 3765.149 & 3786.872 & 3778.562 & 3757.656 \\ 0.000 & 3767.468 & 3765.058 & 3786.826 & 3778.562 & 3757.705\end{array}$ $\begin{array}{llllll}0.000 & 3767.468 & 3765.058 & 3786.826 & 3778.562 & 3757.705 \\ 0.000 & 3764.335 & 3764.947 & 3786.774 & 3778.562 & 3757.753\end{array}$ $\begin{array}{lllllll}0.000 & 3764.335 & 3764.947 & 3786.774 & 3778.562 & 3757.753 \\ 0.000 & 3762.298 & 3764.837 & 3786.718 & 3778.562 & 3757.801\end{array}$ $\begin{array}{lllllll}0.000 & 3760.974 & 3764.727 & 3786.658 & 3778.562 & 3757.850\end{array}$ $\begin{array}{lllllll}0.000 & 3759.274 & 3764.613 & 3786.595 & 3778.562 & 3757.897\end{array}$ $\begin{array}{lllllll}0.000 & 3758.169 & 3764.499 & 3786.530 & 3778.562 & 3757.945\end{array}$ $\begin{array}{lllllll}0.000 & 3757.451 & 3764.386 & 3786.463 & 3778.562 & 3757.992\end{array}$ $\begin{array}{lllllll}0.000 & 3754.744 & 3764.262 & 3786.390 & 3778.562 & 3758.040\end{array}$ $\begin{array}{lllllll}0.000 & 3752.985 & 3764.138 & 3786.314 & 3778.562 & 3758.087\end{array}$ $\begin{array}{llllll}0.000 & 3752.985 & 3764.138 & 3786.314 & 3778.562 & 3758.087 \\ 0.000 & 3751.842 & 3764.016 & 3786.236 & 3778.562 & 3758.133\end{array}$ $\begin{array}{lllllll}0.000 & 3751.842 & 3764.016 & 3786.236 & 3778.562 & 3758.133 \\ 0.000 & 3749.978 & 3763.880 & 3786.153 & 3778.562 & 3758.180\end{array}$ $\begin{array}{lllllll}0.000 & 3749.978 & 3763.880 & 3786.153 & 3778.562 & 3758.180\end{array}$ $\begin{array}{lllllll}0.000 & 3748.766 & 3763.746 & 3786.068 & 3778.562 & 3758.226\end{array}$ $\begin{array}{lllllll}073758.278 & 3747.979 & 3763.612 & 3785.982 & 3778.562 & 3758.272\end{array}$ $\begin{array}{lllllll}0.000 & 3746.907 & 3763.472 & 3785.894 & 3778.562 & 3758.318\end{array}$ $\begin{array}{lllllll}0.000 & 3746.211 & 3763.332 & 3785.805 & 3778.562 & 3758.364\end{array}$ $\begin{array}{lllllll}0.000 & 3745.758 & 3763.192 & 3785.715 & 3778.562 & 3758.409\end{array}$ $\begin{array}{lllllll}0.000 & 3744.623 & 3763.050 & 3785.623 & 3778.562 & 3758.455\end{array}$ $\begin{array}{lllllll}0.000 & 3743.886 & 3762.908 & 3785.529 & 3778.562 & 3758.500\end{array}$ $\begin{array}{lllllll}0.000 & 3743.406 & 3762.767 & 3785.435 & 3778.562 & 3758.545\end{array}$ $\begin{array}{lllllll}0.000 & 3743.935 & 3762.620 & 3785.343 & 3778.562 & 3758.589\end{array}$ $\begin{array}{lllllll}0.000 & 3744.279 & 3762.474 & 3785.251 & 3778.562 & 3758.634\end{array}$ $\begin{array}{lllllll}0.000 & 3744.502 & 3762.329 & 3785.161 & 3778.562 & 3758.678\end{array}$

riod (indicates ramp direction during recovery period)

Frequency and Interconnection Frequency Response @ different Average periods of B

633	-468.895
633	-468.895
633	-468.895
633	-502.383
633	-502.383
633	-502.383
633	-518.845
633	-518.845
633	-518.845
633	-506.4
633	-506.4
633	-506.4
633	-531.935
633	-531.935
633	-531.935
633	-555.271
633	-555.271
633	-555.271
633	-550.427
633	-550.427
633	-550.427
633	-560.182
633	-560.182
633	-560.182
633	-602.86
633	-602.86
633	-602.86
633	-680.656
633	-680.656
633	-680.656
633	-626.746
633	-666.746
633	-626.746
633	-673.419
633	-673.419
633	-673.419
633	-695.607
633	-695.607
633	-695.607
633	-695.607
633	-695.607
633	-695.607
633	-703.332
633	-703.332
633	-703.332
633	-719.308

633	-719.308
633	-719.308
633	-711.23
633	-711.23
633	-711.23
633	-719.308
633	-719.308
633	-719.308
633	-736.059
633	-736.059
633	-736.059
633	-727.603
633	-727.603
633	-727.603
633	-791.27
633	-791.27
633	-791.27
633	-832.892
633	-832.892
633	-832.892
633	-879.184
633	-879.184
633	-879.184
633	-867.146
633	-867.146
633	-867.146
633	-891.56
633	-891.56
633	-891.56
633	-959.119
633	-959.119
633	-959.119
633	-959.119
633	-959.119
633	-959.119
633	-989.075
633	-989.075
633	-989.075
633	-1054.98
633	-1054.98
633	-1054.98
633	-1004.77
633	-1004.77
633	-1004.77
633	-1072.92
633	-1072.92

633	-1072.92
633	-1117.2
633	-1172.2
633	-1172.2
633	-1110.9
633	-1110.9
633	-1150.9
633	-1266.02
633	-1266.02
633	-1266.02
633	-1130.36
633	-1130.36
633	-1130.36
633	-1172.2
633	-1172.2
633	-1172.2
633	-1438.68
633	-1438.68
633	-1438.68
633	-1472.12
633	-1472.12
633	-1472.12
633	-1582.46
633	-1582.46
633	-1582.46
633	-1861.74
633	-1861.74
633	-1861.74
633	-2531.85
633	-2531.85
633	-2531.85
633	-2531.85
633	-2531.85
633	-2531.85
633	-3331.4
633	-3331.4
633	-3331.4
633	-3014.3
633	-3014.3
633	-3014.3
633	-3516.36
633	-3516.36
633	-3516.36
633	-3723.9
633	-3723.9
633	-3723.9

633	-2877.36
633	-2877.36
633	-2877.36
633	-3164.93
633	-3164.93
633	-3164.93
633	-3331.4
633	-3331.4
633	-3331.4
633	-2752.32
633	-2752.32
633	-2752.32
633	-2637.69
633	-2637.69
633	-2637.69
633	-2752.32
633	-2752.32
633	-2752.32
633	-2434.52
633	-2434.52
633	-2434.52
633	-2110.09
633	-2110.09
633	-2110.09
633	-1808.58
633	-1808.58
633	-1808.58
633	-1918.13
633	-1918.13
633	-1918.13
633	-1472.12
633	-1472.12
633	-1472.12
633	-1241.21
633	-1241.21
633	-1241.21
633	-1172.2
633	-1172.2
633	-1172.2
633	-1091.4
633	-1091.4
633	-1091.4
633	-1054.98
633	-1054.98
633	-1054.98
633	-1004.77

633	-1004.77
633	-1004.77
633	-959.119
633	-959.119
633	-959.119
633	-989.075
633	-989.075
633	-989.075
633	-959.119
633	-959.119
633	-959.119
633	-944.757
633	-944.757
633	-944.757
633	-879.184
633	-879.184
633	-879.184
633	-989.075
633	-989.075
633	-989.075
633	-944.757
633	-944.757
633	-944.757
633	-944.757
633	-944.757
633	-944.757
633	-832.892
633	-832.892
633	-832.892
633	-867.146
633	-867.146
633	-867.146
633	-822.082
633	-822.082
633	-822.082
633	-904.29
633	-904.29
633	-904.29
633	-867.146
633	-867.146
633	-867.146
633	-843.991
633	-843.991
633	-843.991
633	-822.082
633	-822.082

633	-822.082
633	-822.082
633	-822.082
633	-822.082
633	-879.184
633	-879.184
633	-879.184
633	-855.39
633	-855.39
633	-855.39
633	-879.184
633	-879.184
633	-879.184
633	-822.082
633	-822.082
633	-822.082
633	-843.991
633	-843.991
633	-843.991
633	-1004.77
633	-1004.77
633	-1004.77
633	-930.871
633	-930.871
633	-930.871
633	-791.27
633	-791.27
633	-791.27
633	-781.469
633	-781.469
633	-781.469
633	-762.649
633	-762.649
633	-762.649
633	-711.23
633	-711.23
633	-711.23
633	-736.059
633	-736.059
633	-736.059
633	-781.469
633	-781.469
633	-781.469
633	-801.28
633	-801.28
633	-801.28

633	-855.39
633	-855.39
633	-855.39
633	-917.388
633	-917.388
633	-917.388
633	-843.991
633	-843.991
633	-843.991
633	-959.119
633	-959.119
633	-959.119
633	-917.388
633	-917.388
633	-917.388
633	-1037.69
633	-1037.69
633	-1037.69
633	-1054.98
633	-1054.98
633	-1054.98
633	-1054.98
633	-1054.98
633	-1054.98
633	-1020.96
633	-1020.96
633	-1020.96
633	-1020.96
633	-1020.96
633	-1020.96
633	-989.075
633	-989.075
633	-989.075
633	-891.56
633	-891.56
633	-891.56
633	-944.757
633	-944.757
633	-944.757
633	-867.146
633	-867.146
633	-867.146
633	-904.29
633	-904.29
633	-904.29
633	-973.867

|

$$
\begin{array}{lr}
633 & -1758.37 \\
633 & -2752.32 \\
633 & -2752.32 \\
633 & -2752.32 \\
633 & -3956.54 \\
633 & -3956.54 \\
633 & -3956.54 \\
633 & -4869.05 \\
633 & -4869.05 \\
633 & -4869.05 \\
633 & -12657.3 \\
633 & -12657.3 \\
633 & -12657.3 \\
633 & -63334.8 \\
633 & -63334.8 \\
633 & -63334.8 \\
633 & 63334.79 \\
633 & 63334.79 \\
633 & 63334.79 \\
633 & 15818.6 \\
633 & 15818.6 \\
633 & 15818.6 \\
633 & 63334.79 \\
633 & 63334.79 \\
633 & 63334.79
\end{array}
$$

	T-66 sec	2:26:18	60.0220	3666.06	350.00	-165.48	0.00	71.50	10.00	15.00	-103.00	7641.57	-17.599	T-66 sec	2:26:18	
	T-64 sec	2:26:20	60.0220	3666.06	350.00	-165.48	0.00	71.50	10.00	15.00	-103.00	7641.57	-17.599	T-64 sec	2:26:20	
	T-62 sec	2:26:22	60.0220	3666.06	350.00	-165.48	0.00	71.50	10.00	15.00	-103.00	7641.57	-17.599	T-62 sec	2:26:22	
	T-60 sec	2:26:24	60.0190	3670.45	350.00	-165.48	0.00	72.00	10.00	15.00	-103.00	7642.56	-15.201	T-60 sec	2:26:24	
	T-58 sec	2:26:26	60.0190	3670.45	350.00	-165.48	0.00	72.00	10.00	15.00	-103.00	7642.56	-15.201	T-58 sec	2:26:26	
	T-56 sec	2:26:28	60.0190	3670.45	350.00	-165.48	0.00	72.00	10.00	15.00	-103.00	7642.56	-15.201	T-56 sec	2:26:28	
	T-54 sec	2:26:30	60.0210	3672.49	350.00	-165.48	0.00	72.50	10.00	15.00	-103.00	7643.55	-16.800	T-54 sec	2:26:30	
	T-52 sec	2:26:32	60.0210	3672.49	350.00	-165.48	0.00	72.50	10.00	15.00	-103.00	7643.55	-16.800	T-52 sec	2:26:32	
	T-50 sec	2:26:34	60.0210	3672.49	350.00	-165.48	0.00	72.50	10.00	15.00	-103.00	7643.55	-16.800	T-50 sec	2:26:34	
	T-48 sec	2:26:36	60.0190	3672.16	350.00	-165.48	0.00	73.00	10.00	15.00	-103.00	7644.54	-15.201	T-48 sec	2:26:36	
	T-46 sec	2:26:38	60.0190	3672.16	350.00	-165.48	0.00	73.00	10.00	15.00	-103.00	7644.54	-15.201	T-46 sec	2:26:38	
	T-44 sec	2:26:40	60.0190	3672.16	350.00	-165.48	0.00	73.00	10.00	15.00	-103.00	7644.54	-15.201	T-44 sec	2:26:40	
	T-42 sec	2:26:42	60.0310	3666.47	350.00	-165.48	0.00	73.50	10.00	15.00	-103.00	7645.53	-24.799	T-42 sec	2:26:42	
	T-40 sec	2:26:44	60.0310	3666.47	350.00	-165.48	0.00	73.50	10.00	15.00	-103.00	7645.53	-24.799	T-40 sec	2:26:44	
	T-38 sec	2:26:46	60.0310	3666.47	350.00	-165.48	0.00	73.50	10.00	15.00	-103.00	7645.53	-24.799	T-38 sec	2:26:46	
	T-36 sec	2:26:48	60.0360	3660.67	350.00	-165.48	0.00	74.00	10.00	15.00	-103.00	7646.52	-28.799	T-36 sec	2:26:48	
	T-34 sec	2:26:50	60.0360	3660.67	350.00	-165.48	0.00	74.00	10.00	15.00	-103.00	7646.52	-28.799	T-34 sec	2:26:50	
	T-32 sec	2:26:52	60.0360	3660.67	350.00	-165.48	0.00	74.00	10.00	15.00	-103.00	7646.52	-28.799	T-32 sec	2:26:52	
	T-30 sec	2:26:54	60.0480	3650.03	350.00	-165.48	0.00	74.50	10.00	15.00	-103.00	7647.51	-38.400	T-30 sec	2:26:54	
	T-28 sec	2:26:56	60.0480	3650.03	350.00	-165.48	0.00	74.50	10.00	15.00	-103.00	7647.51	-38.400	T-28 sec	2:26:56	
	T-26 sec	2:26:58	60.0480	3650.03	350.00	-165.48	0.00	74.50	10.00	15.00	-103.00	7647.51	-38.400	T-26 sec	2:26:58	
	T-24 sec	2:27:00	60.0410	3654.29	350.00	-165.48	0.00	75.00	10.00	15.00	-103.00	7648.50	-32.800	T-24 sec	2:27:00	
	T-22 sec	2:27:02	60.0410	3654.29	350.00	-165.48	0.00	75.00	10.00	15.00	-103.00	7648.50	-32.800	T-22 sec	2:27:02	
	T-20 sec	2:27:04	60.0410	3654.29	350.00	-165.48	0.00	75.00	10.00	15.00	-103.00	7648.50	-32.800	T-20 sec	2:27:04	
	T-18 sec	2:27:06	60.0390	3651.06	350.00	-165.48	0.00	75.50	10.00	15.00	-103.00	7649.49	-31.201	T-18 sec	2:27:06	
	$\mathrm{T}-16 \mathrm{sec}$	2:27:08	60.0390	3651.06	350.00	-165.48	0.00	75.50	10.00	15.00	-103.00	7649.49	-31.201	T-16 sec	2:27:08	60.042
	T-14 sec	2:27:10	60.0390	3651.06	350.00	-165.48	0.00	75.50	10.00	15.00	-103.00	7649.49	-31.201	T-14 sec	2:27:10	60.042
	$\mathrm{T}-12 \mathrm{sec}$	2:27:12	60.0450	3645.39	350.00	-165.48	0.00	76.00	10.00	15.00	-103.00	7650.48	-35.999	$\mathrm{T}-12 \mathrm{sec}$	2:27:12	60.042
	T-10 sec	2:27:14	60.0450	3645.39	350.00	-165.48	0.00	76.00	10.00	15.00	-103.00	7650.48	-35.999	T-10 sec	2:27:14	60.042
	T-08 sec	2:27:16	60.0450	3645.39	350.00	-165.48	0.00	76.00	10.00	15.00	-103.00	7650.48	-35.999	T-08 sec	2:27:16	60.042
	T-06 sec	2:27:18	60.0410	3640.68	350.00	-165.48	0.00	76.50	10.00	15.00	-103.00	7651.47	-32.800	T-06 sec	2:27:18	60.042
	T-04 sec	2:27:20	60.0410	3640.68	350.00	-165.48	0.00	76.50	10.00	15.00	-103.00	7651.47	-32.800	T-04 sec	2:27:20	60.042
	T-02 sec	2:27:22	60.0410	3640.68	350.00	-165.48	0.00	76.50	10.00	15.00	-103.00	7651.47	-32.800	T-02 sec	2:27:22	60.042
	T+0 sec	2:27:24	59.9780	3696.36	350.00	-206.46	0.00	77.00	10.00	15.00	-103.00	7645.00	17.599	T+0 sec	2:27:24	
	T+02 sec	2:27:26	59.9780	3696.36	350.00	-206.46	0.00	77.00	10.00	15.00	-103.00	7645.00	17.599	T+02 sec	2:27:26	
	T+04 sec	2:27:28	59.9780	3696.36	350.00	-206.46	0.00	77.00	10.00	15.00	-103.00	7645.00	17.599	T+04 sec	2:27:28	
	T+06 sec	2:27:30	59.9780	3696.36	350.00	-206.46	0.00	77.00	10.00	15.00	-103.00	7645.00	17.599	T+06 sec	2:27:30	
	T+08 sec	2:27:32	59.8690	3737.16	335.00	-206.46	0.00	77.50	10.00	0.00	-103.00	7639.00	104.800	T+08 sec	2:27:32	
	$\mathrm{T}+10 \mathrm{sec}$	2:27:34	59.8690	3737.16	335.00	-206.46	0.00	77.50	10.00	0.00	-103.00	7639.00	104.800	T+10 sec	2:27:34	
	$\mathrm{T}+12 \mathrm{sec}$	2:27:36	59.8690	3737.16	335.00	-206.46	0.00	77.50	10.00	0.00	-103.00	7639.00	104.800	$\mathrm{T}+12 \mathrm{sec}$	2:27:36	59.880
	T+14 sec	2:27:38	59.8800	3766.19	335.00	-206.46	0.00	78.00	10.00	0.00	-103.00	7631.00	95.999	$\mathrm{T}+14 \mathrm{sec}$	2:27:38	59.880
	T+16 sec	2:27:40	59.8800	3766.19	335.00	-206.46	0.00	78.00	10.00	0.00	-103.00	7631.00	95.999	$\mathrm{T}+16 \mathrm{sec}$	2:27:40	59.880
	T+18 sec	2:27:42	59.8800	3766.19	335.00	-206.46	0.00	78.00	10.00	0.00	-103.00	7631.00	95.999	$\mathrm{T}+18 \mathrm{sec}$	2:27:42	59.880
-411.276	T+20 sec	2:27:44	59.8830	3780.62	335.00	-206.46	0.00	78.50	10.00	0.00	-103.00	7630.00	93.600	T+20 sec	2:27:44	59.880
-411.276	T+22 sec	2:27:46	59.8830	3780.62	335.00	-206.46	0.00	78.50	10.00	0.00	-103.00	7630.00	93.600	T+22 sec	2:27:46	59.880
-411.276	$\mathrm{T}+24 \mathrm{sec}$	2:27:48	59.8830	3780.62	335.00	-206.46	0.00	78.50	10.00	0.00	-103.00	7630.00	93.600	T+24 sec	2:27:48	59.880

-411.276	T+26 sec	2:27:50	59.8850	3784.96	335.00	-206.46	0.00	79.00	10.00	0.00	-103.00	7631.00	92.001	T+26 sec	2:27:50
-411.276	T+28 sec	2:27:52	59.8850	3784.96	335.00	-206.46	0.00	79.00	10.00	0.00	-103.00	7631.00	92.001	T+28 sec	2:27:52
-411.276	T+30 sec	2:27:54	59.8850	3784.96	335.00	-206.46	0.00	79.00	10.00	0.00	-103.00	7631.00	92.001	T+30 sec	2:27:54
-411.276	T+32 sec	2:27:56	59.8900	3788.07	335.00	-211.26	0.00	79.50	10.00	0.00	-103.00	7630.00	88.000	T+32 sec	2:27:56
-411.276	T+34 sec	2:27:58	59.8900	3788.07	335.00	-211.26	0.00	79.50	10.00	0.00	-103.00	7630.00	88.000	T+34 sec	2:27:58
-411.276	T+36 sec	2:28:00	59.8900	3788.07	335.00	-211.26	0.00	79.50	10.00	0.00	-103.00	7630.00	88.000	T+36 sec	2:28:00
-411.276	$\mathrm{T}+38 \mathrm{sec}$	2:28:02	59.8930	3788.47	335.00	-211.26	0.00	80.00	10.00	0.00	-103.00	7632.00	85.599	T+38 sec	2:28:02
-411.276	T+40 sec	2:28:04	59.8930	3788.47	335.00	-211.26	0.00	80.00	10.00	0.00	-103.00	7632.00	85.599	T+40 sec	2:28:04
-411.276	$\mathrm{T}+42 \mathrm{sec}$	2:28:06	59.8930	3788.47	335.00	-211.26	0.00	80.00	10.00	0.00	-103.00	7632.00	85.599	T+42 sec	2:28:06
-411.276	$\mathrm{T}+44 \mathrm{sec}$	2:28:08	59.8910	3794.37	335.00	-211.26	0.00	80.50	10.00	0.00	-103.00	7633.00	87.201	T+44 sec	2:28:08
-411.276	T+46 sec	2:28:10	59.8910	3794.37	335.00	-211.26	0.00	80.50	10.00	0.00	-103.00	7633.00	87.201	T+46 sec	2:28:10
-411.276	T+48 sec	2:28:12	59.8910	3794.37	335.00	-211.26	0.00	80.50	10.00	0.00	-103.00	7633.00	87.201	T+48 sec	2:28:12
-411.276	$\mathrm{T}+50 \mathrm{sec}$	2:28:14	59.8850	3799.96	335.00	-211.26	0.00	81.00	10.00	0.00	-103.00	7634.00	92.001	T+50 sec	2:28:14
-411.276	T+52 sec	2:28:16	59.8850	3799.96	335.00	-211.26	0.00	81.00	10.00	0.00	-103.00	7634.00	92.001	T+52 sec	2:28:16
	T+54 sec	2:28:18	59.8850	3799.96	335.00	-211.26	0.00	81.00	10.00	0.00	-103.00	7634.00	92.001	T+54 sec	2:28:18
	T+56 sec	2:28:20	59.8880	3802.95	335.00	-211.26	0.00	81.50	10.00	0.00	-103.00	7635.00	89.600	T+56 sec	2:28:20
	T+58 sec	2:28:22	59.8880	3802.95	335.00	-211.26	0.00	81.50	10.00	0.00	-103.00	7635.00	89.600	T+58 sec	2:28:22
	T+60 sec	2:28:24	59.8880	3802.95	335.00	-211.26	0.00	81.50	10.00	0.00	-103.00	7635.00	89.600	T+60 sec	2:28:24
	T+62 sec	2:28:26	59.8890	3805.62	335.00	-214.35	0.00	82.00	10.00	0.00	-103.00	7636.00	88.800	T+62 sec	2:28:26
	T+64 sec	2:28:28	59.8890	3805.62	335.00	-214.35	0.00	82.00	10.00	0.00	-103.00	7636.00	88.800	T+64 sec	2:28:28
	T+66 sec	2:28:30	59.8890	3805.62	335.00	-214.35	0.00	82.00	10.00	0.00	-103.00	7636.00	88.800	T+66 sec	2:28:30
	T+68 sec	2:28:32	59.8570	3814.86	335.00	-214.35	0.00	82.50	10.00	0.00	-103.00	7637.00	114.401	T+68 sec	2:28:32
	T+70 sec	2:28:34	59.8570	3814.86	335.00	-214.35	0.00	82.50	10.00	0.00	-103.00	7637.00	114.401	T+70 sec	2:28:34
	T+72 sec	2:28:36	59.8570	3814.86	335.00	-214.35	0.00	82.50	10.00	0.00	-103.00	7637.00	114.401	T+72 sec	2:28:36
	T+74 sec	2:28:38	59.8580	3826.05	335.00	-214.35	0.00	83.00	10.00	0.00	-103.00	7638.00	113.599	T+74 sec	2:28:38
	T+76 sec	2:28:40	59.8580	3826.05	335.00	-214.35	0.00	83.00	10.00	0.00	-103.00	7638.00	113.599	T+76 sec	2:28:40
	T+78 sec	2:28:42	59.8580	3826.05	335.00	-214.35	0.00	83.00	10.00	0.00	-103.00	7638.00	113.599	T+78 sec	2:28:42
	T+80 sec	2:28:44	59.8650	3826.75	335.00	-214.35	0.00	83.50	10.00	0.00	-103.00	7641.00	107.999	T+80 sec	2:28:44
		2:28:46	59.8650	3826.75	335.00	-214.35	0.00	83.50	10.00	0.00	-103.00	7641.00	107.999		
		2:28:48	59.8650	3826.75	335.00	-214.35	0.00	83.50	10.00	0.00	-103.00	7641.00	107.999		
		2:28:50	59.8710	3825.71	335.00	-214.35	0.00	84.00	10.00	0.00	-103.00	7642.00	103.201		
		2:28:52	59.8710	3825.71	335.00	-214.35	0.00	84.00	10.00	0.00	-103.00	7642.00	103.201		
		2:28:54	59.8710	3825.71	335.00	-214.35	0.00	84.00	10.00	0.00	-103.00	7642.00	103.201		
		2:28:56	59.8800	3819.08	335.00	-212.17	0.00	84.50	10.00	0.00	-103.00	7629.00	95.999		
		2:28:58	59.8800	3819.08	335.00	-212.17	0.00	84.50	10.00	0.00	-103.00	7629.00	95.999		
		2:29:00	59.8800	3819.08	335.00	-212.17	0.00	84.50	10.00	0.00	-103.00	7629.00	95.999		
		2:29:02	59.8900	3815.01	335.00	-212.17	0.00	85.00	10.00	0.00	-103.00	7630.00	88.000		
		2:29:04	59.8900	3815.01	335.00	-212.17	0.00	85.00	10.00	0.00	-103.00	7630.00	88.000		
		2:29:06	59.8900	3815.01	335.00	-212.17	0.00	85.00	10.00	0.00	-103.00	7630.00	88.000		
		2:29:08	59.8930	3809.65	335.00	-212.17	0.00	85.50	10.00	0.00	-103.00	7630.00	85.599		
		2:29:10	59.8930	3809.65	335.00	-212.17	0.00	85.50	10.00	0.00	-103.00	7630.00	85.599		
		2:29:12	59.8930	3809.65	335.00	-212.17	0.00	85.50	10.00	0.00	-103.00	7630.00	85.599		
		2:29:14	59.9020	3804.19	335.00	-329.99	0.00	86.00	10.00	0.00	-103.00	7631.00	78.400		
		2:29:16	59.9020	3804.19	335.00	-329.99	0.00	86.00	10.00	0.00	-103.00	7631.00	78.400		
		2:29:18	59.9020	3804.19	335.00	-329.99	0.00	86.00	10.00	0.00	-103.00	7631.00	78.400		

2:29:20	59.9070	3792.17	335.00	-255.44	0.00	86.50	10.00	0.00	-103.00	7633.00	74.399
2:29:22	59.9070	3792.17	335.00	-255.44	0.00	86.50	10.00	0.00	-103.00	7633.00	74.399
2:29:24	59.9070	3792.17	335.00	-255.44	0.00	86.50	10.00	0.00	-103.00	7633.00	74.399
2:29:26	59.9160	3788.13	335.00	-255.44	0.00	87.00	10.00	0.00	-103.00	7636.00	67.200
2:29:28	59.9160	3788.13	335.00	-255.44	0.00	87.00	10.00	0.00	-103.00	7636.00	67.200
2:29:30	59.9160	3788.13	335.00	-255.44	0.00	87.00	10.00	0.00	-103.00	7636.00	67.200
2:29:32	59.9200	3781.70	335.00	-255.44	0.00	87.50	10.00	0.00	-103.00	7640.00	64.001
2:29:34	59.9200	3781.70	335.00	-255.44	0.00	87.50	10.00	0.00	-103.00	7640.00	64.001
2:29:36	59.9200	3781.70	335.00	-255.44	0.00	87.50	10.00	0.00	-103.00	7640.00	64.001
2:29:38	59.9170	3774.60	335.00	-255.44	0.00	88.00	10.00	0.00	-103.00	7644.00	66.400
2:29:40	59.9170	3774.60	335.00	-255.44	0.00	88.00	10.00	0.00	-103.00	7644.00	66.400
2:29:42	59.9170	3774.60	335.00	-255.44	0.00	88.00	10.00	0.00	-103.00	7644.00	66.400
2:29:44	59.9230	3772.72	335.00	-255.44	0.00	88.50	10.00	0.00	-103.00	7648.00	61.600
2:29:46	59.9230	3772.72	335.00	-255.44	0.00	88.50	10.00	0.00	-103.00	7648.00	61.600
2:29:48	59.9230	3772.72	335.00	-255.44	0.00	88.50	10.00	0.00	-103.00	7648.00	61.600
2:29:50	59.9280	3768.71	335.00	-254.84	0.00	89.00	10.00	0.00	-103.00	7652.00	57.599
2:29:52	59.9280	3768.71	335.00	-254.84	0.00	89.00	10.00	0.00	-103.00	7652.00	57.599
2:29:54	59.9280	3768.71	335.00	-254.84	0.00	89.00	10.00	0.00	-103.00	7652.00	57.599
2:29:56	59.9270	3767.41	335.00	-254.84	0.00	89.50	10.00	0.00	-103.00	7656.00	58.401
2:29:58	59.9270	3767.41	335.00	-254.84	0.00	89.50	10.00	0.00	-103.00	7656.00	58.401
2:30:00	59.9270	3767.41	335.00	-254.84	0.00	89.50	10.00	0.00	-103.00	7656.00	58.401
2:30:02	59.9290	3765.67	350.00	-254.84	0.00	90.00	10.00	0.00	-103.00	7662.00	56.799
2:30:04	59.9290	3765.67	350.00	-254.84	0.00	90.00	10.00	0.00	-103.00	7662.00	56.799
2:30:06	59.9290	3765.67	350.00	-254.84	0.00	90.00	10.00	0.00	-103.00	7662.00	56.799
2:30:08	59.9370	3765.10	350.00	-254.84	0.00	90.50	10.00	0.00	-103.00	7665.00	50.400
2:30:10	59.9370	3765.10	350.00	-254.84	0.00	90.50	10.00	0.00	-103.00	7665.00	50.400
2:30:12	59.9370	3765.10	350.00	-254.84	0.00	90.50	10.00	0.00	-103.00	7665.00	50.400
2:30:14	59.9490	3753.92	350.00	-254.84	0.00	91.00	10.00	0.00	-103.00	7670.00	40.799
2:30:16	59.9490	3753.92	350.00	-254.84	0.00	91.00	10.00	0.00	-103.00	7670.00	40.799
2:30:18	59.9490	3753.92	350.00	-254.84	0.00	91.00	10.00	0.00	-103.00	7670.00	40.799
2:30:20	59.9410	3747.88	350.00	-257.15	0.00	91.50	10.00	0.00	-103.00	7674.00	47.198
2:30:22	59.9410	3747.88	350.00	-257.15	0.00	91.50	10.00	0.00	-103.00	7674.00	47.198
2:30:24	59.9410	3747.88	350.00	-257.15	0.00	91.50	10.00	0.00	-103.00	7674.00	47.198
2:30:26	59.9480	3746.71	350.00	-257.15	0.00	92.00	10.00	0.00	-103.00	7679.00	41.599
2:30:28	59.9480	3746.71	350.00	-257.15	0.00	92.00	10.00	0.00	-103.00	7679.00	41.599
2:30:30	59.9480	3746.71	350.00	-257.15	0.00	92.00	10.00	0.00	-103.00	7679.00	41.599
2:30:32	59.9510	3740.26	350.00	-257.15	0.00	92.50	10.00	0.00	-103.00	7682.00	39.200
2:30:34	59.9510	3740.26	350.00	-257.15	0.00	92.50	10.00	0.00	-103.00	7682.00	39.200
2:30:36	59.9510	3740.26	350.00	-257.15	0.00	92.50	10.00	0.00	-103.00	7682.00	39.200
2:30:38	59.9510	3727.84	350.00	-257.15	0.00	93.00	10.00	0.00	-103.00	7684.00	39.200
2:30:40	59.9510	3727.84	350.00	-257.15	0.00	93.00	10.00	0.00	-103.00	7684.00	39.200
2:30:42	59.9510	3727.84	350.00	-257.15	0.00	93.00	10.00	0.00	-103.00	7684.00	39.200
2:30:44	59.9520	3720.58	350.00	-257.15	0.00	93.50	10.00	0.00	-103.00	7686.00	38.400
2:30:46	59.9520	3720.58	350.00	-257.15	0.00	93.50	10.00	0.00	-103.00	7686.00	38.400
2:30:48	59.9520	3720.58	350.00	-257.15	0.00	93.50	10.00	0.00	-103.00	7686.00	38.400
2:30:50	59.9540	3715.75	350.00	-262.29	0.00	94.00	10.00	0.00	-103.00	7688.00	36.801

2:30:52	59.9540	3715.75	350.00	-262.29	0.00	94.00	10.00	0.00	-103.00	7688.00	36.801
2:30:54	59.9540	3715.75	350.00	-262.29	0.00	94.00	10.00	0.00	-103.00	7688.00	36.801
2:30:56	59.9530	3710.85	350.00	-262.29	0.00	94.50	10.00	0.00	-103.00	7689.00	37.601
2:30:58	59.9530	3710.85	350.00	-262.29	0.00	94.50	10.00	0.00	-103.00	7689.00	37.601
2:31:00	59.9530	3710.85	350.00	-262.29	0.00	94.50	10.00	0.00	-103.00	7689.00	37.601
2:31:02	59.9540	3714.62	350.00	-262.29	0.00	95.00	10.00	0.00	-103.00	7689.00	36.801
2:31:04	59.9540	3714.62	350.00	-262.29	0.00	95.00	10.00	0.00	-103.00	7689.00	36.801
2:31:06	59.9540	3714.62	350.00	-262.29	0.00	95.00	10.00	0.00	-103.00	7689.00	36.801
2:31:08	59.9560	3716.46	350.00	-262.29	0.00	95.50	10.00	0.00	-103.00	7690.00	35.199
2:31:10	59.9560	3716.46	350.00	-262.29	0.00	95.50	10.00	0.00	-103.00	7690.00	35.199
2:31:12	59.9560	3716.46	350.00	-262.29	0.00	95.50	10.00	0.00	-103.00	7690.00	35.199
2:31:14	59.9550	3722.36	350.00	-262.29	0.00	96.00	10.00	0.00	-103.00	7690.08	35.999
2:31:16	59.9550	3722.36	350.00	-262.29	0.00	96.00	10.00	0.00	-103.00	7690.08	35.999
2:31:18	59.9550	3722.36	350.00	-262.29	0.00	96.00	10.00	0.00	-103.00	7690.08	35.999
2:31:20	59.9620	3722.27	350.00	-256.65	0.00	96.50	10.00	0.00	-103.00	7690.00	30.399
2:31:22	59.9620	3722.27	350.00	-256.65	0.00	96.50	10.00	0.00	-103.00	7690.00	30.399
2:31:24	59.9620	3722.27	350.00	-256.65	0.00	96.50	10.00	0.00	-103.00	7690.00	30.399
2:31:26	59.9660	3723.09	350.00	-256.65	0.00	97.00	10.00	0.00	-103.00	7692.06	27.200
2:31:28	59.9660	3723.09	350.00	-256.65	0.00	97.00	10.00	0.00	-103.00	7692.06	27.200
2:31:30	59.9660	3723.09	350.00	-256.65	0.00	97.00	10.00	0.00	-103.00	7692.06	27.200
2:31:32	59.9700	3723.89	350.00	-256.65	0.00	97.50	10.00	0.00	-103.00	7693.05	23.999
2:31:34	59.9700	3723.89	350.00	-256.65	0.00	97.50	10.00	0.00	-103.00	7693.05	23.999
2:31:36	59.9700	3723.89	350.00	-256.65	0.00	97.50	10.00	0.00	-103.00	7693.05	23.999
2:31:38	59.9690	3728.05	350.00	-256.65	0.00	98.00	10.00	0.00	-103.00	7694.04	24.799
2:31:40	59.9690	3728.05	350.00	-256.65	0.00	98.00	10.00	0.00	-103.00	7694.04	24.799
2:31:42	59.9690	3728.05	350.00	-256.65	0.00	98.00	10.00	0.00	-103.00	7694.04	24.799
2:31:44	59.9710	3733.33	350.00	-256.65	0.00	98.50	10.00	0.00	-103.00	7695.03	23.199
2:31:46	59.9710	3733.33	350.00	-256.65	0.00	98.50	10.00	0.00	-103.00	7695.03	23.199
2:31:48	59.9710	3733.33	350.00	-256.65	0.00	98.50	10.00	0.00	-103.00	7695.03	23.199
2:31:50	59.9760	3736.82	350.00	-256.31	0.00	99.00	10.00	0.00	-103.00	7696.02	19.199
2:31:52	59.9760	3736.82	350.00	-256.31	0.00	99.00	10.00	0.00	-103.00	7696.02	19.199
2:31:54	59.9760	3736.82	350.00	-256.31	0.00	99.00	10.00	0.00	-103.00	7696.02	19.199
2:31:56	59.9760	3740.88	350.00	-256.31	0.00	99.50	10.00	0.00	-103.00	7697.01	19.199
2:31:58	59.9760	3740.88	350.00	-256.31	0.00	99.50	10.00	0.00	-103.00	7697.01	19.199
2:32:00	59.9760	3740.88	350.00	-256.31	0.00	99.50	10.00	0.00	-103.00	7697.01	19.199
2:32:02	59.9780	3746.61	350.00	-256.31	0.00	100.00	10.00	0.00	-103.00	7698.00	17.599
2:32:04	59.9780	3746.61	350.00	-256.31	0.00	100.00	10.00	0.00	-103.00	7698.00	17.599
2:32:06	59.9780	3746.61	350.00	-256.31	0.00	100.00	10.00	0.00	-103.00	7698.00	17.599
2:32:08	59.9820	3751.56	350.00	-256.31	0.00	100.50	10.00	0.00	-103.00	7699.00	14.401
2:32:10	59.9820	3751.56	350.00	-256.31	0.00	100.50	10.00	0.00	-103.00	7699.00	14.401
2:32:12	59.9820	3751.56	350.00	-256.31	0.00	100.50	10.00	0.00	-103.00	7699.00	14.401
2:32:14	59.9790	3756.41	350.00	-256.31	0.00	101.00	10.00	0.00	-103.00	7699.98	16.800
2:32:16	59.9790	3756.41	350.00	-256.31	0.00	101.00	10.00	0.00	-103.00	7699.98	16.800
2:32:18	59.9790	3756.41	350.00	-256.31	0.00	101.00	10.00	0.00	-103.00	7699.98	16.800
2:32:20	59.9830	3760.98	350.00	-249.09	0.00	101.50	10.00	0.00	-103.00	7700.97	13.599
2:32:22	59.9830	3760.98	350.00	-249.09	0.00	101.50	10.00	0.00	-103.00	7700.97	13.599

2:32:24	59.9830	3760.98	350.00	-249.09	0.00	101.50	10.00	0.00	-103.00	7700.97	13.599
2:32:26	59.9880	3763.21	350.00	-249.09	0.00	102.00	10.00	0.00	-103.00	7701.96	9.601
2:32:28	59.9880	3763.21	350.00	-249.09	0.00	102.00	10.00	0.00	-103.00	7701.96	9.601
2:32:30	59.9880	3763.21	350.00	-249.09	0.00	102.00	10.00	0.00	-103.00	7701.96	9.601
2:32:32	59.9870	3766.43	350.00	-249.09	0.00	102.50	10.00	0.00	-103.00	7702.95	10.400
2:32:34	59.9870	3766.43	350.00	-249.09	0.00	102.50	10.00	0.00	-103.00	7702.95	10.400
2:32:36	59.9870	3766.43	350.00	-249.09	0.00	102.50	10.00	0.00	-103.00	7702.95	10.400
2:32:38	59.9920	3768.63	350.00	-249.09	0.00	103.00	10.00	0.00	-103.00	7703.94	6.400
2:32:40	59.9920	3768.63	350.00	-249.09	0.00	103.00	10.00	0.00	-103.00	7703.94	6.400
2:32:42	59.9920	3768.63	350.00	-249.09	0.00	103.00	10.00	0.00	-103.00	7703.94	6.400
2:32:44	59.9860	3773.69	350.00	-249.09	0.00	103.50	10.00	0.00	-103.00	7704.93	11.200
2:32:46	59.9860	3773.69	350.00	-249.09	0.00	103.50	10.00	0.00	-103.00	7704.93	11.200
2:32:48	59.9860	3773.69	350.00	-249.09	0.00	103.50	10.00	0.00	-103.00	7704.93	11.200
2:32:50	59.9880	3775.36	350.00	-253.74	0.00	104.00	10.00	0.00	-103.00	7705.92	9.601
2:32:52	59.9880	3775.36	350.00	-253.74	0.00	104.00	10.00	0.00	-103.00	7705.92	9.601
2:32:54	59.9880	3775.36	350.00	-253.74	0.00	104.00	10.00	0.00	-103.00	7705.92	9.601
2:32:56	59.9980	3776.42	350.00	-253.74	0.00	104.50	10.00	0.00	-103.00	7706.91	1.599
2:32:58	59.9980	3776.42	350.00	-253.74	0.00	104.50	10.00	0.00	-103.00	7706.91	1.599
2:33:00	59.9980	3776.42	350.00	-253.74	0.00	104.50	10.00	0.00	-103.00	7706.91	1.599
2:33:02	59.9990	3781.26	350.00	-253.74	0.00	105.00	10.00	0.00	-103.00	7707.90	0.800
2:33:04	59.9990	3781.26	350.00	-253.74	0.00	105.00	10.00	0.00	-103.00	7707.90	0.800
2:33:06	59.9990	3781.26	350.00	-253.74	0.00	105.00	10.00	0.00	-103.00	7707.90	0.800
2:33:08	60.0020	3783.90	350.00	-253.74	0.00	105.50	10.00	0.00	-103.00	7708.89	-1.599
2:33:10	60.0020	3783.90	350.00	-253.74	0.00	105.50	10.00	0.00	-103.00	7708.89	-1.599
2:33:12	60.0020	3783.90	350.00	-253.74	0.00	105.50	10.00	0.00	-103.00	7708.89	-1.599
2:33:14	60.0080	3785.46	350.00	-253.74	0.00	106.00	10.00	0.00	-103.00	7709.88	-6.400
2:33:16	60.0080	3785.46	350.00	-253.74	0.00	106.00	10.00	0.00	-103.00	7709.88	-6.400
2:33:18	60.0080	3785.46	350.00	-253.74	0.00	106.00	10.00	0.00	-103.00	7709.88	-6.400
2:33:20	60.0170	3787.26	350.00	-257.42	0.00	106.50	10.00	0.00	-103.00	7710.87	-13.599
2:33:22	60.0170	3787.26	350.00	-257.42	0.00	106.50	10.00	0.00	-103.00	7710.87	-13.599
2:33:24	60.0170	3787.26	350.00	-257.42	0.00	106.50	10.00	0.00	-103.00	7710.87	-13.599
2:33:26	60.0170	3788.03	350.00	-257.42	0.00	107.00	10.00	0.00	-103.00	7711.86	-13.599
2:33:28	60.0170	3788.03	350.00	-257.42	0.00	107.00	10.00	0.00	-103.00	7711.86	-13.599
2:33:30	60.0170	3788.03	350.00	-257.42	0.00	107.00	10.00	0.00	-103.00	7711.86	-13.599
2:33:32	60.0230	3787.54	350.00	-257.42	0.00	107.50	10.00	0.00	-103.00	7712.85	-18.399
2:33:34	60.0230	3787.54	350.00	-257.42	0.00	107.50	10.00	0.00	-103.00	7712.85	-18.399
2:33:36	60.0230	3787.54	350.00	-257.42	0.00	107.50	10.00	0.00	-103.00	7712.85	-18.399
2:33:38	60.0210	3787.93	350.00	-257.42	0.00	108.00	10.00	0.00	-103.00	7713.84	-16.800
2:33:40	60.0210	3787.93	350.00	-257.42	0.00	108.00	10.00	0.00	-103.00	7713.84	-16.800
2:33:42	60.0210	3787.93	350.00	-257.42	0.00	108.00	10.00	0.00	-103.00	7713.84	-16.800
2:33:44	60.0240	3786.55	350.00	-257.42	0.00	108.50	10.00	0.00	-103.00	7714.83	-19.199
2:33:46	60.0240	3786.55	350.00	-257.42	0.00	108.50	10.00	0.00	-103.00	7714.83	-19.199
2:33:48	60.0240	3786.55	350.00	-257.42	0.00	108.50	10.00	0.00	-103.00	7714.83	-19.199
2:33:50	60.0250	3785.61	350.00	-261.74	0.00	109.00	10.00	0.00	-103.00	7715.82	-20.001
2:33:52	60.0250	3785.61	350.00	-261.74	0.00	109.00	10.00	0.00	-103.00	7715.82	-20.001
2:33:54	60.0250	3785.61	350.00	-261.74	0.00	109.00	10.00	0.00	-103.00	7715.82	-20.001

2:33:56	60.0200	3786.86	350.00	-261.74	0.00	109.50	10.00	0.00	-103.00	7716.81	-16.000
2:33:58	60.0200	3786.86	350.00	-261.74	0.00	109.50	10.00	0.00	-103.00	7716.81	-16.000
2:34:00	60.0200	3786.86	350.00	-261.74	0.00	109.50	10.00	0.00	-103.00	7716.81	-16.000
2:34:02	60.0220	3785.73	350.00	-261.74	0.00	110.00	10.00	0.00	-103.00	7717.80	-17.599
2:34:04	60.0220	3785.73	350.00	-261.74	0.00	110.00	10.00	0.00	-103.00	7717.80	-17.599
2:34:06	60.0220	3785.73	350.00	-261.74	0.00	110.00	10.00	0.00	-103.00	7717.80	-17.599
2:34:08	60.0230	3785.80	350.00	-261.74	0.00	110.50	10.00	0.00	-103.00	7718.79	-18.399
2:34:10	60.0230	3785.80	350.00	-261.74	0.00	110.50	10.00	0.00	-103.00	7718.79	-18.399
2:34:12	60.0230	3785.80	350.00	-261.74	0.00	110.50	10.00	0.00	-103.00	7718.79	-18.399
2:34:14	60.0190	3787.63	350.00	-261.74	0.00	111.00	10.00	0.00	-103.00	7719.78	-15.201
2:34:16	60.0190	3787.63	350.00	-261.74	0.00	111.00	10.00	0.00	-103.00	7719.78	-15.201
2:34:18	60.0190	3787.63	350.00	-261.74	0.00	111.00	10.00	0.00	-103.00	7719.78	-15.201
2:34:20	60.0180	3789.40	350.00	-271.88	0.00	111.50	10.00	0.00	-103.00	7720.77	-14.401
2:34:22	60.0180	3789.40	350.00	-271.88	0.00	111.50	10.00	0.00	-103.00	7720.77	-14.401
2:34:24	60.0180	3789.40	350.00	-271.88	0.00	111.50	10.00	0.00	-103.00	7720.77	-14.401
2:34:26	60.0190	3789.37	350.00	-271.88	0.00	112.00	10.00	0.00	-103.00	7721.76	-15.201
2:34:28	60.0190	3789.37	350.00	-271.88	0.00	112.00	10.00	0.00	-103.00	7721.76	-15.201
2:34:30	60.0190	3789.37	350.00	-271.88	0.00	112.00	10.00	0.00	-103.00	7721.76	-15.201
2:34:32	60.0160	3788.93	350.00	-271.88	0.00	112.50	10.00	0.00	-103.00	7722.75	-12.799
2:34:34	60.0160	3788.93	350.00	-271.88	0.00	112.50	10.00	0.00	-103.00	7722.75	-12.799
2:34:36	60.0160	3788.93	350.00	-271.88	0.00	112.50	10.00	0.00	-103.00	7722.75	-12.799
2:34:38	60.0120	3790.41	350.00	-271.88	0.00	113.00	10.00	0.00	-103.00	7723.74	-9.601
2:34:40	60.0120	3790.41	350.00	-271.88	0.00	113.00	10.00	0.00	-103.00	7723.74	-9.601
2:34:42	60.0120	3790.41	350.00	-271.88	0.00	113.00	10.00	0.00	-103.00	7723.74	-9.601
2:34:44	60.0070	3792.95	350.00	-271.88	0.00	113.50	10.00	0.00	-103.00	7724.73	-5.600
2:34:46	60.0070	3792.95	350.00	-271.88	0.00	113.50	10.00	0.00	-103.00	7724.73	-5.600
2:34:48	60.0070	3792.95	350.00	-271.88	0.00	113.50	10.00	0.00	-103.00	7724.73	-5.600
2:34:50	60.0090	3791.43	350.00	-262.07	0.00	114.00	10.00	0.00	-103.00	7725.72	-7.199
2:34:52	60.0090	3791.43	350.00	-262.07	0.00	114.00	10.00	0.00	-103.00	7725.72	-7.199
2:34:54	60.0090	3791.43	350.00	-262.07	0.00	114.00	10.00	0.00	-103.00	7725.72	-7.199
2:34:56	59.9990	3790.22	350.00	-262.07	0.00	114.50	10.00	0.00	-103.00	7726.71	0.800
2:34:58	59.9990	3790.22	350.00	-262.07	0.00	114.50	10.00	0.00	-103.00	7726.71	0.800
2:35:00	59.9990	3790.22	350.00	-262.07	0.00	114.50	10.00	0.00	-103.00	7726.71	0.800
2:35:02	59.9910	3788.10	350.00	-262.07	0.00	115.00	10.00	0.00	-103.00	7727.70	7.199
2:35:04	59.9910	3788.10	350.00	-262.07	0.00	115.00	10.00	0.00	-103.00	7727.70	7.199
2:35:06	59.9910	3788.10	350.00	-262.07	0.00	115.00	10.00	0.00	-103.00	7727.70	7.199
2:35:08	59.9880	3788.50	350.00	-262.07	0.00	115.50	10.00	0.00	-103.00	7728.69	9.601
2:35:10	59.9880	3788.50	350.00	-262.07	0.00	115.50	10.00	0.00	-103.00	7728.69	9.601
2:35:12	59.9880	3788.50	350.00	-262.07	0.00	115.50	10.00	0.00	-103.00	7728.69	9.601
2:35:14	59.9840	3788.10	350.00	-262.07	0.00	116.00	10.00	0.00	-103.00	7729.68	12.799
2:35:16	59.9840	3788.10	350.00	-262.07	0.00	116.00	10.00	0.00	-103.00	7729.68	12.799
2:35:18	59.9840	3788.10	350.00	-262.07	0.00	116.00	10.00	0.00	-103.00	7729.68	12.799
2:35:20	59.9820	3787.73	350.00	-260.36	0.00	116.50	10.00	0.00	-103.00	7730.67	14.401
2:35:22	59.9820	3787.73	350.00	-260.36	0.00	116.50	10.00	0.00	-103.00	7730.67	14.401
2:35:24	59.9820	3787.73	350.00	-260.36	0.00	116.50	10.00	0.00	-103.00	7730.67	14.401
2:35:26	59.9790	3788.26	350.00	-260.36	0.00	117.00	10.00	0.00	-103.00	7731.66	16.800

2:35:28	59.9790	3788.26	350.00	-260.36	0.00	117.00	10.00	0.00	-103.00	7731.66	16.800
2:35:30	59.9790	3788.26	350.00	-260.36	0.00	117.00	10.00	0.00	-103.00	7731.66	16.800
2:35:32	59.9760	3790.66	350.00	-260.36	0.00	117.50	10.00	0.00	-103.00	7732.65	19.199
2:35:34	59.9760	3790.66	350.00	-260.36	0.00	117.50	10.00	0.00	-103.00	7732.65	19.199
2:35:36	59.9760	3790.66	350.00	-260.36	0.00	117.50	10.00	0.00	-103.00	7732.65	19.199
2:35:38	59.9780	3789.27	350.00	-260.36	0.00	118.00	10.00	0.00	-103.00	7733.64	17.599
2:35:40	59.9780	3789.27	350.00	-260.36	0.00	118.00	10.00	0.00	-103.00	7733.64	17.599
2:35:42	59.9780	3789.27	350.00	-260.36	0.00	118.00	10.00	0.00	-103.00	7733.64	17.599
2:35:44	59.9760	3789.91	350.00	-260.36	0.00	118.50	10.00	0.00	-103.00	7734.63	19.199
2:35:46	59.9760	3789.91	350.00	-260.36	0.00	118.50	10.00	0.00	-103.00	7734.63	19.199
2:35:48	59.9760	3789.91	350.00	-260.36	0.00	118.50	10.00	0.00	-103.00	7734.63	19.199
2:35:50	59.9750	3788.96	350.00	-352.64	0.00	119.00	10.00	0.00	-103.00	7735.62	20.001
2:35:52	59.9750	3788.96	350.00	-352.64	0.00	119.00	10.00	0.00	-103.00	7735.62	20.001
2:35:54	59.9750	3788.96	350.00	-352.64	0.00	119.00	10.00	0.00	-103.00	7735.62	20.001
2:35:56	59.9700	3792.91	350.00	-352.64	0.00	119.50	10.00	0.00	-103.00	7736.61	23.999
2:35:58	59.9700	3792.91	350.00	-352.64	0.00	119.50	10.00	0.00	-103.00	7736.61	23.999
2:36:00	59.9700	3792.91	350.00	-352.64	0.00	119.50	10.00	0.00	-103.00	7736.61	23.999
2:36:02	59.9780	3788.08	350.00	-352.64	0.00	120.00	10.00	0.00	-103.00	7737.60	17.599
2:36:04	59.9780	3788.08	350.00	-352.64	0.00	120.00	10.00	0.00	-103.00	7737.60	17.599
2:36:06	59.9780	3788.08	350.00	-352.64	0.00	120.00	10.00	0.00	-103.00	7737.60	17.599
2:36:08	59.9750	3787.16	350.00	-352.64	0.00	120.50	10.00	0.00	-103.00	7738.59	20.001
2:36:10	59.9750	3787.16	350.00	-352.64	0.00	120.50	10.00	0.00	-103.00	7738.59	20.001
2:36:12	59.9750	3787.16	350.00	-352.64	0.00	120.50	10.00	0.00	-103.00	7738.59	20.001
2:36:14	59.9750	3786.49	350.00	-352.64	0.00	121.00	10.00	0.00	-103.00	7739.58	20.001
2:36:16	59.9750	3786.49	350.00	-352.64	0.00	121.00	10.00	0.00	-103.00	7739.58	20.001
2:36:18	59.9750	3786.49	350.00	-352.64	0.00	121.00	10.00	0.00	-103.00	7739.58	20.001
2:36:20	59.9660	3790.51	350.00	-354.90	0.00	121.50	10.00	0.00	-103.00	7740.57	27.200
2:36:22	59.9660	3790.51	350.00	-354.90	0.00	121.50	10.00	0.00	-103.00	7740.57	27.200
2:36:24	59.9660	3790.51	350.00	-354.90	0.00	121.50	10.00	0.00	-103.00	7740.57	27.200
2:36:26	59.9690	3790.96	350.00	-354.90	0.00	122.00	10.00	0.00	-103.00	7741.56	24.799
2:36:28	59.9690	3790.96	350.00	-354.90	0.00	122.00	10.00	0.00	-103.00	7741.56	24.799
2:36:30	59.9690	3790.96	350.00	-354.90	0.00	122.00	10.00	0.00	-103.00	7741.56	24.799
2:36:32	59.9650	3789.17	350.00	-354.90	0.00	122.50	10.00	0.00	-103.00	7742.55	28.000
2:36:34	59.9650	3789.17	350.00	-354.90	0.00	122.50	10.00	0.00	-103.00	7742.55	28.000
2:36:36	59.9650	3789.17	350.00	-354.90	0.00	122.50	10.00	0.00	-103.00	7742.55	28.000
2:36:38	59.9720	3784.83	350.00	-354.90	0.00	123.00	10.00	0.00	-103.00	7743.54	22.400
2:36:40	59.9720	3784.83	350.00	-354.90	0.00	123.00	10.00	0.00	-103.00	7743.54	22.400
2:36:42	59.9720	3784.83	350.00	-354.90	0.00	123.00	10.00	0.00	-103.00	7743.54	22.400
2:36:44	59.9690	3782.81	350.00	-354.90	0.00	123.50	10.00	0.00	-103.00	7744.53	24.799
2:36:46	59.9690	3782.81	350.00	-354.90	0.00	123.50	10.00	0.00	-103.00	7744.53	24.799
2:36:48	59.9690	3782.81	350.00	-354.90	0.00	123.50	10.00	0.00	-103.00	7744.53	24.799
2:36:50	59.9670	3779.06	350.00	-340.47	0.00	124.00	10.00	0.00	-103.00	7745.52	26.401
2:36:52	59.9670	3779.06	350.00	-340.47	0.00	124.00	10.00	0.00	-103.00	7745.52	26.401
2:36:54	59.9670	3779.06	350.00	-340.47	0.00	124.00	10.00	0.00	-103.00	7745.52	26.401
2:36:56	59.9650	3779.33	350.00	-340.47	0.00	124.50	10.00	0.00	-103.00	7746.51	28.000
2:36:58	59.9650	3779.33	350.00	-340.47	0.00	124.50	10.00	0.00	-103.00	7746.51	28.000

2:37:00	59.9650	3779.33	350.00	-340.47	0.00	124.50	10.00	0.00	-103.00	7746.51	28.000
2:37:02	59.9650	3776.60	350.00	-340.47	0.00	125.00	10.00	0.00	-103.00	7747.50	28.000
2:37:04	59.9650	3776.60	350.00	-340.47	0.00	125.00	10.00	0.00	-103.00	7747.50	28.000
2:37:06	59.9650	3776.60	350.00	-340.47	0.00	125.00	10.00	0.00	-103.00	7747.50	28.000
2:37:08	59.9700	3773.17	350.00	-340.47	0.00	125.50	10.00	0.00	-103.00	7748.49	23.999
2:37:10	59.9700	3773.17	350.00	-340.47	0.00	125.50	10.00	0.00	-103.00	7748.49	23.999
2:37:12	59.9700	3773.17	350.00	-340.47	0.00	125.50	10.00	0.00	-103.00	7748.49	23.999
2:37:14	59.9680	3768.50	350.00	-340.47	0.00	126.00	10.00	0.00	-103.00	7749.48	25.601
2:37:16	59.9680	3768.50	350.00	-340.47	0.00	126.00	10.00	0.00	-103.00	7749.48	25.601
2:37:18	59.9680	3768.50	350.00	-340.47	0.00	126.00	10.00	0.00	-103.00	7749.48	25.601
2:37:20	59.9700	3764.79	350.00	-337.64	0.00	126.50	10.00	0.00	-103.00	7750.47	23.999
2:37:22	59.9700	3764.79	350.00	-337.64	0.00	126.50	10.00	0.00	-103.00	7750.47	23.999
2:37:24	59.9700	3764.79	350.00	-337.64	0.00	126.50	10.00	0.00	-103.00	7750.47	23.999
2:37:26	59.9650	3761.89	350.00	-337.64	0.00	127.00	10.00	0.00	-103.00	7751.46	28.000
2:37:28	59.9650	3761.89	350.00	-337.64	0.00	127.00	10.00	0.00	-103.00	7751.46	28.000
2:37:30	59.9650	3761.89	350.00	-337.64	0.00	127.00	10.00	0.00	-103.00	7751.46	28.000
2:37:32	59.9670	3760.16	350.00	-337.64	0.00	127.50	10.00	0.00	-103.00	7752.45	26.401
2:37:34	59.9670	3760.16	350.00	-337.64	0.00	127.50	10.00	0.00	-103.00	7752.45	26.401
2:37:36	59.9670	3760.16	350.00	-337.64	0.00	127.50	10.00	0.00	-103.00	7752.45	26.401
2:37:38	59.9790	3757.77	350.00	-337.64	0.00	128.00	10.00	0.00	-103.00	7753.44	16.800
2:37:40	59.9790	3757.77	350.00	-337.64	0.00	128.00	10.00	0.00	-103.00	7753.44	16.800
2:37:42	59.9790	3757.77	350.00	-337.64	0.00	128.00	10.00	0.00	-103.00	7753.44	16.800
2:37:44	59.9740	3751.64	350.00	-337.64	0.00	128.50	10.00	0.00	-103.00	7754.43	20.801
2:37:46	59.9740	3751.64	350.00	-337.64	0.00	128.50	10.00	0.00	-103.00	7754.43	20.801
2:37:48	59.9740	3751.64	350.00	-337.64	0.00	128.50	10.00	0.00	-103.00	7754.43	20.801
2:37:50	59.9620	3759.25	350.00	-284.36	0.00	129.00	10.00	0.00	-103.00	7755.42	30.399
2:37:52	59.9620	3759.25	350.00	-284.36	0.00	129.00	10.00	0.00	-103.00	7755.42	30.399
2:37:54	59.9620	3759.25	350.00	-284.36	0.00	129.00	10.00	0.00	-103.00	7755.42	30.399
2:37:56	59.9610	3762.02	350.00	-284.36	0.00	129.50	10.00	0.00	-103.00	7756.41	31.201
2:37:58	59.9610	3762.02	350.00	-284.36	0.00	129.50	10.00	0.00	-103.00	7756.41	31.201
2:38:00	59.9610	3762.02	350.00	-284.36	0.00	129.50	10.00	0.00	-103.00	7756.41	31.201
2:38:02	59.9590	3763.86	350.00	-284.36	0.00	130.00	10.00	0.00	-103.00	7757.40	32.800
2:38:04	59.9590	3763.86	350.00	-284.36	0.00	130.00	10.00	0.00	-103.00	7757.40	32.800
2:38:06	59.9590	3763.86	350.00	-284.36	0.00	130.00	10.00	0.00	-103.00	7757.40	32.800
2:38:08	59.9530	3768.34	350.00	-284.36	0.00	130.50	10.00	0.00	-103.00	7758.39	37.601
2:38:10	59.9530	3768.34	350.00	-284.36	0.00	130.50	10.00	0.00	-103.00	7758.39	37.601
2:38:12	59.9530	3768.34	350.00	-284.36	0.00	130.50	10.00	0.00	-103.00	7758.39	37.601
2:38:14	59.9560	3765.61	350.00	-284.36	0.00	131.00	10.00	0.00	-103.00	7759.38	35.199
2:38:16	59.9560	3765.61	350.00	-284.36	0.00	131.00	10.00	0.00	-103.00	7759.38	35.199
2:38:18	59.9560	3765.61	350.00	-284.36	0.00	131.00	10.00	0.00	-103.00	7759.38	35.199
2:38:20	59.9610	3761.92	350.00	-260.47	0.00	131.50	10.00	0.00	-103.00	7760.37	31.201
2:38:22	59.9610	3761.92	350.00	-260.47	0.00	131.50	10.00	0.00	-103.00	7760.37	31.201
2:38:24	59.9610	3761.92	350.00	-260.47	0.00	131.50	10.00	0.00	-103.00	7760.37	31.201
2:38:26	59.9630	3752.43	350.00	-260.47	0.00	132.00	10.00	0.00	-103.00	7761.36	29.599
2:38:28	59.9630	3752.43	350.00	-260.47	0.00	132.00	10.00	0.00	-103.00	7761.36	29.599
2:38:30	59.9630	3752.43	350.00	-260.47	0.00	132.00	10.00	0.00	-103.00	7761.36	29.599

2:38:32	59.9680	3753.51	350.00	-260.47	0.00	132.50	10.00	0.00	-103.00	7762.35	25.601
2:38:34	59.9680	3753.51	350.00	-260.47	0.00	132.50	10.00	0.00	-103.00	7762.35	25.601
2:38:36	59.9680	3753.51	350.00	-260.47	0.00	132.50	10.00	0.00	-103.00	7762.35	25.601
2:38:38	59.9730	3753.18	350.00	-260.47	0.00	133.00	10.00	0.00	-103.00	7763.34	21.600
2:38:40	59.9730	3753.18	350.00	-260.47	0.00	133.00	10.00	0.00	-103.00	7763.34	21.600
2:38:42	59.9730	3753.18	350.00	-260.47	0.00	133.00	10.00	0.00	-103.00	7763.34	21.600
2:38:44	59.9670	3752.87	350.00	-260.47	0.00	133.50	10.00	0.00	-103.00	7764.33	26.401
2:38:46	59.9670	3752.87	350.00	-260.47	0.00	133.50	10.00	0.00	-103.00	7764.33	26.401
2:38:48	59.9670	3752.87	350.00	-260.47	0.00	133.50	10.00	0.00	-103.00	7764.33	26.401
2:38:50	59.9760	3747.48	350.00	-253.14	0.00	134.00	10.00	0.00	-103.00	7765.32	19.199
2:38:52	59.9760	3747.48	350.00	-253.14	0.00	134.00	10.00	0.00	-103.00	7765.32	19.199
2:38:54	59.9760	3747.48	350.00	-253.14	0.00	134.00	10.00	0.00	-103.00	7765.32	19.199
2:38:56	59.9730	3746.65	350.00	-253.14	0.00	134.50	10.00	0.00	-103.00	7766.31	21.600
2:38:58	59.9730	3746.65	350.00	-253.14	0.00	134.50	10.00	0.00	-103.00	7766.31	21.600
2:39:00	59.9730	3746.65	350.00	-253.14	0.00	134.50	10.00	0.00	-103.00	7766.31	21.600
2:39:02	59.9810	3741.62	350.00	-253.14	0.00	135.00	10.00	0.00	-103.00	7767.30	15.201
2:39:04	59.9810	3741.62	350.00	-253.14	0.00	135.00	10.00	0.00	-103.00	7767.30	15.201
2:39:06	59.9810	3741.62	350.00	-253.14	0.00	135.00	10.00	0.00	-103.00	7767.30	15.201
2:39:08	59.9820	3738.90	350.00	-253.14	0.00	135.50	10.00	0.00	-103.00	7768.29	14.401
2:39:10	59.9820	3738.90	350.00	-253.14	0.00	135.50	10.00	0.00	-103.00	7768.29	14.401
2:39:12	59.9820	3738.90	350.00	-253.14	0.00	135.50	10.00	0.00	-103.00	7768.29	14.401
2:39:14	59.9820	3736.31	350.00	-253.14	0.00	136.00	10.00	0.00	-103.00	7769.28	14.401
2:39:16	59.9820	3736.31	350.00	-253.14	0.00	136.00	10.00	0.00	-103.00	7769.28	14.401
2:39:18	59.9820	3736.31	350.00	-253.14	0.00	136.00	10.00	0.00	-103.00	7769.28	14.401
2:39:20	59.9800	3735.65	350.00	-251.93	0.00	136.50	10.00	0.00	-103.00	7770.27	16.000
2:39:22	59.9800	3735.65	350.00	-251.93	0.00	136.50	10.00	0.00	-103.00	7770.27	16.000
2:39:24	59.9800	3735.65	350.00	-251.93	0.00	136.50	10.00	0.00	-103.00	7770.27	16.000
2:39:26	59.9800	3736.75	350.00	-251.93	0.00	137.00	10.00	0.00	-103.00	7771.26	16.000
2:39:28	59.9800	3736.75	350.00	-251.93	0.00	137.00	10.00	0.00	-103.00	7771.26	16.000
2:39:30	59.9800	3736.75	350.00	-251.93	0.00	137.00	10.00	0.00	-103.00	7771.26	16.000
2:39:32	59.9780	3736.09	350.00	-251.93	0.00	137.50	10.00	0.00	-103.00	7772.25	17.599
2:39:34	59.9780	3736.09	350.00	-251.93	0.00	137.50	10.00	0.00	-103.00	7772.25	17.599
2:39:36	59.9780	3736.09	350.00	-251.93	0.00	137.50	10.00	0.00	-103.00	7772.25	17.599
2:39:38	59.9710	3738.87	350.00	-251.93	0.00	138.00	10.00	0.00	-103.00	7773.24	23.199
2:39:40	59.9710	3738.87	350.00	-251.93	0.00	138.00	10.00	0.00	-103.00	7773.24	23.199
2:39:42	59.9710	3738.87	350.00	-251.93	0.00	138.00	10.00	0.00	-103.00	7773.24	23.199
2:39:44	59.9750	3737.68	350.00	-251.93	0.00	138.50	10.00	0.00	-103.00	7774.23	20.001
2:39:46	59.9750	3737.68	350.00	-251.93	0.00	138.50	10.00	0.00	-103.00	7774.23	20.001
2:39:48	59.9750	3737.68	350.00	-251.93	0.00	138.50	10.00	0.00	-103.00	7774.23	20.001
2:39:50	59.9690	3740.02	350.00	-250.67	0.00	139.00	10.00	0.00	-103.00	7775.22	24.799
2:39:52	59.9690	3740.02	350.00	-250.67	0.00	139.00	10.00	0.00	-103.00	7775.22	24.799
2:39:54	59.9690	3740.02	350.00	-250.67	0.00	139.00	10.00	0.00	-103.00	7775.22	24.799
2:39:56	59.9720	3742.42	350.00	-250.67	0.00	139.50	10.00	0.00	-103.00	7776.21	22.400
2:39:58	59.9720	3742.42	350.00	-250.67	0.00	139.50	10.00	0.00	-103.00	7776.21	22.400
2:40:00	59.9720	3742.42	350.00	-250.67	0.00	139.50	10.00	0.00	-103.00	7776.21	22.400
2:40:02	59.9770	3741.72	350.00	-250.67	0.00	140.00	10.00	0.00	-103.00	7777.20	18.399

2:40:04	59.9770	3741.72	350.00	-250.67	0.00	140.00	10.00	0.00	-103.00	7777.20	18.399
2:40:06	59.9770	3741.72	350.00	-250.67	0.00	140.00	10.00	0.00	-103.00	7777.20	18.399
2:40:08	59.9760	3739.96	350.00	-250.67	0.00	140.50	10.00	0.00	-103.00	7778.19	19.199
2:40:10	59.9760	3739.96	350.00	-250.67	0.00	140.50	10.00	0.00	-103.00	7778.19	19.199
2:40:12	59.9760	3739.96	350.00	-250.67	0.00	140.50	10.00	0.00	-103.00	7778.19	19.199
2:40:14	59.9770	3741.27	350.00	-250.67	0.00	141.00	10.00	0.00	-103.00	7779.18	18.399
2:40:16	59.9770	3741.27	350.00	-250.67	0.00	141.00	10.00	0.00	-103.00	7779.18	18.399
2:40:18	59.9770	3741.27	350.00	-250.67	0.00	141.00	10.00	0.00	-103.00	7779.18	18.399
2:40:20	59.9790	3738.71	350.00	-253.63	0.00	141.50	10.00	0.00	-103.00	7780.17	16.800
2:40:22	59.9790	3738.71	350.00	-253.63	0.00	141.50	10.00	0.00	-103.00	7780.17	16.800
2:40:24	59.9790	3738.71	350.00	-253.63	0.00	141.50	10.00	0.00	-103.00	7780.17	16.800
2:40:26	59.9740	3738.10	350.00	-253.63	0.00	142.00	10.00	0.00	-103.00	7781.16	20.801
2:40:28	59.9740	3738.10	350.00	-253.63	0.00	142.00	10.00	0.00	-103.00	7781.16	20.801
2:40:30	59.9740	3738.10	350.00	-253.63	0.00	142.00	10.00	0.00	-103.00	7781.16	20.801
2:40:32	59.9710	3743.42	350.00	-253.63	0.00	142.50	10.00	0.00	-103.00	7782.15	23.199
2:40:34	59.9710	3743.42	350.00	-253.63	0.00	142.50	10.00	0.00	-103.00	7782.15	23.199
2:40:36	59.9710	3743.42	350.00	-253.63	0.00	142.50	10.00	0.00	-103.00	7782.15	23.199
2:40:38	59.9660	3747.34	350.00	-253.63	0.00	143.00	10.00	0.00	-103.00	7783.14	27.200
2:40:40	59.9660	3747.34	350.00	-253.63	0.00	143.00	10.00	0.00	-103.00	7783.14	27.200
2:40:42	59.9660	3747.34	350.00	-253.63	0.00	143.00	10.00	0.00	-103.00	7783.14	27.200
2:40:44	59.9730	3746.22	350.00	-253.63	0.00	143.50	10.00	0.00	-103.00	7784.13	21.600
2:40:46	59.9730	3746.22	350.00	-253.63	0.00	143.50	10.00	0.00	-103.00	7784.13	21.600
2:40:48	59.9730	3746.22	350.00	-253.63	0.00	143.50	10.00	0.00	-103.00	7784.13	21.600
2:40:50	59.9720	3743.15	350.00	-246.96	0.00	144.00	10.00	0.00	-103.00	7785.12	22.400
2:40:52	59.9720	3743.15	350.00	-246.96	0.00	144.00	10.00	0.00	-103.00	7785.12	22.400
2:40:54	59.9720	3743.15	350.00	-246.96	0.00	144.00	10.00	0.00	-103.00	7785.12	22.400
2:40:56	59.9700	3733.38	350.00	-246.96	0.00	144.50	10.00	0.00	-103.00	7786.11	23.999
2:40:58	59.9700	3733.38	350.00	-246.96	0.00	144.50	10.00	0.00	-103.00	7786.11	23.999
2:41:00	59.9700	3733.38	350.00	-246.96	0.00	144.50	10.00	0.00	-103.00	7786.11	23.999
2:41:02	59.9820	3736.23	350.00	-246.96	0.00	145.00	10.00	0.00	-103.00	7787.10	14.401
2:41:04	59.9820	3736.23	350.00	-246.96	0.00	145.00	10.00	0.00	-103.00	7787.10	14.401
2:41:06	59.9820	3736.23	350.00	-246.96	0.00	145.00	10.00	0.00	-103.00	7787.10	14.401
2:41:08	59.9850	3733.12	350.00	-246.96	0.00	145.50	10.00	0.00	-103.00	7788.09	12.000
2:41:10	59.9850	3733.12	350.00	-246.96	0.00	145.50	10.00	0.00	-103.00	7788.09	12.000
2:41:12	59.9850	3733.12	350.00	-246.96	0.00	145.50	10.00	0.00	-103.00	7788.09	12.000
2:41:14	59.9890	3725.46	350.00	-246.96	0.00	146.00	10.00	0.00	-103.00	7789.08	8.801
2:41:16	59.9890	3725.46	350.00	-246.96	0.00	146.00	10.00	0.00	-103.00	7789.08	8.801
2:41:18	59.9890	3725.46	350.00	-246.96	0.00	146.00	10.00	0.00	-103.00	7789.08	8.801
2:41:20	59.9900	3720.94	350.00	-254.54	0.00	146.50	10.00	0.00	-103.00	7790.07	7.999
2:41:22	59.9900	3720.94	350.00	-254.54	0.00	146.50	10.00	0.00	-103.00	7790.07	7.999
2:41:24	59.9900	3720.94	350.00	-254.54	0.00	146.50	10.00	0.00	-103.00	7790.07	7.999
2:41:26	60.0010	3727.75	350.00	-254.54	0.00	147.00	10.00	0.00	-103.00	7791.06	-0.800
2:41:28	60.0010	3727.75	350.00	-254.54	0.00	147.00	10.00	0.00	-103.00	7791.06	-0.800
2:41:30	60.0010	3727.75	350.00	-254.54	0.00	147.00	10.00	0.00	-103.00	7791.06	-0.800
2:41:32	60.0060	3727.23	350.00	-254.54	0.00	147.50	10.00	0.00	-103.00	7792.05	-4.800
2:41:34	60.0060	3727.23	350.00	-254.54	0.00	147.50	10.00	0.00	-103.00	7792.05	-4.800

2:41:36	60.0060	3727.23	350.00	-254.54	0.00	147.50	10.00	0.00	-103.00	7792.05	-4.800
2:41:38	60.0190	3726.02	350.00	-254.54	0.00	148.00	10.00	0.00	-103.00	7793.04	-15.201
2:41:40	60.0190	3726.02	350.00	-254.54	0.00	148.00	10.00	0.00	-103.00	7793.04	-15.201
2:41:42	60.0190	3726.02	350.00	-254.54	0.00	148.00	10.00	0.00	-103.00	7793.04	-15.201
2:41:44	60.0260	3717.33	350.00	-254.54	0.00	148.50	10.00	0.00	-103.00	7794.03	-20.801
2:41:46	60.0260	3717.33	350.00	-254.54	0.00	148.50	10.00	0.00	-103.00	7794.03	-20.801
2:41:48	60.0260	3717.33	350.00	-254.54	0.00	148.50	10.00	0.00	-103.00	7794.03	-20.801
2:41:50	60.0290	3715.17	350.00	-256.57	0.00	149.00	10.00	0.00	-103.00	7795.02	-23.199
2:41:52	60.0290	3715.17	350.00	-256.57	0.00	149.00	10.00	0.00	-103.00	7795.02	-23.199
2:41:54	60.0290	3715.17	350.00	-256.57	0.00	149.00	10.00	0.00	-103.00	7795.02	-23.199
2:41:56	60.0370	3710.16	350.00	-256.57	0.00	149.50	10.00	0.00	-103.00	7796.01	-29.599
2:41:58	60.0370	3710.16	350.00	-256.57	0.00	149.50	10.00	0.00	-103.00	7796.01	-29.599
2:42:00	60.0370	3710.16	350.00	-256.57	0.00	149.50	10.00	0.00	-103.00	7796.01	-29.599
2:42:02	60.0410	3704.59	350.00	-256.57	0.00	150.00	10.00	0.00	-103.00	7797.00	-32.800
2:42:04	60.0410	3704.59	350.00	-256.57	0.00	150.00	10.00	0.00	-103.00	7797.00	-32.800
2:42:06	60.0410	3704.59	350.00	-256.57	0.00	150.00	10.00	0.00	-103.00	7797.00	-32.800
2:42:08	60.0430	3701.32	350.00	-256.57	0.00	150.50	10.00	0.00	-103.00	7797.99	-34.399
2:42:10	60.0430	3701.32	350.00	-256.57	0.00	150.50	10.00	0.00	-103.00	7797.99	-34.399
2:42:12	60.0430	3701.32	350.00	-256.57	0.00	150.50	10.00	0.00	-103.00	7797.99	-34.399
2:42:14	60.0460	3699.73	350.00	-256.57	0.00	151.00	10.00	0.00	-103.00	7798.98	-36.801
2:42:16	60.0460	3699.73	350.00	-256.57	0.00	151.00	10.00	0.00	-103.00	7798.98	-36.801
2:42:18	60.0460	3699.73	350.00	-256.57	0.00	151.00	10.00	0.00	-103.00	7798.98	-36.801
2:42:20	60.0430	3696.86	350.00	-258.37	0.00	151.50	10.00	0.00	-103.00	7799.97	-34.399
2:42:22	60.0430	3696.86	350.00	-258.37	0.00	151.50	10.00	0.00	-103.00	7799.97	-34.399
2:42:24	60.0430	3696.86	350.00	-258.37	0.00	151.50	10.00	0.00	-103.00	7799.97	-34.399

											T-66 sec	2:26:18			
											T-64 sec	2:26:20			
											T-62 sec	2:26:22			
											T-60 sec	2:26:24			
											T-58 sec	2:26:26			
											T-56 sec	2:26:28			
											T-54 sec	2:26:30			
											T-52 sec	2:26:32			
											T-50 sec	2:26:34			
											T-48 sec	2:26:36			
											T-46 sec	2:26:38			
											T-44 sec	2:26:40			
											T-42 sec	2:26:42			
											T-40 sec	2:26:44			
											T-38 sec	2:26:46			
											T-36 sec	2:26:48			
											T-34 sec	2:26:50			
											T-32 sec	2:26:52			
											T-30 sec	2:26:54			
											T-28 sec	2:26:56			
											T-26 sec	2:26:58			
											T-24 sec	2:27:00			
											T-22 sec	2:27:02			
											T-20 sec	2:27:04			
											T-18 sec	2:27:06			
3645.041	350.000	-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-16 sec	2:27:08	60.042	3645.041	350.000
3645.041	350.000	-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-14 sec	2:27:10	60.042	3645.041	350.000
3645.041	350.000	-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		$\mathrm{T}-12 \mathrm{sec}$	2:27:12	60.042	3645.041	350.000
3645.041	350.000	-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-10 sec	2:27:14	60.042	3645.041	350.000
3645.041	350.000	-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-08 sec	2:27:16	60.042	3645.041	350.000
3645.041	350.000	-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-06 sec	2:27:18	60.042	3645.041	350.000
3645.041	350.000	-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-04 sec	2:27:20	60.042	3645.041	350.000
3645.041	350.000	-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-02 sec	2:27:22	60.042	3645.041	350.000
											T+0 sec	2:27:24			
											T+02 sec	2:27:26			
											T+04 sec	2:27:28			
											T+06 sec	2:27:30			
											T+08 sec	2:27:32			
											T+10 sec	2:27:34			
3768.229	335.000	-206.459	0.000	78.143	10.000	0.000	-103.000	7631.714	96.228	3722.195	T+12 sec	2:27:36			
3768.229	335.000	-206.459	0.000	78.143	10.000	0.000	-103.000	7631.714	96.228	3722.195	T+14 sec	2:27:38			
3768.229	335.000	-206.459	0.000	78.143	10.000	0.000	-103.000	7631.714	96.228	3722.195	T+16 sec	2:27:40			
3768.229	335.000	-206.459	0.000	78.143	10.000	0.000	-103.000	7631.714	96.228	3722.195	$\mathrm{T}+18 \mathrm{sec}$	2:27:42	59.883	3780.420	335.000
3768.229	335.000	-206.459	0.000	78.143	10.000	0.000	-103.000	7631.714	96.228	3722.195	$\mathrm{T}+20 \mathrm{sec}$	2:27:44	59.883	3780.420	335.000
3768.229	335.000	-206.459	0.000	78.143	10.000	0.000	-103.000	7631.714	96.228	3722.195	T+22 sec	2:27:46	59.883	3780.420	335.000
3768.229	335.000	-206.459	0.000	78.143	10.000	0.000	-103.000	7631.714	96.228	3722.195	T+24 sec	2:27:48	59.883	3780.420	335.000

									$\begin{aligned} & \mathrm{T}-20 \mathrm{sec} \\ & \mathrm{~T}-18 \mathrm{sec} \end{aligned}$	$\begin{aligned} & \text { 2:27:04 } \\ & \text { 2:27:06 } \end{aligned}$					
-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-16 sec	2:27:08	60.042	3645.041	350.000	-165.476	0.000
-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-14 sec	2:27:10	60.042	3645.041	350.000	-165.476	0.000
-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-12 sec	2:27:12	60.042	3645.041	350.000	-165.476	0.000
-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-10 sec	2:27:14	60.042	3645.041	350.000	-165.476	0.000
-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-08 sec	2:27:16	60.042	3645.041	350.000	-165.476	0.000
-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-06 sec	2:27:18	60.042	3645.041	350.000	-165.476	0.000
-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-04 sec	2:27:20	60.042	3645.041	350.000	-165.476	0.000
-165.476	0.000	76.063	10.000	15.000	-103.000	7650.604	-33.600		T-02 sec	2:27:22	60.042	3645.041	350.000	-165.476	0.000
									T+0 sec	2:27:24					
									T+02 sec	2:27:26					
									T+04 sec	2:27:28					
									T+06 sec	2:27:30					
									T+08 sec	2:27:32					
									T+10 sec	2:27:34					
									T+12 sec	2:27:36					
									T+14 sec	2:27:38					
									T+16 sec	2:27:40					
-206.459	0.000	78.643	10.000	0.000	-103.000	7630.571	93.258	3719.353	T+18 sec	2:27:42					
-206.459	0.000	78.643	10.000	0.000	-103.000	7630.571	93.258	3719.353	$\mathrm{T}+20 \mathrm{sec}$	2:27:44	59.887	3785.264	335.000	-208.640	0.000
-206.459	0.000	78.643	10.000	0.000	-103.000	7630.571	93.258	3719.353	T+22 sec	2:27:46	59.887	3785.264	335.000	-208.640	0.000
-206.459	0.000	78.643	10.000	0.000	-103.000	7630.571	93.258	3719.353	T+24 sec	2:27:48	59.887	3785.264	335.000	-208.640	0.000

-206.459	0.000	78.643	10.000	0.000	-103.000	7630.571	93.258	3719.353	T+26 sec	2:27:50	59.887	3785.264	335.000	-208.640	0.000
-206.459	0.000	78.643	10.000	0.000	-103.000	7630.571	93.258	3719.353	$\mathrm{T}+28 \mathrm{sec}$	2:27:52	59.887	3785.264	335.000	-208.640	0.000
-206.459	0.000	78.643	10.000	0.000	-103.000	7630.571	93.258	3719.353	$\mathrm{T}+30 \mathrm{sec}$	2:27:54	59.887	3785.264	335.000	-208.640	0.000
									$\mathrm{T}+32 \mathrm{sec}$	2:27:56	59.887	3785.264	335.000	-208.640	0.000
									$\mathrm{T}+34 \mathrm{sec}$	2:27:58	59.887	3785.264	335.000	-208.640	0.000
									$\mathrm{T}+36 \mathrm{sec}$	2:28:00	59.887	3785.264	335.000	-208.640	0.000
									$\mathrm{T}+38 \mathrm{sec}$	2:28:02	59.887	3785.264	335.000	-208.640	0.000
									$\mathrm{T}+40 \mathrm{sec}$	2:28:04	59.887	3785.264	335.000	-208.640	0.000
									T+42 sec	2:28:06					
									$\mathrm{T}+44 \mathrm{sec}$	2:28:08					
									$\mathrm{T}+46 \mathrm{sec}$	2:28:10					
									$\mathrm{T}+48 \mathrm{sec}$	2:28:12					
									T+50 sec	2:28:14					
									T+52 sec	2:28:16					
									T+54 sec	2:28:18					
									T+56 sec	2:28:20					
									T+58 sec	2:28:22					
									T+60 sec	2:28:24					
									T+62 sec	2:28:26					
									T+64 sec	2:28:28					
									T+66 sec	2:28:30					
									T+68 sec	2:28:32					
									T+70 sec	2:28:34					
									T+72 sec	2:28:36					
									T+74 sec	2:28:38					
									$\mathrm{T}+76 \mathrm{sec}$	2:28:40					
									$\mathrm{T}+78 \mathrm{sec}$	2:28:42					
									T+80 sec	2:28:44					

							T-66 sec	2:26:18							
							T-64 sec	2:26:20							
							T-62 sec	2:26:22							
							T-60 sec	2:26:24							
							T-58 sec	2:26:26							
							T-56 sec	2:26:28							
							T-54 sec	2:26:30							
							T-52 sec	2:26:32							
							T-50 sec	2:26:34							
							T-48 sec	2:26:36							
							T-46 sec	2:26:38							
							T-44 sec	2:26:40							
							T-42 sec	2:26:42							
							T-40 sec	2:26:44							
							T-38 sec	2:26:46							
							T-36 sec	2:26:48							
							T-34 sec	2:26:50							
							T-32 sec	2:26:52							
							T-30 sec	2:26:54							
							T-28 sec	2:26:56							
							T-26 sec	2:26:58							
							T-24 sec	2:27:00							
							T-22 sec	2:27:02							
							T-20 sec	2:27:04							
							T-18 sec	2:27:06							
76.063	10.000	15.000	-103.000	7650.604	-33.600		T-16 sec	2:27:08	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000
76.063	10.000	15.000	-103.000	7650.604	-33.600		T-14 sec	2:27:10	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000
76.063	10.000	15.000	-103.000	7650.604	-33.600		T-12 sec	2:27:12	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000
76.063	10.000	15.000	-103.000	7650.604	-33.600		T-10 sec	2:27:14	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000
76.063	10.000	15.000	-103.000	7650.604	-33.600		T-08 sec	2:27:16	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000
76.063	10.000	15.000	-103.000	7650.604	-33.600		T-06 sec	2:27:18	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000
76.063	10.000	15.000	-103.000	7650.604	-33.600		T-04 sec	2:27:20	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000
76.063	10.000	15.000	-103.000	7650.604	-33.600		T-02 sec	2:27:22	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000
							T+0 sec	2:27:24							
							T+02 sec	2:27:26							
							T+04 sec	2:27:28							
							T+06 sec	2:27:30							
							T+08 sec	2:27:32							
							T+10 sec	2:27:34							
							T+12 sec	2:27:36							
							T+14 sec	2:27:38							
							T+16 sec	2:27:40							
							T+18 sec	2:27:42	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
79.182	10.000	0.000	-103.000	7630.636	90.182	3714.252	T+20 sec	2:27:44	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
79.182	10.000	0.000	-103.000	7630.636	90.182	3714.252	T+22 sec	2:27:46	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
79.182	10.000	0.000	-103.000	7630.636	90.182	3714.252	T+24 sec	2:27:48	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000

79.182	10.000	0.000	-103.000	7630.636	90.182	3714.252	T+26 sec	2:27:50	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
79.182	10.000	0.000	-103.000	7630.636	90.182	3714.252	T+28 sec	2:27:52	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
79.182	10.000	0.000	-103.000	7630.636	90.182	3714.252	T+30 sec	2:27:54	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
79.182	10.000	0.000	-103.000	7630.636	90.182	3714.252	T+32 sec	2:27:56	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
79.182	10.000	0.000	-103.000	7630.636	90.182	3714.252	T+34 sec	2:27:58	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
79.182	10.000	0.000	-103.000	7630.636	90.182	3714.252	T+36 sec	2:28:00	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
79.182	10.000	0.000	-103.000	7630.636	90.182	3714.252	$\mathrm{T}+38 \mathrm{sec}$	2:28:02	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
79.182	10.000	0.000	-103.000	7630.636	90.182	3714.252	$\mathrm{T}+40 \mathrm{sec}$	2:28:04	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
							$\mathrm{T}+42 \mathrm{sec}$	2:28:06	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
							$\mathrm{T}+44 \mathrm{sec}$	2:28:08	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
							$\mathrm{T}+46 \mathrm{sec}$	2:28:10	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
							T+48 sec	2:28:12	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
							T+50 sec	2:28:14	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
							T+52 sec	2:28:16	59.888	3787.534	335.000	-209.391	0.000	79.583	10.000
							T+54 sec	2:28:18							
							T+56 sec	2:28:20							
							T+58 sec	2:28:22							
							T+60 sec	2:28:24							
							T+62 sec	2:28:26							
							T+64 sec	2:28:28							
							T+66 sec	2:28:30							
							T+68 sec	2:28:32							
							T+70 sec	2:28:34							
							T+72 sec	2:28:36							
							T+74 sec	2:28:38							
							T+76 sec	2:28:40							
							T+78 sec	2:28:42							
							T+80 sec	2:28:44							

| | | |
| :--- | :--- | :--- | :--- |

					$\mathrm{T}-66 \mathrm{sec}$ $\mathrm{T}-64 \mathrm{sec}$ $\mathrm{T}-62 \mathrm{sec}$ $\mathrm{T}-60 \mathrm{sec}$ $\mathrm{T}-58 \mathrm{sec}$ $\mathrm{T}-56 \mathrm{sec}$ $\mathrm{T}-54 \mathrm{sec}$ $\mathrm{T}-52 \mathrm{sec}$ $\mathrm{T}-50 \mathrm{sec}$ $\mathrm{T}-48 \mathrm{sec}$ $\mathrm{T}-46 \mathrm{sec}$ $\mathrm{T}-44 \mathrm{sec}$ $\mathrm{T}-42 \mathrm{sec}$ $\mathrm{T}-40$ sec $\mathrm{T}-38 \mathrm{sec}$ $\mathrm{T}-36$ sec $\mathrm{T}-34 \mathrm{sec}$ $\mathrm{T}-32 \mathrm{sec}$ $\mathrm{T}-30 \mathrm{sec}$ $\mathrm{T}-28 \mathrm{sec}$ $\mathrm{T}-26$ sec $\mathrm{T}-24 \mathrm{sec}$ $\mathrm{T}-22 \mathrm{sec}$ $\mathrm{T}-20$ sec $\mathrm{T}-18$ sec	2:26:18 2:26:20 2:26:22 2:26:24 2:26:26 2:26:28 2:26:30 2:26:32 2:26:34 2:26:36 2:26:38 2:26:40 2:26:42 2:26:44 2:26:46 2:26:48 2:26:50 2:26:52 2:26:54 2:26:56 2:26:58 2:27:00 2:27:02 2:27:04 2:27:06								
15.000	-103.000	7650.604	-33.600		T-16 sec	2:27:08	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000	15.000
15.000	-103.000	7650.604	-33.600		T-14 sec	2:27:10	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000	15.000
15.000	-103.000	7650.604	-33.600		$\mathrm{T}-12 \mathrm{sec}$	2:27:12	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000	15.000
15.000	-103.000	7650.604	-33.600		$\mathrm{T}-10 \mathrm{sec}$	2:27:14	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000	15.000
15.000	-103.000	7650.604	-33.600		T-08 sec	2:27:16	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000	15.000
15.000	-103.000	7650.604	-33.600		T-06 sec	2:27:18	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000	15.000
15.000	-103.000	7650.604	-33.600		T-04 sec	2:27:20	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000	15.000
15.000	-103.000	7650.604	-33.600		T-02 sec	2:27:22	60.042	3645.041	350.000	-165.476	0.000	76.063	10.000	15.000
					T+0 sec T+02 sec T+04 sec T+06 sec T+08 sec $\mathrm{T}+10 \mathrm{sec}$ $\mathrm{T}+12 \mathrm{sec}$ $\mathrm{T}+14 \mathrm{sec}$ $\mathrm{T}+16 \mathrm{sec}$	$\begin{aligned} & \text { 2:27:24 } \\ & \text { 2:27:26 } \\ & \text { 2:27:28 } \\ & \text { 2:27:30 } \\ & \text { 2:27:32 } \\ & \text { 2:27:34 } \\ & \text { 2:27:36 } \\ & \text { 2:27:38 } \\ & \text { 2:27:40 } \end{aligned}$								
0.000	-103.000	7631.500	89.956	3713.648	T+18 sec	2:27:42								
0.000	-103.000	7631.500	89.956	3713.648	$\mathrm{T}+20 \mathrm{sec}$	2:27:44	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	T+22 sec	2:27:46	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	T+24 sec	2:27:48	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000

0.000	-103.000	7631.500	89.956	3713.648	T+26 sec	2:27:50	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	T+28 sec	2:27:52	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	$\mathrm{T}+30 \mathrm{sec}$	2:27:54	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	T+32 sec	2:27:56	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	$\mathrm{T}+34 \mathrm{sec}$	2:27:58	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	T+36 sec	2:28:00	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	T+38 sec	2:28:02	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	$\mathrm{T}+40 \mathrm{sec}$	2:28:04	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	$\mathrm{T}+42 \mathrm{sec}$	2:28:06	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	$\mathrm{T}+44 \mathrm{sec}$	2:28:08	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	T+46 sec	2:28:10	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	$\mathrm{T}+48 \mathrm{sec}$	2:28:12	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	T+50 sec	2:28:14	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
0.000	-103.000	7631.500	89.956	3713.648	T+52 sec	2:28:16	59.888	3788.789	335.000	-209.563	0.000	79.676	10.000	0.000
					T+54 sec	2:28:18								
					T+56 sec	2:28:20								
					T+58 sec	2:28:22								
					T+60 sec	2:28:24								
					T+62 sec	2:28:26								
					T+64 sec	2:28:28								
					T+66 sec	2:28:30								
					T+68 sec	2:28:32								
					T+70 sec	2:28:34								
					T+72 sec	2:28:36								
					T+74 sec	2:28:38								
					T+76 sec	2:28:40								
					T+78 sec	2:28:42								
					T+80 sec	2:28:44								

3713.169

-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169
-103.000	7631.529	89.601	3713.169

Date	A Point Time	FPointA Hz	A Value Hz	$\mathrm{t}(0)$ Time	C Value Hz
Monday, October 12, 2009	$2: 27: 22$	60.0410	60.0420	$2: 27: 24$	59.8690

Value B	FR B								
12 to 24 sec	12 to 24 sec	18 to 30 sec	18 to 30 sec	20 to 40 sec	20 to 40 sec	18 to 52 sec	18 to 52 sec	20 to 52 sec	20 to 52 sec
Average									
Frequency	MW								
59.8797144	-390.35188	59.8834278	-399.23186	59.8879994	-409.35384	59.887555	-410.1357	59.8879994	-411.27641

Value A Data BA Performance											Value B		12 to 24 second Average Period Evaluation				
		JOU	Non-			Transferred	Contingent						JOU	Non-			Transferred
	Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency
	Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response
Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-)$ Del (+)	Load (-) Gen (+)	Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-) \mathrm{Del}(+)$
Hz	MW	MW/0.1 Hz	MW	MW	Hz	MW	MW	MW	MW	MW	MW						
60.042	3645.04	350.00	-165.48	0.00	76.06	-4.20	15.00	-103	7650.604	-43.2598	59.879714	3768.23	335.00	-206.46	0.00	78.14	12.03

Value B															
Contingent									Jou	Non-			Transferred	Contingent	
BA	Initial	Initial	Sustained	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial
Lost Generation	Performance	Performance	Performance	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance
Load (-) Gen (+)	Adjusted	Unadjusted		Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	Rec (-) Del (+)	Load (-) Gen (+)	Adjusted
MW	P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW	Hz	MW	MW	MW	MW	MW	MW/0.1 Hz	MW	P.U.
0.00	1.355	0.949	0.899	-103	7631.714	123.8941	59.883428	3780.42	335.00	-206.46	0.00	78.64	11.66	0.00	1.481

Value B															
							JOU	Non-			Transferred	Contingent			
Initial	Sustained	BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained
Performance	Performance	Bias	Load	Setting		Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance
Unadjusted		Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-)$ Del (+)	Load (-) Gen (+)	Adjusted	Unadjusted	
P.U.	P.U.	MW	MW	MW	Hz	MW	MW	MW	MW	MW	MW/0.1 Hz	MW	P.U.	P.U.	P.U.
1.067	0.899	-103	7630.571	120.0694	59.887272	3785.26	335.00	-208.64	0.00	79.18	11.27	0.00	1.574	1.133	0.899

	Jou	Non-			Transferred	Contingent						
Net	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained	BA	BA	Bias
Actual	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance	Bias	Load	Setting
Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)	Gen (+)	$\operatorname{Rec}(-)$ Del (+)	Load (-) Gen (+)	Adjusted	Unadjusted		Setting		EPFR
MW	P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW						
3788.79	335.00	-209.56	0.00	79.68	11.20	0.00	1.614	1.167	0.899	-103	7631.529	115.3607

Steps To be completed for each event evaluated

1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Column A: Date and Time in this format, $\mathrm{mm} / \mathrm{dd} / \mathrm{yy} \mathrm{HH}: \mathrm{MM}: \mathrm{SS}$
Column B: Frequency Hz
Column C: Total Lost Generation: enter the MW data of the units that tripped as a single generator where the value typically goes to zero at $\mathrm{t}(0)$
Column D: not applicable
Column E: Non Conforming Load
Column F: Pumped Hydro Column G: not applicable Column H: not applicable Column I: not applicable Column J: BA Bias Setting Column K: BA Load

2 Note: Columns D, E, F, G and H are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign ($+/-$) convention defined in FRS Form 1
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must be at 2 second sample rate for the full 25 minute minimum collection period that starts a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event The spreadsheet will work with larger sample size data.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data
5 Once data is in place in the "Data" worksheet, determine when the beginning of the event occurred. This is accomplished by knowing the UTC event time from the master event list. Convert the UTC event time to your PI data time and then scroll through the Data worksheet column B data of frequency and observe when frequency moves from the normal, pre-event frequency. This will usually be a single change in frequency of 0.008 to 0.010 Hz more or less. Note the row number in the worksheet that this change occurs. In this sample data spreadsheet this occurs in row 469 of the data.
6 Edit cell "C8" of the "Entry Data" worksheet, change the formula in the cell "C8" to reference the row number identified in step 5 above. In the sample data of this workbook this formula is: "=Data!A469"
7 Determine the end of the event to be evaluated. Use the same rules that are used for DCS only look at frequency instead of ACE. Scroll down the frequency data in column B of the "Data" worksheet until frequency reaches 60 Hz or the pre-disturbance value. Note the row number in the worksheet that this occurs. In this sample data spreadsheet this occurs in row 633
8 Edit cell "C11" of the "Entry Data" worksheet, change the formula in the cell "C11" to reference the row number identified in step 7 above. In the sample data of this workbook this formula is: "=Data!A633"
9 In cell "R41" of the "Evaluation" spreadsheet, enter the MW value of the unit(s) that tripped (from the Master Event List). This is only necessary for the "Interconnection" evaluation if you're interested. It is not necessary to do this for the BA evaluation but it will provide a comparison of the BA frequency response as compared to the Interconnection frequency response.
10 Use the "copy" button provided to copy the evaluation and event specific data for the "FRS Form 1" of this field trial. This data is summarized in the correct order on worksheet "Form 1 Summary Data" of this workbook. Use PasteSpecial/Values when pasting the data into FRS Form 1 on the appropriate event row.

Steps To be completed once at the initial setup of the evaluation spreadsheet for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Entry Data" worksheet. For example: "NYISO"
B Enter your Balancing Authorities Frequency Response Obligation in cell "B2" of the "Entry Data" worksheet. For example: $-80 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (This value could change annually)

mm/dd/yy hh:mm:ss	Frequency	$\begin{aligned} & \text { Total } \\ & \text { Lost } \\ & \text { Generation } \end{aligned}$	jou Dynamic Schedules n/a	NonConforming Load Load (-)	$\begin{aligned} & \text { Pumped } \\ & \text { Hydro } \\ & \text { Load (-) Gen (}(+) \end{aligned}$	Ramping Units n/a	Transferred Frequency Response n/a	$\begin{gathered} \text { Contingent } \\ \text { BA } \\ \text { Lost Generation } \\ \mathrm{n} / \mathrm{a} \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \end{gathered}$	$\begin{aligned} & \text { BA } \\ & \text { Load } \end{aligned}$
Time (T)	Hz	MW		MW	MW				MW/0.1 Hz	MW
07/18/11 20:35:00	60.0019989	593.3		0	0				-653	56914.73
07/18/11 20:35:02	60.0019989	593.3		0	0				-653	56928.6
07/18/11 20:35:04	60.0009995	593.3		0	0				-653	56928.6
07/18/11 20:35:06	60.0009995	593.3		0	0				-653	56928.6
07/18/11 20:35:08	59.9990005	593.3		0	0				-653	56928.6
07/18/11 20:35:10	59.9970016	593.3		0	0				-653	56928.6
07/18/11 20:35:12	59.9959984	593.3		0	0				-653	56923.08
07/18/11 20:35:14	59.9949989	593.3		0	0				-653	56923.08
07/18/11 20:35:16	59.9939995	593.3		0	0				-653	56923.08
07/18/11 20:35:18	59.993	593.3		0	0				-653	56923.08
07/18/11 20:35:20	59.9910011	593.3		0	0				-653	56923.08
07/18/11 20:35:22	59.9900017	593.3		0	0				-653	56937.99
07/18/11 20:35:24	59.987999	593.3		0	0				-653	56937.99
07/18/11 20:35:26	59.9850006	593.3		0	0				-653	56937.99
07/18/11 20:35:28	59.9840012	593.3		0	0				-653	56937.99
07/18/11 20:35:30	59.9840012	593.3		0	0				-653	56937.99
07/18/11 20:35:32	59.9860001	593.3		0	0				-653	56932.41
07/18/11 20:35:34	59.9860001	593.3		0	0				-653	56932.41
07/18/11 20:35:36	59.9840012	593.3		0	0				-653	56932.41
07/18/11 20:35:38	59.9830017	593.3		0	0				-653	56932.41
07/18/11 20:35:40	59.9830017	593.3		0	0				-653	56932.41
07/18/11 20:35:42	59.9840012	593.3		0	0				-653	56933.85
07/18/11 20:35:44	59.9840012	593.3		0	0				-653	56933.85
07/18/11 20:35:46	59.9840012	593.3		0	0				-653	56933.85
07/18/11 20:35:48	59.9830017	593.3		0	0				-653	56933.85
07/18/11 20:35:50	59.9840012	593.3		0	0				-653	56933.85
07/18/11 20:35:52	59.9840012	593.3		0	0				-653	56933.48
07/18/11 20:35:54	59.9840012	593.3		0	0				-653	56933.48
07/18/11 20:35:56	59.9819984	593.3		0	0				-653	56933.48
07/18/11 20:35:58	59.9799995	593.3		0	0				-653	56933.48
07/18/11 20:36:00	59.9819984	593.3		0	0				-653	56933.48
07/18/11 20:36:02	59.9830017	593.3		0	0				-653	56928.48
07/18/11 20:36:04	59.9830017	593.3		0	0				-653	56928.48
07/18/11 20:36:06	59.980999	593.3		0	0				-653	56928.48
07/18/11 20:36:08	59.980999	593.3		0	0				-653	56928.48
07/18/11 20:36:10	59.9799995	593.3		0	0				-653	56928.48
07/18/11 20:36:12	59.9830017	593.3		0	0				-653	56933.7
07/18/11 20:36:14	59.9840012	593.3		0	0				-653	56933.7
07/18/11 20:36:16	59.9850006	593.3		0	0				-653	56933.7
07/18/11 20:36:18	59.9869995	593.3		0	0				-653	56933.7
07/18/11 20:36:20	59.9860001	593.3		0	0				-653	56933.7
07/18/11 20:36:22	59.9850006	593.3		0	0				-653	56930.09
07/18/11 20:36:24	59.9850006	593.3		0	0				-653	56930.09
07/18/11 20:36:26	59.9860001	593.3		0	0				-653	56930.09

07/18/11 20:36:28	59.9860001	593.3	0	0	-653	56930.09
07/18/11 20:36:30	59.9850006	593.3	0	0	-653	56930.09
07/18/11 20:36:32	59.9860001	593.3	0	0	-653	56944
07/18/11 20:36:34	59.9860001	593.3	0	0	-653	56944
07/18/11 20:36:36	59.9869995	593.3	0	0	-653	56944
07/18/11 20:36:38	59.9860001	593.3	0	0	-653	56944
07/18/11 20:36:40	59.9869995	593.3	0	0	-653	56944
07/18/11 20:36:42	59.9889984	593.3	0	0	-653	56934.53
07/18/11 20:36:44	59.9889984	593.3	0	0	-653	56934.53
07/18/11 20:36:46	59.9889984	593.3	0	0	-653	56934.53
07/18/11 20:36:48	59.9889984	593.3	0	0	-653	56934.53
07/18/11 20:36:50	59.9900017	593.3	0	0	-653	56934.53
07/18/11 20:36:52	59.9900017	593.3	0	0	-653	56942.72
07/18/11 20:36:54	59.9920006	593.3	0	0	-653	56942.72
07/18/11 20:36:56	59.9920006	593.3	0	0	-653	56942.72
07/18/11 20:36:58	59.993	593.3	0	0	-653	56942.72
07/18/11 20:37:00	59.9949989	593.3	0	0	-653	56942.72
07/18/11 20:37:02	59.9959984	593.3	0	0	-653	56939.76
07/18/11 20:37:04	59.9959984	593.3	0	0	-653	56939.76
07/18/11 20:37:06	59.9959984	593.3	0	0	-653	56939.76
07/18/11 20:37:08	59.9970016	593.3	0	0	-653	56939.76
07/18/11 20:37:10	59.9990005	593.3	0	0	-653	56939.76
07/18/11 20:37:12	59.9990005	593.3	0	0	-653	56933.93
07/18/11 20:37:14	60.0009995	593.3	0	0	-653	56933.93
07/18/11 20:37:16	60	593.3	0	0	-653	56933.93
07/18/11 20:37:18	59.9980011	593.3	0	0	-653	56933.93
07/18/11 20:37:20	59.9970016	593.3	0	0	-653	56933.93
07/18/11 20:37:22	59.9959984	593.3	0	0	-653	56945.98
07/18/11 20:37:24	59.9990005	593.3	0	0	-653	56945.98
07/18/11 20:37:26	60.0040016	593.3	0	0	-653	56945.98
07/18/11 20:37:28	60.0110016	593.3	0	0	-653	56945.98
07/18/11 20:37:30	60.0169983	593.3	0	0	-653	56945.98
07/18/11 20:37:32	60.0180016	593.3	0	0	-653	56940.86
07/18/11 20:37:34	60.0200005	593.3	0	0	-653	56940.86
07/18/11 20:37:36	60.0200005	593.3	0	0	-653	56940.86
07/18/11 20:37:38	60.0219994	593.3	0	0	-653	56940.86
07/18/11 20:37:40	60.0250015	593.3	0	0	-653	56940.86
07/18/11 20:37:42	60.0250015	593.3	0	0	-653	56916.58
07/18/11 20:37:44	60.0250015	593.3	0	0	-653	56916.58
07/18/11 20:37:46	60.0219994	593.3	0	0	-653	56916.58
07/18/11 20:37:48	60.0219994	593.3	0	0	-653	56916.58
07/18/11 20:37:50	60.0250015	593.3	0	0	-653	56916.58
07/18/11 20:37:52	60.026001	593.3	0	0	-653	56901.21
07/18/11 20:37:54	60.0289993	593.3	0	0	-653	56901.21
07/18/11 20:37:56	60.0299988	593.3	0	0	-653	56901.21
07/18/11 20:37:58	60.0279999	593.3	0	0	-653	56901.21
07/18/11 20:38:00	60.026001	593.3	0	0	-653	56901.21
07/18/11 20:38:02	60.026001	593.3	0	0	-653	56896.12
07/18/11 20	60.0180016	5933	0	0		56896.12

07/18/11 20:38:06	60.0139999	593.3	0	0	-653	56896.12
07/18/11 20:38:08	60.0099983	593.3	0	0	-653	56896.12
07/18/11 20:38:10	60.0079994	593.3	0	0	-653	56896.12
07/18/11 20:38:12	60.0079994	593.3	0	0	-653	56911.67
07/18/11 20:38:14	60.0050011	593.3	0	0	-653	56911.67
07/18/11 20:38:16	60.0029984	593.3	0	0	-653	56911.67
07/18/11 20:38:18	60.0009995	593.3	0	0	-653	56911.67
07/18/11 20:38:20	59.9980011	593.3	0	0	-653	56911.67
07/18/11 20:38:22	59.9959984	593.3	0	0	-653	56925.88
07/18/11 20:38:24	59.9939995	593.3	0	0	-653	56925.88
07/18/11 20:38:26	59.993	593.3	0	0	-653	56925.88
07/18/11 20:38:28	59.9939995	593.3	0	0	-653	56925.88
07/18/11 20:38:30	59.9939995	593.3	0	0	-653	56925.88
07/18/11 20:38:32	59.9910011	593.3	0	0	-653	56950.88
07/18/11 20:38:34	59.9920006	593.3	0	0	-653	56950.88
07/18/11 20:38:36	59.993	593.3	0	0	-653	56950.88
07/18/11 20:38:38	59.9939995	593.3	0	0	-653	56950.88
07/18/11 20:38:40	59.9939995	593.3	0	0	-653	56950.88
07/18/11 20:38:42	59.993	593.3	0	0	-653	56951.3
07/18/11 20:38:44	59.993	593.3	0	0	-653	56951.3
07/18/11 20:38:46	59.9920006	593.3	0	0	-653	56951.3
07/18/11 20:38:48	59.9889984	593.3	0	0	-653	56951.3
07/18/11 20:38:50	59.987999	593.3	0	0	-653	56951.3
07/18/11 20:38:52	59.9869995	593.3	0	0	-653	56958.96
07/18/11 20:38:54	59.987999	593.3	0	0	-653	56958.96
07/18/11 20:38:56	59.9889984	593.3	0	0	-653	56958.96
07/18/11 20:38:58	59.9889984	593.3	0	0	-653	56958.96
07/18/11 20:39:00	59.9900017	593.3	0	0	-653	56958.96
07/18/11 20:39:02	59.9900017	593.3	0	0	-653	56949.0
07/18/11 20:39:04	59.9900017	593.3	0	0	-653	56949.07
07/18/11 20:39:06	59.9900017	593.3	0	0	-653	56949.07
07/18/11 20:39:08	59.9900017	593.3	0	0	-653	56949.07
07/18/11 20:39:10	59.9920006	593.3	0	0	-653	56949.07
07/18/11 20:39:12	59.9920006	593.3	0	0	-653	56944.2
07/18/11 20:39:14	59.993	593.3	0	0	-653	56944.2
07/18/11 20:39:16	59.9910011	593.3	0	0	-653	56944.2
07/18/11 20:39:18	59.9860001	593.3	0	0	-653	56944.2
07/18/11 20:39:20	59.980999	593.3	0	0	-653	56944.2
07/18/11 20:39:22	59.9770012	593.3	0	0	-653	56951.1
07/18/11 20:39:24	59.9729996	593.3	0	0	-653	56951.1
07/18/11 20:39:26	59.9700012	593.3	0	0	-653	56951.1
07/18/11 20:39:28	59.9679985	593.3	0	0	-653	56951.1
07/18/11 20:39:30	59.9690018	593.3	0	0	-653	56951.1
07/18/11 20:39:32	59.9710007	593.3	0	0	-653	56961.13
07/18/11 20:39:34	59.9720001	593.3	0	0	-653	56961.13
07/18/11 20:39:36	59.9710007	593.3	0	0	-653	56961.13
07/18/11 20:39:38	59.9720001	593.3	0	0	-653	56961.13
07/18/11 20:39:40	59.9720001	593.3	0	0	-653	56961.13
07/18/11 20:30,	59.9720001	5933	0	0	-653	56978.73

07/18/11 20:39:44	59.9710007	593.3	0	0	-653	56978.73
07/18/11 20:39:46	59.9700012	593.3	0	0	-653	56978.73
07/18/11 20:39:48	59.9710007	593.3	0	0	-653	56978.73
07/18/11 20:39:50	59.9729996	593.3	0	0	-653	56978.73
07/18/11 20:39:52	59.9760017	593.3	0	0	-653	56988.21
07/18/11 20:39:54	59.973999	593.3	0	0	-653	56988.21
07/18/11 20:39:56	59.9729996	593.3	0	0	-653	56988.21
07/18/11 20:39:58	59.9720001	593.3	0	0	-653	56988.21
07/18/11 20:40:00	59.973999	593.3	0	0	-653	56988.21
07/18/11 20:40:02	59.9760017	593.3	0	0	-653	56975.85
07/18/11 20:40:04	59.9760017	593.3	0	0	-653	56975.85
07/18/11 20:40:06	59.9749985	593.3	0	0	-653	56975.85
07/18/11 20:40:08	59.9760017	593.3	0	0	-653	56975.85
07/18/11 20:40:10	59.9770012	593.3	0	0	-653	56975.85
07/18/11 20:40:12	59.9760017	593.3	0	0	-653	57000.34
07/18/11 20:40:14	59.9770012	593.3	0	0	-653	57000.34
07/18/11 20:40:16	59.9790001	593.3	0	0	-653	57000.34
07/18/11 20:40:18	59.9819984	593.3	0	0	-653	57000.34
07/18/11 20:40:20	59.9830017	593.3	0	0	-653	57000.34
07/18/11 20:40:22	59.9850006	593.3	0	0	-653	57017.81
07/18/11 20:40:24	59.9819984	593.3	0	0	-653	57017.81
07/18/11 20:40:26	59.980999	593.3	0	0	-653	57017.81
07/18/11 20:40:28	59.9790001	593.3	0	0	-653	57017.81
07/18/11 20:40:30	59.9780006	593.3	0	0	-653	57017.81
07/18/11 20:40:32	59.9799995	593.3	0	0	-653	57007.31
07/18/11 20:40:34	59.9790001	593.3	0	0	-653	57007.31
07/18/11 20:40:36	59.9799995	593.3	0	0	-653	57007.31
07/18/11 20:40:38	59.9799995	593.3	0	0	-653	57007.31
07/18/11 20:40:40	59.9819984	593.3	0	0	-653	57007.31
07/18/11 20:40:42	59.9840012	593.3	0	0	-653	56999.67
07/18/11 20:40:44	59.9869995	593.3	0	0	-653	56999.67
07/18/11 20:40:46	59.9910011	593.3	0	0	-653	56999.67
07/18/11 20:40:48	59.9910011	593.3	0	0	-653	56999.67
07/18/11 20:40:50	59.9900017	593.3	0	0	-653	56999.67
07/18/11 20:40:52	59.9900017	593.3	0	0	-653	57028.63
07/18/11 20:40:54	59.9910011	593.3	0	0	-653	57028.63
07/18/11 20:40:56	59.9939995	593.3	0	0	-653	57028.63
07/18/11 20:40:58	59.9949989	593.3	0	0	-653	57028.63
07/18/11 20:41:00	59.9959984	593.3	0	0	-653	57028.63
07/18/11 20:41:02	59.9970016	593.3	0	0	-653	57023.53
07/18/11 20:41:04	59.9970016	593.3	0	0	-653	57023.53
07/18/11 20:41:06	59.9990005	593.3	0	0	-653	57023.53
07/18/11 20:41:08	59.9980011	593.3	0	0	-653	57023.53
07/18/11 20:41:10	59.9990005	593.3	0	0	-653	57023.53
07/18/11 20:41:12	59.9980011	593.3	0	0	-653	57028.72
07/18/11 20:41:14	59.9970016	593.3	0	0	-653	57028.72
07/18/11 20:41:16	59.9949989	593.3	0	0	-653	57028.72
07/18/11 20:41:18	59.993	593.3	0	0	-653	57028.72
07/18/11 20:41:20	59.9920006	593.3	0	0	-653	57028.72

07/18/11 20:41:22	59.9920006	593.3	0	0	-653	57056.74
07/18/11 20:41:24	59.9939995	593.3	0	0	-653	57056.74
07/18/11 20:41:26	59.9980011	593.3	0	0	-653	57056.74
07/18/11 20:41:28	59.9990005	593.3	0	0	-653	57056.74
07/18/11 20:41:30	59.9990005	593.3	0	0	-653	57056.74
07/18/11 20:41:32	60.0040016	593.3	0	0	-653	57053.91
07/18/11 20:41:34	60.007	593.3	0	0	-653	57053.91
07/18/11 20:41:36	60.0079994	593.3	0	0	-653	57053.91
07/18/11 20:41:38	60.0060005	593.3	0	0	-653	57053.91
07/18/11 20:41:40	60.0050011	593.3	0	0	-653	57053.91
07/18/11 20:41:42	60.0029984	593.3	0	0	-653	57044.42
07/18/11 20:41:44	60.0040016	593.3	0	0	-653	57044.42
07/18/11 20:41:46	60.0040016	593.3	0	0	-653	57044.42
07/18/11 20:41:48	60.0050011	593.3	0	0	-653	57044.42
07/18/11 20:41:50	60.0040016	593.3	0	0	-653	57044.42
07/18/11 20:41:52	60.0050011	593.3	0	0	-653	57048.84
07/18/11 20:41:54	60.0050011	593.3	0	0	-653	57048.84
07/18/11 20:41:56	60.0060005	593.3	0	0	-653	57048.84
07/18/11 20:41:58	60.0089989	593.3	0	0	-653	57048.84
07/18/11 20:42:00	60.0110016	593.3	0	0	-653	57048.84
07/18/11 20:42:02	60.0149994	593.3	0	0	-653	57062
07/18/11 20:42:04	60.0169983	593.3	0	0	-653	57062
07/18/11 20:42:06	60.0169983	593.3	0	0	-653	57062
07/18/11 20:42:08	60.0159988	593.3	0	0	-653	57062
07/18/11 20:42:10	60.019001	593.3	0	0	-653	57062
07/18/11 20:42:12	60.0219994	593.3	0	0	-653	57048.32
07/18/11 20:42:14	60.0239983	593.3	0	0	-653	57048.32
07/18/11 20:42:16	60.0229988	593.3	0	0	-653	57048.32
07/18/11 20:42:18	60.0219994	593.3	0	0	-653	57048.32
07/18/11 20:42:20	60.0219994	593.3	0	0	-653	57048.32
07/18/11 20:42:22	60.0209999	593.3	0	0	-653	57042.8
07/18/11 20:42:24	60.0209999	593.3	0	0	-653	57042.8
07/18/11 20:42:26	60.0200005	593.3	0	0	-653	57042.8
07/18/11 20:42:28	60.0229988	593.3	0	0	-653	57042.8
07/18/11 20:42:30	60.0200005	593.3	0	0	-653	57042.8
07/18/11 20:42:32	60.0200005	593.3	0	0	-653	57059.87
07/18/11 20:42:34	60.0219994	593.3	0	0	-653	57059.87
07/18/11 20:42:36	60.0239983	593.3	0	0	-653	57059.87
07/18/11 20:42:38	60.0209999	593.3	0	0	-653	57059.87
07/18/11 20:42:40	60.019001	593.3	0	0	-653	57059.87
07/18/11 20:42:42	60.0149994	593.3	0	0	-653	57044.11
07/18/11 20:42:44	60.0139999	593.3	0	0	-653	57044.11
07/18/11 20:42:46	60.012001	593.3	0	0	-653	57044.11
07/18/11 20:42:48	60.0130005	593.3	0	0	-653	57044.11
07/18/11 20:42:50	60.0110016	593.3	0	0	-653	57044.11
07/18/11 20:42:52	60.0110016	593.3	0	0	-653	57044.17
07/18/11 20:42:54	60.012001	593.3	0	0	-653	57044.17
07/18/11 20:42:56	60.012001	593.3	0	0	-653	57044.17
07/18/11 20:42:5	60.0	5933		0	-653	57044

07/18/11 20:43:00	60.0130005	593.3	0	0	-653	57044.17
07/18/11 20:43:02	60.012001	593.3	0	0	-653	57047.32
07/18/11 20:43:04	60.012001	593.3	0	0	-653	57047.32
07/18/11 20:43:06	60.0110016	593.3	0	0	-653	57047.32
07/18/11 20:43:08	60.0099983	593.3	0	0	-653	57047.32
07/18/11 20:43:10	60.0110016	593.3	0	0	-653	57047.32
07/18/11 20:43:12	60.0099983	593.3	0	0	-653	57027.43
07/18/11 20:43:14	60.012001	593.3	0	0	-653	57027.43
07/18/11 20:43:16	60.0130005	593.3	0	0	-653	57027.43
07/18/11 20:43:18	60.0149994	593.3	0	0	-653	57027.43
07/18/11 20:43:20	60.0159988	593.3	0	0	-653	57027.43
07/18/11 20:43:22	60.0159988	593.3	0	0	-653	57048.26
07/18/11 20:43:24	60.0159988	593.3	0	0	-653	57048.26
07/18/11 20:43:26	60.0180016	593.3	0	0	-653	57048.26
07/18/11 20:43:28	60.0180016	593.3	0	0	-653	57048.26
07/18/11 20:43:30	60.0169983	593.3	0	0	-653	57048.26
07/18/11 20:43:32	60.0180016	593.3	0	0	-653	57063.55
07/18/11 20:43:34	60.0180016	593.3	0	0	-653	57063.55
07/18/11 20:43:36	60.0159988	593.3	0	0	-653	57063.55
07/18/11 20:43:38	60.0169983	593.3	0	0	-653	57063.55
07/18/11 20:43:40	60.0169983	593.3	0	0	-653	57063.55
07/18/11 20:43:42	60.019001	593.3	0	0	-653	57060.49
07/18/11 20:43:44	60.0180016	593.3	0	0	-653	57060.49
07/18/11 20:43:46	60.0139999	593.3	0	0	-653	57060.49
07/18/11 20:43:48	60.0139999	593.3	0	0	-653	57060.49
07/18/11 20:43:50	60.0110016	593.3	0	0	-653	57060.49
07/18/11 20:43:52	60.0089989	593.3	0	0	-653	57064.85
07/18/11 20:43:54	60.0079994	593.3	0	0	-653	57064.85
07/18/11 20:43:56	60.0079994	593.3	0	0	-653	57064.85
07/18/11 20:43:58	60.0079994	593.3	0	0	-653	57064.85
07/18/11 20:44:00	60.0079994	593.3	0	0	-653	57064.85
07/18/11 20:44:02	60.0089989	593.3	0	0	-653	57063.68
07/18/11 20:44:04	60.012001	593.3	0	0	-653	57063.68
07/18/11 20:44:06	60.012001	593.3	0	0	-653	57063.68
07/18/11 20:44:08	60.0099983	593.3	0	0	-653	57063.68
07/18/11 20:44:10	60.0079994	593.3	0	0	-653	57063.68
07/18/11 20:44:12	60.0089989	593.3	0	0	-653	57056.04
07/18/11 20:44:14	60.0110016	593.3	0	0	-653	57056.04
07/18/11 20:44:16	60.0139999	593.3	0	0	-653	57056.04
07/18/11 20:44:18	60.0139999	593.3	0	0	-653	57056.04
07/18/11 20:44:20	60.0139999	593.3	0	0	-653	57056.04
07/18/11 20:44:22	60.0130005	593.3	0	0	-653	57060.19
07/18/11 20:44:24	60.012001	593.3	0	0	-653	57060.19
07/18/11 20:44:26	60.012001	593.3	0	0	-653	57060.19
07/18/11 20:44:28	60.0130005	593.3	0	0	-653	57060.19
07/18/11 20:44:30	60.0139999	593.3	0	0	-653	57060.19
07/18/11 20:44:32	60.0149994	593.3	0	0	-653	57047.78
07/18/11 20:44:34	60.0139999	593.3	0	0	-653	57047.78
07/18/11 20:44:36	60.0159988	593.3	0	0	-653	57047.78

07/18/11 20:44:38	60.0180016	593.3	0	0	-653	57047.78
07/18/11 20:44:40	60.0169983	593.3	0	0	-653	57047.78
07/18/11 20:44:42	60.0180016	593.3	0	0	-653	57053.33
07/18/11 20:44:44	60.019001	593.3	0	0	-653	57053.33
07/18/11 20:44:46	60.019001	593.3	0	0	-653	57053.33
07/18/11 20:44:48	60.0180016	593.3	0	0	-653	57053.33
07/18/11 20:44:50	60.0139999	593.3	0	0	-653	57053.33
07/18/11 20:44:52	60.012001	593.3	0	0	-653	57045.49
07/18/11 20:44:54	60.0060005	593.3	0	0	-653	57045.49
07/18/11 20:44:56	60.0050011	593.3	0	0	-653	57045.49
07/18/11 20:44:58	60.0040016	593.3	0	0	-653	57045.49
07/18/11 20:45:00	60.0040016	593.3	0	0	-653	57045.49
07/18/11 20:45:02	60.0040016	593.3	0	0	-653	57051.96
07/18/11 20:45:04	60.0050011	593.3	0	0	-653	57051.96
07/18/11 20:45:06	60.0050011	593.3	0	0	-653	57051.96
07/18/11 20:45:08	60.007	593.3	0	0	-653	57051.96
07/18/11 20:45:10	60.0089989	593.3	0	0	-653	57051.96
07/18/11 20:45:12	60.0079994	593.3	0	0	-653	57058.94
07/18/11 20:45:14	60.0079994	593.3	0	0	-653	57058.94
07/18/11 20:45:16	60.007	593.3	0	0	-653	57058.94
07/18/11 20:45:18	60.007	593.3	0	0	-653	57058.94
07/18/11 20:45:20	60.0060005	593.3	0	0	-653	57058.94
07/18/11 20:45:22	60.0040016	593.3	0	0	-653	57042.65
07/18/11 20:45:24	60.0029984	593.3	0	0	-653	57042.65
07/18/11 20:45:26	60.0009995	593.3	0	0	-653	57042.65
07/18/11 20:45:28	60.0009995	593.3	0	0	-653	57042.65
07/18/11 20:45:30	60.0029984	593.3	0	0	-653	57042.65
07/18/11 20:45:32	60.0060005	593.3	0	0	-653	57068.24
07/18/11 20:45:34	60.0089989	593.3	0	0	-653	57068.24
07/18/11 20:45:36	60.0089989	593.3	0	0	-653	57068.24
07/18/11 20:45:38	60.0099983	593.3	0	0	-653	57068.24
07/18/11 20:45:40	60.0110016	593.3	0	0	-653	57068.24
07/18/11 20:45:42	60.0079994	593.3	0	0	-653	57050.98
07/18/11 20:45:44	60.0060005	593.3	0	0	-653	57050.98
07/18/11 20:45:46	60.0029984	593.3	0	0	-653	57050.98
07/18/11 20:45:48	60.0009995	593.3	0	0	-653	57050.98
07/18/11 20:45:50	59.9990005	593.3	0	0	-653	57050.98
07/18/11 20:45:52	60	593.3	0	0	-653	57062.43
07/18/11 20:45:54	60.0019989	593.3	0	0	-653	57062.43
07/18/11 20:45:56	60.0040016	593.3	0	0	-653	57062.43
07/18/11 20:45:58	60.0060005	593.3	0	0	-653	57062.43
07/18/11 20:46:00	60.0060005	593.3	0	0	-653	57062.43
07/18/11 20:46:02	60.0079994	593.3	0	0	-653	57071.05
07/18/11 20:46:04	60.0079994	593.3	0	0	-653	57071.05
07/18/11 20:46:06	60.0079994	593.3	0	0	-653	57071.05
07/18/11 20:46:08	60.0050011	593.3	0	0	-653	57071.05
07/18/11 20:46:10	60	593.3	0	0	-653	57071.05
07/18/11 20:46:12	59.9970016	593.3	0	0	-653	57054.96
07/18/11 20:4	59.9980011	5933	0	-	-653	57054.96

07/18/11 20:46:16	59.9980011	593.3	0	0	-653	57054.96
07/18/11 20:46:18	59.9990005	593.3	0	0	-653	57054.96
07/18/11 20:46:20	60.0019989	593.3	0	0	-653	57054.96
07/18/11 20:46:22	60.0040016	593.3	0	0	-653	57041.59
07/18/11 20:46:24	60.0040016	593.3	0	0	-653	57041.59
07/18/11 20:46:26	60.0060005	593.3	0	0	-653	57041.59
07/18/11 20:46:28	60.007	593.3	0	0	-653	57041.59
07/18/11 20:46:30	60.0060005	593.3	0	0	-653	57041.59
07/18/11 20:46:32	60.0060005	593.3	0	0	-653	57062.77
07/18/11 20:46:34	60.0060005	593.3	0	0	-653	57062.77
07/18/11 20:46:36	60.0079994	593.3	0	0	-653	57062.77
07/18/11 20:46:38	60.007	593.3	0	0	-653	57062.77
07/18/11 20:46:40	60.007	593.3	0	0	-653	57062.77
07/18/11 20:46:42	60.0079994	593.3	0	0	-653	57072
07/18/11 20:46:44	60.0099983	593.3	0	0	-653	57072
07/18/11 20:46:46	60.0130005	593.3	0	0	-653	57072
07/18/11 20:46:48	60.012001	593.3	0	0	-653	57072
07/18/11 20:46:50	60.0130005	593.3	0	0	-653	57072
07/18/11 20:46:52	60.0130005	593.3	0	0	-653	57053.75
07/18/11 20:46:54	60.012001	593.3	0	0	-653	57053.75
07/18/11 20:46:56	60.012001	593.3	0	0	-653	57053.75
07/18/11 20:46:58	60.0089989	593.3	0	0	-653	57053.75
07/18/11 20:47:00	60.0079994	593.3	0	0	-653	57053.75
07/18/11 20:47:02	60.007	593.3	0	0	-653	57041.91
07/18/11 20:47:04	60.007	593.3	0	0	-653	57041.91
07/18/11 20:47:06	60.0079994	593.3	0	0	-653	57041.91
07/18/11 20:47:08	60.0099983	593.3	0	0	-653	57041.91
07/18/11 20:47:10	60.0110016	593.3	0	0	-653	57041.91
07/18/11 20:47:12	60.0110016	593.3	0	0	-653	57054.95
07/18/11 20:47:14	60.0110016	593.3	0	0	-653	57054.95
07/18/11 20:47:16	60.0099983	593.3	0	0	-653	57054.95
07/18/11 20:47:18	60.0099983	593.3	0	0	-653	57054.95
07/18/11 20:47:20	60.0110016	593.3	0	0	-653	57054.95
07/18/11 20:47:22	60.0110016	593.3	0	0	-653	57061.43
07/18/11 20:47:24	60.0110016	593.3	0	0	-653	57061.43
07/18/11 20:47:26	60.012001	593.3	0	0	-653	57061.43
07/18/11 20:47:28	60.0139999	593.3	0	0	-653	57061.43
07/18/11 20:47:30	60.0159988	593.3	0	0	-653	57061.43
07/18/11 20:47:32	60.0169983	593.3	0	0	-653	57058.57
07/18/11 20:47:34	60.0200005	593.3	0	0	-653	57058.57
07/18/11 20:47:36	60.0200005	593.3	0	0	-653	57058.57
07/18/11 20:47:38	60.0200005	593.3	0	0	-653	57058.57
07/18/11 20:47:40	60.0219994	593.3	0	0	-653	57058.57
07/18/11 20:47:42	60.0219994	593.3	0	0	-653	57063.98
07/18/11 20:47:44	60.0209999	593.3	0	0	-653	57063.98
07/18/11 20:47:46	60.0200005	593.3	0	0	-653	57063.98
07/18/11 20:47:48	60.0209999	593.3	0	0	-653	57063.98
07/18/11 20:47:50	60.0219994	593.3	0	0	-653	57063.98
07/18/11 20:47:52	60.0219994	593.3	0	0	-653	57057.75

07/18/11 20:47:54	60.0180016	593.3	0	0	-653	57057.75
07/18/11 20:47:56	60.0159988	593.3	0	0	-653	57057.75
07/18/11 20:47:58	60.0149994	593.3	0	0	-653	57057.75
07/18/11 20:48:00	60.0149994	593.3	0	0	-653	57057.75
07/18/11 20:48:02	60.0159988	593.3	0	0	-653	57075.8
07/18/11 20:48:04	60.0149994	593.3	0	0	-653	57075.8
07/18/11 20:48:06	60.0159988	593.3	0	0	-653	57075.8
07/18/11 20:48:08	60.0169983	593.3	0	0	-653	57075.8
07/18/11 20:48:10	60.019001	593.3	0	0	-653	57075.8
07/18/11 20:48:12	60.019001	593.3	0	0	-653	57052.68
07/18/11 20:48:14	60.0180016	593.3	0	0	-653	57052.68
07/18/11 20:48:16	60.0180016	593.3	0	0	-653	57052.68
07/18/11 20:48:18	60.0180016	593.3	0	0	-653	57052.68
07/18/11 20:48:20	60.0169983	593.3	0	0	-653	57052.68
07/18/11 20:48:22	60.0159988	593.3	0	0	-653	57049.95
07/18/11 20:48:24	60.0139999	593.3	0	0	-653	57049.95
07/18/11 20:48:26	60.0139999	593.3	0	0	-653	57049.95
07/18/11 20:48:28	60.0130005	593.3	0	0	-653	57049.95
07/18/11 20:48:30	60.0099983	593.3	0	0	-653	57049.95
07/18/11 20:48:32	60.0079994	593.3	0	0	-653	57072.5
07/18/11 20:48:34	60.007	593.3	0	0	-653	57072.5
07/18/11 20:48:36	60.0079994	593.3	0	0	-653	57072.5
07/18/11 20:48:38	60.0089989	593.3	0	0	-653	57072.5
07/18/11 20:48:40	60.0110016	593.3	0	0	-653	57072.5
07/18/11 20:48:42	60.012001	593.3	0	0	-653	57075.62
07/18/11 20:48:44	60.0159988	593.3	0	0	-653	57075.62
07/18/11 20:48:46	60.0180016	593.3	0	0	-653	57075.62
07/18/11 20:48:48	60.0180016	593.3	0	0	-653	57075.62
07/18/11 20:48:50	60.0159988	593.3	0	0	-653	57075.62
07/18/11 20:48:52	60.0139999	593.3	0	0	-653	57081.02
07/18/11 20:48:54	60.0130005	593.3	0	0	-653	57081.02
07/18/11 20:48:56	60.012001	593.3	0	0	-653	57081.02
07/18/11 20:48:58	60.012001	593.3	0	0	-653	57081.02
07/18/11 20:49:00	60.0130005	593.3	0	0	-653	57081.02
07/18/11 20:49:02	60.0130005	593.3	0	0	-653	57074.86
07/18/11 20:49:04	60.0139999	593.3	0	0	-653	57074.86
07/18/11 20:49:06	60.0159988	593.3	0	0	-653	57074.86
07/18/11 20:49:08	60.0180016	593.3	0	0	-653	57074.86
07/18/11 20:49:10	60.0200005	593.3	0	0	-653	57074.86
07/18/11 20:49:12	60.0200005	593.3	0	0	-653	57065.55
07/18/11 20:49:14	60.0209999	593.3	0	0	-653	57065.55
07/18/11 20:49:16	60.0209999	593.3	0	0	-653	57065.55
07/18/11 20:49:18	60.0200005	593.3	0	0	-653	57065.55
07/18/11 20:49:20	60.0180016	593.3	0	0	-653	57065.55
07/18/11 20:49:22	60.0180016	593.3	0	0	-653	57058.09
07/18/11 20:49:24	60.0159988	593.3	0	0	-653	57058.09
07/18/11 20:49:26	60.0139999	593.3	0	0	-653	57058.09
07/18/11 20:49:28	60.012001	593.3	0	0	-653	57058.09
07/18/11 20:49:30	60.0099983	593.3	0	0	-653	57058.09

07/18/11 20:49:32	60.0099983	593.3	0	0	-653	57042.5
07/18/11 20:49:34	60.0110016	593.3	0	0	-653	57042.5
07/18/11 20:49:36	60.0110016	593.3	0	0	-653	57042.5
07/18/11 20:49:38	60.0099983	593.3	0	0	-653	57042.5
07/18/11 20:49:40	60.0110016	593.3	0	0	-653	57042.5
07/18/11 20:49:42	60.0110016	593.3	0	0	-653	57050.12
07/18/11 20:49:44	60.012001	593.3	0	0	-653	57050.12
07/18/11 20:49:46	60.012001	593.3	0	0	-653	57050.12
07/18/11 20:49:48	60.0110016	585.6283569	0	0	-653	57057.21
07/18/11 20:49:50	60.012001	585.6283569	0	0	-653	57057.21
07/18/11 20:49:52	60.0130005	586.1430054	0	0	-653	57051.74
07/18/11 20:49:54	60.0149994	586.1430054	0	0	-653	57051.74
07/18/11 20:49:56	60.0159988	586.7954102	0	0	-653	57051.74
07/18/11 20:49:58	60.0149994	586.7954102	0	0	-653	57051.74
07/18/11 20:50:00	60.0139999	585.9466553	0	0	-653	57037.88
07/18/11 20:50:02	60.0130005	585.9466553	0	0	-653	57037.88
07/18/11 20:50:04	60.012001	585.6723022	0	0	-653	57050.43
07/18/11 20:50:06	60.012001	585.6723022	0	0	-653	57050.43
07/18/11 20:50:08	60.012001	585.116272	0	0	-653	57029.92
07/18/11 20:50:10	60.0130005	585.116272	0	0	-653	57029.92
07/18/11 20:50:12	60.0149994	584.6550293	0	0	-653	57033.71
07/18/11 20:50:14	60.0169983	584.6550293	0	0	-653	57033.71
07/18/11 20:50:16	60.0169983	585.307312	0	0	-653	57035.56
07/18/11 20:50:18	60.0139999	585.307312	0	0	-653	57035.56
07/18/11 20:50:20	60.0149994	585.2108765	0	0	-653	57020.6
07/18/11 20:50:22	60.0130005	585.2108765	0	0	-653	57020.6
07/18/11 20:50:24	60.012001	585.918396	0	0	-653	57030.37
07/18/11 20:50:26	60.0110016	585.918396	0	0	-653	57030.37
07/18/11 20:50:28	60.0079994	593.2776489	0	0	-653	57039.15
07/18/11 20:50:30	60.0079994	593.2776489	0	0	-653	57039.15
07/18/11 20:50:32	60.007	602.7012329	0	0	-653	57042.2
07/18/11 20:50:34	60.007	602.7012329	0	0	-653	57042.2
07/18/11 20:50:36	60.007	602.7012329	0	0	-653	57089.3
07/18/11 20:50:38	60.007	602.7012329	0	0	-653	57089.3
07/18/11 20:50:40	59.9889984	0	0	0	-653	56704.13
07/18/11 20:50:42	59.9179993	0	0	0	-653	56704.13
07/18/11 20:50:44	59.8800011	0	0	0	-653	56763.97
07/18/11 20:50:46	59.8720016	0	0	0	-653	56763.97
07/18/11 20:50:48	59.8660011	0	0	0	-653	56811.2
07/18/11 20:50:50	59.8670006	0	0	0	-653	56811.2
07/18/11 20:50:52	59.868	0	0	0	-653	56864.96
07/18/11 20:50:54	59.8740005	0	0	0	-653	56864.96
07/18/11 20:50:56	59.8759995	0	0	0	-653	56863.43
07/18/11 20:50:58	59.8779984	0	0	0	-653	56863.43
07/18/11 20:51:00	59.8800011	0	0	0	-653	56867.51
07/18/11 20:51:02	59.8829994	0	0	0	-653	56867.51
07/18/11 20:51:04	59.8810005	0	0	0	-653	56878.36
07/18/11 20:51:06	59.8800011	0	0	0	-653	56878.36
07/18/11 20:51:08	59.8810005	0	0	0	-653	56886.32

$07 / 18 / 11$		$00: 51: 10$	59.8810005	0	0

07/18/11 20:52:48	59.9410019	0	0	0	-653	56915.66
07/18/111 20:52:50	59.9430008	0	0	0	-653	56915.66
07/18/111 20:52:52	59.9480019	0	0	0	-653	56912.21
07/18/111 20:52:54	59.9510002	0	0	0	-653	56912.21
07/18/111 20:52:56	59.9510002	0	0	0	-653	56914.31
07/18/111 20:52:58	59.9529991	0	0	0	-653	56914.31
07/18/11 20:53:00	59.9560013	0	0	0	-653	56907.54
07/18/11 20:53:02	59.9580002	0	0	0	-653	56907.54
07/18/111 20:53:04	59.9580002	0	0	0	-653	56897.04
07/18/11 20:53:06	59.9589996	0	0	0	-653	56897.04
07/18/111 20:53:08	59.9580002	0	0	0	-653	56902.03
07/18/11 20:53:10	59.9580002	0	0	0	-653	56902.03
07/18/11 20:53:12	59.9580002	0	0	0	-653	56903.03
07/18/111 20:53:14	59.9599991	0	0	0	-653	56903.03
07/18/11 20:53:16	59.9620018	0	0	0	-653	56917.74
07/18/11 20:53:18	59.9650002	0	0	0	-653	56917.74
07/18/111 20:53:20	59.9669991	0	0	0	-653	56900.81
07/18/111 20:53:22	59.9700012	0	0	0	-653	56900.81
07/18/11 20:53:24	59.9710007	0	0	0	-653	56914.8
07/18/111 20:53:26	59.9729996	0	0	0	-653	56914.8
07/18/11 20:53:28	59.9710007	0	0	0	-653	56922.52
07/18/11 20:53:30	59.9710007	0	0	0	-653	56922.52
07/18/111 20:53:32	59.9720001	0	0	0	-653	56932.45
07/18/11 20:53:34	59.973999	0	0	0	-653	56932.45
07/18/11 20:53:36	59.9749985	0	0	0	-653	56920.23
07/18/111 20:53:38	59.9770012	0	0	0	-653	56920.23
07/18/11 20:53:40	59.9790001	0	0	0	-653	56912.88
07/18/11 20:53:42	59.980999	0	0	0	-653	56912.88
07/18/111 20:53:44	59.9819984	0	0	0	-653	56905.22
07/18/111 20:53:46	59.9840012	0	0	0	-653	56905.22
07/18/111 20:53:48	59.9860001	0	0	0	-653	56915.62
07/18/11 20:53:50	59.9889984	0	0	0	-653	56915.62
07/18/11 20:53:52	59.9910011	0	0	0	-653	56923.03
07/18/11 20:53:54	59.993	0	0	0	-653	56923.03
07/18/111 20:53:56	59.9959984	0	0	0	-653	56932.03
07/18/11 20:53:58	59.9990005	0	0	0	-653	56932.03
07/18/111 20:54:00	60.0019989	0	0	0	-653	56926.22
07/18/111 20:54:02	60.0050011	0	0	0	-653	56926.22
07/18/11 20:54:04	60.0050011	0	0	0	-653	56930.33
07/18/111 20:54:06	60.0089989	0	0	0	-653	56930.33
07/18/111 20:54:08	60.0099983	0	0	0	-653	56935.11
07/18/11 20:54:10	60.0110016	0	0	0	-653	56935.11
07/18/11 20:54:12	60.012001	0	0	0	-653	56938.24
07/18/11 20:54:14	60.0110016	0	0	0	-653	56938.24
07/18/11 20:54:16	60.0130005	0	0	0	-653	56947.14
07/18/11 20:54:18	60.0139999	0	0	0	-653	56947.14
07/18/11 20:54:20	60.0169983	0	0	0	-653	56946.19
07/18/11 20:54:22	60.0209999	0	0	0	-653	56946.19
07/18/11 20:54:2	60.0229988	0	0		-653	569373

0	0	0	-653	56937.3
0	0	0	-653	56931.41
0	0	0	-653	56931.41
0	0	0	-653	56924.84
0	0	0	-653	56924.84
0	0	0	-653	56933.16
0	0	0	-653	56933.16
0	0	0	-653	56935.62
0	0	0	-653	56935.62
0	0	0	-653	56957.32
0	0	0	-653	56957.32
0	0	0	-653	56954.23
0	0	0	-653	56954.23
0	0	0	-653	56956.64
0	0	0	-653	56956.64
0	0	0	-653	56956.6
0	0	0	-653	56956.6
0	0	0	-653	56938.9
0	0	0	-653	56938.9
0	0	0	-653	56943.18
0	0	0	-653	56943.18
0	0	0	-653	56939.07
0	0	0	-653	56939.07
0	0	0	-653	56942.44
0	0	0	-653	56942.44
0	0	0	-653	56924.37
0	0	0	-653	56924.37
0	0	0	-653	56907.9
0	0	0	-653	56907.9
0	0	0	-653	56897.8
0	0	0	-653	56897.8
0	0	0	-653	56864.89
0	0	0	-653	56864.89
0	0	0	-653	56842.66
0	0	0	-653	56842.66
0	0	0	-653	56845.28
0	0	0	-653	56845.28
0	0	0	-653	56850.62
0	0	0	-653	56850.62
0	0	0	-653	56870.91
0	0	0	-653	56870.91
0	0	0	-653	56854.55
0	0	0	-653	56854.55
0	0	0	-653	56848.62
0	0	0	-653	56848.62
0	0	0	-653	56838.2
0	0	0	-653	56838.2
0	0	0	-653	56838.88
0	0	0	-653	56838.88

07/18/11 20:56:04	60.0449982	0	0	0	-653	56851.8
07/18/11 20:56:06	60.0460014	0	0	0	-653	56851.8
07/18/11 20:56:08	60.0439987	0	0	0	-653	56861.98
07/18/11 20:56:10	60.0460014	0	0	0	-653	56861.98
07/18/11 20:56:12	60.0460014	0	0	0	-653	56851.02
07/18/11 20:56:14	60.0460014	0	0	0	-653	56851.02
07/18/11 20:56:16	60.0470009	0	0	0	-653	56845.13
07/18/11 20:56:18	60.0470009	0	0	0	-653	56845.13
07/18/11 20:56:20	60.0480003	0	0	0	-653	56847.95
07/18/11 20:56:22	60.0499992	0	0	0	-653	56847.95
07/18/11 20:56:24	60.0519981	0	0	0	-653	56843.66
07/18/11 20:56:26	60.0519981	0	0	0	-653	56843.66
07/18/11 20:56:28	60.0489998	0	0	0	-653	56833.39
07/18/11 20:56:30	60.0480003	0	0	0	-653	56833.39
07/18/11 20:56:32	60.0489998	0	0	0	-653	56814.38
07/18/11 20:56:34	60.0509987	0	0	0	-653	56814.38
07/18/11 20:56:36	60.0499992	0	0	0	-653	56817.16
07/18/11 20:56:38	60.0489998	0	0	0	-653	56817.16
07/18/11 20:56:40	60.0480003	0	0	0	-653	56805.52
07/18/11 20:56:42	60.0460014	0	0	0	-653	56805.52
07/18/11 20:56:44	60.0439987	0	0	0	-653	56807.83
07/18/11 20:56:46	60.0429993	0	0	0	-653	56807.83
07/18/11 20:56:48	60.0449982	0	0	0	-653	56827.41
07/18/11 20:56:50	60.0439987	0	0	0	-653	56827.41
07/18/11 20:56:52	60.0400009	0	0	0	-653	56821.69
07/18/11 20:56:54	60.0379982	0	0	0	-653	56821.69
07/18/11 20:56:56	60.0359993	0	0	0	-653	56833.95
07/18/11 20:56:58	60.0349998	0	0	0	-653	56833.95
07/18/11 20:57:00	60.0309982	0	0	0	-653	56860.51
07/18/11 20:57:02	60.0299988	0	0	0	-653	56860.51
07/18/11 20:57:04	60.0299988	0	0	0	-653	56877.59
07/18/11 20:57:06	60.0320015	0	0	0	-653	56877.59
07/18/11 20:57:08	60.0330009	0	0	0	-653	56918.66
07/18/11 20:57:10	60.0330009	0	0	0	-653	56918.66
07/18/11 20:57:12	60.0320015	0	0	0	-653	56891.71
07/18/11 20:57:14	60.0349998	0	0	0	-653	56891.71
07/18/11 20:57:16	60.0379982	0	0	0	-653	56894.35
07/18/11 20:57:18	60.0390015	0	0	0	-653	56894.35
07/18/11 20:57:20	60.0379982	0	0	0	-653	56895.17
07/18/11 20:57:22	60.0390015	0	0	0	-653	56895.17
07/18/11 20:57:24	60.0400009	0	0	0	-653	56889.73
07/18/11 20:57:26	60.0400009	0	0	0	-653	56889.73
07/18/11 20:57:28	60.0390015	0	0	0	-653	56892.39
07/18/11 20:57:30	60.0390015	0	0	0	-653	56892.39
07/18/11 20:57:32	60.0379982	0	0	0	-653	56875.33
07/18/11 20:57:34	60.0369987	0	0	0	-653	56874.01
07/18/11 20:57:36	60.0349998	0	0	0	-653	56874.0
07/18/11 20:57:38	60.0340004	0	0	0	-653	56874.0
07/18/11 20:57	60.0340004		0	0	-653	56881

07/18/11 20:57:42	60.0340004	0	0	0	-653	56881
07/18/11 20:57:44	60.0359993	0	0	0	-653	56887.45
07/18/11 20:57:46	60.0340004	0	0	0	-653	56887.45
07/18/11 20:57:48	60.0320015	0	0	0	-653	56882.08
07/18/11 20:57:50	60.0330009	0	0	0	-653	56882.08
07/18/11 20:57:52	60.0340004	0	0	0	-653	56879.11
07/18/11 20:57:54	60.0359993	0	0	0	-653	56879.11
07/18/11 20:57:56	60.0379982	0	0	0	-653	56884.36
07/18/11 20:57:58	60.0400009	0	0	0	-653	56884.36
07/18/11 20:58:00	60.0390015	0	0	0	-653	56872.63
07/18/11 20:58:02	60.0349998	0	0	0	-653	56872.63
07/18/11 20:58:04	60.0349998	0	0	0	-653	56865.52
07/18/11 20:58:06	60.0340004	0	0	0	-653	56865.52
07/18/11 20:58:08	60.0330009	0	0	0	-653	56874.48
07/18/11 20:58:10	60.0289993	0	0	0	-653	56874.48
07/18/11 20:58:12	60.0299988	0	0	0	-653	56866.35
07/18/11 20:58:14	60.0289993	0	0	0	-653	56866.35
07/18/11 20:58:16	60.0279999	0	0	0	-653	56868.5
07/18/11 20:58:18	60.026001	0	0	0	-653	56868.5
07/18/11 20:58:20	60.0279999	0	0	0	-653	56865.58
07/18/11 20:58:22	60.0299988	0	0	0	-653	56865.58
07/18/11 20:58:24	60.0320015	0	0	0	-653	56862.76
07/18/11 20:58:26	60.0330009	0	0	0	-653	56862.76
07/18/11 20:58:28	60.0349998	0	0	0	-653	56871.13
07/18/11 20:58:30	60.0359993	0	0	0	-653	56871.13
07/18/11 20:58:32	60.0369987	0	0	0	-653	56863.48
07/18/11 20:58:34	60.0340004	0	0	0	-653	56863.48
07/18/11 20:58:36	60.0320015	0	0	0	-653	56856.71
07/18/11 20:58:38	60.0299988	0	0	0	-653	56856.71
07/18/11 20:58:40	60.0279999	0	0	0	-653	56859.67
07/18/11 20:58:42	60.0279999	0	0	0	-653	56859.67
07/18/11 20:58:44	60.0279999	0	0	0	-653	56860.41
07/18/11 20:58:46	60.0279999	0	0	0	-653	56860.41
07/18/11 20:58:48	60.0299988	0	0	0	-653	56867.31
07/18/11 20:58:50	60.0289993	0	0	0	-653	56867.31
07/18/11 20:58:52	60.0299988	0	0	0	-653	56852.14
07/18/11 20:58:54	60.0320015	0	0	0	-653	56852.14
07/18/11 20:58:56	60.0349998	0	0	0	-653	56838.81
07/18/11 20:58:58	60.0349998	0	0	0	-653	56838.81
07/18/11 20:59:00	60.0349998	0	0	0	-653	56839.64
07/18/11 20:59:02	60.0340004	0	0	0	-653	56839.64
07/18/11 20:59:04	60.0330009	0	0	0	-653	56839.96
07/18/11 20:59:06	60.0340004	0	0	0	-653	56839.96
07/18/11 20:59:08	60.0340004	0	0	0	-653	56841.01
07/18/11 20:59:10	60.0340004	0	0	0	-653	56841.01
07/18/11 20:59:12	60.0330009	0	0	0	-653	56854.9
07/18/11 20:59:14	60.0289993	0	0	0	-653	56854.9
07/18/11 20:59:16	60.0270004	0	0	0	-653	56846
07/18/11 $20: 59$	60.0250015	0	0	0	-653	56846

07/18/11 20:59:20	60.0250015	0	0	0	-653	56833.07
07/18/11 20:59:22	60.026001	0	0	0	-653	56833.07
07/18/11 20:59:24	60.026001	0	0	0	-653	56827.28
07/18/11 20:59:26	60.0250015	0	0	0	-653	56827.28
07/18/11 20:59:28	60.026001	0	0	0	-653	56829.42
07/18/11 20:59:30	60.0270004	0	0	0	-653	56829.42
07/18/11 20:59:32	60.0270004	0	0	0	-653	56846.66
07/18/11 20:59:34	60.0279999	0	0	0	-653	56846.66
07/18/11 20:59:36	60.0299988	0	0	0	-653	56840.57
07/18/11 20:59:38	60.0289993	0	0	0	-653	56840.57
07/18/11 20:59:40	60.0299988	0	0	0	-653	56831.91
07/18/11 20:59:42	60.0279999	0	0	0	-653	56831.91
07/18/11 20:59:44	60.026001	0	0	0	-653	56833.35
07/18/11 20:59:46	60.0270004	0	0	0	-653	56833.35
07/18/11 20:59:48	60.0289993	0	0	0	-653	56833.63
07/18/11 20:59:50	60.0299988	0	0	0	-653	56833.63
07/18/11 20:59:52	60.0320015	0	0	0	-653	56828
07/18/11 20:59:54	60.0289993	0	0	0	-653	56828
07/18/11 20:59:56	60.0289993	0	0	0	-653	56828
07/18/11 20:59:58	60.0320015	0	0	0	-653	56828
07/18/11 21:00:00	60.0330009	0	0	0	-653	56833.8
07/18/11 21:00:02	60.0330009	0	0	0	-653	56833.8
07/18/11 21:00:04	60.0320015	0	0	0	-653	56806.86
07/18/11 21:00:06	60.0299988	0	0	0	-653	56806.86
07/18/11 21:00:08	60.0289993	0	0	0	-653	56813.18
07/18/11 21:00:10	60.0330009	0	0	0	-653	56813.18
07/18/11 21:00:12	60.0349998	0	0	0	-653	56804.27
07/18/11 21:00:14	60.0349998	0	0	0	-653	56804.27
07/18/11 21:00:16	60.0309982	0	0	0	-653	56787.34
07/18/11 21:00:18	60.0320015	0	0	0	-653	56787.34
07/18/11 21:00:20	60.0289993	0	0	0	-653	56786.84
07/18/11 21:00:22	60.0270004	0	0	0	-653	56786.84
07/18/11 21:00:24	60.026001	0	0	0	-653	56773.49
07/18/11 21:00:26	60.0270004	0	0	0	-653	56773.49
07/18/11 21:00:28	60.0270004	0	0	0	-653	56759.37
07/18/11 21:00:30	60.026001	0	0	0	-653	56759.37
07/18/11 21:00:32	60.026001	0	0	0	-653	56742.34
07/18/11 21:00:34	60.0279999	0	0	0	-653	56742.34
07/18/11 21:00:36	60.0279999	0	0	0	-653	56734.98
07/18/11 21:00:38	60.0270004	0	0	0	-653	56734.98
07/18/11 21:00:40	60.026001	0	0	0	-653	56750.62
07/18/11 21:00:42	60.0270004	0	0	0	-653	56750.6
07/18/11 21:00:44	60.0279999	0	0	0	-653	56746.89
07/18/11 21:00:46	60.0270004	0	0	0	-653	56746.89
07/18/11 21:00:48	60.0270004	0	0	0	-653	56753.28
07/18/11 21:00:50	60.0270004	0	0	0	-653	56753.28
07/18/11 21:00:52	60.0270004	0	0	0	-653	56749.96
07/18/11 21:00:54	60.0250015	0	0	0	-653	56749.96

07/18/11 21:00:58	60.0239983	0	0	0	-653	56728.95
07/18/11 21:01:00	60.0239983	0	0	0	-653	56723.32
07/18/11 21:01:02	60.0250015	0	0	0	-653	56723.32
07/18/11 21:01:04	60.0250015	0	0	0	-653	56715.22
07/18/11 21:01:06	60.026001	0	0	0	-653	56715.22
07/18/11 21:01:08	60.0250015	0	0	0	-653	56724.1
07/18/11 21:01:10	60.0229988	0	0	0	-653	56724.1
07/18/11 21:01:12	60.0219994	0	0	0	-653	56718.91
07/18/11 21:01:14	60.0209999	0	0	0	-653	56718.91
07/18/11 21:01:16	60.0200005	0	0	0	-653	56704.99
07/18/11 21:01:18	60.0180016	0	0	0	-653	56704.99
07/18/11 21:01:20	60.0149994	0	0	0	-653	56708.48
07/18/11 21:01:22	60.0130005	0	0	0	-653	56708.48
07/18/11 21:01:24	60.0130005	0	0	0	-653	56730.45
07/18/11 21:01:26	60.0130005	0	0	0	-653	56730.45
07/18/11 21:01:28	60.0139999	0	0	0	-653	56720.16
07/18/11 21:01:30	60.0139999	0	0	0	-653	56720.16
07/18/11 21:01:32	60.0149994	0	0	0	-653	56711.63
07/18/11 21:01:34	60.0169983	0	0	0	-653	56711.63
07/18/11 21:01:36	60.0159988	0	0	0	-653	56708.66
07/18/11 21:01:38	60.0159988	0	0	0	-653	56708.66
07/18/11 21:01:40	60.0159988	0	0	0	-653	56706.61
07/18/11 21:01:42	60.0149994	0	0	0	-653	56706.61
07/18/11 21:01:44	60.0139999	0	0	0	-653	56716.55
07/18/11 21:01:46	60.0130005	0	0	0	-653	56716.55
07/18/11 21:01:48	60.0139999	0	0	0	-653	56705.83
07/18/11 21:01:50	60.0180016	0	0	0	-653	56705.83
07/18/11 21:01:52	60.0180016	0	0	0	-653	56696.39
07/18/11 21:01:54	60.0180016	0	0	0	-653	56696.39
07/18/11 21:01:56	60.0159988	0	0	0	-653	56670.62
07/18/11 21:01:58	60.0169983	0	0	0	-653	56670.62
07/18/11 21:02:00	60.0250015	0	0	0	-653	56642.69
07/18/11 21:02:02	60.0299988	0	0	0	-653	56642.69
07/18/11 21:02:04	60.0320015	0	0	0	-653	56644.32
07/18/11 21:02:06	60.0340004	0	0	0	-653	56644.32
07/18/11 21:02:08	60.0330009	0	0	0	-653	56636.41
07/18/11 21:02:10	60.0330009	0	0	0	-653	56636.41
07/18/11 21:02:12	60.0330009	0	0	0	-653	56630.75
07/18/11 21:02:14	60.0330009	0	0	0	-653	56630.75
07/18/11 21:02:16	60.0340004	0	0	0	-653	56620.91
07/18/11 21:02:18	60.0369987	0	0	0	-653	56620.91
07/18/11 21:02:20	60.0359993	0	0	0	-653	56619
07/18/11 21:02:22	60.0340004	0	0	0	-653	56619
07/18/11 21:02:24	60.0299988	0	0	0	-653	56610.45
07/18/11 21:02:26	60.0320015	0	0	0	-653	56610.45
07/18/11 21:02:28	60.0309982	0	0	0	-653	56598.06
07/18/11 21:02:30	60.0320015	0	0	0	-653	56598.06
07/18/11 21:02:32	60.0309982	0	0	0	-653	56587.05
07/18/11 21:02	60.0289993	0	0	0	-653	5658989

07/18/11 21:02:36	60.0270004	0	0	0	-653	56589.89
07/18/11 21:02:38	60.0270004	0	0	0	-653	56589.89
07/18/11 21:02:40	60.0229988	0	0	0	-653	56581.13
07/18/11 21:02:42	60.0219994	0	0	0	-653	56581.13
07/18/11 21:02:44	60.0200005	0	0	0	-653	56587.69
07/18/11 21:02:46	60.0180016	0	0	0	-653	56587.69
07/18/11 21:02:48	60.019001	0	0	0	-653	56605.2
07/18/11 21:02:50	60.0180016	0	0	0	-653	56605.2
07/18/11 21:02:52	60.019001	0	0	0	-653	56592.78
07/18/11 21:02:54	60.019001	0	0	0	-653	56592.78
07/18/11 21:02:56	60.0169983	0	0	0	-653	56586.05
07/18/11 21:02:58	60.0159988	0	0	0	-653	56586.05
07/18/11 21:03:00	60.0169983	0	0	0	-653	56581.38
07/18/11 21:03:02	60.0149994	0	0	0	-653	56581.38
07/18/11 21:03:04	60.0139999	0	0	0	-653	56576.92
07/18/11 21:03:06	60.012001	0	0	0	-653	56576.92
07/18/11 21:03:08	60.0110016	0	0	0	-653	56570.9
07/18/11 21:03:10	60.0110016	0	0	0	-653	56570.9
07/18/11 21:03:12	60.0110016	0	0	0	-653	56585.3
07/18/11 21:03:14	60.0130005	0	0	0	-653	56585.3
07/18/11 21:03:16	60.0130005	0	0	0	-653	56579.29
07/18/11 21:03:18	60.012001	0	0	0	-653	56579.29
07/18/11 21:03:20	60.012001	0	0	0	-653	56575.29
07/18/11 21:03:22	60.012001	0	0	0	-653	56575.29
07/18/11 21:03:24	60.0110016	0	0	0	-653	56567.7
07/18/11 21:03:26	60.007	0	0	0	-653	56567.7
07/18/11 21:03:28	60.0040016	0	0	0	-653	56566.86
07/18/11 21:03:30	60.0009995	0	0	0	-653	56566.86
07/18/11 21:03:32	59.9980011	0	0	0	-653	56567.8
07/18/11 21:03:34	59.9980011	0	0	0	-653	56567.8
07/18/11 21:03:36	59.9990005	0	0	0	-653	56565.92
07/18/11 21:03:38	60.0009995	0	0	0	-653	56565.92
07/18/11 21:03:40	60.0019989	0	0	0	-653	56570
07/18/11 21:03:42	60.0040016	0	0	0	-653	56570
07/18/11 21:03:44	60.0060005	0	0	0	-653	56565.58
07/18/11 21:03:46	60.0060005	0	0	0	-653	56565.58
07/18/11 21:03:48	60.0060005	0	0	0	-653	56557.96
07/18/11 21:03:50	60.0050011	0	0	0	-653	56557.96
07/18/11 21:03:52	60.0050011	0	0	0	-653	56538.89
07/18/11 21:03:54	60.0050011	0	0	0	-653	56538.89
07/18/11 21:03:56	60.0050011	0	0	0	-653	56537.92
07/18/11 21:03:58	60.0050011	0	0	0	-653	56537.92
07/18/11 21:04:00	60.0040016	0	0	0	-653	56544.36
07/18/11 21:04:02	60.0040016	0	0	0	-653	56544.36
07/18/11 21:04:04	60.0050011	0	0	0	-653	56542.68
07/18/11 21:04:06	60.0050011	0	0	0	-653	56542.68
07/18/11 21:04:08	60.0050011	0	0	0	-653	56554.31
07/18/11 21:04:10	60.0019989	0	0	0	-653	56554.31
07/18/11 21:04:12	59.9990005	0	0	0	-653	56543.29

07/18/11 21:04:14	59.9959984	0	0	0	-653	56543.29
07/18/11 21:04:16	59.9980011	0	0	0	-653	56531.34
07/18/11 21:04:18	59.9990005	0	0	0	-653	56531.34
07/18/11 21:04:20	60.0009995	0	0	0	-653	56542.45
07/18/11 21:04:22	59.9990005	0	0	0	-653	56542.45
07/18/11 21:04:24	59.9980011	0	0	0	-653	56546.61
07/18/11 21:04:26	59.9980011	0	0	0	-653	56546.61
07/18/11 21:04:28	59.9980011	0	0	0	-653	56538.92
07/18/11 21:04:30	59.9970016	0	0	0	-653	56538.92
07/18/11 21:04:32	59.9959984	0	0	0	-653	56548.07
07/18/11 21:04:34	59.9949989	0	0	0	-653	56548.07
07/18/11 21:04:36	59.993	0	0	0	-653	56542.02
07/18/11 21:04:38	59.993	0	0	0	-653	56542.02
07/18/11 21:04:40	59.993	0	0	0	-653	56531.91
07/18/11 21:04:42	59.9949989	0	0	0	-653	56531.91
07/18/11 21:04:44	59.9949989	0	0	0	-653	56528.67
07/18/11 21:04:46	59.9959984	0	0	0	-653	56528.67
07/18/11 21:04:48	59.9949989	0	0	0	-653	56528.46
07/18/11 21:04:50	59.993	0	0	0	-653	56528.46
07/18/11 21:04:52	59.9900017	0	0	0	-653	56519.61
07/18/11 21:04:54	59.987999	0	0	0	-653	56519.61
07/18/11 21:04:56	59.9869995	0	0	0	-653	56512.2
07/18/11 21:04:58	59.9869995	0	0	0	-653	56512.2
07/18/11 21:05:00	59.9889984	0	0	0	-653	56514.52
07/18/11 21:05:02	59.9910011	0	0	0	-653	56514.52
07/18/11 21:05:04	59.993	0	0	0	-653	56508.47
07/18/11 21:05:06	59.9959984	0	0	0	-653	56508.47
07/18/11 21:05:08	59.9970016	0	0	0	-653	56512.15
07/18/11 21:05:10	59.9949989	0	0	0	-653	56512.15
07/18/11 21:05:12	59.993	0	0	0	-653	56508.86
07/18/11 21:05:14	59.993	0	0	0	-653	56508.86
07/18/11 21:05:16	59.9920006	0	0	0	-653	56503.34
07/18/11 21:05:18	59.9900017	0	0	0	-653	56503.34
07/18/11 21:05:20	59.9889984	0	0	0	-653	56510.09
07/18/11 21:05:22	59.987999	0	0	0	-653	56510.09
07/18/11 21:05:24	59.9860001	0	0	0	-653	56514.67
07/18/11 21:05:26	59.9850006	0	0	0	-653	56514.67
07/18/11 21:05:28	59.9850006	0	0	0	-653	56501.9
07/18/11 21:05:30	59.9850006	0	0	0	-653	56501.9
07/18/11 21:05:32	59.9850006	0	0	0	-653	56510.46
07/18/11 21:05:34	59.9830017	0	0	0	-653	56510.46
07/18/11 21:05:36	59.9830017	0	0	0	-653	56504.74
07/18/11 21:05:38	59.980999	0	0	0	-653	56504.74
07/18/11 21:05:40	59.9799995	0	0	0	-653	56502.2
07/18/11 21:05:42	59.9790001	0	0	0	-653	56502.2
07/18/11 21:05:44	59.9780006	0	0	0	-653	56501.25
07/18/11 21:05:46	59.9790001	0	0	0	-653	56501.25
07/18/11 21:05:48	59.9799995	0	0	0	-653	56500.1
07/18/11 21:05	59.9780006		0	0	-653	565001

07/18/11 21:05:52	59.9749985	0	0	0	-653	56492.3
07/18/11 21:05:54	59.9770012	0	0	0	-653	56492.3
07/18/11 21:05:56	59.9790001	0	0	0	-653	56483.54
07/18/11 21:05:58	59.9790001	0	0	0	-653	56483.54
07/18/11 21:06:00	59.980999	0	0	0	-653	56486.4
07/18/11 21:06:02	59.9819984	0	0	0	-653	56486.4
07/18/11 21:06:04	59.9830017	0	0	0	-653	56496.68
07/18/11 21:06:06	59.9830017	0	0	0	-653	56496.68
07/18/11 21:06:08	59.9860001	0	0	0	-653	56489.48
07/18/11 21:06:10	59.9889984	0	0	0	-653	56489.48
07/18/11 21:06:12	59.9889984	0	0	0	-653	56476.55
07/18/11 21:06:14	59.9900017	0	0	0	-653	56476.55
07/18/11 21:06:16	59.9910011	0	0	0	-653	56484.84
07/18/11 21:06:18	59.9900017	0	0	0	-653	56484.84
07/18/11 21:06:20	59.9900017	0	0	0	-653	56494.26
07/18/11 21:06:22	59.987999	0	0	0	-653	56494.26
07/18/11 21:06:24	59.9869995	0	0	0	-653	56478.49
07/18/11 21:06:26	59.9830017	0	0	0	-653	56478.49
07/18/11 21:06:28	59.9819984	0	0	0	-653	56501.87
07/18/11 21:06:30	59.9819984	0	0	0	-653	56501.87
07/18/11 21:06:32	59.9819984	0	0	0	-653	56491.51
07/18/11 21:06:34	59.9830017	0	0	0	-653	56491.51
07/18/11 21:06:36	59.9840012	0	0	0	-653	56480.03
07/18/11 21:06:38	59.9850006	0	0	0	-653	56480.03
07/18/11 21:06:40	59.9850006	0	0	0	-653	56464.71
07/18/11 21:06:42	59.9830017	0	0	0	-653	56464.71
07/18/11 21:06:44	59.987999	0	0	0	-653	56462.37
07/18/11 21:06:46	59.9939995	0	0	0	-653	56462.37
07/18/11 21:06:48	59.9980011	0	0	0	-653	56457.73
07/18/11 21:06:50	59.9990005	0	0	0	-653	56457.73
07/18/11 21:06:52	60	0	0	0	-653	56446.26
07/18/11 21:06:54	60	0	0	0	-653	56446.26
07/18/11 21:06:56	60.0009995	0	0	0	-653	56446.1
07/18/11 21:06:58	60.0009995	0	0	0	-653	56446.1
07/18/11 21:07:00	60.0019989	0	0	0	-653	56440.1
07/18/11 21:07:02	60.0029984	0	0	0	-653	56440.1
07/18/11 21:07:04	60.0040016	0	0	0	-653	56440.59
07/18/11 21:07:06	60.0060005	0	0	0	-653	56440.59
07/18/11 21:07:08	60.007	0	0	0	-653	56443.3
07/18/11 21:07:10	60.007	0	0	0	-653	56443.3
07/18/11 21:07:12	60.0079994	0	0	0	-653	56446.27
07/18/11 21:07:14	60.0099983	0	0	0	-653	56446.27
07/18/11 21:07:16	60.0079994	0	0	0	-653	56442.77
07/18/11 21:07:18	60.0089989	0	0	0	-653	56442.77
07/18/11 21:07:20	60.0099983	0	0	0	-653	56442.02
07/18/11 21:07:22	60.0110016	0	0	0	-653	56442.02
07/18/11 21:07:24	60.0130005	0	0	0	-653	56445.78
07/18/11 21:07:26	60.0159988	0	0	0	-653	56445.78
07/18/11 21:07:20	60.0159988		0			56438.68

07/18/11 21:07:30	60.0159988	0	0	0	-653	56438.68
07/18/11 21:07:32	60.0110016	0	0	0	-653	56446.48
07/18/11 21:07:34	60.007	0	0	0	-653	56438.85
07/18/11 21:07:36	60.007	0	0	0	-653	56438.85
07/18/11 21:07:38	60.0029984	0	0	0	-653	56438.85
07/18/11 21:07:40	60.0029984	0	0	0	-653	56433.16
07/18/11 21:07:42	60.0060005	0	0	0	-653	56433.16
07/18/11 21:07:44	60.0079994	0	0	0	-653	56423.06
07/18/11 21:07:46	60.0110016	0	0	0	-653	56423.06
07/18/11 21:07:48	60.0110016	0	0	0	-653	56413.65
07/18/11 21:07:50	60.0139999	0	0	0	-653	56413.65
07/18/11 21:07:52	60.0139999	0	0	0	-653	56422.53
07/18/11 21:07:54	60.012001	0	0	0	-653	56422.53
07/18/11 21:07:56	60.0099983	0	0	0	-653	56406.34
07/18/11 21:07:58	60.0079994	0	0	0	-653	56406.34
07/18/11 21:08:00	60.007	0	0	0	-653	56407.22
07/18/11 21:08:02	60.0019989	0	0	0	-653	56407.22
07/18/11 21:08:04	60.0019989	0	0	0	-653	56415.69
07/18/11 21:08:06	59.9959984	0	0	0	-653	56415.69
07/18/11 21:08:08	59.9959984	0	0	0	-653	56420.6
07/18/11 21:08:10	59.9939995	0	0	0	-653	56420.6
07/18/11 21:08:12	59.9939995	0	0	0	-653	56412.14
07/18/11 21:08:14	59.9939995	0	0	0	-653	56412.14
07/18/11 21:08:16	59.9949989	0	0	0	-653	56439.41
07/18/11 21:08:18	59.987999	0	0	0	-653	56439.41
07/18/11 21:08:20	59.987999	0	0	0	-653	56449.05
07/18/11 21:08:22	59.9819984	0	0	0	-653	56449.05
07/18/11 21:08:24	59.9729996	0	0	0	-653	56441.32
07/18/11 21:08:26	59.9729996	0	0	0	-653	56441.32
07/18/11 21:08:28	59.9720001	0	0	0	-653	56451.41
07/18/11 21:08:30	59.9710007	0	0	0	-653	56451.41
07/18/11 21:08:32	59.9720001	0	0	0	-653	56449.05
07/18/11 21:08:34	59.9700012	0	0	0	-653	56449.05
07/18/11 21:08:36	59.9710007	0	0	0	-653	56444.22
07/18/11 21:08:38	59.9720001	0	0	0	-653	56444.22
07/18/11 21:08:40	59.9720001	0	0	0	-653	56448.8
07/18/11 21:08:42	59.9710007	0	0	0	-653	56448.8
07/18/11 21:08:44	59.973999	0	0	0	-653	56431.23
07/18/11 21:08:46	59.973999	0	0	0	-653	56431.23
07/18/11 21:08:48	59.973999	0	0	0	-653	56428.9
07/18/11 21:08:50	59.9729996	0	0	0	-653	56428.9
07/18/11 21:08:52	59.9729996	0	0	0	-653	56428.16
07/18/11 21:08:54	59.9720001	0	0	0	-653	56428.16
07/18/11 21:08:56	59.9720001	0	0	0	-653	56438.3
07/18/11 21:08:58	59.9729996	0	0	0	-653	56438.3
07/18/11 21:09:00	59.9729996	0	0	0	-653	56429.57
07/18/11 21:09:02	59.9720001	0	0	0	-653	56429.57
07/18/11 21:09:04	59.9720001	0	0	0	-653	56421.97
07/18/11 21:0	59.9710007		0			56421.97

07/18/11 21:09:08	59.9720001	0	0	0	-653	56422.48
07/18/11 21:09:10	59.9720001	0	0	0	-653	56422.48
07/18/11 21:09:12	59.9720001	0	0	0	-653	56424.6
07/18/11 21:09:14	59.9729996	0	0	0	-653	56424.6
07/18/11 21:09:16	59.973999	0	0	0	-653	56430.37
07/18/11 21:09:18	59.973999	0	0	0	-653	56430.37
07/18/11 21:09:20	59.973999	0	0	0	-653	56421.03
07/18/11 21:09:22	59.973999	0	0	0	-653	56421.03
07/18/11 21:09:24	59.973999	0	0	0	-653	56419.23
07/18/11 21:09:26	59.9749985	0	0	0	-653	56419.23
07/18/11 21:09:28	59.9760017	0	0	0	-653	56412.87
07/18/11 21:09:30	59.9770012	0	0	0	-653	56412.87
07/18/11 21:09:32	59.9780006	0	0	0	-653	56428.91
07/18/11 21:09:34	59.9780006	0	0	0	-653	56428.91
07/18/11 21:09:36	59.9770012	0	0	0	-653	56424.23
07/18/11 21:09:38	59.9770012	0	0	0	-653	56424.23
07/18/11 21:09:40	59.9760017	0	0	0	-653	56408.42
07/18/11 21:09:42	59.973999	0	0	0	-653	56408.42
07/18/11 21:09:44	59.973999	0	0	0	-653	56418.11
07/18/11 21:09:46	59.973999	0	0	0	-653	56418.11
07/18/11 21:09:48	59.973999	0	0	0	-653	56407.98
07/18/11 21:09:50	59.973999	0	0	0	-653	56407.98
07/18/11 21:09:52	59.9729996	0	0	0	-653	56398.21
07/18/11 21:09:54	59.9729996	0	0	0	-653	56398.21
07/18/11 21:09:56	59.9729996	0	0	0	-653	56398.21
07/18/11 21:09:58	59.9729996	0	0	0	-653	56398.21
07/18/11 21:10:00	59.9710007	0	0	0	-653	56400.08
07/18/11 21:10:02	59.9700012	0	0	0	-653	56400.08
07/18/11 21:10:04	59.9700012	0	0	0	-653	56416.78
07/18/11 21:10:06	59.9700012	0	0	0	-653	56416.78
07/18/11 21:10:08	59.9710007	0	0	0	-653	56410.82
07/18/11 21:10:10	59.9710007	0	0	0	-653	56410.82
07/18/11 21:10:12	59.9710007	0	0	0	-653	56407.11
07/18/11 21:10:14	59.9700012	0	0	0	-653	56407.11
07/18/11 21:10:16	59.9720001	0	0	0	-653	56412.56
07/18/11 21:10:18	59.9749985	0	0	0	-653	56412.56
07/18/11 21:10:20	59.9749985	0	0	0	-653	56412.43
07/18/11 21:10:22	59.9770012	0	0	0	-653	56412.43
07/18/11 21:10:24	59.9770012	0	0	0	-653	56424.64
07/18/11 21:10:26	59.9770012	0	0	0	-653	56424.64
07/18/11 21:10:28	59.9780006	0	0	0	-653	56411.08
07/18/11 21:10:30	59.9799995	0	0	0	-653	56411.08
07/18/11 21:10:32	59.9830017	0	0	0	-653	56410.07
07/18/11 21:10:34	59.9840012	0	0	0	-653	56410.07
07/18/11 21:10:36	59.9850006	0	0	0	-653	56415.18
07/18/11 21:10:38	59.9869995	0	0	0	-653	56415.18
07/18/11 21:10:40	59.987999	0	0	0	-653	56434.01
07/18/11 21:10:42	59.987999	0	0	0	-653	56434.01
07/18/11 21:10:4	59.987999	0	0	0	-653	5643376

07/18/11 21:10:46	59.987999	0	0	0	-653	56433.76
07/18/11 21:10:48	59.9889984	0	0	0	-653	56427.4
07/18/11 21:10:50	59.9869995	0	0	0	-653	56427.4
07/18/11 21:10:52	59.9850006	0	0	0	-653	56430.27
07/18/11 21:10:54	59.9850006	0	0	0	-653	56430.27
07/18/11 21:10:56	59.9850006	0	0	0	-653	56417.96
07/18/11 21:10:58	59.9850006	0	0	0	-653	56417.96
07/18/11 21:11:00	59.9850006	0	0	0	-653	56422.76
07/18/11 21:11:02	59.9860001	0	0	0	-653	56422.76
07/18/11 21:11:04	59.9869995	0	0	0	-653	56420.98
07/18/11 21:11:06	59.9889984	0	0	0	-653	56420.98
07/18/11 21:11:08	59.9920006	0	0	0	-653	56411.35
07/18/11 21:11:10	59.9920006	0	0	0	-653	56411.35
07/18/11 21:11:12	59.9920006	0	0	0	-653	56412.68
07/18/11 21:11:14	59.9910011	0	0	0	-653	56412.68
07/18/11 21:11:16	59.993	0	0	0	-653	56421.7
07/18/11 21:11:18	59.9939995	0	0	0	-653	56421.7
07/18/11 21:11:20	59.9959984	0	0	0	-653	56425.16
07/18/11 21:11:22	59.9970016	0	0	0	-653	56425.16
07/18/11 21:11:24	59.9959984	0	0	0	-653	56438.14
07/18/11 21:11:26	59.9949989	0	0	0	-653	56438.14
07/18/11 21:11:28	59.9970016	0	0	0	-653	56433.16
07/18/11 21:11:30	59.9970016	0	0	0	-653	56433.16
07/18/11 21:11:32	59.9970016	0	0	0	-653	56425.07
07/18/11 21:11:34	59.9990005	0	0	0	-653	56425.07
07/18/11 21:11:36	60.0040016	0	0	0	-653	56410.61
07/18/11 21:11:38	60.0159988	0	0	0	-653	56410.61
07/18/11 21:11:40	60.0229988	0	0	0	-653	56384.75
07/18/11 21:11:42	60.0279999	0	0	0	-653	56384.75
07/18/11 21:11:44	60.0289993	0	0	0	-653	56377.32
07/18/11 21:11:46	60.0270004	0	0	0	-653	56377.32
07/18/11 21:11:48	60.026001	0	0	0	-653	56362.61
07/18/11 21:11:50	60.0279999	0	0	0	-653	56362.61
07/18/11 21:11:52	60.0289993	0	0	0	-653	56354.32
07/18/11 21:11:54	60.0299988	0	0	0	-653	56354.32
07/18/11 21:11:56	60.0299988	0	0	0	-653	56355.96
07/18/11 21:11:58	60.0299988	0	0	0	-653	56355.96
07/18/11 21:12:00	60.0320015	0	0	0	-653	56348.51
07/18/11 21:12:02	60.0330009	0	0	0	-653	56348.51
07/18/11 21:12:04	60.0330009	0	0	0	-653	56349.23
07/18/11 21:12:06	60.0320015	0	0	0	-653	56349.23
07/18/11 21:12:08	60.0299988	0	0	0	-653	56357.15
07/18/11 21:12:10	60.0279999	0	0	0	-653	56357.15
07/18/11 21:12:12	60.026001	0	0	0	-653	56349.07
07/18/11 21:12:14	60.0250015	0	0	0	-653	56349.07
07/18/11 21:12:16	60.0239983	0	0	0	-653	56361.33
07/18/11 21:12:18	60.0239983	0	0	0	-653	56361.33
07/18/11 21:12:20	60.026001	0	0	0	-653	56355.59
07/18/11 21:12	60.0250015		0	0	-653	56355.59

07/18/11 21:12:24	60.0250015	0	0	0	-653	56349.07
07/18/11 21:12:26	60.0219994	0	0	0	-653	56349.07
07/18/11 21:12:28	60.0200005	0	0	0	-653	56354.7
07/18/11 21:12:30	60.019001	0	0	0	-653	56354.7
07/18/11 21:12:32	60.0180016	0	0	0	-653	56353.69
07/18/11 21:12:34	60.0180016	0	0	0	-653	56345.6
07/18/11 21:12:36	60.0180016	0	0	0	-653	56345.6
07/18/11 21:12:38	60.0169983	0	0	0	-653	56345.6
07/18/11 21:12:40	60.0180016	0	0	0	-653	56338.04
07/18/11 21:12:42	60.019001	0	0	0	-653	56338.04
07/18/11 21:12:44	60.019001	0	0	0	-653	56325.32
07/18/11 21:12:46	60.0200005	0	0	0	-653	56325.32
07/18/11 21:12:48	60.0200005	0	0	0	-653	56325.12
07/18/11 21:12:50	60.0209999	0	0	0	-653	56325.12
07/18/11 21:12:52	60.0219994	0	0	0	-653	56331.52
07/18/11 21:12:54	60.0229988	0	0	0	-653	56331.52
07/18/11 21:12:56	60.0229988	0	0	0	-653	56329.43
07/18/11 21:12:58	60.0219994	0	0	0	-653	56329.43
07/18/11 21:13:00	60.0219994	0	0	0	-653	56318.63
07/18/11 21:13:02	60.0219994	0	0	0	-653	56318.63
07/18/11 21:13:04	60.0219994	0	0	0	-653	56316.55
07/18/11 21:13:06	60.0209999	0	0	0	-653	56316.55
07/18/11 21:13:08	60.0209999	0	0	0	-653	56309.1
07/18/11 21:13:10	60.0219994	0	0	0	-653	56309.1
07/18/11 21:13:12	60.0209999	0	0	0	-653	56298.35
07/18/11 21:13:14	60.0200005	0	0	0	-653	56298.35
07/18/11 21:13:16	60.019001	0	0	0	-653	56312.53
07/18/11 21:13:18	60.0200005	0	0	0	-653	56312.53
07/18/11 21:13:20	60.019001	0	0	0	-653	56307.93
07/18/11 21:13:22	60.0180016	0	0	0	-653	56307.93
07/18/11 21:13:24	60.0180016	0	0	0	-653	56288.67
07/18/11 21:13:26	60.019001	0	0	0	-653	56288.67
07/18/11 21:13:28	60.019001	0	0	0	-653	56283.19
07/18/11 21:13:30	60.0159988	0	0	0	-653	56283.19
07/18/11 21:13:32	60.0130005	0	0	0	-653	56283.82
07/18/11 21:13:34	60.0130005	0	0	0	-653	56283.82
07/18/11 21:13:36	60.0159988	0	0	0	-653	56307.8
07/18/11 21:13:38	60.0180016	0	0	0	-653	56307.8
07/18/11 21:13:40	60.0180016	0	0	0	-653	56294.97
07/18/11 21:13:42	60.0159988	0	0	0	-653	56294.97
07/18/11 21:13:44	60.0149994	0	0	0	-653	56300.18
07/18/11 21:13:46	60.0149994	0	0	0	-653	56300.18
07/18/11 21:13:48	60.0110016	0	0	0	-653	56295.84
07/18/11 21:13:50	60.0050011	0	0	0	-653	56295.84
07/18/11 21:13:52	59.9990005	0	0	0	-653	56295.2
07/18/11 21:13:54	59.9949989	0	0	0	-653	56295.2
07/18/11 21:13:56	59.9949989	0	0	0	-653	56328.64
07/18/11 21:13:58	59.9959984	0	0	0	-653	56328.64

07/18/11 11:14:02	59.9959984	0	0	0	-653	56337.04			
07/18/11 11:14:04	59.9939995	0	0	0	-653	56326.35			
07/18/111 21:14:06	59.993	0	0	0	-653	56326.35			
07/18/11 11:14:08	59.993	0	0	0	-653	56318.79			
07/18/11 21:14:10	59.993	0	0	0	-653	56318.79			
07/18/111 21:14:12	59.9939995	0	0	0	-653	56303.38			
07/18/11 21:14:14	59.9949989	0	0	0	-653	56303.38			
07/18/11 21:14:16	59.9949989	0	0	0	-653	56294.88			
07/18/11 21:14:18	59.9949989	0	0	0	-653	56294.88			
07/18/111 21:14:20	59.9949989	0	0	0	-653	56303.64			
07/18/11 11:14:22	59.9939995	0	0	0	-653	56303.64			
07/18/11 11:14:24	59.993	0	0	0	-653	56295.32			
07/18/11 21:14:26	59.9939995	0	0	0	-653	56295.32			
07/18/111 21:14:28	59.9959984	0	0	0	-653	56298.27			
07/18/11 11:14:30	59.9980011	0	0	0	-653	56298.27			
07/18/111 21:14:32	59.9980011	0	0	0	-653	56290.24			
07/18/111 21:14:34	59.9959984	0	0	0	-653	56290.24			
07/18/11 11:14:36	59.9980011	0	0	0	-653	56287.61			
07/18/111 21:14:38	59.9970016	0	0	0	-653	56287.61			
07/18/111 21:14:40	59.9949989	0	0	0	-653	56293.02			
07/18/11 11:14:42	59.9939995	0	0	0	-653	56293.02			
07/18/111 21:14:44	59.9920006	0	0	0	-653	56283.21			
07/18/111 21:14:46	59.9920006	0	0	0	-653	56283.21			
07/18/11 21:14:48	59.9920006	0	0	0	-653	56295.32			
07/18/111 21:14:50	59.9900017	0	0	0	-653	56295.32			
07/18/11 11:14:52	59.9889984	0	0	0	-653	56287.61			
07/18/11 11:14:54	59.9869995	0	0	0	-653	56287.61			
07/18/111 21:14:56	59.9850006	0	0	0	-653	56287.61			
07/18/11 21:14:58	59.9850006	0	0	0	-653	56287.61			
07/18/11 11:15:00	59.9860001	0	0	0	-653	56287.61			
07/18/111 21:15:02	59.9860001	0	0	0	-653	56283.21			
07/18/111 21:15:04	59.987999	0	0	0	-653	56283.21			
07/18/11 21:15:06	59.9850006	0	0	0	-653	56283.21			
07/18/11 21:15:08	59.9850006	0	0	0	-653	56283.21			
07/18/11 21:15:10	59.9860001	0	0	0	-653	56278.5			
07/18/111 21:15:12	59.9860001	0	0	0	-653	56278.5			
07/18/11 11:15:14	59.9860001	0	0	0	-653	56278.5			
07/18/11 21:15:16	59.9830017	0	0	0	-653	56278.5			
07/18/111 21:15:18	59.9830017	0	0	0	-653	56278			
07/18/111 21:15:20	59.9830017	0	0	0	-653	56278.5			
07/18/11 11:15:22	59.9860001	0	0	0	-653	56262.51			
07/18/111 21:15:24	59.987999	0	0	0	-653	56262.51			
07/18/111 21:15:26	59.9900017	0	0	0	-653	56262.51			
07/18/11 11:15:28	59.9900017	0	0	0	-653	56262.51			
07/18/111 21:15:30	59.9910011	0	0	0	-653	56262.51			
07/18/111 21:15:32	59.9920006	0	0	0	-653	56287.75			
07/18/111 21:15:34	59.993	0	0	0	-653	56287.75			
07/18/111 21:15:36	59.9939995	0	0	0	-653	56287.75			
07/18/11 21:1	59.9970016				-653	56287.75	$\begin{array}{ll}7 / 18 / 11 & 21: 16: 36 \\ 60.0169983 \\ 7 / 18 / 11 & 21: 16: 38 \\ 60.0169983\end{array}$ $\begin{array}{ll}07 / 18 / 11 & 21: 16: 38 \\ \text { 60.0169983 } \\ 07 / 18 / 11 & 21: 16: 40 \\ 60.0159988\end{array}$ $\begin{array}{ll}07 / 18 / 11 & 21: 16: 40 \\ \text { 0.0.0159988 } \\ 07 / 18 / 11 & 21: 16: 42 \\ 60.0159988\end{array}$	$07 / 18 / 111$	$21: 16: 42$
:---	:---								
60.0159988			$07 / 18 / 111$	$21: 16: 44$					
:---	:---								
60.0180016									
0718811	$21 \cdot 6 \cdot 46$								
60.019001		07/18/11 21:16:46 $\quad 60.019001$							

 $\begin{array}{ll}07 / 18 / 111 & 21: 16: 50 \\ 60.0209999\end{array}$ \begin{tabular}{ll}
$07 / 18 / 111$ \& $21: 16: 52$

60.0200005

\hline

 $\begin{array}{ll}07 / 18 / 111 & 21: 16: 54 \\ 60.0169983 \\ 07 / 18111 & 1656\end{array}$

$07 / 18 / 11121: 16: 56$ \& 60.0169983

\hline $0718811121 \cdot 665$ \& 60.0169983

 $\begin{array}{lr}07 / 18 / 111 & 21: 16: 58 \\ \text { 60.0169983 } \\ 07 / 18 / 11 & 21: 17: 00 \\ 60.012001\end{array}$ $\begin{array}{lr}07 / 18 / 11121: 17: 00 & 60.012001 \\ 07 / 18 / 11 & 21: 17: 02 \\ 60.0089989\end{array}$ $\begin{array}{ll}07 / 18 / 111 & 21: 17: 02 \\ 60.0089989 \\ 07 / 1811121: 17: 04 & 600050011\end{array}$

$07 / 18 / 111$ \& $21: 17: 04$

07/18/11 21:17:06 \& 60.0050011

\hline 0.0040016
\end{tabular} $\begin{array}{ll}07 / 18 / 11121: 17: 06 & 60.0040016 \\ \text { 07/18/11 21:17:08 } & 60.0029984\end{array}$ $\begin{array}{ll}07 / 18 / 11 & 21: 17: 08 \\ \text { 07/18/11 21:17:10 } & 60.0029984 \\ 60.0029984\end{array}$ $\begin{array}{ll}7 / 18 / 11 & 21: 17: 10 \\ 60.0029984 \\ 7 / 18 / 11 & 21: 17: 12 \\ 60.0029984\end{array}$ $\begin{array}{ll}0718111 & 21: 17: 12 \\ 60.0029984 \\ \text { 07/18/11 21:17:14 } & 60.0050011\end{array}$ 07/18/11 21:17:16 60.0050011

0	0	0	-653	56287.75
0	0	0	-653	56271.19
0	0	0	-653	56271.19
0	0	0	-653	56271.19
0	0	0	-653	56271.19
0	0	0	-653	56271.19
0	0	0	-653	56261.12
0	0	0	-653	56261.12
0	0	0	-653	56261.12
0	0	0	-653	56261.12
0	0	0	-653	56261.12
0	0	0	-653	56275.96
0	0	0	-653	56275.96
0	0	0	-653	56275.96
0	0	0	-653	56275.96
0	0	0	-653	56275.96
0	0	0	-653	56310.49
0	0	0	-653	56310.49
0	0	0	-653	56310.49
0	0	0	-653	56310.49
0	0	0	-653	56310.49
0	0	0	-653	56278.79
0	0	0	-653	56278.79
0	0	0	-653	56278.79
0	0	0	-653	56278.79
0	0	0	-653	56278.79
0	0	0	-653	56275.11
0	0	0	-653	56275.11
0	0	0	-653	56275.11
0	0	0	-653	56275.11
0	0	0	-653	56275.11
0	0	0	-653	56272.93
0	0	0	-653	56272.93
0	0	0	-653	56272.93
0	0	0	-653	56272.93
0	0	0	-653	56272.93
	0	0	-653	56255.99
0	0	0	-653	56255.99
0	0	0	-653	56255.99
0	0	0	-653	56255.99
0	0	0	-653	56255.99
0	0	0	-653	56254.07
0	0	0	-653	56254.07
0	0	0	-653	56254.07
0	0	0	-653	56254.07
0	0	0	-653	56254.07
0	0	0	-653	56263.52
0	0	0	-653	56263.52

07/18/11 21:17:18	60.0060005	0	0	0	-653	56263.52
07/18/11 21:17:20	60.0019989	0	0	0	-653	56263.52
07/18/11 21:17:22	59.9990005	0	0	0	-653	56275.39
07/18/11 21:17:24	59.9980011	0	0	0	-653	56275.39
07/18/11 21:17:26	59.9949989	0	0	0	-653	56275.39
07/18/11 21:17:28	59.9910011	0	0	0	-653	56275.39
07/18/11 21:17:30	59.9900017	0	0	0	-653	56275.39
07/18/11 21:17:32	59.9889984	0	0	0	-653	56286.62
07/18/11 21:17:34	59.9910011	0	0	0	-653	56286.62
07/18/11 21:17:36	59.9910011	0	0	0	-653	56286.62
07/18/11 21:17:38	59.9900017	0	0	0	-653	56286.62
07/18/11 21:17:40	59.9920006	0	0	0	-653	56286.62
07/18/11 21:17:42	59.9939995	0	0	0	-653	56275.45
07/18/11 21:17:44	59.9949989	0	0	0	-653	56275.45
07/18/11 21:17:46	59.9939995	0	0	0	-653	56275.45
07/18/11 21:17:48	59.993	0	0	0	-653	56275.45
07/18/11 21:17:50	59.9949989	0	0	0	-653	56275.45
07/18/11 21:17:52	59.9959984	0	0	0	-653	56259.86
07/18/11 21:17:54	59.9990005	0	0	0	-653	56259.86
07/18/11 21:17:56	60.0040016	0	0	0	-653	56259.86
07/18/11 21:17:58	60.0060005	0	0	0	-653	56259.86
07/18/11 21:18:00	60.007	0	0	0	-653	56259.86
07/18/11 21:18:02	60.0079994	0	0	0	-653	56247.24
07/18/11 21:18:04	60.0089989	0	0	0	-653	56247.24
07/18/11 21:18:06	60.0110016	0	0	0	-653	56247.24
07/18/11 21:18:08	60.012001	0	0	0	-653	56247.24
07/18/11 21:18:10	60.0139999	0	0	0	-653	56247.24
07/18/11 21:18:12	60.0149994	0	0	0	-653	56253.61
07/18/11 21:18:14	60.0159988	0	0	0	-653	56253.61
07/18/11 21:18:16	60.0149994	0	0	0	-653	56253.61
07/18/11 21:18:18	60.0130005	0	0	0	-653	56253.61
07/18/11 21:18:20	60.012001	0	0	0	-653	56253.61
07/18/11 21:18:22	60.0110016	0	0	0	-653	56237
07/18/11 21:18:24	60.0089989	0	0	0	-653	56237
07/18/11 21:18:26	60.0099983	0	0	0	-653	56237
07/18/11 21:18:28	60.0099983	0	0	0	-653	56237
07/18/11 21:18:30	60.012001	0	0	0	-653	56237
07/18/11 21:18:32	60.0099983	0	0	0	-653	56245.64
07/18/11 21:18:34	60.0099983	0	0	0	-653	56245.64
07/18/11 21:18:36	60.0099983	0	0	0	-653	56245.64
07/18/11 21:18:38	60.012001	0	0	0	-653	56245.64
07/18/11 21:18:40	60.0139999	0	0	0	-653	56245.64
07/18/11 21:18:42	60.0149994	0	0	0	-653	56234.72
07/18/11 21:18:44	60.0149994	0	0	0	-653	56234.72
07/18/11 21:18:46	60.0139999	0	0	0	-653	56234.72
07/18/11 21:18:48	60.0159988	0	0	0	-653	56234.72
07/18/11 21:18:50	60.0169983	0	0	0	-653	56234.72
07/18/11 21:18:52	60.0180016	0	0	0	-653	56222.8
07/18/11 21:18:54	60.0180016	0	0	0	-653	56222.8

07/18/11 21:18:56	60.0159988	0	0	0	-653	56222.8
07/18/11 21:18:58	60.0169983	0	0	0	-653	56222.8
07/18/11 21:19:00	60.0159988	0	0	0	-653	56222.8
07/18/11 21:19:02	60.0139999	0	0	0	-653	56205.51
07/18/11 21:19:04	60.0110016	0	0	0	-653	56205.51
07/18/11 21:19:06	60.0079994	0	0	0	-653	56205.51
07/18/11 21:19:08	60.0040016	0	0	0	-653	56205.51
07/18/11 21:19:10	60.0029984	0	0	0	-653	56205.51
07/18/11 21:19:12	60.0029984	0	0	0	-653	56216.17
07/18/11 21:19:14	60.0050011	0	0	0	-653	56216.17
07/18/11 21:19:16	60.0050011	0	0	0	-653	56216.17
07/18/11 21:19:18	60.0040016	0	0	0	-653	56216.17
07/18/11 21:19:20	60.0060005	0	0	0	-653	56216.17
07/18/11 21:19:22	60.0060005	0	0	0	-653	56203.93
07/18/11 21:19:24	60.0079994	0	0	0	-653	56203.93
07/18/11 21:19:26	60.0099983	0	0	0	-653	56203.93
07/18/11 21:19:28	60.0110016	0	0	0	-653	56203.93
07/18/11 21:19:30	60.012001	0	0	0	-653	56203.93
07/18/11 21:19:32	60.0099983	0	0	0	-653	56200.13
07/18/11 21:19:34	60.0060005	0	0	0	-653	56200.13
07/18/11 21:19:36	60.0060005	0	0	0	-653	56200.13
07/18/11 21:19:38	60.0029984	0	0	0	-653	56200.13
07/18/11 21:19:40	60.0019989	0	0	0	-653	56200.13
07/18/11 21:19:42	60.0009995	0	0	0	-653	56181.92
07/18/11 21:19:44	60.0040016	0	0	0	-653	56181.92
07/18/11 21:19:46	60.0060005	0	0	0	-653	56181.92
07/18/11 21:19:48	60.007	0	0	0	-653	56181.92
07/18/11 21:19:50	60.0110016	0	0	0	-653	56181.92
07/18/11 21:19:52	60.0130005	0	0	0	-653	56187.34
07/18/11 21:19:54	60.0139999	0	0	0	-653	56187.34
07/18/11 21:19:56	60.0159988	0	0	0	-653	56187.34
07/18/11 21:19:58	60.019001	0	0	0	-653	56187.34
07/18/11 21:20:00	60.019001	0	0	0	-653	56187.34
07/18/11 21:20:02	60.026001	0	0	0	-653	56197.92
07/18/11 21:20:04	60.0299988	0	0	0	-653	56197.92
07/18/11 21:20:06	60.0299988	0	0	0	-653	56197.92
07/18/11 21:20:08	60.0289993	0	0	0	-653	56197.92
07/18/11 21:20:10	60.0279999	0	0	0	-653	56197.92
07/18/11 21:20:12	60.026001	0	0	0	-653	56200.23
07/18/11 21:20:14	60.0270004	0	0	0	-653	56200.23
07/18/11 21:20:16	60.0309982	0	0	0	-653	56200.23
07/18/11 21:20:18	60.0320015	0	0	0	-653	56200.23
07/18/11 21:20:20	60.0320015	0	0	0	-653	56200.23
07/18/11 21:20:22	60.0320015	0	0	0	-653	56147.08
07/18/11 21:20:24	60.0279999	0	0	0	-653	56147.08
07/18/11 21:20:26	60.0270004	0	0	0	-653	56147.08
07/18/11 21:20:28	60.026001	0	0	0	-653	56147.08
07/18/11 21:20:30	60.026001	0	0	0	-653	56147.08
07/18/11 21:20	60.026001		0	0	-653	56110.36

07/18/11 21:20:34	60.0270004	0	0	0	-653	56110.36
07/18/11 21:20:36	60.0270004	0	0	0	-653	56110.36
07/18/11 21:20:38	60.0289993	0	0	0	-653	56110.36
07/18/11 21:20:40	60.0330009	0	0	0	-653	56110.36
07/18/11 21:20:42	60.0299988	0	0	0	-653	56114
07/18/11 21:20:44	60.0250015	0	0	0	-653	56114
07/18/11 21:20:46	60.0229988	0	0	0	-653	56114
07/18/11 21:20:48	60.0229988	0	0	0	-653	56114
07/18/11 21:20:50	60.0209999	0	0	0	-653	56114
07/18/11 21:20:52	60.0180016	0	0	0	-653	56075.31
07/18/11 21:20:54	60.0180016	0	0	0	-653	56075.31
07/18/11 21:20:56	60.019001	0	0	0	-653	56075.31
07/18/11 21:20:58	60.0169983	0	0	0	-653	56075.31
07/18/11 21:21:00	60.0180016	0	0	0	-653	56075.31
07/18/11 21:21:02	60.0180016	0	0	0	-653	56090.18
07/18/11 21:21:04	60.0180016	0	0	0	-653	56090.18
07/18/11 21:21:06	60.0159988	0	0	0	-653	56090.18
07/18/11 21:21:08	60.0159988	0	0	0	-653	56090.18
07/18/11 21:21:10	60.0169983	0	0	0	-653	56090.18
07/18/11 21:21:12	60.0159988	0	0	0	-653	56087.05
07/18/11 21:21:14	60.0130005	0	0	0	-653	56087.05
07/18/11 21:21:16	60.012001	0	0	0	-653	56087.05
07/18/11 21:21:18	60.012001	0	0	0	-653	56087.05
07/18/11 21:21:20	60.0089989	0	0	0	-653	56087.05
07/18/11 21:21:22	60.007	0	0	0	-653	56077.73
07/18/11 21:21:24	60.0089989	0	0	0	-653	56077.73
07/18/11 21:21:26	60.0089989	0	0	0	-653	56077.73
07/18/11 21:21:28	60.0099983	0	0	0	-653	56077.73
07/18/11 21:21:30	60.007	0	0	0	-653	56077.73
07/18/11 21:21:32	60.0060005	0	0	0	-653	56077.31
07/18/11 21:21:34	60.007	0	0	0	-653	56077.31
07/18/11 21:21:36	60.007	0	0	0	-653	56077.31
07/18/11 21:21:38	60.0060005	0	0	0	-653	56077.31
07/18/11 21:21:40	60.0050011	0	0	0	-653	56077.31
07/18/11 21:21:42	60.0079994	0	0	0	-653	56076.29
07/18/11 21:21:44	60.0089989	0	0	0	-653	56076.29
07/18/11 21:21:46	60.0110016	0	0	0	-653	56076.29
07/18/11 21:21:48	60.0110016	0	0	0	-653	56076.29
07/18/11 21:21:50	60.0130005	0	0	0	-653	56076.29
07/18/11 21:21:52	60.0149994	0	0	0	-653	56056.73
07/18/11 21:21:54	60.0159988	0	0	0	-653	56056.73
07/18/11 21:21:56	60.0149994	0	0	0	-653	56056.73
07/18/11 21:21:58	60.0149994	0	0	0	-653	56056.73
07/18/11 21:22:00	60.0169983	0	0	0	-653	56056.73
07/18/11 21:22:02	60.0200005	0	0	0	-653	56049.55
07/18/11 21:22:04	60.0209999	0	0	0	-653	56049.55
07/18/11 21:22:06	60.0200005	0	0	0	-653	56049.55
07/18/11 21:22:08	60.0149994	0	0	0	-653	56049.55
07/18/11 21:22:10	60.0139999		0			56049.55

07/18/11 21:22:12	60.0139999	0	0	0	-653	56016.81
07/18/11 21:22:14	60.0149994	0	0	0	-653	56016.81
07/18/11 21:22:16	60.0200005	0	0	0	-653	56016.81
07/18/11 21:22:18	60.0229988	0	0	0	-653	56016.81
07/18/11 21:22:20	60.0250015	0	0	0	-653	56016.81
07/18/11 21:22:22	60.0250015	0	0	0	-653	56044.84
07/18/11 21:22:24	60.0229988	0	0	0	-653	56044.84
07/18/11 21:22:26	60.0239983	0	0	0	-653	56044.84
07/18/11 21:22:28	60.0250015	0	0	0	-653	56044.84
07/18/11 21:22:30	60.0239983	0	0	0	-653	56044.84
07/18/11 21:22:32	60.0229988	0	0	0	-653	56023.8
07/18/11 21:22:34	60.0219994	0	0	0	-653	56023.8
07/18/11 21:22:36	60.0229988	0	0	0	-653	56023.8
07/18/11 21:22:38	60.0219994	0	0	0	-653	56023.8
07/18/11 21:22:40	60.0200005	0	0	0	-653	56023.8
07/18/11 21:22:42	60.0219994	0	0	0	-653	55979.94
07/18/11 21:22:44	60.0229988	0	0	0	-653	55979.94
07/18/11 21:22:46	60.0239983	0	0	0	-653	55979.94
07/18/11 21:22:48	60.0219994	0	0	0	-653	55979.94
07/18/11 21:22:50	60.0200005	0	0	0	-653	55979.94
07/18/11 21:22:52	60.0180016	0	0	0	-653	55950.64
07/18/11 21:22:54	60.0169983	0	0	0	-653	55950.64
07/18/11 21:22:56	60.0149994	0	0	0	-653	55950.64
07/18/11 21:22:58	60.0159988	0	0	0	-653	55950.64
07/18/11 21:23:00	60.0139999	0	0	0	-653	55950.64
07/18/11 21:23:02	60.0149994	0	0	0	-653	55934.27
07/18/11 21:23:04	60.0149994	0	0	0	-653	55934.27
07/18/11 21:23:06	60.0139999	0	0	0	-653	55934.27
07/18/11 21:23:08	60.0139999	0	0	0	-653	55934.27
07/18/11 21:23:10	60.0149994	0	0	0	-653	55934.27
07/18/11 21:23:12	60.0149994	0	0	0	-653	55953.24
07/18/11 21:23:14	60.0130005	0	0	0	-653	55953.24
07/18/11 21:23:16	60.0130005	0	0	0	-653	55953.24
07/18/11 21:23:18	60.007	0	0	0	-653	55953.24
07/18/11 21:23:20	60.0060005	0	0	0	-653	55953.24
07/18/11 21:23:22	60.0060005	0	0	0	-653	55940.86
07/18/11 21:23:24	60.0050011	0	0	0	-653	55940.86
07/18/11 21:23:26	60.0029984	0	0	0	-653	55940.86
07/18/11 21:23:28	60.0029984	0	0	0	-653	55940.86
07/18/11 21:23:30	60.0029984	0	0	0	-653	55940.8
07/18/11 21:23:32	60.0040016	0	0	0	-653	55935.25
07/18/11 21:23:34	60.0019989	0	0	0	-653	55935.25
07/18/11 21:23:36	60.0029984	0	0	0	-653	55935.25
07/18/11 21:23:38	60.0050011	0	0	0	-653	55935.25
07/18/11 21:23:40	60.007	0	0	0	-653	55935.25
07/18/11 21:23:42	60.0079994	0	0	0	-653	55918.13
07/18/11 21:23:44	60.0079994	0	0	0	-653	55918.13
07/18/11 21:23:46	60.0060005	0	0	0	-653	55918.13

07/18/11 21:23:50	60.0009995	0	0	0	-653	55918.13
07/18/11 21:23:52	59.9980011	0	0	0	-653	55900.63
07/18/11 21:23:54	59.9980011	0	0	0	-653	55900.63
07/18/11 21:23:56	59.9990005	0	0	0	-653	55900.63
07/18/11 21:23:58	59.9959984	0	0	0	-653	55900.63
07/18/11 21:24:00	59.9949989	0	0	0	-653	55900.63
07/18/11 21:24:02	59.9949989	0	0	0	-653	55903.3
07/18/11 21:24:04	59.9949989	0	0	0	-653	55903.3
07/18/11 21:24:06	59.9949989	0	0	0	-653	55903.3
07/18/11 21:24:08	59.9920006	0	0	0	-653	55903.3
07/18/11 21:24:10	59.9910011	0	0	0	-653	55903.3
07/18/11 21:24:12	59.9910011	0	0	0	-653	55871.44
07/18/11 21:24:14	59.9900017	0	0	0	-653	55871.44
07/18/11 21:24:16	59.9869995	0	0	0	-653	55871.44
07/18/11 21:24:18	59.9850006	0	0	0	-653	55871.44
07/18/11 21:24:20	59.9830017	0	0	0	-653	55871.44
07/18/11 21:24:22	59.9799995	0	0	0	-653	55884.49
07/18/11 21:24:24	59.9790001	0	0	0	-653	55884.49
07/18/11 21:24:26	59.9770012	0	0	0	-653	55884.49
07/18/11 21:24:28	59.9770012	0	0	0	-653	55884.49
07/18/11 21:24:30	59.9780006	0	0	0	-653	55884.49
07/18/11 21:24:32	59.9790001	0	0	0	-653	55860.13
07/18/11 21:24:34	59.9780006	0	0	0	-653	55860.13
07/18/11 21:24:36	59.9770012	0	0	0	-653	55860.13
07/18/11 21:24:38	59.9760017	0	0	0	-653	55860.13
07/18/11 21:24:40	59.9749985	0	0	0	-653	55860.13
07/18/11 21:24:42	59.9749985	0	0	0	-653	55848.38
07/18/11 21:24:44	59.973999	0	0	0	-653	55848.38
07/18/11 21:24:46	59.9710007	0	0	0	-653	55848.38
07/18/11 21:24:48	59.9729996	0	0	0	-653	55848.38
07/18/11 21:24:50	59.973999	0	0	0	-653	55848.38
07/18/11 21:24:52	59.9720001	0	0	0	-653	55872.38
07/18/11 21:24:54	59.9690018	0	0	0	-653	55872.38
07/18/11 21:24:56	59.9679985	0	0	0	-653	55872.38
07/18/11 21:24:58	59.9679985	0	0	0	-653	55872.38
07/18/11 21:25:00	59.9700012	0	0	0	-653	55872.38
07/18/11 21:25:02	59.9690018	0	0	0	-653	55877.86
07/18/11 21:25:04	59.9690018	0	0	0	-653	55877.86
07/18/11 21:25:06	59.9729996	0	0	0	-653	55877.86
07/18/11 21:25:08	59.9729996	0	0	0	-653	55877.86
07/18/11 21:25:10	59.9729996	0	0	0	-653	55877.86
07/18/11 21:25:12	59.9720001	0	0	0	-653	55871.46
07/18/11 21:25:14	59.9729996	0	0	0	-653	55871.46
07/18/11 21:25:16	59.9790001	0	0	0	-653	55871.46
07/18/11 21:25:18	59.9799995	0	0	0	-653	55871.46
07/18/11 21:25:20	59.9790001	0	0	0	-653	55871.46
07/18/11 21:25:22	59.9780006	0	0	0	-653	55864.73
07/18/11 21:25:24	59.9729996	0	0	0	-653	55864.73
07/18/11 21:25	59.9720001		0		-653	55864.73

07/18/11 21:25:28	59.9710007	0	0	0	-653	55864.73
07/18/11 21:25:30	59.9690018	0	0	0	-653	55864.73
07/18/11 21:25:32	59.9690018	0	0	0	-653	55853.1
07/18/11 21:25:34	59.9720001	0	0	0	-653	55853.1
07/18/11 21:25:36	59.9780006	0	0	0	-653	55853.1
07/18/11 21:25:38	59.9799995	0	0	0	-653	55853.1
07/18/11 21:25:40	59.9780006	0	0	0	-653	55853.1
07/18/11 21:25:42	59.9760017	0	0	0	-653	55855.3
07/18/11 21:25:44	59.9780006	0	0	0	-653	55855.3
07/18/11 21:25:46	59.9780006	0	0	0	-653	55855.3
07/18/11 21:25:48	59.9780006	0	0	0	-653	55855.3
07/18/11 21:25:50	59.9780006	0	0	0	-653	55855.3
07/18/11 21:25:52	59.9790001	0	0	0	-653	55868.67
07/18/11 21:25:54	59.9770012	0	0	0	-653	55868.67
07/18/11 21:25:56	59.9760017	0	0	0	-653	55868.67
07/18/11 21:25:58	59.9770012	0	0	0	-653	55868.67
07/18/11 21:26:00	59.9780006	0	0	0	-653	55868.67
07/18/11 21:26:02	59.980999	0	0	0	-653	55869.83
07/18/11 21:26:04	59.9830017	0	0	0	-653	55869.83
07/18/11 21:26:06	59.9840012	0	0	0	-653	55869.83
07/18/11 21:26:08	59.9900017	0	0	0	-653	55869.83
07/18/11 21:26:10	59.9970016	0	0	0	-653	55869.83
07/18/11 21:26:12	60.0019989	0	0	0	-653	55854.58
07/18/11 21:26:14	60.0009995	0	0	0	-653	55854.58
07/18/11 21:26:16	59.9990005	0	0	0	-653	55854.58
07/18/11 21:26:18	59.9990005	0	0	0	-653	55854.58
07/18/11 21:26:20	59.9970016	0	0	0	-653	55854.58
07/18/11 21:26:22	59.9949989	0	0	0	-653	55854.92
07/18/11 21:26:24	59.9959984	0	0	0	-653	55854.92
07/18/11 21:26:26	59.9990005	0	0	0	-653	55854.92
07/18/11 21:26:28	60.0029984	0	0	0	-653	55854.92
07/18/11 21:26:30	60.0040016	0	0	0	-653	55854.92
07/18/11 21:26:32	60.0050011	0	0	0	-653	55820.89
07/18/11 21:26:34	60.0040016	0	0	0	-653	55820.89
07/18/11 21:26:36	60.0029984	0	0	0	-653	55820.89
07/18/11 21:26:38	60.0050011	0	0	0	-653	55820.89
07/18/11 21:26:40	60.0029984	0	0	0	-653	55820.89
07/18/11 21:26:42	60.0009995	0	0	0	-653	55845.93
07/18/11 21:26:44	60.0019989	0	0	0	-653	55845.93
07/18/11 21:26:46	60.0040016	0	0	0	-653	55845.93
07/18/11 21:26:48	60.0060005	0	0	0	-653	55845.93
07/18/11 21:26:50	60.0060005	0	0	0	-653	55845.93
07/18/11 21:26:52	60.0040016	0	0	0	-653	55841.34
07/18/11 21:26:54	60.0019989	0	0	0	-653	55841.34
07/18/11 21:26:56	60	0	0	0	-653	55841.34
07/18/11 21:26:58	60.0009995	0	0	0	-653	55841.34
07/18/11 21:27:00	60.0009995	0	0	0	-653	55841.34
07/18/11 21:27:02	60.0019989	0	0	0	-653	55830.95
07/18/11 21:27:04	60.0029984	0	0	0	-653	55830.95

07/18/11 21:27:06	60.0040016	0	0	0	-653	55830.95
07/18/11 21:27:08	60.007	0	0	0	-653	55830.95
07/18/11 21:27:10	60.0079994	0	0	0	-653	55830.95
07/18/11 21:27:12	60.0099983	0	0	0	-653	55816.52
07/18/11 21:27:14	60.0099983	0	0	0	-653	55816.52
07/18/11 21:27:16	60.0099983	0	0	0	-653	55816.52
07/18/11 21:27:18	60.0110016	0	0	0	-653	55816.52
07/18/11 21:27:20	60.0130005	0	0	0	-653	55816.52
07/18/11 21:27:22	60.0149994	0	0	0	-653	55811.95
07/18/11 21:27:24	60.0169983	0	0	0	-653	55811.95
07/18/11 21:27:26	60.019001	0	0	0	-653	55811.95
07/18/11 21:27:28	60.019001	0	0	0	-653	55811.95
07/18/11 21:27:30	60.0159988	0	0	0	-653	55811.95
07/18/11 21:27:32	60.0139999	0	0	0	-653	55818.78
07/18/11 21:27:34	60.0139999	0	0	0	-653	55818.78
07/18/11 21:27:36	60.0130005	0	0	0	-653	55818.78
07/18/11 21:27:38	60.0110016	0	0	0	-653	55818.78
07/18/11 21:27:40	60.0110016	0	0	0	-653	55818.78
07/18/11 21:27:42	60.012001	0	0	0	-653	55815.84
07/18/11 21:27:44	60.0130005	0	0	0	-653	55815.84
07/18/11 21:27:46	60.0149994	0	0	0	-653	55815.84
07/18/11 21:27:48	60.0149994	0	0	0	-653	55815.84
07/18/11 21:27:50	60.0130005	0	0	0	-653	55815.84
07/18/11 21:27:52	60.0130005	0	0	0	-653	55787.84
07/18/11 21:27:54	60.012001	0	0	0	-653	55787.84
07/18/11 21:27:56	60.0089989	0	0	0	-653	55787.84
07/18/11 21:27:58	60.0079994	0	0	0	-653	55787.84
07/18/11 21:28:00	60.007	0	0	0	-653	55787.84
07/18/11 21:28:02	60.007	0	0	0	-653	55782.08
07/18/11 21:28:04	60.0079994	0	0	0	-653	55782.08
07/18/11 21:28:06	60.0110016	0	0	0	-653	55782.08
07/18/11 21:28:08	60.0110016	0	0	0	-653	55782.08
07/18/11 21:28:10	60.0099983	0	0	0	-653	55782.08
07/18/11 21:28:12	60.0099983	0	0	0	-653	55755.67
07/18/11 21:28:14	60.0079994	0	0	0	-653	55755.67
07/18/11 21:28:16	60.0060005	0	0	0	-653	55755.67
07/18/11 21:28:18	60.0050011	0	0	0	-653	55755.67
07/18/11 21:28:20	60.0029984	0	0	0	-653	55755.67
07/18/11 21:28:22	60	0	0	0	-653	55761.66
07/18/11 21:28:24	59.9980011	0	0	0	-653	55761.66
07/18/11 21:28:26	60	0	0	0	-653	55761.66
07/18/11 21:28:28	59.9990005	0	0	0	-653	55761.66
07/18/11 21:28:30	59.9959984	0	0	0	-653	55761.66
07/18/11 21:28:32	59.987999	0	0	0	-653	55733.11
07/18/11 21:28:34	59.9840012	0	0	0	-653	55733.11
07/18/11 21:28:36	59.9780006	0	0	0	-653	55733.11
07/18/11 21:28:38	59.9760017	0	0	0	-653	55733.11
07/18/11 21:28:40	59.973999	0	0	0	-653	55733.11
07/18/11 21:28:42	59.9	0	0	-	-653	55732.93

07/18/11 21:28:44	59.9760017	0	0	0	-653	55732.93
07/18/111 21:28:46	59.973999	0	0	0	-653	55732.93
07/18/111 21:28:48	59.9799995	0	0	0	-653	55732.93
07/18/111 21:28:50	59.9860001	0	0	0	-653	55732.93
07/18/111 21:28:52	59.9889984	0	0	0	-653	55742.22
07/18/111 21:28:54	59.9889984	0	0	0	-653	55742.22
07/18/11 11:28:56	59.987999	0	0	0	-653	55742.22
07/18/11 21:28:58	59.987999	0	0	0	-653	55742.22
07/18/111 21:29:00	59.9830017	0	0	0	-653	55742.22
07/18/11 11:29:02	59.9799995	0	0	0	-653	55721.28
07/18/111 21:29:04	59.9819984	0	0	0	-653	55721.28
07/18/111 21:29:06	59.9840012	0	0	0	-653	55721.28
07/18/11 11:29:08	59.9840012	0	0	0	-653	55721.28
07/18/111 21:29:10	59.980999	0	0	0	-653	55721.28
07/18/111 21:29:12	59.9799995	0	0	0	-653	55691.09
07/18/11 12:29:14	59.9790001	0	0	0	-653	55691.09
07/18/11 21:29:16	59.980999	0	0	0	-653	55691.09
07/18/111 21:29:18	59.9830017	0	0	0	-653	55691.09
07/18/11 11:29:20	59.9819984	0	0	0	-653	55691.09
07/18/111 21:29:22	59.980999	0	0	0	-653	55699.67
07/18/11 11:29:24	59.9850006	0	0	0	-653	55699.67
07/18/11 11:29:26	59.9920006	0	0	0	-653	55699.67
07/18/111 21:29:28	59.9920006	0	0	0	-653	55699.67
07/18/11 21:29:30	59.9889984	0	0	0	-653	55699.67
07/18/11 11:29:32	59.9860001	0	0	0	-653	55679.72
07/18/111 21:29:34	59.9860001	0	0	0	-653	55679.72
07/18/11 11:29:36	59.9850006	0	0	0	-653	55679.72
07/18/11 21:29:38	59.9840012	0	0	0	-653	55679.72
07/18/111 21:29:40	59.9830017	0	0	0	-653	55679.72
07/18/111 21:29:42	59.9869995	0	0	0	-653	55654.98
07/18/111 21:29:44	59.987999	0	0	0	-653	55654.98
07/18/11 21:29:46	59.987999	0	0	0	-653	55654.98
07/18/11 21:29:48	59.9869995	0	0	0	-653	55654.98
07/18/11 11:29:50	59.9850006	0	0	0	-653	55654.98
07/18/111 21:29:52	59.9860001	0	0	0	-653	55649.36
07/18/11 11:29:54	59.9860001	0	0	0	-653	55649.36
07/18/111 21:29:56	59.9900017	0	0	0	-653	55649.36
07/18/111 21:29:58	59.9910011	0	0	0	-653	55649.36
07/18/11 11:30:00	59.9910011	0	0	0	-653	55649.36
07/18/111 21:30:02	59.9910011	0	0	0	-653	55652
07/18/111 21:30:04	59.9920006	0	0	0	-653	55652
07/18/11 11:30:06	59.9980011	0	0	0	-653	55652
07/18/111 21:30:08	60.0009995	0	0	0	-653	55652
07/18/111 21:30:10	60.0019989	0	0	0	-653	55656.61
07/18/11 11:30:12	60.0009995	0	0	0	-653	55656.61
07/18/111 21:30:14	60.0009995	0	0	0	-653	55656.61
07/18/11 21:30:16	60.0009995	0	0	0	-653	55656.61
07/18/11 11:30:18	60.0009995	0	0	0	-653	55656.61
07/18/11 21:30:20	60.0009995		0			55656.61

07/18/11 21:30:22	60	0	0	0	-653	55639.16
07/18/11 21:30:24	60	0	0	0	-653	55639.16
07/18/11 21:30:26	59.9980011	0	0	0	-653	55639.16
07/18/11 21:30:28	59.9980011	0	0	0	-653	55639.16
07/18/11 21:30:30	59.9980011	0	0	0	-653	55639.16
07/18/11 21:30:32	60.0130005	0	0	0	-653	55612.98
07/18/11 21:30:34	60.0130005	0	0	0	-653	55612.98
07/18/11 21:30:36	60.0219994	0	0	0	-653	55612.98
07/18/11 21:30:38	60.0209999	0	0	0	-653	55612.98
07/18/11 21:30:40	60.0209999	0	0	0	-653	55612.98
07/18/11 21:30:42	60.012001	0	0	0	-653	55610.47
07/18/11 21:30:44	60.012001	0	0	0	-653	55610.47
07/18/11 21:30:46	60.0130005	0	0	0	-653	55610.47
07/18/11 21:30:48	60.0169983	0	0	0	-653	55610.47
07/18/11 21:30:50	60.0169983	0	0	0	-653	55610.47
07/18/11 21:30:52	60.0180016	0	0	0	-653	55625.66
07/18/11 21:30:54	60.0200005	0	0	0	-653	55625.66
07/18/11 21:30:56	60.0219994	0	0	0	-653	55625.66
07/18/11 21:30:58	60.0229988	0	0	0		55625.66
07/18/11 21:31:00	60.0229988	0	0	0		55625.66
07/18/11 21:31:02	60.0229988	0	0	0		55610.65
07/18/11 21:31:04	60.0219994	0	0	0		55610.65
07/18/11 21:31:06	60.0219994	0	0	0		55610.65
07/18/11 21:31:08	60.019001	0	0	0		55610.65
07/18/11 21:31:10	60.0180016	0	0	0		55610.65
07/18/11 21:31:12	60.0169983	0	0	0		55615.12
07/18/11 21:31:14	60.0149994	0	0	0		55615.12
07/18/11 21:31:16	60.0159988	0	0	0		55615.12
07/18/11 21:31:18	60.0169983	0	0	0		55615.12
07/18/11 21:31:20	60.0180016	0	0	0		55615.12
07/18/11 21:31:22	60.0200005	0	0	0		55608.63
07/18/11 21:31:24	60.0209999	0	0	0		55608.63
07/18/11 21:31:26	60.0200005	0	0	0		55608.63
07/18/11 21:31:28	60.0180016	0	0	0		55608.63
07/18/11 21:31:30	60.0159988	0	0	0		55608.63
07/18/11 21:31:32	60.0159988	0	0	0		55575.73
07/18/11 21:31:34	60.0200005	0	0	0		55575.73
07/18/11 21:31:36	60.0219994	0	0	0		55575.73
07/18/11 21:31:38	60.0209999	0	0	0		55575.73
07/18/11 21:31:40	60.0200005	0	0	0		55575.73
07/18/11 21:31:42	60.019001	0	0	0		55553.67
07/18/11 21:31:44	60.019001	0	0	0		55553.67
07/18/11 21:31:46	60.0180016	0	0	0		55553.67
07/18/11 21:31:48	60.0149994	0	0	0		55553.67
07/18/11 21:31:50	60.0200005	0	0	0		55553.67
07/18/11 21:31:52	60.0200005	0	0	0		55547.63
07/18/11 21:31:54	60.019001	0	0	0		55547.63
07/18/11 21:31:56	60.0169983	0	0	0		55547.63
07/18/11 21:31:58	60.0159988	0	0	0		55547.63

07/18/11 21:32:00	60.0169983	0	0	0	55547.63			
07/18/11 21:32:02	60.0149994	0	0	0	55537.41			
07/18/11 21:32:04	60.012001	0	0	0	55537.41			
07/18/11 21:32:06	60.0110016	0	0	0	55537.41			
07/18/11 21:32:08	60.0089989	0	0	0	55537.41			
07/18/11 21:32:10	60.0079994	0	0	0	55537.41			
07/18/11 21:32:12	60.0089989	0	0	0	55530.02			
07/18/11 21:32:14	60.0099983	0	0	0	55530.02			
07/18/11 21:32:16	60.0089989	0	0	0	55530.02			
07/18/11 21:32:18	60.0079994	0	0	0	55530.02			
07/18/11 21:32:20	60.007	0	0	0	55530.02			
07/18/11 21:32:22	60.0060005	0	0	0	55517.34			
07/18/11 21:32:24	60.0040016	0	0	0	55517.34			
07/18/11 21:32:26	60.0050011	0	0	0	55517.34			
07/18/11 21:32:28	60.0050011	0	0	0	55517.34			
07/18/11 21:32:30	60.0060005	0	0	0	55517.34			
07/18/11 21:32:32	60.007	0	0	0	55523.41			
07/18/11 21:32:34	60.007	0	0	0	55523.41			
07/18/11 21:32:36	60.0089989	0	0	0	55523.41			
07/18/11 21:32:38	60.012001	0	0	0	55523.41			
07/18/11 21:32:40	60.0149994	0	0	0	55523.41			
07/18/11 21:32:42	60.0159988	0	0	0	55494.25			
07/18/11 21:32:44	60.0159988	0	0	0	55494.25			
07/18/11 21:32:46	60.0159988	0	0	0	55494.25			
07/18/11 21:32:48	60.0169983	0	0	0	55494.25			
07/18/11 21:32:50	60.019001	0	0	0	55494.25			
07/18/11 21:32:52	60.0180016	0	0	0	55513.87			
07/18/11 21:32:54	60.0149994	0	0	0	55513.87			
07/18/11 21:32:56	60.012001	0	0	0	55513.87			
07/18/11 21:32:58	60.0130005	0	0	0	55513.87			
07/18/11 21:33:00	60.0149994	0	0	0	55513.87			
07/18/11 21:33:02	60.0149994	0	0	0	55492.56			
07/18/11 21:33:04	60.0149994	0	0	0	55492.56			
07/18/11 21:33:06	60.0139999	0	0	0	55492.56			
07/18/11 21:33:08	60.0139999	0	0	0	55492.56			
07/18/11 21:33:10	60.0149994	0	0	0	55492.56			
07/18/11 21:33:12	60.0139999	0	0	0	55486.4			
07/18/11 21:33:14	60.0139999	0	0	0	55486.4			
07/18/11 21:33:16	60.0130005	0	0	0	55486.4			
07/18/11 21:33:18	60.0130005	0	0	0	55486.4			
07/18/11 21:33:20	60.012001	0	0	0	55486.4			
07/18/11 21:33:22	60.0110016	0	0	0	55473.25			
07/18/11 21:33:24	60.012001	0	0	0	55473.25			
07/18/11 21:33:26	60.0130005	0	0	0	55473.25			
07/18/11 21:33:28	60.0130005	0	0	0	55473.25			
07/18/11 21:33:30	60.0130005	0	0	0	55473.25			
07/18/11 21:33:32	60.0130005	0	0	0	55456.91			
07/18/11 21:33:34	60.012001	0	0	0	55456.91			
07/18/11 21:33	60.0		0	0	55456.91		$7 / 18 / 11$	$21: 34: 30$
:---	:---							
60.0110016								
7118111	$21: 3433$							
60.0110016			$07 / 18 / 111$	$21: 34: 32$				
:---	:---							
60.0110016								
711811	6434	07/18/11 21:34:34 $\quad 60.012001$	$07 / 18 / 11121: 34: 36$	60.0110016				
:---	:---							
$7 / 181121: 34: 38$	60.012001		$07 / 18 / 111$ 21:34:38	60.012001				
:---	---:	07/18/111 21:34:40 60.0130005 07/18/111 21:34:42 60.0149994 07/18/11 21:34:44 60.0139999 07/18/111 21:34:46 60.0130005 07/18/11 21:34:48 60.0089989 $\begin{array}{ll}07 / 18 / 111 & 21: 34: 50 \\ 60.0079994\end{array}$ $\begin{array}{ll}07 / 18 / 111 & 21: 34: 52 \\ 60.0079994\end{array}$ $\begin{array}{ll}07 / 18 / 11121: 34: 54 & 60.0079994 \\ 07 / 1811121: 34: 56 & 600050011\end{array}$	$07 / 18 / 11121: 34: 56$	60.0050011				
:---	:---	07/18/11 21:35:00 60.0050011						

Note: See "Instruction" tab for more detailed instructions.

Step 6. Save this workbook using the following file name format:MyBA_yymmdd_hhmm_FRS_Form2.xlsm

ow Hz Delta Hz Event

0.00 Actual Interchange MW Average during frequency recovery period 521.77 Target Interchange MW Average during frequency recovery period 312.99 Interchange Average Ramp MW during frequency recovery period 602.70 Actual MW @ T(-4)
625.58 Starting and Ending Difference in Interchange MW during frequency recovery pe 0:03:20 Event Duration (h:mm:ss)

Yes Target MW Average minus MW @ T(-4) less than zero
544.65 Interchange Target Relative Average Change - MW (Low Frequency Event)
22.88 Interchange Actual Relative Average Change - MW (Low Frequency Event)

Yes Interchange Actual Average minus MW @ $\mathrm{T}(-4)$ less than zero
No Interchange Average MW minus MW @ T(-4) greater than zero
No Interchange Target MW Average minus MW @ T(-4) greater than zero 80.93 Interchange Target Relative Average Change - MW (High Frequency Event) -602.70 Interchange Actual Relative Average Change - MW (High Frequency Event) Down Ramp Direction during frequency recovery period

Initial Response P.U. Performance
1.651 P.U

No Evaluation P.U. Sustianed Response P.U. Performance

$\mathrm{T}-72$ sec	$20: 49: 28$	60.012	593.300	-34.323	-34.323
$\mathrm{~T}-70$ sec	$20: 49: 30$	60.01	593300	-28.595	-28.595
$\mathrm{~T}-68$ sec	$20: 49: 32$	60.01	593.300	-28.595	-28.595

T-66 sec	20:49:34	60.011	593.300			-31.465	-31.465								
T-64 sec	20:49:36	60.011	593.300			-31.465	-31.465								
T-62 sec	20:49:38	60.01	593.300			-28.595	-28.595								
T-60 sec	20:49:40	60.011	593.300			-31.465	-31.465		-0.070	593.300					
T-58 sec	20:49:42	60.011	593.300			-31.465	-31.465		-0.070	593.230					
T-56 sec	20:49:44	60.012	593.300			-34.323	-34.323		-0.070	590.301					
T-54 sec	20:49:46	60.012	593.300			-34.323	-34.323		-0.070	590.230					
T-52 sec	20:49:48	60.011	585.628			-31.465	-31.465		-0.070	593.018					
T-50 sec	20:49:50	60.012	585.628			-34.323	-34.323		-0.070	590.089					
T-48 sec	20:49:52	60.013	586.143			-37.181	-37.181		-0.070	587.160					
T-46 sec	20:49:54	60.015	586.143			-42.898	-42.898		-0.070	581.373					
T-44 sec	20:49:56	60.016	586.795			-45.757	-45.757		-0.070	578.444					
T-42 sec	20:49:58	60.015	586.795			-42.898	-42.898		-0.070	581.232					
T-40 sec	20:50:00	60.014	585.947			-40.040	-40.040		-0.070	584.020					
T-38 sec	20:50:02	60.013	585.947			-37.181	-37.181		-0.070	586.808					
T-36 sec	20:50:04	60.012	585.672			-34.323	-34.323		-0.070	589.596					
T-34 sec	20:50:06	60.012	585.672			-34.323	-34.323		-0.070	589.526					
T-32 sec	20:50:08	60.012	585.116			-34.323	-34.323		-0.070	589.455					
T-30 sec	20:50:10	60.013	585.116			-37.181	-37.181		-0.070	586.526					
T-28 sec	20:50:12	60.015	584.655			-42.898	-42.898		-0.070	580.739					
T-26 sec	20:50:14	60.017	584.655			-48.615	-48.615		-0.070	574.952					
T-24 sec	20:50:16	60.017	585.307			-48.615	-48.615		-0.070	574.881					
T-22 sec	20:50:18	60.014	585.307			-40.040	-40.040		-0.070	583.386					
T-20 sec	20:50:20	60.015	585.211			-42.898	-42.898		-0.070	580.457					
T-18 sec	20:50:22	60.013	585.211			-37.181	-37.181		-0.070	586.103					
T-16 sec	20:50:24	60.012	585.918	60.008	596.150	-34.323	-34.323		-0.070	588.891					
T-14 sec	20:50:26	60.011	585.918	60.008	596.150	-31.465	-31.465		-0.070	591.679					
T-12 sec	20:50:28	60.008	593.278	60.008	596.150	-22.878	-22.878		-0.070	600.195					
T-10 sec	20:50:30	60.008	593.278	60.008	596.150	-22.878	-22.878		-0.070	600.125					
T-08 sec	20:50:32	60.007	602.701	60.008	596.150	-20.020	-20.020		-0.070	602.913					
T-06 sec	20:50:34	60.007	602.701	60.008	596.150	-20.020	-20.020		-0.070	602.842					
T-04 sec	20:50:36	60.007	602.701	60.008	596.150	-20.020	-20.020		-0.070	602.772					
T-02 sec	20:50:38	60.007	602.701	60.008	596.150	-20.020	-20.020		-0.070	602.701					
T+0 sec	20:50:40	59.989	0.000			31.465	31.465		0.000	654.186					596.1496
T+02 sec	20:50:42	59.918	0.000			234.522	234.522		-6.256	850.987	0.000	752.587	622.651	622.651	596.1496
T+04 sec	20:50:44	59.918	0.000			234.522	234.522		-6.256	844.732	0.000	783.302	616.395	619.523	596.1496
T+06 sec	20:50:46	59.88	0.000			343.197	343.197		-6.256	947.151	0.000	824.264	610.139	616.395	596.1496
T+08 sec	20:50:48	59.872	0.000			366.075	366.075		-6.256	963.773	0.000	852.166	603.883	613.267	596.1496
T+10 sec	20:50:50	59.866	0.000			383.237	383.237		-6.256	974.679	0.000	872.585	597.628	610.139	596.1496
T+12 sec	20:50:52	59.867	0.000			380.378	380.378		-6.256	965.565	0.000	885.868	591.372	607.011	596.1496
T+14 sec	20:50:54	59.868	0.000			377.520	377.520		-6.256	956.451	0.000	894.690	585.116	603.883	596.1496
$\mathrm{T}+16 \mathrm{sec}$	20:50:56	59.874	0.000			360.358	360.358		-6.256	933.034	0.000	898.951	578.860	600.756	596.1496
$\mathrm{T}+18 \mathrm{sec}$	20:50:58	59.876	0.000			354.642	354.642		-6.256	921.061	0.000	901.162	572.605	597.628	596.1496
T+20 sec	20:51:00	59.878	0.000	59.881	0.000	348.925	348.925	966.830	-6.256	909.088	0.000	901.882	566.349	594.500	596.1496
T+22 sec	20:51:02	59.88	0.000	59.881	0.000	343.197	343.197	966.830	-6.256	897.105	0.000	901.484	560.093	591.372	596.1496
T+24 sec	20:51:04	59.883	0.000	59.881	0.000	334.622	334.622	966.830	-6.256	882.274	0.000	900.007	553.837	588.244	596.1496

T+26 sec	20:51:06	59.881	0.000	59.881	0.000	340.339	340.339	966.830	-6.256	881.735	0.000	898.701	547.582	585.116	596.1496
T+28 sec	20:51:08	59.88	0.000	59.881	0.000	343.197	343.197	966.830	-6.256	878.338	0.000	897.344	541.326	581.988	596.1496
T+30 sec	20:51:10	59.881	0.000	59.881	0.000	340.339	340.339	966.830	-6.256	869.223	0.000	895.586	535.070	578.860	596.1496
T+32 sec	20:51:12	59.881	0.000	59.881	0.000	340.339	340.339	966.830	-6.256	862.968	0.000	893.668	528.814	575.733	596.1496
T+34 sec	20:51:14	59.88	0.000	59.881	0.000	343.197	343.197	966.830	-6.256	859.570	0.000	891.773	522.559	572.605	596.1496
T+36 sec	20:51:16	59.878	0.000	59.881	0.000	348.925	348.925	966.830	-6.256	859.042	0.000	890.051	516.303	569.477	596.1496
T+38 sec	20:51:18	59.88	0.000	59.881	0.000	343.197	343.197	966.830	-6.256	847.059	0.000	887.901	510.047	566.349	596.1496
T+40 sec	20:51:20	59.88	0.000	59.881	0.000	343.197	343.197	966.830	-6.256	840.803	0.000	885.658	503.791	563.221	596.1496
$\mathrm{T}+42 \mathrm{sec}$	20:51:22	59.88	0.000	59.881	0.000	343.197	343.197	966.830	-6.256	834.547	0.000	883.335	497.536	560.093	596.1496
T+44 sec	20:51:24	59.882	0.000	59.881	0.000	337.480	337.480	966.830	-6.256	822.575	0.000	880.693	491.280	556.965	596.1496
T+46 sec	20:51:26	59.883	0.000	59.881	0.000	334.622	334.622	966.830	-6.256	813.460	0.000	877.892	485.024	553.837	596.1496
$\mathrm{T}+48 \mathrm{sec}$	20:51:28	59.882	0.000	59.881	0.000	337.480	337.480	966.830	-6.256	810.063	0.000	875.179	478.768	550.709	596.1496
T+50 sec	20:51:30	59.883	0.000	59.881	0.000	334.622	334.622	966.830	-6.256	800.949	0.000	872.324	472.513	547.582	596.1496
T+52 sec	20:51:32	59.88	0.000	59.881	0.000	343.197	343.197	966.830	-6.256	803.268	0.000	869.766	466.257	544.454	596.1496
T+54 sec	20:51:34	59.881	0.000			340.339	340.339		-6.256	794.154	0.000	867.066	460.001	541.326	596.1496
T+56 sec	20:51:36	59.884	0.000			331.763	331.763		-6.256	779.323	0.000	864.040	453.745	538.198	596.1496
T+58 sec	20:51:38	59.892	0.000			308.885	308.885		-6.256	750.189	0.000	860.245	447.490	535.070	596.1496
T+60 sec	20:51:40	59.894	0.000			303.157	303.157		-6.256	738.206	0.000	856.308	441.234	531.942	596.1496
T+62 sec	20:51:42	59.896	0.000			297.440	297.440		-6.256	726.233	0.000	852.243	434.978	528.814	596.1496
T+64 sec	20:51:44	59.9	0.000			285.996	285.996		-6.256	708.533	0.000	847.889	428.722	525.686	596.1496
T+66 sec	20:51:46	59.902	0.000			280.279	280.279		-6.256	696.560	0.000	843.438	422.467	522.559	596.1496
T+68 sec	20:51:48	59.904	0.000			274.562	274.562		-6.256	684.587	0.000	838.899	416.211	519.431	596.1496
T+70 sec	20:51:50	59.903	0.000			277.420	277.420		-6.256	681.190	0.000	834.518	409.955	516.303	596.1496
T+72 sec	20:51:52	59.902	0.000			280.279	280.279		-6.256	677.793	0.000	830.283	403.699	513.175	596.1496
T+74 sec	20:51:54	59.903	0.000			277.420	277.420		-6.256	668.679	0.000	826.030	397.443	510.047	596.1496
T+76 sec	20:51:56	59.902	0.000			280.279	280.279		-6.256	665.281	0.000	821.908	391.188	506.919	596.1496
T+78 sec	20:51:58	59.901	0.000			283.137	283.137		-6.256	661.884	0.000	817.907	384.932	503.791	596.1496
T+80 sec	20:52:00	59.9	0.000			285.996	285.996		-6.256	658.487	0.000	814.019	378.676	500.663	596.1496
	20:52:02	59.901	0.000			283.137	283.137		-6.256	649.372	0.000	810.099	372.420	497.536	596.1496
	20:52:04	59.904	0.000			274.562	274.562		-6.256	634.541	0.000	806.016	366.165	494.408	596.1496
	20:52:06	59.907	0.000			265.976	265.976		-6.256	619.699	0.000	801.782	359.909	491.280	596.1496
	20:52:08	59.91	0.000			257.400	257.400		-6.256	604.868	0.000	797.406	353.653	488.152	596.1496
	20:52:10	59.913	0.000			248.825	248.825		-6.256	590.037	0.000	792.898	347.397	485.024	596.1496
	20:52:12	59.916	0.000			240.239	240.239		-6.256	575.195	0.000	788.266	341.142	481.896	596.1496
	20:52:14	59.916	0.000			240.239	240.239		-6.256	568.940	0.000	783.697	334.886	478.768	596.1496
	20:52:16	59.919	0.000			231.664	231.664		-6.256	554.109	0.000	779.011	328.630	475.640	596.1496
	20:52:18	59.922	0.000			223.077	223.077		-6.256	539.267	0.000	774.216	322.374	472.513	596.1496
	20:52:20	59.924	0.000			217.361	217.361		-6.256	527.294	0.000	769.375	316.119	469.385	596.1496
	20:52:22	59.924	0.000			217.361	217.361		-6.256	521.038	0.000	764.599	309.863	466.257	596.1496
	20:52:24	59.924	0.000			217.361	217.361		-6.256	514.782	0.000	759.885	303.607	463.129	596.1496
	20:52:26	59.925	0.000			214.502	214.502		-6.256	505.668	0.000	755.178	297.351	460.001	596.1496
	20:52:28	59.928	0.000			205.916	205.916		-6.256	490.826	0.000	750.371	291.096	456.873	596.1496
	20:52:30	59.929	0.000			203.058	203.058		-6.256	481.712	0.000	745.574	284.840	453.745	596.1496
	20:52:32	59.932	0.000			194.482	194.482		-6.256	466.881	0.000	740.684	278.584	450.617	596.1496
	20:52:34	59.934	0.000			188.765	188.765		-6.256	454.908	0.000	735.757	272.328	447.490	596.1496

20:52:36	59.935	0.000	185.896	185.896	-6.256	445.783	0.000	730.842	266.073	444.362	596.1496
20:52:38	59.935	0.000	185.896	185.896	-6.256	439.528	0.000	725.987	259.817	441.234	596.1496
20:52:40	59.935	0.000	185.896	185.896	-6.256	433.272	0.000	721.189	253.561	438.106	596.1496
20:52:42	59.935	0.000	185.896	185.896	-6.256	427.016	0.000	716.444	247.305	434.978	596.1496
20:52:44	59.934	0.000	188.765	188.765	-6.256	423.630	0.000	711.796	241.050	431.850	596.1496
20:52:46	59.935	0.000	185.896	185.896	-6.256	414.505	0.000	707.151	234.794	428.722	596.1496
20:52:48	59.938	0.000	177.321	177.321	-6.256	399.674	0.000	702.420	228.538	425.594	596.1496
20:52:50	59.941	0.000	168.735	168.735	-6.256	384.832	0.000	697.609	222.282	422.467	596.1496
20:52:52	59.943	0.000	163.018	163.018	-6.256	372.859	0.000	692.762	216.027	419.339	596.1496
20:52:54	59.948	0.000	148.715	148.715	-6.256	352.300	0.000	687.755	209.771	416.211	596.1496
20:52:56	59.951	0.000	140.139	140.139	-6.256	337.469	0.000	682.678	203.515	413.083	596.1496
20:52:58	59.951	0.000	140.139	140.139	-6.256	331.213	0.000	677.657	197.259	409.955	596.1496
20:53:00	59.953	0.000	134.423	134.423	-6.256	319.241	0.000	672.609	191.004	406.827	596.1496
20:53:02	59.956	0.000	125.836	125.836	-6.256	304.399	0.000	667.495	184.748	403.699	596.1496
20:53:04	59.958	0.000	120.119	120.119	-6.256	292.426	0.000	662.357	178.492	400.571	596.1496
20:53:06	59.958	0.000	120.119	120.119	-6.256	286.170	0.000	657.274	172.236	397.443	596.1496
20:53:08	59.959	0.000	117.261	117.261	-6.256	277.056	0.000	652.204	165.981	394.316	596.1496
20:53:10	59.958	0.000	120.119	120.119	-6.256	273.659	0.000	647.223	159.725	391.188	596.1496
20:53:12	59.958	0.000	120.119	120.119	-6.256	267.403	0.000	642.290	153.469	388.060	596.1496
20:53:14	59.958	0.000	120.119	120.119	-6.256	261.147	0.000	637.404	147.213	384.932	596.1496
20:53:16	59.96	0.000	114.403	114.403	-6.256	249.175	0.000	632.490	140.957	381.804	596.1496
20:53:18	59.962	0.000	108.675	108.675	-6.256	237.191	0.000	627.548	134.702	378.676	596.1496
20:53:20	59.965	0.000	100.100	100.100	-6.256	222.360	0.000	622.546	128.446	375.548	596.1496
20:53:22	59.967	0.000	94.383	94.383	-6.256	210.388	0.000	617.520	122.190	372.420	596.1496
20:53:24	59.97	0.000	85.797	85.797	-6.256	195.546	0.000	612.436	115.934	369.293	596.1496
20:53:26	59.971	0.000	82.938	82.938	-6.256	186.432	0.000	607.364	109.679	366.165	596.1496
20:53:28	59.973	0.000	77.221	77.221	-6.256	174.459	0.000	602.271	103.423	363.037	596.1496
20:53:30	59.971	0.000	82.938	82.938	-6.256	173.920	0.000	597.290	97.167	359.909	596.1496
20:53:32	59.971	0.000	82.938	82.938	-6.256	167.664	0.000	592.352	90.911	356.781	596.1496
20:53:34	59.972	0.000	80.080	80.080	-6.256	158.550	0.000	587.423	84.656	353.653	596.1496
20:53:36	59.974	0.000	74.363	74.363	-6.256	146.577	0.000	582.469	78.400	350.525	596.1496
20:53:38	59.975	0.000	71.504	71.504	-6.256	137.463	0.000	577.525	72.144	347.397	596.1496
20:53:40	59.977	0.000	65.777	65.777	-6.256	125.480	0.000	572.557	65.888	344.270	596.1496
20:53:42	59.979	0.000	60.060	60.060	-6.256	113.507	0.000	567.568	59.633	341.142	596.1496
20:53:44	59.981	0.000	54.343	54.343	-6.256	101.535	0.000	562.556	53.377	338.014	596.1496
20:53:46	59.982	0.000	51.484	51.484	-6.256	92.420	0.000	557.555	47.121	334.886	596.1496
20:53:48	59.984	0.000	45.757	45.757	-6.256	80.437	0.000	552.533	40.865	331.758	596.1496
20:53:50	59.986	0.000	40.040	40.040	-6.256	68.464	0.000	547.490	34.610	328.630	596.1496
20:53:52	59.989	0.000	31.465	31.465	-6.256	53.633	0.000	542.399	28.354	325.502	596.1496
20:53:54	59.991	0.000	25.737	25.737	-6.256	41.650	0.000	537.289	22.098	322.374	596.1496
20:53:56	59.993	0.000	20.020	20.020	-6.256	29.677	0.000	532.162	15.842	319.247	596.1496
20:53:58	59.996	0.000	11.445	11.445	-6.256	14.846	0.000	526.989	9.587	316.119	596.1496
20:54:00	59.999	0.000	2.858	2.858	-6.256	0.004	0.000	521.771	3.331	312.991	596.1496
20:54:02	60.002	0.000	-5.717	-5.717	0.000	-8.571	0.000	516.572	3.331	309.925	596.1496
20:54:04	60.005	0.000	-14.303	-14.303	0.000	-17.157	0.000	511.390	3.331	306.919	596.1496
20:54:06	60.005	0.000	-14.303	-14.303	0.000	-17.157	0.000	506.308	3.331	303.972	596.1496

20:54:08	60.009	0.000	-25.737	-25.737	0.000	-28.591	0.000	501.213	3.331	301.081	596.1496
20:54:10	60.01	0.000	-28.595	-28.595	0.000	-31.450	0.000	496.188	3.331	298.245	596.1496
20:54:12	60.011	0.000	-31.465	-31.465	0.000	-34.319	0.000	491.230	3.331	295.463	596.1496
20:54:14	60.012	0.000	-34.323	-34.323	0.000	-37.177	0.000	486.338	3.331	292.733	596.1496
20:54:16	60.011	0.000	-31.465	-31.465	0.000	-34.319	0.000	481.561	3.331	290.053	596.1496
20:54:18	60.013	0.000	-37.181	-37.181	0.000	-40.036	0.000	476.819	3.331	287.423	596.1496
20:54:20	60.014	0.000	-40.040	-40.040	0.000	-42.894	0.000	472.137	3.331	284.840	596.1496
20:54:22	60.017	0.000	-48.615	-48.615	0.000	-51.470	0.000	467.462	3.331	282.304	596.1496
20:54:24	60.021	0.000	-60.060	-60.060	0.000	-62.914	0.000	462.768	3.331	279.813	596.1496
20:54:26	60.023	0.000	-65.777	-65.777	0.000	-68.631	0.000	458.107	3.331	277.366	596.1496
20:54:28	60.024	0.000	-68.635	-68.635	0.000	-71.489	0.000	453.502	3.331	274.962	596.1496
20:54:30	60.025	0.000	-71.504	-71.504	0.000	-74.359	0.000	448.951	3.331	272.600	596.1496
20:54:32	60.026	0.000	-74.363	-74.363	0.000	-77.217	0.000	444.454	3.331	270.279	596.1496
20:54:34	60.026	0.000	-74.363	-74.363	0.000	-77.217	0.000	440.033	3.331	267.997	596.1496
20:54:36	60.028	0.000	-80.080	-80.080	0.000	-82.934	0.000	435.638	3.331	265.755	596.1496
20:54:38	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	431.293	3.331	263.549	596.1496
20:54:40	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	427.020	3.331	261.381	596.1496
20:54:42	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	422.793	3.331	259.248	596.1496
20:54:44	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	418.588	3.331	257.150	596.1496
20:54:46	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	414.428	3.331	255.087	596.1496
20:54:48	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	410.335	3.331	253.057	596.1496
20:54:50	60.031	0.000	-88.655	-88.655	0.000	-91.509	0.000	406.352	3.331	251.059	596.1496
20:54:52	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	402.477	3.331	249.093	596.1496
20:54:54	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	398.640	3.331	247.158	596.1496
20:54:56	60.031	0.000	-88.655	-88.655	0.000	-91.509	0.000	394.841	3.331	245.253	596.1496
20:54:58	60.031	0.000	-88.655	-88.655	0.000	-91.509	0.000	391.099	3.331	243.377	596.1496
20:55:00	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	387.393	3.331	241.531	596.1496
20:55:02	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	383.722	3.331	239.712	596.1496
20:55:04	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	380.106	3.331	237.922	596.1496
20:55:06	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	376.543	3.331	236.158	596.1496
20:55:08	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	373.055	3.331	234.420	596.1496
20:55:10	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	369.660	3.331	232.709	596.1496
20:55:12	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	366.252	3.331	231.022	596.1496
20:55:14	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	362.873	3.331	229.360	596.1496
20:55:16	60.035	0.000	-100.100	-100.100	0.000	-102.954	0.000	359.522	3.331	227.722	596.1496
20:55:18	60.037	0.000	-105.816	-105.816	0.000	-108.671	0.000	356.177	3.331	226.108	596.1496
20:55:20	60.039	0.000	-111.544	-111.544	0.000	-114.399	0.000	352.840	3.331	224.517	596.1496
20:55:22	60.038	0.000	-108.675	-108.675	0.000	-111.529	0.000	349.570	3.331	222.948	596.1496
20:55:24	60.046	0.000	-131.564	-131.564	0.000	-134.419	0.000	346.185	3.331	221.401	596.1496
20:55:26	60.052	0.000	-148.715	-148.715	0.000	-151.569	0.000	342.729	3.331	219.876	596.1496
20:55:28	60.051	0.000	-145.856	-145.856	0.000	-148.711	0.000	339.339	3.331	218.372	596.1496
20:55:30	60.05	0.000	-142.998	-142.998	0.000	-145.852	0.000	336.016	3.331	216.889	596.1496
20:55:32	60.051	0.000	-145.856	-145.856	0.000	-148.711	0.000	332.719	3.331	215.427	596.1496
20:55:34	60.049	0.000	-140.139	-140.139	0.000	-142.994	0.000	329.504	3.331	213.984	596.1496
20:55:36	60.05	0.000	-142.998	-142.998	0.000	-145.852	0.000	326.314	3.331	212.561	596.1496
20:55:38	60.051	0.000	-145.856	-145.856	0.000	-148.711	0.000	323.147	3.331	211.156	596.1496

20:55:40	60.049	0.000	-140.139	-140.139	0.000	-142.994	0.000	320.060	3.331	209.771	596.1496
20:55:42	60.048	0.000	-137.281	-137.281	0.000	-140.135	0.000	317.033	3.331	208.404	596.1496
20:55:44	60.046	0.000	-131.564	-131.564	0.000	-134.419	0.000	314.082	3.331	207.054	596.1496
20:55:46	60.046	0.000	-131.564	-131.564	0.000	-134.419	0.000	311.170	3.331	205.723	596.1496
20:55:48	60.042	0.000	-120.119	-120.119	0.000	-122.974	0.000	308.369	3.331	204.409	596.1496
20:55:50	60.044	0.000	-125.836	-125.836	0.000	-128.691	0.000	305.567	3.331	203.111	596.1496
20:55:52	60.045	0.000	-128.695	-128.695	0.000	-131.549	0.000	302.783	3.331	201.831	596.1496
20:55:54	60.045	0.000	-128.695	-128.695	0.000	-131.549	0.000	300.034	3.331	200.566	596.1496
20:55:56	60.045	0.000	-128.695	-128.695	0.000	-131.549	0.000	297.320	3.331	199.318	596.1496
20:55:58	60.045	0.000	-128.695	-128.695	0.000	-131.549	0.000	294.639	3.331	198.086	596.1496
20:56:00	60.045	0.000	-128.695	-128.695	0.000	-131.549	0.000	291.992	3.331	196.868	596.1496
20:56:02	60.046	0.000	-131.564	-131.564	0.000	-134.419	0.000	289.360	3.331	195.666	596.1496
20:56:04	60.046	0.000	-131.564	-131.564	0.000	-134.419	0.000	286.760	3.331	194.479	596.1496
20:56:06	60.045	0.000	-128.695	-128.695	0.000	-131.549	0.000	284.209	3.331	193.306	596.1496
20:56:08	60.046	0.000	-131.564	-131.564	0.000	-134.419	0.000	281.672	3.331	192.148	596.1496
20:56:10	60.044	0.000	-125.836	-125.836	0.000	-128.691	0.000	279.200	3.331	191.004	596.1496
20:56:12	60.046	0.000	-131.564	-131.564	0.000	-134.419	0.000	276.723	3.331	189.873	596.1496
20:56:14	60.046	0.000	-131.564	-131.564	0.000	-134.419	0.000	274.276	3.331	188.756	596.1496
20:56:16	60.046	0.000	-131.564	-131.564	0.000	-134.419	0.000	271.858	3.331	187.652	596.1496
20:56:18	60.047	0.000	-134.423	-134.423	0.000	-137.277	0.000	269.451	3.331	186.562	596.1496
20:56:20	60.047	0.000	-134.423	-134.423	0.000	-137.277	0.000	267.073	3.331	185.484	596.1496
20:56:22	60.048	0.000	-137.281	-137.281	0.000	-140.135	0.000	264.705	3.331	184.419	596.1496
20:56:24	60.05	0.000	-142.998	-142.998	0.000	-145.852	0.000	262.332	3.331	183.366	596.1496
20:56:26	60.052	0.000	-148.715	-148.715	0.000	-151.569	0.000	259.953	3.331	182.325	596.1496
20:56:28	60.052	0.000	-148.715	-148.715	0.000	-151.569	0.000	257.602	3.331	181.296	596.1496
20:56:30	60.049	0.000	-140.139	-140.139	0.000	-142.994	0.000	255.326	3.331	180.279	596.1496
20:56:32	60.048	0.000	-137.281	-137.281	0.000	-140.135	0.000	253.091	3.331	179.274	596.1496
20:56:34	60.049	0.000	-140.139	-140.139	0.000	-142.994	0.000	250.866	3.331	178.280	596.1496
20:56:36	60.051	0.000	-145.856	-145.856	0.000	-148.711	0.000	248.634	3.331	177.297	596.1496
20:56:38	60.05	0.000	-142.998	-142.998	0.000	-145.852	0.000	246.442	3.331	176.325	596.1496
20:56:40	60.049	0.000	-140.139	-140.139	0.000	-142.994	0.000	244.291	3.331	175.364	596.1496
20:56:42	60.048	0.000	-137.281	-137.281	0.000	-140.135	0.000	242.178	3.331	174.414	596.1496
20:56:44	60.046	0.000	-131.564	-131.564	0.000	-134.419	0.000	240.121	3.331	173.474	596.1496
20:56:46	60.044	0.000	-125.836	-125.836	0.000	-128.691	0.000	238.116	3.331	172.544	596.1496
20:56:48	60.043	0.000	-122.978	-122.978	0.000	-125.832	0.000	236.149	3.331	171.624	596.1496
20:56:50	60.045	0.000	-128.695	-128.695	0.000	-131.549	0.000	234.172	3.331	170.715	596.1496
20:56:52	60.044	0.000	-125.836	-125.836	0.000	-128.691	0.000	232.232	3.331	169.815	596.1496
20:56:54	60.04	0.000	-114.403	-114.403	0.000	-117.257	0.000	230.373	3.331	168.924	596.1496
20:56:56	60.038	0.000	-108.675	-108.675	0.000	-111.529	0.000	228.564	3.331	168.044	596.1496
20:56:58	60.036	0.000	-102.958	-102.958	0.000	-105.812	0.000	226.804	3.331	167.172	596.1496
20:57:00	60.035	0.000	-100.100	-100.100	0.000	-102.954	0.000	225.077	3.331	166.310	596.1496
20:57:02	60.031	0.000	-88.655	-88.655	0.000	-91.509	0.000	223.428	3.331	165.456	596.1496
20:57:04	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	221.811	3.331	164.612	596.1496
20:57:06	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	220.211	3.331	163.776	596.1496
20:57:08	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	218.598	3.331	162.949	596.1496
20:57:10	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	216.986	3.331	162.131	596.1496

20:57:12	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	215.391	3.331	161.321	596.1496
20:57:14	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	213.827	3.331	160.519	596.1496
20:57:16	60.035	0.000	-100.100	-100.100	0.000	-102.954	0.000	212.235	3.331	159.725	596.1496
20:57:18	60.038	0.000	-108.675	-108.675	0.000	-111.529	0.000	210.616	3.331	158.939	596.1496
20:57:20	60.039	0.000	-111.544	-111.544	0.000	-114.399	0.000	208.999	3.331	158.161	596.1496
20:57:22	60.038	0.000	-108.675	-108.675	0.000	-111.529	0.000	207.412	3.331	157.391	596.1496
20:57:24	60.039	0.000	-111.544	-111.544	0.000	-114.399	0.000	205.827	3.331	156.628	596.1496
20:57:26	60.04	0.000	-114.403	-114.403	0.000	-117.257	0.000	204.243	3.331	155.873	596.1496
20:57:28	60.04	0.000	-114.403	-114.403	0.000	-117.257	0.000	202.675	3.331	155.125	596.1496
20:57:30	60.039	0.000	-111.544	-111.544	0.000	-114.399	0.000	201.136	3.331	154.384	596.1496
20:57:32	60.039	0.000	-111.544	-111.544	0.000	-114.399	0.000	199.611	3.331	153.651	596.1496
20:57:34	60.038	0.000	-108.675	-108.675	0.000	-111.529	0.000	198.116	3.331	152.925	596.1496
20:57:36	60.037	0.000	-105.816	-105.816	0.000	-108.671	0.000	196.648	3.331	152.206	596.1496
20:57:38	60.035	0.000	-100.100	-100.100	0.000	-102.954	0.000	195.221	3.331	151.494	596.1496
20:57:40	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	193.821	3.331	150.788	596.1496
20:57:42	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	192.435	3.331	150.089	596.1496
20:57:44	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	191.062	3.331	149.397	596.1496
20:57:46	60.036	0.000	-102.958	-102.958	0.000	-105.812	0.000	189.674	3.331	148.711	596.1496
20:57:48	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	188.327	3.331	148.032	596.1496
20:57:50	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	187.018	3.331	147.359	596.1496
20:57:52	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	185.708	3.331	146.692	596.1496
20:57:54	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	184.397	3.331	146.031	596.1496
20:57:56	60.036	0.000	-102.958	-102.958	0.000	-105.812	0.000	183.072	3.331	145.377	596.1496
20:57:58	60.038	0.000	-108.675	-108.675	0.000	-111.529	0.000	181.733	3.331	144.728	596.1496
20:58:00	60.04	0.000	-114.403	-114.403	0.000	-117.257	0.000	180.380	3.331	144.085	596.1496
20:58:02	60.039	0.000	-111.544	-111.544	0.000	-114.399	0.000	179.052	3.331	143.448	596.1496
20:58:04	60.035	0.000	-100.100	-100.100	0.000	-102.954	0.000	177.787	3.331	142.817	596.1496
20:58:06	60.035	0.000	-100.100	-100.100	0.000	-102.954	0.000	176.534	3.331	142.192	596.1496
20:58:08	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	175.305	3.331	141.572	596.1496
20:58:10	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	174.099	3.331	140.957	596.1496
20:58:12	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	172.954	3.331	140.349	596.1496
20:58:14	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	171.806	3.331	139.745	596.1496
20:58:16	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	170.681	3.331	139.147	596.1496
20:58:18	60.028	0.000	-80.080	-80.080	0.000	-82.934	0.000	169.579	3.331	138.554	596.1496
20:58:20	60.026	0.000	-74.363	-74.363	0.000	-77.217	0.000	168.510	3.331	137.966	596.1496
20:58:22	60.028	0.000	-80.080	-80.080	0.000	-82.934	0.000	167.427	3.331	137.383	596.1496
20:58:24	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	166.327	3.331	136.805	596.1496
20:58:26	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	165.213	3.331	136.232	596.1496
20:58:28	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	164.097	3.331	135.664	596.1496
20:58:30	60.035	0.000	-100.100	-100.100	0.000	-102.954	0.000	162.965	3.331	135.101	596.1496
20:58:32	60.036	0.000	-102.958	-102.958	0.000	-105.812	0.000	161.831	3.331	134.543	596.1496
20:58:34	60.037	0.000	-105.816	-105.816	0.000	-108.671	0.000	160.694	3.331	133.989	596.1496
20:58:36	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	159.603	3.331	133.440	596.1496
20:58:38	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	158.545	3.331	132.896	596.1496
20:58:40	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	157.519	3.331	132.356	596.1496
20:58:42	60.028	0.000	-80.080	-80.080	0.000	-82.934	0.000	156.526	3.331	131.820	596.1496

20:58:44	60.028	0.000	-80.080	-80.080	0.000	-82.934	0.000	155.540	3.331	131.290	596.1496
20:58:46	60.028	0.000	-80.080	-80.080	0.000	-82.934	0.000	154.563	3.331	130.763	596.1496
20:58:48	60.028	0.000	-80.080	-80.080	0.000	-82.934	0.000	153.593	3.331	130.241	596.1496
20:58:50	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	152.609	3.331	129.723	596.1496
20:58:52	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	151.644	3.331	129.209	596.1496
20:58:54	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	150.675	3.331	128.699	596.1496
20:58:56	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	149.690	3.331	128.194	596.1496
20:58:58	60.035	0.000	-100.100	-100.100	0.000	-102.954	0.000	148.680	3.331	127.692	596.1496
20:59:00	60.035	0.000	-100.100	-100.100	0.000	-102.954	0.000	147.677	3.331	127.195	596.1496
20:59:02	60.035	0.000	-100.100	-100.100	0.000	-102.954	0.000	146.683	3.331	126.701	596.1496
20:59:04	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	145.707	3.331	126.212	596.1496
20:59:06	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	144.751	3.331	125.726	596.1496
20:59:08	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	143.791	3.331	125.244	596.1496
20:59:10	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	142.838	3.331	124.766	596.1496
20:59:12	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	141.893	3.331	124.292	596.1496
20:59:14	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	140.966	3.331	123.821	596.1496
20:59:16	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	140.090	3.331	123.354	596.1496
20:59:18	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	139.244	3.331	122.891	596.1496
20:59:20	60.025	0.000	-71.504	-71.504	0.000	-74.359	0.000	138.425	3.331	122.431	596.1496
20:59:22	60.025	0.000	-71.504	-71.504	0.000	-74.359	0.000	137.613	3.331	121.975	596.1496
20:59:24	60.026	0.000	-74.363	-74.363	0.000	-77.217	0.000	136.796	3.331	121.522	596.1496
20:59:26	60.026	0.000	-74.363	-74.363	0.000	-77.217	0.000	135.986	3.331	121.072	596.1496
20:59:28	60.025	0.000	-71.504	-71.504	0.000	-74.359	0.000	135.192	3.331	120.626	596.1496
20:59:30	60.026	0.000	-74.363	-74.363	0.000	-77.217	0.000	134.393	3.331	120.184	596.1496
20:59:32	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	133.590	3.331	119.744	596.1496
20:59:34	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	132.793	3.331	119.308	596.1496
20:59:36	60.028	0.000	-80.080	-80.080	0.000	-82.934	0.000	131.991	3.331	118.876	596.1496
20:59:38	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	131.174	3.331	118.446	596.1496
20:59:40	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	130.373	3.331	118.020	596.1496
20:59:42	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	129.568	3.331	117.597	596.1496
20:59:44	60.028	0.000	-80.080	-80.080	0.000	-82.934	0.000	128.789	3.331	117.176	596.1496
20:59:46	60.026	0.000	-74.363	-74.363	0.000	-77.217	0.000	128.037	3.331	116.759	596.1496
20:59:48	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	127.281	3.331	116.345	596.1496
20:59:50	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	126.509	3.331	115.934	596.1496
20:59:52	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	125.732	3.331	115.526	596.1496
20:59:54	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	124.940	3.331	115.121	596.1496
20:59:56	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	124.185	3.331	114.719	596.1496
20:59:58	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	123.435	3.331	114.320	596.1496
21:00:00	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	122.660	3.331	113.924	596.1496
21:00:02	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	121.880	3.331	113.530	596.1496
21:00:04	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	121.106	3.331	113.139	596.1496
21:00:06	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	120.347	3.331	112.751	596.1496
21:00:08	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	119.614	3.331	112.366	596.1496
21:00:10	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	118.895	3.331	111.983	596.1496
21:00:12	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	118.142	3.331	111.604	596.1496
21:00:14	60.035	0.000	-100.100	-100.100	0.000	-102.954	0.000	117.375	3.331	111.226	596.1496

21:00:16	60.035	0.000	-100.100	-100.100	0.000	-102.954	0.000	116.612	3.331	110.852	596.1496
21:00:18	60.031	0.000	-88.655	-88.655	0.000	-91.509	0.000	115.895	3.331	110.480	596.1496
21:00:20	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	115.172	3.331	110.110	596.1496
21:00:22	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	114.484	3.331	109.743	596.1496
21:00:24	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	113.820	3.331	109.379	596.1496
21:00:26	60.026	0.000	-74.363	-74.363	0.000	-77.217	0.000	113.170	3.331	109.017	596.1496
21:00:28	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	112.515	3.331	108.657	596.1496
21:00:30	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	111.864	3.331	108.300	596.1496
21:00:32	60.026	0.000	-74.363	-74.363	0.000	-77.217	0.000	111.228	3.331	107.946	596.1496
21:00:34	60.026	0.000	-74.363	-74.363	0.000	-77.217	0.000	110.595	3.331	107.593	596.1496
21:00:36	60.028	0.000	-80.080	-80.080	0.000	-82.934	0.000	109.948	3.331	107.244	596.1496
21:00:38	60.028	0.000	-80.080	-80.080	0.000	-82.934	0.000	109.305	3.331	106.896	596.1496
21:00:40	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	108.676	3.331	106.551	596.1496
21:00:42	60.026	0.000	-74.363	-74.363	0.000	-77.217	0.000	108.060	3.331	106.208	596.1496
21:00:44	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	107.440	3.331	105.867	596.1496
21:00:46	60.028	0.000	-80.080	-80.080	0.000	-82.934	0.000	106.813	3.331	105.529	596.1496
21:00:48	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	106.201	3.331	105.193	596.1496
21:00:50	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	105.592	3.331	104.859	596.1496
21:00:52	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	104.987	3.331	104.527	596.1496
21:00:54	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	104.386	3.331	104.197	596.1496
21:00:56	60.025	0.000	-71.504	-71.504	0.000	-74.359	0.000	103.808	3.331	103.870	596.1496
21:00:58	60.024	0.000	-68.635	-68.635	0.000	-71.489	0.000	103.242	3.331	103.544	596.1496
21:01:00	60.024	0.000	-68.635	-68.635	0.000	-71.489	0.000	102.680	3.331	103.221	596.1496
21:01:02	60.024	0.000	-68.635	-68.635	0.000	-71.489	0.000	102.122	3.331	102.900	596.1496
21:01:04	60.025	0.000	-71.504	-71.504	0.000	-74.359	0.000	101.558	3.331	102.581	596.1496
21:01:06	60.025	0.000	-71.504	-71.504	0.000	-74.359	0.000	100.998	3.331	102.264	596.1496
21:01:08	60.026	0.000	-74.363	-74.363	0.000	-77.217	0.000	100.432	3.331	101.949	596.1496
21:01:10	60.025	0.000	-71.504	-71.504	0.000	-74.359	0.000	99.879	3.331	101.636	596.1496
21:01:12	60.023	0.000	-65.777	-65.777	0.000	-68.631	0.000	99.348	3.331	101.325	596.1496
21:01:14	60.022	0.000	-62.918	-62.918	0.000	-65.773	0.000	98.828	3.331	101.015	596.1496
21:01:16	60.021	0.000	-60.060	-60.060	0.000	-62.914	0.000	98.321	3.331	100.708	596.1496
21:01:18	60.02	0.000	-57.201	-57.201	0.000	-60.056	0.000	97.826	3.331	100.403	596.1496
21:01:20	60.018	0.000	-51.484	-51.484	0.000	-54.339	0.000	97.352	3.331	100.100	596.1496
21:01:22	60.015	0.000	-42.898	-42.898	0.000	-45.753	0.000	96.908	3.331	99.798	596.1496
21:01:24	60.013	0.000	-37.181	-37.181	0.000	-40.036	0.000	96.484	3.331	99.499	596.1496
21:01:26	60.013	0.000	-37.181	-37.181	0.000	-40.036	0.000	96.063	3.331	99.201	596.1496
21:01:28	60.013	0.000	-37.181	-37.181	0.000	-40.036	0.000	95.644	3.331	98.905	596.1496
21:01:30	60.014	0.000	-40.040	-40.040	0.000	-42.894	0.000	95.219	3.331	98.611	596.1496
21:01:32	60.014	0.000	-40.040	-40.040	0.000	-42.894	0.000	94.796	3.331	98.319	596.1496
21:01:34	60.015	0.000	-42.898	-42.898	0.000	-45.753	0.000	94.368	3.331	98.028	596.1496
21:01:36	60.017	0.000	-48.615	-48.615	0.000	-51.470	0.000	93.925	3.331	97.739	596.1496
21:01:38	60.016	0.000	-45.757	-45.757	0.000	-48.611	0.000	93.493	3.331	97.452	596.1496
21:01:40	60.016	0.000	-45.757	-45.757	0.000	-48.611	0.000	93.063	3.331	97.167	596.1496
21:01:42	60.016	0.000	-45.757	-45.757	0.000	-48.611	0.000	92.637	3.331	96.884	596.1496
21:01:44	60.015	0.000	-42.898	-42.898	0.000	-45.753	0.000	92.221	3.331	96.602	596.1496
21:01:46	60.014	0.000	-40.040	-40.040	0.000	-42.894	0.000	91.817	3.331	96.322	596.1496

21:01:48	60.013	0.000	-37.181	-37.181	0.000	-40.036	0.000	91.423	3.331	96.043	596.1496
21:01:50	60.014	0.000	-40.040	-40.040	0.000	-42.894	0.000	91.023	3.331	95.767	596.1496
21:01:52	60.018	0.000	-51.484	-51.484	0.000	-54.339	0.000	90.592	3.331	95.492	596.1496
21:01:54	60.018	0.000	-51.484	-51.484	0.000	-54.339	0.000	90.163	3.331	95.218	596.1496
21:01:56	60.018	0.000	-51.484	-51.484	0.000	-54.339	0.000	89.737	3.331	94.946	596.1496
21:01:58	60.016	0.000	-45.757	-45.757	0.000	-48.611	0.000	89.330	3.331	94.676	596.1496
21:02:00	60.017	0.000	-48.615	-48.615	0.000	-51.470	0.000	88.917	3.331	94.407	596.1496
21:02:02	60.025	0.000	-71.504	-71.504	0.000	-74.359	0.000	88.440	3.331	94.140	596.1496
21:02:04	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	87.923	3.331	93.875	596.1496
21:02:06	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	87.393	3.331	93.611	596.1496
21:02:08	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	86.850	3.331	93.348	596.1496
21:02:10	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	86.318	3.331	93.087	596.1496
21:02:12	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	85.789	3.331	92.828	596.1496
21:02:14	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	85.263	3.331	92.570	596.1496
21:02:16	60.033	0.000	-94.383	-94.383	0.000	-97.237	0.000	84.740	3.331	92.314	596.1496
21:02:18	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	84.212	3.331	92.059	596.1496
21:02:20	60.037	0.000	-105.816	-105.816	0.000	-108.671	0.000	83.662	3.331	91.805	596.1496
21:02:22	60.036	0.000	-102.958	-102.958	0.000	-105.812	0.000	83.124	3.331	91.553	596.1496
21:02:24	60.034	0.000	-97.241	-97.241	0.000	-100.096	0.000	82.605	3.331	91.302	596.1496
21:02:26	60.03	0.000	-85.797	-85.797	0.000	-88.651	0.000	82.121	3.331	91.053	596.1496
21:02:28	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	81.624	3.331	90.805	596.1496
21:02:30	60.031	0.000	-88.655	-88.655	0.000	-91.509	0.000	81.138	3.331	90.559	596.1496
21:02:32	60.032	0.000	-91.524	-91.524	0.000	-94.379	0.000	80.646	3.331	90.314	596.1496
21:02:34	60.031	0.000	-88.655	-88.655	0.000	-91.509	0.000	80.165	3.331	90.070	596.1496
21:02:36	60.029	0.000	-82.938	-82.938	0.000	-85.793	0.000	79.703	3.331	89.828	596.1496
21:02:38	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	79.259	3.331	89.587	596.1496
21:02:40	60.027	0.000	-77.221	-77.221	0.000	-80.076	0.000	78.818	3.331	89.348	596.1496
21:02:42	60.023	0.000	-65.777	-65.777	0.000	-68.631	0.000	78.411	3.331	89.109	596.1496
21:02:44	60.022	0.000	-62.918	-62.918	0.000	-65.773	0.000	78.013	3.331	88.872	596.1496
21:02:46	60.02	0.000	-57.201	-57.201	0.000	-60.056	0.000	77.634	3.331	88.637	596.1496
21:02:48	60.018	0.000	-51.484	-51.484	0.000	-54.339	0.000	77.272	3.331	88.402	596.1496
21:02:50	60.019	0.000	-54.343	-54.343	0.000	-57.197	0.000	76.905	3.331	88.169	596.1496
21:02:52	60.018	0.000	-51.484	-51.484	0.000	-54.339	0.000	76.547	3.331	87.937	596.1496
21:02:54	60.019	0.000	-54.343	-54.343	0.000	-57.197	0.000	76.184	3.331	87.707	596.1496
21:02:56	60.019	0.000	-54.343	-54.343	0.000	-57.197	0.000	75.823	3.331	87.478	596.1496
21:02:58	60.017	0.000	-48.615	-48.615	0.000	-51.470	0.000	75.479	3.331	87.250	596.1496
21:03:00	60.016	0.000	-45.757	-45.757	0.000	-48.611	0.000	75.144	3.331	87.023	596.1496
21:03:02	60.017	0.000	-48.615	-48.615	0.000	-51.470	0.000	74.804	3.331	86.797	596.1496
21:03:04	60.015	0.000	-42.898	-42.898	0.000	-45.753	0.000	74.480	3.331	86.573	596.1496
21:03:06	60.014	0.000	-40.040	-40.040	0.000	-42.894	0.000	74.167	3.331	86.350	596.1496
21:03:08	60.012	0.000	-34.323	-34.323	0.000	-37.177	0.000	73.870	3.331	86.128	596.1496
21:03:10	60.011	0.000	-31.465	-31.465	0.000	-34.319	0.000	73.582	3.331	85.907	596.1496
21:03:12	60.011	0.000	-31.465	-31.465	0.000	-34.319	0.000	73.296	3.331	85.687	596.1496
21:03:14	60.011	0.000	-31.465	-31.465	0.000	-34.319	0.000	73.011	3.331	85.469	596.1496
21:03:16	60.013	0.000	-37.181	-37.181	0.000	-40.036	0.000	72.713	3.331	85.251	596.1496
21:03:18	60.013	0.000	-37.181	-37.181	0.000	-40.036	0.000	72.416	3.331	85.035	596.1496

21:03:20	60.012	0.000	-34.323	-34.323	0.000	-37.177	0.000	72.128	3.331	84.820	596.1496
21:03:22	60.012	0.000	-34.323	-34.323	0.000	-37.177	0.000	71.842	3.331	84.606	596.1496
21:03:24	60.012	0.000	-34.323	-34.323	0.000	-37.177	0.000	71.558	3.331	84.394	596.1496
21:03:26	60.011	0.000	-31.465	-31.465	0.000	-34.319	0.000	71.282	3.331	84.182	596.1496
21:03:28	60.007	0.000	-20.020	-20.020	0.000	-22.874	0.000	71.037	3.331	83.971	596.1496
21:03:30	60.004	0.000	-11.445	-11.445	0.000	-14.299	0.000	70.816	3.331	83.762	596.1496
21:03:32	60.001	0.000	-2.858	-2.858	0.000	-5.713	0.000	70.619	3.331	83.554	596.1496
21:03:34	59.998	0.000	5.717	5.717	0.000	2.862	0.000	70.444	3.331	83.346	596.1496
21:03:36	59.998	0.000	5.717	5.717	0.000	2.862	0.000	70.270	3.331	83.140	596.1496
21:03:38	59.999	0.000	2.858	2.858	0.000	0.004	0.000	70.090	3.331	82.935	596.1496
21:03:40	60.001	0.000	-2.858	-2.858	0.000	-5.713	0.000	69.896	3.331	82.731	596.1496
21:03:42	60.002	0.000	-5.717	-5.717	0.000	-8.571	0.000	69.696	3.331	82.528	596.1496
21:03:44	60.004	0.000	-11.445	-11.445	0.000	-14.299	0.000	69.482	3.331	82.326	596.1496
21:03:46	60.006	0.000	-17.161	-17.161	0.000	-20.016	0.000	69.255	3.331	82.125	596.1496
21:03:48	60.006	0.000	-17.161	-17.161	0.000	-20.016	0.000	69.029	3.331	81.925	596.1496
21:03:50	60.006	0.000	-17.161	-17.161	0.000	-20.016	0.000	68.804	3.331	81.726	596.1496
21:03:52	60.005	0.000	-14.303	-14.303	0.000	-17.157	0.000	68.588	3.331	81.528	596.1496
21:03:54	60.005	0.000	-14.303	-14.303	0.000	-17.157	0.000	68.372	3.331	81.331	596.1496
21:03:56	60.005	0.000	-14.303	-14.303	0.000	-17.157	0.000	68.158	3.331	81.135	596.1496
21:03:58	60.005	0.000	-14.303	-14.303	0.000	-17.157	0.000	67.945	3.331	80.940	596.1496
21:04:00	60.005	0.000	-14.303	-14.303	0.000	-17.157	0.000	67.732	3.331	80.746	596.1496
21:04:02	60.004	0.000	-11.445	-11.445	0.000	-14.299	0.000	67.528	3.331	80.553	596.1496
21:04:04	60.004	0.000	-11.445	-11.445	0.000	-14.299	0.000	67.325	3.331	80.361	596.1496
21:04:06	60.005	0.000	-14.303	-14.303	0.000	-17.157	0.000	67.116	3.331	80.170	596.1496
21:04:08	60.005	0.000	-14.303	-14.303	0.000	-17.157	0.000	66.908	3.331	79.979	596.1496
21:04:10	60.005	0.000	-14.303	-14.303	0.000	-17.157	0.000	66.701	3.331	79.790	596.1496
21:04:12	60.002	0.000	-5.717	-5.717	0.000	-8.571	0.000	66.516	3.331	79.602	596.1496
21:04:14	59.999	0.000	2.858	2.858	0.000	0.004	0.000	66.353	3.331	79.414	596.1496
21:04:16	59.996	0.000	11.445	11.445	0.000	8.590	0.000	66.212	3.331	79.228	596.1496
21:04:18	59.998	0.000	5.717	5.717	0.000	2.862	0.000	66.057	3.331	79.042	596.1496
21:04:20	59.999	0.000	2.858	2.858	0.000	0.004	0.000	65.897	3.331	78.858	596.1496
21:04:22	60.001	0.000	-2.858	-2.858	0.000	-5.713	0.000	65.723	3.331	78.674	596.1496
21:04:24	59.999	0.000	2.858	2.858	0.000	0.004	0.000	65.564	3.331	78.491	596.1496
21:04:26	59.998	0.000	5.717	5.717	0.000	2.862	0.000	65.412	3.331	78.309	596.1496
21:04:28	59.998	0.000	5.717	5.717	0.000	2.862	0.000	65.261	3.331	78.128	596.1496
21:04:30	59.998	0.000	5.717	5.717	0.000	2.862	0.000	65.112	3.331	77.948	596.1496
21:04:32	59.997	0.000	8.575	8.575	0.000	5.721	0.000	64.969	3.331	77.768	596.1496
21:04:34	59.996	0.000	11.445	11.445	0.000	8.590	0.000	64.834	3.331	77.590	596.1496
21:04:36	59.995	0.000	14.303	14.303	0.000	11.449	0.000	64.707	3.331	77.412	596.1496
21:04:38	59.993	0.000	20.020	20.020	0.000	17.165	0.000	64.594	3.331	77.235	596.1496
21:04:40	59.993	0.000	20.020	20.020	0.000	17.165	0.000	64.481	3.331	77.059	596.1496
21:04:42	59.993	0.000	20.020	20.020	0.000	17.165	0.000	64.369	3.331	76.884	596.1496
21:04:44	59.995	0.000	14.303	14.303	0.000	11.449	0.000	64.244	3.331	76.710	596.1496
21:04:46	59.995	0.000	14.303	14.303	0.000	11.449	0.000	64.119	3.331	76.537	596.1496
21:04:48	59.996	0.000	11.445	11.445	0.000	8.590	0.000	63.989	3.331	76.364	596.1496
21:04:50	59.995	0.000	14.303	14.303	0.000	11.449	0.000	63.865	3.331	76.192	596.1496

21:04:52	59.993	0.000	20.020	20.020	0.000	17.165	0.000	63.756	3.331	76.021	596.1496
21:04:54	59.99	0.000	28.595	28.595	0.000	25.741	0.000	63.667	3.331	75.851	596.1496
21:04:56	59.988	0.000	34.323	34.323	0.000	31.469	0.000	63.592	3.331	75.681	596.1496
21:04:58	59.987	0.000	37.181	37.181	0.000	34.327	0.000	63.524	3.331	75.513	596.1496
21:05:00	59.987	0.000	37.181	37.181	0.000	34.327	0.000	63.456	3.331	75.345	596.1496
21:05:02	59.989	0.000	31.465	31.465	0.000	28.610	0.000	63.375	3.331	75.178	596.1496
21:05:04	59.991	0.000	25.737	25.737	0.000	22.882	0.000	63.282	3.331	75.011	596.1496
21:05:06	59.993	0.000	20.020	20.020	0.000	17.165	0.000	63.176	3.331	74.846	596.1496
21:05:08	59.996	0.000	11.445	11.445	0.000	8.590	0.000	63.050	3.331	74.681	596.1496
21:05:10	59.997	0.000	8.575	8.575	0.000	5.721	0.000	62.919	3.331	74.517	596.1496
21:05:12	59.995	0.000	14.303	14.303	0.000	11.449	0.000	62.801	3.331	74.354	596.1496
21:05:14	59.993	0.000	20.020	20.020	0.000	17.165	0.000	62.697	3.331	74.191	596.1496
21:05:16	59.993	0.000	20.020	20.020	0.000	17.165	0.000	62.593	3.331	74.029	596.1496
21:05:18	59.992	0.000	22.878	22.878	0.000	20.024	0.000	62.496	3.331	73.868	596.1496
21:05:20	59.99	0.000	28.595	28.595	0.000	25.741	0.000	62.413	3.331	73.708	596.1496
21:05:22	59.989	0.000	31.465	31.465	0.000	28.610	0.000	62.336	3.331	73.549	596.1496
21:05:24	59.988	0.000	34.323	34.323	0.000	31.469	0.000	62.267	3.331	73.390	596.1496
21:05:26	59.986	0.000	40.040	40.040	0.000	37.185	0.000	62.210	3.331	73.232	596.1496
21:05:28	59.985	0.000	42.898	42.898	0.000	40.044	0.000	62.161	3.331	73.074	596.1496
21:05:30	59.985	0.000	42.898	42.898	0.000	40.044	0.000	62.111	3.331	72.917	596.1496
21:05:32	59.985	0.000	42.898	42.898	0.000	40.044	0.000	62.062	3.331	72.761	596.1496
21:05:34	59.985	0.000	42.898	42.898	0.000	40.044	0.000	62.012	3.331	72.606	596.1496
21:05:36	59.983	0.000	48.615	48.615	0.000	45.761	0.000	61.976	3.331	72.451	596.1496
21:05:38	59.983	0.000	48.615	48.615	0.000	45.761	0.000	61.940	3.331	72.297	596.1496
21:05:40	59.981	0.000	54.343	54.343	0.000	51.488	0.000	61.917	3.331	72.144	596.1496

riod (indicates ramp direction during recovery period)

B Value Average Resource Loss	596.1496277
B Value Average LaaR Loss	0
B Value Average Net Loss	596.1496277

		Interconnection Bias Total			
Interconnection Bias Setting	-660		-6349	-660	-2024
IPFR as a \% of Bias Setting	0.00\%				
Interconnection Total Energy	37446	60.07\%			
Interconnection Peak Energy	62339				

Generator	Generator	Generator	Generator	Generator	Generator	LaaR	Total	Interconnection	FR B									
Trip MW	Trip MW		Generation Trip MW	Primary Frequency Response	20 to 52 sec Average MW		Value B 12 to 24 sec Average Frequency	FR B 12 to 24 sec Average MW	Value B 18 to 30 sec Average Frequency	FR B 18 to 30 sec Average MW	Value B 20 to 40 sec Average Frequency	FR B 20 to 40 sec Average MW	Value B 18 to 52 sec Average Frequency	FR B 18 to 52 sec Average MW				
							$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	MW/0.1 Hz		$\left\lvert\, \begin{aligned} & \mathrm{T}-72 \mathrm{sec} \\ & \mathrm{~T}-70 \mathrm{sec} \\ & \mathrm{~T}-68 \mathrm{sec} \end{aligned}\right.$								

60.008	
60.008	
60.008	
60.008	
60.008	
60.008	
60.008	
60.008	
59.8751	-448.212
59.8751	-448.212
59.8751	-448.212
59.8751	-448.212
59.8751	-448.212
59.8751	-448.212
59.8751	-448.212

0	596.1496	-812.4830279
0	596.1496	-812.4830279
0	596.1496	-812.4830279
0	596.1496	-812.4830279
0	596.1496	-801.5235184
0	596.1496	-812.4830279
0	596.1496	-847.0989403
0	596.1496	-884.8458398
0	596.1496	-911.9010824
0	596.1496	-987.4390927
0	596.1496	-1039.041574
0	596.1496	-1039.041574
0	596.1496	-1076.547708
0	596.1496	-1138.257387
0	596.1496	-1183.423937
0	596.1496	-1183.423937
0	596.1496	-1207.378592
0	596.1496	-1183.423937
0	596.1496	-1183.423937
0	596.1496	-1183.423937
0	596.1496	-1232.323053
0	596.1496	-1285.543109
0	596.1496	-1374.40788
0	596.1496	-1440.806232
0	596.1496	-1553.526994
0	596.1496	-1595.070661
0	596.1496	-1685.20028
0	596.1496	-1595.070661
0	596.1496	-1595.070661
0	596.1496	-1638.897258
0	596.1496	-1734.195728
0	596.1496	-1786.12547
0	596.1496	-1900.14041
0	596.1496	-2029.44027
0	596.1496	-2177.622072
0	596.1496	-2260.135194
0	596.1496	-2445.841584
0	596.1496	-2664.343159
0	596.1496	-3076.62266
0	596.1496	-3431.266835
0	596.1496	-3877.36132
0	596.1496	-4816.675851
0	596.1496	-6359.188118
0	596.1496	-9349.509303
0	596.1496	-17668.40065
0	596.1496	-17668.40565

		596.1496	
0	55582.29235		
0	596.1496	36727.86087	
0	596.1496	22698.19143	
0	596.1496	16441.56213	
0	596.1496	22698.19143	
0	596.1496	12888.8287	
0	596.1496	10598.64686	
0	596.1496	6913.384119	
0	596.1496	4722.074271	
0	596.1496	4076.615312	
0	596.1496	3815.823416	
0	596.1496	3585.569531	
0	596.1496	3382.254042	
0	596.1496	3382.254042	
0	596.1496	3037.749985	
0	596.1496	2890.540054	
0	596.1496	2890.540054	
0	596.1496	2756.938308	
0	596.1496	2523.242884	
0	596.1496	2420.83569	
0	596.1496	2420.83569	
0	596.1496	2635.141185	
0	596.1496	2890.540054	
0	596.1496	2756.938308	
0	596.1496	2635.141185	
0	596.1496	2635.141185	
0	596.1496	2523.242884	
0	596.1496	2420.83569	
0	596.1496	2420.83569	
0	596.1496	2420.83569	
0	596.1496	2523.242884	
0	596.1496	2756.938308	
0	596.1496	2420.83569	
0	596.1496	2326.416792	
0	596.1496	2239.086582	
0	596.1496	2082.722036	
0	596.1496	1946.528592	
0	596.1496	2012.453132	
0	596.1496	1584.397506	
0	596.1496	1366.595671	
0	596.1496	1398.640068	
0	596.1496	1432.223324	
0	596.1496	1398.640068	
0	596.1496	1467.459017	
0	596.1496	1432.223324	
0	596.1496	1398.640068	

0	596.1496	1467.459017
0	596.1496	1504.472183
0	596.1496	1584.397506
0	596.1496	1584.397506
0	596.1496	1772.9542
0	596.1496	1673.470557
0	596.1496	1627.801135
0	596.1496	1627.801135
0	596.1496	1627.801135
0	596.1496	1627.801135
0	596.1496	1627.801135
0	596.1496	1584.397506
0	596.1496	1584.397506
0	596.1496	1627.801135
0	596.1496	1584.397506
0	596.1496	1673.470557
0	596.1496	1584.397506
0	596.1496	1584.397506
0	596.1496	1584.397506
0	596.1496	1543.4008
0	596.1496	1543.4008
0	596.1496	1504.472183
0	596.1496	1432.223324
0	596.1496	1366.595671
0	596.1496	1366.595671
0	596.1496	1467.459017
0	596.1496	1504.472183
0	596.1496	1467.459017
0	596.1496	1398.640068
0	596.1496	1432.223324
0	596.1496	1467.459017
0	596.1496	1504.472183
0	596.1496	1584.397506
0	596.1496	1673.470557
0	596.1496	1721.776544
0	596.1496	1627.801135
0	596.1496	1673.470557
0	596.1496	1885.013546
0	596.1496	2012.453132
0	596.1496	2158.075647
0	596.1496	2239.086582
0	596.1496	2635.141885
0	596.1496	2756.938308
0	596.1496	2756.938308
0	596.1496	2523.242884
0	596.1496	2420.83569

		596.1496
0	2420.83569	
0	596.1496	2523.242884
0	596.1496	2239.086582
0	596.1496	2012.453132
0	596.1496	1946.528592
0	596.1496	2012.453132
0	596.1496	1946.528592
0	596.1496	1885.013546
0	596.1496	1885.013546
0	596.1496	1946.528592
0	596.1496	1946.528592
0	596.1496	2012.453132
0	596.1496	2082.722036
0	596.1496	2239.086582
0	596.1496	2326.416792
0	596.1496	2326.416792
0	596.1496	2326.416792
0	596.1496	2158.075647
0	596.1496	2326.416792
0	596.1496	2523.242884
0	596.1496	2420.83569
0	596.1496	2326.416792
0	596.1496	2158.075647
0	596.1496	2012.453132
0	596.1496	1885.013546
0	596.1496	1946.528592
0	596.1496	2239.086582
0	596.1496	2239.086582
0	596.1496	2326.416792
0	596.1496	2420.83569
0	596.1496	2890.540054
0	596.1496	2756.938308
0	596.1496	2890.540054
0	596.1496	3037.749985
0	596.1496	3382.254042
0	596.1496	3037.749985
0	596.1496	2756.938308
0	596.1496	2523.242884
0	596.1496	2420.83569
0	596.1496	2239.086582
0	596.1496	2158.075647
0	596.1496	2082.722036
0	596.1496	2326.416792
0	596.1496	2523.242884
0	596.1496	2756.938308
0	596.1496	3037.749985

0	596.1496	3037.749985
0	596.1496	3037.749985
0	596.1496	3037.749985
0	596.1496	2756.938308
0	596.1496	2890.540054
0	596.1496	2756.938308
0	596.1496	2523.242884
0	596.1496	2239.086582
0	596.1496	2239.086582
0	596.1496	2239.086582
0	596.1496	2326.416792
0	596.1496	2420.83569
0	596.1496	2326.416792
0	596.1496	2326.416792
0	596.1496	2326.416792
0	596.1496	2420.83569
0	596.1496	2890.540054
0	596.1496	3200.758792
0	596.1496	3585.569531
0	596.1496	3585.569531
0	596.1496	3382.254042
0	596.1496	3382.254042
0	596.1496	3585.569531
0	596.1496	3382.254042
0	596.1496	3200.758792
0	596.1496	3200.758792
0	596.1496	3037.749985
0	596.1496	2756.938308
0	596.1496	2890.540054
0	596.1496	2756.938308
0	596.1496	3037.749985
0	596.1496	3382.254042
0	596.1496	3200.758792
0	596.1496	2890.540054
0	596.1496	2756.938308
0	596.1496	2523.242884
0	596.1496	2890.540054
0	596.1496	2890.540054
0	596.1496	2523.242884
0	596.1496	2420.83569
0	596.1496	2420.83569
0	596.1496	2523.242884
0	596.1496	2756.938308
0	596.1496	2890.540054
0	596.1496	2420.83569
0	596.1496	2239.086582

0	596.1496	2239.086582
0	596.1496	2635.141185
0	596.1496	2523.242884
0	596.1496	2890.540054
0	596.1496	3200.758792
0	596.1496	3382.254042
0	596.1496	3200.758792
0	596.1496	3200.758792
0	596.1496	3382.254042
0	596.1496	3382.254042
0	596.1496	3037.749985
0	596.1496	3037.749985
0	596.1496	3200.758792
0	596.1496	3382.254042
0	596.1496	3200.758792
0	596.1496	3037.749985
0	596.1496	3200.758792
0	596.1496	3200.758792
0	596.1496	3200.758792
0	596.1496	3200.758792
0	596.1496	3585.569531
0	596.1496	3815.823416
0	596.1496	3815.823416
0	596.1496	3815.823416
0	596.1496	3585.569531
0	596.1496	3585.569531
0	596.1496	3382.254042
0	596.1496	3585.569531
0	596.1496	4076.615312
0	596.1496	4375.669831
0	596.1496	4722.074271
0	596.1496	5128.040952
0	596.1496	6192.868952
0	596.1496	8999.542067
0	596.1496	12888.8287
0	596.1496	12888.8287
0	596.1496	12888.8287
0	596.1496	10598.64686
0	596.1496	10598.64686
0	596.1496	8999.542067
0	596.1496	6913.384119
0	596.1496	7819.717188
0	596.1496	7819.717888
0	596.1496	7819.717888
0	596.1496	8999.542067
0	596.1496	10598.64686

0	596.1496	12888.8287
0	596.1496	10598.64686
0	596.1496	6192.868952
0	596.1496	6192.868952
0	596.1496	6192.868952
0	596.1496	7819.717188
0	596.1496	6913.384119
0	596.1496	3585.569531
0	596.1496	2756.938308
0	596.1496	2523.242884
0	596.1496	2326.416792
0	596.1496	2420.83569
0	596.1496	2420.83569
0	596.1496	2420.83569
0	596.1496	2420.83569
0	596.1496	2326.416792
0	596.1496	2082.722036
0	596.1496	2158.075647
0	596.1496	2326.416792
0	596.1496	2756.938308
0	596.1496	2523.242884
0	596.1496	2635.141185
0	596.1496	2523.242884
0	596.1496	2635.141185
0	596.1496	2890.540054
0	596.1496	3200.758792
0	596.1496	3200.758792
0	596.1496	4076.615312
0	596.1496	4375.669831
0	596.1496	5128.040952
0	596.1496	6192.868952
0	596.1496	5610.37688
0	596.1496	6192.868852
0	596.1496	5610.37688
0	596.1496	5610.37688
0	596.1496	6913.384119
0	596.1496	7819.717188
0	596.1496	6913.384119
0	596.1496	8999.542067
0	596.1496	10598.64686
0	596.1496	16441.56213
0	596.1496	22698.19143
0	596.1496	22698.19143
0	596.1496	22698.19143
0	596.1496	12888.8287
0	596.1496	12888.8287

0	596.1496	16441.56213
0	596.1496	16441.56213
0	596.1496	16441.56213
0	596.1496	22698.19143
0	596.1496	-43350.08266
0	596.1496	-13630.79355
0	596.1496	-8082.59881
0	596.1496	-5746.536054
0	596.1496	-5746.536054
0	596.1496	-6359.188118
0	596.1496	-8082.59881
0	596.1496	-9349.509303
0	596.1496	-13630.79355
0	596.1496	-25104.74667
0	596.1496	-25104.74667
0	596.1496	-25104.74667
0	596.1496	-17668.40565
0	596.1496	-17668.40565
0	596.1496	-17668.40565
0	596.1496	-17668.40565
0	596.1496	-17668.40565
0	596.1496	-13630.79355
0	596.1496	-13630.79355
0	596.1496	-17668.40565
0	596.1496	-17668.40565
0	596.1496	-17668.40565
0	596.1496	-9349.509303
0	596.1496	-6359.188118
0	596.1496	-4816.675851
0	596.1496	-5746.536054
0	596.1496	-6359.188118
0	596.1496	-8082.59881
0	596.1496	-6359.188118
0	596.1496	-5746.536054
0	596.1496	-5746.536054
0	596.1496	-5746.536054
0	596.1496	-5241.557874
0	596.1496	-4816.675851
0	596.1496	-4456.781634
0	596.1496	-3877.36132
0	596.1496	-3877.36132
0	596.1496	-3877.36132
0	596.1496	-4456.781634
0	596.1496	-4456.781634
0	596.1496	-4816.675851
0	596.1496	-4456.781634

0	596.1496	
0	-3877.36132	
0	596.1496	-3244.618457
0	596.1496	-2925.714649
0	596.1496	-2788.918497
0	596.1496	-2788.918497
0	596.1496	-3076.62266
0	596.1496	-3431.266835
0	596.1496	-3877.36132
0	596.1496	-4816.675851
0	596.1496	-5241.557874
0	596.1496	-4456.781634
0	596.1496	-3877.36132
0	596.1496	-3877.36132
0	596.1496	-3640.700012
0	596.1496	-3244.618457
0	596.1496	-3076.62266
0	596.1496	-2925.714649
0	596.1496	-2664.343159
0	596.1496	-2550.42102
0	596.1496	-2550.42102
0	596.1496	-2550.42102
0	596.1496	-2550.42102
0	596.1496	-2349.500834
0	596.1496	-2349.500834
0	596.1496	-2177.622072

		T-66 sec	20:49:34	60.0110	593.30	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57042.50	-31.465	T-66 sec	20:49:34
		T-64 sec	20:49:36	60.0110	593.30	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57042.50	-31.465	T-64 sec	20:49:36
		T-62 sec	20:49:38	60.0100	593.30	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57042.50	-28.595	T-62 sec	20:49:38
		T-60 sec	20:49:40	60.0110	593.30	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57042.50	-31.465	T-60 sec	20:49:40
		T-58 sec	20:49:42	60.0110	593.30	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57050.12	-31.465	T-58 sec	20:49:42
		T-56 sec	20:49:44	60.0120	593.30	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57050.12	-34.323	T-56 sec	20:49:44
		T-54 sec	20:49:46	60.0120	593.30	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57050.12	-34.323	T-54 sec	20:49:46
		T-52 sec	20:49:48	60.0110	585.63	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57057.21	-31.465	T-52 sec	20:49:48
		T-50 sec	20:49:50	60.0120	585.63	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57057.21	-34.323	T-50 sec	20:49:50
		T-48 sec	20:49:52	60.0130	586.14	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57051.74	-37.181	T-48 sec	20:49:52
		T-46 sec	20:49:54	60.0150	586.14	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57051.74	-42.898	T-46 sec	20:49:54
		T-44 sec	20:49:56	60.0160	586.80	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57051.74	-45.757	T-44 sec	20:49:56
		T-42 sec	20:49:58	60.0150	586.80	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57051.74	-42.898	T-42 sec	20:49:58
		T-40 sec	20:50:00	60.0140	585.95	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57037.88	-40.040	T-40 sec	20:50:00
		T-38 sec	20:50:02	60.0130	585.95	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57037.88	-37.181	T-38 sec	20:50:02
		T-36 sec	20:50:04	60.0120	585.67	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57050.43	-34.323	T-36 sec	20:50:04
		T-34 sec	20:50:06	60.0120	585.67	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57050.43	-34.323	T-34 sec	20:50:06
		T-32 sec	20:50:08	60.0120	585.12	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57029.92	-34.323	T-32 sec	20:50:08
		T-30 sec	20:50:10	60.0130	585.12	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57029.92	-37.181	T-30 sec	20:50:10
		T-28 sec	20:50:12	60.0150	584.66	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57033.71	-42.898	T-28 sec	20:50:12
		T-26 sec	20:50:14	60.0170	584.66	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57033.71	-48.615	T-26 sec	20:50:14
		T-24 sec	20:50:16	60.0170	585.31	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57035.56	-48.615	T-24 sec	20:50:16
		T-22 sec	20:50:18	60.0140	585.31	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57035.56	-40.040	T-22 sec	20:50:18
		T-20 sec	20:50:20	60.0150	585.21	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57020.60	-42.898	T-20 sec	20:50:20
		T-18 sec	20:50:22	60.0130	585.21	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57020.60	-37.181	T-18 sec	20:50:22
		T-16 sec	20:50:24	60.0120	585.92	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57030.37	-34.323	T-16 sec	20:50:24
		T-14 sec	20:50:26	60.0110	585.92	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57030.37	-31.465	T-14 sec	20:50:26
		T-12 sec	20:50:28	60.0080	593.28	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57039.15	-22.878	$\mathrm{T}-12 \mathrm{sec}$	20:50:28
		T-10 sec	20:50:30	60.0080	593.28	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57039.15	-22.878	T-10 sec	20:50:30
		T-08 sec	20:50:32	60.0070	602.70	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57042.20	-20.020	T-08 sec	20:50:32
		T-06 sec	20:50:34	60.0070	602.70	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57042.20	-20.020	T-06 sec	20:50:34
		T-04 sec	20:50:36	60.0070	602.70	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57089.30	-20.020	T-04 sec	20:50:36
		T-02 sec	20:50:38	60.0070	602.70	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	57089.30	-20.020	T-02 sec	20:50:38
		T+0 sec	20:50:40	59.9890	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56704.13	31.465	T+0 sec	20:50:40
		T+02 sec	20:50:42	59.9180	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56704.13	234.522	T+02 sec	20:50:42
		T+04 sec	20:50:44	59.9180	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56704.13	234.522	T+04 sec	20:50:44
		T+06 sec	20:50:46	59.8800	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56763.97	343.197	T+06 sec	20:50:46
		T+08 sec	20:50:48	59.8720	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56763.97	366.075	T+08 sec	20:50:48
		T+10 sec	20:50:50	59.8660	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56811.20	383.237	T+10 sec	20:50:50
		T+12 sec	20:50:52	59.8670	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56811.20	380.378	$\mathrm{T}+12 \mathrm{sec}$	20:50:52
		T+14 sec	20:50:54	59.8680	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56864.96	377.520	$\mathrm{T}+14 \mathrm{sec}$	20:50:54
		T+16 sec	20:50:56	59.8740	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56864.96	360.358	T+16 sec	20:50:56
		T+18 sec	20:50:58	59.8760	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56863.43	354.642	$\mathrm{T}+18 \mathrm{sec}$	20:50:58
59.8807	-467.012	T+20 sec	20:51:00	59.8780	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56863.43	348.925	$\mathrm{T}+20 \mathrm{sec}$	20:51:00
59.8807	-467.012	T+22 sec	20:51:02	59.8800	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56867.51	343.197	$\mathrm{T}+22 \mathrm{sec}$	20:51:02
59.8807	-467.012	T+24 sec	20:51:04	59.8830	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56867.51	334.622	T+24 sec	20:51:04

59.8807	-467.012	T+26 sec	20:51:06	59.8810	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56878.36	340.339	T+26 sec	20:51:06
59.8807	-467.012	T+28 sec	20:51:08	59.8800	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56878.36	343.197	T+28 sec	20:51:08
59.8807	-467.012	T+30 sec	20:51:10	59.8810	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56886.32	340.339	T+30 sec	20:51:10
59.8807	-467.012	T+32 sec	20:51:12	59.8810	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56886.32	340.339	T+32 sec	20:51:12
59.8807	-467.012	T+34 sec	20:51:14	59.8800	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56893.13	343.197	T+34 sec	20:51:14
59.8807	-467.012	T+36 sec	20:51:16	59.8780	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56893.13	348.925	T+36 sec	20:51:16
59.8807	-467.012	T+38 sec	20:51:18	59.8800	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56875.62	343.197	T+38 sec	20:51:18
59.8807	-467.012	$\mathrm{T}+40 \mathrm{sec}$	20:51:20	59.8800	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56875.62	343.197	$\mathrm{T}+40 \mathrm{sec}$	20:51:20
59.8807	-467.012	T+42 sec	20:51:22	59.8800	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56890.82	343.197	$\mathrm{T}+42 \mathrm{sec}$	20:51:22
59.8807	-467.012	T+44 sec	20:51:24	59.8820	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56890.82	337.480	T+44 sec	20:51:24
59.8807	-467.012	T+46 sec	20:51:26	59.8830	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56891.07	334.622	T+46 sec	20:51:26
59.8807	-467.012	T+48 sec	20:51:28	59.8820	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56891.07	337.480	T+48 sec	20:51:28
59.8807	-467.012	T+50 sec	20:51:30	59.8830	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56899.47	334.622	T+50 sec	20:51:30
59.8807	-467.012	T+52 sec	20:51:32	59.8800	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56899.47	343.197	T+52 sec	20:51:32
		T+54 sec	20:51:34	59.8810	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56874.90	340.339	T+54 sec	20:51:34
		T+56 sec	20:51:36	59.8840	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56874.90	331.763	T+56 sec	20:51:36
		T+58 sec	20:51:38	59.8920	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56854.81	308.885	T+58 sec	20:51:38
		T+60 sec	20:51:40	59.8940	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56854.81	303.157	$\mathrm{T}+60 \mathrm{sec}$	20:51:40
		T+62 sec	20:51:42	59.8960	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56837.21	297.440	T+62 sec	20:51:42
		T+64 sec	20:51:44	59.9000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56837.21	285.996	T+64 sec	20:51:44
		T+66 sec	20:51:46	59.9020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56827.59	280.279	T+66 sec	20:51:46
		T+68 sec	20:51:48	59.9040	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56827.59	274.562	T+68 sec	20:51:48
		T+70 sec	20:51:50	59.9030	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56841.84	277.420	T+70 sec	20:51:50
		T+72 sec	20:51:52	59.9020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56841.84	280.279	T+72 sec	20:51:52
		T+74 sec	20:51:54	59.9030	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56835.30	277.420	T+74 sec	20:51:54
		T+76 sec	20:51:56	59.9020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56835.30	280.279	T+76 sec	20:51:56
		T+78 sec	20:51:58	59.9010	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56837.30	283.137	T+78 sec	20:51:58
		T+80 sec	20:52:00	59.9000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56837.30	285.996	T+80 sec	20:52:00
			20:52:02	59.9010	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56854.15	283.137		
			20:52:04	59.9040	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56854.15	274.562		
			20:52:06	59.9070	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56861.54	265.976		
			20:52:08	59.9100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56861.54	257.400		
			20:52:10	59.9130	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56861.64	248.825		
			20:52:12	59.9160	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56861.64	240.239		
			20:52:14	59.9160	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56866.16	240.239		
			20:52:16	59.9190	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56866.16	231.664		
			20:52:18	59.9220	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56869.21	223.077		
			20:52:20	59.9240	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56869.21	217.361		
			20:52:22	59.9240	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56876.27	217.361		
			20:52:24	59.9240	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56876.27	217.361		
			20:52:26	59.9250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56881.39	214.502		
			20:52:28	59.9280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56881.39	205.916		
			20:52:30	59.9290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56889.59	203.058		
			20:52:32	59.9320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56889.59	194.482		
			20:52:34	59.9340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56893.89	188.765		

20:52:36	59.9350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56900.44	185.896
20:52:38	59.9350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56900.44	185.896
20:52:40	59.9350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56900.44	185.896
20:52:42	59.9350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56887.58	185.896
20:52:44	59.9340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56887.58	188.765
20:52:46	59.9350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56901.59	185.896
20:52:48	59.9380	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56901.59	177.321
20:52:50	59.9410	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56915.66	168.735
20:52:52	59.9430	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56915.66	163.018
20:52:54	59.9480	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56912.21	148.715
20:52:56	59.9510	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56912.21	140.139
20:52:58	59.9510	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56914.31	140.139
20:53:00	59.9530	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56914.31	134.423
20:53:02	59.9560	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56907.54	125.836
20:53:04	59.9580	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56907.54	120.119
20:53:06	59.9580	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56897.04	120.119
20:53:08	59.9590	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56897.04	117.261
20:53:10	59.9580	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56902.03	120.119
20:53:12	59.9580	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56902.03	120.119
20:53:14	59.9580	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56903.03	120.119
20:53:16	59.9600	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56903.03	114.403
20:53:18	59.9620	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56917.74	108.675
20:53:20	59.9650	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56917.74	100.100
20:53:22	59.9670	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56900.81	94.383
20:53:24	59.9700	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56900.81	85.797
20:53:26	59.9710	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56914.80	82.938
20:53:28	59.9730	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56914.80	77.221
20:53:30	59.9710	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56922.52	82.938
20:53:32	59.9710	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56922.52	82.938
20:53:34	59.9720	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56932.45	80.080
20:53:36	59.9740	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56932.45	74.363
20:53:38	59.9750	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56920.23	71.504
20:53:40	59.9770	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56920.23	65.777
20:53:42	59.9790	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56912.88	60.060
20:53:44	59.9810	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56912.88	54.343
20:53:46	59.9820	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56905.22	51.484
20:53:48	59.9840	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56905.22	45.757
20:53:50	59.9860	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56915.62	40.040
20:53:52	59.9890	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56915.62	31.465
20:53:54	59.9910	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56923.03	25.737
20:53:56	59.9930	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56923.03	20.020
20:53:58	59.9960	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56932.03	11.445
20:54:00	59.9990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56932.03	2.858
20:54:02	60.0020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56926.22	-5.717
20:54:04	60.0050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56926.22	-14.303
20:54:06	60.0050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56930.33	-14.303

20:54:08	60.0090	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56930.33	-25.737
20:54:10	60.0100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56935.11	-28.595
20:54:12	60.0110	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56935.11	-31.465
20:54:14	60.0120	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56938.24	-34.323
20:54:16	60.0110	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56938.24	-31.465
20:54:18	60.0130	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56947.14	-37.181
20:54:20	60.0140	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56947.14	-40.040
20:54:22	60.0170	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56946.19	-48.615
20:54:24	60.0210	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56946.19	-60.060
20:54:26	60.0230	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56937.30	-65.777
20:54:28	60.0240	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56937.30	-68.635
20:54:30	60.0250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56931.41	-71.504
20:54:32	60.0260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56931.41	-74.363
20:54:34	60.0260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56924.84	-74.363
20:54:36	60.0280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56924.84	-80.080
20:54:38	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56933.16	-82.938
20:54:40	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56933.16	-82.938
20:54:42	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56935.62	-85.797
20:54:44	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56935.62	-91.524
20:54:46	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56957.32	-94.383
20:54:48	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56957.32	-94.383
20:54:50	60.0310	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56954.23	-88.655
20:54:52	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56954.23	-82.938
20:54:54	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56956.64	-85.797
20:54:56	60.0310	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56956.64	-88.655
20:54:58	60.0310	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56956.60	-88.655
20:55:00	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56956.60	-91.524
20:55:02	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56938.90	-94.383
20:55:04	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56938.90	-94.383
20:55:06	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56943.18	-94.383
20:55:08	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56943.18	-91.524
20:55:10	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56939.07	-85.797
20:55:12	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56939.07	-94.383
20:55:14	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56942.44	-97.241
20:55:16	60.0350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56942.44	-100.100
20:55:18	60.0370	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56924.37	-105.816
20:55:20	60.0390	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56924.37	-111.544
20:55:22	60.0380	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56907.90	-108.675
20:55:24	60.0460	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56907.90	-131.564
20:55:26	60.0520	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56897.80	-148.715
20:55:28	60.0510	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56897.80	-145.856
20:55:30	60.0500	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56864.89	-142.998
20:55:32	60.0510	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56864.89	-145.856
20:55:34	60.0490	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56842.66	-140.139
20:55:36	60.0500	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56842.66	-142.998
20:55:38	60.0510	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56845.28	-145.856

20:55:40	60.0490	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56845.28	-140.139
20:55:42	60.0480	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56850.62	-137.281
20:55:44	60.0460	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56850.62	-131.564
20:55:46	60.0460	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56870.91	-131.564
20:55:48	60.0420	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56870.91	-120.119
20:55:50	60.0440	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56854.55	-125.836
20:55:52	60.0450	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56854.55	-128.695
20:55:54	60.0450	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56848.62	-128.695
20:55:56	60.0450	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56848.62	-128.695
20:55:58	60.0450	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56838.20	-128.695
20:56:00	60.0450	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56838.20	-128.695
20:56:02	60.0460	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56838.88	-131.564
20:56:04	60.0460	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56838.88	-131.564
20:56:06	60.0450	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56851.80	-128.695
20:56:08	60.0460	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56851.80	-131.564
20:56:10	60.0440	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56861.98	-125.836
20:56:12	60.0460	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56861.98	-131.564
20:56:14	60.0460	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56851.02	-131.564
20:56:16	60.0460	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56851.02	-131.564
20:56:18	60.0470	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56845.13	-134.423
20:56:20	60.0470	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56845.13	-134.423
20:56:22	60.0480	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56847.95	-137.281
20:56:24	60.0500	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56847.95	-142.998
20:56:26	60.0520	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56843.66	-148.715
20:56:28	60.0520	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56843.66	-148.715
20:56:30	60.0490	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56833.39	-140.139
20:56:32	60.0480	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56833.39	-137.281
20:56:34	60.0490	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56814.38	-140.139
20:56:36	60.0510	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56814.38	-145.856
20:56:38	60.0500	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56817.16	-142.998
20:56:40	60.0490	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56817.16	-140.139
20:56:42	60.0480	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56805.52	-137.281
20:56:44	60.0460	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56805.52	-131.564
20:56:46	60.0440	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56807.83	-125.836
20:56:48	60.0430	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56807.83	-122.978
20:56:50	60.0450	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56827.41	-128.695
20:56:52	60.0440	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56827.41	-125.836
20:56:54	60.0400	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56821.69	-114.403
20:56:56	60.0380	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56821.69	-108.675
20:56:58	60.0360	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56833.95	-102.958
20:57:00	60.0350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56833.95	-100.100
20:57:02	60.0310	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56860.51	-88.655
20:57:04	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56860.51	-85.797
20:57:06	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56877.59	-85.797
20:57:08	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56877.59	-91.524
20:57:10	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56918.66	-94.383

20:57:12	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56918.66	-94.383
20:57:14	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56891.71	-91.524
20:57:16	60.0350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56891.71	-100.100
20:57:18	60.0380	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56894.35	-108.675
20:57:20	60.0390	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56894.35	-111.544
20:57:22	60.0380	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56895.17	-108.675
20:57:24	60.0390	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56895.17	-111.544
20:57:26	60.0400	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56889.73	-114.403
20:57:28	60.0400	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56889.73	-114.403
20:57:30	60.0390	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56892.39	-111.544
20:57:32	60.0390	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56892.39	-111.544
20:57:34	60.0380	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56875.33	-108.675
20:57:36	60.0370	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56874.01	-105.816
20:57:38	60.0350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56874.01	-100.100
20:57:40	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56874.01	-97.241
20:57:42	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56881.00	-97.241
20:57:44	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56881.00	-97.241
20:57:46	60.0360	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56887.45	-102.958
20:57:48	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56887.45	-97.241
20:57:50	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56882.08	-91.524
20:57:52	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56882.08	-94.383
20:57:54	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56879.11	-97.241
20:57:56	60.0360	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56879.11	-102.958
20:57:58	60.0380	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56884.36	-108.675
20:58:00	60.0400	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56884.36	-114.403
20:58:02	60.0390	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56872.63	-111.544
20:58:04	60.0350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56872.63	-100.100
20:58:06	60.0350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56865.52	-100.100
20:58:08	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56865.52	-97.241
20:58:10	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56874.48	-94.383
20:58:12	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56874.48	-82.938
20:58:14	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56866.35	-85.797
20:58:16	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56866.35	-82.938
20:58:18	60.0280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56868.50	-80.080
20:58:20	60.0260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56868.50	-74.363
20:58:22	60.0280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56865.58	-80.080
20:58:24	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56865.58	-85.797
20:58:26	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56862.76	-91.524
20:58:28	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56862.76	-94.383
20:58:30	60.0350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56871.13	-100.100
20:58:32	60.0360	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56871.13	-102.958
20:58:34	60.0370	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56863.48	-105.816
20:58:36	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56863.48	-97.241
20:58:38	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56856.71	-91.524
20:58:40	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56856.71	-85.797
20:58:42	60.0280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56859.67	-80.080

20:58:44	60.0280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56859.67	-80.080
20:58:46	60.0280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56860.41	-80.080
20:58:48	60.0280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56860.41	-80.080
20:58:50	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56867.31	-85.797
20:58:52	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56867.31	-82.938
20:58:54	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56852.14	-85.797
20:58:56	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56852.14	-91.524
20:58:58	60.0350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56838.81	-100.100
20:59:00	60.0350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56838.81	-100.100
20:59:02	60.0350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56839.64	-100.100
20:59:04	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56839.64	-97.241
20:59:06	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56839.96	-94.383
20:59:08	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56839.96	-97.241
20:59:10	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56841.01	-97.241
20:59:12	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56841.01	-97.241
20:59:14	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56854.90	-94.383
20:59:16	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56854.90	-82.938
20:59:18	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56846.00	-77.221
20:59:20	60.0250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56846.00	-71.504
20:59:22	60.0250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56833.07	-71.504
20:59:24	60.0260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56833.07	-74.363
20:59:26	60.0260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56827.28	-74.363
20:59:28	60.0250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56827.28	-71.504
20:59:30	60.0260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56829.42	-74.363
20:59:32	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56829.42	-77.221
20:59:34	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56846.66	-77.221
20:59:36	60.0280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56846.66	-80.080
20:59:38	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56840.57	-85.797
20:59:40	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56840.57	-82.938
20:59:42	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56831.91	-85.797
20:59:44	60.0280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56831.91	-80.080
20:59:46	60.0260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56833.35	-74.363
20:59:48	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56833.35	-77.221
20:59:50	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56833.63	-82.938
20:59:52	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56833.63	-85.797
20:59:54	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56828.00	-91.524
20:59:56	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56828.00	-82.938
20:59:58	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56828.00	-82.938
21:00:00	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56828.00	-91.524
21:00:02	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56833.80	-94.383
21:00:04	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56833.80	-94.383
21:00:06	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56806.86	-91.524
21:00:08	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56806.86	-85.797
21:00:10	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56813.18	-82.938
21:00:12	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56813.18	-94.383
21:00:14	60.0350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56804.27	-100.100

21:00:16	60.0350	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56804.27	-100.100
21:00:18	60.0310	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56787.34	-88.655
21:00:20	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56787.34	-91.524
21:00:22	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56786.84	-82.938
21:00:24	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56786.84	-77.221
21:00:26	60.0260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56773.49	-74.363
21:00:28	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56773.49	-77.221
21:00:30	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56759.37	-77.221
21:00:32	60.0260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56759.37	-74.363
21:00:34	60.0260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56742.34	-74.363
21:00:36	60.0280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56742.34	-80.080
21:00:38	60.0280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56734.98	-80.080
21:00:40	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56734.98	-77.221
21:00:42	60.0260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56750.62	-74.363
21:00:44	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56750.62	-77.221
21:00:46	60.0280	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56746.89	-80.080
21:00:48	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56746.89	-77.221
21:00:50	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56753.28	-77.221
21:00:52	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56753.28	-77.221
21:00:54	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56749.96	-77.221
21:00:56	60.0250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56749.96	-71.504
21:00:58	60.0240	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56728.95	-68.635
21:01:00	60.0240	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56728.95	-68.635
21:01:02	60.0240	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56723.32	-68.635
21:01:04	60.0250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56723.32	-71.504
21:01:06	60.0250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56715.22	-71.504
21:01:08	60.0260	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56715.22	-74.363
21:01:10	60.0250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56724.10	-71.504
21:01:12	60.0230	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56724.10	-65.777
21:01:14	60.0220	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56718.91	-62.918
21:01:16	60.0210	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56718.91	-60.060
21:01:18	60.0200	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56704.99	-57.201
21:01:20	60.0180	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56704.99	-51.484
21:01:22	60.0150	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56708.48	-42.898
21:01:24	60.0130	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56708.48	-37.181
21:01:26	60.0130	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56730.45	-37.181
21:01:28	60.0130	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56730.45	-37.181
21:01:30	60.0140	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56720.16	-40.040
21:01:32	60.0140	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56720.16	-40.040
21:01:34	60.0150	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56711.63	-42.898
21:01:36	60.0170	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56711.63	-48.615
21:01:38	60.0160	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56708.66	-45.757
21:01:40	60.0160	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56708.66	-45.757
21:01:42	60.0160	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56706.61	-45.757
21:01:44	60.0150	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56706.61	-42.898
21:01:46	60.0140	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56716.55	-40.040

21:01:48	60.0130	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56716.55	-37.181
21:01:50	60.0140	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56705.83	-40.040
21:01:52	60.0180	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56705.83	-51.484
21:01:54	60.0180	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56696.39	-51.484
21:01:56	60.0180	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56696.39	-51.484
21:01:58	60.0160	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56670.62	-45.757
21:02:00	60.0170	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56670.62	-48.615
21:02:02	60.0250	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56642.69	-71.504
21:02:04	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56642.69	-85.797
21:02:06	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56644.32	-91.524
21:02:08	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56644.32	-97.241
21:02:10	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56636.41	-94.383
21:02:12	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56636.41	-94.383
21:02:14	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56630.75	-94.383
21:02:16	60.0330	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56630.75	-94.383
21:02:18	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56620.91	-97.241
21:02:20	60.0370	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56620.91	-105.816
21:02:22	60.0360	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56619.00	-102.958
21:02:24	60.0340	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56619.00	-97.241
21:02:26	60.0300	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56610.45	-85.797
21:02:28	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56610.45	-91.524
21:02:30	60.0310	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56598.06	-88.655
21:02:32	60.0320	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56598.06	-91.524
21:02:34	60.0310	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56587.05	-88.655
21:02:36	60.0290	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56589.89	-82.938
21:02:38	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56589.89	-77.221
21:02:40	60.0270	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56589.89	-77.221
21:02:42	60.0230	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56581.13	-65.777
21:02:44	60.0220	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56581.13	-62.918
21:02:46	60.0200	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56587.69	-57.201
21:02:48	60.0180	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56587.69	-51.484
21:02:50	60.0190	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56605.20	-54.343
21:02:52	60.0180	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56605.20	-51.484
21:02:54	60.0190	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56592.78	-54.343
21:02:56	60.0190	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56592.78	-54.343
21:02:58	60.0170	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56586.05	-48.615
21:03:00	60.0160	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56586.05	-45.757
21:03:02	60.0170	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56581.38	-48.615
21:03:04	60.0150	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56581.38	-42.898
21:03:06	60.0140	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56576.92	-40.040
21:03:08	60.0120	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56576.92	-34.323
21:03:10	60.0110	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56570.90	-31.465
21:03:12	60.0110	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56570.90	-31.465
21:03:14	60.0110	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56585.30	-31.465
21:03:16	60.0130	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56585.30	-37.181
21:03:18	60.0130	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56579.29	-37.181

21:03:20	60.0120	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56579.29	-34.323
21:03:22	60.0120	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56575.29	-34.323
21:03:24	60.0120	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56575.29	-34.323
21:03:26	60.0110	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56567.70	-31.465
21:03:28	60.0070	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56567.70	-20.020
21:03:30	60.0040	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56566.86	-11.445
21:03:32	60.0010	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56566.86	-2.858
21:03:34	59.9980	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56567.80	5.717
21:03:36	59.9980	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56567.80	5.717
21:03:38	59.9990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56565.92	2.858
21:03:40	60.0010	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56565.92	-2.858
21:03:42	60.0020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56570.00	-5.717
21:03:44	60.0040	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56570.00	-11.445
21:03:46	60.0060	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56565.58	-17.161
21:03:48	60.0060	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56565.58	-17.161
21:03:50	60.0060	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56557.96	-17.161
21:03:52	60.0050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56557.96	-14.303
21:03:54	60.0050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56538.89	-14.303
21:03:56	60.0050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56538.89	-14.303
21:03:58	60.0050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56537.92	-14.303
21:04:00	60.0050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56537.92	-14.303
21:04:02	60.0040	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56544.36	-11.445
21:04:04	60.0040	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56544.36	-11.445
21:04:06	60.0050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56542.68	-14.303
21:04:08	60.0050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56542.68	-14.303
21:04:10	60.0050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56554.31	-14.303
21:04:12	60.0020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56554.31	-5.717
21:04:14	59.9990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56543.29	2.858
21:04:16	59.9960	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56543.29	11.445
21:04:18	59.9980	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56531.34	5.717
21:04:20	59.9990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56531.34	2.858
21:04:22	60.0010	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56542.45	-2.858
21:04:24	59.9990	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56542.45	2.858
21:04:26	59.9980	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56546.61	5.717
21:04:28	59.9980	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56546.61	5.717
21:04:30	59.9980	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56538.92	5.717
21:04:32	59.9970	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56538.92	8.575
21:04:34	59.9960	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56548.07	11.445
21:04:36	59.9950	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56548.07	14.303
21:04:38	59.9930	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56542.02	20.020
21:04:40	59.9930	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56542.02	20.020
21:04:42	59.9930	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56531.91	20.020
21:04:44	59.9950	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56531.91	14.303
21:04:46	59.9950	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56528.67	14.303
21:04:48	59.9960	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56528.67	11.445
21:04:50	59.9950	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56528.46	14.303

21:04:52	59.9930	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56528.46	20.020
21:04:54	59.9900	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56519.61	28.595
21:04:56	59.9880	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56519.61	34.323
21:04:58	59.9870	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56512.20	37.181
21:05:00	59.9870	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56512.20	37.181
21:05:02	59.9890	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56514.52	31.465
21:05:04	59.9910	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56514.52	25.737
21:05:06	59.9930	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56508.47	20.020
21:05:08	59.9960	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56508.47	11.445
21:05:10	59.9970	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56512.15	8.575
21:05:12	59.9950	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56512.15	14.303
21:05:14	59.9930	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56508.86	20.020
21:05:16	59.9930	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56508.86	20.020
21:05:18	59.9920	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56503.34	22.878
21:05:20	59.9900	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56503.34	28.595
21:05:22	59.9890	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56510.09	31.465
21:05:24	59.9880	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56510.09	34.323
21:05:26	59.9860	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56514.67	40.040
21:05:28	59.9850	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56514.67	42.898
21:05:30	59.9850	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56501.90	42.898
21:05:32	59.9850	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56501.90	42.898
21:05:34	59.9850	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56510.46	42.898
21:05:36	59.9830	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56510.46	48.615
21:05:38	59.9830	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56504.74	48.615
21:05:40	59.9810	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	56504.74	54.343

												$\mathrm{T}-66$ sec $\mathrm{T}-64$ sec $\mathrm{T}-62$ sec $\mathrm{T}-60$ sec $\mathrm{T}-58$ sec $\mathrm{T}-56$ sec $\mathrm{T}-54$ sec $\mathrm{T}-52$ sec $\mathrm{T}-50$ sec $\mathrm{T}-48$ sec $\mathrm{T}-46$ sec $\mathrm{T}-44$ sec $\mathrm{T}-42$ sec $\mathrm{T}-40$ sec $\mathrm{T}-38$ sec $\mathrm{T}-36$ sec $\mathrm{T}-34$ sec $\mathrm{T}-32$ sec $\mathrm{T}-30$ sec $\mathrm{T}-28$ sec $\mathrm{T}-26$ sec $\mathrm{T}-24$ sec $\mathrm{T}-22$ sec $\mathrm{T}-20$ sec $\mathrm{T}-18$ sec	$20: 49: 34$ $20: 49: 36$ $20: 49: 38$ $20: 49: 40$ $20: 49: 42$ $20: 49: 44$ $20: 49: 46$ $20: 49: 48$ $20: 49: 50$ $20: 49: 52$ $20: 49: 54$ $20: 49: 56$ $20: 49: 58$ $20: 50: 00$ $20: 50: 02$ $20: 50: 04$ $20: 50: 06$ $20: 50: 08$ $20: 50: 10$ $20: 50: 12$ $20: 50: 14$ $20: 50: 16$ $20: 50: 18$ $20: 50: 20$ $20: 50: 22$			
60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	57050.256	-23.953		T-16 sec	20:50:24	60.008	596.150	0.000
60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	57050.256	-23.953		T-14 sec	20:50:26	60.008	596.150	0.000
60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	57050.256	-23.953		T-12 sec	20:50:28	60.008	596.150	0.000
60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	57050.256	-23.953		T-10 sec	20:50:30	60.008	596.150	0.000
60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	57050.256	-23.953		T-08 sec	20:50:32	60.008	596.150	0.000
60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	57050.256	-23.953		T-06 sec	20:50:34	60.008	596.150	0.000
60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	57050.256	-23.953		T-04 sec	20:50:36	60.008	596.150	0.000
60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	57050.256	-23.953		T-02 sec	20:50:38	60.008	596.150	0.000
												$\mathrm{T}+0 \mathrm{sec}$ $\mathrm{T}+02 \mathrm{sec}$ $\mathrm{T}+04 \mathrm{sec}$ $\mathrm{T}+06 \mathrm{sec}$ $\mathrm{T}+08 \mathrm{sec}$ $\mathrm{T}+10 \mathrm{sec}$	$\begin{aligned} & \text { 20:50:40 } \\ & 20: 50: 42 \\ & 20: 50: 44 \\ & 20: 50: 46 \\ & 20: 50: 48 \\ & 20: 50: 50 \end{aligned}$			
59.875	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	56857.573	357.092	977.194	T+12 sec	20:50:52			
59.875	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	56857.573	357.092	977.194	T+14 sec	20:50:54			
59.875	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	56857.573	357.092	977.194	T+16 sec	20:50:56			
59.875	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	56857.573	357.092	977.194	T+18 sec	20:50:58	59.880	0.000	0.000
59.875	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	56857.573	357.092	977.194	T+20 sec	20:51:00	59.880	0.000	0.000
59.875	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	56857.573	357.092	977.194	T+22 sec	20:51:02	59.880	0.000	0.000
59.875	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-653.000	56857.573	357.092	977.194	$\mathrm{T}+24 \mathrm{sec}$	20:51:04	59.880	0.000	0.000

0.000	0.000	0.000	0.000	0.000	-653.000 56872.132	343.608	963.711	T+26 sec	20:51:06	59.880	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	-653.000 56872.132	343.608	963.711	T+28 sec	20:51:08	59.880	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000	-653.000 56872.132	343.608	963.711	T+30 sec	20:51:10	59.880	0.000	0.000	0.000	0.000
								$\mathrm{T}+32 \mathrm{sec}$	20:51:12	59.880	0.000	0.000	0.000	0.000
								$\mathrm{T}+34 \mathrm{sec}$	20:51:14	59.880	0.000	0.000	0.000	0.000
								$\mathrm{T}+36 \mathrm{sec}$	20:51:16	59.880	0.000	0.000	0.000	0.000
								$\mathrm{T}+38 \mathrm{sec}$	20:51:18	59.880	0.000	0.000	0.000	0.000
								T+40 sec	20:51:20	59.880	0.000	0.000	0.000	0.000
								$\mathrm{T}+42 \mathrm{sec}$	20:51:22					
								T+44 sec	20:51:24					
								T+46 sec	20:51:26					
								T+48 sec	20:51:28					
								T+50 sec	20:51:30					
								T+52 sec	20:51:32					
								T+54 sec	20:51:34					
								T+56 sec	20:51:36					
								T+58 sec	20:51:38					
								T+60 sec	20:51:40					
								T+62 sec	20:51:42					
								T+64 sec	20:51:44					
								T+66 sec	20:51:46					
								T+68 sec	20:51:48					
								T+70 sec	20:51:50					
								T+72 sec	20:51:52					
								T+74 sec	20:51:54					
								T+76 sec	20:51:56					
								T+78 sec	20:51:58					
								T+80 sec	20:52:00					

							$\begin{aligned} & \text { T-66 sec } \\ & \text { T-64 sec } \\ & \text { T-62 sec } \\ & \text { T-60 sec } \\ & \text { T-58 sec } \\ & \text { T-56 sec } \\ & \text { T-54 sec } \\ & \text { T-52 sec } \\ & \text { T-50 sec } \\ & \text { T-48 sec } \\ & \text { T-46 sec } \\ & \text { T-44 sec } \\ & \text { T-42 sec } \\ & \text { T-40 sec } \\ & \text { T-38 sec } \\ & \text { T-36 sec } \\ & \text { T-34 sec } \\ & \text { T-32 sec } \\ & \text { T-30 sec } \\ & \text { T-28 sec } \\ & \text { T-26 sec } \\ & \text { T-24 sec } \\ & \text { T-22 sec } \\ & \text { T-20 sec } \\ & \text { T-18 sec } \end{aligned}$	20:49:34 $20: 49: 36$ $20: 49: 38$ $20: 49: 40$ $20: 49: 42$ $20: 49: 44$ $20: 49: 46$ $20: 49: 48$ $20: 49: 50$ $20: 49: 52$ $20: 49: 54$ $20: 49: 56$ $20: 49: 58$ $20: 50: 00$ $20: 50: 02$ $20: 50: 04$ $20: 50: 06$ $20: 50: 08$ $20: 50: 10$ $20: 50: 12$ $20: 50: 14$ $20: 50: 16$ $20: 50: 18$ $20: 50: 20$ $20: 50: 22$							
0.000	0.000	0.000	-653.000	57050.256	-23.953		$\mathrm{T}-16 \mathrm{sec}$	20:50:24	60.008	596.150	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	57050.256	-23.953		T-14 sec	20:50:26	60.008	596.150	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	57050.256	-23.953		T-12 sec	20:50:28	60.008	596.150	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	57050.256	-23.953		$\mathrm{T}-10 \mathrm{sec}$	20:50:30	60.008	596.150	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	57050.256	-23.953		T-08 sec	20:50:32	60.008	596.150	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	57050.256	-23.953		T-06 sec	20:50:34	60.008	596.150	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	57050.256	-23.953		T-04 sec	20:50:36	60.008	596.150	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	57050.256	-23.953		T-02 sec	20:50:38	60.008	596.150	0.000	0.000	0.000	0.000	0.000
							$\begin{aligned} & \mathrm{T}+0 \mathrm{sec} \\ & \mathrm{~T}+02 \mathrm{sec} \\ & \mathrm{~T}+04 \mathrm{sec} \\ & \mathrm{~T}+06 \mathrm{sec} \\ & \mathrm{~T}+08 \mathrm{sec} \\ & \mathrm{~T}+10 \mathrm{sec} \\ & \mathrm{~T}+12 \mathrm{sec} \\ & \mathrm{~T}+14 \mathrm{sec} \\ & \mathrm{~T}+16 \mathrm{sec} \end{aligned}$	$\begin{aligned} & \text { 20:50:40 } \\ & 20: 50: 42 \\ & 20: 50: 44 \\ & 20: 50: 46 \\ & 20: 50: 48 \\ & 20: 50: 50 \\ & 20: 50: 52 \\ & 20: 50: 54 \\ & 20: 50: 56 \end{aligned}$							
							$\mathrm{T}+18 \mathrm{sec}$	20:50:58	59.880	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	56878.664	342.679	962.782	$\mathrm{T}+20 \mathrm{sec}$	20:51:00	59.880	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	56878.664	342.679	962.782	$\mathrm{T}+22 \mathrm{sec}$	20:51:02	59.880	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	56878.664	342.679	962.782	T+24 sec	20:51:04	59.880	0.000	0.000	0.000	0.000	0.000	0.000

0.000	0.000	0.000	-653.000	56878.664	342.679	962.782	T+26 sec	20:51:06	59.880	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	56878.664	342.679	962.782	$\mathrm{T}+28 \mathrm{sec}$	20:51:08	59.880	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	56878.664	342.679	962.782	T+30 sec	20:51:10	59.880	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	56878.664	342.679	962.782	T+32 sec	20:51:12	59.880	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	56878.664	342.679	962.782	T+34 sec	20:51:14	59.880	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	56878.664	342.679	962.782	T+36 sec	20:51:16	59.880	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	56878.664	342.679	962.782	$\mathrm{T}+38 \mathrm{sec}$	20:51:18	59.880	0.000	0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	-653.000	56878.664	342.679	962.782	T+40 sec	20:51:20	59.880	0.000	0.000	0.000	0.000	0.000	0.000
							T+42 sec	20:51:22	59.880	0.000	0.000	0.000	0.000	0.000	0.000
							T+44 sec	20:51:24	59.880	0.000	0.000	0.000	0.000	0.000	0.000
							T+46 sec	20:51:26	59.880	0.000	0.000	0.000	0.000	0.000	0.000
							T+48 sec	20:51:28	59.880	0.000	0.000	0.000	0.000	0.000	0.000
							T+50 sec	20:51:30	59.880	0.000	0.000	0.000	0.000	0.000	0.000
							T+52 sec	20:51:32	59.880	0.000	0.000	0.000	0.000	0.000	0.000
							T+54 sec	20:51:34							
							T+56 sec	20:51:36							
							T+58 sec	20:51:38							
							T+60 sec	20:51:40							
							T+62 sec	20:51:42							
							T+64 sec	20:51:44							
							T+66 sec	20:51:46							
							T+68 sec	20:51:48							
							T+70 sec	20:51:50							
							T+72 sec	20:51:52							
							T+74 sec	20:51:54							
							T+76 sec	20:51:56							
							T+78 sec	20:51:58							
							T+80 sec	20:52:00							

0.000	-653.000	57050.256	-23.953
0.000	-653.000	57050.256	-23.953
0.000	-653.000	57050.256	-23.953
0.000	-653.000	57050.256	-23.953
0.000	-653.000	57050.256	-23.953
0.000	-653.000	57050.256	-23.953
0.000	-653.000	57050.256	-23.953
0.000	-653.000	57050.256	-23.953

	\| T-66 sec	20:49:34								
	T-64 sec	20:49:36								
	T-62 sec	20:49:38								
	T-60 sec	20:49:40								
	T-58 sec	20:49:42								
	T-56 sec	20:49:44								
	T-54 sec	20:49:46								
	T-52 sec	20:49:48								
	T-50 sec	20:49:50								
	T-48 sec	20:49:52								
	T-46 sec	20:49:54								
	T-44 sec	20:49:56								
	T-42 sec	20:49:58								
	T-40 sec	20:50:00								
	T-38 sec	20:50:02								
	T-36 sec	20:50:04								
	T-34 sec	20:50:06								
	T-32 sec	20:50:08								
	T-30 sec	20:50:10								
	T-28 sec	20:50:12								
	T-26 sec	20:50:14								
	T-24 sec	20:50:16								
	T-22 sec	20:50:18								
	T-20 sec	20:50:20								
	T-18 sec	20:50:22								
	T-16 sec	20:50:24	60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000
	T-14 sec	20:50:26	60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000
	T-12 sec	20:50:28	60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000
	T-10 sec	20:50:30	60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000
	T-08 sec	20:50:32	60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000
	T-06 sec	20:50:34	60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000
	T-04 sec	20:50:36	60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000
	T-02 sec	20:50:38	60.008	596.150	0.000	0.000	0.000	0.000	0.000	0.000
	T+0 sec	20:50:40								
	T+02 sec	20:50:42								
	T+04 sec	20:50:44								
	T+06 sec	20:50:46								
	T+08 sec	20:50:48								
	T+10 sec	20:50:50								
	T+12 sec	20:50:52								
	T+14 sec	20:50:54								
	T+16 sec	20:50:56								
962.031	T+18 sec	20:50:58								
962.031	$\mathrm{T}+20 \mathrm{sec}$	20:51:00	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
962.031	$\mathrm{T}+22 \mathrm{sec}$	20:51:02	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
962.031	T+24 sec	20:51:04	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000

0.000	-653.000	56882.859	341.928	962.031	T+26 sec	20:51:06	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	T+28 sec	20:51:08	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	T+30 sec	20:51:10	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	T+32 sec	20:51:12	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	T+34 sec	20:51:14	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	T+36 sec	20:51:16	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	T+38 sec	20:51:18	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	T+40 sec	20:51:20	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	T+42 sec	20:51:22	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	T+44 sec	20:51:24	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	$\mathrm{T}+46 \mathrm{sec}$	20:51:26	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	T+48 sec	20:51:28	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	T+50 sec	20:51:30	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000	-653.000	56882.859	341.928	962.031	T+52 sec	20:51:32	59.881	0.000	0.000	0.000	0.000	0.000	0.000	0.000
					T+54 sec	20:51:34								
					T+56 sec	20:51:36								
					T+58 sec	20:51:38								
					T+60 sec	20:51:40								
					T+62 sec	20:51:42								
					T+64 sec	20:51:44								
					T+66 sec	20:51:46								
					T+68 sec	20:51:48								
					T+70 sec	20:51:50								
					T+72 sec	20:51:52								
					T+74 sec	20:51:54								
					T+76 sec	20:51:56								
					T+78 sec	20:51:58								
					T+80 sec	20:52:00								

-653.000
-653.000
-653.000
-653.000
-653.000
-653.000
-653.000
-653.000
-653.000
57050.256 57050.256
57050.256
57050.256
57050.256
57050.256
57050.256
57050.256
$57050.256-23.95$ $\begin{array}{ll}57050.256 & -23.953 \\ 57050.256 & -23953\end{array}$ 57050.256
57050.256 $57050.256-23.95$ -23.95

-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283
-653.000	56884.002	341.181	961.283

Date	A Point Time	FPointA Hz	A Value Hz	$\mathrm{t}(0)$ Time	C Value Hz
Monday, July 18, 2011	$20: 50: 38$	60.0070	60.0084	$20: 50: 40$	59.8660

Value B	FR B								
12 to 24 sec	12 to 24 sec	18 to 30 sec	18 to 30 sec	20 to 40 sec	20 to 40 sec	18 to 52 sec	18 to 52 sec	20 to 52 sec	20 to 52 sec
Average									
Frequency	MW								
59.8751428	-448.21208	59.8798572	-463.9878	59.8807061	-465.09106	59.8804446	-466.08657	59.8807061	-467.01245

BA Performance											Value B		12 to 24 second Average Period Evaluation				
Frequency Hz	Total Generation Lost MW	JOU Dynamic Schedules n/a	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Ramping Units n/a	Transferred Frequency Response n/a	Contingent BA Lost Generation n / a	BA Bias Setting MW/0.1 Hz	BA Load MW	Bias Setting EPFR MW	Frequency Hz	Total Generation Lost MW	JOU Dynamic Schedules n/a	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Ramping Units n/a	Transferred Frequency Response n/a
60.008375	596.15	0.00	0.00	0.00	0.00	0.00	0.00	-653	57050.26	-54.6898	59.875143	0.00	0.00	0.00	0.00	0.00	0.00

Contingent									Jou	Non-			Transferred	Contingent	
BA	Initial	Initial	Sustained	BA	BA	Bias		Total	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial
Lost Generation	Performance	Performance	Performance	Bias	Load	Setting		Generation	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance
n/a	Adjusted	Unadjusted		Setting		EPFR	Frequency	Lost	n/a	Load (-)	Load (-) Gen (+)	n/a	n/a	n/a	Adjusted
	P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW	Hz	MW		MW	MW				P.U.
0.00	1.565	1.565	No Evaluation	-653	56857.57	815.3177	59.879857	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.622

Value B															
							JOU	Non-			Transferred	Contingent			
Initial	Sustained	BA	BA	Bias		Total	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained
Performance	Performance	Bias	Load	Setting		Generation	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance
Unadjusted		Setting		EPFR	Frequency	Lost	n/a	Load (-)	Load (-) Gen (+)	n/a	n/a	n/a	Adjusted	Unadjusted	
P.U.	P.U.	MW/0.1 Hz	MW	MW	Hz	MW		MW	MW				P.U.	P.U.	P.U.
1.622	No Evaluation	-653	56872.13	784.5325	59.880182	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.626	1.626	No Evaluation

20 to 52 second Average Period Evaluation

	JOU	Non-			Transferred	Contingent						
Total	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained	BA	BA	Bias
Generation	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance	Bias	Load	Setting
Lost	n/a	Load (-)	Load (-) Gen (+)	n/a	n/a	n/a	Adjusted	Unadjusted		Setting		EPFR
MW		MW	MW				P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW
0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.633	1.633	No Evaluation	-653	56884	778.9891

Steps To be completed for each event evaluated

1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Column A: Date and Time in this format, $\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$ HH:MM:SS
Column B: Frequency Hz
Column C: Total Lost Generation: enter the MW data of the units that tripped as a single generator where the value typically goes to zero at $\mathrm{t}(0)$.
Column D: not applicable
Column E: Non Conforming Load
Column F: Pumped Hydro Column G: not applicable Column H: not applicable
Column I: not applicable
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D, E, F, G and H are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign ($+/-$) convention defined in FRS Form 1
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must be at 3 second sample rate for the full 25 minute minimum collection period that starts a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event The spreadsheet will work with larger sample size data.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data. The data must be numbers not text.
5 Once data is in place in the "Data" worksheet, determine when the beginning of the event occurred. This is accomplished by knowing the UTC event time from the master event list. Convert the UTC event time to your PI data time and then scroll through the Data worksheet column B data of frequency and observe when frequency moves from the normal, pre-event frequency. This will usually be a single change in frequency of 0.008 to 0.010 Hz more or less. Note the row number in the worksheet that this change occurs. In this sample data spreadsheet this occurs in row 313 of the data.
6 Edit cell "C8" of the "Entry Data" worksheet, change the formula in the cell "C8" to reference the row number identified in step 5 above. In the sample data of this workbook this formula is: "=Data!A313"
7 Determine the end of the event to be evaluated. Use the same rules that are used for DCS only look at frequency instead of ACE. Scroll down the frequency data in column B of the "Data" worksheet until frequency reaches 60 Hz or the pre-disturbance value. Note the row number in the worksheet that this occurs. In this sample data spreadsheet this occurs in row 424
Edit cell "C11" of the "Entry Data" worksheet, change the formula in the cell "C11" to reference the row number identified in step 7 above. In the sample data of this workbook this formula is: "=Data!A424" Skip for single BA Interconnections.

10 Use the "copy" button provided to copy the evaluation and event specific data for the "FRS Form 1" of this field trial. This data is summarized in the correct order on worksheet "Form 1 Summary Data" of this workbook. Use PasteSpecial/Values when pasting the data into FRS Form 1 on the appropriate event row.

Steps To be completed once at the initial setup of the evaluation spreadsheet for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Entry Data" worksheet. For example: "NYISO"
B Enter your Balancing Authorities Frequency Response Obligation in cell "B2" of the "Entry Data" worksheet. For example: -80 MW/0.1 Hz (This value could change annually)

$\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$ hh:mm:ss Time (T)	Frequency Hz	Total Lost Generation MW	JOU Dynamic Schedules n/a	NonConforming Load Load (-) MW	$\begin{gathered} \text { Pumped } \\ \text { Hydro } \\ \text { Load (-) Gen (+) } \\ \text { MW } \end{gathered}$	Ramping Units n/a	Transferred Frequency Response n/a	$\begin{gathered} \text { Contingent } \\ \text { BA } \\ \text { Lost Generation } \\ \mathrm{n} / \mathrm{a} \end{gathered}$	BA Bias Setting MW/0.1 Hz	BA Load MW
10/12/09 02:12:00	59.980999	633		351.3615112	0				-420	7500
10/12/09 02:12:03	59.9799995	633		351.3615112	0				-420	7500.33
10/12/09 02:12:06	59.9819984	633		351.3615112	0				-420	7500.66
10/12/09 02:12:09	59.980999	633		357.9475098	0				-420	7500.99
10/12/09 02:12:12	59.980999	633		357.9475098	0				-420	7501.32
10/12/09 02:12:15	59.9819984	633		357.9475098	0				-420	7501.65
10/12/09 02:12:18	59.9790001	633		357.9475098	0				-420	7501.98
10/12/09 02:12:21	59.9799995	633		357.9475098	0				-420	7502.31
10/12/09 02:12:24	59.9830017	633		360.2347412	0				-420	7502.64
10/12/09 02:12:27	59.9860001	633		360.2347412	0				-420	7502.97
10/12/09 02:12:30	59.9799995	633		360.2347412	0				-420	7503.3
10/12/09 02:12:33	59.9760017	633		360.2347412	0				-420	7503.63
10/12/09 02:12:36	59.9790001	633		360.2347412	0				-420	7503.96
10/12/09 02:12:39	59.980999	633		346.5258789	0				-420	7504.29
10/12/09 02:12:42	59.9869995	633		346.5258789	0				-420	7504.62
10/12/09 02:12:45	59.9900017	633		346.5258789	0				-420	7504.95
10/12/09 02:12:48	59.9939995	633		346.5258789	0				-420	7505.28
10/12/09 02:12:51	59.9949989	633		346.5258789	0				-420	7505.61
10/12/09 02:12:54	59.9949989	633		296.4433594	0				-420	7505.94
10/12/09 02:12:57	59.9949989	633		296.4433594	0				-420	7506.27
10/12/09 02:13:00	59.9939995	633		296.4433594	0				-420	7506.6
10/12/09 02:13:03	59.9939995	633		296.4433594	0				-420	7506.93
10/12/09 02:13:06	59.9970016	633		296.4433594	0				-420	7507.26
10/12/09 02:13:09	60.0009995	633		341.0611572	0				-420	7507.59
10/12/09 02:13:12	60.0009995	633		341.0611572	0				-420	7507.92
10/12/09 02:13:15	60.0029984	633		341.0611572	0				-420	7508.25
10/12/09 02:13:18	60.0050011	633		341.0611572	0				-420	7508.58
10/12/09 02:13:21	60.0029984	633		341.0611572	0				-420	7508.91
10/12/09 02:13:24	60.0009995	633		322.8262939	0				-420	7509.24
10/12/09 02:13:27	60.0029984	633		322.8262939	0				-420	7509.57
10/12/09 02:13:30	60.0050011	633		322.8262939	0				-420	7509.9
10/12/09 02:13:33	60.0009995	633		322.8262939	0				-420	7510.23
10/12/09 02:13:36	60.0009995	633		322.8262939	0				-420	7510.56
10/12/09 02:13:39	60.0040016	633		321.5444031	0				-420	7510.89
10/12/09 02:13:42	60.0040016	633		321.5444031	0				-420	7511.22
10/12/09 02:13:45	60.0040016	633		321.5444031	0				-420	7511.55
10/12/09 02:13:48	60.0029984	633		321.5444031	0				-420	7511.88
10/12/09 02:13:51	60.0019989	633		321.5444031	0				-420	7512.21
10/12/09 02:13:54	60.0009995	633		362.136261	0				-420	7512.54
10/12/09 02:13:57	59.9990005	633		362.136261	0				-420	7512.87
10/12/09 02:14:00	59.9970016	633		362.136261	0				-420	7513.2
10/12/09 02:14:03	59.9980011	633		362.136261	0				-420	7513.53
10/12/09 02:14:06	59.9949989	633		362.136261	0				-420	7513.86
10/12/09 02:14:09	59.993	633		336.3117981	0				-420	7514.19

Hz 012109 02:12:03 59:970999 0/12/09 02:12:06 59.9819984 \begin{tabular}{lll}
$10 / 1209$ \& $02 \cdot 12 \cdot 12$ \& 59.980999

\hline

 0/12/09 02:12:15 59.9819984 0/12/09 02:12:18 59.9790001 10/12109 02:12:24 59.9830017 0/12/09 02:12:27 59.9860001 0/12/09 02:12:30 59.9799995 0/12/09 02:12:36 59.9790001 0/12/09 02:12:39 59.980999 012109 02:12:45 59.9000017 0/12/09 02:12:48 59.9939995 0/120902.12.51 59.9949989 0/12/09 02:12:54 59.9949989 0/12/09 02:12:57 59.9949989

$101120992: 13: 00$ \& 59.9939995

\hline 11209 \& $02: 13: 03$ \& 59.9939995
\end{tabular} 0/12/09 02:13:06 59.9970016 0/12/09 02:13:09 60.0009995 10/12/09 02:13:12 60.0009995 10/12/09 02:13:15 60.0029984 10/12/09 02:13:18 60.0050011 10/12/09 02:13:21 60.0029984 10/12/09 02:13:24 $\quad 60.0009995$ 10/12/09 02:13:27 60.0029984 10/12/09 02:13:30 60.0050011 10/12/09 02:13:33 60.0009995 10/12/09 02:13:36 60.0009995 10/12/09 02:13:39 60.0040016 10/12/09 02:13:42 60.0040016 $\begin{array}{ll}\text { 10/12/09 02:13:45 } & 60.0040016 \\ \text { 10/12/09 02:13:48 } & 60.0029984\end{array}$ 10/12/09 02:13:51 60.0019989 10/12/09 02:13:54 60.0009995 $\begin{array}{ll}10 / 12 / 09 & 02: 13: 57 \\ 59.9990005 \\ 10 / 12 / 09 & 02 \cdot 14: 00 \\ 59.9970016\end{array}$ 10/12/09 02:14:03 59.9980011 $\begin{array}{ll}10 / 12 / 09 & 02 \cdot 14: 09 \\ 59.993\end{array}$

10/12/09 02:14:12	59.9959984	633	336.3117981	0	-420	7514.52
10/12/09 02:14:15	59.9990005	633	336.3117981	0	-420	7514.85
10/12/09 02:14:18	60.0050011	633	336.3117981	0	-420	7515.18
10/12/09 02:14:21	60.007	633	336.3117981	0	-420	7515.51
10/12/09 02:14:24	60.0050011	633	316.4430542	0	-420	7515.84
10/12/09 02:14:27	60.0019989	633	316.4430542	0	-420	7516.17
10/12/09 02:14:30	59.9970016	633	316.4430542	0	-420	7516.5
10/12/09 02:14:33	59.9990005	633	316.4430542	0	-420	7516.83
10/12/09 02:14:36	60.007	633	316.4430542	0	-420	7517.16
10/12/09 02:14:39	60.0099983	633	325.4642944	0	-420	7517.49
10/12/09 02:14:42	60.0089989	633	325.4642944	0	-420	7517.82
10/12/09 02:14:45	60.0029984	633	325.4642944	0	-420	7518.15
10/12/09 02:14:48	59.9949989	633	325.4642944	0	-420	7518.48
10/12/09 02:14:51	59.9939995	633	325.4642944	0	-420	7518.81
10/12/09 02:14:54	60	633	336.6141663	0	-420	7519.14
10/12/09 02:14:57	60.0009995	633	336.6141663	0	-420	7519.47
10/12/09 02:15:00	59.9980011	633	336.6141663	0	-420	7519.8
10/12/09 02:15:03	59.9949989	633	336.6141663	0	-420	7520.13
10/12/09 02:15:06	59.9860001	633	336.6141663	0	-420	7520.46
10/12/09 02:15:09	59.9860001	633	316.7261658	0	-420	7520.79
10/12/09 02:15:12	59.987999	633	316.7261658	0	-420	7521.12
10/12/09 02:15:15	59.9889984	633	316.7261658	0	-420	7521.45
10/12/09 02:15:18	59.9869995	633	316.7261658	0	-420	7521.78
10/12/09 02:15:21	59.9850006	633	316.7261658	0	-420	7522.11
10/12/09 02:15:24	59.9830017	633	320.1955261	0	-420	7522.44
10/12/09 02:15:27	59.9819984	633	320.1955261	0	-420	7522.77
10/12/09 02:15:30	59.9840012	633	320.1955261	0	-420	7523.1
10/12/09 02:15:33	59.9850006	633	320.1955261	0	-420	7523.43
10/12/09 02:15:36	59.9869995	633	320.1955261	0	-420	7523.76
10/12/09 02:15:39	59.9900017	633	341.8661499	0	-420	7524.09
10/12/09 02:15:42	59.9869995	633	341.8661499	0	-420	7524.42
10/12/09 02:15:45	59.9830017	633	341.8661499	0	-420	7524.75
10/12/09 02:15:48	59.9790001	633	341.8661499	0	-420	7525.08
10/12/09 02:15:51	59.9830017	633	341.8661499	0	-420	7525.41
10/12/09 02:15:54	59.9860001	633	348.5978394	0	-420	7525.74
10/12/09 02:15:57	59.987999	633	348.5978394	0	-420	7526.07
10/12/09 02:16:00	59.9830017	633	348.5978394	0	-420	7526.4
10/12/09 02:16:03	59.9780006	633	348.5978394	0	-420	7526.73
10/12/09 02:16:06	59.9790001	633	348.5978394	0	-420	7527.06
10/12/09 02:16:09	59.9889984	633	329.085022	0	-420	7527.39
10/12/09 02:16:12	59.987999	633	329.085022	0	-420	7527.72
10/12/09 02:16:15	59.9830017	633	329.085022	0	-420	7528.05
10/12/09 02:16:18	59.9910011	633	329.085022	0	-420	7528.38
10/12/09 02:16:21	59.9889984	633	329.085022	0	-420	7528.71
10/12/09 02:16:24	59.993	633	342.4182434	0	-420	7529.04
10/12/09 02:16:27	59.9949989	633	342.4182434	0	-420	7529.37
10/12/09 02:16:30	59.9980011	633	342.4182434	0	-420	7529.7
10/12/09 02:16:33	59.9980011	633	342.4182434	0	-420	7530.03
10/12/09 02:16:36	59.9990005	633	342.4182434	0	-420	7530.36

10/12/09 02:16:39	59.9949989	633	338.7946472	0	-420	7530.69
10/12/09 02:16:42	59.9920006	633	338.7946472	0	-420	7531.02
10/12/09 02:16:45	59.9949989	633	338.7946472	0	-420	7531.35
10/12/09 02:16:48	60.0009995	633	338.7946472	0	-420	7531.68
10/12/09 02:16:51	60.0029984	633	338.7946472	0	-420	7532.01
10/12/09 02:16:54	60.0089989	633	335.9309998	0	-420	7532.34
10/12/09 02:16:57	60.0089989	633	335.9309998	0	-420	7532.67
10/12/09 02:17:00	60.012001	633	335.9309998	0	-420	7533
10/12/09 02:17:03	60.0110016	633	335.9309998	0	-420	7533.33
10/12/09 02:17:06	60.0079994	633	335.9309998	0	-420	7533.66
10/12/09 02:17:09	60.007	633	339.7124023	0	-420	7533.99
10/12/09 02:17:12	60.012001	633	339.7124023	0	-420	7534.32
10/12/09 02:17:15	60.0130005	633	339.7124023	0	-420	7534.65
10/12/09 02:17:18	60.0099983	633	339.7124023	0	-420	7534.98
10/12/09 02:17:21	60.007	633	339.7124023	0	-420	7535.31
10/12/09 02:17:24	60.0089989	633	332.0246582	0	-420	7535.64
10/12/09 02:17:27	60.0060005	633	332.0246582	0	-420	7535.97
10/12/09 02:17:30	60.0089989	633	332.0246582	0	-420	7536.3
10/12/09 02:17:33	60.0089989	633	332.0246582	0	-420	7536.63
10/12/09 02:17:36	60.0089989	633	332.0246582	0	-420	7536.96
10/12/09 02:17:39	60.0089989	633	330.7590332	0	-420	7537.29
10/12/09 02:17:42	60.0040016	633	330.7590332	0	-420	7537.62
10/12/09 02:17:45	60.0009995	633	330.7590332	0	-420	7537.95
10/12/09 02:17:48	59.993	633	330.7590332	0	-420	7538.28
10/12/09 02:17:51	59.9910011	633	330.7590332	0	-420	7538.61
10/12/09 02:17:54	59.9920006	633	323.4199524	0	-420	7538.94
10/12/09 02:17:57	59.9939995	633	323.4199524	0	-420	7539.27
10/12/09 02:18:00	59.9939995	633	323.4199524	0	-420	7539.6
10/12/09 02:18:03	59.9949989	633	323.4199524	0	-420	7539.93
10/12/09 02:18:06	59.9900017	633	323.4199524	0	-420	7540.26
10/12/09 02:18:09	59.9900017	633	342.3509216	0	-420	7540.59
10/12/09 02:18:12	59.9830017	633	342.3509216	0	-420	7540.92
10/12/09 02:18:15	59.9770012	633	342.3509216	0	-420	7541.25
10/12/09 02:18:18	59.9889984	633	342.3509216	0	-420	7541.58
10/12/09 02:18:21	59.9949989	633	342.3509216	0	-420	7541.91
10/12/09 02:18:24	59.9939995	633	345.0818176	0	-420	7542.24
10/12/09 02:18:27	59.9889984	633	345.0818176	0	-420	7542.57
10/12/09 02:18:30	59.9860001	633	345.0818176	0	-420	7542.9
10/12/09 02:18:33	59.9840012	633	345.0818176	0	-420	7543.23
10/12/09 02:18:36	59.9850006	633	345.0818176	0	-420	7543.56
10/12/09 02:18:39	59.9860001	633	346.537384	0	-420	7543.89
10/12/09 02:18:42	59.9860001	633	346.537384	0	-420	7544.22
10/12/09 02:18:45	59.9799995	633	346.537384	0	-420	7544.55
10/12/09 02:18:48	59.980999	633	346.537384	0	-420	7544.88
10/12/09 02:18:51	59.9889984	633	346.537384	0	-420	7545.21
10/12/09 02:18:54	60.007	633	342.9057617	0	-420	7545.54
10/12/09 02:18:57	60.007	633	342.9057617	0	-420	7545.87
10/12/09 02:19:00	59.9860001	633	342.9057617	0	-420	7546.2
10/12/09 02:19:03	59.980999	633	342.9057617	0	-420	7546.53

10/12/09 02:19:06	59.973999	633	342.9057617	0	-420	7546.86
10/12/09 02:19:09	59.9760017	633	340.0943909	0	-420	7547.19
10/12/09 02:19:12	59.973999	633	340.0943909	0	-420	7547.52
10/12/09 02:19:15	59.9770012	633	340.0943909	0	-420	7547.85
10/12/09 02:19:18	59.9790001	633	340.0943909	0	-420	7548.18
10/12/09 02:19:21	59.9819984	633	340.0943909	0	-420	7548.51
10/12/09 02:19:24	59.9869995	633	342.7711792	0	-420	7548.84
10/12/09 02:19:27	59.987999	633	342.7711792	0	-420	7549.17
10/12/09 02:19:30	59.9869995	633	342.7711792	0	-420	7549.5
10/12/09 02:19:33	59.9869995	633	342.7711792	0	-420	7549.83
10/12/09 02:19:36	59.9850006	633	342.7711792	0	-420	7550.16
10/12/09 02:19:39	59.9840012	633	342.9099121	0	-420	7550.49
10/12/09 02:19:42	59.9830017	633	342.9099121	0	-420	7550.82
10/12/09 02:19:45	59.9889984	633	342.9099121	0	-420	7551.15
10/12/09 02:19:48	59.987999	633	342.9099121	0	-420	7551.48
10/12/09 02:19:51	59.9840012	633	342.9099121	0	-420	7551.81
10/12/09 02:19:54	59.9830017	633	343.2860107	0	-420	7552.14
10/12/09 02:19:57	59.980999	633	343.2860107	0	-420	7552.47
10/12/09 02:20:00	59.9830017	633	343.2860107	0	-420	7552.8
10/12/09 02:20:03	59.9860001	633	343.2860107	0	-420	7553.13
10/12/09 02:20:06	59.9869995	633	343.2860107	0	-420	7553.46
10/12/09 02:20:09	59.9850006	633	331.8529663	0	-420	7553.79
10/12/09 02:20:12	59.9799995	633	331.8529663	0	-420	7554.12
10/12/09 02:20:15	59.9830017	633	331.8529663	0	-420	7554.45
10/12/09 02:20:18	59.9790001	633	331.8529663	0	-420	7554.78
10/12/09 02:20:21	59.9790001	633	331.8529663	0	-420	7555.11
10/12/09 02:20:24	59.980999	633	329.9882202	0	-420	7555.44
10/12/09 02:20:27	59.9799995	633	329.9882202	0	-420	7555.77
10/12/09 02:20:30	59.980999	633	329.9882202	0	-420	7556.1
10/12/09 02:20:33	59.9799995	633	329.9882202	0	-420	7556.43
10/12/09 02:20:36	59.9770012	633	329.9882202	0	-420	7556.76
10/12/09 02:20:39	59.9790001	633	255.4441681	0	-420	7557.09
10/12/09 02:20:42	59.9790001	633	255.4441681	0	-420	7557.42
10/12/09 02:20:45	59.9760017	633	255.4441681	0	-420	7557.75
10/12/09 02:20:48	59.9720001	633	255.4441681	0	-420	7558.08
10/12/09 02:20:51	59.9710007	633	255.4441681	0	-420	7558.41
10/12/09 02:20:54	59.9729996	633	254.8383026	0	-420	7558.74
10/12/09 02:20:57	59.9729996	633	254.8383026	0	-420	7559.07
10/12/09 02:21:00	59.9710007	633	254.8383026	0	-420	7559.4
10/12/09 02:21:03	59.9749985	633	254.8383026	0	-420	7559.73
10/12/09 02:21:06	59.9770012	633	254.8383026	0	-420	7560.06
10/12/09 02:21:09	59.9749985	633	257.1469727	0	-420	7560.39
10/12/09 02:21:12	59.9799995	633	257.1469727	0	-420	7560.72
10/12/09 02:21:15	59.9790001	633	257.1469727	0	-420	7561.05
10/12/09 02:21:18	59.9819984	633	257.1469727	0	-420	7561.38
10/12/09 02:21:21	59.9819984	633	257.1469727	0	-420	7561.71
10/12/09 02:21:24	59.9819984	633	262.2893677	0	-420	7562.04
10/12/09 02:21:27	59.980999	633	262.2893677	0	-420	7562.37
10/12/09 02:21:30	59.9840012	633	262.2893677	0	-420	7562.7

10/12/09 02:21:33	59.9850006	633	262.2893677	0	-420	7563.03
10/12/09 02:21:36	59.9889984	633	262.2893677	0	-420	7563.36
10/12/09 02:21:39	59.993	633	256.6479492	0	-420	7563.69
10/12/09 02:21:42	59.9980011	633	256.6479492	0	-420	7564.02
10/12/09 02:21:45	59.9980011	633	256.6479492	0	-420	7564.35
10/12/09 02:21:48	60.007	633	256.6479492	0	-420	7564.68
10/12/09 02:21:51	60.0099983	633	256.6479492	0	-420	7565.01
10/12/09 02:21:54	60.0139999	633	256.307251	0	-420	7565.34
10/12/09 02:21:57	60.0130005	633	256.307251	0	-420	7565.67
10/12/09 02:22:00	60.0079994	633	256.307251	0	-420	7566
10/12/09 02:22:03	60.0099983	633	256.307251	0	-420	7566.33
10/12/09 02:22:06	60.019001	633	256.307251	0	-420	7566.66
10/12/09 02:22:09	60.0229988	633	249.0863953	0	-420	7566.99
10/12/09 02:22:12	60.0200005	633	249.0863953	0	-420	7567.32
10/12/09 02:22:15	60.0209999	633	249.0863953	0	-420	7567.65
10/12/09 02:22:18	60.0200005	633	249.0863953	0	-420	7567.98
10/12/09 02:22:21	60.019001	633	249.0863953	0	-420	7568.31
10/12/09 02:22:24	60.0219994	633	253.7424774	0	-420	7568.64
10/12/09 02:22:27	60.0250015	633	253.7424774	0	-420	7568.97
10/12/09 02:22:30	60.026001	633	253.7424774	0	-420	7569.3
10/12/09 02:22:33	60.0200005	633	253.7424774	0	-420	7569.63
10/12/09 02:22:36	60.0180016	633	253.7424774	0	-420	7569.96
10/12/09 02:22:39	60.0180016	633	257.4212036	0	-420	7570.29
10/12/09 02:22:42	60.019001	633	257.4212036	0	-420	7570.62
10/12/09 02:22:45	60.019001	633	257.4212036	0	-420	7570.95
10/12/09 02:22:48	60.0219994	633	257.4212036	0	-420	7571.28
10/12/09 02:22:51	60.0219994	633	257.4212036	0	-420	7571.61
10/12/09 02:22:54	60.0200005	633	261.7382202	0	-420	7571.94
10/12/09 02:22:57	60.0200005	633	261.7382202	0	-420	7572.27
10/12/09 02:23:00	60.0200005	633	261.7382202	0	-420	7572.6
10/12/09 02:23:03	60.0200005	633	261.7382202	0	-420	7572.93
10/12/09 02:23:06	60.0209999	633	261.7382202	0	-420	7573.26
10/12/09 02:23:09	60.0180016	633	271.8759766	0	-420	7573.59
10/12/09 02:23:12	60.0139999	633	271.8759766	0	-420	7573.92
10/12/09 02:23:15	60.0139999	633	271.8759766	0	-420	7574.25
10/12/09 02:23:18	60.0130005	633	271.8759766	0	-420	7574.58
10/12/09 02:23:21	60.0099983	633	271.8759766	0	-420	7574.91
10/12/09 02:23:24	60.0110016	633	262.0734863	0	-420	7575.24
10/12/09 02:23:27	60.0110016	633	262.0734863	0	-420	7575.57
10/12/09 02:23:30	60.012001	633	262.0734863	0	-420	7575.9
10/12/09 02:23:33	60.0089989	633	262.0734863	0	-420	7576.23
10/12/09 02:23:36	60.0089989	633	262.0734863	0	-420	7576.56
10/12/09 02:23:39	60.0089989	633	260.3644104	0	-420	7576.89
10/12/09 02:23:42	60.0019989	633	260.3644104	0	-420	7577.22
10/12/09 02:23:45	59.9990005	633	260.3644104	0	-420	7577.55
10/12/09 02:23:48	59.9949989	633	260.3644104	0	-420	7577.88
10/12/09 02:23:51	59.9970016	633	260.3644104	0	-420	7578.21
10/12/09 02:23:54	59.9980011	633	352.6443787	0	-420	7578.54
10/12/09 02:23:57	59.9980011	633	352.6443787	0	-420	7578.87

10/12/09 02:24:00	59.9949989	633	352.6443787	0	-420	7579.2
10/12/09 02:24:03	59.9949989	633	352.6443787	0	-420	7579.53
10/12/09 02:24:06	59.993	633	352.6443787	0	-420	7579.86
10/12/09 02:24:09	59.987999	633	354.8956604	0	-420	7580.19
10/12/09 02:24:12	59.9819984	633	354.8956604	0	-420	7580.52
10/12/09 02:24:15	59.9819984	633	354.8956604	0	-420	7580.85
10/12/09 02:24:18	59.9819984	633	354.8956604	0	-420	7581.18
10/12/09 02:24:21	59.9840012	633	354.8956604	0	-420	7581.51
10/12/09 02:24:24	59.9780006	633	340.4693604	0	-420	7581.84
10/12/09 02:24:27	59.9780006	633	340.4693604	0	-420	7582.17
10/12/09 02:24:30	59.9749985	633	340.4693604	0	-420	7582.5
10/12/09 02:24:33	59.973999	633	340.4693604	0	-420	7582.83
10/12/09 02:24:36	59.9790001	633	340.4693604	0	-420	7583.16
10/12/09 02:24:39	59.9799995	633	337.6429138	0	-420	7583.49
10/12/09 02:24:42	59.9799995	633	337.6429138	0	-420	7583.82
10/12/09 02:24:45	59.9840012	633	337.6429138	0	-420	7584.15
10/12/09 02:24:48	59.987999	633	337.6429138	0	-420	7584.48
10/12/09 02:24:51	59.987999	633	337.6429138	0	-420	7584.81
10/12/09 02:24:54	59.9920006	633	284.3608398	0	-420	7585.14
10/12/09 02:24:57	59.9910011	633	284.3608398	0	-420	7585.47
10/12/09 02:25:00	59.9910011	633	284.3608398	0	-420	7585.8
10/12/09 02:25:03	59.993	633	284.3608398	0	-420	7586.13
10/12/09 02:25:06	59.9959984	633	284.3608398	0	-420	7586.46
10/12/09 02:25:09	60.0019989	633	260.4679871	0	-420	7586.79
10/12/09 02:25:12	60.0029984	633	260.4679871	0	-420	7587.12
10/12/09 02:25:15	60.0040016	633	260.4679871	0	-420	7587.45
10/12/09 02:25:18	60.0040016	633	260.4679871	0	-420	7587.78
10/12/09 02:25:21	60.0019989	633	260.4679871	0	-420	7588.11
10/12/09 02:25:24	60.0079994	633	253.1415405	0	-420	7588.44
10/12/09 02:25:27	60.0099983	633	253.1415405	0	-420	7588.77
10/12/09 02:25:30	60.0099983	633	253.1415405	0	-420	7589.1
10/12/09 02:25:33	60.0110016	633	253.1415405	0	-420	7589.43
10/12/09 02:25:36	60.0139999	633	253.1415405	0	-420	7589.76
10/12/09 02:25:39	60.0130005	633	251.9298706	0	-420	7590.09
10/12/09 02:25:42	60.0110016	633	251.9298706	0	-420	7590.42
10/12/09 02:25:45	60.0110016	633	251.9298706	0	-420	7590.75
10/12/09 02:25:48	60.0219994	633	251.9298706	0	-420	7591.08
10/12/09 02:25:51	60.0169983	633	251.9298706	0	-420	7591.41
10/12/09 02:25:54	60.0130005	633	250.6741943	0	-420	7591.74
10/12/09 02:25:57	60.0139999	633	250.6741943	0	-420	7592.07
10/12/09 02:26:00	60.0169983	633	250.6741943	0	-420	7592.4
10/12/09 02:26:03	60.019001	633	250.6741943	0	-420	7592.73
10/12/09 02:26:06	60.019001	633	250.6741943	0	-420	7593.06
10/12/09 02:26:09	60.0270004	633	253.6318665	0	-420	7593.39
10/12/09 02:26:12	60.026001	633	253.6318665	0	-420	7593.72
10/12/09 02:26:15	60.0219994	633	253.6318665	0	-420	7594.05
10/12/09 02:26:18	60.0169983	633	253.6318665	0	-420	7594.38
10/12/09 02:26:21	60.019001	633	253.6318665	0	-420	7594.71
10/12/09 02:26:24	60.019001	633	246.9573059	0	-420	7595.04

10/12/09 02:26:27	60.0209999	633	246.9573059	0	-420	7595.37
10/12/09 02:26:30	60.0209999	633	246.9573059	0	-420	7595.7
10/12/09 02:26:33	60.019001	633	246.9573059	0	-420	7596.03
10/12/09 02:26:36	60.0219994	633	246.9573059	0	-420	7596.36
10/12/09 02:26:39	60.0309982	633	254.5417786	0	-420	7596.69
10/12/09 02:26:42	60.0369987	633	254.5417786	0	-420	7597.02
10/12/09 02:26:45	60.0359993	633	254.5417786	0	-420	7597.35
10/12/09 02:26:48	60.0460014	633	254.5417786	0	-420	7597.68
10/12/09 02:26:51	60.0480003	633	165.1016846	0	-420	7598.01
10/12/09 02:26:54	60.0429993	633	165.1016846	0	-420	7598.34
10/12/09 02:26:57	60.0410004	633	165.1016846	0	-420	7598.67
10/12/09 02:27:00	60.0410004	633	165.1016846	0	-420	7599
10/12/09 02:27:03	60.0390015	633	165.1016846	0	-420	7599.33
10/12/09 02:27:06	60.0429993	633	165.4763947	0	-420	7599.66
10/12/09 02:27:09	60.0449982	633	165.4763947	0	-420	7599.99
10/12/09 02:27:12	60.0410004	633	165.4763947	0	-420	7600.32
10/12/09 02:27:15	60.0410004	633	165.4763947	0	-420	7600.65
10/12/09 02:27:18	60.0390015	633	165.4763947	0	-420	7600.98
10/12/09 02:27:21	59.9780006	0	206.4591064	0	-420	7601.31
10/12/09 02:27:24	59.8359985	0	206.4591064	0	-420	7570
10/12/09 02:27:27	59.8689995	0	206.4591064	0	-420	7569
10/12/09 02:27:30	59.8909988	0	206.4591064	0	-420	7570
10/12/09 02:27:33	59.8800011	0	206.4591064	0	-420	7570
10/12/09 02:27:36	59.875	0	211.2560425	0	-420	7570
10/12/09 02:27:39	59.8829994	0	211.2560425	0	-420	7570
10/12/09 02:27:42	59.8860016	0	211.2560425	0	-420	7570
10/12/09 02:27:45	59.8849983	0	211.2560425	0	-420	7570
10/12/09 02:27:48	59.8880005	0	211.2560425	0	-420	7570
10/12/09 02:27:51	59.8899994	0	214.3466949	0	-420	7570
10/12/09 02:27:54	59.894001	0	214.3466949	0	-420	7570
10/12/09 02:27:57	59.8930016	0	214.3466949	0	-420	7570
10/12/09 02:28:00	59.894001	0	214.3466949	0	-420	7570
10/12/09 02:28:03	59.8909988	0	214.3466949	0	-420	7570
10/12/09 02:28:06	59.8849983	0	212.172699	0	-420	7570
10/12/09 02:28:09	59.8849983	0	212.172699	0	-420	7570
10/12/09 02:28:12	59.887001	0	212.172699	0	-420	7570
10/12/09 02:28:15	59.8880005	0	212.172699	0	-420	7570
10/12/09 02:28:18	59.8899994	0	212.172699	0	-420	7570
10/12/09 02:28:21	59.8889999	0	215.598175	0	-420	7570
10/12/09 02:28:24	59.8730011	0	215.598175	0	-420	7568
10/12/09 02:28:27	59.8569984	0	215.598175	0	-420	7565
10/12/09 02:28:30	59.8520012	0	215.598175	0	-420	7560
10/12/09 02:28:33	59.8580017	0	215.598175	0	-420	7563
10/12/09 02:28:36	59.8660011	0	218.3272552	0	-420	7564
10/12/09 02:28:39	59.8650017	0	218.3272552	0	-420	7566
10/12/09 02:28:42	59.8660011	0	218.3272552	0	-420	7570
10/12/09 02:28:45	59.8709984	0	218.3272552	0	-420	7570
10/12/09 02:28:48	59.8790016	0	218.3272552	0	-420	7570
10/12/09 02:28:51	59.8800011	0	217.379425	0	-420	7570

10/12/09 02:28:54	59.8860016	0	217.379425	0	-420	7570
10/12/09 02:28:57	59.8899994	0	217.379425	0	-420	7569
10/12/09 02:29:00	59.8889999	0	217.379425	0	-420	7575
10/12/09 02:29:03	59.8930016	0	217.379425	0	-420	7573
10/12/09 02:29:06	59.9029999	0	214.8303528	0	-420	7571
10/12/09 02:29:09	59.9020004	0	214.8303528	0	-420	7573
10/12/09 02:29:12	59.9039993	0	214.8303528	0	-420	7575
10/12/09 02:29:15	59.9070015	0	214.8303528	0	-420	7577
10/12/09 02:29:18	59.9160004	0	214.8303528	0	-420	7577
10/12/09 02:29:21	59.9160004	0	227.6559143	0	-420	7578
10/12/09 02:29:24	59.9179993	0	227.6559143	0	-420	7579
10/12/09 02:29:27	59.9199982	0	227.6559143	0	-420	7580
10/12/09 02:29:30	59.9199982	0	227.6559143	0	-420	7581
10/12/09 02:29:33	59.9169998	0	227.6559143	0	-420	7585
10/12/09 02:29:36	59.9210014	0	225.0180817	0	-420	7588
10/12/09 02:29:39	59.9230003	0	225.0180817	0	-420	7589
10/12/09 02:29:42	59.9249992	0	225.0180817	0	-420	7589
10/12/09 02:29:45	59.9280014	0	225.0180817	0	-420	7590
10/12/09 02:29:48	59.9319992	0	225.0180817	0	-420	7590
10/12/09 02:29:51	59.9269981	0	228.3651581	0	-420	7590
10/12/09 02:29:54	59.9309998	0	228.3651581	0	-420	7591
10/12/09 02:29:57	59.9290009	0	228.3651581	0	-420	7591
10/12/09 02:30:00	59.9309998	0	228.3651581	0	-420	7591
10/12/09 02:30:03	59.9370003	0	228.3651581	0	-420	7592
10/12/09 02:30:06	59.9449997	0	234.0753326	0	-420	7592
10/12/09 02:30:09	59.9490013	0	234.0753326	0	-420	7593
10/12/09 02:30:12	59.9420013	0	234.0753326	0	-420	759
10/12/09 02:30:15	59.9410019	0	234.0753326	0	-420	7595
10/12/09 02:30:18	59.9449997	0	234.0753326	0	-420	7655
10/12/09 02:30:21	59.9480019	0	228.7981567	0	-420	7656
10/12/09 02:30:24	59.9490013	0	228.7981567	0	-420	7656
10/12/09 02:30:27	59.9510002	0	228.7981567	0	-420	7657
10/12/09 02:30:30	59.9529991	0	228.7981567	0	-420	7657
10/12/09 02:30:33	59.9510002	0	228.7981567	0	-420	7658
10/12/09 02:30:36	59.9519997	0	229.4669647	0	-420	765
10/12/09 02:30:39	59.9519997	0	249.3375702	0	-420	7659
10/12/09 02:30:42	59.9519997	0	249.3375702	0	-420	7659
10/12/09 02:30:45	59.9539986	0	249.3375702	0	-420	7659
10/12/09 02:30:48	59.9529991	0	249.3375702	0	-420	7660
10/12/09 02:30:51	59.9529991	0	249.3375702	0	-420	7660
10/12/09 02:30:54	59.9539986	0	258.2781677	0	-420	7661
10/12/09 02:30:57	59.9539986	0	258.2781677	0	-420	7661
10/12/09 02:31:00	59.9570007	0	258.2781677	0	-420	7625.4
10/12/09 02:31:03	59.9560013	0	258.2781677	0	-420	7625.73
10/12/09 02:31:06	59.9560013	0	258.2781677	0	-420	7626.06
10/12/09 02:31:09	59.9550018	0	258.4063721	0	-420	7626.39
10/12/09 02:31:12	59.9609985	0	258.4063721	0	-420	7626.72
10/12/09 02:31:15	59.9620018	0	258.4063721	0	-420	7627.05
10/12/09 02:31:18	59.9679985	0	258.4063721	0	-420	7627.38

10/12/09 02:31:21	59.9659996	0	258.4063721	0	-420	7627.71
10/12/09 02:31:24	59.9679985	0	260.5388794	0	-420	7628.04
10/12/09 02:31:27	59.9700012	0	260.5388794	0	-420	7628.37
10/12/09 02:31:30	59.9700012	0	260.5388794	0	-420	7628.7
10/12/09 02:31:33	59.9690018	0	260.5388794	0	-420	7629.03
10/12/09 02:31:36	59.9700012	0	260.5388794	0	-420	7629.36
10/12/09 02:31:39	59.9710007	0	257.8820801	0	-420	7629.69
10/12/09 02:31:42	59.9729996	0	257.8820801	0	-420	7630.02
10/12/09 02:31:45	59.9760017	0	257.8820801	0	-420	7630.35
10/12/09 02:31:48	59.9780006	0	257.8820801	0	-420	7630.68
10/12/09 02:31:51	59.9760017	0	257.8820801	0	-420	7631.01
10/12/09 02:31:54	59.9760017	0	258.5886536	0	-420	7631.34
10/12/09 02:31:57	59.9780006	0	258.5886536	0	-420	7631.67
10/12/09 02:32:00	59.9799995	0	258.5886536	0	-420	7632
10/12/09 02:32:03	59.9819984	0	258.5886536	0	-420	7632.33
10/12/09 02:32:06	59.9799995	0	258.5886536	0	-420	7632.66
10/12/09 02:32:09	59.9790001	0	261.9061584	0	-420	7632.99
10/12/09 02:32:12	59.9790001	0	261.9061584	0	-420	7633.32
10/12/09 02:32:15	59.9830017	0	261.9061584	0	-420	7633.65
10/12/09 02:32:18	59.9840012	0	261.9061584	0	-420	7633.98
10/12/09 02:32:21	59.987999	0	261.9061584	0	-420	7634.31
10/12/09 02:32:24	59.9869995	0	256.7478027	0	-420	7634.64
10/12/09 02:32:27	59.9869995	0	256.7478027	0	-420	7634.97
10/12/09 02:32:30	59.993	0	256.7478027	0	-420	7635.3
10/12/09 02:32:33	59.9920006	0	256.7478027	0	-420	7635.63
10/12/09 02:32:36	59.9889984	0	256.7478027	0	-420	7635.96
10/12/09 02:32:39	59.9860001	0	167.4319763	0	-420	7636.29
10/12/09 02:32:42	59.9830017	0	167.4319763	0	-420	7636.62
10/12/09 02:32:45	59.987999	0	167.4319763	0	-420	7636.95
10/12/09 02:32:48	59.9959984	0	167.4319763	0	-420	7637.28
10/12/09 02:32:51	59.9980011	0	167.4319763	0	-420	7637.61
10/12/09 02:32:54	60.0009995	0	164.9734039	0	-420	7637.94
10/12/09 02:32:57	59.9990005	0	164.9734039	0	-420	7638.27
10/12/09 02:33:00	59.9990005	0	164.9734039	0	-420	7638.6
10/12/09 02:33:03	60.0019989	0	164.9734039	0	-420	7638.93
10/12/09 02:33:06	60.007	0	164.9734039	0	-420	7639.26
10/12/09 02:33:09	60.0079994	0	157.6280823	0	-420	7639.59
10/12/09 02:33:12	60.0139999	0	157.6280823	0	-420	7639.92
10/12/09 02:33:15	60.0169983	0	157.6280823	0	-420	7640.25
10/12/09 02:33:18	60.0209999	0	157.6280823	0	-420	7640.58
10/12/09 02:33:21	60.0169983	0	157.6280823	0	-420	7640.91
10/12/09 02:33:24	60.019001	0	155.5317078	0	-420	7641.24
10/12/09 02:33:27	60.0229988	0	155.5317078	0	-420	7641.57
10/12/09 02:33:30	60.0250015	0	155.5317078	0	-420	7641.9
10/12/09 02:33:33	60.0209999	0	155.5317078	0	-420	7642.23
10/12/09 02:33:36	60.0239983	0	155.5317078	0	-420	7642.56
10/12/09 02:33:39	60.0239983	0	160.4472351	0	-420	7642.89
10/12/09 02:33:42	60.0200005	0	160.4472351	0	-420	7643.22
10/12/09 02:33:45	60.0250015	0	160.4472351	0	-420	7643.55

10/12/09 02:33:48	60.0200005	0	160.4472351	0	-420	7643.88
10/12/09 02:33:51	60.0200005	0	160.4472351	0	-420	7644.21
10/12/09 02:33:54	60.0219994	0	163.9586029	0	-420	7644.54
10/12/09 02:33:57	60.0219994	0	163.9586029	0	-420	7644.87
10/12/09 02:34:00	60.0209999	0	163.9586029	0	-420	7645.2
10/12/09 02:34:03	60.0229988	0	163.9586029	0	-420	7645.53
10/12/09 02:34:06	60.0219994	0	163.9586029	0	-420	7645.86
10/12/09 02:34:09	60.019001	0	166.0724487	0	-420	7646.19
10/12/09 02:34:12	60.0180016	0	166.0724487	0	-420	7646.52
10/12/09 02:34:15	60.0180016	0	166.0724487	0	-420	7646.85
10/12/09 02:34:18	60.019001	0	166.0724487	0	-420	7647.18
10/12/09 02:34:21	60.019001	0	166.0724487	0	-420	7647.51
10/12/09 02:34:24	60.0149994	0	163.7665863	0	-420	7647.84
10/12/09 02:34:27	60.0159988	0	163.7665863	0	-420	7648.17
10/12/09 02:34:30	60.0130005	0	163.7665863	0	-420	7648.5
10/12/09 02:34:33	60.012001	0	163.7665863	0	-420	7648.83
10/12/09 02:34:36	60.0099983	0	163.7665863	0	-420	7649.16
10/12/09 02:34:39	60.007	0	165.1016846	0	-420	7649.49
10/12/09 02:34:42	60.0089989	0	165.1016846	0	-420	7649.82
10/12/09 02:34:45	60.0089989	0	165.1016846	0	-420	7650.15
10/12/09 02:34:48	60.0029984	0	165.1016846	0	-420	7650.48
10/12/09 02:34:51	59.9990005	0	165.1016846	0	-420	7650.81
10/12/09 02:34:54	59.9920006	0	165.4763947	0	-420	7651.14
10/12/09 02:34:57	59.9910011	0	165.4763947	0	-420	7651.47
10/12/09 02:35:00	59.9920006	0	165.4763947	0	-420	7651.8
10/12/09 02:35:03	59.987999	0	165.4763947	0	-420	7652.13
10/12/09 02:35:06	59.9850006	0	165.4763947	0	-420	7652.46
10/12/09 02:35:09	59.9840012	0	206.4591064	0	-420	7652.79
10/12/09 02:35:12	59.9840012	0	206.4591064	0	-420	7616
10/12/09 02:35:15	59.9819984	0	206.4591064	0	-420	7626
10/12/09 02:35:18	59.9819984	0	206.4591064	0	-420	7632
10/12/09 02:35:21	59.9790001	0	206.4591064	0	-420	7632
10/12/09 02:35:24	59.9760017	0	211.2560425	0	-420	7632
10/12/09 02:35:27	59.9760017	0	211.2560425	0	-420	7632
10/12/09 02:35:30	59.9819984	0	211.2560425	0	-420	7632
10/12/09 02:35:33	59.9780006	0	211.2560425	0	-420	7632
10/12/09 02:35:36	59.973999	0	211.2560425	0	-420	7632
10/12/09 02:35:39	59.9760017	0	214.3466949	0	-420	7632
10/12/09 02:35:42	59.9770012	0	214.3466949	0	-420	7632
10/12/09 02:35:45	59.9749985	0	214.3466949	0	-420	7632
10/12/09 02:35:48	59.9690018	0	214.3466949	0	-420	7632
10/12/09 02:35:51	59.9700012	0	214.3466949	0	-420	7632
10/12/09 02:35:54	59.9729996	0	212.172699	0	-420	7632
10/12/09 02:35:57	59.9780006	0	212.172699	0	-420	7632
10/12/09 02:36:00	59.9780006	0	212.172699	0	-420	7632
10/12/09 02:36:03	59.9749985	0	212.172699	0	-420	7632
10/12/09 02:36:06	59.9760017	0	212.172699	0	-420	7632
10/12/09 02:36:09	59.9749985	0	215.598175	0	-420	7632
10/12/09 02:36:12	59.9690018	0	215.598175	0	-420	7632

10/12/09 02:36:15	59.9659996	0	215.598175	0	-420	7632
10/12/09 02:36:18	59.9659996	0	215.598175	0	-420	632
10/12/09 02:36:21	59.9690018	0	215.598175	0	-420	632
10/12/09 02:36:24	59.9679985	0	218.3272552	0	-420	632
10/12/09 02:36:27	59.9650002	0	218.3272552	0	-420	763
10/12/09 02:36:30	59.9700012	0	218.3272552	0	-420	7632
10/12/09 02:36:33	59.9720001	0	218.3272552	0	-420	7632
10/12/09 02:36:36	59.9669991	0	218.3272552	0	-420	7632
10/12/09 02:36:39	59.9690018	0	217.379425	0	-420	32
10/12/09 02:36:42	59.9690018	0	217.379425	0	-420	7632
10/12/09 02:36:45	59.9669991	0	217.379425	0	-420	7631
10/12/09 02:36:48	59.9659996	0	217.379425	0	-420	7625
10/12/09 02:36:51	59.9650002	0	217.379425	0	-420	7623
10/12/09 02:36:54	59.9669991	0	214.8303528	0	-420	7621
10/12/09 02:36:57	59.9650002	0	214.8303528	0	-420	7623
10/12/09 02:37:00	59.9640007	0	214.8303528	0	-420	7625
10/12/09 02:37:03	59.9700012	0	214.8303528	0	-420	7627
10/12/09 02:37:06	59.9690018	0	214.8303528	0	-420	7628
10/12/09 02:37:09	59.9679985		227.6559143	0	-420	7628
10/12/09 02:37:12	59.9650002	0	227.6559143	0	-420	7629
10/12/09 02:37:15	59.9700012	0	227.6559143	0	-420	7630
10/12/09 02:37:18	59.9679985	0	227.6559143	0	-420	7631
10/12/09 02:37:21	59.9650002	0	227.6559143	0	-420	7635
10/12/09 02:37:24	59.9690018	0	225.0180817	0	-420	7638
10/12/09 02:37:27	59.9669991	0	225.0180817	0	-420	7639
10/12/09 02:37:30	59.9659996	0	225.0180817	0	-420	7642
10/12/09 02:37:33	59.9790001	0	225.0180817	0	-420	764
10/12/09 02:37:36	59.9830017	0	225.0180817	0	-420	7645
10/12/09 02:37:39	59.973999	0	228.3651581	0	-420	7647
10/12/09 02:37:42	59.9650002	0	228.3651581	0	-420	7648
10/12/09 02:37:45	59.9620018	0	228.3651581	0	-420	7649
10/12/09 02:37:48	59.9609985	0	228.3651581	0	-420	7650
10/12/09 02:37:51	59.9609985	0	228.3651581	0	-420	7651
10/12/09 02:37:54	59.9630013	0	234.0753326	0	-420	7652
10/12/09 02:37:57	59.9589996	0	234.0753326	0	-420	765
10/12/09 02:38:00	59.9510002	0	234.0753326	0	-420	7654
10/12/09 02:38:03	59.9529991	0	234.0753326	0	-420	7655
10/12/09 02:38:06	59.9570007	0	234.0753326	0	-420	7655
10/12/09 02:38:09	59.9560013	0	228.7981567	0	-420	7656
10/12/09 02:38:12	59.9630013	0	228.7981567	0	-420	7656
10/12/09 02:38:15	59.9609985	0	228.7981567	0	-420	7657
10/12/09 02:38:18	59.9630013	0	228.7981567	0	-420	7657
10/12/09 02:38:21	59.9630013	0	228.7981567	0	-420	7658
10/12/09 02:38:24	59.9679985	0	229.4669647	0	-420	7658
10/12/09 02:38:27	59.9679985	0	229.4669647	0	-420	7659
10/12/09 02:38:30	59.9700012	0	229.4669647	0	-420	765
10/12/09 02:38:33	59.9729996	0	229.4669647	0	-420	7659
10/12/09 02:38:36	59.9650002	0	229.4669647	0	-420	7660
10/12/09 02:38:39	59.9669991	0	228.9801636	0	-420	7660

10/12/09 02:38:42	59.9720001	0	228.9801636	0	-420	7661
10/12/09 02:38:45	59.9760017	0	228.9801636	0	-420	7661
10/12/09 02:38:48	59.9690018	0	228.9801636	0	-420	7662
10/12/09 02:38:51	59.9729996	0	228.9801636	0	-420	7662
10/12/09 02:38:54	59.9780006	0	219.9755554	0	-420	7663
10/12/09 02:38:57	59.980999	0	219.9755554	0	-420	7663
10/12/09 02:39:00	59.980999	0	219.9755554	0	-420	7664
10/12/09 02:39:03	59.9819984	0	219.9755554	0	-420	7664
10/12/09 02:39:06	59.9840012	0	219.9755554	0	-420	7665
10/12/09 02:39:09	59.9819984	0	229.0892487	0	-420	7666
10/12/09 02:39:12	59.9790001	0	229.0892487	0	-420	7666
10/12/09 02:39:15	59.9799995	0	229.0892487	0	-420	7667
10/12/09 02:39:18	59.9780006	0	229.0892487	0	-420	7668
10/12/09 02:39:21	59.9799995	0	229.0892487	0	-420	7668
10/12/09 02:39:24	59.9799995	0	229.663269	0	-420	7669
10/12/09 02:39:27	59.9780006	0	229.663269	0	-420	7669
10/12/09 02:39:30	59.9720001	0	229.663269	0	-420	7670
10/12/09 02:39:33	59.9710007	0	229.663269	0	-420	7670
10/12/09 02:39:36	59.973999	0	229.663269	0	-420	7671
10/12/09 02:39:39	59.9749985	0	229.2338562	0	-420	7671
10/12/09 02:39:42	59.9720001	0	229.2338562	0	-420	7672
10/12/09 02:39:45	59.9690018	0	229.2338562	0	-420	7673
10/12/09 02:39:48	59.973999	0	229.2338562	0	-420	7673
10/12/09 02:39:51	59.9720001	0	229.2338562	0	-420	7673
10/12/09 02:39:54	59.9720001	0	231.4098816	0	-420	7673
10/12/09 02:39:57	59.9770012	0	231.4098816	0	-420	7673
10/12/09 02:40:00	59.9780006	0	231.4098816	0	-420	7673
10/12/09 02:40:03	59.9760017	0	231.4098816	0	-420	7673
10/12/09 02:40:06	59.973999	0	231.4098816	0	-420	7673
10/12/09 02:40:09	59.9770012	0	218.6222839	0	-420	7673
10/12/09 02:40:12	59.9780006	0	218.6222839	0	-420	7673
10/12/09 02:40:15	59.9790001	0	218.6222839	0	-420	7673
10/12/09 02:40:18	59.9770012	0	218.6222839	0	-420	7673
10/12/09 02:40:21	59.973999	0	218.6222839	0	-420	7673
10/12/09 02:40:24	59.9710007	0	213.5358582	0	-420	7673
10/12/09 02:40:27	59.9710007	0	213.5358582	0	-420	7673
10/12/09 02:40:30	59.9679985	0	213.5358582	0	-420	7673
10/12/09 02:40:33	59.9659996	0	213.5358582	0	-420	7674
10/12/09 02:40:36	59.9710007	0	213.5358582	0	-420	7675
10/12/09 02:40:39	59.9729996	0	225.6518555	0	-420	7676
10/12/09 02:40:42	59.9690018	0	225.6518555	0	-420	7677
10/12/09 02:40:45	59.9720001	0	225.6518555	0	-420	7678
10/12/09 02:40:48	59.9729996	0	225.6518555	0	-420	7679
10/12/09 02:40:51	59.9700012	0	225.6518555	0	-420	7680
10/12/09 02:40:54	59.973999	0	212.5736389	0	-420	7681
10/12/09 02:40:57	59.9819984	0	212.5736389	0	-420	7682
10/12/09 02:41:00	59.9850006	0	212.5736389	0	-420	7684
10/12/09 02:41:03	59.9850006	0	212.5736389	0	-420	7685
10/12/09 02:41:06	59.9889984	0	212.5736389	0	-420	7687

10/12/09 02:41:09	59.9889984	0	219.8972931	0	-420	7689
10/12/09 02:41:12	59.9869995	0	219.8972931	0	-420	7690
10/12/09 02:41:15	59.9900017	0	219.8972931	0	-420	7692
10/12/09 02:41:18	59.9959984	0	219.8972931	0	-420	7692
10/12/09 02:41:21	60.0009995	0	219.8972931	0	-420	769
10/12/09 02:41:24	60.0040016	0	231.1753998	0	-420	7693
10/12/09 02:41:27	60.0060005	0	231.1753998	0	-420	769
10/12/09 02:41:30	60.0139999	0	231.1753998	0	-420	769
10/12/09 02:41:33	60.019001	0	231.1753998	0	-420	7695
10/12/09 02:41:36	60.0250015	0	231.1753998	0	-420	7695
10/12/09 02:41:39	60.026001	0	226.6341248	0	-420	7695
10/12/09 02:41:42	60.0289993	0	226.6341248	0	-420	7696
10/12/09 02:41:45	60.0289993	0	226.6341248	0	-420	7696
10/12/09 02:41:48	60.0359993	0	226.6341248	0	-420	7697
10/12/09 02:41:51	60.0369987	0	226.6341248	0	-420	7697
10/12/09 02:41:54	60.0359993	0	227.2550659	0	-420	7697
10/12/09 02:41:57	60.0410004	0	227.2550659	0	-420	7698
10/12/09 02:42:00	60.0439987	0	227.2550659	0	-420	7698
10/12/09 02:42:03	60.0429993	0	227.2550659	0	-420	7698.33
10/12/09 02:42:06	60.0480003	0	227.2550659	0	-420	7698.66
10/12/09 02:42:09	60.0460014	0	229.2902222	0	-420	7698.99
10/12/09 02:42:12	60.0429993	0	229.2902222	0	-420	7699.32
10/12/09 02:42:15	60.0429993	0	229.2902222	0	-420	7699.65
10/12/09 02:42:18	60.0429993	0	229.2902222	0	-420	7699.98
10/12/09 02:42:21	60.0429993	0	229.2902222	0	-420	7700.31
10/12/09 02:42:24	60.0400009	0	221.4613647	0	-420	7700.64
10/12/09 02:42:27	60.0410004	0	221.4613647	0	-420	7700.97
10/12/09 02:42:30	60.0390015	0	221.4613647	0	-420	7701.3
10/12/09 02:42:33	60.0359993	0	221.4613647	0	-420	7701.63
10/12/09 02:42:36	60.0330009	0	221.4613647	0	-420	7701.96
10/12/09 02:42:39	60.0340004	0	241.2743683	0	-420	7702.29
10/12/09 02:42:42	60.0369987	0	241.2743683	0	-420	7702.62
10/12/09 02:42:45	60.0349998	0	241.2743683	0	-420	7702.95
10/12/09 02:42:48	60.0330009	0	241.2743683	0	-420	7703.28
10/12/09 02:42:51	60.0359993	0	241.2743683	0	-420	7703.61
10/12/09 02:42:54	60.0340004	0	243.0718536	0	-420	7703.94
10/12/09 02:42:57	60.0320015	0	243.0718536	0	-420	7704.27
10/12/09 02:43:00	60.0340004	0	243.0718536	0	-420	7704.6
10/12/09 02:43:03	60.0330009	0	243.0718536	0	-420	7704.93
10/12/09 02:43:06	60.0349998	0	243.0718536	0	-420	7705.26
10/12/09 02:43:09	60.0349998	0	241.6702118	0	-420	7705.59
10/12/09 02:43:12	60.0390015	0	241.6702118	0	-420	7705.92
10/12/09 02:43:15	60.0369987	0	241.6702118	0	-420	7706.
10/12/09 02:43:18	60.0359993	0	241.6702118	0	-420	7706.58
10/12/09 02:43:21	60.0340004	0	241.6702118	0	-420	7706.91
10/12/09 02:43:24	60.0369987	0	228.1493073	0	-420	7707.24
10/12/09 02:43:27	60.0369987	0	228.1493073	0	-420	7707.57
10/12/09 02:43:30	60.0379982	0	228.1493073	0	-420	7707
10/12/09 02:43:33	60.0400009	0	228.1493073	0	-420	7708.23

10/12/09 02:43:36	60.0449982	0	228.1493073	0	-420	7708.56
10/12/09 02:43:39	60.0449982	0	235.1289825	0	-420	7708.89
10/12/09 02:43:42	60.0429993	0	235.1289825	0	-420	7709.22
10/12/09 02:43:45	60.0400009	0	235.1289825	0	-420	7709.55
10/12/09 02:43:48	60.0460014	0	235.1289825	0	-420	7709.88
10/12/09 02:43:51	60.0419998	0	235.1289825	0	-420	7710.21
10/12/09 02:43:54	60.0390015	0	246.433136	0	-420	7710.54
10/12/09 02:43:57	60.0390015	0	246.433136	0	-420	7710.87
10/12/09 02:44:00	60.0369987	0	246.433136	0	-420	7711.2
10/12/09 02:44:03	60.0340004	0	246.433136	0	-420	7711.53
10/12/09 02:44:06	60.0320015	0	246.433136	0	-420	7711.86
10/12/09 02:44:09	60.0309982	0	236.5535431	0	-420	7712.19
10/12/09 02:44:12	60.0270004	0	236.5535431	0	-420	7712.52
10/12/09 02:44:15	60.0309982	0	236.5535431	0	-420	7712.85
10/12/09 02:44:18	60.0309982	0	236.5535431	0	-420	7713.18
10/12/09 02:44:21	60.0309982	0	236.5535431	0	-420	7713.51
10/12/09 02:44:24	60.0390015	0	230.2975616	0	-420	7713.84
10/12/09 02:44:27	60.0390015	0	230.2975616	0	-420	7714.17
10/12/09 02:44:30	60.0369987	0	230.2975616	0	-420	7714.5
10/12/09 02:44:33	60.0349998	0	230.2975616	0	-420	7714.83
10/12/09 02:44:36	60.0400009	0	230.2975616	0	-420	7715.16
10/12/09 02:44:39	60.0419998	0	231.1755371	0	-420	7715.49
10/12/09 02:44:42	60.0359993	0	231.1755371	0	-420	7715.82
10/12/09 02:44:45	60.0400009	0	231.1755371	0	-420	7716.15
10/12/09 02:44:48	60.0449982	0	231.1755371	0	-420	7716.48
10/12/09 02:44:51	60.0480003	0	231.1755371	0	-420	7716.81
10/12/09 02:44:54	60.0439987	0	225.61763	0	-420	7717.14
10/12/09 02:44:57	60.0439987	0	225.61763	0	-420	7717.47
10/12/09 02:45:00	60.0439987	0	225.61763	0	-420	7717.8
10/12/09 02:45:03	60.0400009	0	225.61763	0	-420	7718.13
10/12/09 02:45:06	60.0449982	0	225.61763	0	-420	7718.46
10/12/09 02:45:09	60.0439987	0	230.7344208	0	-420	7718.79
10/12/09 02:45:12	60.0390015	0	230.7344208	0	-420	7719.1
10/12/09 02:45:15	60.0419998	0	230.7344208	0	-420	7719.45
10/12/09 02:45:18	60.0410004	0	230.7344208	0	-420	7719.78
10/12/09 02:45:21	60.0379982	0	230.7344208	0	-420	7720.11
10/12/09 02:45:24	60.0369987	0	234.8471069	0	-420	7720.44
10/12/09 02:45:27	60.0390015	0	234.8471069	0	-420	7720.77
10/12/09 02:45:30	60.0400009	0	234.8471069	0	-420	7721.1
10/12/09 02:45:33	60.0390015	0	234.8471069	0	-420	7721.43
10/12/09 02:45:36	60.0379982	0	234.8471069	0	-420	7721.76
10/12/09 02:45:39	60.0390015	0	228.9609222	0	-420	7722.09
10/12/09 02:45:42	60.0369987	0	228.9609222	0	-420	7722.42
10/12/09 02:45:45	60.0369987	0	228.9609222	0	-420	7722.75
10/12/09 02:45:48	60.0390015	0	228.9609222	0	-420	7723.08
10/12/09 02:45:51	60.0379982	0	228.9609222	0	-420	7723.41
10/12/09 02:45:54	60.0349998	0	231.1779175	0	-420	7723.74
10/12/09 02:45:57	60.0330009	0	231.1779175	0	-420	7724.07
10/12/09 02:46:00	60.0299988	0	231.1779175	0	-420	7724.4

10/12/09 02:46:03	60.0320015	0	231.1779175	0	-420	7724.73
10/12/09 02:46:06	60.0369987	0	231.1779175	0	-420	7725.06
10/12/09 02:46:09	60.0419998	0	236.4892883	0	-420	7725.39
10/12/09 02:46:12	60.0359993	0	236.4892883	0	-420	7725.72
10/12/09 02:46:15	60.0309982	0	236.4892883	0	-420	7726.05
10/12/09 02:46:18	60.0309982	0	236.4892883	0	-420	7726.38
10/12/09 02:46:21	60.0340004	0	236.4892883	0	-420	7726.71
10/12/09 02:46:24	60.0320015	0	245.0389252	0	-420	7727.04
10/12/09 02:46:27	60.0379982	0	245.0389252	0	-420	7727.37
10/12/09 02:46:30	60.0439987	0	245.0389252	0	-420	7727.7
10/12/09 02:46:33	60.0419998	0	245.0389252	0	-420	7728.03
10/12/09 02:46:36	60.0400009	0	245.0389252	0	-420	7728.36
10/12/09 02:46:39	60.0400009	0	223.6056824	0	-420	7728.69
10/12/09 02:46:42	60.0429993	0	223.6056824	0	-420	7729.02
10/12/09 02:46:45	60.0410004	0	223.6056824	0	-420	7729.35
10/12/09 02:46:48	60.0379982	0	223.6056824	0	-420	7729.68
10/12/09 02:46:51	60.0429993	0	223.6056824	0	-420	7730.01
10/12/09 02:46:54	60.0419998	0	231.1193542	0	-420	7730.34
10/12/09 02:46:57	60.0359993	0	231.1193542	0	-420	7730.67
10/12/09 02:47:00	60.0410004	0	231.1193542	0	-420	7731
10/12/09 02:47:03	60.0419998	0	231.1193542	0	-420	7731.33
10/12/09 02:47:06	60.0429993	0	231.1193542	0	-420	7731.66
10/12/09 02:47:09	60.0359993	0	237.2066498	0	-420	7731.99
10/12/09 02:47:12	60.0390015	0	237.2066498	0	-420	7732.32
10/12/09 02:47:15	60.0369987	0	237.2066498	0	-420	7732.65
10/12/09 02:47:18	60.0349998	0	237.2066498	0	-420	7732.98
10/12/09 02:47:21	60.0349998	0	237.2066498	0	-420	7733.31
10/12/09 02:47:24	60.0359993	0	240.5163727	0	-420	7733.64
10/12/09 02:47:27	60.0299988	0	240.5163727	0	-420	7733.97
10/12/09 02:47:30	60.0299988	0	240.5163727	0	-420	7734.3
10/12/09 02:47:33	60.0309982	0	240.5163727	0	-420	7734.63
10/12/09 02:47:36	60.0320015	0	240.5163727	0	-420	7734.96
10/12/09 02:47:39	60.0309982	0	237.5660553	0	-420	7735.29
10/12/09 02:47:42	60.0320015	0	237.5660553	0	-420	7735.62
10/12/09 02:47:45	60.0320015	0	237.5660553	0	-420	7735.95
10/12/09 02:47:48	60.0369987	0	237.5660553	0	-420	7736.28
10/12/09 02:47:51	60.0400009	0	237.5660553	0	-420	7736.61
10/12/09 02:47:54	60.0419998	0	231.5814209	0	-420	7736.94
10/12/09 02:47:57	60.0359993	0	231.5814209	0	-420	7737.27
10/12/09 02:48:00	60.0410004	0	231.5814209	0	-420	7737.6
10/12/09 02:48:03	60.0400009	0	231.5814209	0	-420	7737.93
10/12/09 02:48:06	60.0359993	0	231.5814209	0	-420	7738.26
10/12/09 02:48:09	60.0379982	0	235.8508453	0	-420	7738.59
10/12/09 02:48:12	60.0410004	0	235.8508453	0	-420	7738.92
10/12/09 02:48:15	60.0400009	0	235.8508453	0	-420	7739.25
10/12/09 02:48:18	60.0330009	0	235.8508453	0	-420	7739.58
10/12/09 02:48:21	60.0340004	0	235.8508453	0	-420	7739.91
10/12/09 02:48:24	60.0400009	0	233.5599823	0	-420	7740.24
10/12/09 02:48:27	60.0410004	0	233.5599823	0	-420	7740.57

10/12/09 02:48:30	60.0369987	0	233.5599823	0	-420	7740.9
10/12/09 02:48:33	60.0359993	0	233.5599823	0	-420	7741.23
10/12/09 02:48:36	60.0379982	0	233.5599823	0	-420	7741.56
10/12/09 02:48:39	60.0390015	0	219.0099945	0	-420	7741.89
10/12/09 02:48:42	60.0340004	0	219.0099945	0	-420	7742.22
10/12/09 02:48:45	60.0330009	0	219.0099945	0	-420	7742.55
10/12/09 02:48:48	60.0340004	0	219.0099945	0	-420	7742.88
10/12/09 02:48:51	60.0289993	0	219.0099945	0	-420	7743.21
10/12/09 02:48:54	60.0309982	0	205.338913	0	-420	7743.54
10/12/09 02:48:57	60.0299988	0	205.338913	0	-420	7743.87
10/12/09 02:49:00	60.026001	0	205.338913	0	-420	7744.2
10/12/09 02:49:03	60.0219994	0	205.338913	0	-420	7744.53
10/12/09 02:49:06	60.0239983	0	205.338913	0	-420	7744.86
10/12/09 02:49:09	60.0229988	0	236.2853546	0	-420	7745.19
10/12/09 02:49:12	60.0209999	0	236.2853546	0	-420	7745.52
10/12/09 02:49:15	60.0229988	0	236.2853546	0	-420	7745.85
10/12/09 02:49:18	60.026001	0	236.2853546	0	-420	7746.18
10/12/09 02:49:21	60.026001	0	236.2853546	0	-420	7746.51
10/12/09 02:49:24	60.0239983	0	223.0157318	0	-420	7746.84
10/12/09 02:49:27	60.0239983	0	223.0157318	0	-420	7747.17
10/12/09 02:49:30	60.0229988	0	223.0157318	0	-420	7747.5
10/12/09 02:49:33	60.0229988	0	223.0157318	0	-420	7747.83
10/12/09 02:49:36	60.026001	0	223.0157318	0	-420	7748.16
10/12/09 02:49:39	60.0289993	0	223.0157318	0	-420	7748.49
10/12/09 02:49:42	60.0239983	0	223.0157318	0	-420	7748.82
10/12/09 02:49:45	60.0209999	0	223.0157318	0	-420	7749.15
10/12/09 02:49:48	60.0250015	0	223.0157318	0	-420	7749.48
10/12/09 02:49:51	60.0250015	0	223.0157318	0	-420	7749.81
10/12/09 02:49:54	60.026001	0	223.0157318	0	-420	7750.14
10/12/09 02:49:57	60.0239983	0	223.0157318	0	-420	7750.47
10/12/09 02:50:00	60.0229988	0	223.0157318	0	-420	7750.8
10/12/09 02:50:03	60.026001	0	223.0157318	0	-420	7751.13
10/12/09 02:50:06	60.0200005	0	223.0157318	0	-420	7751.46
10/12/09 02:50:09	60.0200005	0	223.0157318	0	-420	7751.79
10/12/09 02:50:12	60.0149994	0	223.0157318	0	-420	7752.12
10/12/09 02:50:15	60.0159988	0	223.0157318	0	-420	7752.45
10/12/09 02:50:18	60.0149994	0	223.0157318	0	-420	7752.78
10/12/09 02:50:21	60.0149994	0	223.0157318	0	-420	7753.11
10/12/09 02:50:24	60.0169983	0	223.0157318	0	-420	7753.44
10/12/09 02:50:27	60.012001	0	223.0157318	0	-420	7753.77
10/12/09 02:50:30	60.0079994	0	223.0157318	0	-420	7754.1
10/12/09 02:50:33	60.0019989	0	223.0157318	0	-420	7754.43
10/12/09 02:50:36	59.9990005	0	223.0157318	0	-420	7754.76
10/12/09 02:50:39	60.0019989	0	223.0157318	0	-420	7755.09
10/12/09 02:50:42	60.0040016	0	223.0157318	0	-420	7755.42
10/12/09 02:50:45	60.0009995	0	223.0157318	0	-420	7755.75
10/12/09 02:50:48	59.993	0	223.0157318	0	-420	7756.08
10/12/09 02:50:51	59.9920006	0	223.0157318	0	-420	7756.41
10/12/09 02:50:54	59.9869995	0	223.0157318	0	-420	7756.74

10/12/09 02:50:57	59.9850006	0	223.0157318	0	-420	7757.07
10/12/09 02:51:00	59.9860001	0	223.0157318	0	-420	7757.4
10/12/09 02:51:03	59.9840012	0	223.0157318	0	-420	7757.73
10/12/09 02:51:06	59.9799995	0	223.0157318	0	-420	7758.06
10/12/09 02:51:09	59.9770012	0	223.0157318	0	-420	7758.39
10/12/09 02:51:12	59.9760017	0	223.0157318	0	-420	7758.72
10/12/09 02:51:15	59.9720001	0	223.0157318	0	-420	7759.05
10/12/09 02:51:18	59.9770012	0	223.0157318	0	-420	7759.38
10/12/09 02:51:21	59.9749985	0	223.0157318	0	-420	7759.71
10/12/09 02:51:24	59.9710007	0	223.0157318	0	-420	7760.04
10/12/09 02:51:27	59.9710007	0	223.0157318	0	-420	7760.37
10/12/09 02:51:30	59.9790001	0	223.0157318	0	-420	7760.7
10/12/09 02:51:33	59.9799995	0	223.0157318	0	-420	7761.03
10/12/09 02:51:36	59.9819984	0	223.0157318	0	-420	7761.36
10/12/09 02:51:39	59.9819984	0	223.0157318	0	-420	7761.69
10/12/09 02:51:42	59.980999	0	223.0157318	0	-420	7762.02
10/12/09 02:51:45	59.9790001	0	223.0157318	0	-420	7762.35
10/12/09 02:51:48	59.9760017	0	223.0157318	0	-420	7762.68
10/12/09 02:51:51	59.9780006	0	223.0157318	0	-420	7763.01
10/12/09 02:51:54	59.9760017	0	223.0157318	0	-420	7763.34
10/12/09 02:51:57	59.9780006	0	223.0157318	0	-420	7763.67
10/12/09 02:52:00	59.9710007	0	223.0157318	0	-420	7764
10/12/09 02:52:03	59.9700012	0	223.0157318	0	-420	7764.33
10/12/09 02:52:06	59.9710007	0	223.0157318	0	-420	7764.66
10/12/09 02:52:09	59.9900017	0	223.0157318	0	-420	7764.99
10/12/09 02:52:12	59.9990005	0	223.0157318	0	-420	7765.32
10/12/09 02:52:15	59.9990005	0	223.0157318	0	-420	7765.65
10/12/09 02:52:18	59.9990005	0	223.0157318	0	-420	7765.98
10/12/09 02:52:21	60.0029984	0	223.0157318	0	-420	7766.31
10/12/09 02:52:24	60.0050011	0	223.0157318	0	-420	7766.64
10/12/09 02:52:27	60.0099983	0	223.0157318	0	-420	7766.97
10/12/09 02:52:30	60.0200005	0	223.0157318	0	-420	7767.3
10/12/09 02:52:33	60.0219994	0	223.0157318	0	-420	7767.63
10/12/09 02:52:36	60.0250015	0	223.0157318	0	-420	7767.96
10/12/09 02:52:39	60.0250015	0	223.0157318	0	-420	7768.29
10/12/09 02:52:42	60.0229988	0	223.0157318	0	-420	7768.62
10/12/09 02:52:45	60.0289993	0	223.0157318	0	-420	7768.95
10/12/09 02:52:48	60.0289993	0	223.0157318	0	-420	7769.28
10/12/09 02:52:51	60.0279999	0	223.0157318	0	-420	7769.61
10/12/09 02:52:54	60.0309982	0	223.0157318	0	-420	7769.94
10/12/09 02:52:57	60.0320015	0	223.0157318	0	-420	7770.27
10/12/09 02:53:00	60.0330009	0	223.0157318	0	-420	7770.6
10/12/09 02:53:03	60.0299988	0	223.0157318	0	-420	7770.93
10/12/09 02:53:06	60.0209999	0	223.0157318	0	-420	7771.26
10/12/09 02:53:09	60.019001	0	223.0157318	0	-420	7771.59
10/12/09 02:53:12	60.0169983	0	223.0157318	0	-420	7771.92
10/12/09 02:53:15	60.0169983	0	223.0157318	0	-420	7772.25
10/12/09 02:53:18	60.0149994	0	223.0157318	0	-420	7772.58
10/12/09 02:53:21	60.0149994	0	223.0157318	0	-420	7772.91

10/12/09 02:53:24	60.0089989	0	223.0157318	0	-420	7773.24
10/12/09 02:53:27	60.0079994	0	223.0157318	0	-420	7773.57
10/12/09 02:53:30	60.0050011	0	223.0157318	0	-420	7773.9
10/12/09 02:53:33	60.0050011	0	223.0157318	0	-420	7774.23
10/12/09 02:53:36	59.9990005	0	223.0157318	0	-420	7774.56
10/12/09 02:53:39	59.9970016	0	223.0157318	0	-420	7774.89
10/12/09 02:53:42	60	0	223.0157318	0	-420	7775.22
10/12/09 02:53:45	59.9980011	0	223.0157318	0	-420	7775.55
10/12/09 02:53:48	59.9939995	0	223.0157318	0	-420	7775.88
10/12/09 02:53:51	59.9920006	0	223.0157318	0	-420	7776.21
10/12/09 02:53:54	59.987999	0	223.0157318	0	-420	7776.54
10/12/09 02:53:57	59.9850006	0	223.0157318	0	-420	7776.87
10/12/09 02:54:00	59.987999	0	223.0157318	0	-420	7777.2
10/12/09 02:54:03	59.987999	0	223.0157318	0	-420	7777.53
10/12/09 02:54:06	59.9830017	0	223.0157318	0	-420	7777.86
10/12/09 02:54:09	59.9830017	0	223.0157318	0	-420	7778.19
10/12/09 02:54:12	59.9860001	0	223.0157318	0	-420	7778.52
10/12/09 02:54:15	59.9869995	0	223.0157318	0	-420	7778.85
10/12/09 02:54:18	59.9860001	0	223.0157318	0	-420	7779.18
10/12/09 02:54:21	59.9850006	0	223.0157318	0	-420	7779.51
10/12/09 02:54:24	59.9830017	0	223.0157318	0	-420	7779.84
10/12/09 02:54:27	59.9819984	0	223.0157318	0	-420	7780.17
10/12/09 02:54:30	59.9799995	0	223.0157318	0	-420	7780.5
10/12/09 02:54:33	59.9780006	0	223.0157318	0	-420	7780.83
10/12/09 02:54:36	59.9749985	0	223.0157318	0	-420	7781.16
10/12/09 02:54:39	59.9729996	0	223.0157318	0	-420	7781.49
10/12/09 02:54:42	59.9760017	0	223.0157318	0	-420	7781.82
10/12/09 02:54:45	59.9760017	0	223.0157318	0	-420	7782.15
10/12/09 02:54:48	59.9819984	0	223.0157318	0	-420	7782.48
10/12/09 02:54:51	59.9790001	0	223.0157318	0	-420	7782.81
10/12/09 02:54:54	59.9770012	0	223.0157318	0	-420	7783.14
10/12/09 02:54:57	59.9770012	0	223.0157318	0	-420	7783.47
10/12/09 02:55:00	59.9780006	0	223.0157318	0	-420	7783.8
10/12/09 02:55:03	59.9780006	0	223.0157318	0	-420	7784.13
10/12/09 02:55:06	59.9830017	0	223.0157318	0	-420	7784.46
10/12/09 02:55:09	59.980999	0	223.0157318	0	-420	7784.79
10/12/09 02:55:12	59.9780006	0	223.0157318	0	-420	7785.12
10/12/09 02:55:15	59.9790001	0	223.0157318	0	-420	7785.45
10/12/09 02:55:18	59.9790001	0	223.0157318	0	-420	7785.78
10/12/09 02:55:21	59.9830017	0	223.0157318	0	-420	7786.11
10/12/09 02:55:24	59.9900017	0	223.0157318	0	-420	7786.44
10/12/09 02:55:27	59.9920006	0	223.0157318	0	-420	7786.77
10/12/09 02:55:30	59.9900017	0	223.0157318	0	-420	7787.1
10/12/09 02:55:33	59.987999	0	223.0157318	0	-420	7787.43
10/12/09 02:55:36	59.9900017	0	223.0157318	0	-420	7787.76
10/12/09 02:55:39	59.993	0	223.0157318	0	-420	7788.09
10/12/09 02:55:42	59.993	0	223.0157318	0	-420	7788.42
10/12/09 02:55:45	59.9939995	0	223.0157318	0	-420	7788.75
10/12/09 02:55:48	59.993	0	223.0157318	0	-420	7789.08

10/12/09 02:55:51	59.9889984	0	223.0157318	0	-420	7789.41			
10/12/09 02:55:54	59.9860001	0	223.0157318	0	-420	7789.74			
10/12/09 02:55:57	59.9850006	0	223.0157318	0	-420	7790.07			
10/12/09 02:56:00	59.9869995	0	223.0157318	0	-420	7790.4			
10/12/09 02:56:03	59.9860001	0	223.0157318	0	-420	7790.73			
10/12/09 02:56:06	59.9850006	0	223.0157318	0	-420	7791.06			
10/12/09 02:56:09	59.9819984	0	223.0157318	0	-420	7791.39			
10/12/09 02:56:12	59.9819984	0	223.0157318	0	-420	7791.72			
10/12/09 02:56:15	59.9869995	0	223.0157318	0	-420	7792.05			
10/12/09 02:56:18	59.9970016	0	223.0157318	0	-420	7792.38			
10/12/09 02:56:21	60	0	223.0157318	0	-420	7792.71			
10/12/09 02:56:24	60.0029984	0	223.0157318	0	-420	7793.04			
10/12/09 02:56:27	60.0029984	0	223.0157318	0	-420	7793.37			
10/12/09 02:56:30	60.0029984	0	223.0157318	0	-420	7793.7			
10/12/09 02:56:33	60.0019989	0	223.0157318	0	-420	7794.03			
10/12/09 02:56:36	60.0040016	0	223.0157318	0	-420	7794.36			
10/12/09 02:56:39	60.0050011	0	223.0157318	0	-420	7794.69			
10/12/09 02:56:42	60.0089989	0	223.0157318	0	-420	7795.02			
10/12/09 02:56:45	60.012001	0	223.0157318	0	-420	7795.35			
10/12/09 02:56:48	60.0209999	0	223.0157318	0	-420	7795.68			
10/12/09 02:56:51	60.0219994	0	223.0157318	0	-420	7796.01			
10/12/09 02:56:54	60.0200005	0	223.0157318	0	-420	7796.34			
10/12/09 02:56:57	60.0180016	0	223.0157318	0	-420	7796.67			
10/12/09 02:57:00	60.0200005	0	223.0157318	0	-420	7797			
10/12/09 02:57:03	60.0200005	0							
10/12/09 02:57:06	60.0180016	0							
10/12/09 02:57:09	60.019001	0							
10/12/09 02:57:12	60.0180016	0							
10/12/09 02:57:15	60.0169983	0							
10/12/09 02:57:18	60.0159988	0							
10/12/09 02:57:21	60.0159988	0							
10/12/09 02:57:24	60.0139999	0							
10/12/09 02:57:27	60.0139999	0							
10/12/09 02:57:30	60.0130005	0							
10/12/09 02:57:33	60.0149994	0							
10/12/09 02:57:36	60.0159988	0							
10/12/09 02:57:39	60.019001	0							
10/12/09 02:57:42	60.0209999	0							
10/12/09 02:57:45	60.0200005	0							
10/12/09 02:57:48	60.0239983	0							
10/12/09 02:57:51	60.026001	0							
10/12/09 02:57:54	60.026001	0							
10/12/09 02:57:57	60.0219994	0							
10/12/09 02:58:00	60.0219994	0							
10/12/09 02:58:03	60.0239983	0							
10/12/09 02:58:06	60.0289993	0							
10/12/09 02:58:09	60.0279999	0							
10/12/09 02:58:12	60.0320015	0							
10/12/09 02:58:15	60.0349998	0					0/12/09 02:58:24 60.0239983 $01210902 \cdot 58: 27 \quad 60.0250015$ 0/120902.58:30 60.0219994 0/12/09 02:58:33 60.0229988 $0 / 120902 \cdot 58: 36 \quad 60.0200005$ $01210902 \cdot 58 \cdot 39 \quad 0.0200005$ 0/12/09 02.58:42 60.0200005 012109 02:58:45 $\quad 60.0169983$ 101209 02.58:48 $\quad 00.012001$ 0/12109 02:58:51 60.0099983 60.0099983 0.	101209	2.58 .57
:---	:---								
60.0099983		101200:50.50.03 60.012001 00.012001 01209 02•59:09 60.0139999 0120902.59.12 60.0130005 0/1209 02:59:15 60.0099983 0/12109 02:59:15 60.0099983	$10 / 12109$	$02: 59: 18$					
:---	:---								
60.0099983		$\begin{array}{ll}10 / 1209 & 60.0110016\end{array}$	$10 / 12 / 09$	$02: 59: 24$					
:---	:---								
00.0159988									
$1012 / 09$	$02 \cdot 59 \cdot 27$								
60.0180016		$\begin{array}{ll}10 / 12 / 09 & 02: 59: 27 \\ 60.0180016 \\ 10 / 12 / 09 & 02: 59: 30 \\ 60.019001\end{array}$ $\begin{array}{ll}10 / 12 / 09 & 02: 59: 30 \\ & 60.019001 \\ 10 / 12 / 09 & 02 \cdot 59: 33 \\ 60.019001\end{array}$ 10/12/09 02:59:33 $\quad 60.019001$ 0/12/09 02:59:36 $\quad 60.0200005$	$10 / 12 / 0902: 59: 39$	60.0180016					
:---	:---								
$112 / 09$	$02 \cdot 59: 42$								
60.0159988		10/12/09 02:59:42 60.0159988 10/12/09 02:59:45 60.0159988 10/12/09 02:59:48 60.0229988 10/12/09 02:59:51 60.0219994 $\begin{array}{ll}10 / 12 / 09 & 02: 59: 54 \\ 60.0149994 \\ 1011209 & 0.50 .57 \\ 60.0159988\end{array}$ 10/12/09 02:59:57 60.0159988 10/12/09 03:00:00 60.0169983 10/12/0903:00:03 60.0099983	$10 / 12109$	$03: 00: 006$					
:---	:---								
60.0040016									
100		$\begin{array}{ll}10 / 12 / 0903: 00: 09 & 59.9949989 \\ 101209 & \end{array}$ $\begin{array}{ll}10 / 12 / 09 & 03: 00: 12 \\ 59.9819984 \\ 1012 / 09 & 03 \cdot 00 \cdot 15 \\ 59.97399\end{array}$	$10 / 12 / 09$	$03: 00: 15$					
:---	---:								
59.973999									
$1012 / 0903: 00: 18$	59.9700012	$\begin{array}{ll}10 / 12 / 09 & 03: 00: 18 \\ 59.9700012\end{array}$ $\begin{array}{ll}10 / 12 / 09 & 03: 00: 21 \\ 59.9679985 \\ 1011209 & 03: 00 \cdot 24 \\ 59.9679985\end{array}$ $\begin{array}{ll}10 / 12 / 09 & 03: 00: 24 \\ 59.9679985 \\ 1012 / 109 & 03: 00 \cdot 27 \\ 59 & 9720001\end{array}$	$10 / 12 / 09$	$03: 00: 27$					
:---	:---								
59.9720001									
101209	$59.00 \cdot 30$								
59.9659996		$\begin{array}{ll}10 / 12 / 09 & 03: 00: 30 \\ 59.9659996 \\ 10 / 12 / 09 & 03: 00: 33 \\ 59.9640007\end{array}$ $\begin{array}{ll}10 / 12109 & 03: 00: 33 \\ 59.9640007\end{array}$ $\begin{array}{ll}10 / 12 / 09 & 03: 00: 36 \\ 59.9659996 \\ 1012 / 0903 \cdot 00: 39 & 59.9630013\end{array}$ $\begin{array}{ll}10 / 12 / 09 & 03: 00: 42 \\ 59.9650002\end{array}$							

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0 10/12/09 03:00:51 59.9700012 0/12/09 03:00:54 59.9720001 0/12/09 03:00:57 59.9760017 0/12/09 03:01:00 59.9749985 0/12/09 03:01:03 59.9770012 0/12/09 03:01:06 59.9760017 01210903.01:09 59.073099 00/12009 03.01:09 -59.973999 01209 03.01:12 59.973999 120 121209 03:01:21 59.9790001 1200 03:01:24 59:9830017 0120903.01:27 59.085017 01209 01200 03.01:33 50.9790005 01200903.01.36 59.9869095 \begin{tabular}{ll}
$10 / 12 / 09$ \& $03: 01: 36$

59.9869995

\hline 1012090301.39 \& 59.9860001

$10 / 12 / 09$ \& $03: 01: 39$

59.9860001

\hline $1012 / 0903 \cdot 01: 42$ \& 59.9799995

 10/120903.01:45 59.9099954 $\begin{array}{ll}\text { 10/12/09 03:01:45 } & 59.9819984 \\ 1012 / 0903 \cdot 01: 48 & 59.9850006\end{array}$ $\begin{array}{ll}10 / 12 / 09 & 03: 01: 48 \\ 59.9850006 \\ 1012 / 09 & \text { 03:01:51 } \\ 59.9869995\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:01:51 } & 59.9869995 \\ 1012 / 09 & 03: 01 \cdot 54 \\ 59.9920006\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:01:54 } & 59.9920006 \\ 109120903 \cdot 01.57 & 59.9959984\end{array}$

$10 / 12 / 09$ \& $03: 01: 57$

\hline \& 59.9959984

$10 / 12 / 09$ \& $03 \cdot 02: 00$

59.9970016

 $\begin{array}{ll}\text { 10/12/09 03:02:00 } & 59.9970016 \\ \text { 10/12/09 03:02:03 } & 59.9970016\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:02:03 } & 59.9970016\end{array}$ 10/12/09 03:02:06 59.9970016 $\begin{array}{ll}\text { 10/12/09 03:02:09 } & 59.9959984 \\ 1012 / 09 \text { 03:02:12 } & 59.9959984\end{array}$ 10/12/09 03:02:12 59.9959984 10/12109 03:02:15 59.9980011 10/12/09 03:02:18 60.0089989 10/12/09 03:02:21 60.0099983 $\begin{array}{ll}10 / 12 / 09 & 03: 02: 24 \\ 60.0050011 \\ 1001200 & 03020\end{array}$ $\begin{array}{ll}\text { 10/12109 03:02:27 } & 60.0040016 \\ 1012009 & \end{array}$ $\begin{array}{ll}\text { 10/12/09 03:02:30 } & 60.0029984 \\ 101200900: 33 & 60.0009995\end{array}$ 10/12/09 03:02:33 60.0009995 10/12/09 03:02:36 60.0040016 $\begin{array}{lr}\text { 10/12/09 03:02:39 } & 60.007\end{array}$ $\begin{array}{lr}\text { 10/12/09 03:02:42 } & 60.0079994\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:02:42 } & 60.0079994 \\ \text { 10/12/09 03:02:45 } & 60.0079994\end{array}$ $\begin{array}{ll}10 / 12 / 0993: 02: 45 & 60.0079994 \\ \text { 10/12/09 03:02:48 } & 60.0060005\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:02:48 } & 60.0060005 \\ \text { 10/12/09 03:02:51 } & 60.0060005\end{array}$ $\begin{array}{lr}10 / 12 / 09 & 03: 02: 51 \\ \text { 10/12/09 03:02:54 } & 60\end{array}$ $\begin{array}{lr}10 / 12 / 0993: 02: 54 & 60 \\ \text { 10/12/09 03:02:57 } & 59.9990005\end{array}$ 10/12/09 03:03:00 $\begin{array}{lr}10 / 12 / 09 & 03: 03: 00 \\ \text { 10/12/09 03:03:03 } & 60.0040016\end{array}$ $\begin{array}{ll}10 / 1209 \text { 03:03:03 } & 60.0040016 \\ \text { 10/1209 03:03:06 } & 60.0130005\end{array}$ 10/12/09 03:03:09 60.0149994 0/12/09 03:03:18 60.0079994 0/12/09 03:03:21 60.0110016 0/12/09 03:03:24 60.0130005 0/12/09 03:03:27 60.0159988 012120903:03:30 60.0180016 0/12/09 03:03:33 60.019001 0/12/09 03:03:36 60.0130005 0/12/09 03:03.39 60.0110016 0/12/09 03:03:42 60.0089989 10/12/09 03:03:45 60.0079994 0/12/09 03:03:48 60.0110016 10/12/09 03:03:51 60.0149994 121209 03:03:54 60.0209999 012109 03:03:57 60.0180016 $0 / 120903.04 \cdot 00 \quad 60.019001$ 1200 03.04:03 $\quad 0.019001$ $\begin{array}{ll}101209 & 03.04: 06 \\ 60.019001\end{array}$ 10120903.04:09 60.0219994 $\begin{array}{ll}10 / 1209 & 03: 04 \cdot 12 \\ 60.0250015\end{array}$ 0/12/09 03:04:12 60.0299988 (1) $\begin{array}{ll}10 / 12090303: 04: 21 & 60.0209999\end{array}$

$10 / 12 / 09$ \& $03: 04: 21$

60.0229988

\hline $10 / 12 / 09$ \& $03: 04: 24$

60.0200005

 0/12/09 03:04:24 60.0200005 $\begin{array}{ll}\text { 10/12/09 03:04:27 } & 60.0239983 \\ 10112 / 09 & 03 \cdot 04: 30 \\ 60.0219994\end{array}$

$10 / 12 / 09$ \& $03: 04: 30$

\hline \& 60.0219994

$10 / 12 / 09$ \& $03: 04: 33$

60.0219994
\end{tabular}

 \begin{tabular}{ll}
$0 / 12 / 09$ \& $03: 04: 36$

60.0250015

\hline $0012 / 09$ \& $03: 04: 39$

60.0229988

 10/12/09 03:04:39 60.0229988 $\begin{array}{ll}10 / 12 / 09 & 03: 04: 42 \\ 60.0200005\end{array}$ 10/12/09 03:04:45 60.0180016 10/12/09 03:04:48 60.0079994 $\begin{array}{ll}10 / 12 / 09 & 03: 04: 51 \\ & 60.012001\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:04:54 } & 60.019001 \\ \text { 10/12/09 03:04:57 } & 60.019001\end{array}$

$10 / 12 / 09$ \& $03: 00: 57$

\hline \& 60.019001

\hline 101209 \&

 10/12109 03:05:00 60.0159988

$10 / 12 / 09$ \& $03: 05: 03$

\hline 60.0149994

$1012 / 0903: 05: 06$ \& 60.0139999

 $\begin{array}{ll}10 / 12 / 09 & 03: 05: 06 \\ 60.0139999\end{array}$ $\begin{array}{ll}10 / 12 / 09 & 03: 05: 09 \\ 60.0159988 \\ 1012 / 000305 \cdot 12 & 60.019091\end{array}$

$1012 / 0993: 05: 12$ \& 60.019001

\hline
\end{tabular} $\begin{array}{ll}\text { 10/12/09 03:05:15 } & 60.0159988 \\ \text { 1/12/09 03:05:18 } & 60.0139999\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:05:18 } & 60.0139999 \\ \text { 10/12/09 03:05:21 } & 60.0180016\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:05:21 } & 60.0180016 \\ 1012 / 129 & 03: 05 \cdot 24 \\ 60.0229988\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:05:24 } & 60.0229988 \\ \text { 1/12/09 03:05:27 } & 60.0239983\end{array}$ $\begin{array}{lr}10 / 12 / 09 & 03: 05: 27 \\ 60.0239983 \\ 1012 / 09 & 03: 05: 30 \\ 60.026001\end{array}$ $\begin{array}{lr}10 / 12 / 09 & 03: 05: 30 \\ \text { 60.02026001 } \\ \text { 0/12/09 03:05:33 } & 60.0239983\end{array}$ 10/12/09 03:05:36 60.0200005 0/12/09 03:05:45 $\quad 60.0279999$ 0/12/09 03:05:48 60.0309982 0/12/09 03:05:51 60.0289993 0/12/09 03:05:54 60.026001 0/12/09 03:05:57 60.0289993 101210903:06:00 60.0330009 0/12/09 03:06:03 60.0299988 0/1209 03:06:06 60.0159988 0/12/09 03:06:09 60.019001 0/12/09 03:06:12 60.0279999 1209 03:06:15 60.027999 01200 03:00:18 00.01499 121209 03:00:21 60.012001 0121209 03:09.24 60.013999 101200 03:06:27 60.01399095 120003:06:30 00.015008 01200 00.0150988 120003:06:36 00.0130005 $\begin{array}{lll}10 / 1200 & 03.06: 36 & 60.0130005\end{array}$ 0/12/09 03:06:42 $\quad 59.9939995$ $\begin{array}{lr}10 / 12 / 09 & 03: 06: 42 \\ 59.9939995 \\ 10 / 12 / 09 & 03: 06: 45 \\ 59.993\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:06:45 } & 59.993 \\ \text { 10/12/09 03:06:48 } & 59.993\end{array}$

 $\begin{array}{ll}\text { 10/12/09 03:06:51 } & 59.9939995 \\ \text { 10/12/09 03:06:54 } & 59.9939995\end{array}$ $\begin{array}{ll}10 / 12 / 0903: 06: 54 & 59.9939995\end{array}$ 0/12/09 03:06:57 59.993 $\begin{array}{ll}0 / 12 / 09 & 03: 07: 00 \\ 59.987999\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:07:03 } & 59.9850006\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:07:06 } & 59.9819984\end{array}$ $\begin{array}{lll}10 / 12 / 09 & 03: 07: 09 & 59.9799995\end{array}$ \begin{tabular}{lr}
10/12/09 03:07:12 \& 59.980999

\hline $10 / 12 / 09$ 03:07.15 \& 59.9819984

 $\begin{array}{ll}\text { 10/12/09 03:07:15 } & 59.9819984 \\ \text { 10/12/09 03:07:18 } & 59.9799995\end{array}$

10/12/09 03:07:18 \& 59.9799995

\hline 1012090

$10 / 12 / 09$ \& $03: 07: 21$

59.9799995

\hline $10120: 20$ \& 59

 $\begin{array}{ll}10 / 12 / 09 & 03: 07: 24 \\ 59.9799995 \\ 101 / 212090307.27 & 59.9830017\end{array}$ $\begin{array}{ll}10 / 12109 & 03: 07: 27 \\ \text { 10.12.9830017 }\end{array}$

$10 / 12 / 09$ \& $03: 07: 30$

59.980999

\hline $0.12 / 09$ 03:07:33 \& 59.980999

 10/12/09 03:07:33 $\quad 59.980999$

$10 / 12 / 09$ \& $03: 07: 36$

59.980999

\hline 1012100 \&

$10 / 12 / 09$ \& $03: 07: 39$

59.980999

\hline $10120903: 07: 42$ \& 59.9799995

 $\begin{array}{ll}\text { 10/12/09 03:07:42 } & 59.9799995 \\ 101120903: 07: 45 & 59.9780006\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:07:45 } & 59.9780006 \\ 1012 / 0903: 07: 48 & 59.9790001\end{array}$

10/12/09 03:07:48 \& 59.9790001

\hline $10120903: 07.51$ \& 59.9780006

 $\begin{array}{ll}\text { 10/12/09 03:07:51 } & 59.9780006 \\ 10 / 12 / 09 & 03: 07: 54 \\ 59 & 5760017\end{array}$

10/12/09 03:07:54 \& 59.9760017

\hline $1012 / 0903 \cdot 07: 57$ \& 59.9749985

 $\begin{array}{ll}10 / 12 / 09 & 03: 07: 57 \\ 59.9749985 \\ 10 / 12 / 09 & 03: 08: 00 \\ 59.9749985\end{array}$ $\begin{array}{ll}10 / 12 / 09 & 03: 08: 03 \\ 59.9790001\end{array}$

0

\hline

 $\begin{array}{lll}10 / 12 / 09 & 03: 08: 12 & 59.9770012\end{array}$ 0/12/09 03:08:15 59.9749985 0/120903:08:18 59.9790001 0/12/09 03:08:21 59.9799995 0/12/09 03:08:24 59.9780006 012109 03:08.27 59.9790001 0/12009 03:08:30 59.9830017 0/12/09 03:08:33 59.9869995 0/12/09 03:08:36 59:9840012 01210903.08.39 50.9799995 01210903.08:42 59.9799995 0/12/09 03.08:45 50.9790001 0/1209 03.08:48 59.9749085 01210903.08.51 50.9790001 0/12/09 03:08:54 59.9830017 0/12/09 03:08:57 59.9830017 0/12/09 03:09:00 59.9900017 0/1200 03.0.03 59.9869995

$10 / 120903: 09: 06$ \& 59.9760017

\hline $1012 / 09$ \& 03.09 .09 \& 59.9790001

10/12/09 03:09:09 \& 59.9790001

\hline 1012090909012 \& 59.9830017

10/12/09 03:09:12 \& 59.9830017

\hline $1012 / 0903 \cdot 09 \cdot 15$ \& 59.9790001

 $\begin{array}{ll}10 / 120993: 09: 15 & 59.9790001 \\ \text { 0/12/09 03:09:18 } & 59.9780006\end{array}$ $\begin{array}{lll}\text { 0/12/09 03:09:18 } & 59.9780006 \\ 10 / 12 / 09 & 03: 09: 21 & 59.9749985\end{array}$ $\begin{array}{ll}10 / 12 / 09 & 03: 09: 21 \\ \text { 59.9749985 } \\ 10 / 12 / 09 & 03: 09: 24 \\ 59.9889984\end{array}$ 0/12/09 03:09:24 59.9889984

$0 / 12 / 09$ \& $03: 09: 27$

59.9990005

\hline

 $\begin{array}{ll}10 / 12 / 09 & 03: 09: 30 \\ 59.9889984 \\ 1012 / 09 & 03 \cdot 09 \cdot 33 \\ 59.9860001\end{array}$ 10/12/09 03:09:33 59.9860001 $\begin{array}{ll}10 / 12109 & 03: 09: 36 \\ 59.9830017\end{array}$ 10/12/09 03:09:39 59.9819984 10/12/09 03:09:42 59.9900017 $\begin{array}{ll}10 / 12109 & 03: 09: 45 \\ 59.9949989\end{array}$

$10 / 12 / 09$ \& $03: 00: 48$

59.9900017

\hline

 $\begin{array}{ll}10 / 12 / 09 & 03: 09: 51 \\ 59.9889984\end{array}$ $\begin{array}{lr}\text { 0/12/09 03:09:54 } & 59.9959984 \\ \text { 0/12/09 03:09:57 } & 60\end{array}$ $\begin{array}{lr}10 / 12109 & 03: 09: 57 \\ 10 / 12 / 09 & 63: 10 \cdot 00 \\ 60.0040016\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:10:00 } & 60.0040016 \\ \text { 10/12/09 03:10:03 } & 60.0040016\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:10:03 } & 60.0040016 \\ 10 / 12 / 09 & 03 \cdot 10: 06 \\ 59.9990005\end{array}$ $\begin{array}{ll}10 / 12 / 09 & 03: 10: 06 \\ 59.9990005\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:10:09 } & 59.9980011 \\ 101120903: 10.12 & 59.9959984\end{array}$

$10 / 12 / 09$ \& $03: 10: 12$

59.9959984

\hline $0012 / 0903 \cdot 10 \cdot 15$ \& 60.0009995

 $\begin{array}{ll}\text { 10/12/09 03:10:15 } & 60.0009995 \\ 1011209 & 03 \cdot 10 \cdot 18 \\ 60.0009995\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:10:18 } & 60.0009995 \\ 10 / 12 / 09 & 03: 10: 21 \\ 60.0029984\end{array}$ $\begin{array}{ll}\text { 10/12/09 03:10:21 } & 60.0029984 \\ 1012 / 0903: 10: 24 & 60.0040016\end{array}$

$10 / 12 / 0903: 10: 24$ \& 60.0040016

\hline

 $\begin{array}{ll}\text { 10/12/09 03:10:27 } & 60.0040016 \\ \text { 10/12/09 03:10:30 } & 60.0060005\end{array}$

0

\hline

 0/12/09 03:10:36 60.0060005 0/12/09 03:10:39 60.0089989 0/12/09 03:10:42 60.0099983 0/12/09 03:10:45 60.0089989 0/12/09 03.10.48 60.0149994

0/12/09 03:10:51 \& 60.0139999

\hline

 0/12/09 03:10:54 60.0089989 0/12109 03:10:57 60.0079994 0/1209 03.11:00 60.0099983 01209 03:11:06 60.089089 0.120130005 12120 60.012001 $\begin{array}{lr}10 / 12 / 09 & 03: 11: 18 \\ & 60.007\end{array}$ 10/12/09 03:11:21 60.0029984 $\begin{array}{ll}10 / 12 / 09 & 03: 11: 24 \\ 60\end{array}$ 121209 $0311: 27$ 59:098011 012009 03.11:30 59.9990005 0/12/09 03:11:30 59.9990005 0/12/09 03:11:33 60.0019989 10/12/09 03:11:36 60.0029984

$10 / 12 / 09$ \& $03: 11: 39$

59.9990005

\hline $10120903 \cdot 11: 42$ \& 60.000995

 10/12/09 03:11:42 60.0009995

$0 / 12 / 09$ \& $03: 11: 45$

59.9949989

\hline

 10/12/09 03:11:48 $\quad 59.9869995$ 10/12/09 03:11:51 $\quad 59.987999$ $\begin{array}{ll}10 / 12109 & 03: 11: 54 \\ 59.9900017\end{array}$

$10 / 12 / 09$ \& $03: 11: 57$

10/12/09 03:12:00 \& 59.9920006

\hline
\end{tabular}

Note: See "Instruction" tab for more detailed instructions.

Step 6. Save this workbook using the following file name format:MyBA_yymmdd_hhmm_FRS_Form2.xlsm

IPFR = Interconnection Primary Frequency Response

Time of Frequency Recovery to 60 Hz or Pre-Perturbation Hz Value A Pre-Perturbation Average Frequency [$\mathrm{T}(-2)$ to $\mathrm{T}(-16)$ Value B Post-Perturbation Average Frequency [$\mathrm{T}(+20$ to $\mathrm{T}(+52)$ Pre to Post Perturbation Delta Frequency Actua
Value A Pre-Perturbation Average Interchange MW [T(-2) to $\mathrm{T}(-16)]$ Value B Post-Perturbation Average Interchange MW [T(+20 to T(+52)] Pre to Post Perturbation Interchange Delta MW Actual Initial Performance Ramp Magnitude Adjustment EPFR Pre-Perturbation Average EPFR Post-Perturbation Average EPFR Delta

Balancing Authority HQ
Grid Nominal Frequency $\quad 60.000 \mathrm{~Hz}$
Capacity @ Droop for Minimum Performance 4230.0 MW
Droop Setting $5.00 \% \quad 3.00000 \mathrm{~Hz}$
Deadband Setting $\quad 0.000 \mathrm{~Hz}$
Hz Span 3.00000 Hz
Frequency Response Obligation (FRO) $\quad-141 \mathrm{MW} / 0.1 \mathrm{~Hz}$

TC (frequency response filter constant) $\quad 1$ Time Constant for delayed delivery of PFR during Sustained Measur

ow Hz Delta Hz Event

0.00 Actual Interchange MW Average during frequency recovery period 437.58 Target Interchange MW Average during frequency recovery period 348.10 Interchange Average Ramp MW during frequency recovery period 633.00 Actual MW @ T(-4)
-693.63 Starting and Ending Difference in Interchange MW during frequency recovery pe 0:05:33 Event Duration (h:mm:ss)

Yes Target MW Average minus MW @ T(-4) less than zero
498.21 Interchange Target Relative Average Change - MW (Low Frequency Event)
60.63 Interchange Actual Relative Average Change - MW (Low Frequency Event)

Yes Interchange Actual Average minus MW @ $\mathrm{T}(-4)$ less than zero
No Interchange Average MW minus MW @ T(-4) greater than zero
No Interchange Target MW Average minus MW @ T(-4) greater than zero
195.42 Interchange Target Relative Average Change - MW (High Frequency Event) 633.00 Interchange Actual Relative Average Change - MW (High Frequency Event) Down Ramp Direction during frequency recovery period
nitial Response P.U. Performance
2.933 P.U

No Evaluation P.U. Sustianed Response P.U. Performance

					Initial									Generator
					fro		Measure			Average	Average		Average	Trip
					(EPFR)	(TC)	Final			Output	Target		Ramp	MW
		Total	Value B		Expected	Delayed	Expected		Recovery	During	During	Recovery	During	
		Generation	20 to 52 sec		Primary	Delivery	Primary	Average	Period	Recovery	Recovery	Period	Recovery	
	Frequency	Lost	Average	Average	Frequency	Frequency	Frequency	Ramp	Target	Period	Period	Ramp	Period	
T	Hz	MW	Frequency	MW	Response	Response	Response	MW/scan	MW	MW	MW	MW	MW	633.000

$\mathrm{T}-72$ sec	$2: 26: 09$	60.027	633.000	-38.071	-38.071
$\mathrm{~T}-70$ sec	$2: 26: 11$	60.027	633.000	-38.071	-38.071
$\mathrm{~T}-68$ sec	$2: 26: 13$	60.026	633.000	-36.661	-36.661

T-66 sec	2:26:15	60.022	633.000			-31.019	-31.019								
T-64 sec	2:26:17	60.022	633.000			-31.019	-31.019								
T-62 sec	2:26:19	60.017	633.000			-23.968	-23.968								
T-60 sec	2:26:21	60.019	633.000			-26.791	-26.791		0.972	633.000					
T-58 sec	2:26:23	60.019	633.000			-26.791	-26.791		0.972	633.972					
T-56 sec	2:26:25	60.019	633.000			-26.791	-26.791		0.972	634.945					
T-54 sec	2:26:27	60.021	633.000			-29.610	-29.610		0.972	633.099					
T-52 sec	2:26:29	60.021	633.000			-29.610	-29.610		0.972	634.071					
T-50 sec	2:26:31	60.021	633.000			-29.610	-29.610		0.972	635.044					
T-48 sec	2:26:33	60.019	633.000			-26.791	-26.791		0.972	638.835					
T-46 sec	2:26:35	60.019	633.000			-26.791	-26.791		0.972	639.807					
T-44 sec	2:26:37	60.022	633.000			-31.019	-31.019		0.972	636.552					
T-42 sec	2:26:39	60.031	633.000			-43.708	-43.708		0.972	624.836					
T-40 sec	2:26:41	60.031	633.000			-43.708	-43.708		0.972	625.808					
T-38 sec	2:26:43	60.037	633.000			-52.168	-52.168		0.972	618.320					
T-36 sec	2:26:45	60.036	633.000			-50.759	-50.759		0.972	620.702					
T-34 sec	2:26:47	60.036	633.000			-50.759	-50.759		0.972	621.674					
T-32 sec	2:26:49	60.046	633.000			-64.862	-64.862		0.972	608.544					
T-30 sec	2:26:51	60.048	633.000			-67.680	-67.680		0.972	606.697					
T-28 sec	2:26:53	60.048	633.000			-67.680	-67.680		0.972	607.670					
T-26 sec	2:26:55	60.043	633.000			-60.629	-60.629		0.972	615.694					
T-24 sec	2:26:57	60.041	633.000			-57.811	-57.811		0.972	619.485					
T-22 sec	2:26:59	60.041	633.000			-57.811	-57.811		0.972	620.457					
T-20 sec	2:27:01	60.041	633.000			-57.811	-57.811		0.972	621.430					
T-18 sec	2:27:03	60.039	633.000			-54.992	-54.992		0.972	625.221					
T-16 sec	2:27:05	60.039	633.000	60.042	633.000	-54.992	-54.992		0.972	626.193					
T-14 sec	2:27:07	60.043	633.000	60.042	633.000	-60.629	-60.629		0.972	621.528					
T-12 sec	2:27:09	60.045	633.000	60.042	633.000	-63.447	-63.447		0.972	619.682					
T-10 sec	2:27:11	60.045	633.000	60.042	633.000	-63.447	-63.447		0.972	620.655					
T-08 sec	2:27:13	60.041	633.000	60.042	633.000	-57.811	-57.811		0.972	627.264					
T-06 sec	2:27:15	60.041	633.000	60.042	633.000	-57.811	-57.811		0.972	628.237					
T-04 sec	2:27:17	60.041	633.000	60.042	633.000	-57.811	-57.811		0.972	629.209					
T-02 sec	2:27:19	60.039	633.000	60.042	633.000	-54.992	-54.992		0.972	633.000					
T+0 sec	2:27:21	59.978	0.000			31.019	31.019		0.000	719.011					633
T+02 sec	2:27:23	59.978	0.000			31.019	31.019		-4.166	714.845	0.000	716.928	691.783	691.783	633
T+04 sec	2:27:25	59.836	0.000			231.242	231.242		-4.166	910.902	0.000	781.586	687.617	689.700	633
T+06 sec	2:27:27	59.836	0.000			231.242	231.242		-4.166	906.736	0.000	812.874	683.451	687.617	633
T+08 sec	2:27:29	59.869	0.000			184.711	184.711		-4.166	856.039	0.000	821.507	679.285	685.534	633
T+10 sec	2:27:31	59.891	0.000			153.692	153.692		-4.166	820.854	0.000	821.398	675.119	683.451	633
T+12 sec	2:27:33	59.891	0.000			153.692	153.692		-4.166	816.688	0.000	820.725	670.953	681.368	633
T+14 sec	2:27:35	59.88	0.000			169.198	169.198		-4.166	828.029	0.000	821.638	666.787	679.285	633
T+16 sec	2:27:37	59.875	0.000			176.250	176.250		-4.166	830.915	0.000	822.669	662.622	677.202	633
T+18 sec	2:27:39	59.875	0.000			176.250	176.250		-4.166	826.749	0.000	823.077	658.456	675.119	633
$\mathrm{T}+20 \mathrm{sec}$	2:27:41	59.883	0.000	59.889	0.000	164.971	164.971	848.792	-4.166	811.304	0.000	822.007	654.290	673.036	633
T+22 sec	2:27:43	59.886	0.000	59.889	0.000	160.738	160.738	848.792	-4.166	802.905	0.000	820.415	650.124	670.953	633
T+24 sec	2:27:45	59.886	0.000	59.889	0.000	160.738	160.738	848.792	-4.166	798.739	0.000	818.747	645.958	668.870	633

T+26 sec	2:27:47	59.885	0.000	59.889	0.000	162.152	162.152	848.792	-4.166	795.988	0.000	817.122	641.792	666.787	633
T+28 sec	2:27:49	59.888	0.000	59.889	0.000	157.919	157.919	848.792	-4.166	787.589	0.000	815.153	637.626	664.705	633
T+30 sec	2:27:51	59.888	0.000	59.889	0.000	157.919	157.919	848.792	-4.166	783.423	0.000	813.170	633.460	662.622	633
T+32 sec	2:27:53	59.89	0.000	59.889	0.000	155.101	155.101	848.792	-4.166	776.438	0.000	811.009	629.294	660.539	633
T+34 sec	2:27:55	59.894	0.000	59.889	0.000	149.459	149.459	848.792	-4.166	766.630	0.000	808.544	625.128	658.456	633
T+36 sec	2:27:57	59.894	0.000	59.889	0.000	149.459	149.459	848.792	-4.166	762.464	0.000	806.118	620.962	656.373	633
T+38 sec	2:27:59	59.893	0.000	59.889	0.000	150.868	150.868	848.792	-4.166	759.708	0.000	803.798	616.797	654.290	633
$\mathrm{T}+40 \mathrm{sec}$	2:28:01	59.894	0.000	59.889	0.000	149.459	149.459	848.792	-4.166	754.132	0.000	801.433	612.631	652.207	633
$\mathrm{T}+42 \mathrm{sec}$	2:28:03	59.894	0.000	59.889	0.000	149.459	149.459	848.792	-4.166	749.966	0.000	799.093	608.465	650.124	633
T+44 sec	2:28:05	59.891	0.000	59.889	0.000	153.692	153.692	848.792	-4.166	750.034	0.000	796.960	604.299	648.041	633
$\mathrm{T}+46 \mathrm{sec}$	2:28:07	59.885	0.000	59.889	0.000	162.152	162.152	848.792	-4.166	754.328	0.000	795.184	600.133	645.958	633
T+48 sec	2:28:09	59.885	0.000	59.889	0.000	162.152	162.152	848.792	-4.166	750.163	0.000	793.383	595.967	643.875	633
T+50 sec	2:28:11	59.885	0.000	59.889	0.000	162.152	162.152	848.792	-4.166	745.997	0.000	791.561	591.801	641.792	633
T+52 sec	2:28:13	59.887	0.000	59.889	0.000	159.329	159.329	848.792	-4.166	739.007	0.000	789.614	587.635	639.709	633
T+54 sec	2:28:15	59.887	0.000			159.329	159.329		-4.166	734.841	0.000	787.658	583.469	637.626	633
T+56 sec	2:28:17	59.888	0.000			157.919	157.919		-4.166	729.266	0.000	785.644	579.303	635.543	633
T+58 sec	2:28:19	59.89	0.000			155.101	155.101		-4.166	722.281	0.000	783.532	575.137	633.460	633
T+60 sec	2:28:21	59.89	0.000			155.101	155.101		-4.166	718.116	0.000	781.422	570.971	631.377	633
T+62 sec	2:28:23	59.889	0.000			156.510	156.510		-4.166	715.359	0.000	779.358	566.806	629.294	633
T+64 sec	2:28:25	59.873	0.000			179.068	179.068		-4.166	733.751	0.000	777.976	562.640	627.211	633
T+66 sec	2:28:27	59.873	0.000			179.068	179.068		-4.166	729.585	0.000	776.552	558.474	625.128	633
T+68 sec	2:28:29	59.857	0.000			201.632	201.632		-4.166	747.983	0.000	775.736	554.308	623.045	633
T+70 sec	2:28:31	59.852	0.000			208.678	208.678		-4.166	750.863	0.000	775.045	550.142	620.962	633
T+72 sec	2:28:33	59.852	0.000			208.678	208.678		-4.166	746.698	0.000	774.279	545.976	618.879	633
T+74 sec	2:28:35	59.858	0.000			200.218	200.218		-4.166	734.071	0.000	773.221	541.810	616.797	633
T+76 sec	2:28:37	59.866	0.000			188.938	188.938		-4.166	718.626	0.000	771.821	537.644	614.714	633
T+78 sec	2:28:39	59.866	0.000			188.938	188.938		-4.166	714.460	0.000	770.387	533.478	612.631	633
T+80 sec	2:28:41	59.865	0.000			190.348	190.348		-4.166	711.703	0.000	768.956	529.312	610.548	633
	2:28:43	59.866	0.000			188.938	188.938		-4.166	706.128	0.000	767.460	525.146	608.465	633
	2:28:45	59.866	0.000			188.938	188.938		-4.166	701.962	0.000	765.937	520.981	606.382	633
	2:28:47	59.871	0.000			181.892	181.892		-4.166	690.750	0.000	764.228	516.815	604.299	633
	2:28:49	59.879	0.000			170.608	170.608		-4.166	675.300	0.000	762.252	512.649	602.216	633
	2:28:51	59.879	0.000			170.608	170.608		-4.166	671.134	0.000	760.271	508.483	600.133	633
	2:28:53	59.88	0.000			169.198	169.198		-4.166	665.559	0.000	758.256	504.317	598.050	633
	2:28:55	59.886	0.000			160.738	160.738		-4.166	652.932	0.000	756.061	500.151	595.967	633
	2:28:57	59.886	0.000			160.738	160.738		-4.166	648.766	0.000	753.872	495.985	593.884	633
	2:28:59	59.89	0.000			155.101	155.101		-4.166	638.963	0.000	751.574	491.819	591.801	633
	2:29:01	59.889	0.000			156.510	156.510		-4.166	636.206	0.000	749.311	487.653	589.718	633
	2:29:03	59.889	0.000			156.510	156.510		-4.166	632.041	0.000	747.056	483.487	587.635	633
	2:29:05	59.893	0.000			150.868	150.868		-4.166	622.232	0.000	744.701	479.321	585.552	633
	2:29:07	59.903	0.000			136.770	136.770		-4.166	603.969	0.000	742.095	475.155	583.469	633
	2:29:09	59.903	0.000			136.770	136.770		-4.166	599.803	0.000	739.508	470.990	581.386	633
	2:29:11	59.902	0.000			138.179	138.179		-4.166	597.046	0.000	736.964	466.824	579.303	633
	2:29:13	59.904	0.000			135.361	135.361		-4.166	590.062	0.000	734.387	462.658	577.220	633
	2:29:15	59.904	0.000			135.361	135.361		-4.166	585.896	0.000	731.826	458.492	575.137	633

2:29:17	59.907	0.000	131.128	131.128	-4.166	577.497	0.000	729.211	454.326	573.054
2:29:19	59.916	0.000	118.439	118.439	-4.166	560.643	0.000	726.401	450.160	570.971
2:29:21	59.916	0.000	118.439	118.439	-4.166	556.477	0.000	723.616	445.994	568.889
2:29:23	59.916	0.000	118.439	118.439	-4.166	552.311	0.000	720.853	441.828	566.806
2:29:25	59.918	0.000	115.621	115.621	-4.166	545.326	0.000	718.066	437.662	564.723
2:29:27	59.918	0.000	115.621	115.621	-4.166	541.161	0.000	715.302	433.496	562.640
2:29:29	59.92	0.000	112.803	112.803	-4.166	534.176	0.000	712.516	429.330	560.557
2:29:31	59.92	0.000	112.803	112.803	-4.166	530.010	0.000	709.751	425.165	558.474
2:29:33	59.92	0.000	112.803	112.803	-4.166	525.844	0.000	707.006	420.999	556.391
2:29:35	59.917	0.000	117.030	117.030	-4.166	525.906	0.000	704.342	416.833	554.308
2:29:37	59.921	0.000	111.388	111.388	-4.166	516.098	0.000	701.614	412.667	552.225
2:29:39	59.921	0.000	111.388	111.388	-4.166	511.932	0.000	698.905	408.501	550.142
2:29:41	59.923	0.000	108.570	108.570	-4.166	504.948	0.000	696.173	404.335	548.059
2:29:43	59.925	0.000	105.751	105.751	-4.166	497.963	0.000	693.420	400.169	545.976
2:29:45	59.925	0.000	105.751	105.751	-4.166	493.797	0.000	690.685	396.003	543.893
2:29:47	59.928	0.000	101.518	101.518	-4.166	485.398	0.000	687.911	391.837	541.810
2:29:49	59.932	0.000	95.881	95.881	-4.166	475.596	0.000	685.080	387.671	539.727
2:29:51	59.932	0.000	95.881	95.881	-4.166	471.430	0.000	682.269	383.505	537.644
2:29:53	59.927	0.000	102.933	102.933	-4.166	474.315	0.000	679.568	379.339	535.561
2:29:55	59.931	0.000	97.290	97.290	-4.166	464.507	0.000	676.811	375.174	533.478
2:29:57	59.931	0.000	97.290	97.290	-4.166	460.341	0.000	674.071	371.008	531.395
2:29:59	59.929	0.000	100.109	100.109	-4.166	458.994	0.000	671.383	366.842	529.312
2:30:01	59.931	0.000	97.290	97.290	-4.166	452.009	0.000	668.674	362.676	527.229
2:30:03	59.931	0.000	97.290	97.290	-4.166	447.843	0.000	665.981	358.510	525.146
2:30:05	59.937	0.000	88.830	88.830	-4.166	435.217	0.000	663.201	354.344	523.063
2:30:07	59.945	0.000	77.550	77.550	-4.166	419.772	0.000	660.303	350.178	520.981
2:30:09	59.945	0.000	77.550	77.550	-4.166	415.606	0.000	657.424	346.012	518.898
2:30:11	59.949	0.000	71.908	71.908	-4.166	405.798	0.000	654.498	341.846	516.815
2:30:13	59.942	0.000	81.778	81.778	-4.166	411.502	0.000	651.705	337.680	514.732
2:30:15	59.942	0.000	81.778	81.778	-4.166	407.336	0.000	648.928	333.514	512.649
2:30:17	59.941	0.000	83.187	83.187	-4.166	404.579	0.000	646.183	329.349	510.566
2:30:19	59.945	0.000	77.550	77.550	-4.166	394.776	0.000	643.389	325.183	508.483
2:30:21	59.945	0.000	77.550	77.550	-4.166	390.610	0.000	640.612	321.017	506.400
2:30:23	59.948	0.000	73.317	73.317	-4.166	382.211	0.000	637.803	316.851	504.317
2:30:25	59.949	0.000	71.908	71.908	-4.166	376.636	0.000	634.995	312.685	502.234
2:30:27	59.949	0.000	71.908	71.908	-4.166	372.470	0.000	632.202	308.519	500.151
2:30:29	59.951	0.000	69.090	69.090	-4.166	365.486	0.000	629.394	304.353	498.068
2:30:31	59.953	0.000	66.271	66.271	-4.166	358.502	0.000	626.572	300.187	495.985
2:30:33	59.953	0.000	66.271	66.271	-4.166	354.336	0.000	623.766	296.021	493.902
2:30:35	59.951	0.000	69.090	69.090	-4.166	352.988	0.000	621.003	291.855	491.819
2:30:37	59.952	0.000	67.680	67.680	-4.166	347.413	0.000	618.239	287.689	489.736
2:30:39	59.952	0.000	67.680	67.680	-4.166	343.247	0.000	615.489	283.523	487.653
2:30:41	59.952	0.000	67.680	67.680	-4.166	339.081	0.000	612.753	279.358	485.570
2:30:43	59.952	0.000	67.680	67.680	-4.166	334.915	0.000	610.029	275.192	483.487
2:30:45	59.952	0.000	67.680	67.680	-4.166	330.749	0.000	607.317	271.026	481.404
2:30:47	59.954	0.000	64.862	64.862	-4.166	323.765	0.000	604.591	266.860	479.321

2:30:49	59.953	0.000	66.271	66.271	-4.166	321.008	0.000	601.890	262.694	477.238
2:30:51	59.953	0.000	66.271	66.271	-4.166	316.842	0.000	599.201	258.528	475.155
2:30:53	59.953	0.000	66.271	66.271	-4.166	312.677	0.000	596.523	254.362	473.073
2:30:55	59.954	0.000	64.862	64.862	-4.166	307.101	0.000	593.843	250.196	470.990
2:30:57	59.954	0.000	64.862	64.862	-4.166	302.935	0.000	591.174	246.030	468.907
2:30:59	59.954	0.000	64.862	64.862	-4.166	298.770	0.000	588.516	241.864	466.824
2:31:01	59.957	0.000	60.629	60.629	-4.166	290.371	0.000	585.830	237.698	464.741
2:31:03	59.957	0.000	60.629	60.629	-4.166	286.205	0.000	583.155	233.533	462.658
2:31:05	59.956	0.000	62.038	62.038	-4.166	283.448	0.000	580.503	229.367	460.575
2:31:07	59.956	0.000	62.038	62.038	-4.166	279.282	0.000	577.860	225.201	458.492
2:31:09	59.956	0.000	62.038	62.038	-4.166	275.116	0.000	575.228	221.035	456.409
2:31:11	59.955	0.000	63.447	63.447	-4.166	272.359	0.000	572.617	216.869	454.326
2:31:13	59.961	0.000	54.992	54.992	-4.166	259.738	0.000	569.943	212.703	452.243
2:31:15	59.961	0.000	54.992	54.992	-4.166	255.572	0.000	567.279	208.537	450.160
2:31:17	59.962	0.000	53.577	53.577	-4.166	249.992	0.000	564.612	204.371	448.077
2:31:19	59.968	0.000	45.122	45.122	-4.166	237.371	0.000	561.885	200.205	445.994
2:31:21	59.968	0.000	45.122	45.122	-4.166	233.205	0.000	559.169	196.039	443.911
2:31:23	59.966	0.000	47.941	47.941	-4.166	231.857	0.000	556.486	191.873	441.828
2:31:25	59.968	0.000	45.122	45.122	-4.166	224.873	0.000	553.790	187.707	439.745
2:31:27	59.968	0.000	45.122	45.122	-4.166	220.707	0.000	551.104	183.542	437.662
2:31:29	59.97	0.000	42.298	42.298	-4.166	213.717	0.000	548.405	179.376	435.579
2:31:31	59.97	0.000	42.298	42.298	-4.166	209.551	0.000	545.715	175.210	433.496
2:31:33	59.97	0.000	42.298	42.298	-4.166	205.385	0.000	543.036	171.044	431.413
2:31:35	59.969	0.000	43.708	43.708	-4.166	202.629	0.000	540.376	166.878	429.330
2:31:37	59.97	0.000	42.298	42.298	-4.166	197.053	0.000	537.715	162.712	427.247
2:31:39	59.97	0.000	42.298	42.298	-4.166	192.888	0.000	535.062	158.546	425.165
2:31:41	59.971	0.000	40.889	40.889	-4.166	187.312	0.000	532.408	154.380	423.082
2:31:43	59.973	0.000	38.071	38.071	-4.166	180.328	0.000	529.741	150.214	420.999
2:31:45	59.973	0.000	38.071	38.071	-4.166	176.162	0.000	527.082	146.048	418.916
2:31:47	59.976	0.000	33.838	33.838	-4.166	167.763	0.000	524.401	141.882	416.833
2:31:49	59.978	0.000	31.019	31.019	-4.166	160.779	0.000	521.707	137.717	414.750
2:31:51	59.978	0.000	31.019	31.019	-4.166	156.613	0.000	519.023	133.551	412.667
2:31:53	59.976	0.000	33.838	33.838	-4.166	155.265	0.000	516.367	129.385	410.584
2:31:55	59.976	0.000	33.838	33.838	-4.166	151.100	0.000	513.720	125.219	408.501
2:31:57	59.976	0.000	33.838	33.838	-4.166	146.934	0.000	511.082	121.053	406.418
2:31:59	59.978	0.000	31.019	31.019	-4.166	139.949	0.000	508.431	116.887	404.335
2:32:01	59.98	0.000	28.201	28.201	-4.166	132.965	0.000	505.768	112.721	402.252
2:32:03	59.98	0.000	28.201	28.201	-4.166	128.799	0.000	503.113	108.555	400.169
2:32:05	59.982	0.000	25.382	25.382	-4.166	121.815	0.000	500.447	104.389	398.086
2:32:07	59.98	0.000	28.201	28.201	-4.166	120.467	0.000	497.808	100.223	396.003
2:32:09	59.98	0.000	28.201	28.201	-4.166	116.301	0.000	495.177	96.057	393.920
2:32:11	59.979	0.000	29.610	29.610	-4.166	113.545	0.000	492.563	91.891	391.837
2:32:13	59.979	0.000	29.610	29.610	-4.166	109.379	0.000	489.956	87.726	389.754
2:32:15	59.979	0.000	29.610	29.610	-4.166	105.213	0.000	487.357	83.560	387.671
2:32:17	59.983	0.000	23.968	23.968	-4.166	95.405	0.000	484.726	79.394	385.588
2:32:19	59.984	0.000	22.558	22.558	-4.166	89.829	0.000	482.094	75.228	383.505

2:32:21	59.984	0.000	22.558	22.558	-4.166	85.663	0.000	479.468	71.062	381.422
2:32:23	59.988	0.000	16.921	16.921	-4.166	75.861	0.000	476.813	66.896	379.339
2:32:25	59.987	0.000	18.331	18.331	-4.166	73.104	0.000	474.174	62.730	377.257
2:32:27	59.987	0.000	18.331	18.331	-4.166	68.938	0.000	471.543	58.564	375.174
2:32:29	59.987	0.000	18.331	18.331	-4.166	64.772	0.000	468.918	54.398	373.091
2:32:31	59.993	0.000	9.870	9.870	-4.166	52.145	0.000	466.247	50.232	371.008
2:32:33	59.993	0.000	9.870	9.870	-4.166	47.980	0.000	463.583	46.066	368.925
2:32:35	59.992	0.000	11.279	11.279	-4.166	45.223	0.000	460.935	41.901	366.842
2:32:37	59.989	0.000	15.512	15.512	-4.166	45.290	0.000	458.321	37.735	364.759
2:32:39	59.989	0.000	15.512	15.512	-4.166	41.124	0.000	455.713	33.569	362.676
2:32:41	59.986	0.000	19.740	19.740	-4.166	41.186	0.000	453.139	29.403	360.593
2:32:43	59.983	0.000	23.968	23.968	-4.166	41.248	0.000	450.596	25.237	358.510
2:32:45	59.983	0.000	23.968	23.968	-4.166	37.082	0.000	448.059	21.071	356.427
2:32:47	59.988	0.000	16.921	16.921	-4.166	25.870	0.000	445.485	16.905	354.344
2:32:49	59.996	0.000	5.642	5.642	-4.166	10.425	0.000	442.848	12.739	352.261
2:32:51	59.996	0.000	5.642	5.642	-4.166	6.259	0.000	440.218	8.573	350.178
2:32:53	59.998	0.000	2.818	2.818	-4.166	-0.731	0.000	437.578	4.407	348.095
2:32:55	60.001	0.000	-1.409	-1.409	0.000	-4.959	0.000	434.943	4.407	346.037
2:32:57	60.001	0.000	-1.409	-1.409	0.000	-4.959	0.000	432.341	4.407	344.004
2:32:59	59.999	0.000	1.409	1.409	0.000	-2.140	0.000	429.785	4.407	341.994
2:33:01	59.999	0.000	1.409	1.409	0.000	-2.140	0.000	427.259	4.407	340.008
2:33:03	59.999	0.000	1.409	1.409	0.000	-2.140	0.000	424.762	4.407	338.046
2:33:05	60.002	0.000	-2.818	-2.818	0.000	-6.368	0.000	422.270	4.407	336.106
2:33:07	60.007	0.000	-9.870	-9.870	0.000	-13.419	0.000	419.766	4.407	334.189
2:33:09	60.007	0.000	-9.870	-9.870	0.000	-13.419	0.000	417.291	4.407	332.293
2:33:11	60.008	0.000	-11.279	-11.279	0.000	-14.829	0.000	414.836	4.407	330.420
2:33:13	60.014	0.000	-19.740	-19.740	0.000	-23.289	0.000	412.360	4.407	328.567
2:33:15	60.014	0.000	-19.740	-19.740	0.000	-23.289	0.000	409.913	4.407	326.736
2:33:17	60.017	0.000	-23.968	-23.968	0.000	-27.517	0.000	407.469	4.407	324.925
2:33:19	60.021	0.000	-29.610	-29.610	0.000	-33.159	0.000	405.021	4.407	323.135
2:33:21	60.021	0.000	-29.610	-29.610	0.000	-33.159	0.000	402.600	4.407	321.364
2:33:23	60.017	0.000	-23.968	-23.968	0.000	-27.517	0.000	400.237	4.407	319.613
2:33:25	60.019	0.000	-26.791	-26.791	0.000	-30.341	0.000	397.884	4.407	317.881
2:33:27	60.019	0.000	-26.791	-26.791	0.000	-30.341	0.000	395.557	4.407	316.168
2:33:29	60.023	0.000	-32.428	-32.428	0.000	-35.978	0.000	393.224	4.407	314.473
2:33:31	60.025	0.000	-35.252	-35.252	0.000	-38.802	0.000	390.902	4.407	312.797
2:33:33	60.025	0.000	-35.252	-35.252	0.000	-38.802	0.000	388.604	4.407	311.139
2:33:35	60.021	0.000	-29.610	-29.610	0.000	-33.159	0.000	386.360	4.407	309.499
2:33:37	60.024	0.000	-33.838	-33.838	0.000	-37.387	0.000	384.118	4.407	307.876
2:33:39	60.024	0.000	-33.838	-33.838	0.000	-37.387	0.000	381.900	4.407	306.271
2:33:41	60.024	0.000	-33.838	-33.838	0.000	-37.387	0.000	379.705	4.407	304.682
2:33:43	60.02	0.000	-28.201	-28.201	0.000	-31.750	0.000	377.562	4.407	303.110
2:33:45	60.02	0.000	-28.201	-28.201	0.000	-31.750	0.000	375.441	4.407	301.554
2:33:47	60.025	0.000	-35.252	-35.252	0.000	-38.802	0.000	373.306	4.407	300.014
2:33:49	60.02	0.000	-28.201	-28.201	0.000	-31.750	0.000	371.228	4.407	298.491
2:33:51	60.02	0.000	-28.201	-28.201	0.000	-31.750	0.000	369.172	4.407	296.983

2:33:53	60.02	0.000	-28.201	-28.201	0.000	-31.750	0.000	367.137	4.407	295.490
2:33:55	60.022	0.000	-31.019	-31.019	0.000	-34.569	0.000	365.108	4.407	294.012
2:33:57	60.022	0.000	-31.019	-31.019	0.000	-34.569	0.000	363.100	4.407	292.550
2:33:59	60.022	0.000	-31.019	-31.019	0.000	-34.569	0.000	361.112	4.407	291.102
2:34:01	60.021	0.000	-29.610	-29.610	0.000	-33.159	0.000	359.150	4.407	289.668
2:34:03	60.021	0.000	-29.610	-29.610	0.000	-33.159	0.000	357.208	4.407	288.249
2:34:05	60.023	0.000	-32.428	-32.428	0.000	-35.978	0.000	355.271	4.407	286.844
2:34:07	60.022	0.000	-31.019	-31.019	0.000	-34.569	0.000	353.360	4.407	285.453
2:34:09	60.022	0.000	-31.019	-31.019	0.000	-34.569	0.000	351.468	4.407	284.075
2:34:11	60.019	0.000	-26.791	-26.791	0.000	-30.341	0.000	349.614	4.407	282.711
2:34:13	60.018	0.000	-25.382	-25.382	0.000	-28.932	0.000	347.786	4.407	281.360
2:34:15	60.018	0.000	-25.382	-25.382	0.000	-28.932	0.000	345.974	4.407	280.022
2:34:17	60.018	0.000	-25.382	-25.382	0.000	-28.932	0.000	344.181	4.407	278.697
2:34:19	60.019	0.000	-26.791	-26.791	0.000	-30.341	0.000	342.397	4.407	277.384
2:34:21	60.019	0.000	-26.791	-26.791	0.000	-30.341	0.000	340.631	4.407	276.084
2:34:23	60.019	0.000	-26.791	-26.791	0.000	-30.341	0.000	338.881	4.407	274.797
2:34:25	60.015	0.000	-21.149	-21.149	0.000	-24.699	0.000	337.174	4.407	273.521
2:34:27	60.015	0.000	-21.149	-21.149	0.000	-24.699	0.000	335.483	4.407	272.258
2:34:29	60.016	0.000	-22.558	-22.558	0.000	-26.108	0.000	333.801	4.407	271.006
2:34:31	60.013	0.000	-18.331	-18.331	0.000	-21.880	0.000	332.154	4.407	269.766
2:34:33	60.013	0.000	-18.331	-18.331	0.000	-21.880	0.000	330.523	4.407	268.538
2:34:35	60.012	0.000	-16.921	-16.921	0.000	-20.471	0.000	328.913	4.407	267.321
2:34:37	60.01	0.000	-14.098	-14.098	0.000	-17.647	0.000	327.330	4.407	266.115
2:34:39	60.01	0.000	-14.098	-14.098	0.000	-17.647	0.000	325.762	4.407	264.920
2:34:41	60.007	0.000	-9.870	-9.870	0.000	-13.419	0.000	324.227	4.407	263.735
2:34:43	60.009	0.000	-12.688	-12.688	0.000	-16.238	0.000	322.694	4.407	262.562
2:34:45	60.009	0.000	-12.688	-12.688	0.000	-16.238	0.000	321.174	4.407	261.399
2:34:47	60.009	0.000	-12.688	-12.688	0.000	-16.238	0.000	319.668	4.407	260.247
2:34:49	60.003	0.000	-4.228	-4.228	0.000	-7.777	0.000	318.212	4.407	259.105
2:34:51	60.003	0.000	-4.228	-4.228	0.000	-7.777	0.000	316.770	4.407	257.973
2:34:53	59.999	0.000	1.409	1.409	0.000	-2.140	0.000	315.365	4.407	256.851
2:34:55	59.992	0.000	11.279	11.279	0.000	7.730	0.000	314.016	4.407	255.738
2:34:57	59.992	0.000	11.279	11.279	0.000	7.730	0.000	312.678	4.407	254.636
2:34:59	59.991	0.000	12.688	12.688	0.000	9.139	0.000	311.359	4.407	253.543
2:35:01	59.992	0.000	11.279	11.279	0.000	7.730	0.000	310.044	4.407	252.460
2:35:03	59.992	0.000	11.279	11.279	0.000	7.730	0.000	308.741	4.407	251.386
2:35:05	59.988	0.000	16.921	16.921	0.000	13.372	0.000	307.473	4.407	250.322
2:35:07	59.985	0.000	21.149	21.149	0.000	17.600	0.000	306.235	4.407	249.266
2:35:09	59.985	0.000	21.149	21.149	0.000	17.600	0.000	305.006	4.407	248.220
2:35:11	59.984	0.000	22.558	22.558	0.000	19.009	0.000	303.795	4.407	247.183
2:35:13	59.984	0.000	22.558	22.558	0.000	19.009	0.000	302.593	4.407	246.154
2:35:15	59.984	0.000	22.558	22.558	0.000	19.009	0.000	301.401	4.407	245.134
2:35:17	59.982	0.000	25.382	25.382	0.000	21.833	0.000	300.232	4.407	244.122
2:35:19	59.982	0.000	25.382	25.382	0.000	21.833	0.000	299.072	4.407	243.119
2:35:21	59.982	0.000	25.382	25.382	0.000	21.833	0.000	297.921	4.407	242.125
2:35:23	59.979	0.000	29.610	29.610	0.000	26.060	0.000	296.798	4.407	241.138

2:35:25	59.976	0.000	33.838	33.838	0.000	30.288	0.000	295.701	4.407	240.160
2:35:27	59.976	0.000	33.838	33.838	0.000	30.288	0.000	294.613	4.407	239.190
2:35:29	59.976	0.000	33.838	33.838	0.000	30.288	0.000	293.534	4.407	238.228
2:35:31	59.982	0.000	25.382	25.382	0.000	21.833	0.000	292.430	4.407	237.273
2:35:33	59.982	0.000	25.382	25.382	0.000	21.833	0.000	291.334	4.407	236.327
2:35:35	59.978	0.000	31.019	31.019	0.000	27.470	0.000	290.270	4.407	235.388
2:35:37	59.974	0.000	36.661	36.661	0.000	33.112	0.000	289.238	4.407	234.456
2:35:39	59.974	0.000	36.661	36.661	0.000	33.112	0.000	288.213	4.407	233.533
2:35:41	59.976	0.000	33.838	33.838	0.000	30.288	0.000	287.186	4.407	232.616
2:35:43	59.977	0.000	32.428	32.428	0.000	28.879	0.000	286.161	4.407	231.707
2:35:45	59.977	0.000	32.428	32.428	0.000	28.879	0.000	285.144	4.407	230.805
2:35:47	59.975	0.000	35.252	35.252	0.000	31.703	0.000	284.146	4.407	229.910
2:35:49	59.969	0.000	43.708	43.708	0.000	40.158	0.000	283.189	4.407	229.022
2:35:51	59.969	0.000	43.708	43.708	0.000	40.158	0.000	282.240	4.407	228.141
2:35:53	59.97	0.000	42.298	42.298	0.000	38.749	0.000	281.292	4.407	227.267
2:35:55	59.973	0.000	38.071	38.071	0.000	34.521	0.000	280.336	4.407	226.400
2:35:57	59.973	0.000	38.071	38.071	0.000	34.521	0.000	279.387	4.407	225.540
2:35:59	59.978	0.000	31.019	31.019	0.000	27.470	0.000	278.418	4.407	224.686
2:36:01	59.978	0.000	31.019	31.019	0.000	27.470	0.000	277.456	4.407	223.839
2:36:03	59.978	0.000	31.019	31.019	0.000	27.470	0.000	276.502	4.407	222.998
2:36:05	59.975	0.000	35.252	35.252	0.000	31.703	0.000	275.571	4.407	222.164
2:36:07	59.976	0.000	33.838	33.838	0.000	30.288	0.000	274.642	4.407	221.336
2:36:09	59.976	0.000	33.838	33.838	0.000	30.288	0.000	273.720	4.407	220.514
2:36:11	59.975	0.000	35.252	35.252	0.000	31.703	0.000	272.810	4.407	219.699
2:36:13	59.969	0.000	43.708	43.708	0.000	40.158	0.000	271.939	4.407	218.889
2:36:15	59.969	0.000	43.708	43.708	0.000	40.158	0.000	271.074	4.407	218.086
2:36:17	59.966	0.000	47.941	47.941	0.000	44.391	0.000	270.231	4.407	217.289
2:36:19	59.966	0.000	47.941	47.941	0.000	44.391	0.000	269.395	4.407	216.497
2:36:21	59.966	0.000	47.941	47.941	0.000	44.391	0.000	268.565	4.407	215.712
2:36:23	59.969	0.000	43.708	43.708	0.000	40.158	0.000	267.725	4.407	214.932
2:36:25	59.968	0.000	45.122	45.122	0.000	41.573	0.000	266.897	4.407	214.158
2:36:27	59.968	0.000	45.122	45.122	0.000	41.573	0.000	266.074	4.407	213.390
2:36:29	59.965	0.000	49.350	49.350	0.000	45.800	0.000	265.273	4.407	212.627
2:36:31	59.97	0.000	42.298	42.298	0.000	38.749	0.000	264.453	4.407	211.870
2:36:33	59.97	0.000	42.298	42.298	0.000	38.749	0.000	263.638	4.407	211.118
2:36:35	59.972	0.000	39.480	39.480	0.000	35.930	0.000	262.819	4.407	210.372
2:36:37	59.967	0.000	46.531	46.531	0.000	42.982	0.000	262.031	4.407	209.631
2:36:39	59.967	0.000	46.531	46.531	0.000	42.982	0.000	261.248	4.407	208.895
2:36:41	59.969	0.000	43.708	43.708	0.000	40.158	0.000	260.462	4.407	208.165
2:36:43	59.969	0.000	43.708	43.708	0.000	40.158	0.000	259.680	4.407	207.440
2:36:45	59.969	0.000	43.708	43.708	0.000	40.158	0.000	258.905	4.407	206.720
2:36:47	59.967	0.000	46.531	46.531	0.000	42.982	0.000	258.144	4.407	206.005
2:36:49	59.966	0.000	47.941	47.941	0.000	44.391	0.000	257.394	4.407	205.295
2:36:51	59.966	0.000	47.941	47.941	0.000	44.391	0.000	256.650	4.407	204.590
2:36:53	59.965	0.000	49.350	49.350	0.000	45.800	0.000	255.915	4.407	203.890
2:36:55	59.967	0.000	46.531	46.531	0.000	42.982	0.000	255.176	4.407	203.195

2:36:57	59.967	0.000	46.531	46.531	0.000	42.982	0.000	254.441	4.407	202.505
2:36:59	59.965	0.000	49.350	49.350	0.000	45.800	0.000	253.722	4.407	201.820
2:37:01	59.964	0.000	50.759	50.759	0.000	47.210	0.000	253.012	4.407	201.139
2:37:03	59.964	0.000	50.759	50.759	0.000	47.210	0.000	252.307	4.407	200.463
2:37:05	59.97	0.000	42.298	42.298	0.000	38.749	0.000	251.579	4.407	199.791
2:37:07	59.969	0.000	43.708	43.708	0.000	40.158	0.000	250.859	4.407	199.125
2:37:09	59.969	0.000	43.708	43.708	0.000	40.158	0.000	250.145	4.407	198.462
2:37:11	59.968	0.000	45.122	45.122	0.000	41.573	0.000	249.441	4.407	197.805
2:37:13	59.965	0.000	49.350	49.350	0.000	45.800	0.000	248.755	4.407	197.151
2:37:15	59.965	0.000	49.350	49.350	0.000	45.800	0.000	248.074	4.407	196.502
2:37:17	59.97	0.000	42.298	42.298	0.000	38.749	0.000	247.374	4.407	195.858
2:37:19	59.968	0.000	45.122	45.122	0.000	41.573	0.000	246.688	4.407	195.217
2:37:21	59.968	0.000	45.122	45.122	0.000	41.573	0.000	246.006	4.407	194.581
2:37:23	59.965	0.000	49.350	49.350	0.000	45.800	0.000	245.343	4.407	193.949
2:37:25	59.969	0.000	43.708	43.708	0.000	40.158	0.000	244.666	4.407	193.322
2:37:27	59.969	0.000	43.708	43.708	0.000	40.158	0.000	243.993	4.407	192.698
2:37:29	59.967	0.000	46.531	46.531	0.000	42.982	0.000	243.334	4.407	192.079
2:37:31	59.966	0.000	47.941	47.941	0.000	44.391	0.000	242.684	4.407	191.464
2:37:33	59.966	0.000	47.941	47.941	0.000	44.391	0.000	242.038	4.407	190.852
2:37:35	59.979	0.000	29.610	29.610	0.000	26.060	0.000	241.337	4.407	190.245
2:37:37	59.983	0.000	23.968	23.968	0.000	20.418	0.000	240.622	4.407	189.642
2:37:39	59.983	0.000	23.968	23.968	0.000	20.418	0.000	239.912	4.407	189.042
2:37:41	59.974	0.000	36.661	36.661	0.000	33.112	0.000	239.247	4.407	188.447
2:37:43	59.965	0.000	49.350	49.350	0.000	45.800	0.000	238.627	4.407	187.855
2:37:45	59.965	0.000	49.350	49.350	0.000	45.800	0.000	238.011	4.407	187.267
2:37:47	59.962	0.000	53.577	53.577	0.000	50.028	0.000	237.412	4.407	186.683
2:37:49	59.961	0.000	54.992	54.992	0.000	51.443	0.000	236.822	4.407	186.102
2:37:51	59.961	0.000	54.992	54.992	0.000	51.443	0.000	236.235	4.407	185.525
2:37:53	59.961	0.000	54.992	54.992	0.000	51.443	0.000	235.652	4.407	184.952
2:37:55	59.963	0.000	52.168	52.168	0.000	48.619	0.000	235.064	4.407	184.383
2:37:57	59.963	0.000	52.168	52.168	0.000	48.619	0.000	234.480	4.407	183.817
2:37:59	59.959	0.000	57.811	57.811	0.000	54.261	0.000	233.916	4.407	183.254
2:38:01	59.951	0.000	69.090	69.090	0.000	65.540	0.000	233.392	4.407	182.695
2:38:03	59.951	0.000	69.090	69.090	0.000	65.540	0.000	232.871	4.407	182.140
2:38:05	59.953	0.000	66.271	66.271	0.000	62.722	0.000	232.344	4.407	181.588
2:38:07	59.957	0.000	60.629	60.629	0.000	57.079	0.000	231.803	4.407	181.039
2:38:09	59.957	0.000	60.629	60.629	0.000	57.079	0.000	231.265	4.407	180.494
2:38:11	59.956	0.000	62.038	62.038	0.000	58.489	0.000	230.735	4.407	179.952
2:38:13	59.963	0.000	52.168	52.168	0.000	48.619	0.000	230.178	4.407	179.414
2:38:15	59.963	0.000	52.168	52.168	0.000	48.619	0.000	229.625	4.407	178.879
2:38:17	59.961	0.000	54.992	54.992	0.000	51.443	0.000	229.083	4.407	178.347
2:38:19	59.963	0.000	52.168	52.168	0.000	48.619	0.000	228.536	4.407	177.818
2:38:21	59.963	0.000	52.168	52.168	0.000	48.619	0.000	227.993	4.407	177.293
2:38:23	59.963	0.000	52.168	52.168	0.000	48.619	0.000	227.452	4.407	176.770
2:38:25	59.968	0.000	45.122	45.122	0.000	41.573	0.000	226.894	4.407	176.251
2:38:27	59.968	0.000	45.122	45.122	0.000	41.573	0.000	226.339	4.407	175.735

2:38:29	59.968	0.000	45.122	45.122	0.000	41.573	0.000	225.788	4.407	175.222
2:38:31	59.97	0.000	42.298	42.298	0.000	38.749	0.000	225.231	4.407	174.712
2:38:33	59.97	0.000	42.298	42.298	0.000	38.749	0.000	224.678	4.407	174.205
2:38:35	59.973	0.000	38.071	38.071	0.000	34.521	0.000	224.115	4.407	173.702
2:38:37	59.965	0.000	49.350	49.350	0.000	45.800	0.000	223.589	4.407	173.201
2:38:39	59.965	0.000	49.350	49.350	0.000	45.800	0.000	223.066	4.407	172.703
2:38:41	59.967	0.000	46.531	46.531	0.000	42.982	0.000	222.538	4.407	172.208
2:38:43	59.972	0.000	39.480	39.480	0.000	35.930	0.000	221.993	4.407	171.716
2:38:45	59.972	0.000	39.480	39.480	0.000	35.930	0.000	221.450	4.407	171.227
2:38:47	59.976	0.000	33.838	33.838	0.000	30.288	0.000	220.894	4.407	170.740
2:38:49	59.969	0.000	43.708	43.708	0.000	40.158	0.000	220.371	4.407	170.257
2:38:51	59.969	0.000	43.708	43.708	0.000	40.158	0.000	219.850	4.407	169.776
2:38:53	59.973	0.000	38.071	38.071	0.000	34.521	0.000	219.316	4.407	169.298
2:38:55	59.978	0.000	31.019	31.019	0.000	27.470	0.000	218.764	4.407	168.823
2:38:57	59.978	0.000	31.019	31.019	0.000	27.470	0.000	218.216	4.407	168.350
2:38:59	59.981	0.000	26.791	26.791	0.000	23.242	0.000	217.659	4.407	167.881
2:39:01	59.981	0.000	26.791	26.791	0.000	23.242	0.000	217.105	4.407	167.414
2:39:03	59.981	0.000	26.791	26.791	0.000	23.242	0.000	216.555	4.407	166.949
2:39:05	59.982	0.000	25.382	25.382	0.000	21.833	0.000	216.003	4.407	166.487
2:39:07	59.984	0.000	22.558	22.558	0.000	19.009	0.000	215.446	4.407	166.028
2:39:09	59.984	0.000	22.558	22.558	0.000	19.009	0.000	214.893	4.407	165.572
2:39:11	59.982	0.000	25.382	25.382	0.000	21.833	0.000	214.351	4.407	165.118
2:39:13	59.979	0.000	29.610	29.610	0.000	26.060	0.000	213.823	4.407	164.666
2:39:15	59.979	0.000	29.610	29.610	0.000	26.060	0.000	213.299	4.407	164.217
2:39:17	59.98	0.000	28.201	28.201	0.000	24.651	0.000	212.773	4.407	163.771
2:39:19	59.978	0.000	31.019	31.019	0.000	27.470	0.000	212.259	4.407	163.327
2:39:21	59.978	0.000	31.019	31.019	0.000	27.470	0.000	211.747	4.407	162.886
2:39:23	59.98	0.000	28.201	28.201	0.000	24.651	0.000	211.230	4.407	162.447
2:39:25	59.98	0.000	28.201	28.201	0.000	24.651	0.000	210.716	4.407	162.010
2:39:27	59.98	0.000	28.201	28.201	0.000	24.651	0.000	210.205	4.407	161.576
2:39:29	59.978	0.000	31.019	31.019	0.000	27.470	0.000	209.704	4.407	161.144
2:39:31	59.972	0.000	39.480	39.480	0.000	35.930	0.000	209.229	4.407	160.715
2:39:33	59.972	0.000	39.480	39.480	0.000	35.930	0.000	208.757	4.407	160.288
2:39:35	59.971	0.000	40.889	40.889	0.000	37.340	0.000	208.291	4.407	159.863
2:39:37	59.974	0.000	36.661	36.661	0.000	33.112	0.000	207.817	4.407	159.440
2:39:39	59.974	0.000	36.661	36.661	0.000	33.112	0.000	207.344	4.407	159.020
2:39:41	59.975	0.000	35.252	35.252	0.000	31.703	0.000	206.871	4.407	158.602
2:39:43	59.972	0.000	39.480	39.480	0.000	35.930	0.000	206.411	4.407	158.187
2:39:45	59.972	0.000	39.480	39.480	0.000	35.930	0.000	205.954	4.407	157.773
2:39:47	59.969	0.000	43.708	43.708	0.000	40.158	0.000	205.511	4.407	157.362
2:39:49	59.974	0.000	36.661	36.661	0.000	33.112	0.000	205.051	4.407	156.953
2:39:51	59.974	0.000	36.661	36.661	0.000	33.112	0.000	204.594	4.407	156.546
2:39:53	59.972	0.000	39.480	39.480	0.000	35.930	0.000	204.147	4.407	156.142
2:39:55	59.972	0.000	39.480	39.480	0.000	35.930	0.000	203.702	4.407	155.739
2:39:57	59.972	0.000	39.480	39.480	0.000	35.930	0.000	203.259	4.407	155.339
2:39:59	59.977	0.000	32.428	32.428	0.000	28.879	0.000	202.800	4.407	154.941

2:40:01	59.978	0.000	31.019	31.019	0.000	27.470	0.000	202.340	4.407	154.545	633
2:40:03	59.978	0.000	31.019	31.019	0.000	27.470	0.000	201.882	4.407	154.151	633
2:40:05	59.976	0.000	33.838	33.838	0.000	30.288	0.000	201.434	4.407	153.759	633
2:40:07	59.974	0.000	36.661	36.661	0.000	33.112	0.000	200.996	4.407	153.369	633
2:40:09	59.974	0.000	36.661	36.661	0.000	33.112	0.000	200.560	4.407	152.981	633
2:40:11	59.977	0.000	32.428	32.428	0.000	28.879	0.000	200.115	4.407	152.595	633
2:40:13	59.978	0.000	31.019	31.019	0.000	27.470	0.000	199.669	4.407	152.211	633
2:40:15	59.978	0.000	31.019	31.019	0.000	27.470	0.000	199.225	4.407	151.829	633
2:40:17	59.979	0.000	29.610	29.610	0.000	26.060	0.000	198.780	4.407	151.449	633
2:40:19	59.977	0.000	32.428	32.428	0.000	28.879	0.000	198.344	4.407	151.071	633
2:40:21	59.977	0.000	32.428	32.428	0.000	28.879	0.000	197.911	4.407	150.695	633
2:40:23	59.974	0.000	36.661	36.661	0.000	33.112	0.000	197.490	4.407	150.321	633
2:40:25	59.971	0.000	40.889	40.889	0.000	37.340	0.000	197.083	4.407	149.949	633
2:40:27	59.971	0.000	40.889	40.889	0.000	37.340	0.000	196.677	4.407	149.578	633
2:40:29	59.971	0.000	40.889	40.889	0.000	37.340	0.000	196.274	4.407	149.210	633
2:40:31	59.968	0.000	45.122	45.122	0.000	41.573	0.000	195.883	4.407	148.843	633
2:40:33	59.968	0.000	45.122	45.122	0.000	41.573	0.000	195.495	4.407	148.478	633
2:40:35	59.966	0.000	47.941	47.941	0.000	44.391	0.000	195.115	4.407	148.116	633
2:40:37	59.971	0.000	40.889	40.889	0.000	37.340	0.000	194.720	4.407	147.754	633
2:40:39	59.971	0.000	40.889	40.889	0.000	37.340	0.000	194.326	4.407	147.395	633
2:40:41	59.973	0.000	38.071	38.071	0.000	34.521	0.000	193.928	4.407	147.038	633
2:40:43	59.969	0.000	43.708	43.708	0.000	40.158	0.000	193.545	4.407	146.682	633
2:40:45	59.969	0.000	43.708	43.708	0.000	40.158	0.000	193.165	4.407	146.328	633
2:40:47	59.972	0.000	39.480	39.480	0.000	35.930	0.000	192.775	4.407	145.976	633
2:40:49	59.973	0.000	38.071	38.071	0.000	34.521	0.000	192.385	4.407	145.626	633
2:40:51	59.973	0.000	38.071	38.071	0.000	34.521	0.000	191.996	4.407	145.277	633
2:40:53	59.97	0.000	42.298	42.298	0.000	38.749	0.000	191.619	4.407	144.930	633
2:40:55	59.974	0.000	36.661	36.661	0.000	33.112	0.000	191.231	4.407	144.585	633
2:40:57	59.974	0.000	36.661	36.661	0.000	33.112	0.000	190.844	4.407	144.241	633
2:40:59	59.982	0.000	25.382	25.382	0.000	21.833	0.000	190.432	4.407	143.899	633
2:41:01	59.985	0.000	21.149	21.149	0.000	17.600	0.000	190.011	4.407	143.559	633
2:41:03	59.985	0.000	21.149	21.149	0.000	17.600	0.000	189.593	4.407	143.220	633
2:41:05	59.985	0.000	21.149	21.149	0.000	17.600	0.000	189.176	4.407	142.883	633
2:41:07	59.989	0.000	15.512	15.512	0.000	11.963	0.000	188.748	4.407	142.548	633
2:41:09	59.989	0.000	15.512	15.512	0.000	11.963	0.000	188.322	4.407	142.214	633
2:41:11	59.989	0.000	15.512	15.512	0.000	11.963	0.000	187.898	4.407	141.882	633
2:41:13	59.987	0.000	18.331	18.331	0.000	14.781	0.000	187.483	4.407	141.552	633
2:41:15	59.987	0.000	18.331	18.331	0.000	14.781	0.000	187.070	4.407	141.223	633
2:41:17	59.99	0.000	14.098	14.098	0.000	10.548	0.000	186.649	4.407	140.896	633
2:41:19	59.996	0.000	5.642	5.642	0.000	2.093	0.000	186.209	4.407	140.570	633
2:41:21	59.996	0.000	5.642	5.642	0.000	2.093	0.000	185.772	4.407	140.246	633
2:41:23	60.001	0.000	-1.409	-1.409	0.000	-4.959	0.000	185.320	4.407	139.923	633
2:41:25	60.004	0.000	-5.642	-5.642	0.000	-9.192	0.000	184.860	4.407	139.602	633
2:41:27	60.004	0.000	-5.642	-5.642	0.000	-9.192	0.000	184.403	4.407	139.282	633
2:41:29	60.006	0.000	-8.461	-8.461	0.000	-12.010	0.000	183.941	4.407	138.964	633
2:41:31	60.014	0.000	-19.740	-19.740	0.000	-23.289	0.000	183.454	4.407	138.648	633

2:41:33	60.014	0.000	-19.740	-19.740	0.000	-23.289	0.000	182.970	4.407	138.333	633
2:41:35	60.019	0.000	-26.791	-26.791	0.000	-30.341	0.000	182.471	4.407	138.019	633
2:41:37	60.025	0.000	-35.252	-35.252	0.000	-38.802	0.000	181.956	4.407	137.707	633
2:41:39	60.025	0.000	-35.252	-35.252	0.000	-38.802	0.000	181.442	4.407	137.396	633
2:41:41	60.026	0.000	-36.661	-36.661	0.000	-40.211	0.000	180.928	4.407	137.087	633
2:41:43	60.029	0.000	-40.889	-40.889	0.000	-44.439	0.000	180.406	4.407	136.779	633
2:41:45	60.029	0.000	-40.889	-40.889	0.000	-44.439	0.000	179.887	4.407	136.473	633
2:41:47	60.029	0.000	-40.889	-40.889	0.000	-44.439	0.000	179.370	4.407	136.168	633
2:41:49	60.036	0.000	-50.759	-50.759	0.000	-54.309	0.000	178.833	4.407	135.864	633
2:41:51	60.036	0.000	-50.759	-50.759	0.000	-54.309	0.000	178.298	4.407	135.562	633
2:41:53	60.037	0.000	-52.168	-52.168	0.000	-55.718	0.000	177.763	4.407	135.261	633
2:41:55	60.036	0.000	-50.759	-50.759	0.000	-54.309	0.000	177.233	4.407	134.961	633
2:41:57	60.036	0.000	-50.759	-50.759	0.000	-54.309	0.000	176.706	4.407	134.663	633
2:41:59	60.041	0.000	-57.811	-57.811	0.000	-61.360	0.000	176.164	4.407	134.367	633
2:42:01	60.044	0.000	-62.038	-62.038	0.000	-65.588	0.000	175.616	4.407	134.071	633
2:42:03	60.044	0.000	-62.038	-62.038	0.000	-65.588	0.000	175.071	4.407	133.777	633
2:42:05	60.043	0.000	-60.629	-60.629	0.000	-64.178	0.000	174.530	4.407	133.485	633
2:42:07	60.048	0.000	-67.680	-67.680	0.000	-71.230	0.000	173.977	4.407	133.193	633
2:42:09	60.048	0.000	-67.680	-67.680	0.000	-71.230	0.000	173.426	4.407	132.903	633
2:42:11	60.046	0.000	-64.862	-64.862	0.000	-68.412	0.000	172.884	4.407	132.614	633
2:42:13	60.043	0.000	-60.629	-60.629	0.000	-64.178	0.000	172.353	4.407	132.327	633
2:42:15	60.043	0.000	-60.629	-60.629	0.000	-64.178	0.000	171.825	4.407	132.041	633
2:42:17	60.043	0.000	-60.629	-60.629	0.000	-64.178	0.000	171.300	4.407	131.756	633
2:42:19	60.043	0.000	-60.629	-60.629	0.000	-64.178	0.000	170.776	4.407	131.472	633
2:42:21	60.043	0.000	-60.629	-60.629	0.000	-64.178	0.000	170.256	4.407	131.190	633

riod (indicates ramp direction during recovery period)

-469.7641853
-503.3813709
-503.3813709
-503.3813709
-511.5123133
-511.5123133
-519.9102408
-519.9102408
-519.9102408
-507.4142711
-524.2300283
-524.2300283
-533.054344
-542.1808237
-542.1808237
-556.4906082
-576.7614466
-576.7614466
-551.625258
-571.5565384
-571.5565384
-561.4235515
-571.5565384
-571.5565384
-604.2977913
-654.2618117
-654.2618117
-682.4897773
-634.5952999
-634.5952999
-628.2999262
-654.2618117
-654.2618117
-675.2137373
-682.4897773
-682.4897773
-697.522655
-713.2326922
-713.2326922
-697.522655
-705.2902008
-705.2902008
-705.2902008
-705.2902008
-755.2902008
-721.3561067

0	633	-713.2326922
0	633	-713.2326922
0	633	-713.2326922
0	633	-721.3561067
0	633	-721.3561067
0	633	-721.3561067
0	633	-746.9095132
0	633	-746.9095132
0	633	-738.2038481
0	633	-738.2038481
0	633	-738.2038481
0	633	-729.6987841
0	633	-783.8871531
0	633	-783.8871531
0	633	-793.7487838
0	633	-858.2882148
0	633	-858.2882148
0	633	-835.6396928
0	633	-858.2882148
0	633	-858.2882148
0	633	-882.2455379
0	633	-882.2455379
0	633	-882.2455379
0	633	-870.1248106
0	633	-882.2455379
0	633	-882.2455379
0	633	-894.7087159
0	633	-920.722164
0	633	-920.722164
0	633	-962.7637841
0	633	-992.9518715
0	633	-992.9518715
0	633	-962.7637841
0	633	-962.7637841
0	633	-962.7637841
0	633	-992.9518715
0	633	-1025.094375
0	633	-1025.094375
0	633	-1059.387442
0	633	-1025.094375
0	633	-1025.094375
0	633	-1008.767148
0	633	-1008.767148
0	633	-1008.767148
0	633	-1077.478991
0	633	-1096.126776

0	633	-1096.126776
0	633	-1177.652688
0	633	-1156.155039
0	633	-1156.155039
0	633	-1156.155039
0	633	-1298.463571
0	633	-1298.463571
0	633	-1272.377809
0	633	-1199.964942
0	633	-1199.964942
0	633	-1135.428184
0	633	-1077.478991
0	633	-1077.478991
0	633	-1177.652688
0	633	-1383.559028
0	633	-1383.559028
0	633	-1446.894991
0	633	-1553.355039
0	633	-1553.355039
0	633	-1480.722366
0	633	-1480.722366
0	633	-1480.722366
0	633	-1592.410652
0	633	-1821.583534
0	633	-1821.583534
0	633	-1875.525877
0	633	-2281.079827
0	633	-2281.079827
0	633	-2557.403899
0	633	-3050.59568
0	633	-3050.59568
0	633	-2557.403899
0	633	-2782.546357
0	633	-2782.546357
0	633	-3375.793958
0	633	-3779.459105
0	633	-3779.459105
0	633	-3050.59568
0	633	-3565.856925
0	633	-3565.856925
0	633	-3565.856925
0	633	-2910.412207
0	633	-2910.412207
0	633	-3779.459105
0	633	-2910.412207
0	633	-2910.412207

-2910.412207	
-3204.966721	
-3204.966721	
-3204.966721	
-3050.59568	
-3050.59568	
-3375.793958	
-3204.966721	
-3204.966721	
-2782.546357	
-2665.442968	
-2665.442968	
-2665.442968	
-2782.546357	
-2782.546357	
-2782.546357	
-2366.305198	
-2366.305198	
-2458.146093	
-2201.780031	
-2201.780031	
-2127.808579	
-1993.59827	
-1993.59827	
-1821.583534	
-1932.760492	
-1932.760492	
-1932.760492	
-1633.480849	
-1633.480849	
-1480.722366	
-1272.377809	
-1272.377809	
-1247.319517	
-1272.377809	
-1272.377809	
-1177.652688	
-1115.431399	
-1115.431399	
-1096.126776	
-1096.126776	
-1096.126776	
-10599887442	
-1059.387442	
-1059.387442	
-1008.767148	

-962.7637841
-962.7637841
-962.7637841
-1059.387442
-1059.387442
-992.9518715
-934.3045072
-934.3045072
-962.7637841
-977.6248387
-977.6248387
-948.2935794
-870.1248106
-870.1248106
-882.2455379
-920.722164
-920.722164
-992.9518715
-992.9518715
-992.9518715
-948.2935794
-962.7637841
-962.7637841
-948.2935794
-870.1248106
-870.1248106
-835.6396928
-835.6396928
-835.6396928
-870.1248106
-858.2882148
-858.2882148
-824.757832
-882.2455379
-882.2455379
-907.5290656
-846.8125437
-846.8125437
-870.1248106
-870.1248106
-870.1248106
-846.8125437
-835.6396928
-835.6396928
-824.757832
-846.8125437

-846.8125437
-824.757832
-814.1557393
-814.1557393
-882.2455379
-870.1248106
-870.1248106
-858.2882148
-824.757832
-824.757832
-882.2455379
-858.2882148
-858.2882148
-824.757832
-870.1248106
-870.1248106
-846.8125437
-835.6396928
-835.6396928
-1008.767148
-1077.478991
-1077.478991
-934.3045072
-824.757832
-824.757832
-793.7487838
-783.8871531
-783.8871531
-783.8871531
-803.8227626
-803.8227626
-764.9517206
-697.522655
-697.522655
-713.2326922
-746.9095132
-746.9095132
-738.2038481
-803.8227626
-803.8227626
-783.8871531
-803.8227626
-803.8227626
-803.8227626
-858.2882148
-858.2882148

-992.9518715
-992.9518715
-962.7637841
-934.3045072
-934.3045072
-977.6248387
-992.9518715
-992.9518715
-1008.767148
-977.6248387
-977.6248387
-934.3045072
-894.7087159
-894.7087159
-894.7087159
-858.2882148
-858.2882148
-835.6396928
-894.7087159
-894.7087159
-920.722164
-870.1248106
-870.1248106
-907.5290656
-920.722164
-920.722164
-882.2455379
-934.3045072
-934.3045072
-1059.387442
-1115.431399
-1115.431399
-1115.431399
-1199.964942
-1199.964942
-1199.964942
-1156.155039
-1156.155039
-1223.229162
-1383.559028
-1883.559028
-1853.355039
-1676.895074
-1676.895074
-1770.657333
-2281.079827

> -2281.079827 -2782.546357 -3779.459105 -3779.459105 -4019.308514 -4964.462289 -4964.462289 -4964.462289 -11007.4396 -11007.4396 -13322.93473 -11007.4396 -11007.4396 -84446.38779 28148.79593 28148.79593 50667.83267 10127.38187 10127.38187 14888.93244 50667.83267 50667.83267 50667.83267 50667.83267 50667.83267

		T-66 sec	2:26:15	60.0220	633.00	0.00	253.63	0.00	0.00	0.00	0.00	-420.00	7594.05	-31.019	T-66 sec	2:26:15
		T-64 sec	2:26:17	60.0220	633.00	0.00	253.63	0.00	0.00	0.00	0.00	-420.00	7594.05	-31.019	T-64 sec	2:26:17
		T-62 sec	2:26:19	60.0170	633.00	0.00	253.63	0.00	0.00	0.00	0.00	-420.00	7594.38	-23.968	T-62 sec	2:26:19
		T-60 sec	2:26:21	60.0190	633.00	0.00	253.63	0.00	0.00	0.00	0.00	-420.00	7594.71	-26.791	T-60 sec	2:26:21
		T-58 sec	2:26:23	60.0190	633.00	0.00	253.63	0.00	0.00	0.00	0.00	-420.00	7594.71	-26.791	T-58 sec	2:26:23
		T-56 sec	2:26:25	60.0190	633.00	0.00	246.96	0.00	0.00	0.00	0.00	-420.00	7595.04	-26.791	T-56 sec	2:26:25
		T-54 sec	2:26:27	60.0210	633.00	0.00	246.96	0.00	0.00	0.00	0.00	-420.00	7595.37	-29.610	T-54 sec	2:26:27
		T-52 sec	2:26:29	60.0210	633.00	0.00	246.96	0.00	0.00	0.00	0.00	-420.00	7595.37	-29.610	T-52 sec	2:26:29
		T-50 sec	2:26:31	60.0210	633.00	0.00	246.96	0.00	0.00	0.00	0.00	-420.00	7595.70	-29.610	T-50 sec	2:26:31
		T-48 sec	2:26:33	60.0190	633.00	0.00	246.96	0.00	0.00	0.00	0.00	-420.00	7596.03	-26.791	T-48 sec	2:26:33
		T-46 sec	2:26:35	60.0190	633.00	0.00	246.96	0.00	0.00	0.00	0.00	-420.00	7596.03	-26.791	T-46 sec	2:26:35
		T-44 sec	2:26:37	60.0220	633.00	0.00	246.96	0.00	0.00	0.00	0.00	-420.00	7596.36	-31.019	T-44 sec	2:26:37
		T-42 sec	2:26:39	60.0310	633.00	0.00	254.54	0.00	0.00	0.00	0.00	-420.00	7596.69	-43.708	T-42 sec	2:26:39
		T-40 sec	2:26:41	60.0310	633.00	0.00	254.54	0.00	0.00	0.00	0.00	-420.00	7596.69	-43.708	T-40 sec	2:26:41
		T-38 sec	2:26:43	60.0370	633.00	0.00	254.54	0.00	0.00	0.00	0.00	-420.00	7597.02	-52.168	T-38 sec	2:26:43
		T-36 sec	2:26:45	60.0360	633.00	0.00	254.54	0.00	0.00	0.00	0.00	-420.00	7597.35	-50.759	T-36 sec	2:26:45
		T-34 sec	2:26:47	60.0360	633.00	0.00	254.54	0.00	0.00	0.00	0.00	-420.00	7597.35	-50.759	T-34 sec	2:26:47
		T-32 sec	2:26:49	60.0460	633.00	0.00	254.54	0.00	0.00	0.00	0.00	-420.00	7597.68	-64.862	T-32 sec	2:26:49
		T-30 sec	2:26:51	60.0480	633.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7598.01	-67.680	T-30 sec	2:26:51
		T-28 sec	2:26:53	60.0480	633.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7598.01	-67.680	T-28 sec	2:26:53
		T-26 sec	2:26:55	60.0430	633.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7598.34	-60.629	T-26 sec	2:26:55
		T-24 sec	2:26:57	60.0410	633.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7598.67	-57.811	T-24 sec	2:26:57
		T-22 sec	2:26:59	60.0410	633.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7598.67	-57.811	T-22 sec	2:26:59
		T-20 sec	2:27:01	60.0410	633.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7599.00	-57.811	T-20 sec	2:27:01
		T-18 sec	2:27:03	60.0390	633.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7599.33	-54.992	T-18 sec	2:27:03
		T-16 sec	2:27:05	60.0390	633.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7599.33	-54.992	T-16 sec	2:27:05
		T-14 sec	2:27:07	60.0430	633.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7599.66	-60.629	T-14 sec	2:27:07
		T-12 sec	2:27:09	60.0450	633.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7599.99	-63.447	T-12 sec	2:27:09
		T-10 sec	2:27:11	60.0450	633.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7599.99	-63.447	T-10 sec	2:27:11
		T-08 sec	2:27:13	60.0410	633.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7600.32	-57.811	T-08 sec	2:27:13
		T-06 sec	2:27:15	60.0410	633.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7600.65	-57.811	T-06 sec	2:27:15
		T-04 sec	2:27:17	60.0410	633.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7600.65	-57.811	T-04 sec	2:27:17
		T-02 sec	2:27:19	60.0390	633.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7600.98	-54.992	T-02 sec	2:27:19
		T+0 sec	2:27:21	59.9780	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7601.31	31.019	T+0 sec	2:27:21
		T+02 sec	2:27:23	59.9780	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7601.31	31.019	T+02 sec	2:27:23
		T+04 sec	2:27:25	59.8360	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7570.00	231.242	T+04 sec	2:27:25
		T+06 sec	2:27:27	59.8360	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7570.00	231.242	T+06 sec	2:27:27
		T+08 sec	2:27:29	59.8690	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7569.00	184.711	T+08 sec	2:27:29
		T+10 sec	2:27:31	59.8910	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7570.00	153.692	T+10 sec	2:27:31
		T+12 sec	2:27:33	59.8910	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7570.00	153.692	$\mathrm{T}+12 \mathrm{sec}$	2:27:33
		T+14 sec	2:27:35	59.8800	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7570.00	169.198	T+14 sec	2:27:35
		T+16 sec	2:27:37	59.8750	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7570.00	176.250	$\mathrm{T}+16 \mathrm{sec}$	2:27:37
		T+18 sec	2:27:39	59.8750	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7570.00	176.250	$\mathrm{T}+18 \mathrm{sec}$	2:27:39
59.8887	-413.862	T+20 sec	2:27:41	59.8830	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7570.00	164.971	$\mathrm{T}+20 \mathrm{sec}$	2:27:41
59.8887	-413.862	T+22 sec	2:27:43	59.8860	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7570.00	160.738	$\mathrm{T}+22 \mathrm{sec}$	2:27:43
59.8887	-413.862	T+24 sec	2:27:45	59.8860	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7570.00	160.738	T+24 sec	2:27:45

59.8887	-413.862	T+26 sec	2:27:47	59.8850	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7570.00	162.152	T+26 sec	2:27:47
59.8887	-413.862	$\mathrm{T}+28 \mathrm{sec}$	2:27:49	59.8880	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7570.00	157.919	T+28 sec	2:27:49
59.8887	-413.862	T+30 sec	2:27:51	59.8880	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7570.00	157.919	T+30 sec	2:27:51
59.8887	-413.862	T+32 sec	2:27:53	59.8900	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7570.00	155.101	T+32 sec	2:27:53
59.8887	-413.862	T+34 sec	2:27:55	59.8940	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7570.00	149.459	T+34 sec	2:27:55
59.8887	-413.862	T+36 sec	2:27:57	59.8940	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7570.00	149.459	T+36 sec	2:27:57
59.8887	-413.862	T+38 sec	2:27:59	59.8930	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7570.00	150.868	T+38 sec	2:27:59
59.8887	-413.862	$\mathrm{T}+40 \mathrm{sec}$	2:28:01	59.8940	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7570.00	149.459	T+40 sec	2:28:01
59.8887	-413.862	$\mathrm{T}+42 \mathrm{sec}$	2:28:03	59.8940	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7570.00	149.459	$\mathrm{T}+42 \mathrm{sec}$	2:28:03
59.8887	-413.862	T+44 sec	2:28:05	59.8910	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7570.00	153.692	T+44 sec	2:28:05
59.8887	-413.862	$\mathrm{T}+46 \mathrm{sec}$	2:28:07	59.8850	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7570.00	162.152	T+46 sec	2:28:07
59.8887	-413.862	$\mathrm{T}+48 \mathrm{sec}$	2:28:09	59.8850	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7570.00	162.152	T+48 sec	2:28:09
59.8887	-413.862	T+50 sec	2:28:11	59.8850	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7570.00	162.152	T+50 sec	2:28:11
59.8887	-413.862	T+52 sec	2:28:13	59.8870	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7570.00	159.329	T+52 sec	2:28:13
		T+54 sec	2:28:15	59.8870	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7570.00	159.329	T+54 sec	2:28:15
		T+56 sec	2:28:17	59.8880	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7570.00	157.919	T+56 sec	2:28:17
		T+58 sec	2:28:19	59.8900	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7570.00	155.101	T+58 sec	2:28:19
		T+60 sec	2:28:21	59.8900	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7570.00	155.101	T+60 sec	2:28:21
		T+62 sec	2:28:23	59.8890	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7570.00	156.510	T+62 sec	2:28:23
		T+64 sec	2:28:25	59.8730	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7568.00	179.068	T+64 sec	2:28:25
		T+66 sec	2:28:27	59.8730	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7568.00	179.068	T+66 sec	2:28:27
		T+68 sec	2:28:29	59.8570	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7565.00	201.632	T+68 sec	2:28:29
		T+70 sec	2:28:31	59.8520	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7560.00	208.678	T+70 sec	2:28:31
		T+72 sec	2:28:33	59.8520	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7560.00	208.678	T+72 sec	2:28:33
		T+74 sec	2:28:35	59.8580	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7563.00	200.218	T+74 sec	2:28:35
		T+76 sec	2:28:37	59.8660	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7564.00	188.938	T+76 sec	2:28:37
		T+78 sec	2:28:39	59.8660	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7564.00	188.938	T+78 sec	2:28:39
		T+80 sec	2:28:41	59.8650	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7566.00	190.348	$\mathrm{T}+80 \mathrm{sec}$	2:28:41
			2:28:43	59.8660	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7570.00	188.938		
			2:28:45	59.8660	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7570.00	188.938		
			2:28:47	59.8710	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7570.00	181.892		
			2:28:49	59.8790	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7570.00	170.608		
			2:28:51	59.8790	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7570.00	170.608		
			2:28:53	59.8800	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7570.00	169.198		
			2:28:55	59.8860	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7570.00	160.738		
			2:28:57	59.8860	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7570.00	160.738		
			2:28:59	59.8900	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7569.00	155.101		
			2:29:01	59.8890	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7575.00	156.510		
			2:29:03	59.8890	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7575.00	156.510		
			2:29:05	59.8930	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7573.00	150.868		
			2:29:07	59.9030	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7571.00	136.770		
			2:29:09	59.9030	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7571.00	136.770		
			2:29:11	59.9020	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7573.00	138.179		
			2:29:13	59.9040	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7575.00	135.361		
			2:29:15	59.9040	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7575.00	135.361		

2:29:17	59.9070	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7577.00	131.128
2:29:19	59.9160	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7577.00	118.439
2:29:21	59.9160	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7577.00	118.439
2:29:23	59.9160	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7578.00	118.439
2:29:25	59.9180	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7579.00	115.621
2:29:27	59.9180	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7579.00	115.621
2:29:29	59.9200	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7580.00	112.803
2:29:31	59.9200	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7581.00	112.803
2:29:33	59.9200	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7581.00	112.803
2:29:35	59.9170	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7585.00	117.030
2:29:37	59.9210	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7588.00	111.388
2:29:39	59.9210	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7588.00	111.388
2:29:41	59.9230	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7589.00	108.570
2:29:43	59.9250	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7589.00	105.751
2:29:45	59.9250	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7589.00	105.751
2:29:47	59.9280	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7590.00	101.518
2:29:49	59.9320	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7590.00	95.881
2:29:51	59.9320	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7590.00	95.881
2:29:53	59.9270	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7590.00	102.933
2:29:55	59.9310	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7591.00	97.290
2:29:57	59.9310	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7591.00	97.290
2:29:59	59.9290	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7591.00	100.109
2:30:01	59.9310	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7591.00	97.290
2:30:03	59.9310	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7591.00	97.290
2:30:05	59.9370	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7592.00	88.830
2:30:07	59.9450	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7592.00	77.550
2:30:09	59.9450	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7592.00	77.550
2:30:11	59.9490	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7593.00	71.908
2:30:13	59.9420	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7594.00	81.778
2:30:15	59.9420	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7594.00	81.778
2:30:17	59.9410	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7595.00	83.187
2:30:19	59.9450	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7655.00	77.550
2:30:21	59.9450	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7655.00	77.550
2:30:23	59.9480	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7656.00	73.317
2:30:25	59.9490	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7656.00	71.908
2:30:27	59.9490	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7656.00	71.908
2:30:29	59.9510	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7657.00	69.090
2:30:31	59.9530	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7657.00	66.271
2:30:33	59.9530	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7657.00	66.271
2:30:35	59.9510	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7658.00	69.090
2:30:37	59.9520	0.00	0.00	229.47	0.00	0.00	0.00	0.00	-420.00	7658.00	67.680
2:30:39	59.9520	0.00	0.00	229.47	0.00	0.00	0.00	0.00	-420.00	7658.00	67.680
2:30:41	59.9520	0.00	0.00	249.34	0.00	0.00	0.00	0.00	-420.00	7659.00	67.680
2:30:43	59.9520	0.00	0.00	249.34	0.00	0.00	0.00	0.00	-420.00	7659.00	67.680
2:30:45	59.9520	0.00	0.00	249.34	0.00	0.00	0.00	0.00	-420.00	7659.00	67.680
2:30:47	59.9540	0.00	0.00	249.34	0.00	0.00	0.00	0.00	-420.00	7659.00	64.862

2:30:49	59.9530	0.00	0.00	249.34	0.00	0.00	0.00	0.00	-420.00	7660.00	66.271
2:30:51	59.9530	0.00	0.00	249.34	0.00	0.00	0.00	0.00	-420.00	7660.00	66.271
2:30:53	59.9530	0.00	0.00	249.34	0.00	0.00	0.00	0.00	-420.00	7660.00	66.271
2:30:55	59.9540	0.00	0.00	258.28	0.00	0.00	0.00	0.00	-420.00	7661.00	64.862
2:30:57	59.9540	0.00	0.00	258.28	0.00	0.00	0.00	0.00	-420.00	7661.00	64.862
2:30:59	59.9540	0.00	0.00	258.28	0.00	0.00	0.00	0.00	-420.00	7661.00	64.862
2:31:01	59.9570	0.00	0.00	258.28	0.00	0.00	0.00	0.00	-420.00	7625.40	60.629
2:31:03	59.9570	0.00	0.00	258.28	0.00	0.00	0.00	0.00	-420.00	7625.40	60.629
2:31:05	59.9560	0.00	0.00	258.28	0.00	0.00	0.00	0.00	-420.00	7625.73	62.038
2:31:07	59.9560	0.00	0.00	258.28	0.00	0.00	0.00	0.00	-420.00	7626.06	62.038
2:31:09	59.9560	0.00	0.00	258.28	0.00	0.00	0.00	0.00	-420.00	7626.06	62.038
2:31:11	59.9550	0.00	0.00	258.41	0.00	0.00	0.00	0.00	-420.00	7626.39	63.447
2:31:13	59.9610	0.00	0.00	258.41	0.00	0.00	0.00	0.00	-420.00	7626.72	54.992
2:31:15	59.9610	0.00	0.00	258.41	0.00	0.00	0.00	0.00	-420.00	7626.72	54.992
2:31:17	59.9620	0.00	0.00	258.41	0.00	0.00	0.00	0.00	-420.00	7627.05	53.577
2:31:19	59.9680	0.00	0.00	258.41	0.00	0.00	0.00	0.00	-420.00	7627.38	45.122
2:31:21	59.9680	0.00	0.00	258.41	0.00	0.00	0.00	0.00	-420.00	7627.38	45.122
2:31:23	59.9660	0.00	0.00	258.41	0.00	0.00	0.00	0.00	-420.00	7627.71	47.941
2:31:25	59.9680	0.00	0.00	260.54	0.00	0.00	0.00	0.00	-420.00	7628.04	45.122
2:31:27	59.9680	0.00	0.00	260.54	0.00	0.00	0.00	0.00	-420.00	7628.04	45.122
2:31:29	59.9700	0.00	0.00	260.54	0.00	0.00	0.00	0.00	-420.00	7628.37	42.298
2:31:31	59.9700	0.00	0.00	260.54	0.00	0.00	0.00	0.00	-420.00	7628.70	42.298
2:31:33	59.9700	0.00	0.00	260.54	0.00	0.00	0.00	0.00	-420.00	7628.70	42.298
2:31:35	59.9690	0.00	0.00	260.54	0.00	0.00	0.00	0.00	-420.00	7629.03	43.708
2:31:37	59.9700	0.00	0.00	260.54	0.00	0.00	0.00	0.00	-420.00	7629.36	42.298
2:31:39	59.9700	0.00	0.00	260.54	0.00	0.00	0.00	0.00	-420.00	7629.36	42.298
2:31:41	59.9710	0.00	0.00	257.88	0.00	0.00	0.00	0.00	-420.00	7629.69	40.889
2:31:43	59.9730	0.00	0.00	257.88	0.00	0.00	0.00	0.00	-420.00	7630.02	38.071
2:31:45	59.9730	0.00	0.00	257.88	0.00	0.00	0.00	0.00	-420.00	7630.02	38.071
2:31:47	59.9760	0.00	0.00	257.88	0.00	0.00	0.00	0.00	-420.00	7630.35	33.838
2:31:49	59.9780	0.00	0.00	257.88	0.00	0.00	0.00	0.00	-420.00	7630.68	31.019
2:31:51	59.9780	0.00	0.00	257.88	0.00	0.00	0.00	0.00	-420.00	7630.68	31.019
2:31:53	59.9760	0.00	0.00	257.88	0.00	0.00	0.00	0.00	-420.00	7631.01	33.838
2:31:55	59.9760	0.00	0.00	258.59	0.00	0.00	0.00	0.00	-420.00	7631.34	33.838
2:31:57	59.9760	0.00	0.00	258.59	0.00	0.00	0.00	0.00	-420.00	7631.34	33.838
2:31:59	59.9780	0.00	0.00	258.59	0.00	0.00	0.00	0.00	-420.00	7631.67	31.019
2:32:01	59.9800	0.00	0.00	258.59	0.00	0.00	0.00	0.00	-420.00	7632.00	28.201
2:32:03	59.9800	0.00	0.00	258.59	0.00	0.00	0.00	0.00	-420.00	7632.00	28.201
2:32:05	59.9820	0.00	0.00	258.59	0.00	0.00	0.00	0.00	-420.00	7632.33	25.382
2:32:07	59.9800	0.00	0.00	258.59	0.00	0.00	0.00	0.00	-420.00	7632.66	28.201
2:32:09	59.9800	0.00	0.00	258.59	0.00	0.00	0.00	0.00	-420.00	7632.66	28.201
2:32:11	59.9790	0.00	0.00	261.91	0.00	0.00	0.00	0.00	-420.00	7632.99	29.610
2:32:13	59.9790	0.00	0.00	261.91	0.00	0.00	0.00	0.00	-420.00	7633.32	29.610
2:32:15	59.9790	0.00	0.00	261.91	0.00	0.00	0.00	0.00	-420.00	7633.32	29.610
2:32:17	59.9830	0.00	0.00	261.91	0.00	0.00	0.00	0.00	-420.00	7633.65	23.968
2:32:19	59.9840	0.00	0.00	261.91	0.00	0.00	0.00	0.00	-420.00	7633.98	22.558

2:32:21	59.9840	0.00	0.00	261.91	0.00	0.00	0.00	0.00	-420.00	7633.98	22.558
2:32:23	59.9880	0.00	0.00	261.91	0.00	0.00	0.00	0.00	-420.00	7634.31	16.921
2:32:25	59.9870	0.00	0.00	256.75	0.00	0.00	0.00	0.00	-420.00	7634.64	18.331
2:32:27	59.9870	0.00	0.00	256.75	0.00	0.00	0.00	0.00	-420.00	7634.64	18.331
2:32:29	59.9870	0.00	0.00	256.75	0.00	0.00	0.00	0.00	-420.00	7634.97	18.331
2:32:31	59.9930	0.00	0.00	256.75	0.00	0.00	0.00	0.00	-420.00	7635.30	9.870
2:32:33	59.9930	0.00	0.00	256.75	0.00	0.00	0.00	0.00	-420.00	7635.30	9.870
2:32:35	59.9920	0.00	0.00	256.75	0.00	0.00	0.00	0.00	-420.00	7635.63	11.279
2:32:37	59.9890	0.00	0.00	256.75	0.00	0.00	0.00	0.00	-420.00	7635.96	15.512
2:32:39	59.9890	0.00	0.00	256.75	0.00	0.00	0.00	0.00	-420.00	7635.96	15.512
2:32:41	59.9860	0.00	0.00	167.43	0.00	0.00	0.00	0.00	-420.00	7636.29	19.740
2:32:43	59.9830	0.00	0.00	167.43	0.00	0.00	0.00	0.00	-420.00	7636.62	23.968
2:32:45	59.9830	0.00	0.00	167.43	0.00	0.00	0.00	0.00	-420.00	7636.62	23.968
2:32:47	59.9880	0.00	0.00	167.43	0.00	0.00	0.00	0.00	-420.00	7636.95	16.921
2:32:49	59.9960	0.00	0.00	167.43	0.00	0.00	0.00	0.00	-420.00	7637.28	5.642
2:32:51	59.9960	0.00	0.00	167.43	0.00	0.00	0.00	0.00	-420.00	7637.28	5.642
2:32:53	59.9980	0.00	0.00	167.43	0.00	0.00	0.00	0.00	-420.00	7637.61	2.818
2:32:55	60.0010	0.00	0.00	164.97	0.00	0.00	0.00	0.00	-420.00	7637.94	-1.409
2:32:57	60.0010	0.00	0.00	164.97	0.00	0.00	0.00	0.00	-420.00	7637.94	-1.409
2:32:59	59.9990	0.00	0.00	164.97	0.00	0.00	0.00	0.00	-420.00	7638.27	1.409
2:33:01	59.9990	0.00	0.00	164.97	0.00	0.00	0.00	0.00	-420.00	7638.60	1.409
2:33:03	59.9990	0.00	0.00	164.97	0.00	0.00	0.00	0.00	-420.00	7638.60	1.409
2:33:05	60.0020	0.00	0.00	164.97	0.00	0.00	0.00	0.00	-420.00	7638.93	-2.818
2:33:07	60.0070	0.00	0.00	164.97	0.00	0.00	0.00	0.00	-420.00	7639.26	-9.870
2:33:09	60.0070	0.00	0.00	164.97	0.00	0.00	0.00	0.00	-420.00	7639.26	-9.870
2:33:11	60.0080	0.00	0.00	157.63	0.00	0.00	0.00	0.00	-420.00	7639.59	-11.279
2:33:13	60.0140	0.00	0.00	157.63	0.00	0.00	0.00	0.00	-420.00	7639.92	-19.740
2:33:15	60.0140	0.00	0.00	157.63	0.00	0.00	0.00	0.00	-420.00	7639.92	-19.740
2:33:17	60.0170	0.00	0.00	157.63	0.00	0.00	0.00	0.00	-420.00	7640.25	-23.968
2:33:19	60.0210	0.00	0.00	157.63	0.00	0.00	0.00	0.00	-420.00	7640.58	-29.610
2:33:21	60.0210	0.00	0.00	157.63	0.00	0.00	0.00	0.00	-420.00	7640.58	-29.610
2:33:23	60.0170	0.00	0.00	157.63	0.00	0.00	0.00	0.00	-420.00	7640.91	-23.968
2:33:25	60.0190	0.00	0.00	155.53	0.00	0.00	0.00	0.00	-420.00	7641.24	-26.791
2:33:27	60.0190	0.00	0.00	155.53	0.00	0.00	0.00	0.00	-420.00	7641.24	-26.791
2:33:29	60.0230	0.00	0.00	155.53	0.00	0.00	0.00	0.00	-420.00	7641.57	-32.428
2:33:31	60.0250	0.00	0.00	155.53	0.00	0.00	0.00	0.00	-420.00	7641.90	-35.252
2:33:33	60.0250	0.00	0.00	155.53	0.00	0.00	0.00	0.00	-420.00	7641.90	-35.252
2:33:35	60.0210	0.00	0.00	155.53	0.00	0.00	0.00	0.00	-420.00	7642.23	-29.610
2:33:37	60.0240	0.00	0.00	155.53	0.00	0.00	0.00	0.00	-420.00	7642.56	-33.838
2:33:39	60.0240	0.00	0.00	155.53	0.00	0.00	0.00	0.00	-420.00	7642.56	-33.838
2:33:41	60.0240	0.00	0.00	160.45	0.00	0.00	0.00	0.00	-420.00	7642.89	-33.838
2:33:43	60.0200	0.00	0.00	160.45	0.00	0.00	0.00	0.00	-420.00	7643.22	-28.201
2:33:45	60.0200	0.00	0.00	160.45	0.00	0.00	0.00	0.00	-420.00	7643.22	-28.201
2:33:47	60.0250	0.00	0.00	160.45	0.00	0.00	0.00	0.00	-420.00	7643.55	-35.252
2:33:49	60.0200	0.00	0.00	160.45	0.00	0.00	0.00	0.00	-420.00	7643.88	-28.201
2:33:51	60.0200	0.00	0.00	160.45	0.00	0.00	0.00	0.00	-420.00	7643.88	-28.201

2:33:53	60.0200	0.00	0.00	160.45	0.00	0.00	0.00	0.00	-420.00	7644.21	-28.201
2:33:55	60.0220	0.00	0.00	163.96	0.00	0.00	0.00	0.00	-420.00	7644.54	-31.019
2:33:57	60.0220	0.00	0.00	163.96	0.00	0.00	0.00	0.00	-420.00	7644.54	-31.019
2:33:59	60.0220	0.00	0.00	163.96	0.00	0.00	0.00	0.00	-420.00	7644.87	-31.019
2:34:01	60.0210	0.00	0.00	163.96	0.00	0.00	0.00	0.00	-420.00	7645.20	-29.610
2:34:03	60.0210	0.00	0.00	163.96	0.00	0.00	0.00	0.00	-420.00	7645.20	-29.610
2:34:05	60.0230	0.00	0.00	163.96	0.00	0.00	0.00	0.00	-420.00	7645.53	-32.428
2:34:07	60.0220	0.00	0.00	163.96	0.00	0.00	0.00	0.00	-420.00	7645.86	-31.019
2:34:09	60.0220	0.00	0.00	163.96	0.00	0.00	0.00	0.00	-420.00	7645.86	-31.019
2:34:11	60.0190	0.00	0.00	166.07	0.00	0.00	0.00	0.00	-420.00	7646.19	-26.791
2:34:13	60.0180	0.00	0.00	166.07	0.00	0.00	0.00	0.00	-420.00	7646.52	-25.382
2:34:15	60.0180	0.00	0.00	166.07	0.00	0.00	0.00	0.00	-420.00	7646.52	-25.382
2:34:17	60.0180	0.00	0.00	166.07	0.00	0.00	0.00	0.00	-420.00	7646.85	-25.382
2:34:19	60.0190	0.00	0.00	166.07	0.00	0.00	0.00	0.00	-420.00	7647.18	-26.791
2:34:21	60.0190	0.00	0.00	166.07	0.00	0.00	0.00	0.00	-420.00	7647.18	-26.791
2:34:23	60.0190	0.00	0.00	166.07	0.00	0.00	0.00	0.00	-420.00	7647.51	-26.791
2:34:25	60.0150	0.00	0.00	163.77	0.00	0.00	0.00	0.00	-420.00	7647.84	-21.149
2:34:27	60.0150	0.00	0.00	163.77	0.00	0.00	0.00	0.00	-420.00	7647.84	-21.149
2:34:29	60.0160	0.00	0.00	163.77	0.00	0.00	0.00	0.00	-420.00	7648.17	-22.558
2:34:31	60.0130	0.00	0.00	163.77	0.00	0.00	0.00	0.00	-420.00	7648.50	-18.331
2:34:33	60.0130	0.00	0.00	163.77	0.00	0.00	0.00	0.00	-420.00	7648.50	-18.331
2:34:35	60.0120	0.00	0.00	163.77	0.00	0.00	0.00	0.00	-420.00	7648.83	-16.921
2:34:37	60.0100	0.00	0.00	163.77	0.00	0.00	0.00	0.00	-420.00	7649.16	-14.098
2:34:39	60.0100	0.00	0.00	163.77	0.00	0.00	0.00	0.00	-420.00	7649.16	-14.098
2:34:41	60.0070	0.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7649.49	-9.870
2:34:43	60.0090	0.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7649.82	-12.688
2:34:45	60.0090	0.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7649.82	-12.688
2:34:47	60.0090	0.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7650.15	-12.688
2:34:49	60.0030	0.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7650.48	-4.228
2:34:51	60.0030	0.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7650.48	-4.228
2:34:53	59.9990	0.00	0.00	165.10	0.00	0.00	0.00	0.00	-420.00	7650.81	1.409
2:34:55	59.9920	0.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7651.14	11.279
2:34:57	59.9920	0.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7651.14	11.279
2:34:59	59.9910	0.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7651.47	12.688
2:35:01	59.9920	0.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7651.80	11.279
2:35:03	59.9920	0.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7651.80	11.279
2:35:05	59.9880	0.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7652.13	16.921
2:35:07	59.9850	0.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7652.46	21.149
2:35:09	59.9850	0.00	0.00	165.48	0.00	0.00	0.00	0.00	-420.00	7652.46	21.149
2:35:11	59.9840	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7652.79	22.558
2:35:13	59.9840	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7616.00	22.558
2:35:15	59.9840	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7616.00	22.558
2:35:17	59.9820	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7626.00	25.382
2:35:19	59.9820	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7632.00	25.382
2:35:21	59.9820	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7632.00	25.382
2:35:23	59.9790	0.00	0.00	206.46	0.00	0.00	0.00	0.00	-420.00	7632.00	29.610

2:35:25	59.9760	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7632.00	33.838
2:35:27	59.9760	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7632.00	33.838
2:35:29	59.9760	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7632.00	33.838
2:35:31	59.9820	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7632.00	25.382
2:35:33	59.9820	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7632.00	25.382
2:35:35	59.9780	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7632.00	31.019
2:35:37	59.9740	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7632.00	36.661
2:35:39	59.9740	0.00	0.00	211.26	0.00	0.00	0.00	0.00	-420.00	7632.00	36.661
2:35:41	59.9760	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7632.00	33.838
2:35:43	59.9770	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7632.00	32.428
2:35:45	59.9770	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7632.00	32.428
2:35:47	59.9750	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7632.00	35.252
2:35:49	59.9690	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7632.00	43.708
2:35:51	59.9690	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7632.00	43.708
2:35:53	59.9700	0.00	0.00	214.35	0.00	0.00	0.00	0.00	-420.00	7632.00	42.298
2:35:55	59.9730	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7632.00	38.071
2:35:57	59.9730	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7632.00	38.071
2:35:59	59.9780	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7632.00	31.019
2:36:01	59.9780	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7632.00	31.019
2:36:03	59.9780	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7632.00	31.019
2:36:05	59.9750	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7632.00	35.252
2:36:07	59.9760	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7632.00	33.838
2:36:09	59.9760	0.00	0.00	212.17	0.00	0.00	0.00	0.00	-420.00	7632.00	33.838
2:36:11	59.9750	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7632.00	35.252
2:36:13	59.9690	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7632.00	43.708
2:36:15	59.9690	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7632.00	43.708
2:36:17	59.9660	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7632.00	47.941
2:36:19	59.9660	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7632.00	47.941
2:36:21	59.9660	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7632.00	47.941
2:36:23	59.9690	0.00	0.00	215.60	0.00	0.00	0.00	0.00	-420.00	7632.00	43.708
2:36:25	59.9680	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7632.00	45.122
2:36:27	59.9680	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7632.00	45.122
2:36:29	59.9650	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7632.00	49.350
2:36:31	59.9700	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7632.00	42.298
2:36:33	59.9700	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7632.00	42.298
2:36:35	59.9720	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7632.00	39.480
2:36:37	59.9670	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7632.00	46.531
2:36:39	59.9670	0.00	0.00	218.33	0.00	0.00	0.00	0.00	-420.00	7632.00	46.531
2:36:41	59.9690	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7632.00	43.708
2:36:43	59.9690	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7632.00	43.708
2:36:45	59.9690	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7632.00	43.708
2:36:47	59.9670	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7631.00	46.531
2:36:49	59.9660	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7625.00	47.941
2:36:51	59.9660	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7625.00	47.941
2:36:53	59.9650	0.00	0.00	217.38	0.00	0.00	0.00	0.00	-420.00	7623.00	49.350
2:36:55	59.9670	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7621.00	46.531

2:36:57	59.9670	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7621.00	46.531
2:36:59	59.9650	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7623.00	49.350
2:37:01	59.9640	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7625.00	50.759
2:37:03	59.9640	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7625.00	50.759
2:37:05	59.9700	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7627.00	42.298
2:37:07	59.9690	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7628.00	43.708
2:37:09	59.9690	0.00	0.00	214.83	0.00	0.00	0.00	0.00	-420.00	7628.00	43.708
2:37:11	59.9680	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7628.00	45.122
2:37:13	59.9650	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7629.00	49.350
2:37:15	59.9650	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7629.00	49.350
2:37:17	59.9700	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7630.00	42.298
2:37:19	59.9680	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7631.00	45.122
2:37:21	59.9680	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7631.00	45.122
2:37:23	59.9650	0.00	0.00	227.66	0.00	0.00	0.00	0.00	-420.00	7635.00	49.350
2:37:25	59.9690	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7638.00	43.708
2:37:27	59.9690	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7638.00	43.708
2:37:29	59.9670	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7639.00	46.531
2:37:31	59.9660	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7642.00	47.941
2:37:33	59.9660	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7642.00	47.941
2:37:35	59.9790	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7644.00	29.610
2:37:37	59.9830	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7645.00	23.968
2:37:39	59.9830	0.00	0.00	225.02	0.00	0.00	0.00	0.00	-420.00	7645.00	23.968
2:37:41	59.9740	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7647.00	36.661
2:37:43	59.9650	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7648.00	49.350
2:37:45	59.9650	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7648.00	49.350
2:37:47	59.9620	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7649.00	53.577
2:37:49	59.9610	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7650.00	54.992
2:37:51	59.9610	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7650.00	54.992
2:37:53	59.9610	0.00	0.00	228.37	0.00	0.00	0.00	0.00	-420.00	7651.00	54.992
2:37:55	59.9630	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7652.00	52.168
2:37:57	59.9630	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7652.00	52.168
2:37:59	59.9590	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7653.00	57.811
2:38:01	59.9510	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7654.00	69.090
2:38:03	59.9510	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7654.00	69.090
2:38:05	59.9530	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7655.00	66.271
2:38:07	59.9570	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7655.00	60.629
2:38:09	59.9570	0.00	0.00	234.08	0.00	0.00	0.00	0.00	-420.00	7655.00	60.629
2:38:11	59.9560	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7656.00	62.038
2:38:13	59.9630	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7656.00	52.168
2:38:15	59.9630	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7656.00	52.168
2:38:17	59.9610	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7657.00	54.992
2:38:19	59.9630	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7657.00	52.168
2:38:21	59.9630	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7657.00	52.168
2:38:23	59.9630	0.00	0.00	228.80	0.00	0.00	0.00	0.00	-420.00	7658.00	52.168
2:38:25	59.9680	0.00	0.00	229.47	0.00	0.00	0.00	0.00	-420.00	7658.00	45.122
2:38:27	59.9680	0.00	0.00	229.47	0.00	0.00	0.00	0.00	-420.00	7658.00	45.122

2:38:29	59.9680	0.00	0.00	229.47	0.00	0.00	0.00	0.00	-420.00	7659.00	45.122
2:38:31	59.9700	0.00	0.00	229.47	0.00	0.00	0.00	0.00	-420.00	7659.00	42.298
2:38:33	59.9700	0.00	0.00	229.47	0.00	0.00	0.00	0.00	-420.00	7659.00	42.298
2:38:35	59.9730	0.00	0.00	229.47	0.00	0.00	0.00	0.00	-420.00	7659.00	38.071
2:38:37	59.9650	0.00	0.00	229.47	0.00	0.00	0.00	0.00	-420.00	7660.00	49.350
2:38:39	59.9650	0.00	0.00	229.47	0.00	0.00	0.00	0.00	-420.00	7660.00	49.350
2:38:41	59.9670	0.00	0.00	228.98	0.00	0.00	0.00	0.00	-420.00	7660.00	46.531
2:38:43	59.9720	0.00	0.00	228.98	0.00	0.00	0.00	0.00	-420.00	7661.00	39.480
2:38:45	59.9720	0.00	0.00	228.98	0.00	0.00	0.00	0.00	-420.00	7661.00	39.480
2:38:47	59.9760	0.00	0.00	228.98	0.00	0.00	0.00	0.00	-420.00	7661.00	33.838
2:38:49	59.9690	0.00	0.00	228.98	0.00	0.00	0.00	0.00	-420.00	7662.00	43.708
2:38:51	59.9690	0.00	0.00	228.98	0.00	0.00	0.00	0.00	-420.00	7662.00	43.708
2:38:53	59.9730	0.00	0.00	228.98	0.00	0.00	0.00	0.00	-420.00	7662.00	38.071
2:38:55	59.9780	0.00	0.00	219.98	0.00	0.00	0.00	0.00	-420.00	7663.00	31.019
2:38:57	59.9780	0.00	0.00	219.98	0.00	0.00	0.00	0.00	-420.00	7663.00	31.019
2:38:59	59.9810	0.00	0.00	219.98	0.00	0.00	0.00	0.00	-420.00	7663.00	26.791
2:39:01	59.9810	0.00	0.00	219.98	0.00	0.00	0.00	0.00	-420.00	7664.00	26.791
2:39:03	59.9810	0.00	0.00	219.98	0.00	0.00	0.00	0.00	-420.00	7664.00	26.791
2:39:05	59.9820	0.00	0.00	219.98	0.00	0.00	0.00	0.00	-420.00	7664.00	25.382
2:39:07	59.9840	0.00	0.00	219.98	0.00	0.00	0.00	0.00	-420.00	7665.00	22.558
2:39:09	59.9840	0.00	0.00	219.98	0.00	0.00	0.00	0.00	-420.00	7665.00	22.558
2:39:11	59.9820	0.00	0.00	229.09	0.00	0.00	0.00	0.00	-420.00	7666.00	25.382
2:39:13	59.9790	0.00	0.00	229.09	0.00	0.00	0.00	0.00	-420.00	7666.00	29.610
2:39:15	59.9790	0.00	0.00	229.09	0.00	0.00	0.00	0.00	-420.00	7666.00	29.610
2:39:17	59.9800	0.00	0.00	229.09	0.00	0.00	0.00	0.00	-420.00	7667.00	28.201
2:39:19	59.9780	0.00	0.00	229.09	0.00	0.00	0.00	0.00	-420.00	7668.00	31.019
2:39:21	59.9780	0.00	0.00	229.09	0.00	0.00	0.00	0.00	-420.00	7668.00	31.019
2:39:23	59.9800	0.00	0.00	229.09	0.00	0.00	0.00	0.00	-420.00	7668.00	28.201
2:39:25	59.9800	0.00	0.00	229.66	0.00	0.00	0.00	0.00	-420.00	7669.00	28.201
2:39:27	59.9800	0.00	0.00	229.66	0.00	0.00	0.00	0.00	-420.00	7669.00	28.201
2:39:29	59.9780	0.00	0.00	229.66	0.00	0.00	0.00	0.00	-420.00	7669.00	31.019
2:39:31	59.9720	0.00	0.00	229.66	0.00	0.00	0.00	0.00	-420.00	7670.00	39.480
2:39:33	59.9720	0.00	0.00	229.66	0.00	0.00	0.00	0.00	-420.00	7670.00	39.480
2:39:35	59.9710	0.00	0.00	229.66	0.00	0.00	0.00	0.00	-420.00	7670.00	40.889
2:39:37	59.9740	0.00	0.00	229.66	0.00	0.00	0.00	0.00	-420.00	7671.00	36.661
2:39:39	59.9740	0.00	0.00	229.66	0.00	0.00	0.00	0.00	-420.00	7671.00	36.661
2:39:41	59.9750	0.00	0.00	229.23	0.00	0.00	0.00	0.00	-420.00	7671.00	35.252
2:39:43	59.9720	0.00	0.00	229.23	0.00	0.00	0.00	0.00	-420.00	7672.00	39.480
2:39:45	59.9720	0.00	0.00	229.23	0.00	0.00	0.00	0.00	-420.00	7672.00	39.480
2:39:47	59.9690	0.00	0.00	229.23	0.00	0.00	0.00	0.00	-420.00	7673.00	43.708
2:39:49	59.9740	0.00	0.00	229.23	0.00	0.00	0.00	0.00	-420.00	7673.00	36.661
2:39:51	59.9740	0.00	0.00	229.23	0.00	0.00	0.00	0.00	-420.00	7673.00	36.661
2:39:53	59.9720	0.00	0.00	229.23	0.00	0.00	0.00	0.00	-420.00	7673.00	39.480
2:39:55	59.9720	0.00	0.00	231.41	0.00	0.00	0.00	0.00	-420.00	7673.00	39.480
2:39:57	59.9720	0.00	0.00	231.41	0.00	0.00	0.00	0.00	-420.00	7673.00	39.480
2:39:59	59.9770	0.00	0.00	231.41	0.00	0.00	0.00	0.00	-420.00	7673.00	32.428

2:40:01	59.9780	0.00	0.00	231.41	0.00	0.00	0.00	0.00	-420.00	7673.00	31.019
2:40:03	59.9780	0.00	0.00	231.41	0.00	0.00	0.00	0.00	-420.00	7673.00	31.019
2:40:05	59.9760	0.00	0.00	231.41	0.00	0.00	0.00	0.00	-420.00	7673.00	33.838
2:40:07	59.9740	0.00	0.00	231.41	0.00	0.00	0.00	0.00	-420.00	7673.00	36.661
2:40:09	59.9740	0.00	0.00	231.41	0.00	0.00	0.00	0.00	-420.00	7673.00	36.661
2:40:11	59.9770	0.00	0.00	218.62	0.00	0.00	0.00	0.00	-420.00	7673.00	32.428
2:40:13	59.9780	0.00	0.00	218.62	0.00	0.00	0.00	0.00	-420.00	7673.00	31.019
2:40:15	59.9780	0.00	0.00	218.62	0.00	0.00	0.00	0.00	-420.00	7673.00	31.019
2:40:17	59.9790	0.00	0.00	218.62	0.00	0.00	0.00	0.00	-420.00	7673.00	29.610
2:40:19	59.9770	0.00	0.00	218.62	0.00	0.00	0.00	0.00	-420.00	7673.00	32.428
2:40:21	59.9770	0.00	0.00	218.62	0.00	0.00	0.00	0.00	-420.00	7673.00	32.428
2:40:23	59.9740	0.00	0.00	218.62	0.00	0.00	0.00	0.00	-420.00	7673.00	36.661
2:40:25	59.9710	0.00	0.00	213.54	0.00	0.00	0.00	0.00	-420.00	7673.00	40.889
2:40:27	59.9710	0.00	0.00	213.54	0.00	0.00	0.00	0.00	-420.00	7673.00	40.889
2:40:29	59.9710	0.00	0.00	213.54	0.00	0.00	0.00	0.00	-420.00	7673.00	40.889
2:40:31	59.9680	0.00	0.00	213.54	0.00	0.00	0.00	0.00	-420.00	7673.00	45.122
2:40:33	59.9680	0.00	0.00	213.54	0.00	0.00	0.00	0.00	-420.00	7673.00	45.122
2:40:35	59.9660	0.00	0.00	213.54	0.00	0.00	0.00	0.00	-420.00	7674.00	47.941
2:40:37	59.9710	0.00	0.00	213.54	0.00	0.00	0.00	0.00	-420.00	7675.00	40.889
2:40:39	59.9710	0.00	0.00	213.54	0.00	0.00	0.00	0.00	-420.00	7675.00	40.889
2:40:41	59.9730	0.00	0.00	225.65	0.00	0.00	0.00	0.00	-420.00	7676.00	38.071
2:40:43	59.9690	0.00	0.00	225.65	0.00	0.00	0.00	0.00	-420.00	7677.00	43.708
2:40:45	59.9690	0.00	0.00	225.65	0.00	0.00	0.00	0.00	-420.00	7677.00	43.708
2:40:47	59.9720	0.00	0.00	225.65	0.00	0.00	0.00	0.00	-420.00	7678.00	39.480
2:40:49	59.9730	0.00	0.00	225.65	0.00	0.00	0.00	0.00	-420.00	7679.00	38.071
2:40:51	59.9730	0.00	0.00	225.65	0.00	0.00	0.00	0.00	-420.00	7679.00	38.071
2:40:53	59.9700	0.00	0.00	225.65	0.00	0.00	0.00	0.00	-420.00	7680.00	42.298
2:40:55	59.9740	0.00	0.00	212.57	0.00	0.00	0.00	0.00	-420.00	7681.00	36.661
2:40:57	59.9740	0.00	0.00	212.57	0.00	0.00	0.00	0.00	-420.00	7681.00	36.661
2:40:59	59.9820	0.00	0.00	212.57	0.00	0.00	0.00	0.00	-420.00	7682.00	25.382
2:41:01	59.9850	0.00	0.00	212.57	0.00	0.00	0.00	0.00	-420.00	7684.00	21.149
2:41:03	59.9850	0.00	0.00	212.57	0.00	0.00	0.00	0.00	-420.00	7684.00	21.149
2:41:05	59.9850	0.00	0.00	212.57	0.00	0.00	0.00	0.00	-420.00	7685.00	21.149
2:41:07	59.9890	0.00	0.00	212.57	0.00	0.00	0.00	0.00	-420.00	7687.00	15.512
2:41:09	59.9890	0.00	0.00	212.57	0.00	0.00	0.00	0.00	-420.00	7687.00	15.512
2:41:11	59.9890	0.00	0.00	219.90	0.00	0.00	0.00	0.00	-420.00	7689.00	15.512
2:41:13	59.9870	0.00	0.00	219.90	0.00	0.00	0.00	0.00	-420.00	7690.00	18.331
2:41:15	59.9870	0.00	0.00	219.90	0.00	0.00	0.00	0.00	-420.00	7690.00	18.331
2:41:17	59.9900	0.00	0.00	219.90	0.00	0.00	0.00	0.00	-420.00	7692.00	14.098
2:41:19	59.9960	0.00	0.00	219.90	0.00	0.00	0.00	0.00	-420.00	7692.00	5.642
2:41:21	59.9960	0.00	0.00	219.90	0.00	0.00	0.00	0.00	-420.00	7692.00	5.642
2:41:23	60.0010	0.00	0.00	219.90	0.00	0.00	0.00	0.00	-420.00	7693.00	-1.409
2:41:25	60.0040	0.00	0.00	231.18	0.00	0.00	0.00	0.00	-420.00	7693.00	-5.642
2:41:27	60.0040	0.00	0.00	231.18	0.00	0.00	0.00	0.00	-420.00	7693.00	-5.642
2:41:29	60.0060	0.00	0.00	231.18	0.00	0.00	0.00	0.00	-420.00	7694.00	-8.461
2:41:31	60.0140	0.00	0.00	231.18	0.00	0.00	0.00	0.00	-420.00	7694.00	-19.740

2:41:33	60.0140	0.00	0.00	231.18	0.00	0.00	0.00	0.00	-420.00	7694.00	-19.740
2:41:35	60.0190	0.00	0.00	231.18	0.00	0.00	0.00	0.00	-420.00	7695.00	-26.791
2:41:37	60.0250	0.00	0.00	231.18	0.00	0.00	0.00	0.00	-420.00	7695.00	-35.252
2:41:39	60.0250	0.00	0.00	231.18	0.00	0.00	0.00	0.00	-420.00	7695.00	-35.252
2:41:41	60.0260	0.00	0.00	226.63	0.00	0.00	0.00	0.00	-420.00	7695.00	-36.661
2:41:43	60.0290	0.00	0.00	226.63	0.00	0.00	0.00	0.00	-420.00	7696.00	-40.889
2:41:45	60.0290	0.00	0.00	226.63	0.00	0.00	0.00	0.00	-420.00	7696.00	-40.889
2:41:47	60.0290	0.00	0.00	226.63	0.00	0.00	0.00	0.00	-420.00	7696.00	-40.889
2:41:49	60.0360	0.00	0.00	226.63	0.00	0.00	0.00	0.00	-420.00	7697.00	-50.759
2:41:51	60.0360	0.00	0.00	226.63	0.00	0.00	0.00	0.00	-420.00	7697.00	-50.759
2:41:53	60.0370	0.00	0.00	226.63	0.00	0.00	0.00	0.00	-420.00	7697.00	-52.168
2:41:55	60.0360	0.00	0.00	227.26	0.00	0.00	0.00	0.00	-420.00	7697.00	-50.759
2:41:57	60.0360	0.00	0.00	227.26	0.00	0.00	0.00	0.00	-420.00	7697.00	-50.759
2:41:59	60.0410	0.00	0.00	227.26	0.00	0.00	0.00	0.00	-420.00	7698.00	-57.811
2:42:01	60.0440	0.00	0.00	227.26	0.00	0.00	0.00	0.00	-420.00	7698.00	-62.038
2:42:03	60.0440	0.00	0.00	227.26	0.00	0.00	0.00	0.00	-420.00	7698.00	-62.038
2:42:05	60.0430	0.00	0.00	227.26	0.00	0.00	0.00	0.00	-420.00	7698.33	-60.629
2:42:07	60.0480	0.00	0.00	227.26	0.00	0.00	0.00	0.00	-420.00	7698.66	-67.680
2:42:09	60.0480	0.00	0.00	227.26	0.00	0.00	0.00	0.00	-420.00	7698.66	-67.680
2:42:11	60.0460	0.00	0.00	229.29	0.00	0.00	0.00	0.00	-420.00	7698.99	-64.862
2:42:13	60.0430	0.00	0.00	229.29	0.00	0.00	0.00	0.00	-420.00	7699.32	-60.629
2:42:15	60.0430	0.00	0.00	229.29	0.00	0.00	0.00	0.00	-420.00	7699.32	-60.629
2:42:17	60.0430	0.00	0.00	229.29	0.00	0.00	0.00	0.00	-420.00	7699.65	-60.629
2:42:19	60.0430	0.00	0.00	229.29	0.00	0.00	0.00	0.00	-420.00	7699.98	-60.629
2:42:21	60.0430	0.00	0.00	229.29	0.00	0.00	0.00	0.00	-420.00	7699.98	-60.629

												T-66 sec	2:26:15			
												T-64 sec	2:26:17			
												T-62 sec	2:26:19			
												T-60 sec	2:26:21			
												T-58 sec	2:26:23			
												T-56 sec	2:26:25			
												T-54 sec	2:26:27			
												T-52 sec	2:26:29			
												T-50 sec	2:26:31			
												$\mathrm{T}-48 \mathrm{sec}$	2:26:33			
												$\mathrm{T}-46 \mathrm{sec}$	2:26:35			
												T-44 sec	2:26:37			
												T-42 sec	2:26:39			
												$\mathrm{T}-40 \mathrm{sec}$	2:26:41			
												T-38 sec	2:26:43			
												T-36 sec	2:26:45			
												T-34 sec	2:26:47			
												T-32 sec	2:26:49			
												T-30 sec	2:26:51			
												T-28 sec	2:26:53			
												T-26 sec	2:26:55			
												T-24 sec	2:26:57			
												T-22 sec	2:26:59			
												T-20 sec	2:27:01			
												$\mathrm{T}-18 \mathrm{sec}$	2:27:03			
60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		$\mathrm{T}-16 \mathrm{sec}$	2:27:05	60.042	633.000	0.000
60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		T-14 sec	2:27:07	60.042	633.000	0.000
60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		T-12 sec	2:27:09	60.042	633.000	0.000
60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		$\mathrm{T}-10 \mathrm{sec}$	2:27:11	60.042	633.000	0.000
60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		T-08 sec	2:27:13	60.042	633.000	0.000
60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		T-06 sec	2:27:15	60.042	633.000	0.000
60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		T-04 sec	2:27:17	60.042	633.000	0.000
60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		T-02 sec	2:27:19	60.042	633.000	0.000
												T+0 sec	2:27:21			
												T+02 sec	2:27:23			
												T+04 sec	2:27:25			
												T+06 sec	2:27:27			
												T+08 sec	2:27:29			
												T+10 sec	2:27:31			
59.882	0.000	0.000	209.885	0.000	0.000	0.000	0.000	-420.000	7570.000	165.977	902.300	$\mathrm{T}+12 \mathrm{sec}$	2:27:33			
59.882	0.000	0.000	209.885	0.000	0.000	0.000	0.000	-420.000	7570.000	165.977	902.300	$\mathrm{T}+14 \mathrm{sec}$	2:27:35			
59.882	0.000	0.000	209.885	0.000	0.000	0.000	0.000	-420.000	7570.000	165.977	902.300	$\mathrm{T}+16 \mathrm{sec}$	2:27:37			
59.882	0.000	0.000	209.885	0.000	0.000	0.000	0.000	-420.000	7570.000	165.977	902.300	$\mathrm{T}+18 \mathrm{sec}$	2:27:39	59.884	0.000	0.000
59.882	0.000	0.000	209.885	0.000	0.000	0.000	0.000	-420.000	7570.000	165.977	902.300	T+20 sec	2:27:41	59.884	0.000	0.000
59.882	0.000	0.000	209.885	0.000	0.000	0.000	0.000	-420.000	7570.000	165.977	902.300	$\mathrm{T}+22 \mathrm{sec}$	2:27:43	59.884	0.000	0.000
59.882	0.000	0.000	209.885	0.000	0.000	0.000	0.000	-420.000	7570.000	165.977	902.300	T+24 sec	2:27:45	59.884	0.000	0.000

									T-18 sec	2:27:03					
165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		T-16 sec	2:27:05	60.042	633.000	0.000	165.430	0.000
165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		T-14 sec	2:27:07	60.042	633.000	0.000	165.430	0.000
165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		$\mathrm{T}-12 \mathrm{sec}$	2:27:09	60.042	633.000	0.000	165.430	0.000
165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		$\mathrm{T}-10 \mathrm{sec}$	2:27:11	60.042	633.000	0.000	165.430	0.000
165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		T-08 sec	2:27:13	60.042	633.000	0.000	165.430	0.000
165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		T-06 sec	2:27:15	60.042	633.000	0.000	165.430	0.000
165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		T-04 sec	2:27:17	60.042	633.000	0.000	165.430	0.000
165.430	0.000	0.000	0.000	0.000	-420.000	7600.196	-58.867		T-02 sec	2:27:19	60.042	633.000	0.000	165.430	0.000
									T+0 sec	2:27:21					
									T+02 sec	2:27:23					
									T+04 sec	2:27:25					
									T+06 sec	2:27:27					
									T+08 sec	2:27:29					
									T+10 sec	2:27:31					
									T+12 sec	2:27:33					
									T+14 sec	2:27:35					
									T+16 sec	2:27:37					
211.256	0.000	0.000	0.000	0.000	-420.000	7570.000	162.955	900.649	$\mathrm{T}+18 \mathrm{sec}$	2:27:39					
211.256	0.000	0.000	0.000	0.000	-420.000	7570.000	162.955	900.649	$\mathrm{T}+20 \mathrm{sec}$	2:27:41	59.889	0.000	0.000	212.661	0.000
211.256	0.000	0.000	0.000	0.000	-420.000	7570.000	162.955	900.649	T+22 sec	2:27:43	59.889	0.000	0.000	212.661	0.000
211.256	0.000	0.000	0.000	0.000	-420.000	7570.000	162.955	900.649	T+24 sec	2:27:45	59.889	0.000	0.000	212.661	0.000

211.256	0.000	0.000	0.000	0.000	-420.000	7570.000	162.955	900.649	T+26 sec	2:27:47	59.889	0.000	0.000	212.661	0.000
211.256	0.000	0.000	0.000	0.000	-420.000	7570.000	162.955	900.649	$\mathrm{T}+28 \mathrm{sec}$	2:27:49	59.889	0.000	0.000	212.661	0.000
211.256	0.000	0.000	0.000	0.000	-420.000	7570.000	162.955	900.649	$\mathrm{T}+30 \mathrm{sec}$	2:27:51	59.889	0.000	0.000	212.661	0.000
									$\mathrm{T}+32 \mathrm{sec}$	2:27:53	59.889	0.000	0.000	212.661	0.000
									$\mathrm{T}+34 \mathrm{sec}$	2:27:55	59.889	0.000	0.000	212.661	0.000
									$\mathrm{T}+36 \mathrm{sec}$	2:27:57	59.889	0.000	0.000	212.661	0.000
									$\mathrm{T}+38 \mathrm{sec}$	2:27:59	59.889	0.000	0.000	212.661	0.000
									$\mathrm{T}+40 \mathrm{sec}$	2:28:01	59.889	0.000	0.000	212.661	0.000
									T+42 sec	2:28:03					
									T+44 sec	2:28:05					
									$\mathrm{T}+46 \mathrm{sec}$	2:28:07					
									T+48 sec	2:28:09					
									T+50 sec	2:28:11					
									T+52 sec	2:28:13					
									T+54 sec	2:28:15					
									T+56 sec	2:28:17					
									T+58 sec	2:28:19					
									T+60 sec	2:28:21					
									T+62 sec	2:28:23					
									T+64 sec	2:28:25					
									T+66 sec	2:28:27					
									T+68 sec	2:28:29					
									T+70 sec	2:28:31					
									T+72 sec	2:28:33					
									T+74 sec	2:28:35					
									T+76 sec	2:28:37					
									T+78 sec	2:28:39					
									T+80 sec	2:28:41					

							T-66 sec	2:26:15							
							T-64 sec	2:26:17							
							T-62 sec	2:26:19							
							T-60 sec	2:26:21							
							T-58 sec	2:26:23							
							T-56 sec	2:26:25							
							T-54 sec	2:26:27							
							T-52 sec	2:26:29							
							T-50 sec	2:26:31							
							T-48 sec	2:26:33							
							T-46 sec	2:26:35							
							T-44 sec	2:26:37							
							T-42 sec	2:26:39							
							T-40 sec	2:26:41							
							T-38 sec	2:26:43							
							T-36 sec	2:26:45							
							T-34 sec	2:26:47							
							T-32 sec	2:26:49							
							T-30 sec	2:26:51							
							T-28 sec	2:26:53							
							T-26 sec	2:26:55							
							T-24 sec	2:26:57							
							T-22 sec	2:26:59							
							T-20 sec	2:27:01							
							T-18 sec	2:27:03							
0.000	0.000	0.000	-420.000	7600.196	-58.867		T-16 sec	2:27:05	60.042	633.000	0.000	165.430	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7600.196	-58.867		T-14 sec	2:27:07	60.042	633.000	0.000	165.430	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7600.196	-58.867		$\mathrm{T}-12 \mathrm{sec}$	2:27:09	60.042	633.000	0.000	165.430	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7600.196	-58.867		$\mathrm{T}-10 \mathrm{sec}$	2:27:11	60.042	633.000	0.000	165.430	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7600.196	-58.867		T-08 sec	2:27:13	60.042	633.000	0.000	165.430	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7600.196	-58.867		T-06 sec	2:27:15	60.042	633.000	0.000	165.430	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7600.196	-58.867		T-04 sec	2:27:17	60.042	633.000	0.000	165.430	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7600.196	-58.867		T-02 sec	2:27:19	60.042	633.000	0.000	165.430	0.000	0.000	0.000
							T+0 sec	2:27:21							
							T+02 sec	2:27:23							
							T+04 sec	2:27:25							
							T+06 sec	2:27:27							
							T+08 sec	2:27:29							
							$\mathrm{T}+10 \mathrm{sec}$	2:27:31							
							T+12 sec	2:27:33							
							T+14 sec	2:27:35							
							$\mathrm{T}+16 \mathrm{sec}$	2:27:37							
							$\mathrm{T}+18 \mathrm{sec}$	2:27:39	59.888	0.000	0.000	212.662	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7570.000	156.253	895.352	T+20 sec	2:27:41	59.888	0.000	0.000	212.662	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7570.000	156.253	895.352	$\mathrm{T}+22 \mathrm{sec}$	2:27:43	59.888	0.000	0.000	212.662	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7570.000	156.253	895.352	T+24 sec	2:27:45	59.888	0.000	0.000	212.662	0.000	0.000	0.000

0.000	0.000	0.000	-420.000	7570.000	156.253	895.352	T+26 sec	2:27:47	59.888	0.000	0.000	212.662	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7570.000	156.253	895.352	$\mathrm{T}+28 \mathrm{sec}$	2:27:49	59.888	0.000	0.000	212.662	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7570.000	156.253	895.352	$\mathrm{T}+30 \mathrm{sec}$	2:27:51	59.888	0.000	0.000	212.662	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7570.000	156.253	895.352	$\mathrm{T}+32 \mathrm{sec}$	2:27:53	59.888	0.000	0.000	212.662	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7570.000	156.253	895.352	$\mathrm{T}+34 \mathrm{sec}$	2:27:55	59.888	0.000	0.000	212.662	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7570.000	156.253	895.352	T+36 sec	2:27:57	59.888	0.000	0.000	212.662	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7570.000	156.253	895.352	$\mathrm{T}+38 \mathrm{sec}$	2:27:59	59.888	0.000	0.000	212.662	0.000	0.000	0.000
0.000	0.000	0.000	-420.000	7570.000	156.253	895.352	$\mathrm{T}+40 \mathrm{sec}$	2:28:01	59.888	0.000	0.000	212.662	0.000	0.000	0.000
							$\mathrm{T}+42 \mathrm{sec}$	2:28:03	59.888	0.000	0.000	212.662	0.000	0.000	0.000
							$\mathrm{T}+44 \mathrm{sec}$	2:28:05	59.888	0.000	0.000	212.662	0.000	0.000	0.000
							$\mathrm{T}+46 \mathrm{sec}$	2:28:07	59.888	0.000	0.000	212.662	0.000	0.000	0.000
							$\mathrm{T}+48 \mathrm{sec}$	2:28:09	59.888	0.000	0.000	212.662	0.000	0.000	0.000
							$\mathrm{T}+50 \mathrm{sec}$	2:28:11	59.888	0.000	0.000	212.662	0.000	0.000	0.000
							T+52 sec	2:28:13	59.888	0.000	0.000	212.662	0.000	0.000	0.000
							T+54 sec	2:28:15							
							T+56 sec	2:28:17							
							T+58 sec	2:28:19							
							T+60 sec	2:28:21							
							T+62 sec	2:28:23							
							T+64 sec	2:28:25							
							T+66 sec	2:28:27							
							T+68 sec	2:28:29							
							T+70 sec	2:28:31							
							T+72 sec	2:28:33							
							T+74 sec	2:28:35							
							T+76 sec	2:28:37							
							T+78 sec	2:28:39							
							T+80 sec	2:28:41							

					$\mathrm{T}-66$ sec $\mathrm{T}-64$ sec $\mathrm{T}-62$ sec $\mathrm{T}-60$ sec $\mathrm{T}-58$ sec $\mathrm{T}-56$ sec $\mathrm{T}-54$ sec $\mathrm{T}-52 \mathrm{sec}$ $\mathrm{T}-50 \mathrm{sec}$ $\mathrm{T}-48$ sec $\mathrm{T}-46$ sec $\mathrm{T}-44$ sec $\mathrm{T}-42$ sec $\mathrm{T}-40$ sec $\mathrm{T}-38$ sec $\mathrm{T}-36$ sec $\mathrm{T}-34$ sec $\mathrm{T}-32$ sec $\mathrm{T}-30$ sec $\mathrm{T}-28$ sec $\mathrm{T}-26$ sec $\mathrm{T}-24$ sec $\mathrm{T}-22$ sec $\mathrm{T}-20$ sec $\mathrm{T}-18$ sec	2:26:15 2:26:17 2:26:19 2:26:21 2:26:23 2:26:25 2:26:27 2:26:29 2:26:31 2:26:33 2:26:35 2:26:37 2:26:39 2:26:41 2:26:43 2:26:45 2:26:47 2:26:49 2:26:51 2:26:53 2:26:55 2:26:57 2:26:59 2:27:01 2:27:03								
0.000	-420.000	7600.196	-58.867		$\mathrm{T}-16 \mathrm{sec}$	2:27:05	60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000
0.000	-420.000	7600.196	-58.867		T-14 sec	2:27:07	60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000
0.000	-420.000	7600.196	-58.867		T-12 sec	2:27:09	60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000
0.000	-420.000	7600.196	-58.867		T-10 sec	2:27:11	60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000
0.000	-420.000	7600.196	-58.867		T-08 sec	2:27:13	60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000
0.000	-420.000	7600.196	-58.867		T-06 sec	2:27:15	60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000
0.000	-420.000	7600.196	-58.867		T-04 sec	2:27:17	60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000
0.000	-420.000	7600.196	-58.867		T-02 sec	2:27:19	60.042	633.000	0.000	165.430	0.000	0.000	0.000	0.000
					$\begin{array}{\|c} \hline T+0 \mathrm{sec} \\ \mathrm{~T}+02 \mathrm{sec} \\ \mathrm{~T}+04 \mathrm{sec} \\ \mathrm{~T}+06 \mathrm{sec} \\ \mathrm{~T}+08 \mathrm{sec} \\ \mathrm{~T}+10 \mathrm{sec} \\ \mathrm{~T}+12 \mathrm{sec} \\ \mathrm{~T}+14 \mathrm{sec} \\ \mathrm{~T}+16 \mathrm{sec} \end{array}$	$\begin{aligned} & \text { 2:27:21 } \\ & \text { 2:27:23 } \\ & \text { 2:27:25 } \\ & \text { 2:27:27 } \\ & \text { 2:27:29 } \\ & \text { 2:27:31 } \\ & \text { 2:27:33 } \\ & \text { 2:27:35 } \\ & \text { 2:27:37 } \end{aligned}$								
0.000	-420.000	7570.000	157.998	897.098	T+18 sec	2:27:39								
0.000	-420.000	7570.000	157.998	897.098	$\mathrm{T}+20 \mathrm{sec}$	2:27:41	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	T+22 sec	2:27:43	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	T+24 sec	2:27:45	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000

0.000	-420.000	7570.000	157.998	897.098	$\mathrm{T}+26 \mathrm{sec}$	2:27:47	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	$\mathrm{T}+28 \mathrm{sec}$	2:27:49	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	$\mathrm{T}+30 \mathrm{sec}$	2:27:51	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	T+32 sec	2:27:53	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	$\mathrm{T}+34 \mathrm{sec}$	2:27:55	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	$\mathrm{T}+36 \mathrm{sec}$	2:27:57	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	$\mathrm{T}+38 \mathrm{sec}$	2:27:59	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	$\mathrm{T}+40 \mathrm{sec}$	2:28:01	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	$\mathrm{T}+42 \mathrm{sec}$	2:28:03	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	$\mathrm{T}+44 \mathrm{sec}$	2:28:05	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	T+46 sec	2:28:07	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	$\mathrm{T}+48 \mathrm{sec}$	2:28:09	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	T+50 sec	2:28:11	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
0.000	-420.000	7570.000	157.998	897.098	T+52 sec	2:28:13	59.889	0.000	0.000	212.744	0.000	0.000	0.000	0.000
					T+54 sec	2:28:15								
					T+56 sec	2:28:17								
					T+58 sec	2:28:19								
					T+60 sec	2:28:21								
					T+62 sec	2:28:23								
					T+64 sec	2:28:25								
					T+66 sec	2:28:27								
					T+68 sec	2:28:29								
					T+70 sec	2:28:31								
					T+72 sec	2:28:33								
					T+74 sec	2:28:35								
					T+76 sec	2:28:37								
					T+78 sec	2:28:39								
					T+80 sec	2:28:41								

-420.000	7600.196	-58.867	
-420.000	7600.196	-58.867	
-420.000	7600.196	-58.867	
-420.000	7600.196	-58.867	
-420.000	7600.196	-58.867	
-420.000	7600.196	-58.867	
-420.000	7600.196	-58.867	
-420.000	7600.196	-58.867	
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107

-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107
-420.000	7570.000	156.925	896.107

$\begin{array}{llllll}\text { Monday, October 12, } 2009 & \text { 2:27:19 } & 60.0390 & 60.0417 & \text { 2:27:21 } & 59.8360\end{array}$

Value B	FR B								
12 to 24 sec	12 to 24 sec	18 to 30 sec	18 to 30 sec	20 to 40 sec	20 to 40 sec	18 to 52 sec	18 to 52 sec	20 to 52 sec	20 to 52 sec
Average									
Frequency	MW								
59.8822861	-397.43625	59.8844288	-402.63425	59.888706	-415.16368	59.8879445	-411.95878	59.888706	-413.86163

							Value B 18 to 30 second Average Per						Transferred			
Contingent													Contingent			
BA	Initial	Initial	Sustained	BA	BA	Bias		Total	Dynamic	Conforming	Pumped	Ramping		Frequency	BA	Initial
Lost Generation	Performance	Performance	Performance	Bias	Load	Setting		Generation	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	
n/a	Adjusted	Unadjusted		Setting		EPFR	Frequency	Lost	n/a	Load (-)	Load (-) Gen (+)	n/a	n/a	n/a	Adjusted	
	P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW	Hz	MW		MW	MW				P.U.	
0.00	2.351	2.815	No Evaluation	-420	7570	494.3985	59.884429	0.00	0.00	211.26	0.00	0.00	0.00	0.00	2.365	

Value B															
							JOU	Non-			Transferred	Contingent			
Initial	Sustained	BA	BA	Bias		Total	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained
Performance	Performance	Bias	Load	Setting		Generation	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance
Unadjusted		Setting		EPFR	Frequency	Lost	n / a	Load (-)	Load (-) Gen (+)	n/a	n/a	n/a	Adjusted	Unadjusted	
P.U.	P.U.	MW/0.1 Hz	MW	MW	Hz	MW		MW	MW				P.U.	P.U.	P.U.
2.854	No Evaluation	-420	7570	485.3989	59.889182	0.00	0.00	212.66	0.00	0.00	0.00	0.00	2.413	2.943	No Evaluation

20 to 52 second Average Period Evaluation

	JOU	Non-			Transferred	Contingent						
Total	Dynamic	Conforming	Pumped	Ramping	Frequency	BA	Initial	Initial	Sustained	BA	BA	Bias
Generation	Schedules	Load	Hydro	Units	Response	Lost Generation	Performance	Performance	Performance	Bias	Load	Setting
Lost	n/a	Load (-)	Load (-) Gen (+)	n/a	n/a	n/a	Adjusted	Unadjusted		Setting		EPFR
MW		MW	MW				P.U.	P.U.	P.U.	MW/0.1 Hz	MW	MW
0.00	0.00	212.74	0.00	0.00	0.00	0.00	2.406	2.933	No Evaluation	-420	7570	467.4349

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Standards Announcement Project 2007-12 Frequency Response Initial Ballot Window and Non-Binding Poll Now Open: Nov. 30 - Dec. 9, 2011

Available Now

An initial ballot of BAL-003-1 - Frequency Response and Frequency Bias Setting and its associated implementation plan, and a non-binding poll of the associated VRFs and VSLs, are open through 8 p.m. Eastern on Friday, December 9, 2011.

In addition to the standard and implementation plan, the following documents have been posted for stakeholder review and comment:

- Consideration of Comments Report - Provides a summary of the modifications made to the proposed standard and supporting documents based on comments submitted during the formal comment period that ended March 7, 2011
- Frequency Response Standard Background Document - Provides an explanation of each of the proposed requirements; identifies how the proposed standard proposes to address FERC directives from Order 693; and on the last page provides an overview of the field trial (currently in Step 4)
- Attachment A - ERO's Process for assigning a Frequency Response Obligation and Frequency Bias Setting to each Balancing Authority
- Attachment B - ERO's Process for Adjusting Minimum Frequency Bias Setting
- FRS Form 1 (four versions - one for each of the four Interconnections) and FRS Form 2 (seven versions - two to collect data for Interconnections with a single Balancing Authority at two second and three second intervals; five to collect data for Interconnections with multiple Balancing Authorities at two second, three second, four second, five second and six second intervals) - Both Form 1 and Form 2 are proposed for the ERO's use (in conjunction with Attachment A) in determining each Interconnection's necessary amount of Frequency Response for allocation to Balancing Authorities. Instructions are now on the first page of each FRS Form 1 and FRS Form 2
- Mapping Document - Identifies each requirement in the already approved BAL-003-0.1b and identifies how that requirement has been treated in the revisions proposed in BAL-003-1.
- Unofficial comment form in Word format - This is for informal use when compiling responses - the final must be submitted electronically.

Instructions for Balloting

Members of the ballot pools associated with this project may log in and submit their vote for the standard and opinion for the non-binding poll from the following page:
https://standards.nerc.net/CurrentBallots.aspx

I nstructions for Commenting

A formal comment period is open through 8 p.m. Eastern on Friday, December 9, 2011. Please use this electronic form to submit comments. If you experience any difficulties in using the electronic form, please contact Monica Benson at monica.benson@nerc.net. An off-line, unofficial copy of the comment form is posted on the project page.

Special Instructions for Submitting Comments with a Ballot

Please note that comments submitted during the formal comment period, the ballot for the standard, and the non-binding poll of VRFs and VSLs all use the same electronic form, and it is NOT necessary for ballot pool members to submit more than one set of comments (one through the electronic form, one with the ballot, and one with the non-binding poll). The drafting team requests that all stakeholders (ballot pool members as well as other stakeholders) submit all comments through the electronic comment form.

Please use this electronic form to submit comments. If you experience any difficulties in using the electronic form, please contact Monica Benson at monica.benson@nerc.net. An off-line, unofficial copy of the comment form is posted on the project page.

Next Steps

The drafting team will consider all comments and determine what changes to make in response to stakeholder input from the comments.

Background

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. The proposed standard's intent is to collect data needed to accurately analyze existing Frequency Response, set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be analyzed, and the reasons for the decline in Frequency Response
can be identified. Once Frequency Response has been analyzed and confirmed, requirements can be modified to maintain reliability.

Additional information is available on the project webpage.
A stakeholder interested in following the Frequency Response Standard Drafting Team's development of BAL-003-1 may monitor meeting agendas and notes on the team's "Related Files" web page or may submit a request to join the team's "plus" email list to receive meeting agendas and meeting notes as they are distributed to the team. To join the team's "plus" email list, send a note to sarcomm@nerc.net and include the project's name in the subject line.

Standards Development Process

The Standard Processes Manual contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate. For more information or assistance, please contact Monica Benson at monica.benson@nerc.net.

For more information or assistance, please contact Monica Benson, Standards Process Administrator, at monica.benson@nerc.net or at 404-446-2560.

North American Electric Reliability Corporation
116-390 Village Blvd.
Princeton, NJ 08540
609.452.8060 | www.nerc.com

Available Now

BAL-003-1 - Frequency Response and Frequency Bias Setting, an implementation plan and several additional associated documents (listed below) have been posted for a formal comment period and initial ballot that will end at 8 p.m. Eastern on Thursday, December 8, 2011. Ballot pools are being formed and the ballot pool windows are open through 8 a.m. Eastern on Wednesday, November 23.

The following associated documents have been posted for stakeholder review and comment:

- Consideration of Comments Report - Provides a summary of the modifications made to the proposed standard and supporting documents based on comments submitted during the formal comment period that ended March 7, 2011
- Frequency Response Standard Background Document - Provides an explanation of each of the proposed requirements; identifies how the proposed standard proposes to address FERC directives from Order 693; and on the last page provides an overview of the field trial (currently in Step 4)
- Attachment A - ERO's Process for assigning a Frequency Response Obligation and Frequency Bias Setting to each Balancing Authority
- Attachment B - ERO's Process for Adjusting Minimum Frequency Bias Setting
- FRS Form 1 (four versions - one for each of the four Interconnections) and FRS Form 2 (seven versions - two to collect data for Interconnections with a single Balancing Authority at two second and three second intervals; five to collect data for Interconnections with multiple Balancing Authorities at two second, three second, four second and five second intervals) Both forms are proposed for the ERO's use (in conjunction with Attachment A) in determining each Interconnection's necessary amount of Frequency Response for allocation to Balancing Authorities. Instructions are now on the first page of each FRS Form 1 and FRS Form 2
- Mapping Document - Identifies each requirement in the already approved BAL-003-0.1b and identifies how that requirement has been treated in the revisions proposed in BAL-003-1.
- Unofficial comment form in Word format - This is for informal use when compiling responses - the final must be submitted electronically

I nstructions for J oining Ballot Pools for BAL-003-1 and Associated VRFs/ VSLs

Two separate ballot pools are being formed - one ballot pool for Registered Ballot Body (RBB) members interested in balloting of BAL-003-1, and a second for RBB members interested in casting an opinion during the non-binding poll of VRFs and VSLs associated with BAL-003-1. RBB members who join the ballot pool for the standard will not be automatically entered in the ballot pool for the non-binding poll, but must elect to join the second ballot pool.

To join the ballot pool to be eligible to vote in the upcoming ballots and non-binding poll go to: Join Ballot Pool

During the pre-ballot windows, members of the ballot pool may communicate with one another by using their "ballot pool list server." (Once the balloting begins, ballot pool members are prohibited from using the ballot pool list servers.)
The list server for the initial ballot is: bp-2007-12 Freq Resp in@nerc.com Non-Binding Poll list server: bp-2007-12 NB OCT2011 in@nerc.com

Instructions for Commenting

Please use this electronic form to submit comments. If you experience any difficulties in using the electronic form, please contact Monica Benson at monica.benson@nerc.net. An off-line, unofficial copy of the comment form is posted on the project page.

Next Steps

The drafting team is planning a webinar in November to explain changes to the most recent draft of BAL-003-1. The date and registration information will be announced as soon as the details are finalized. An initial ballot of BAL-003-1 will be conducted beginning on Tuesday, November 29, 2011 through 8 p.m. Eastern on Thursday, December 8, 2011.

Background

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. The proposed standard's intent is to collect data needed to accurately analyze existing Frequency Response, set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be analyzed, and the
reasons for the decline in Frequency Response can be identified. Once Frequency Response has been analyzed and confirmed, requirements can be modified to maintain reliability.

Additional information is available on the project webpage.
A stakeholder interested in following the Frequency Response Standard Drafting Team's development of BAL-003-1 may monitor meeting agendas and notes on the team's "Related Files" web page or may submit a request to join the team's "plus" email list to receive meeting agendas and meeting notes as they are distributed to the team. To join the team's "plus" e-mail list, send an e-mail to: sarcomm@nerc.com. Please include the drafting team name in your e-mail request.

Standards Development Process

The Standard Processes Manual contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate. For more information or assistance, please contact Monica Benson at monica.benson@nerc.net.

For more information or assistance, please contact Monica Benson, Standards Process Administrator, at monica.benson@nerc.net or at 404-446-2560.

Available Now

BAL-003-1 - Frequency Response and Frequency Bias Setting, an implementation plan and several additional associated documents (listed below) have been posted for a formal comment period and initial ballot that will end at 8 p.m. Eastern on Thursday, December 8, 2011. Ballot pools are being formed and the ballot pool windows are open through 8 a.m. Eastern on Wednesday, November 23.

The following associated documents have been posted for stakeholder review and comment:

- Consideration of Comments Report - Provides a summary of the modifications made to the proposed standard and supporting documents based on comments submitted during the formal comment period that ended March 7, 2011
- Frequency Response Standard Background Document - Provides an explanation of each of the proposed requirements; identifies how the proposed standard proposes to address FERC directives from Order 693; and on the last page provides an overview of the field trial (currently in Step 4)
- Attachment A - ERO's Process for assigning a Frequency Response Obligation and Frequency Bias Setting to each Balancing Authority
- Attachment B - ERO's Process for Adjusting Minimum Frequency Bias Setting
- FRS Form 1 (four versions - one for each of the four Interconnections) and FRS Form 2 (seven versions - two to collect data for Interconnections with a single Balancing Authority at two second and three second intervals; five to collect data for Interconnections with multiple Balancing Authorities at two second, three second, four second and five second intervals) Both forms are proposed for the ERO's use (in conjunction with Attachment A) in determining each Interconnection's necessary amount of Frequency Response for allocation to Balancing Authorities. Instructions are now on the first page of each FRS Form 1 and FRS Form 2
- Mapping Document - Identifies each requirement in the already approved BAL-003-0.1b and identifies how that requirement has been treated in the revisions proposed in BAL-003-1.
- Unofficial comment form in Word format - This is for informal use when compiling responses - the final must be submitted electronically

I nstructions for J oining Ballot Pools for BAL-003-1 and Associated VRFs/ VSLs

Two separate ballot pools are being formed - one ballot pool for Registered Ballot Body (RBB) members interested in balloting of BAL-003-1, and a second for RBB members interested in casting an opinion during the non-binding poll of VRFs and VSLs associated with BAL-003-1. RBB members who join the ballot pool for the standard will not be automatically entered in the ballot pool for the non-binding poll, but must elect to join the second ballot pool.

To join the ballot pool to be eligible to vote in the upcoming ballots and non-binding poll go to: Join Ballot Pool

During the pre-ballot windows, members of the ballot pool may communicate with one another by using their "ballot pool list server." (Once the balloting begins, ballot pool members are prohibited from using the ballot pool list servers.)
The list server for the initial ballot is: bp-2007-12 Freq Resp in@nerc.com Non-Binding Poll list server: bp-2007-12 NB OCT2011 in@nerc.com

Instructions for Commenting

Please use this electronic form to submit comments. If you experience any difficulties in using the electronic form, please contact Monica Benson at monica.benson@nerc.net. An off-line, unofficial copy of the comment form is posted on the project page.

Next Steps

The drafting team is planning a webinar in November to explain changes to the most recent draft of BAL-003-1. The date and registration information will be announced as soon as the details are finalized. An initial ballot of BAL-003-1 will be conducted beginning on Tuesday, November 29, 2011 through 8 p.m. Eastern on Thursday, December 8, 2011.

Background

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. The proposed standard's intent is to collect data needed to accurately analyze existing Frequency Response, set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be analyzed, and the
reasons for the decline in Frequency Response can be identified. Once Frequency Response has been analyzed and confirmed, requirements can be modified to maintain reliability.

Additional information is available on the project webpage.
A stakeholder interested in following the Frequency Response Standard Drafting Team's development of BAL-003-1 may monitor meeting agendas and notes on the team's "Related Files" web page or may submit a request to join the team's "plus" email list to receive meeting agendas and meeting notes as they are distributed to the team. To join the team's "plus" e-mail list, send an e-mail to: sarcomm@nerc.com. Please include the drafting team name in your e-mail request.

Standards Development Process

The Standard Processes Manual contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate. For more information or assistance, please contact Monica Benson at monica.benson@nerc.net.

For more information or assistance, please contact Monica Benson, Standards Process Administrator, at monica.benson@nerc.net or at 404-446-2560.

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Standards Announcement

Project 2007-12 Frequency Response

I nitial Ballot and Non-Binding Poll Results

Now Available

An initial ballot and non-binding poll of BAL and its implementation plan concluded on December 9, 2011. Voting statistics are listed below, and the Ballot Results webpage provides a link to the detailed initial ballot results.

Initial Ballot Results
Quorum: 93.92\%
Approval: 30.82\%

Non-Binding Poll Results

89.49\% of those who registered to participate provided an opinion or abstention; 37% of those who provided an opinion indicated support for the VRFs and VSLs that were proposed.

Next Steps

The drafting team will consider all comments received during the comment period and ballot.

Background

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. The proposed standard's intent is to collect data needed to accurately analyze existing Frequency Response, set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be analyzed, and the reasons for the decline in Frequency Response can be identified. Once Frequency Response has been analyzed and confirmed, requirements can be modified to maintain reliability. Additional information is available on the project webpage.

A stakeholder interested in following the Frequency Response Standard Drafting Team's development of

BAL-003-1 may monitor meeting agendas and notes on the team's "Related Files" webpage or may submit a request to join the team's "plus" email list to receive meeting agendas and meeting notes as they are distributed to the team. To join the team's "plus" email list, send a note to sarcomm@nerc.net and include the project's name in the subject line.

Standards Development Process

The Standard Processes Manual contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate.

For more information or assistance, please contact Monica Benson, Standards Process Administrator, at monica.benson@nerc.net or at 404-446-2560.

North American Electric Reliability Corporation
116-390 Village Blvd.
Princeton, NJ 08540
609.452.8060 | www.nerc.com

NERC

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Newsroom • Site Map • Contact NERC

SEARCH NERC.com

Advanced Search GO

6	Tampa Electric Co.	Benjamin F Smith II	Negative	
6	Tennessee Valley Authority	Marjorie S. Parsons	Affirmative	View
6	Westar Energy	Grant L Wilkerson	Affirmative	
6	Western Area Power Administration - UGP Marketing	Peter H Kinney	Negative	View
6	Xcel Energy, Inc.	David F. Lemmons	Negative	View
8		Edward C Stein	Affirmative	
8		Roger C Zaklukiewicz	Negative	View
8		James A Maenner	Abstain	
8		Robert Blohm	Abstain	View
8	Energy Mark, Inc.	Howard F. Illian	Negative	View
8	J DRJC Associates	J im Cyrulewski	Negative	View
8	Power Energy Group LLC	Peggy Abbadini	Affirmative	
8	Utility Services, Inc.	Brian Evans-Mongeon	Abstain	
8	Volkmann Consulting, Inc.	Terry Volkmann	Affirmative	
9	California Energy Commission	William M Chamberlain	Negative	View
9	Commonwealth of Massachusetts Department of Public Utilities	Donald Nelson		
9	National Association of Regulatory Utility Commissioners	Diane J Barney	Negative	View
9	New York State Department of Public Service	Thomas Dvorsky	Negative	View
9	Oregon Public Utility Commission	J erome Murray	Negative	View
9	Public Utilities Commission of Ohio	Klaus Lambeck	Abstain	
10	Florida Reliability Coordinating Council	Linda Campbell	Affirmative	
10	Midwest Reliability Organization	James D Burley	Negative	View
10	New York State Reliability Council	Alan Adamson	Negative	
10	Northeast Power Coordinating Council	Guy V. Zito	Negative	View
10	ReliabilityFirst Corporation	Anthony E J ablonski	Negative	View
10	SERC Reliability Corporation	Carter B. Edge	Affirmative	View
10	Southwest Power Pool RE	Emily Pennel	Affirmative	View
10	Texas Reliability Entity, Inc.	Donald G Jones	Negative	View
10	Western Electricity Coordinating Council	Steven L. Rueckert	Negative	View

[^56]Washington Office: 1120 G Street, N.W. : Suite 990 : Washington, DC 20005-3801
(D) Account Log-In/Register

Copyright © 2010 by the North American Electric Reliability Corporation. : All rights reserved.
A New Jersey Nonprofit Corporation

2007-12 Frequency Response Non-Binding Poll Results

Ballot Results					
Non-Binding Poll Name:		2007-12 Non-binding Poll			
Poll Period:		11/29/2011-12/9/2011			
Total \# Opinions:		206			
Total Ballot Pool:		333			
Summary Results:		89.49\% of those who registered to participate provided an opinion or abstention; 36% of those who provided an opinion indicated support for the VRFs and VSLs that were proposed.			
Individual Ballot Pool Results					
Segment	Organization		Member	Opinion	Comments
1	Ameren Services		Kirit Shah	Negative	View
1	American Electric Power		Paul B. Johnson		
1	Associated Electric Cooperative, Inc.		John Bussman	Affirmative	View
1	Avista Corp.		Scott J Kinney	Abstain	
1	Balancing Authority of Northern California		Kevin Smith	Negative	
1	Baltimore Gas \& Electric Company		Gregory S Miller	Abstain	
1	BC Hydro and Power Authority		Patricia Robertson	Abstain	
1	Beaches Energy Services		Joseph S Stonecipher	Negative	View
1	Bonneville Power Administration		Donald S. Watkins	Negative	
1	Brazos Electric Power Cooperative, Inc.		Tony Kroskey		
1	Central Maine Power Company		J oseph Turano J r.	Affirmative	
1	City of Tacoma, Department of Public Utilities, Light Division, dba Tacoma Power		Chang G Choi	Affirmative	
1	Clark Public Utilities		J ack Stamper	Negative	View
1	Colorado Springs Utilities		Paul Morland	Negative	View
1	Consolidated Edison Co. of New York		Christopher L de Graffenried	Negative	View
1	CPS Energy		Richard Castrejana	Abstain	
1	Dairyland Power Coop.		Robert W. Roddy	Affirmative	
1	Dayton Power \& Light Co.		Hertzel Shamash	Negative	
1	Deseret Power		James Tucker	Negative	View
1	Dominion Virginia Power		Michael S Crowley		
1	Duke Energy Carolina		Douglas E. Hils	Negative	View
1	East Kentucky Power Coop.		George S. Carruba	Negative	View
1	Empire District Electric Co.		Ralph F Meyer	Affirmative	

1	Entergy Services, Inc.	Edward J Davis	Affirmative	
1	FirstEnergy Corp.	William J Smith	Abstain	View
1	Florida Keys Electric Cooperative Assoc.	Dennis Minton		
1	Florida Power \& Light Co.	Mike O'Neil	Affirmative	
1	Gainesville Regional Utilities	Luther E. Fair	Abstain	
1	Great River Energy	Gordon Pietsch	Negative	View
1	Hoosier Energy Rural Electric Cooperative, Inc.	Bob Solomon	Negative	View
1	Hydro One Networks, Inc.	Ajay Garg	Abstain	
1	Hydro-Quebec TransEnergie	Bernard Pelletier		
1	I daho Power Company	Ronald D. Schellberg	Negative	View
1	I mperial Irrigation District	Tino Zaragoza	Affirmative	
1	International Transmission Company Holdings Corp	Michael Moltane		
1	JEA	Ted Hobson	Negative	View
1	Kansas City Power \& Light Co.	Michael Gammon	Negative	View
1	Keys Energy Services	Stanley T Rzad		
1	Lakeland Electric	Larry E Watt		
1	Lee County Electric Cooperative	J ohn W Delucca	Abstain	
1	Lincoln Electric System	Doug Bantam	Negative	
1	Manitoba Hydro	J oe D Petaski	Negative	View
1	MEAG Power	Danny Dees	Abstain	
1	MidAmerican Energy Co.	Terry Harbour	Abstain	
1	National Grid	Saurabh Saksena		
1	Nebraska Public Power District	Cole C Brodine	Abstain	
1	New Brunswick Power Transmission Corporation	Randy MacDonald	Negative	
1	New York State Electric \& Gas Corp.	Raymond P Kinney	Affirmative	
1	Northeast Utilities	David Boguslawski		
1	Northern Indiana Public Service Co.	Kevin M Largura	Affirmative	
1	NorthWestern Energy	John Canavan	Affirmative	
1	Ohio Valley Electric Corp.	Robert Mattey	Negative	
1	Omaha Public Power District	Doug Peterchuck	Negative	
1	Orlando Utilities Commission	Brad Chase	Negative	View
1	PacifiCorp	Ryan Millard	Abstain	
1	Platte River Power Authority	John C. Collins	Abstain	
1	Portland General Electric Co.	John T Walker	Negative	View
1	PowerSouth Energy Cooperative	Larry D Avery	Negative	
1	PPL Electric Utilities Corp.	Brenda L Truhe	Negative	View
1	Progress Energy Carolinas	Brett A Koelsch	Affirmative	View
1	Public Service Company of New Mexico	Laurie Williams	Affirmative	
1	Public Service Electric and Gas Co.	Kenneth D. Brown	Abstain	
1	Public Utility District No. 1 of Okanogan County	Dale Dunckel		
1	Puget Sound Energy, Inc.	Denise M Lietz	Abstain	
1	Rochester Gas and Electric Corp.	J ohn C. Allen	Affirmative	
1	Sacramento Municipal Utility District	Tim Kelley	Negative	

1	Salmon River Electric Cooperative	Kathryn Spence		
1	Salt River Project	Robert Kondziolka	Affirmative	
1	Santee Cooper	Terry L Blackwell	Affirmative	
1	SCE\&G	Henry Delk, Jr.	Affirmative	
1	Seattle City Light	Pawel Krupa	Negative	View
1	Snohomish County PUD No. 1	Long T Duong	Abstain	
1	South California Edison Company	Steven Mavis	Negative	View
1	Southern Company Services, Inc.	Robert Schaffeld	Negative	
1	Southern Illinois Power Coop.	William Hutchison	Affirmative	
1	Southwest Transmission Cooperative, Inc.	James J ones	Negative	View
1	Sunflower Electric Power Corporation	Noman Lee Williams	Affirmative	
1	Tampa Electric Co.	Beth Young	Negative	
1	Tennessee Valley Authority	Larry Akens	Affirmative	
1	Tri-State G \& T Association, Inc.	Tracy Sliman	Negative	
1	Tucson Electric Power Co.	John Tolo	Negative	View
1	United Illuminating Co.	Jonathan Appelbaum	Affirmative	
1	Westar Energy	Allen Klassen	Abstain	
1	Western Area Power Administration	Brandy A Dunn	Negative	
1	Xcel Energy, Inc.	Gregory L Pieper		
2	Alberta Electric System Operator	Mark B Thompson	Abstain	
2	BC Hydro	Venkataramakrishnan Vinnakota	Abstain	
2	California ISO	Rich Vine	Negative	View
2	Electric Reliability Council of Texas, Inc.	Charles B Manning	Affirmative	
2	Independent Electricity System Operator	Barbara Constantinescu	Affirmative	
2	Midwest ISO, Inc.	Marie Knox	Affirmative	
2	New Brunswick System Operator	Alden Briggs	Abstain	
2	New York Independent System Operator	Gregory Campoli	Abstain	
2	PJ M I nterconnection, L.L.C.	Tom Bowe		
2	Southwest Power Pool, Inc.	Charles Yeung	Abstain	
3	AEP	Michael E Deloach	Abstain	
3	Alabama Power Company	Richard J. Mandes	Negative	
3	Ameren Services	Mark Peters	Negative	
3	APS	Steven Norris	Abstain	
3	Atlantic City Electric Company	NICOLE BUCKMAN	Abstain	
3	BC Hydro and Power Authority	Pat G. Harrington	Abstain	
3	Bonneville Power Administration	Rebecca Berdahl	Negative	
3	City of Bartow, Florida	Matt Culverhouse	Negative	View
3	City of Clewiston	Lynne Mila	Negative	
3	City of Garland	Ronnie C Hoeinghaus	Abstain	
3	City of Green Cove Springs	Gregg R Griffin	Negative	View
3	City of Redding	Bill Hughes	Negative	View
3	Cleco Corporation	Michelle A Corley	Abstain	View
3	Colorado Springs Utilities	Charles Morgan	Negative	View

3	Consolidated Edison Co. of New York	Peter T Yost	Negative	View
3	Constellation Energy	CJ Ingersoll	Abstain	
3	Consumers Energy	Richard Blumenstock	Affirmative	
3	CPS Energy	Jose Escamilla	Abstain	
3	Detroit Edison Company	Kent Kujala	Affirmative	
3	Dominion Resources Services	Michael F. Gildea	Abstain	
3	Duke Energy Carolina	Henry Ernst-J r	Negative	View
3	Entergy	Joel T Plessinger	Affirmative	
3	FirstEnergy Energy Delivery	Stephan Kern	Abstain	View
3	Florida Municipal Power Agency	J oe McKinney	Negative	View
3	Florida Power Corporation	Lee Schuster	Affirmative	
3	Georgia Power Company	Anthony L Wilson	Negative	
3	Georgia Systems Operations Corporation	William N. Phinney	Abstain	
3	Grays Harbor PUD	Wesley W Gray		
3	Great River Energy	Brian Glover	Negative	View
3	Gulf Power Company	Paul C Caldwell	Negative	
3	Hydro One Networks, Inc.	David Kiguel	Abstain	
3	I mperial Irrigation District	J esus S. Alcaraz	Affirmative	
3	EA	Garry Baker	Negative	View
3	Kansas City Power \& Light Co.	Charles Locke	Negative	View
3	Kissimmee Utility Authority	Gregory D Woessner	Negative	
3	Lakeland Electric	Norman D Harryhill	Negative	
3	Lincoln Electric System	Jason Fortik	Negative	View
3	Los Angeles Department of Water \& Power	Daniel D Kurowski	Negative	
3	Louisville Gas and Electric Co.	Charles A. Freibert		
3	Manitoba Hydro	Greg C. Parent	Negative	View
3	Manitowoc Public Utilities	Thomas E Reed	Abstain	
3	MidAmerican Energy Co.	Thomas C. Mielnik	Abstain	
3	Mississippi Power	deff Franklin	Negative	
3	Modesto I rrigation District	ack W Savage		
3	Municipal Electric Authority of Georgia	Steven M. Jackson	Abstain	
3	Muscatine Power \& Water	John S Bos	Negative	View
3	Nebraska Public Power District	Tony Eddleman	Abstain	
3	New York Power Authority	Marilyn Brown	Negative	
3	Niagara Mohawk (National Grid Company)	Michael Schiavone	Affirmative	
3	Northern Indiana Public Service Co.	William SeDoris	Affirmative	
3	Ocala Electric Utility	David Anderson	Negative	
3	Orlando Utilities Commission	Ballard K Mutters	Negative	
3	Owensboro Municipal Utilities	Thomas T Lyons	Abstain	
3	Pacific Gas and Electric Company	John H Hagen	Negative	View
3	PacifiCorp	Dan Zollner		
3	Platte River Power Authority	Terry L Baker	Negative	View
3	PNM Resources	Michael Mertz	Affirmative	
3	Potomac Electric Power Co.	Robert Reuter	Abstain	

3	Progress Energy Carolinas	Sam Waters	Affirmative	View
3	Public Service Electric and Gas Co.	J effrey Mueller	Abstain	
3	Public Utility District No. 1 of Clallam County	David Proebstel	Affirmative	
3	Puget Sound Energy, Inc.	Erin Apperson	Abstain	
3	Sacramento Municipal Utility District	J ames Leigh-Kendall	Negative	
3	Salt River Project	John T. Underhill	Affirmative	
3	Santee Cooper	James M Poston	Affirmative	
3	Seattle City Light	Dana Wheelock	Negative	View
3	Seminole Electric Cooperative, Inc.	James R Frauen		
3	Snohomish County PUD No. 1	Mark Oens		
3	South Carolina Electric \& Gas Co.	Hubert C Young	Abstain	
3	Tacoma Public Utilities	Travis Metcalfe	Affirmative	
3	Tampa Electric Co.	Ronald L Donahey	Negative	
3	Tennessee Valley Authority	I an S Grant	Affirmative	
3	Tri-State G \& T Association, Inc.	J anelle Marriott	Negative	View
3	Westar Energy	Bo Jones	Affirmative	
3	Xcel Energy, Inc.	Michael I bold		
4	Alliant Energy Corp. Services, Inc.	Kenneth Goldsmith	Affirmative	
4	American Municipal Power	Kevin Koloini	Negative	
4	Blue Ridge Power Agency	Duane S Dahlquist	Affirmative	
4	City of Austin dba Austin Energy	Reza Ebrahimian	Abstain	
4	City of Clewiston	Kevin McCarthy	Negative	
4	City of New Smyrna Beach Utilities Commission	Tim Beyrle		
4	City of Redding	Nicholas Zettel	Negative	View
4	City Utilities of Springfield, Missouri	John Allen	Affirmative	View
4	Consumers Energy	David Frank Ronk	Affirmative	
4	Detroit Edison Company	Daniel Herring		
4	Flathead Electric Cooperative	Russ Schneider	Abstain	
4	Florida Municipal Power Agency	Frank Gaffney	Negative	View
4	Fort Pierce Utilities Authority	Thomas Richards	Abstain	
4	Georgia System Operations Corporation	Guy Andrews	Abstain	
4	I mperial Irrigation District	Diana U Torres	Affirmative	
4	Madison Gas and Electric Co.	J oseph DePoorter	Abstain	
4	Northern California Power Agency	Tracy R Bibb	Abstain	
4	Ohio Edison Company	Douglas Hohlbaugh	Abstain	View
4	Public Utility District No. 1 of Douglas County	Henry E. LuBean	Negative	View
4	Public Utility District No. 1 of Snohomish County	J ohn D Martinsen	Abstain	
4	Sacramento Municipal Utility District	Mike Ramirez	Negative	
4	Seattle City Light	Hao Li	Negative	View
4	South Mississippi Electric Power Association	Steven McElhaney		
4	Tacoma Public Utilities	Keith Morisette	Affirmative	
4	Wisconsin Energy Corp.	Anthony Jankowski	Affirmative	
5	AEP Service Corp.	Brock Ondayko	Abstain	

5	AES Corporation	Leo Bernier	Abstain	
5	Amerenue	Sam Dwyer	Negative	
5	Arizona Public Service Co.	Edward Cambridge	Abstain	
5	Avista Corp.	Edward F. Groce	Abstain	
5	BC Hydro and Power Authority	Clement Ma	Abstain	
5	Black Hills Corp	George Tatar	Affirmative	
5	Boise-Kuna Irrigation District/dba Lucky peak power plant project	Mike D Kukla	Negative	
5	Bonneville Power Administration	Francis J. Halpin	Negative	View
5	BrightSource Energy, Inc.	Chifong Thomas	Negative	View
5	City of Austin dba Austin Energy	J eanie Doty	Abstain	
5	City of Redding	Paul Cummings	Negative	View
5	City of Tacoma, Department of Public Utilities, Light Division, dba Tacoma Power	Max Emrick	Affirmative	
5	City Water, Light \& Power of Springfield	Steve Rose		
5	Colorado Springs Utilities	J ennifer Eckels	Negative	View
5	Consolidated Edison Co. of New York	Wilket (Jack) Ng	Negative	View
5	Consumers Energy Company	David C Greyerbiehl	Affirmative	
5	CPS Energy	Robert Stevens		
5	Detroit Edison Company	Christy Wicke	Affirmative	
5	Dominion Resources, Inc.	Mike Garton	Abstain	
5	Duke Energy	Dale Q Goodwine	Negative	View
5	Edison Mission Energy	Ellen Oswald		
5	Electric Power Supply Association	John R Cashin	Abstain	
5	FirstEnergy Solutions	Kenneth Dresner	Abstain	View
5	Florida Municipal Power Agency	David Schumann	Negative	View
5	Great River Energy	Preston L Walsh	Negative	View
5	Green Country Energy	Greg Froehling	Abstain	
5	I ndeck Energy Services, Inc.	Rex A Roehl		
5	EA	John J Babik	Negative	View
5	Kissimmee Utility Authority	Mike Blough	Abstain	
5	Lakeland Electric	James M Howard	Negative	
5	Liberty Electric Power LLC	Daniel Duff	Abstain	
5	Lincoln Electric System	Dennis Florom	Negative	View
5	Los Angeles Department of Water \& Power	Kenneth Silver	Negative	
5	Luminant Generation Company LLC	Mike Laney	Affirmative	
5	Manitoba Hydro	S N Fernando	Negative	View
5	Massachusetts Municipal Wholesale Electric Company	David Gordon	Abstain	
5	MEAG Power	Steven Grego	Abstain	
5	MidAmerican Energy Co.	Christopher Schneider	Affirmative	
5	Muscatine Power \& Water	Mike Avesing	Negative	View
5	Nebraska Public Power District	Don Schmit	Abstain	
5	New York Power Authority	Gerald Mannarino	Negative	
5	NextEra Energy	Allen D Schriver	Affirmative	
5	Northern California Power Agency	Hari Modi	Abstain	

5	Northern Indiana Public Service Co.	William O. Thompson		
5	Omaha Public Power District	Mahmood Z. Safi	Negative	View
5	Orlando Utilities Commission	Richard Kinas		
5	Pacific Gas and Electric Company	Richard J. Padilla	Negative	View
5	PacifiCorp	Sandra L. Shaffer	Abstain	
5	Platte River Power Authority	Roland Thiel	Abstain	
5	Portland General Electric Co.	Gary L Tingley	Negative	
5	PPL Generation LLC	Annette M Bannon	Negative	View
5	Progress Energy Carolinas	Wayne Lewis	Affirmative	
5	PSEG Fossil LLC	Tim Kucey	Abstain	
5	Public Utility District No. 1 of Lewis County	Steven Grega	Abstain	
5	Puget Sound Energy, Inc.	Tom Flynn	Abstain	
5	Sacramento Municipal Utility District	Bethany Hunter	Negative	
5	Salt River Project	William Alkema	Affirmative	
5	Santee Cooper	Lewis P Pierce	Affirmative	
5	Seattle City Light	Michael J. Haynes	Abstain	
5	Seminole Electric Cooperative, Inc.	Brenda K. Atkins	Affirmative	
5	Siemens PTI	Edwin Cano	Affirmative	
5	Snohomish County PUD No. 1	Sam Nietfeld	Abstain	
5	Southern California Edison Co.	Denise Yaffe	Abstain	
5	Southern Company Generation	William D Shultz	Negative	
5	Tampa Electric Co.	RJ ames Rocha	Negative	
5	Tenaska, Inc.	Scott M Helyer	Abstain	
5	Tennessee Valley Authority	David Thompson	Affirmative	
5	Tri-State G \& T Association, Inc.	Barry Ingold	Negative	
5	U.S. Army Corps of Engineers	Melissa Kurtz	Negative	View
5	Xcel Energy, Inc.	Liam Noailles		
6	ACES Power Marketing	J ason L Marshall	Negative	View
6	AEP Marketing	Edward P. Cox	Abstain	
6	Ameren Energy Marketing Co.	J ennifer Richardson	Negative	View
6	APS	RANDY A YOUNG	Abstain	
6	Bonneville Power Administration	Brenda S. Anderson	Negative	
6	City of Redding	Marvin Briggs	Negative	View
6	Cleco Power LLC	Robert Hirchak	Abstain	View
6	Colorado Springs Utilities	Lisa C Rosintoski	Negative	View
6	Consolidated Edison Co. of New York	Nickesha P Carrol	Negative	View
6	Constellation Energy Commodities Group	Brenda Powell	Negative	
6	Dominion Resources, Inc.	Louis S. Slade	Abstain	
6	Duke Energy Carolina	Walter Yeager	Negative	View
6	Entergy Services, Inc.	Terri F Benoit	Affirmative	
6	FirstEnergy Solutions	Kevin Querry	Abstain	View
6	Florida Municipal Power Agency	Richard L. Montgomery	Negative	View
6	Florida Municipal Power Pool	Thomas Washburn	Negative	View
6	Florida Power \& Light Co.	Silvia P. Mitchell		
6	I mperial Irrigation District	Cathy Bretz	Affirmative	
6	Kansas City Power \& Light Co.	J essica L Klinghoffer	Negative	View

6	Lakeland Electric	Paul Shipps	Negative	View
6	Lincoln Electric System	Eric Ruskamp	Negative	View
6	Los Angeles Department of Water \& Power	Brad Packer	Negative	
6	Luminant Energy	Brad Jones	Affirmative	
6	Manitoba Hydro	Daniel Prowse	Negative	View
6	MidAmerican Energy Co.	Dennis Kimm	Abstain	
6	Northern Indiana Public Service Co.	Joseph O'Brien	Affirmative	
6	Omaha Public Power District	David Ried	Negative	
6	Orlando Utilities Commission	Claston Augustus Sunanon	Negative	
6	PacifiCorp	Scott L Smith	Abstain	
6	Platte River Power Authority	Carol Ballantine	Abstain	
6	PPL EnergyPlus LLC	Mark A Heimbach	Negative	View
6	Progress Energy	John T Sturgeon	Affirmative	
6	PSEG Energy Resources \& Trade LLC	Peter Dolan	Abstain	
6	Public Utility District No. 1 of Chelan County	Hugh A. Owen	Abstain	
6	Sacramento Municipal Utility District	Diane Enderby	Negative	
6	Salt River Project	Steven J Hulet	Affirmative	
6	Santee Cooper	Michael Brown	Affirmative	
6	Seattle City Light	Dennis Sismaet	Negative	View
6	Seminole Electric Cooperative, Inc.	Trudy S. Novak	Affirmative	
6	Snohomish County PUD No. 1	William T Moojen	Abstain	
6	South California Edison Company	Lujuanna Medina	Negative	
6	Southern Company Generation and Energy Marketing	ohn J. Ciza	Negative	
6	Tacoma Public Utilities	Michael C Hill	Affirmative	
6	Tampa Electric Co.	Benjamin F Smith II		
6	Tennessee Valley Authority	Marjorie S. Parsons	Affirmative	
6	Westar Energy	Grant L Wilkerson	Affirmative	
6	Western Area Power Administration UGP Marketing	Peter H Kinney	Negative	
6	Xcel Energy, Inc.	David F. Lemmons		
8		Roger C Zaklukiewicz	Negative	
8		J ames A Maenner	Abstain	
8		Edward C Stein	Affirmative	
8	Energy Mark, Inc.	Howard F. Illian	Negative	View
8	J DRJ C Associates	J im Cyrulewski	Negative	
8	Power Energy Group LLC	Peggy Abbadini	Affirmative	
8	Utility Services, Inc.	Brian Evans-Mongeon	Abstain	
8	Volkmann Consulting, Inc.	Terry Volkmann	Affirmative	
9	California Energy Commission	William M Chamberlain	Negative	View
9	Commonwealth of Massachusetts Department of Public Utilities	Donald Nelson		
10	Florida Reliability Coordinating Council	Linda Campbell	Affirmative	
10	Midwest Reliability Organization	James D Burley	Abstain	
10	New York State Reliability Council	Alan Adamson	Affirmative	

10	Northeast Power Coordinating Council	Guy V. Zito	Negative	View
10	ReliabilityFirst Corporation	Anthony E Jablonski	Negative	View
10	SERC Reliability Corporation	Carter B. Edge	Abstain	
10	Southwest Power Pool RE	Emily Pennel	Abstain	
10	Texas Reliability Entity, Inc.	Donald G Jones	Affirmative	View
10	Western Electricity Coordinating Council	Steven L. Rueckert	Negative	View

Name (26 Responses)
Organization (26 Responses)
Group Name (17 Responses)
Lead Contact (17 Responses)
Question 1 (36 Responses)
Question 1 Comments (43 Responses) Question 2 (37 Responses)
Question 2 Comments (43 Responses) Question 3 (32 Responses)
Question 3 Comments (43 Responses) Question 4 (32 Responses)
Question 4 Comments (43 Responses) Question 5 (37 Responses)
Question 5 Comments (43 Responses) Question 6 (40 Responses)
Question 6 Comments (43 Responses) Question 7 (36 Responses)
Question 7 Comments (43 Responses) Question 8 (37 Responses)
Question 8 Comments (43 Responses) Question 9 (33 Responses)
Question 9 Comments (43 Responses)
Question 10 (0 Responses)
Question 10 Comments (43 Responses)

Southwest Power Pool Regional Entity
Emily Pennel
Yes
Yes
Yes
Yes
Measures are more specific and measurable than seen in the past. This is a positive improvement.
Yes
Hard to follow the language for the VSL for R1. Suggest using formulas for ease of interpretation or
provide an example in the Supporting Documentation.
Yes
Yes
Yes
Need to clarify that 2012 Bias setting will be based on 1\% of peak load or generation until approval of
BAL-003-1 by FERC establishing the .08\% of peak load or generation minimum threshold.
Yes
Bonneville Power Administration
Chris Higgins
Yes

No
Regarding R1, BPA believes that adding additional requirements in R1 by referencing Attachment A does not add clarity. FRO should be a calculation that the BA's can do themselves and included within the standard. Can Form 1 be changed outside of the standard drafting process? BPA doesn't believe that Form 1 should be allowed to be changed outside of the standard drafting process. As drafted, Requirement R1 requires Balancing Authorities or Reserve Sharing Groups (RSGs) to achieve an annual Frequency Response Measure (FRM) that is equal to or more negative than its Frequency Response Obligation (FRO). As RSGs exist today, FRM performance by an RSG is not contemplated in the definition of FRM and appears to apply more towards 'secondary response'. BPA recommends clarifying this concept and possibly including an example in the background document to help explain how this would work. Regarding R2, BPA believes each BA should be able to calculate its own frequency bias setting without ERO validation. The standard can require the BA to use Form 1, if the BA doesn't use Form 1 correctly, then the BA would be in violation of the standard. BPA believes that R3 should include a minimal amount of time (suggesting a couple of hours per year) to allow for testing other modes. Requirement R3 requires each Balancing Authority not receiving Overlap Regulation Service to operate its AGC in Tie Line Bias mode... unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area. There may be occasions in which an entity needs to perform testing or other instances where it is necessary or desirable to operate in a mode other than Tie Line Bias that does not qualify as an Adverse Reliability Impact, but never the less is necessary or desired. BPA recommends including language that would permit operation other than Tie Line Bias mode provided the Reliability Coordinator was notified. BPA seeks clarification from the drafting team as to whether or not there will be any conflicts between proposed Requirement R3 and the requirements of FERC-approved regional reliability standard BAL-004-WECC-1 - Automatic Time Error Correction. BPA agrees with the concept of R4, however, BPA again disagrees with the ERO validation of the frequency bias setting. BPA believes that reducing frequency bias obligation is detrimental to reliability. It seems that lowering the Minimum Frequency Bias Setting from 1\% to .8\% will result in a lower response, which in turn will lower the natural frequency response. BPA believes that over time, it would seem that this pattern would lead to poorer response. BPA believes that R5 should read "greater than or equal to one of the following" not " at least equal to". The requirement should be a part of Form 1 or included in R2. For variable bias, the minimum percentage should be based on the forecasted month peak.
Yes

No
BPA believes that historian data should be able to be used for evidence.
No
BPA believes that R1 needs to be more clear and concise as to what is being conveyed in the requirement. It is difficult to understand. The proposed VSLs for Requirement R1 treats a BA that did not meet the FRO requirement differently depending on whether or not the Interconnection met the FRO requirement. The obligation of the BA to meet its allocated FRO should be consistent regardless of what the other entities within the interconnection are doing. Suggest removing the interconnection performance from the VSLs and developing four increasing levels of BA failure to meet its FRO. BPA believes that conforming changes to the VSLs would need to be made for any changes to the Requirements as suggested in the comments to the standard.
No
BPA believes that Attachment A adds additional requirements to the standard. Confusion exists between Attachment A and the Background Document. Attachment A states peak load allocation is based on "Projected" Peak Loads and Generation, but the Background Document states it will use "historical" Peak Load and Generation. 3a: it may take longer than 8 seconds in some disturbances. This should be 10 seconds. . 05 Hz Delta F is not low enough for the Western Interconnection, it should be .075 Hz to ensure there is measurable frequency response for the interconnection. Also, under frequency should be set at 59.95 Hz . BPA does not believe there is a reliability need to include over frequency events. 3b: It is unclear if the 18 seconds is setting the B point. If this is the B point, BPA believes it should be changed to 25 seconds for the Western Interconnection. 4. Please define relatively steady and near 60 Hz . 6: For the Western Interconnection, BPA believes this needs to be 10 minutes at the top of the hour. As mid hour scheduling becomes more prevalent, the ramping at
the bottom of the hour will have to be taken into account. FRO for the interconnection: Starting frequency should be the FTL limit. With RBC in place, the frequency is seldom at 60 Hz . BPA understands the theory behind setting the base obligation to the values listed in table 2. BPA would like to know if there were any studies performed to validate setting the FRO for the interconnection to such a low level? BA FRO and frequency bias setting: BPA does not agree with ERO assigning a Frequency Bias setting to each BA. This calculation is indicated as the initial FRO allocation, what is the process for changing it? BPA believes this should go through the standard drafting process for any changes. The calculation should use Peak online capacity, not the installed capacity. This would lead to the denominator being $2 \times$ Peak projected load for the interconnection. BPA has approximately 35,000 MW of installed generation, and has never seen the actual coincidental generation go over $21,000 \mathrm{MW}$. Again, BPA doesn't believe the ERO should be validating the frequency bias setting. It is unclear to BPA how variable bias is being addressed in the standard.

No
BPA understands the concept and we disagree with it. As the ERO continues to lower the required minimum frequency bias setting for an interconnection, the BA's that have frequency response higher than the 1% will have a higher percentage of the frequency response of the interconnection. Also, this standard is primarily measuring AGC response, not natural frequency response; therefore not lowering the limit is appropriate.
No
BPA believes the form is not easily understood and is overly complicated for what it is trying to accomplish. BPA believes the form might work for an internal evaluation, just not for an external audit. Compliance is based on this form. BPA believes the standard needs to be simplified and possibly returned to a data gathering standard.
BPA believes that an entity is not measuring frequency response from $20-52$ seconds; rather, that the entity is measuring AGC response which is based on the frequency bias term. This leads to a circular argument, because that entity would be using frequency bias setting in AGC to calculate frequency bias setting for the next year. Also, because an entity is measuring AGC response and net interchange and not taking pre-disturbance ACE into account, a BA frequency response may not be reflected in the spreadsheet. Example: If the BA has a positive ACE of 300 MW and the frequency component of ACE during an event is 200MW. Immediately following the disturbance, natural frequency response will drive net interchange up by 200MW. During the time frame being measured ($20-52 \mathrm{sec}$), AGC response will drive the on control generation down by the original 300 MW ACE, which will look like the BA had an opposite response at the interconnections in the amount of 100MW. Form 1: It is unclear in Form 1 how variable bias BA's would implement this standard. There is a note identifying a tab to use, but it is unclear if that is the only requirement for variable bias BA's. In the comment responses to BPA, it was indicated that "the SDT will provide additional and sufficient direction related to variable bias after review of this issue during the field trial." BPA finds this response unacceptable and believes that it needs to be addressed in the standard prior to approval. BPA believes the standard should be easy to understand and implement and should not rely on the judgment of the ERO. BPA believes this standard needs to be simplified. BPA believes this standard is unclear as to if there is an upper limit to the amount of frequency response expected of the Balancing Authorities under this standard. Except for Table 2 in Attachment A, there is no discussion of an amount of Frequency Response expected on a total basis. Balancing Authorities need to know for how many tenths of a hertz they are to respond so they can determine how to plan to meet this requirement. The documents do not appear to provide any boundary on the maximum amount of Frequency Response that a BA will provide, i.e. it is not clear what will happen if an event occurs in the Eastern Interconnection that causes the frequency to drop to less than 59.6 Hz or in the Western Interconnection that causes the frequency to drop to less than 59.5 Hz , or if that event is excluded from the list used to calculate the Balancing Authorities' response or is it included with an expectation that it counts the same as any other event. Without a clear statement of what is expected, including whether there is a limit on that expectation or not, it is unclear what is expected of the Balancing Authorities. Lastly, BPA asks, why are there no requirements on governor installation, settings, and operation for a frequency response standard?

```
Howard F. Illian
Energy Mark, Inc.
```

Yes

No
Comment 1: The timing requirements for implementing the Frequency Bias Setting are not specified for BAs participating in Overlap Regulation Service. The requirements indicate the value that should be used for the Frequency Bias Setting, but they do not indicate when those settings should be implemented. Comment 2: The term "Tie Line Bias mode" in Requirement R3 is not sufficiently defined to make this requirement enforceable. Any operating mode labeled as "Tie Line Bias mode" on an EMS that uses interchange scheduled and frequency error as inputs will meet the standard requirement as stated. This loop-hole exists because the NERC definition of "Tie Line Bias" fails to define the term in enough detail to actually limit AGC operation to the specified mode of operation. One way to improve this requirement would be to redefine Tie Line Bias in the NERC Glossary as a mode that uses the NERC ACE Equation as defined in BAL-001 as the basis for AGC action when the EMS is in Tie Line Bias mode. Comment 3: The standard is silent on how a BA receiving Overlap Regulation Service should set its Frequency Bias Setting. Unless this is explicitly stated, it will be up to the auditors to determine the value of the Frequency Bias Setting for BAs receiving Overlap Regulation Service. Comment 4: In general, the requirements indicate what the responsible BAs should do and when. The requirements do not indicate what the BAs that are not responsible should do and when, ie. how they are relieved from responsibility. This may create problems when the auditors are required to interpret the standards for BAs that have appropriately shifted responsibilites to others.
No
Comment 5: See comments in the non-binding poll.
Yes

Yes

No
Comment 6: "If the ERO cannot identify in a given evaluation period 25 frequency excursion events satisfying the limits specified in criteria 3 below, then similar acceptable events from the previous evaluation period also satisfying listed criteria will be included with the data set by the ERO for determining FRS compliance." I believe that the better alternative in this case would be to use the lesser number of events. This is partly based on the consideration that if there are fewer events, the risk to the interconnection for that year was less that expected, and as a result, evaluation of fewer events will not compromise interconnection reliability. If fewer than 25 events are available in any year, the selection criteria should be adjusted to select more events. Comment 7: There are a number of problems with the use of "median" Frequency Response of the measured events. These problems make a choice other than median preferable. The following comments list some of those problems. Comment 8: The current standard uses average Frequency Response of selected events. This makes the current standard incompatible with the use of median. Comment 9: If a BA reconfigures during a measurement year, that reconfiguration will create a bi-modal distribution of the Frequency Response events. Median is incapable of representing a bi-modal distribution. The use of median will result in a standard that is incapable of measuring compliance effectively for an BA that is reconfigured during a measurement year (Dec 1 thru Nov 30). Comment 10: Any attempt to purchase additional Frequency Response from another BA for a portion of a measurement year will also cause a bi-modal distribution making the purchase of Frequency Response only effective for entire measurement years. Comment 11: Median is a non-linear measurement method. Because it is a non-linear measurement method, there is no valid way to manage partial year measurements. Comment 12: I will offer an alternative to median to the SDT before the end of the development of responses to these comments. Comment 13: The Minimum Frequency Bias Setting and the Frequency Response Obligation are both based on a method that assigns responsibility based on a Peak Load / Peak Generation share of the interconnection. However, the method used to set the Minimum Frequency Bias Setting is different than the method used to determine the Frequency Response Obligation. Using these two different methods could result in the Minimum Frequency Bias Setting being less that the FRO for a BA. The best way to correct this problem is to use that same allocation methodology for determining the FRO and the Minimum Frequency Bias Setting. This can be easily accomplished by modifying R5 to use the

FRO allocation method to determine the Minimum Frequency Bias Setting. This calculation would divide the numerator from the FRO allocation equation, divide it by two and multiply it by the percentage specified in Attachment B. In fact, the current FRS Form 1 uses this equation with projected rather than historic data. The best alternative would be to modify the R5 in the standard to match the FRO allocation method and modify FRS Form 1 to use historic data instead of projected data. This would result in only one set of Peak Load and Peak Generation data throughout the standard, rather than three different sets of data as currently written. When multiple sets of the same or similar data are used within a single standard, it only creates confusion and errors in the result. No
Comment 14: Some of the information in this document concerning the Frequency Bias Setting for BAs participating in Overlap Regulation should be moved to the Supporting Document. This change would help in addressing Comments $3 \& 4$ under Question 2.
Yes
Comment 15: This Yes answer assumes that the SDT addresses Comment 13 under Question 6 in these comments.
Yes

Comment 16: In the Consideration of Comments document, the SDT stated that the regression calculation in FRS Form 1 had been corrected. The regression calculation is still incorrect. Comment 17: Attachment A contains the following statement; "**In the Base Obligation measure for Texas, 1150 MW (Load Resources triggered by Under Frequency Relays at 59.70 Hz) was reduced from its Contingency Protection Criteria level of 2750 MW to get 229 MW/0.1 Hz. This was reduced to accurately account for designed response from Load Resources within 30 cycles." This load triggered by Under Frequency Relays is a unidirectional response. It responds as frequency drops but does not provide the alternative response as frequency recovers. The result is a continuous frequency response that may be insufficient for increasing frequency events. Additionally, it is only available once even for oscillatory frequency events. This type of response is very useful to supplement the continuous, bidirectional response provided by governors, load and other resources, but its overuse can lead to reliability issues when it is relied upon too much. This standard fails to put any limit on the use of this type of unidirectional, single use resource for meeting the Frequency Response requirements in this standard. Since this kind of Frequency Response is significantly less expensive than continuous, bidirectional response, its inclusion without limitations creates a significant reliability loop hole in this standard. Although, it is unlikely that this problem can be corrected within the current standard development timeline, NERC should initiate investigations that will result in the setting of appropriate limits and valuation of the use of these types of resources before there is significant penetration to comply with this standard. Illustrating this problem is easily done by evaluating an interconnection with 100\% of its Frequency Response provided by unidirectional, step response resources. An interconnection configured in this manner in unstable and cannot survive even a small disturbance. Failure to close this loophole quickly could compromise interconnection reliability. Comment 18: The problem described in Comment 17 exists partially because the FRR SDT has failed to provide a comprehensive definition of Frequency Response as part of this standard. Without a good definition, the default definition becomes "any response that improves the measurement method" as implemented. As with the previous comment, NERC should address this weakness in a timely manner. Otherwise, it may face the undesirable task of disallowing response that improves the measure or modifying the measure to prevent inappropriate abuse. For example, a step load response that occurs 15 seconds after a frequency event will improve the Frequency Response as measured by this standard, but will not contribute to limiting the Arrested Frequency Response and will have little positive affect on reliability.

Don Mclnnis

Florida Power \& Light Company
Yes

Yes

No

Could not find the Risk Severity Levels in the documents.
No
What is meant by documented formulae for M5? Is a one time snapshoot of the AGC formual sufficien? The concept is ok but this needs clarification of proof.
No
For R1 the low and high level descriptions appear to be identical and the high level is less than the medium risk level. For R3 there should be low, medium, and high levels. One BA not operating to TLB does not jepordize the Interconnection. Additionally, computer failures, database loads etc may require some period where TLB is not in service. Suggestion would be Lower VSL operation off of TLB for more than 5 but <8 continuous hours or accumlative during the year of more than $8<16$ hours. Medium VSL would be operation off of TLB for more than 8 but <16 continuous hours or accumlative during the year of more than $16<24$ hours. High VSL would be operation off of TLB for more than 16 <24 continuous hours or accumlative during the year of more than $36<48$ hours. Severe VLS would be >24 continuous hours off of TLB or accumlative of >48.
No
In the table on page2 the asterick references a statement that the 59.7 Hz used in Florida is a special protection scheme. This is incorrect. The special protection scheme setting was 59.82 Hz and was done away with in 2005 or earlier. The 59.7 Hz setting used within the FRCC is based on FRCC TWG studies that require this level of setting to protect the state in the event of a separation and to protect nuclear equipment. FPL supports the use of the C(N-2) critiera. Additionally, the reference to the FERC714 report that is currently in the background data should be made part of attachment A not separated. FPL fully agrees with Table 1 The formula used to derive the FRO is inconsistant with the definition used for requirement R5. R5 states that the load is " within the BA's metered boundary". The load used in the formulae is taken from FERC714. The yearly peak demand used in R5 should be the peak monthly load from June, July or August as reported on FERC714 to be compatible with the FRO formula.

Yes

No
There is no technical justification provided either in the attachment or background data for the initial starting value of 0.8%. This is acceptable but is arbitary. Additionally, the last sentense on page 1 of Attachment B should be changed to read "the ERO must reduce (in absolute value) the minimum Frequency Bias Settings for BA's within that Interconnection, by 0.1 percentage point from its previous annual value, to better match the Frequency Bias Setting to the natural Frequency Response or provide technical justification for not implementing the reduction
Yes

This standard is an excellent start on a very difficult topic and the technical explainations are very sound. Requirement R1 needs to be modificed somewhat as it currently implies that if a BA is a member of a RSG the frequency response obligation automatically assumed to be a RSG obligation. The RSG role may be strictly for reserves with the members of the BA meeting their own FRO. Perhaps a footnote stating that the FRO and reserve obligations can be separated out.

Carlos J. Macias

FPL
Yes

No
3. - How many seconds of observation for "Delta F"? Does "Point C" in a. refer to "Figure 1 - Classic Frequency Excursion and Recovery" from NERC's Survey Instructions document dated September 1,

2010? If so it should be included in this document along with the added 8 and 18 second time lines being shown. What is a "narrow range" in item b.? 4. - Better define "relatively steady" (i.e. within a specific range and state it?) Also, "near 60.000 Hz " is not precise enough (i.e. if the event begins below 60.000 Hz , what range or time error correction is to be considered acceptable?) Is the "A" value also part of the figure cited in 3? 5. - Is the "B" value also part of the figure cited in 3? 6. Change "should be excluded" to "will be excluded". 7. - Better explain "the cleanest 2 or 3 frequency excursion events" or remove the word "cleanest". Page 2 paragraph 5: Provide specific dates for the "quarterly postings" and where these will be posted (i.e. Internet address or other). Clarify the December 15 ERO annual post date with the dates stated for same posting on Page 3 paragraph 5 and the BA's January 10 deadline. The BA posts 30 days from which date? This is confusing. Page 2 Table 2: What of starting event frequencies that are $<60 \mathrm{~Hz}$? Why is the "Highest UFLS" 59.6 when the Florida setting for its load is 59.7? Page 3 FRO equation: Page 4 of the "Frequency Response Standard Background Document, October 2011" also shows this equation but uses different terms. Make the same on both documents. In the Background Document each component of the numerator is explained and reference is made to FERC Form 714 to obtain these values. There is no reference to this form for the denominator values. All of this needs to be made clear with reference to FERC Form 714 on Attachment A.
Yes

Yes
Last paragraph: As stated, would that make the Minimum Frequency Bias Setting 0.7% of peak load or generation? A numerical example shown would help clarify this paragraph.
No
FRS Form 2 - Two-second Sample Data Instructions tab/worksheet: What is referred to as or meant by the 'master event list'? 4. - Regarding 2 second sample rate for 25 minutes starting 2 minutes before event begins and 15 minutes after it begins, does this add up to 25 minutes or are additional minutes being required for collection? Also, FPL can report frequency at this rate, but can only report load in MW every four seconds. Move to 4 second sample rate. 6-8. - Possible to add button to autopopulate cells C8 and C11 in 'Entry Data' tab from the new column C and cell identifying the desired frequency change time and simplify these steps? 10. - Clarify where the "Copy" button is. Is it the one in the 'Data' tab or worksheet? Entry Data tab/worksheet: Step 6 should also be or be moved to the "Instructions" worksheet. Are the values in column C in the "Data" worksheet labeled "Total Lost Generation" the same as those in column AQ in the "Evaluation" worksheet? If so, why are they not both labeled "Net Actual Interchange"? What is the definition of "Non Conforming Load" in column E?
FRS Form 1 - Eastern Interconnection Instructions tab/worksheet: Step 4 - Send to whom and to what address at NERC?

Mauricio Guardado

Los Angeles Department of Water and Power
No
LADWP recommends the following change to the definition of Frequency Bias Setting (replace the word "discourage" with the word "prevent"). LADWP believes that this change increases the clarity of the definition: Original A number, either fixed or variable, usually expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems. Proposed Change A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and prevent response withdrawal through secondary control systems
No
LADWP has a concern with Requirement 3. The requirement should provide allowance for legitimate circumstances when an entity cannot run on Tie Line Bias mode and not have an Adverse Reliability Impact on the Balancing Authority's Area. An entity should not be penalized when these legitimate circumstances occur. LADWP believes that the Frequency Response Standard Background Document, on Page 8, lists examples of legitimate circumstances: - Telemetry problems that lead the operator to believe ACE is sianificantly in error. - The frequencv input to AGC is not reflective of the BA's true
frequency (such as if the control center were operating a local generator and disconnected from the Interconnection). - During restoration (where one BA might be controlling frequency while another to which it is connected is managing interchange between them). - For training purposes. - Many AGC systems will automatically switch to an alternate mode if the EMS determines Tie Line Bias control could lead to problems. LADWP believes that the language in Requirement 4 needs to be clarified and recommends the following change: - R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation to be equivalent to either (i) the sum of the Frequency Bias Settings of the participating Balancing Authorities as validated by the ERO, or (ii) the Frequency Bias Setting as calculated based on the entire area being combined and thereby represent the Frequency Response for the combined area being controlled.
[Risk Factor: Medium][Time Horizon: Operations Planning] LADWP believes the language in
Requirement 5 needs to be modified to be consistent with that of the second paragraph of Attachment
B. LADWP recommends the addition of "natural frequency response" as a third bullet item to Requirement 5. The revised requirement would read: - R5. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is at least equal to one of the following: [Risk Factor: Medium][Time Horizon: Operations Planning] • The minimum percentage of the Balancing Authority Area's estimated yearly Peak Demand within its metered boundary per 0.1 Hz change as specified by the ERO in accordance with Attachment B. - The minimum percentage of the Balancing Authority Area's estimated yearly peak generation for a generation-only Balancing Authority, per 0.1 Hz change as specified by the ERO in accordance with Attachment B. - The natural frequency response Yes
LADWP agrees with the following VRFs: - R1 - Medium - R2 - Medium - R3 - Medium - R4 - Medium R5 - Medium
No
LADWP recommends that the Measures for Requirement 3 and Requirement 5 reflect their comments to Question 2.
No
LADWP recommends that either the VSL for Requirement 3 reflects its comments to Question 2, or that these comments be addressed as an exception in the Measure for Requirement 3.
No
LADWP considers the increase in number of events to analyze (now 25) to be excessive. Previous years analyses typically involved 4-6 events; a permanent five-fold increase is not justified. LADWP suggests reducing the baseline number of events from 25 to 12 per year. Analysis of a larger number of events could be requested on a year-by-year basis if conditions warrant, but should not be mandatory for all regions in all years.

LADWP notes that the document "BAL-003-1 Background Document" seems to be reasonable. Yes
LADWP notes that Attachment B seems to be reasonable
No
LADWP notes that Form 2 is not compatible with prior versions of Excel-it won't even open in Excel 2003 (which is still widely used) -and requests that all spreadsheets and calculation tools developed under 2007-12 be revised to support common software of the past 10 years.
LADWP supports project 2007-12's general approach to frequency response, and is prepared to support the ballot once several problematic details are corrected. LADWP notes that the time allowed to analyze the final "official" set of 25 events for each year, from Dec 15 to Jan 10, is relatively short and coincides with the holiday vacation season. Could this time either be extended by 2-4 weeks or shifted to another part of the year (in addition to reducing the number of events to be analyzed)? LADWP would like to see addressed in the Standard how the case is to be addressed where a BA simply has no frequency response information to provide, as could happen for a small 1-2 generator BA which has its generators out of service for an extended period for maintenance or upgrades.
Assuming the BA purchases frequency response services from another entity during this period, is the BA out of compliance with the proposed Standard simply because it has no data report? And how is its next-year obligation to be computed? These issues should be addressed in the Measures or Additional

Compliance information. If these are issues for "lawyers" as the Standards Drafting Team indicated during the November 14, 2011, webinar then the team should engage a NERC lawyer to resolve them prior to releasing the Standard for ballot.

Thomas Washburn

FMPP
Yes

No

- R1. Each Balancing Authority (BA) or Reserve Sharing Group (RSG) shall achieve an annual Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each BA or RSG to maintain an adequate level of Frequency Response in the Interconnection. [Risk Factor: Medium][Time Horizon: Operations Assessment] The BA does not have control over the frequency responsive generation. There needs to be a requirement that the GOP shall set frequency response for the generators as directed by the BA. • R5. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is \{greater than or ($<=$ add these words) \} \{at least ($<=$ delete these words) \} equal to one of the following: [Risk Factor: Medium][Time Horizon: Operations Planning] • The minimum percentage of the Balancing Authority Area's estimated yearly Peak Demand within its metered boundary per 0.1 Hz change as specified by the ERO in accordance with Attachment B. • The minimum percentage of the Balancing Authority Area's estimated yearly peak generation for a generation-only Balancing Authority, per 0.1 Hz change as specified by the ERO in accordance with Attachment B.

Yes	
Yes	
	Yes
	No
- Item 2 should be changed as follows: The ERO will identify at least 25 frequency excursion events in	
each Interconnection for calculating the Frequency Bias Setting and the FRM. If the ERO cannot	
identify in a given evaluation period 25 frequency excursion events satisfying the limits specified in	
criteria 3 below, then similar acceptable events from the previous evaluation period also satisfying	
listed criteria will be included with the data set by the ERO for determining FRS compliance. (as	
written this item could cause double jeopardy for event from the previous period) • Under FRO for the	
Interconnection the first sentence should be changed as follows: "The ERO \{Each Interconnection	
(delete these words) \} will establish target contingency protection criteria for each Interconnection."	
(each Interconnection is not a governing entity) • The footnote under Table 2 of Attachment A should	
be changed as follows: The Eastern Interconnection set point listed is a compromise value for the	
highest UFLS step setting of 59.5Hz used in the east and the \{special protection scheme's (delete	
these words) \} highest UFLS step setting of 59.7Hz used in Florida. It is extremely unlikely that an	
event elsewhere in the Eastern Interconnection would cause the Florida UFLS \{special protection	
scheme (delete these words)\} to "false trip". (this is not a special protection system; it is just an	
UFLS)	

Xcel Energy

Yes

No
R1- It is not clear what is intended by "Reserve Sharing Group" in this context. As RSGs exist today, FRM performance by an RSG is not contemplated in the definition of FRM and appears to apply more towards 'secondary response'. Recommend clarifiying this concept and possibly include an example in the background document to help explain how this would work. R3 - recommend modifying the language to permit AGC out of TLB mode if the RC is notified; also remove the "to ensure coordinated control" as this is not essential for the requirement. Our reasoning behind the suggested change to notification of the RC is that there are occassions where an entity would need to perform testing, etc and it could be argued that testing would not be sufficient justification for meeting the Adverse Reliability Impact definition. Here is proposed revised language: Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode, unless the Balancing Authority's Reliability Coordinator has been informed and the duration is [insert time constraint language here].

No
Based on our suggested changes to R3 in response to Question 2, the drafting team should modify M3 to be consistent with the proposed language.
Yes
No
Confusion exists around the "peak load" in that the Attachment A states the allocation is based on Projected Peak Loads and Generation but the Background Document states it will use a historical Peak and Generation to make the allocation. Also, for the BA installed capacity, where does that value come from and does NERC obtain that from FERC form data or does the BA provide that information somewhere specific to this effort? Additionally, there appears to be a difference in how FRO is calculated in Attachment A and what is described in the Background Document. These differences should be reconciled such that both documents address the same approach. If installed capacity is used in the equation, how are variable/intermittent resources (e.g. wind, solar) accounted for? At full capacity?
No
Same comment here as the one in question 6.
No
There could be some confusion caused by the Attachment B due to the use of the word "initially" when the reference is made to the current standard. The drafting team should change the word "initially" to "currently" or strike it to avoid the potential confusion.
Yes
It would be useful if the drafting team could develop a completed form as an example to help entities better understand the methodologies used in the form.
It is not clear if there is an upper limit to the amount of frequency response expected of the Balancing Authorities under this standard. Except for Table 2 in Attachment A, there is no discussion of an amount of FR expected on a total basis. Balancing Authorities need to know for how many tenths of a hertz they are to respond so they can determine how to plan to meet this requirement. The
documents do not appear to provide any boundary on the maximum amount of FR that a BA will provide, i.e. it is not clear what will happen if an event occurs in the Eastern Interconnection that causes the frequency to drop to less than 59.6 Hz (e.g. what if freq dips to 59.0 ? Is the BA expected to provide a limitless amount of frequency response?). Also, is that event excluded from the list used to calculate the Balancing Authorities' response or is it included with an expectation that it counts the same as any other event. Without a clear statement of what is expected, including whether there is a limit on that expectation or not, the Balancing Authorities can not know what is expected of them and therefore can not plan appropriately.

ISO New England Inc
No
The FRM definition should not refer to FORM 1. Also, we offer the following alternative wording for frequency bias setting; "A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to approximate the frequency response provided by the assets within the respective Balancing Authority's area."

No

We do not agree with placing a requirement on Balancing Authorities, as generators are the main supplier of "discretionary" frequency response. Also, the requirement refers to an attached form, which is not part of the standard and therefore not enforceable.

```
Yes
```

No
The sampling interval needs to be tuned on a per Interconnection basis to support HQTE's characteristics
No
The violation severity levels for R1 seem to be reasonable. However, the technical writing needs to be enhanced for clarity
No
We suggest the SDT to first determine if the materials in the revised Attachment A \& B are "Guideline" or Technical Background", or are they "requirements". If it is the former, then Requirement R1 should not mention Attachment A at all. If it is the latter, then the as-written Attachment A is a mix bag as it on the one hand describes the ERO's process for supporting the Frequency Response Standard (FRS), in other words, the method and criteria it uses to calculate the frequency bias settings and the FRM, and on the other hand the BA's obligations to support this process. We strongly disagree that the latter requirements be imbedded in an attachment, especially one that is supposed to provide the technical background and guideline for another entity which, by the way, is not held responsible for complying with the proposed method. An appendix is not regarded as a mandatory requirement. Additionally, BAL-003-1- Attachment A 1. Criterion 5 needs to be re-written for clarity. 2. Criterion 7 refers to the "cleanest events". Perhaps a statement of what constitutes a "clean event" is needed to avoid possible controversy in the future. 3. The use of 59.6 Hz as the highest UFLS setting seems flawed. It should either be 59.7 Hz as a deliberate choice to protect Florida interests, or, it should be 59.5 Hz without concern for Florida's unique settings. 4. In the last 2 sentences at the end of the section on Frequency Response Obligation, it refers to an Interconnection being able to offer "alternate FRO protection criteria". It seems that the Interconnection should have been an integral part of establishing its obligation. Also, it states that the "ERO will confirm" the "alternate FRO protection criteria". Does this mean the ERO unconditionally approves it, or evaluates with a right of rejection? Please clarify. 5. In the formula for determining the Balancing Authority's FRO allocation, installed capacity is used. Does the industry have a clear and consistent definition for installed capacity? Also, with greater wind energy development, the delivered capacity over longer time horizons will be substantially less than nameplate machine ratings. Also, the background document refers to the use of peak generation instead of installed capacity. Which shall be used? Please clarify. 6. Very recent studies have shown that the $18-52$ second sampling interval does not work well for the Quebec Interconnection, in part due to the excellent and high level of response found in that Interconnection. The standard needs to be modified such that the sampling interval is that which works the best for each individual interconnection. 7. Attachment A needs to define the point A sampling interval.
No
See first comment in 6 above. Also, Frequency Response Standard Background Document - 1. Cite Attachment B in addition to Attachment A in the discussion of requirement 1. 2. The Balancing Authority allocation method specified in this document does not agree with that in Attachment A. 3. Drop the speculation on page 4 that most Balancing Authorities will be compliant. While it may be a commonly held belief by many that there is adequate frequency response right now, that assessment should be made after a targeted level of reliability has been defined and approved. The same comment applies on page 12. 4. On page 6, drop the inappropriate recommendation of aetting
frequency response through supplemental regulation. It is inappropriate to try to substitute a "minute plus" product that is deployed centrally by the Balancing Authority for a "sub-minute" product that is deployed automatically without any Balancing Authority action. When a pseudo-tie is used, changes in the ACE values due to supplemental regulation are unrelated to and not coordinated with the need to deploy frequency response. Not only should this approach not be offered as an alternative, but the FRSDT should actively conduct research to determine if supplemental regulation via a pseudo-tie should be deliberately REMOVED from any actual net interchange calculation that may include it! This comment also applies to the mentioning of supplemental regulation on page 11 as well. 5 . On page 7 , the reference to a 24 hour window on each side of the frequency bias setting implementation date is inconsistent with the wording of the requirement. The requirement says that any time within the designated date is acceptable. 6. On page 8, the inclusion of "for training purposes" as a reason to not operate in tie line bias control should be dropped. This sort of training can be done in a training simulator. Alternatively, if it is determined that it should be supported, then the requirement needs to be reworded to allow it explicitly. 7. On page 14, the sentence: "This approach would only provide feedback for performance during that specific event and would not provide insight into the depth of response or other limitations" is difficult to understand. The paragraph would read better by simply dropping it.
No
We suggest the SDT to first determine if the materials in the revised Attachment A \& B are "Guideline" or Technical Background", or are they "requirements". If it is the former, then Requirement R1 should not mention Attachment A at all. If it is the latter, then the as-written Attachment A is a mix bag as it on the one hand describes the ERO's process for supporting the Frequency Response Standard (FRS), in other words, the method and criteria it uses to calculate the frequency bias settings and the FRM, and on the other hand the BA's obligations to support this process. We strongly disagree that the latter requirements be imbedded in an attachment, especially one that is supposed to provide the technical background and guideline for another entity which, by the way, is not held responsible for complying with the proposed method. An appendix is not regarded as a mandatory requirement.

Yes

ISO New England will not vote to approve the standard because it fails to place requirements on generators to provide frequency response. There are four substantive problems: - Using 59.6 Hz as an Eastern Interconnection UFLS instead of an actual value of either 59.5 Hz or $59.7 \mathrm{~Hz} \cdot$ Using installed capacity in determining the Frequency Response Obligation - The sampling interval needs to be tuned on a per Interconnection basis to support HQTE's characteristics • Do not advocate the use of supplemental regulation as a method of procuring frequency response Additionally, the SDT must decide on what the purpose of this standard is. If it is to respond to Order 693 then the standard misses the point of defining how often to run Frequency Response Surveys; it does not crisply define the "Interconnection" obligations. If the SDT does want to focus on performance then the issue of who is the default provider must be addressed. As the IRC has noted previously, all BAs do not own the service providers. To create standards that apply to entities that are dependent on other function entities to comply with a standard requirement is of great concern.
Imperial Irrigation District
Jesus Sammy Alcaraz
Yes
Yes
Yes
Yes

Yes

	Yes
Yes	
Yes	
Yes	
No Additonal Comments	
Salt River Project	
Cindy Oder	
Yes	
John Tolo	
Tucson Electric Power	
Yes	
No	
R1: TEP feels that the FRO should be able to be calculated by the BA and that Form 1 changes should be treated via the Standard drafting process. R2: TEP feels that use Form 1 should be required by the Standard. Further, BAs should calculate its own frequency bias setting without ERO intervention. R3: Operating outside Tie Line Bias mode should be allowed during a year to allow for the testing of other modes. R4: Agree with the concept, but without ERO intervention. R5: Should read "greater than or equal to".	
Yes	
No	
It should be clear that historical data may be used to show compliance.	
No	
VSL's could be clearer and simpler. Allowance for the testing of other AGC modes should be considered.	
	No

Attachment A creates additional requirements to the BAL-003-1 Standard. The arrested value of frequency observed within 8 seconds may not be long enough in some instances. The delta F in the West should be greater than 0.05 Hz to ensure a measurable frequency response. West Under Frequency should be set at 59.95 Hz . There is no reliability concern for Over Frequency. Does 18 seconds after the start of the disturbance set point B? Pre-disturbance frequency should be relatively steady and near 60.000 Hz is vague. TEP feels that the ERO should not need to validate a BAs frequency bias setting.

Yes

No
Reducing a BAs frequency bias setting may have an adverse impact on recovering from a frequency event once you get past the first 8-10 seconds. A larger bias will allow for actual and sustained AGC generator responses. Industry focus should be on generator governor response within the first 8-10 seconds.
No
TEP feels that Form 2 is a useful tool for internal BA use and should not be used for compliance purposes.
The BAL-003-1 Standard should be simplified and should not rely on the judgement of the ERO. Thanks to the drafting team for their efforts and for taking on this important aspect of Interconnection reliability.
Dennis Sismaet
Seattle City Light
No
LADWP and SCL recommend the following change (in red) to the definition of Frequency Bias Setting.
LADWP believes that this change increases the clarity of the definition: Original A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems. Proposed Change A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage prevent response withdrawal through secondary control systems
No

- LADWP and SCL have a concern with Requirement 3. The requirement should provide allowance for legitimate circumstances when an entity cannot run on Tie Line Bias mode and not have an Adverse Reliability Impact on the Balancing Authority's Area. An entity should not be penalized when these legitimate circumstances occur. LADWP believes that the Frequency Response Standard Background Document, on Page 8, lists examples of legitimate circumstances: - Telemetry problems that lead the operator to believe ACE is significantly in error. - The frequency input to AGC is not reflective of the BA's true frequency (such as if the control center were operating a local generator and disconnected from the Interconnection). - During restoration (where one BA might be controlling frequency while another to which it is connected is managing interchange between them). - For training purposes. Many AGC systems will automatically switch to an alternate mode if the EMS determines Tie Line Bias control could lead to problems. - LADWP and SCL believe that the language in Requirement 4 needs to be clarified and recommends the following change (in red): R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation to be equivalent to either (i) the sum of the Frequency Bias Settings of the participating Balancing Authorities as validated by the ERO, or (ii) calculate the Frequency Bias Setting as calculated based on the entire area being combined and thereby represent the Frequency Response for the combined area being controlled. [Risk Factor: Medium][Time Horizon: Operations Planning] • LADWP and SCL believes the language in Requirement 5 needs to be modified to be consistent with that of the second paragraph of Attachment B. SCL recommends the addition of "natural frequency response" as a third bullet item to Requirement 5 (in red). The revised requirement would read: R5. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Settina whose absolute value is at least eaual to one of the followina: [Risk Factor: Medium 1[Time

Horizon: Operations Planning] - The minimum percentage of the Balancing Authority Area's estimated yearly Peak Demand within its metered boundary per 0.1 Hz change as specified by the ERO in accordance with Attachment B. • The minimum percentage of the Balancing Authority Area's estimated yearly peak generation for a generation-only Balancing Authority, per 0.1 Hz change as specified by the ERO in accordance with Attachment B. - The natural frequency response Yes
LADWP and SCL agree with the following VRFs: - R1 - Medium - R2 - Medium - R3 - Medium - R4 Medium - R5 - Medium
No
LADWP and SCL recommend that the Measures for Requirement 3 and Requirement 5 reflect their comments to Question 2.
No
LADWP and SCL recommend that either the VSL for Requirement 3 reflects its comments to Question 2, or that these comments be addressed as an exception in the Measure for Requirement 3.
No

- LADWP and SCL consider the increase in number of events to analyze (now 25) to be excessive. Previous years analyses typically involved 4-6 events; a permanent five-fold increase is not justified. SCL suggests reducing the baseline number of events from 25 to 12 per year. Analysis of a larger number of events could be requested on a year-by-year basis if conditions warrant, but should not be mandatory for all regions in all years.
Yes
- LADWP and SCL note that the document "BAL-003-1 Background Document" seems to be reasonable.
Yes
- LADWP and SCL note that Attachment B seems to be reasonable.

No

- LADWP and SCL note that Form 2 is not compatible with prior versions of Excel-it won't even open in Excel 2003 (which is still widely used)—and requests that all spreadsheets and calculation tools developed under 2007-12 be revised to support common software of the past 10 years.
- LADWP and SCL support project 2007-12's general approach to frequency response, and is prepared to support the ballot once several problematic details are corrected. - LADWP and SCL note that the time allowed to analyze the final "official" set of 25 events for each year, from Dec 15 to Jan 10, is relatively short and coincides with the holiday vacation season. Could this time either be extended by 2-4 weeks or shifted to another part of the year (in addition to reducing the number of events to be analyzed)? • LADWP and SCL would like to see addressed in the Standard how the case is to be addressed where a BA simply has no frequency response information to provide, as could happen for a small 1-2 generator BA which has its generators out of service for an extended period for maintenance or upgrades. Assuming the BA purchases frequency response services from another entity during this period, is the BA out of compliance with the proposed Standard simply because it has no data report? And how is its next-year obligation to be computed? These issues should be addressed in the Measures or Additional Compliance information. If these are issues for "lawyers" as the Standards Drafting Team indicated during the November 14, 2011, webinar then the team should engage a NERC lawyer to resolve them prior to releasing the Standard for ballot. • Finally, SCL points out that the proposed Standard introduces a new obligation on applicable entities to maintain frequency responsive reserves. Although this obligation does not appear to be unreasonable or problematic in general, compliance may prove difficult for some entities and in some localized areas. Progress Energy J im Eckelkamp
No
PGN supports the collective comments of SERC members. We feel that the last phrase of the definition of Frequency Bias Setting is more of an explanation of a function rather than a definition. While the SERC OC Standards Review Group understands the statement, we do not feel it belongs in the definition of the Frequency Bias Setting and a period should be inserted after the word "I nterconnection". Should the definition for Frequency Response Measure (FRM) be specific to the BA,

No
M4: This measure does not read quite right. Something seems to be missing in the part that says: "..showing when Overlap Regulation Service is provided including Frequency Bias Setting calculation to demonstrate compliance with Requirement R4." This part might have read something like: "..showing that when it performed Overlap Regulation Service, it modified its Frequency Bias Setting in its ACE calculation or it calculated the Frequency Bias Setting meeting the conditions specified in Requirement R4."
Yes
We do not have any issues with the VSLs, but wonder if the wording for R1 should have been ".. Reserve Sharing Group's...". Alternatively, the wording after "interconnection's FRO" could be revised to: "...and the Balancing Authority's or the Reserve Sharing Group's FRM was..."
No
Despite the SDT's good faith effort to convert the previous Attachment A into two separate documents (Attachments A and B), the modified Attachment A is problematic. As many commenters indicated, the previous Attachment A, other than the section providing guidance on event selection, appears to be explanatory, contextual, and instructional in content. These aspects are important, but do not rise up to the level of requirements to drive reliability performance/outcome. Attachment A should include only the event selection process and calculations associated with the requirements, including an explanation of what is necessary if variable Frequency Bias Settings are implemented. If other "requirements" need to be specified, such as the reporting time frame stipulated on page 3 of Attachment A, they should be moved to the standard itself but not imbedded in an attachment. We suggest the SDT to first determine if the materials in the revised Attachment A (and Attachment B) are "Guideline" or "Technical Background", or are they "requirements". If it is the former, then Requirement R1 should not mention Attachment A at all. If it is the latter, then the as-written Attachment A is a mix bag as it on the one hand describes the ERO's process for supporting the Frequency Response Standard (FRS) (in other words, the method and criteria it uses to calculate the frequency bias settings and the FRM), and on the other hand the BA's obligations to support this process. We strongly disagree that the latter requirements be imbedded in an attachment, especially one that is supposed to provide the technical background and guideline for another entity which, by the way, is not held responsible for complying with the proposed method. Further, there are no measures developed for the requirements stipulated/imbedded in Attachment A so how can the Responsible Entity (BA, in this case) be assessed for compliance? We suggest the SDT to move those requirements on the BA to the main standard, and turn Attachment A into an appendix describing the calculation process. An appendix is not regarded as a mandatory requirement. Similar comments apply to Attachment B. Finally, the two Attachments are listed in Section F - Associated Documents. This Section is generally used to list reference documents that are NOT standard requirements. We suggest the SDT review and revise this listing depending on its final determination of the status of the two Attachments (or their revisions, where appropriate).
We do not have an opinion on whether or not the Background Document provides sufficient clarity to the development of the standard. We do, however, suggest that the SDT consider our comments in Q6 above, and move some of the information from Attachments A and B to or combine with the Background Document, to provide all the technical basis and background behind the elements stipulated in the requirements.
No
Please see our comments under Q6. In brief, we do not agree with including a process description type of document as part of the standard requirement.
No
If we are not mistaken, Form 2 is added as the last sheet in the Form 1 spreadsheet file. Apart from that, however, there are other sheets added to the previous Form 1. But this Comment form makes no mention of the changes, nor is there a question on the additional information requested. We have a concern over this omission of attention or oversight. Compared to the previous version, Form 1 has been significantly expanded to include not only additional sheets but much more comprehensive data requirements even on the Data Entry sheet itself. This makes data submission a very time-consuming task but the justification for requiring detailed data entry has not been provided. We question the need for such expansion on data entry requirements. We have yet to see the reason for expanding Form 1 in assisting a BA to provide the data needed to comply with the standard, hence we do not
see how adding a Form 2 can help in that regard. We suggest the SDT to look at the basic need for data submission that would suffice to support the FRS reporting process. Where the SDT deems additional data entry sheets to be necessary, it should provide the rationale for expanding from a 2 sheet form into a multiple sheet form for additional data collection.
The proposed implementation plan conflicts with Ontario regulatory practice respecting the effective date of the standard. It is suggested that this conflict be removed by appending to the implementation plan wording, after "applicable regulatory approval" in Section 1.3 and 1.4 of the draft standard, and in the two bullets in the draft implementation plan, to the following effect: ", or as otherwise made effective pursuant to the laws applicable to such ERO governmental authorities." Northeast Power Coordinating Council
Guy Zito
No
The FRM definition should not refer to FORM 1. Also, suggest the following wording for frequency bias setting: "A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to approximate the frequency response provided by the assets within the respective Balancing Authority's area."
No
The requirements should not be directed at Balancing Authorities, as generators are the main supplier of "discretionary" frequency response. Requirement R1 refers to an attached form, which is not part of the standard and therefore not enforceable.
Yes

No
The sampling interval needs to be tuned on a per Interconnection basis to support HQTE's characteristics.
No
The violation severity levels for R1 are reasonable. The technical writing needs to be enhanced for clarity.
No
The SDT has to first determine if the materials in the revised Attachment A \& B are "Guideline" or Technical Background", or are they "requirements". If it is the former, then Requirement R1 should not mention Attachment A at all. If it is the latter, then the as written Attachment A is confusing as it describes the ERO's process for supporting the Frequency Response Standard (FRS) (the method and criteria it uses to calculate the frequency bias settings and the FRM), and at the same time the BA's obligations to support this process. The latter requirements should not be imbedded in an attachment, especially one that is supposed to provide the technical background and guideline for another entity which is not held responsible for complying with the proposed method. An appendix is not regarded as a mandatory requirement. Additionally, regarding BAL-003-1- Attachment A 1. Criterion 5 needs to be re-written for clarity. 2. Criterion 7 refers to "cleanest events". A statement of what constitutes a "clean event" is needed to avoid possible controversy in the future. 3. The use of 59.6 Hz as the highest UFLS setting is flawed. It should either be 59.7 Hz as a deliberate choice to protect Florida interests, or it should be 59.5 Hz without concern for Florida's unique settings. 4. In the last 2 sentences at the end of the section on Frequency Response Obligation, it refers to an Interconnection being able to offer "alternate FRO protection criteria". The Interconnection should have been an integral part of establishing its obligation. It is stated that the "ERO will confirm" the "alternate FRO protection criteria". Does this mean the ERO unconditionally approves it, or evaluates with a right of rejection? Please clarify. 5. In the formula for determining the Balancing Authority's FRO allocation, installed capacity is used. Does the industry have a clear and consistent definition for installed capacity? Also, with greater wind energy development, the delivered capacity over longer time horizons will be substantially less than nameplate machine ratings. The background document refers to the use of peak generation instead of installed capacity. Which shall be used? Please clarify. 6. Recent studies have shown that the 18-52 second sampling interval does not work well for the Quebec Interconnection, in part due to the excellent and high level of response found in that Interconnection. The standard needs to be modified such that the sampling interval is that which works the best for each individual interconnection. 7. Attachment A needs to define the point A
sampling interval.
No
Refer to the first comment in Question 6. For the Frequency Response Standard Background Document - 1. Cite Attachment B in addition to Attachment A in the discussion of requirement R1. 2. The Balancing Authority allocation method specified in this document does not agree with that in Attachment A. 3. Drop the speculation on page 4 that most Balancing Authorities will be compliant. While it may be a commonly held belief by many that there is adequate frequency response right now, that assessment should be made after a targeted level of reliability has been defined and approved. The same comment applies on page 12. 4. On page 6 , drop the inappropriate recommendation of getting frequency response through supplemental regulation. It is inappropriate to try to substitute a "minute plus" product that is deployed centrally by the Balancing Authority for a "sub-minute" product that is deployed automatically without any Balancing Authority action. When a pseudo-tie is used, changes in the ACE values due to supplemental regulation are unrelated to and not coordinated with the need to deploy frequency response. Not only should this approach not be offered as an alternative, but the FRSDT should actively conduct research to determine if supplemental regulation via a pseudo-tie should be deliberately REMOVED from any actual net interchange calculation that may include it. This comment also applies to the mentioning of supplemental regulation on page 11 as well. 5 . On page 7 , the reference to a 24 hour window on each side of the frequency bias setting implementation date is inconsistent with the wording of the standard. The standard states that any time within the designated date is acceptable. 6 . On page 8, the inclusion of "for training purposes" as a reason to not operate in tie line bias control should be dropped. This training can be done in a training simulator. If it is determined that it should be supported, then the requirement needs to be reworded to allow it explicitly. 7. On page 14, the sentence: "This approach would only provide feedback for performance during that specific event and would not provide insight into the depth of response or other limitations" is difficult to understand. The paragraph would read better by simply deleting the sentence.
No
Refer to the first comment in Question 6.
Yes

This standard as written does not place requirements on generators to provide frequency response. There are four substantive problems: • Using 59.6 Hz as an Eastern Interconnection UFLS instead of an actual value of either 59.5 Hz or 59.7 Hz . - Using installed capacity in determining the Frequency Response Obligation. - The sampling interval needs to be tuned on a per Interconnection basis to support HQTE's characteristics. - Do not advocate the use of supplemental regulation as a method of procuring frequency response. It must be decided as to what the purpose of this standard is. If it is to respond to Order 693 then the standard misses the target of defining how often to run Frequency Response Surveys; it does not crisply define the "I nterconnection" obligations. If performance is the focus, then the issue of who is the default provider must be addressed. All BAs do not own the service providers. To create standards that apply to entities that are dependent on other functional entities to comply with a standard requirement is of great concern. FRS Form 1 is listed as being an Associated Document. Will it be attached to the standard? The acronym FRS is used in the standard. FRS should be spelled out before its acronym is used. If FRS Form 1 will not be an appendix or an attachment to the document, then a link should be provided to it, or instructions given on how to find it.

John Bussman

Associated Electric Cooperative Inc
Yes
The FRO definition incorrectly applies the historically narrow Balancing Authority scope of responsibility, while the FRM definition does not address applicability at all. But the BAL-003-1 Standard itself identifies RSGs (where applicable) and BAs as the Responsible Entities within scope of this standard. For consistency, AECI recommends using "Responsible Entities (e.g. Reserve Sharing Groups - where applicable, and Balancing Authorities)" in both the FRO and FRM definitions. Rationale: This change should help future-proof the definition, should more specific "frequency response" or "spinning reserve" sharing groups later surface within our industry. AECI agrees with the Frequency Bias Setting definition's inclusion of a bit more functionality than typical. We however recommend replacing "to account for the Balancing Authority's Frequency Response contribution to
the Interconnection, and discourage response withdrawal through secondary control systems", with "to support their Frequency Response contribution to the Interconnection". Rationale: Readability, and clarity on the "discouraging withdrawal..." phrase, which should reside in the Background document. Yes

Yes

Yes

Yes
The VSLs appear reasonable for the risk and particularly where they assess higher severity when the BA or RSG Interconnection's performance was sub-standard as well.
Yes

Yes

Yes
This is a very important document, providing bounds and rationale for and future changes, as well as initial settings going into ballot. As such, it is AECI's understanding that, upon going into effect, this BAL-003-1 will utilize these initial settings.

No

AECI believes the SDT could spare our industry both confusion and inconsistency, by specifying that identified Interconnection Disturbances include both Point A and Point B to the hour, minute, and second. While this introduces some risk of Entities over-automating their data-reports, the benefits for Eastern Interconnection respondents would be tremendous. Cautions and disclaimers should be placed on both Form 1 and Form 2, to assure respondents manually inspect their frequency data and pinpoint the specific inflection-point samples.
SDT Webinar responses, this standard still needs to address: 1) anticipated shifts in an Entity's FRO, due to large changes in base generation or load, and 2) likely non-compliance for single-unit generation-only BAs (R5.2?) Please address prior to second ballot.
Rich Salgo
NV Energy
Yes

No
Requirement 1 seems to be the only one that has any applicability to an RSG; however, it is unclear under what circumstances this requirement applies to an RSG. Suggest changing the R1 to be addressed solely to BA's or alternatively, explain under Applicability section 1.2 what "where applicable" means.
Yes
Medium appears to be reasonable and appropriate.
Yes

No
For R1, suggest that the VSL's not be dependent upon the aggregate performance of the BA's within an interconnection.
No
It is not clear whether the calculation of FRO is to utilize projections of BA load as in Att A, or past data reported in FERC Form 1 as per the Background Document.
Yes
This is a qood reference; however see response to Question 6 in that there appears to be a
discprepancy between Att A and the Background Document with regard to FRO calculation.
No
In Attachment B, it seems unclear whether the initial FB setting is supposed to be 1% of BA peak load or 0.8% as shown in the table. In general, I was extremely confused about what the required FB setting should be. R5 indicates a percentage of load found in Att B, but Att B indicates the greater of Natural Frequency Response or 1% of peak, and then the table that follows indicates 0.8%. At this point, I have no idea what is being stated for the requirement.
Yes

Thad Ness

American Electric Power

No
R1: Clarification is needed regarding the responsibility of a BA that is a member of a Reserve Sharing Group. R2 and R3: What does "coordinated control" mean? There no leverage for the BA to require the generator to carry their burden of addressing governor settings or droop settings, yet the BA is obligated to meet some performance measures. This revision adds new performance measure responsibilities on the BA who likely has no direct control over every resource affecting their performance within their footprint. We are not necessarily challenging the performance measures themselves, nor their underlying objectives, however AEP views this as a gap in responsibilities which potentially effects reliability.
Yes

No
It is not clear for R1 what the exact delineations are among Lower, Medium, High, and Severe VSL's. Yes
A frequency response observation should not be used spanning multiple years, or if there does, there should at least be a reset period.

Yes

Yes

Arizona Public Service Company
Janet Smith, Regulatory Affairs Supervisor

1. The specified time interval from 20 seconds to 52 seconds for SEFRD measurement ignores the primary frequency response which happens in first 20 seconds and is responsible for arresting the frequency dip. We suggest using the average over the complete interval of 0 to 52 seconds. 2. The difference between Low and High VSL for R1 is not clear. Similarly the difference between Medium

when TLB is not used. For example, if something happens within our EMS that disables TLB control we are compliant if we document the period as an EMS malfunction?
Yes
We appreciate the effort of the SDT in developing Attachment A. It was very helpful in weeding through BAL-003.
Yes
We appreciate the effort of the SDT in developing the Background Document. It provided insight on how the SDT got the proposed standard to where it is with this posting.
Yes

Yes

Requirement 5, bullet 2 does not make any allowance for a single generator generator-only BAs. If that BAs generator is out-of-service, the BA cannot satisfy this requirement. This could also apply to other generation-only BAs which have a very limited number of generating units. Also, RSGs/BAs which experience resource changes throughout the year have no mechanism for adjusting their FRO.

```
MRO NSRF
```


Will Smith

No
The FRM definition: "The median of all the Frequency Response observations reported annually on FRS Form 1" is problematic. It references an FRS Form 1 which is not included in the definition itself but is in fact an attachment to a standard. In the current NERC Glossary of Terms, there is no such precedence that a definition must rely on the requirements or details in a standard for completeness. Additionally, the definition of Frequency Bias Setting should focus on what it is. Balancing Authorities do not supply energy. Suggest revising it to: Frequency Bias Setting A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to approximate the expected natural response provided by the assets within the respective Balancing Authority's area.
No
R1- It is not clear what is intended by "Reserve Sharing Group" in this context. As RSGs exist today, FRM performance by an RSG is not contemplated in the definition of FRM and appears to apply more towards 'secondary response'. Recommend clarifiying this concept and possibly include an example in the background document to help explain how this would work. R2 - Please add the word "range" inbetween the words "date" and "specified". The background document specifies that there is a 72-hour period to implement the FBS setting (See Background document Page 7). R2, as written, does not reflect the period for which an entity may implement the ERO validated Bias into ACE. Also see our comment on \#7 as to the length of the comment period. Question 7 comment is provided to assist the SDT; Note from question 7: (Page 7 (3rd paragraph) of the Background document states "Given the fact that BA's can encounter staffing or EMS change issues coincident with the date the ERO sets for new Frequency Bias Setting implementation, the standard provides a 24 hour window on each side of the target date. 1. The Standard itself does not state this provision (24 hour window on each side of target date) as indicated. 2. The SDT accurately addresses the fact that BA's could have EMS or staffing issues during implementation of the ERO validated FBS. The current stated 72-hour window is not long enough for implementation of the FBS as there may be a host of issues that could impact implementation. We suggest that a seven day window be used for implementation of the FBS.) R3 Recommend the term "Adverse Reliability Impact" be removed from Requirement 3. Based on the NERC definition of the term, a smaller entity could never operate its AGC outside of TLB mode due to their impact on the BES not likely to result in "instability or Cascading". To ensure a more consistent and equitable approach when applying this Requirement, recommend the drafting team incorporate the reliability reasons listed within the Background Document into the actual Requirement.
Additionally, the phrase "effectively coordinated control" should be removed as this is not essential to the Requirement and introduces ambiguity in its application. To this end, the following revisions are proposed: R3. Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area
meets one or more of the following conditions. - Telemetry problems that lead the operator to believe ACE is significantly in error. - The frequency input to AGC is not reflective of the BA's true frequency (such as if the control center were operating a local generator and disconnected from the Interconnection). • During restoration (where one BA might be controlling frequency while another to which it is connected is managing interchange between them). • For training purposes. - Many AGC systems will automatically switch to an alternative mode if the EMS determines Tie Line Bias control could lead to problems. - For single BA Interconnections, Flat Frequency and Tie Line Bias are equivalent. - The Reliability Coordinator has been informed and the duration is [insert time constraint language here]. R5 - Recommend to delete the phrase "In order to ensure control response". Such phrases can be needless causes of debate. If a BA uses one of the bulleted methods but does not get "adequate response" then is the BA non-compliant? What is "adequate response"? Who decides if the response is adequate? Please clarify.
Yes

No
Based on suggested changes to R3 in response to Question 2, the drafting team should modify M3 to be consistent with the proposed language. Additionally, M1 should be revised to not reference a specific Form. The Form may be the format of choice but it should not be an implied requirement. Measures 3 and 4 identify the use of "operating logs" as evidence. Measure 2 identifies hard copy and electronic evidence, "or other evidence". We suggest calling out specifically "operator logs" for M2 also, in case there are system problems in capturing hard copy or electronic evidence during the short time window for implementation.

No

The proposed VSLs for Requirement R1 treats a BA that did not meet the FRO requirement differently depending on whether or not the Interconnection met the FRO requirement. The obligation of the BA to meet its allocated FRO should be consistent regardless of what the other entities within the interconnection are doing. Suggest removing the interconnection performance from the VSLs and developing four increasing levels of BA failure to meet the FRO.
No
Confusion exists around the "peak load" in that Attachment A states the allocation is based on Projected Peak Loads and Generation but the Background Document states it will use a historical Peak and Generation to make the allocation. Also, for the BA installed capacity, where is that value derived from and does NERC obtain that from FERC form data or does the BA provide that information somewhere specific to this effort? Additionally, there appears to be a difference in how FRO is calculated in Attachment A and what is described in the Background Document. These differences should be reconciled such that both documents address the same approach. If installed capacity is used in the equation, how are variable/intermittent resources (e.g. wind, solar) accounted for? At full capacity? Please clarify. We suggest the SDT clarify if the materials in the revised Attachment A (and Attachment B) are "Guideline" or "Technical Background", or "requirements

No

the MRO NSRF has restated the same answer as in question 6 on purpose. Confusion exists around the "peak load" in that Attachment A states the allocation is based on Projected Peak Loads and Generation but the Background Document states it will use a historical Peak and Generation to make the allocation. Also, for the BA installed capacity, where is that value derived from and does NERC obtain that from FERC form data or does the BA provide that information somewhere specific to this effort? Additionally, there appears to be a difference in how FRO is calculated in Attachment A and what is described in the Background Document. These differences should be reconciled such that both documents address the same approach. If installed capacity is used in the equation, how are variable/intermittent resources (e.g. wind, solar) accounted for? At full capacity? Please clarify. Page 7 (3rd paragraph) of the Background document states "Given the fact that BA's can encounter staffing or EMS change issues coincident with the date the ERO sets for new Frequency Bias Setting implementation, the standard provides a 24 hour window on each side of the target date. 1) The Standard itself does not state this provision (24 hour window on each side of target date) as indicated. 2) The SDT accurately addresses the fact that BA's could have EMS or staffing issues during implementation of the ERO validated FBS. The current stated 72-hour window is not long enough for implementation of the FBS as there may be a host of issues that could impact implementation. We
suggest that a seven day window be used for implementation of the FBS.
No
: There could be some confusion caused by the Attachment B due to the use of the word "initially" when the reference is made to the current standard. The drafting team should change the word "initially" to "currently" or strike it to avoid the potential confusion. The second paragraph of Attachment B (which contains the two bullets): The words "initially 1% " in the second bullet contradict with the Table 1 on Attachment B, which states "Initial" and " 0.8% ". Suggest deleting the parenthetical in the second bullet as when BAL-003-1 is effective it would be referencing an old Standard version. If the initial minimum is intended to be 1% say so in the Table 1.

Yes

: It would be useful if the drafting team could develop a completed form as an example to help entities better understand the methodologies used in the form
It is not clear if there is an upper limit to the amount of frequency response expected of the Balancing Authorities under this standard. Except for Table 2 in Attachment A, there is no discussion of an amount of FR expected on a total basis. Balancing Authorities need to know for how many tenths of a hertz they are to respond so they can determine how to plan to meet this requirement. The documents do not appear to provide any boundary on the maximum amount of FR that a BA will provide, i.e. it is not clear what will happen if an event occurs in the Eastern Interconnection that causes the frequency to drop to less than 59.6 Hz (e.g. what if freq dips to 59.0 ? Is the BA expected to provide a limitless amount of frequency response?). Also, is that event excluded from the list used to calculate the Balancing Authorities' response or is it included with an expectation that it counts the same as any other event. Without a clear statement of what is expected, including whether there is a limit on that expectation or not, the Balancing Authorities cannot know what is expected of them and therefore cannot plan appropriately. In the first paragraph of R5 delete "at least" and replace with "greater than or". This phrase would now read ".. absolute value is greater than or equal to one of the following:" "Equal to or greater than" accurately identifies the expectation, the current phrasing will lead to confusion and mis-interpretation. Bullet \#1 of R5: The minimum \% is based upon the "estimated yearly Peak Demand". During the NERC webinar it was mentioned that this minimum would move to being based on historical reporting of Peak Demand. Where does the SDT stand on this item? Please provide clarification.
SERC OC Standards Review Group

Gerald Beckerle

No
We feel that the last phrase of the definition of Frequency Bias Setting is more of an explanation of a function rather than a definition. While the SERC OC Standards Review Group understands the statement, we do not feel it belongs in the definition of the Frequency Bias Setting and a period should be inserted after the word "Interconnection". Should the definition for Frequency Response Measure (FRM) be specific to the BA, similar to the definition for Frequency Response Obligation (FRO)?
No
We feel that the utilization of the term, "Reserve Sharing Group", is not consistent with the definition in the NERC Glossary of Terms, and should be deleted, applicability should be clarified or replaced with a new term, such as "Frequency Response Sharing". R2 exempts BAs participating in Overlap Regulation Service from implementing the Frequency Bias Setting on the date specified by the ERO, and R4 states how the BA performing Overlap Regulation Service will modify its Frequency Bias Setting but does not state when the setting will be implemented. The exemption for BAs participating in Overlap Regulation Service should either be deleted from R2 or language stating the implementation date of the frequency bias setting needs to be included in R4. R4 should clarify that a BA performing Overlap Regulation Service should still be required to operate its AGC in "Tie Line Bias" mode.
Yes
No
See comments in Question 2 regarding utilization of the term "Reserve Sharing Group".
No

See comments in Question 2 regarding utilization of the term "Reserve Sharing Group". VSL for R1: The draft VSLs for R1 uses the summation of FRM for all BAs within an Interconnection as a factor in determining the applicable VSL. This does not seem consistent with R1. R1 is about a single BA and the individual BA's frequency response performance as measured by the FRM for that specific BA. Including the FRM summation of the Interconnection expands R1. It appears that a BA that is noncompliant with R1 could end up with either a Low/Medium or High/Severe VSL based upon the FRO performance of the Interconnection. The FRM performance of the Interconnection is beyond the knowledge and control of a single BA and should not be a determinate of the applicable VSL. Is there a technical basis for selection of the $1 \%, 30 \%$ and $15 \mathrm{MW} / .1 \mathrm{~Hz}$ VSL breakpoints? Does the Lower VSL give a 1% dead band to a BA's FRO? If so, will this be acceptable to NERC/FERC? VSL for R2: The VSL should reflect the language used in the requirement. R2 says a BA "not participating in Overlap Regulation service shall", while the VSL says a BA "not receiving Overlap Regulation Service...." The VSL language is not consistent with the requirement. VSLs for R5: Since Frequency Bias Setting is expressed as a negative value, the terms "absolute value" and "less than" must be used carefully. Wouldn't the "absolute value" of a BA's Frequency Bias Setting always be positive and thus it could never be less than the minimum specified by the ERO (a negative value)? No
The definition of Single Event Frequency Response Data (SEFRD) was struck from the draft standard but still appears in Attachment A. Since R1 of the standard references Attachment A, would the definition of SEFRD still be applicable? If the definition is to be totally struck, we don't think the term should be used in Attachment A.
No
Portions of the Background Document do not appear to be complete or finished. The Background Document should be edited to be consistent with changes made to the standard or other related documents (eg. elimination of the definition of SEFRD and any revisions to the draft BAL-003-1). No
We suggest the SDT consider a term other than "I nitial' in the title for Table 1. We suggest "Proposed Frequency Bias Setting" for Table 1
Yes

We feel that frequency response is a function of a contingency event and the Purpose Statement should recognize this relationship. We suggest the following insertion (in quotation marks) in the Purpose Statement: Purpose: To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations "due to a contingency event" and supporting frequency until the frequency is restored. To provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting. Southern Company
Antonio Grayson
No
We suggest adding BA to the definition of Frequency Response Measure (FRM), similar to the definition for Frequency Response Obligation (FRO).

Yes

No

VSL for R2: We suggest the language in the VSL be consistent with the language used in the Requirement. The VSL for R2 says a BA 'not receiving Overlap Regulation Service......' R2 says a BA 'not participating in Overlap Regulation service shall' VSLs for R5: Since Frequency Bias Setting is expressed as a negative value, the terms "absolute value" and "less than" must be used carefully. This VSL uses "absolute value" when referring to the BA's Frequency Bias Setting, but does not use "absolute value" when referring to the Frequency Response Obligation, or minimum value specified by the ERO. Consider revising this VSL so that a true comparison can be made.
No

We suggest increasing the delta f for the East to be the same value as the West or larger. The reason for this is that the 0.04 Hz suggested is too close to the governor deadbands of .036 Hz . This would potentially omit frequency response that some units may provide for a larger excursion but not for those close to the deadband.
No
We suggest the Background Document should be edited to be consistent with changes made to the standard or other related documents (eg. Any revisions to draft BAL-003-1 and removal of the definition of SEFRD).
No
We suggest using the words, 'Proposed Frequency Bias Setting' in the Title of Table 1 instead of the word, 'I nitial'.
Yes

We suggest adding the words, 'due to a contigency event', after the word, 'deviations', in the Purpose statement because we feel that frequency response occurs due to a contigency event.
SPP Standards Review Group
Robert Rhodes
Yes

Yes

Yes

Yes

No
The VSLs for R2 are based on 5, 15 and 25 days. What was the justification for these values? Could we just as well use 10, 20 and 30 or some other set of values? In R3, we understand that brief periods of operation outside of TLB control are allowable providing 1) continued operation in TLB control would create ARI on the Interconnection or 2) that justification is provided for the periods when TLB is not used. For example, if something happens within our EMS that disables TLB control are we compliant if we document the period as an EMS malfunction?
Yes
We appreciate the effort of the SDT in developing Attachment A. It was very helpful in weeding through BAL-003.
Yes
We also appreciate the effort of the SDT in developing the Background Document. It provided insight on how the SDT got the proposed standard to where it is with this posting.
Yes

Yes

Requirement 5, bullet 2 does not make any allowance for a single generator, generator-only BA. If that BA's generator is out-of-service, the BA cannot satisfy this requirement. This could also apply to other generation-only BAs which have a very limited number of generating units. Also, RSGs/BAs which experience resource changes (permanently removing generation from service) throughout the year have no mechanism for adjusting their FRO during the year.

H. Steven Myers

ERCOT
No
RE: Frequency Response Obligation (FRO) definition: ERCOT suggests changing "Balancing

Authority's" to "Balancing Authority Area's" as follows: The Balancing Authority Area's share of the required Frequency Response needed for the reliable operation of an Interconnection. A BA that does not own generation resources cannot provide Frequency Response, it can only schedule and dispatch available resources capable of such; . The BA should be responsible for taking action to schedule resources that are capable of frequency response, and monitoring to assure frequency response performance. The GOP (possibly the LSE when demand side performance is involved) must be accountable for performing. However, there is nothing in this requirement to encourage the owner of a resource who chooses not to provide frequency response to come to the table. There is nothing in this standard that uniformly requires all frequency response providers to perform. This is likely to be detrimental to the performance of a BAA and unfairly sanctions those willing to perform to to assure reliability while others are not required to perform.

No
Measure should be modified to align with revised Requirements per ERCOT's comments on \#1.
No
Refer to comments in \#1.
No

While there is no problem with the calculation involved, it is unclear why the SDT elected to assign a grid performance element in this standard to the ERO, who has no functional (registered) role in grid performance. Since this is a cook-book calculation and transfer of data on frequency performance, why not assign it to the BA?

Kasia Mihalchuk

Manitoba Hydro

No
It is not clear why the term "Single Event Frequency Response Data (SEFRD)" has been removed from the standard but is still used and defined in the Background Document and Attachment A.
No
Regarding R1: 1. Neither R1 nor the referenced Attachment A clarifies the FRM requirements for an RSG to comply versus a BA. In particular (i) At p.3, Attachment A states that the ERO is responsible for "annually assigning an FRO and Frequency Bias Setting to each BA." No mention is made of RSGs.
(ii) Attachment A only references RSGs in the context of reporting obligations for Form 1 (at p.4) and
(iii) Compared to BAL-002-0 R1.1, which clearly states that the BA may elect to fulfill its obligation through an RSG and that in such cases the RSG has the same responsibilities as each BA (that is a participant in the RSG). 2. It should be clarified that this requirement applies to a BA, where the BA doesn't belong to an RSG, OR to an RSG. As it is currently drafted, the standard applies to each BA and each RSG. It is redundant in that each BA would need to comply, whether or not they are a member of an RSG that would also be required to comply. Further, the NERC Glossary definition of an RSG is a group of BAs that collectively maintain, allocate and supply operating reserves. No mention is made of the agreement including the sharing or delegation of responsibility related to FRM. Accordingly, the standard should only reference a BA being able to delegate responsibility to an RSG if the RSG Agreement allows for such delegation. 3. R1 does not specify where or how the FRO is determined. Presumably this would be determined by the ERO pursuant to Attachment A. 4. The phrase "to ensure that sufficient Frequency Response ..." should be separated from the requirement as it is (i) not descriptive of the required actions; (ii) redundant with the stated purpose at the beginning of the standard. In general, such a drafting technique should be avoided as it may allow Responsible Entities to argue that a violation has not occurred where the specific action that is described has not been taken, but the purpose referenced in the requirement has been met. Regarding R2: 1. It is not clear from R2 who determines the Frequency Bias Setting for "validation" by the ERO and how the FBS is determined. (Presumably done by the BA in accordance with

Attachment B). Based on Background document, should refer to those "published" by ERO. The BA's FBS may not be validated, and may be modified before posting. 2. Attachment B does not refer to the ERO "validating" FBS. 3. Attachment B refers to an RSG calculating FBS, but the standard does not.

No
It should be clarified that R1 requirement applies to a BA, where the BA doesn't belong to an RSG, or to an RSG. As it is currently drafted, the standard applies to each BA and each RSG. It is redundant in that each BA would need to comply, whether or not they are a member of an RSG that would also be required to comply. Further, the NERC Glossary definition of an RSG is a group of BAs that collectively maintain, allocate and supply operating reserves. No mention is made of the agreement including the sharing or delegation of responsibility related to FRM. Accordingly, the standard should only reference a BA being able to delegate responsibility to an RSG if the RSG Agreement allows for such delegation. No
The Violation Severity Levels for R1 penalize entities more severely depending on how the interconnection as a whole has performed. MH believes that BAs should only be held accountable for issues within their control and that the VSLs for R1 should be revised accordingly.
No

1. p. 2 refers to each "Interconnection" establishing target contingency protection criteria. However, an "I nterconnection" as defined in the NERC Glossary is an electrical system, not a Responsible Entity. This should be revised to clarify which Responsible Entities must establish the protection criteria. 2. Table 2, although entitled "Interconnection Frequency Response Obligations" does not use the term FRO in the Table itself. This terminology should be consistent. 3. There is no clear statement in Attachment A identifying the significance of Table 2. The previous paragraph identifies Table 2 as listing "default targets", but how does this relate to the FRO referenced in R1? 4. The "Note" on p. 2 regarding the ERO being able to use additional events that don't satisfy the criteria is unreasonable as drafted. Since these events are used to calculate the Frequency Bias Setting and FRM (as per p.1, s.2), the selection of events should not be at the unfettered discretion of the ERO. As drafted, no grounds or criteria must be satisfied.

Yes

Please see MH's response to Question 1 regarding the term Single Event Frequency Response Data. Additionally, the discussion in this document is useful in clarifying the intent of the drafting team, but some of this clarification would best be incorporated into the Standard itself. Ex. RSG requirement on page 6. Also on page 7 Attachment A does not specify what validation is and how it is done.
Attachment A refers to BA providing FBS data to ERO which then validates and publishes. This should be reflected in R2.
Yes

Yes

The Applicability of BAL-003-1 should be clarified. Specifically, Section 1.2 should be changed from "Reserve Sharing Groups (where applicable)" to "Reserve Sharing Group whose intent includes meeting Frequency Response Obligations". Regarding Data Retention: 1. As the standard is currently drafted, both the BA and the RSG would be required to retain data or evidence to show compliance with requirements R1 and M1. It is unclear whether this is the intention, or whether it would be acceptable that just one or the other would maintain such records. 2 . In the first and second paragraph, the reference to 'three calendar years' should be specified to be the 'previous three calendar years'. 3. In the third paragraph, it should be clarified who is required to keep information related to non compliance if the BA belongs to an RSG - the BA or the RSG or both. 4. In the fourth paragraph, it should be clarified for what length of time the last audit records must be retained. Western Electricity Coordinating Council

Steve Rueckert

Yes

No
Agree with the changes made to this latest version of BAL-003-1. However, additional clarity could be added by addressing the following: R1- It is not clear what is intended by "Reserve Sharing Group". As RSGs exist today, FRM performance by an RSG is not contemplated in the definition of FRM and appears to apply more towards 'secondary response'. Recommend clarifiying this concept and possibly include an example in the background document to help explain how this would work. R3 - There may be occasions in which an entity has a legitimate reason or a need to operate in a mode other than Tie Line Bias but that does not qualify as an Adverse Reliability Impact. Recommend including language that would permit limited operation in a mode other than Tie Line Bias mode provided the Reliability Coordinator was notified. R3 - Has the drafting team considered whether or not the language of Requirement R3 will have any conflict or coordination issue with the FERC-approved regional reliability standards BAL-004-WECC-1 - Automatic Time Error Correction? R5 - Suggest changing the language "at least equal to" to "greater than or equal to" for clarity.

No
The proposed VSLs for Requirement R1 treat a BA that did not meet the FRO requirement differently depending on whether or not the Interconnection met the FRO requirement. The obligation of the BA to meet its allocated FRO should be consistent regardless of what the other entities within the interconnection are doing. Suggest removing the interconnection performance from the VSLs and developing four increasing levels of BA failure to meet its FRO.
No
There is disagreement between Attachment A and the Background Document. Attachment A states peak load allocation is based on "Projected" Peak Loads and Generation, but the Background Document states it will use "historical" Peak Load and Generation. The allocation methodology of FRO among the BAs in the equation on page 3 of Attachment A favors BAs with more load than more installed capacity. Peak load is served but not all installed capacity is always dispatched.
No
See response to question 6.

Reducing frequency bias obligation is detrimental to reliability. Lowering the Minimum Frequency Bias Setting from 1% to $.8 \%$ (as identified in Table 1, Attachment B) will result in a lower value being used by those Balancing Authorities with a natural frequency response below the current required 1%, which in turn will lower the natural frequency response. Over time it seems this pattern would lead to poorer response. Is there an upper limit to the amount of frequency response expected of the Balancing Authorities? How many tenths of a hertz is a Balancing Authority or Reserve Sharing Group expected to respond to. The documents do not appear to provide any boundary on the maximum amount of Frequency Response that a BA will provide. It is not clear what will happen if an event occurs in the Eastern Interconnection that causes the frequency to drop to less than 59.6 Hz or in the Western Interconnection that causes the frequency to drop to less than 59.5 Hz . Will that event be excluded from the list used to calculate the Balancing Authorities' response? Will it be included with an expectation that it counts the same as any other event? Without a clear statement of what is expected, including whether there is a limit on that expectation or not, it is unclear what is expected of the Balancing Authorities. As Drafted, is there the possibility that a Balancing Authority may fail to meet their FRO if surrounding BAs provide significantly more than required. Can over performers cause average performers to fail when they would have otherwise met their requirement. The documents do not provide guidance on how intermittent or variable generation is to be treated Referencing Attachment A may be adding requirements. You may wish to consider adding language in Requirement R1 that specifically requires the completion of the Attachments or Forms. There are no requirements on governor installation, settings, or operation. Addition of governor operation requirements seems essential for a frequency response standard. Without some sort of governor response to require the individual generators to perform, a Balancing Authority with significant amounts of generation for which it has no control over is at a disadvantage.

Curtis Crews

No
The language used in the requirements is superfluous. This could result in confusion and incorrect assumptions being made. In R1, the comment within brackets "(as detailed in Attachment A and calculated on FRS Form 1)", is not necessary as it is already part of the FRM definition. We suggest removing this bracketed text from the requirement. Also in R1, the phrase "to ensure that sufficient Frequency Response is provided by each BA or RSG to maintain an adequate level of Frequency response in the Interconnection" is a high level objective that does not add clarity to this requirement. We suggest removing this from the requirement. R2, R3 and R5 use similar language e.g. "to ensure effectively coordinated Tie Line Bias control", "to ensure adequate control response" etc. Although it provides background information, this does not add clarity to the requirement. We suggest removing these from the requirements.

No

These documents not only provide additional clarity but also specify additional requirements, such as FRS Form 1 annual reporting by January 10. All the enforceable requirements should be included in the body of the standard. 1. Attachment A uses the terms "delta F (change in frequency)", "arresting frequency (Point C)", "B Value", "A Value". These terms are not properly defined or described in this document as drafted. The AESO suggests adding a description or definitions for clarity in this document. 2. The standard gives 2 sets of values for Interconnection Frequency Response Obligation in Table 2, (1) Base Obligation and (2) the obligation including 25% Safety Margin (which seems to be implied by the "contingency protection criterion"). The Attachment A does not specifiy whether the Base Obligation or the 25% Safety Margin value will be used to allocate the Interconnection FRO to the BAs. Please clarify which value will be used to calculate the BA Frequency Response Obligation (FRO) in the Interconnection FRO allocation formula in Attachment A. 3. The "initial FRO allocation" formula in Attachment A uses Peak Load. The term Peak Load is not used in the standard nor is it a defined term in the NERC Glossary. The standard uses Peak Demand, which is defined in the Glossary Is "Peak Load" synonymous with "Peak Demand"? If so, Peak Demand should be used in the formula instead. Otherwise Peak Load should be clearly defined in this document. 4. Is "Projected" in the FRO allocation formula synonymous with "Forecasted"? If so, Forecasted should be used for consistency. Otherwise "Projected" or the context in which it appears must be defined.
No
The Background Document uses BA Peak Generation in the BA FRO allocation formula. Attachment A uses BA Installed Capacity. The AESO suggests making the two formulae consistent.

Besides the standard, the posting has two attachments, supporting material and two forms. It is not clear how enforcement will be applied given the array of explicit and implicit requirements throughout this package, and the use of undefined terminology, which will be subject to interpretations. In the SDT response to our comments to the first draft of this standard it was stated that "The expectation is events will be selected by the Balancing Authorities. The Balancing Authority may exclude events from consideration for specific conditions such as data quality issues. " Based on the SDT's response, it is our understanding that, for the purpose of the FRM calculation, BAs could exclude or include events based on specific conditions consideration, such as data quality or event suitability (e.g. BA separation from the Interconnection). However, the standard as currently drafted, does not have any provisions to this effect. Please include such provisions in the body of the standard.
Anthony Jablonski
ReliabilityFirst

No

ReliabilityFirst thanks the SDT for their effort on this project. ReliabilityFirst has a number of concerns/questions related to the draft BAL-003-1 VSLs which include the following: 1. General VSL Comment - For consistency with other standards, each VSL should begin with the phrase "The Responsible Entity..." or "The Balancing Authority". This is consistent with the language of the requirement and correctly pinpoints the appropriate responsible entity. 2. VSL R1 Comment - Based on the FERC Guideline \#3 "Violation Severity Level Assignment Should Be Consistent with the Corresponding Requirement". ReliabilityFirst suggests the following modification: a. Lower VSL - The Responsible Entity achieved an annual FRM within an Interconnection that was equal to or more negative than the Interconnection's FRO and the Responsible Entity's FRM was less negative than its FRO by more than 1% but by at most 30% or $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever one is the greater deviation from its FRO b. Medium VSL - The Responsible Entity achieved an annual FRM within an Interconnection that was equal to or more negative than the Interconnection's FRO and the Responsible Entity's FRM was less negative than its FRO by more than 30% or by more than 15 MW/0.1 Hz, whichever one is the greater deviation from its FRO c. High VSL - The responsible entity failed to achieve an annual FRM that is equal to or more negative than its FRO and the Responsible Entity's, FRM was less negative than its FRO by more than 1% but by at most 30% or $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever one is the greater deviation from its FRO d. Severe VSL - The responsible entity failed to achieve an annual FRM that is equal to or more negative than its FRO and the Responsible Entity's FRM was less negative than its FRO by more than 30% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever one is the greater deviation from its FRO 3. VSL R4 Comment - Based on the FERC Guideline \#3 "Violation Severity Level Assignment Should Be Consistent with the Corresponding Requirement". ReliabilityFirst suggests the following modification: a. Example for Lower VSL which should be carried throughout all four VSLs - The Balancing Authority incorrectly modified the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with combined footprint setting-error less than 5% of the validated or calculated value 4. VSL R5 Comment - Based on the FERC Guideline \#3 "Violation Severity Level Assignment Should Be Consistent with the Corresponding Requirement". ReliabilityFirst suggests the following modification: a. Example for Lower VSL which should be carried throughout all four VSLs - The Balancing Authority used a monthly average Frequency Bias Setting whose absolute value was less than or equal to 5% below the minimum specified by the ERO.

ReliabilityFirst thanks the SDT for their effort on this project. ReliabilityFirst has a number of concerns/questions related to the draft BAL-003-1 standard which include the following: 1. General Comment - ReliabilityFirst is unsure how a Reserve Sharing Group (RSG) would be capable of establishing a correct Frequency Response Measure (FRM) and Frequency Response Obligation (FRO) as a RSG. Frequency Response and Frequency Bias are unique values established for each Balancing Authority (BA), is the intent to require a RSG response to establish and maintain a certain frequency response based upon the members and size of the RSG? From a monitoring perspective and without more guidance it is unclear what or how these values will be determined. 2. General Comment ReliabilityFirst believes the proposed definitions for Frequency Response Measure (FRM) and Frequency Response Obligation (FRO) are unclear. For example, ReliabilityFirst is unclear what is meant by the term "observations" in the FRM definition. ReliabilityFirst also believes the terms "reliable operation of an Interconnection" is ambiguous and seeks further clarification to its meaning. 3. General Comment - ReliabilityFirst recommends including Attachment A, Attachment B, FRS Form 1 and FRS Form 2 into the standard itself. These attachments and forms are referenced in the requirements (and definitions) and therefore should be appropriately embodied within the standard.
4. General Comment - ReliabilityFirst believes the last fragment of words in Requirement R1 through R4 (and first fragment of words in Requirement R5) is more of a justification for the requirement rather than a requirement itself. ReliabilityFirst believes this justification should be moved to a "Rationale Text Box". For example, the first set of words in Requirement R5 states: "In order to ensure adequate control response". This language is really explaining why this requirement is needed. ReliabilityFirst believes this should be removed, further expanded upon and placed in a "Rationale Text Box".
Florida Municipal Power Agency

Frank Gaffney

No

We thank the SDT for their hard work and diligence in moving this Project forward. However, we have some concerns that cause us to not support the standard in its current form. In general, we believe that there has not been sufficient prudency review for the standard, especially R1, to justify a performance based standard around a Frequency Response Measure. We also believe that the proposed standard does not meet all of the conditions of the Final SAR and Supplemental SAR. The "Final SAR" was to develop methods by which a performance based standard would eventually be developed. The Final SAR states: "The proposed standard's intent is to collect data needed to accurately model existing Frequency Response. There is evidence of continuing decline in Frequency Response in the three Interconnections over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be modeled, and the reasons for the decline in Frequency Response can be identified. Once the reasons for the decline in Frequency Response are confirmed, requirements can be written to control Frequency Response to within defined reliability parameters." BAL-003-1 does not seem to complete the scope of this "Final SAR". For instance, "the reasons for the decline in Frequency Response" were not confirmed to our knowledge; and the field trial is not completed to our knowledge. The Supplemental SAR adds to the scope of the Final SAR: "To provide a minimum Frequency Response Obligation for the Balancing Authority to achieve, methods to obtain Frequency Response and provide a consistent method for calculating the Frequency Bias Setting for a Balancing Authority. In addition, the standard will specify the optimal periodicity of Frequency Response surveys." The Supplemental SAR does not eliminate the pre-requisite contained in the Final SAR to determine the reasons for the decline in frequency response and confirm them before establishing "defined reliability parameters". In addition, the standard does not complete the requirement of the Supplemental SAR to identify "methods to obtain Frequency Response". For instance, neither the BA nor the RSG have authority over governor and other generator settings. There should be a requirement for GOPs to incorporate setting changes directed by the BA, otherwise the standard establishes requirements that BAs and RSGs may not have the authority to achieve. There is no consideration of "footprint" changes of the BA resulting in different allocation from the ERO during a year. The standard and Attachments seem to specify an annual process with due dates in December and J anuary with no allowance for mid-year changes and associated allocation changes. If a standard has a requirement for the ERO, who will audit the ERO for compliance? If the ERO does not meet its obligations, can an entity still be found non-compliant, especially on a schedule basis? Wasn't there an issue of assigning standards to RROs, e.g., the fill-in-the-blank standards? Are there similar issues with assigning requirements to the ERO? Is the ERO a "user, owner or operator" of the BPS under Section 215, e.g., at (b)(1)"... All users, owners and operators of the bulk-power system shall comply with the reliability standards that take effect under this section." We question how this would work from a compliance perspective.

No
On Event Selection Criteria, bullet 2, if 25 events cannot be identified then the ERO can go back in time to the previous year. This creates a double jeopardy to R1 of the standard. It also may include irrelevant data if there have been changes from one year to the next in FRO or Bias settings assigned by the ERO. On Frequency Response Obligation, first paragraph states that "Each Interconnection will establish target contingency protection criteria"; however, the Interconnection is not a decisionmaking body. Does this really mean the ERO will establish FRO for each Interconnection? The single asterisk note for the table on page 2 states: "It is extremely unlikely that an event elsewhere in the Eastern Interconnection would cause the Florida UFLS special protection scheme to "false trip".", "Special protection scheme" should be stricken from this sentence, Florida has just a regional difference in its UFLS program.
No
The document does not discuss how the new reliability parameter will affect BAs

On R5, the wording should be changed from "absolute value is at least equal to" to "absolute value is greater than or equal to"

Brenda Powell

Constellation Energy Commodities Group
No
The Frequency Response Obligation has two components based on Attachment 1 - an Interconnection FRO and a BA FRO. The proposed definition captures only the BA FRO.

No

R1 should accommodate agreements between multiple BAs and RSGs in achieving the annual Frequency Response Measure. See proposed modification below: R1. Each Balancing Authority shall achieve an annual Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligations (FRO) to ensure that sufficient Frequency Response is provided by each BA. Either the Balancing Authority individual FRM, multiple Balancing Authority's FRM per written agreement, or the FRM of the Reserve Sharing Group must be equal to or more negative than the applicable Frequency Response Obligations (FRO) for a single Balancing Authority or the aggregate of multiple Balancing Authorities or RSGs. -In R2, "Each Balancing Authority not participating in Overlap Regulation Service" should state "Each Balancing Authority, not receiving Overlap Regulation, shall implement the appropriate Frequency Bias Setting (fixed or variable,) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control". -In R3, the explanatory language about why to operate in Tie Line Bias mode should be deleted. See proposed modification below: R3. Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area. -R5 should be modified to state only that the FBS is specified by the ERO in accordance with Attachment B. As drafted the Requirement is in conflict with Attachment B because the Requirement mandates a minimum and does not allow for a reduction to the minimum but it references Attachment B which is titled "Process for Adjusting Minimum Frequency Bias Setting". See proposed modification below: R5. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is as specified by the ERO in accordance with Attachment B. -There should be a Requirement specifically stating there is an obligation to complete and submit FRS Form 1 by January 10th each year for clarity. -The requirements should be reordered to reflect the chronology of the process for frequency calculation, implementation and performance measurement. The recommended order is as follows: R5 which defines the minimum Frequency Bias Setting (FBS) for a Balancing Authority R4 which describes how the minimum FBS may be altered through Overlap Regulation Service R2 which identifies the coordination required around implementation R3 which requires operation in Tie Line Bias mode R1 which establishes the performance obligation
Yes

No

Based on language modifications proposed to the Requirements, the measures should be revisited. No
The language in the VSLs for R1 should be revisited based on the proposed language modifications above and should also clearly look to the FRM of a BA, group of BAs or RSG against the BA FRO not an Interconnection FRO.

Yes

Additional information relating to defining the FRO for the Interconnection would be helpful as would an example for calculating the BA FRO.
Yes
Should be revisited based on the propposed modifications to the requirements.
No
Should be revisited based on the proposed modifications to the requirements.

by the ERO. On Frequency Response Obligation, first paragraph states that "Each Interconnection will establish target contingency protection criteria"; however, the Interconnection is not a decisionmaking body. Does this really mean the ERO will establish FRO for each Interconnection? The single asterisk note for the table on page 2 states: "It is extremely unlikely that an event elsewhere in the Eastern Interconnection would cause the Florida UFLS special protection scheme to "false trip".", "Special protection scheme" should be stricken from this sentence, Florida has just a regional difference in its UFLS program.

The document does not discuss how the new reliability parameter will affect BAs

On R5, the wording should be changed from "absolute value is at least equal to" to "absolute value is greater than or equal to"
Kirit Shah
Ameren
No
The Frequency Response Measure (FRM) definition should include which Entity(ies) it applies to, similar to the definition of the FRO.
No
R1. While we agree with the concept of the entire requirement and the determination of the Interconnection Frequency Response Obligation, we believe that the accurate measurement of individual BA's FRM has not yet been demonstrated. This requirement should not be part of the standard (even with the additional 12 months in the effective date) until the field trial demonstrates that each BA's FRM can be consistently calculated to a level that will not create false non-compliance to this requirement. While the calculation methodology in FRS Form 1 looks promising, with the Avalue and B-value average periods, we believe successful completion of the field trial is prudent. R5. We were not sure if it was intended for this comment question to include Requirement R5, but have decided to include our comments here. While we agree with the requirement of R5, it should not be at the expense of changing the value of L10 in BAL-001, R2, which has been accepted by FERC in Order 693. An accommodation should be made so that any changes to the Frequency Bias Setting according to BAL-003, R5, should not affect the value of L10 used in BAL-001, R2.
No
This is problematic since for a single BA interconnection these could be argued to be appropriate VRFs, but is different for a multiple BA interconnection, where the risk that a single BA would pose to the interconnection would be Lower.
Yes
With the understanding that any suggested changes to the proposed requirements would come with corresponding changes to their measure.
No
It is not clear how the VSL for R1 uses the "Summation of the BA's FRM", when the requirement is BA or RSG specific.
Yes

Yes

Yes
Considering the comments made regarding R5, in question 2, above, which are: R5. While we agree with the requirement of R5, it should not be at the expense of changing the value of L10 in BAL-001, R2, which has been accepted by FERC in Order 693. An accommodation should be made so that any changes to the Frequency Bias Setting according to BAL-003, R5, should not affect the value of L10 used in BAL-001, R2.
Yes
We aaree that the spreadsheet is meaninaful, but still needs to be vetted throuah the field trial
process, with improvements made based on experience in its use.
While we are in general support of this standard and its requirements we have concerns regarding the following: •The FRM methodology has not been fully vetted through the field trial process. •Adjusting the minimum of the Frequency Bias Setting, while an appropriate adjustment for AGC control in the ACE equation, should not be at the expense of L10 as used in BAL-001, R2. •The absence of any resource specific frequency response requirement in NERC standards is an issue that must be addressed somewhere. As the resource portfolio of our industry changes(expedited by recent EPA rulemaking), the resources used for traditional primary frequency response are becoming a lower percentage of the mix. New resources and existing resources that have not provided primary frequency response need to be incorporated into the available frequency response discussion Michael Brytowski
Great River Energy
Yes

No
R1: Including the Reserve Sharing Group (RSG) in the Frequency Response Obligation is outside of the boundaries of a RSG. Where or how would a Frequency Bias be determined for an RSG to determine their Frequency Response Obligation? Although it is apparent that frequency responds during the implementation of reserves, the intention of a RSG is not to share frequency response, but rather to share Reserves. Additionally, if the Frequency Response Obligation is not met by the RSG how are penalties assessed? Should they be assessed to the group as a whole or strictly to the generators that did not meet their individual obligation? R3: Needs to include verbiage for those circumstances when it would be necessary to run AGC out of TLB such as during necessary testing. The BA should have the option to operate out of TLB for a predetermined amount of time if needed when notification and coordination with the RC has been established.

Yes

Yes

No
The VSLs on for Requirement R1 set a previously un-established precedent of relying on the performance of other registered entities to establish the severity level of the violation. This is not appropriate. The VSLs should be rewritten to provide further gradations of the violation severity based on the BA's own performance
No
Under item 3 of the Event Selection Criteria section, the delta F and Point C should be described either in this attachment or the "Frequency Response Standard Background Document". While many in industry may understand what these terms mean, history has a way of getting lost with personnel turnover. Furthermore, this would help ensure that the auditors and industry have a duplicate understanding. In the Frequency Response Obligation section on page 2, several items require more description. Further description of why an $\mathrm{N}-2$ event was chosen for the Contingency Protection Criteria should be provided and which $\mathrm{N}-2$ event was selected so that industry can help validate if the correct MW value was selected. Furthermore, the document should clarify if the Contingency Protection Criteria contains the "safety margin". There is a statement in the paragraph before the table that states it does but then the table lists out a separate 25% "Safety Margin". Thus, it is not clear if the "Safety Margin" is included in the Contingency Protection Criteria value listed in the table or not. "Safety margin" should be changed to "reliability margin". Safety has a specific meaning in the electric industry and its use here is not appropriate. The Base Obligation should be explained. The explanation should include its purpose and origin.
No

We can find no document titled "BAL-003-1 Background Document". We assume this question is referring to the "Frequency Response Standard Background Document" dated October 2011. We do not believe the document provides sufficient clarity. No explanation is provided for why RSG was added to Requirement R1. There are typos contained in the document. On page 6 in NIA, the A should be in subscript. On page 7 in bullet 4 in the first sentence, "The" should be in lowercase Yes

Yes

The Data Retention section requires the BA to retain data or evidence for up to four years. No data that exceeds the audit cycle should be required to be retained. The audit cycle is three years. Si Truc PHAN
Hydro-Quebec TransEnergie
No
The FRM and FRO definitions should precise that it is expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$. As for the Frequency Bias Setting definition, as written, would apply only to a multiple BA Interconnection. In a single BA Interconnection, the Frequency Bias translates the frequency error into a MW value that must be dispatched to bring back Frequency to desired value. Since Tie Lines are not controlled through AGC, there is no response withdrawal issue
No
The objective of R2 is that all BA's implement their new Bias Setting at the same time, based on the previous year's data, so that control stays the most effective throughout the Interconnection (Tie-Line Bias). In addition, the new Bias will be in effect all year long. The process is quite simple and straightforward for a fixed Bias Setting. As for Variable Bias Setting, this process is not applicable before the fact since the Bias equation can depend on real-time values that are not known in advance. In addition, the simultaneous Bias implementation is not an issue for a single BA Interconnection. Therefore, we suggest that Requirement 2 applies only to Fixed Bias Setting. Yes

Yes

Yes

No
The Event Selection Criteria should be modified for the Quebec Interconnection. In Table 1, the change in frequency (Delta f) used for Quebec's Event Selection Criteria should be $0,3 \mathrm{~Hz}$ (from point " A " to point " C ") and must last for at least 7 seconds so that we don't measure AGC action. In addition, a criterion should be added by saying that events that recovered within the 20-52 second average period for point "B" should be excluded from analysis.
Yes

No
The methodology proposed to compute the Minimum Frequency Bias Setting (in MW/0,1Hz) could be adverse for the Quebec Interconnection. Hydro-Quebec uses a variable Bias that is calculated based upon which generator is online and it's droop setting. Under light load condition, we might have a Bias setting that would be under (in absolute value) than the FRM which is the median value, even though the Bias setting would reflect the grid's frequency response. This method, as proposed, would mandate us to have a larger Bias that what is really needed. Unlike Eastern Interconnection, we are not over biased. By implementing this new methodology, it would make us over biased. Having a too large Bias could lead to system instability, based on the results of studies from our control specialists. The Minimum Frequency Bias Setting should take into account the wide load span that we can face. For the variable bias, we could express the Minimum Frequency Bias Setting as a function of monthly peak loads, and remove the Natural Freauencv Response term. In addition, there is a aap between

Attachment B and the text in R5. See comment 10 for explanation.

Yes

There is a gap between R5, Attachment B and Form 1 next year's Bias Setting equation. Requirement 5 states that the average Frequency Bias shall be at least equal to the minimum percentage of BA's peak load or generation. In Attachment B and Form 1, the required Frequency Bias is the maximum (absolute value) between FRM, FRO and peak load+peak gen /2. As stated in comment 8, Hydro-
Quebec is not in favor of adding the FRM into the minimum Frequency Bias requirement, at least for Variable Bias Setting. Due to a good frequency response, this would lead us to have a too high AGC Bias and causing potential reliability problems. In other words, this would lead us to be over-biased, which would not be a good thing for a single BA Interconnection. For a Single BA Interconnection, performance measure CPS 1 tracks the performance of the variable Bias, which is enough to ensure reliability through the Interconnection. Hydro-Quebec therefore recommends the drafting team that Requirement 5 only applies to Multiple BA Interconnection. Another option is that Minimum Frequency Bias Setting could be expressed as a function of monthly peak loads, and remove the Natural Frequency Response term in the minimum Bias setting equation.

Greg Rowland

Duke Energy
No
Duke Energy would suggest removing "usually" from the Frequency Bias Setting definition, as the value in the ACE equation must be in terms of $\mathrm{MW} / 0.1 \mathrm{~Hz}$ in order for ACE to be correctly calculated. We apologize for missing this point in the last round of comments. Though some would argue that the last phrase of the definition is more of an explanation of a function rather than a definition, we support keeping the phrase inserted, as it should be recognized that the intent is to account for the frequency response contribution AND keep the FBS slightly larger (in magnitude) than the average estimated response, to better discourage withdrawal, which was also recognized by Nathan Cohn. Should the definition for Frequency Response Measure (FRM) be specific to the BA, similar to the definition for Frequency Response Obligation (FRO)?

No

Duke Energy supports the concept of a group of BAs forming a group to share in Frequency Response however it should be clear that it is an option. We feel that the utilization of the term, "Reserve Sharing Group", is not consistent with the definition in the NERC Glossary of Terms which is specific to sharing of contingency reserves, and should be replaced with a new term, such as "Frequency Response Sharing Group". R4 should clarify that a BA performing Overlap Regulation Service should still be required to operate its AGC in "Tie Line Bias" mode. Though comments are provided below on the Attachments, Duke Energy believes that all NERC Reliability Standards' requirements must reside within the standard itself (which is vetted by the Industry and subject to FERC approval), and not within Attachments that may be revised without Industry review and approval. As noted below and in prior comments, given the secondary control implications of changing the minimum Frequency Bias Setting (FBS), Duke Energy believes that subsequent revisions to the minimum FBS should be vetted through the Standards process. Duke Energy would suggest moving the details of the minimum FBS for each Interconnection into the Standard, and having the implementation plan include annual submittal of a revised minimum FBS based upon the methodology presented in Attachment B for ballot approval by the Industry.
Yes

No
See comments in Question 2 regarding utilization of the term "Reserve Sharing Group".
No
See comments in Question 2 regarding utilization of the term "Reserve Sharing Group".
No
On page 3 of the document it states "For a multiple Balancing Authority Interconnection, the Interconnection Frequency Response Obligation is allocated based upon either the Balancing Authority Peak Demand or peak generation", however, the initial FRO allocation equation shows that the BA
allocation is based upon the sum of the Projected BA Peak Load plus installed capacity, times the Interconnection FRO, and divided by the sum of the Projected Interconnection Peak Load plus Interconnection installed capacity. Is the statement in quotes correct, or is the allocation equation correct? In addition, the equation in Attachment A referencing "installed capacity" conflicts with the equation in the BAL-003-1 Background Document entitled "Frequency Response Standard Background Document" where "Peak Gen" is used. In summary, is the FRO allocation based upon an equation which a) sums the Projected BA Peak Load plus peak generation, b) sums the Projected BA Peak Load plus installed capacity, or c) uses either Projected BA Peak Load OR peak generation? All three options are currently represented in the documentation. Calculation of the FRO for the Eastern Interconnection: Duke Energy agrees with the criteria suggested for the event to be protected (4500 MW), and at this time also agrees with the "compromise" low limit of 59.6 Hz . However, knowing that another Standard is under development which may require hourly assessment of available "frequency responsive reserves", we are trying to determine what impact the choice of this methodology will have on the amount of frequency responsive reserves the industry will have to maintain - enough to cover frequency swings that only occasionally reach down to perhaps 59.9 Hz as we see on the Interconnection today (essentially the allocated FRO for a 0.1 Hz deviation), enough to cover a 4500 MW loss, or whatever we deem appropriate as long as we are compliant to the FRM? We recognize that the Standard Drafting Team cannot answer this question, as the Standard under development is not within the scope of this team, however our comment is meant to illustrate the point that similar to our response to question 8 , it should be recognized that elements of this Standard are tightly coupled to other current and potential Standards, and the impacts must be considered by the Industry.
No
Please see our comments to Question 6. In addition, Duke Energy disagrees with the statement on page 9 that Attachment B will "ensure there is no negative impact on other Standards" - please see our response to Question 8 for additional information.

No

Duke Energy suggests that the SDT consider a term other than "Initial' in the title for Table 1. We suggest "Proposed Frequency Bias Setting" for Table 1. Notwithstanding our suggestion that the criteria/requirements of the minimum FBS in the Attachment be incorporated into the Standard, Duke Energy has the following concerns with what is proposed: As cited in our comments to Question 8 in the last posting (extensive, so not repeated here), the secondary control measures of CPS1, CPS2 and the draft Balancing Authority ACE Limit (BAAL) are tightly coupled to the Frequency Bias Setting (FBS), and a reduction of the FBS will impact the secondary control requirements placed upon the BA. Noted in our response to Question 7 above, the statement on page 9 in the "BAL-003-1 Background Document"is not correct in stating that Attachment B will "ensure there is no negative impact on other Standards". The gradual reduction of the FBS will proportionally tighten the secondary control limits for each Balancing Authority. Even if the "natural" Frequency Response in the Eastern Interconnection remains unchanged for the next several years, under the process described allowing the ERO to annually adjust the minimum FBS for the Interconnection, the FBS will eventually be reduced to a value approximately 10% above the calculated response in magnitude, cutting the current CPS1, CPS2 and BAAL limits in the Eastern Interconnection on average by more than half. The current FBS for the Eastern Interconnection is approximately minus $6500 \mathrm{MW} / 0.1 \mathrm{~Hz}$, estimated "natural" Frequency Response is perhaps around minus $2400 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Unlike CPS 1 and BAAL where the measures are based upon the FBS of the BA only, CPS2 (dependent upon the FBS of the BA and the Interconnection) will be significantly limiting to the degree that no change in a BA's own Frequency Response could significantly change its CPS2 limit if the Interconnection FBS drops over time as indicated. At least under CPS1 and the draft BAAL, the BA would have an option of improving its Frequency Response, allowing it to increase its FBS and proportionally the CPS1 and BAAL bounds using the FBS. Conclusion from our last comments submitted: Duke Energy does not believe there is a reliability need pushing the industry to tighten secondary control to the degree discussed above simply as a result of reducing the Frequency Bias Setting. If the calculated Frequency Response of the Interconnection stayed at its current level, what would be the justification for tightening the secondary control requirements of CPS1, CPS2 and the proposed BAAL? Duke Energy supports taking more of the error out of the ACE equation by having the FBS closer to the estimated Frequency Response of the Balancing Authority, however, Duke Energy does not believe the result should be a significant increase in secondary control costs to meet the CPS1, CPS2, or draft BAAL requirements. Duke Energy understands the position placed upon this Standard Drafting Team- the secondary
control and reserve requirements are not under the scope of the team, however, proper consideration has not been given in Attachment B to the impact lowering the FBS will have on the industry in terms of the requirements placed upon the BA for secondary control and reserve requirements - especially for meeting CPS2. The research discussed in our comments to the last posting support that reducing the FBS while under CPS1 and the draft BAAL may be achievable, however a CPS2 bound cut potentially in half or lower will place unreasonable bounds on a BA, requiring control actions even when the BA may be operating in support of the Interconnection frequency. Given the significant impacts discussed, Duke Energy believes that additional provisions must be in place for the Industry to approve each subsequent revision to the calculation of the minimum Frequency Bias Setting, rather than leave it as a decision made only by the ERO.
Yes
Duke Energy appreciates the significant work of the Standard Drafting Team in putting together the draft Standard and extensive supporting documentation. Upon further consideration of the comments above, Duke Energy has concluded that the work of this Standard Drafting Team and that of the Balancing Authority Reliability-Based Control Standard Drafting Team under Project 2010-14 developing the Balancing Authority ACE Limit to replace CPS2, need to presented to the Industry as a package - there is too much at stake to have one Standard impact other Standards to this degree. Done in a vacuum the Industry is faced with the possibility of secondary control bounds being cut in half or more, though there is no reliability need driving such performance requirements. Thank you. ISO/RTO Council Standards Review Committee
Al DiCaprio
No
(1) In our previous comments, we suggested to drop the definitions for the terms FRM and FRO in favor of providing the needed wording in the standard itself to take care of the specific details. The SDT did not adopt our suggestion with the reason that these definitions will be used by other standards in the future. That's fair enough. However, the FRM definition: "The median of all the Frequency Response observations reported annually on FRS Form $1^{\prime \prime}$ is problematic. It references an FRS Form 1 which is not included in the definition itself but is in fact an Attachment to a standard. In the current NERC Glossary of Terms, there is no such precedence that a definition must rely on the requirements or details in a standard for completeness. Also, it is very cumbersome that when changes are made to FRS Form 1, the definition must be posted for industry comment and balloting, and vice versa. When other standards begin using the term, there will be cross references between standards. This further complicates the update/approval process without any appreciable value. Once again, we strongly urge the SDT to consider dropping these definitions, and have the details fully specified in the standard body itself. This will eliminate that cross reference issue. After all, the definition for FRM is a simple sentence and does not provide any clarity or specific details that cannot be presented by using appropriate wording in a requirement. (2) The definition of Frequency Bias Setting, if retained, should focus on what it is. Balancing Authorities do not supply energy. We suggest to revise it to: Frequency Bias Setting A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's (BA's) Area Control Error (ACE) equation to approximate the expected natural response provided by the assets within the respective Balancing Authority's area.
No
General Comments The SRC offers the following general comment with regard to the SDT's proposed revisions: Gerry Cauley's Results based initiative calls for requirements that focus on performance (i.e. WHAT must be accomplished NOT on WHY it is required or HOW it should be accomplished). The SRC has found that such explanatory statements as the SDT is proposing lead to ambiguities and confusion in the compliance application. Compliance Enforcement agents must consider not just the results but must decide if the action was taken for the given reason. To avoid such confusion, the Results based approach uses reference documents to address such background material while leaving the requirement as a direct mandate. The SRC notes: - All NERC Reliability Standards' requirements must reside within the standard itself (which is vetted by the Industry and subject to FERC approval). - Data requirements are better handled through NERC's Rules of Procedure Section 1600 than by mandating that ad hoc Forms be submitted. - Definitions should be generic, and should be selfcontained (i.e. should not reference an external document). - The decisions reardina alternative
methodologies should be decided by the Industry not by the SDT. The SDT should make its case and ask the Industry for its approval. Regarding Order 693 directives, the SRC notes that there are three directives as follows: (1) To include Levels of Non-Compliance; (2) To determine the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other requirements of the Reliability Standard are being met, and to modify Measure M1 based on that determination and (3) To define the necessary amount of Frequency Response needed for Reliable Operation for each balancing authority with methods of obtaining and measuring that the frequency response is achieved. The SRC suggests that Directive 2 be handled directly as a mandate that the ERO conduct a fixed number of Frequency Response Surveys for randomly selected events. Discussion of the number and the methodology can be explained in a reference document and leave the specifics to the requirement. Directive 3 is critical to the Industry as it relates to who is the Applicable Entity.
The SDT addresses Directive 3 by mandating Balancing Authorities meet an objective. The directive is to define that Objective, but there is no requirement associated with that Objective. There is an attachment and there are discussions of what "may" be done, but there is no requirement in the Standard itself. The reference to the BA as the provider of Frequency Response (i.e. Primary Control response) runs counter to other FERC directives that mandate obligated entities be able to self-serve or to interchange provision of services. In this case the BA per se has no assets and cannot selfserve, moreover the primary response service providers have no obligations to provide the service, thus the BA potentially could face a situation where there is no physical service to be purchased but there is a federally mandated standard to comply with. The idea of creating a Primary Response Market as some have proposed does not work without an obligation on some entity to physically provide that service. One final note, the SRC points out that the ACE is an error signal used to drive secondary response; it is not a signal to drive primary response. Thus the use of the Frequency Bias setting is not for control, it is for "adjusting" the error measure that is analyzed after the fact. This standard needs: • a requirement on the ERO to compute the Obligation on each Interconnection • a requirement on the ERO to conduct Frequency Response surveys (note the SRC does not support this requirement but believes that it is needed to meet the FERC directive) • a requirement on energy supply assets (both generation and load) to provide primary response (as a function of the Interconnection obligation in the first bullet) The above will allow NERC to comply with the FERC directives in a fashion consistent with the processes and procedures approved by FERC. Specific recommendations: The SRC proposes that R1 be deleted based on the facts that: - It imposes an obligation on an entity that has no capability to comply • There is an internal conflict with imposing penalties on a deterministic basis (compliance with a fixed set of events) for a statistical service (primary response is a function of the assets operating state and not a fixed service of the asset). In any case, all of the words after FRO should be deleted. The words are not needed for the requirement and if left in can become a source of contention between auditors and registered entities. R3-delete the added phrase "mode to effectively coordinate control". The phrase "would have an Adverse Impact on the BA's area" needs further discussion. Who makes the decision that operating on AGC will have adverse impact must be defined. R5 - delete the phrase "In order to ensure control response". Such phrases can be needless causes of debate. If a BA uses one of the bulleted methods but does not get "adequate response" then is the BA non-compliant? What is "adequate response"? Who decides if the response is adequate?
Yes

No
M1: The measure should not be tied to a specific Form. If a BA has the evidence but does not provide it on a given Form, how is the reliability of the Power System impacted? The Form may be the format of choice but it should not be an implied requirement. M4: This measure does not read quite right. Something seems to be missing in the part that says: "..showing when Overlap Regulation Service is provided including Frequency Bias Setting calculation to demonstrate compliance with Requirement R4." This part might have read something like: ". .showing that when it performed Overlap Regulation Service, it modified its Frequency Bias Setting in its ACE calculation or it calculated the Frequency Bias Setting meeting the conditions specified in Requirement R4."

We do not have any issues with the VSLs, but wonder if the wording for R1 should have been ".. Reserve Sharing Group's...". Alternatively, the wording after "interconnection's FRO" could be revised to: "...and the Balancing Authority's or the Reserve Sharing Group's FRM was..."

No
Despite the SDT's good faith effort to convert the previous Attachment A into two separate documents (Attachments A and B), the modified Attachment A is problematic. As many commenters indicated, the previous Attachment A, other than the section providing guidance on event selection, appears to be explanatory, contextual, and instructional in content. These aspects are important, but do not rise up to the level of requirements to drive reliability performance/outcome. Attachment A should include only the event selection process and calculations associated with the requirements, including an explanation of what is necessary if variable Frequency Bias Settings are implemented. If other "requirements" need to be specified, such as the reporting time frame stipulated on P. 3 of Attachment A, they should be moved to the standard itself but not imbedded in an attachment. We suggest that the SDT first determine if the materials in the revised Attachment A (and Attachment B) are "Guideline" or Technical Background", or are they "requirements". If it is the former, then Requirement R1 should not mention Attachment A at all. If it is the latter, then the as-written Attachment A is a mix bag as it on the one hand describes the ERO's process for supporting the Frequency Response Standard (FRS), in other words, the method and criteria it uses to calculate the frequency bias settings and the FRM, and on the other hand the BA's obligations to support this process. We strongly disagree that the latter requirements be imbedded in an attachment, especially one that is supposed to provide the technical background and guideline for another entity which is not held responsible for complying with the proposed method. Further, there are no measures provided for the requirements stipulated/imbedded in Attachment A so how can the Responsible Entity (BA, in this case) be assessed for compliance? We suggest the SDT move those requirements on the BA to the main standard, and turn Attachment A into an appendix describing the calculation process. An appendix is not regarded as a mandatory requirement. Similar comments apply to Attachment B. Moreover, if the Attachments are to be integral to the standards, the terminology "may" must be replaced with "shall". Finally, the two Attachments are listed in Section F - Associated Documents. This Section is generally used to list reference documents that are NOT standard requirements. We suggest the SDT review and revise this listing depending on its final determination of the status of the two Attachments (or their revisions, where appropriate).
We do not have an opinion on whether or not the Background Document provides sufficient clarity to the development of the standard. We do, however, suggest that the SDT consider our comments in Q6, above, and move some of the information from Attachments A and B to or combine with the Background Document, to the Background Document to provide all the technical basis and background behind the elements stipulated in the requirements.
No
Please see our comments under Q6. In brief, we do not agree with including a process description type of document as part of the standard requirement. Process description should be regarded guideline document and not a part of the standard requirement.

No

If we are not mistaken, Form 2 is added as the last sheet in the Form 1 spreadsheet file. Apart from that, however, there are other sheets added to the previous Form 1. But this Comment form makes no mention of the changes, nor is there a question in the Comment Form asking whether the additional information should be requested. We believe this is a significant change to the standard and many commenters may have missed the opportunity to comment on it. Compared to the previous version, Form 1 has been significantly expanded to include not only additional sheets but much more comprehensive data requirements even on the Data Entry sheet itself. This makes data submission a very time-consuming task but the justification for requiring detailed data entry has not been provided. We question the need for such expansion on data entry requirements. We have yet to see the reason for expanding Form 1 in assisting a BA to provide the data needed to comply with the standard, hence we do not see how adding a Form 2 can help in that regard. We suggest the SDT to keep data requirements to only what is minimally needed to support the FRS reporting process. Where the SDT deems additional data entry sheets to be necessary, it should provide the rationale for expanding from a 2 sheet form into a multiple sheet form for additional data collection. Where the SDT deems the additional data sheet or information not necessary to support FRS reporting, then we suggest the SDT to hide those pages not required for the standard so as to avoid confusion, and/or to remove those analytical pages not directly used in the standard.
Finally, we ask the SDT to clarify what the primary purpose of this standard is. If it is to respond to Order 693 then the standard misses the point of definina how often to run Freauencv Response

Surveys; it does not crisply define the "Interconnection" obligations. If the SDT wants to focus on AGC (which it seems to try to do) then the focus should be on the equations and variables and not on the response performance. If the SDT does want to focus on performance then the issue of who is the default provider must be addressed. As the SRC has noted previously, BAs do not own any generating facilities or service providers. To create standards that apply to entities that are completely dependent on other functional entities (facility owners or service providers) to comply with a requirement is simply improper. The Industry structure has changed but these requirements have not and still assume old industry relationships between BAs and GOs. This issue of who needs to be held responsible for performing the required reliability tasks and services/products must be explicitly cited in the standards and posted for the industry to debate and decide.
ACES Power Marketing Standards Collaborators Jason L. Marshall
Yes
No
Requirement 1 should not apply to a Reserve Sharing Group. Reserve Sharing Groups (RSG) are designed to share Contingency Reserves and/or Operating Reserves not Frequency Response. While these reserves may be frequency responsive, they are not being shared for the purpose of expanding frequency response. Furthermore, while reserve sharing groups may calculate a joint ACE by summing its individual BA ACE values, RSGs do not have a Frequency Bias Setting which is necessary to assess a Frequency Response Obligation.

The VSLs on for Requirement R1 set a previously un-established precedent of relying on the performance of other registered entities to establish the severity level of the violation. This is not appropriate. The VSLs should be rewritten to provide further gradations of the violation severity based on the BA's own performance.
No
Under item 3 of the Event Selection Criteria section, the delta F and Point C should be described either in this attachment or the "Frequency Response Standard Background Document". While many in industry may understand what these terms mean, history has a way of getting lost with personnel turnover. Furthermore, this would help ensure that the auditors and industry have a duplicate understanding. In the Frequency Response Obligation section on page 2, several items require more description. Further description of why an $\mathrm{N}-2$ event was chosen for the Contingency Protection Criteria should be provided and which N-2 event was selected so that industry can help validate if the correct MW value was selected. Furthermore, the document should clarify if the Contingency Protection Criteria contains the "safety margin". There is a statement in the paragraph before the table that states it does but then the table lists out a separate 25% "Safety Margin". Thus, it is not clear if the "Safety Margin" is included in the Contingency Protection Criteria value listed in the table or not. "Safety margin" should be changed to "reliability margin". Safety has a specific meaning in the electric industry and its use here is not appropriate. The Base Obligation should be explained. The explanation should include its purpose and origin.
No
We can find no document titled "BAL-003-1 Background Document". We assume this question is referring to the "Frequency Response Standard Background Document" dated October 2011. We do not believe the document provides sufficient clarity. No explanation is provided for why RSG was added to Requirement R1. There are typos contained in the document. On page 6 in NIA, the A should be in subscript. On page 7 in bullet 4 in the first sentence, "The" should be in lowercase.
Yes

The Data Retention section requires the BA to retain data or evidence for up to four years. No data that exceeds the audit cycle should be required to be retained. The audit cycle is three years.

Robert Blohm

Keen Resources Asia Ltd.
No
In the Standard, the definition of Frequency Response Measure (FRM) is statistically wrong. The median is an improper statistical measure of Frequency Response because --it truncates large excursions which are the specific subject of Frequency Response control, not normal operating frequency errors which are self-correcting and are the subject of CPM control; --it is non-linear; and therefore --it is non-summable over the interconnection; in other words, the individual BA medians don't add up to the interconnection median, in complete incompatibility with CPM control which requires summability of BA performances into the interconnection's performance. Moreover, it is mathematically impossible to sum the medians of the BAs in a Reserve Sharing Group (RSG) into the RSG's median: in other words, the RSG's median cannot represent the sum of the medians of its members. The last paragraph on page 5 of the Background Document is patently wrong, invented, and supported in no probability \& statistics literature whatsoever. As a practicing statistician, I hereby give testimony to the utter falsehood of the statement that "In general, statisticians use the median as the best measure of central tendency when a population has outliers." (See http://www.robertblohm.com/BestStatistic.doc for an explanation of "best statistic" which is a highly technical and central topic in modern probability theory and statistics.) Also, "outliers" are falsely and rhetorically claimed to be "noise" when in fact they are the "events" that are the specific subject of Frequency Response. It is well known that they do not "fit" a normal distribution. They are distinct from the normal operating errors that are the subject of CPM control. The paragraph does correctly conclude that the linear regression more accurately incorporates outliers than the median does, although the paragraph uses rhetoric by calling this improvement "skew" as if it is distortionary when, in fact, the median distorts the reality.
Yes

Yes

Yes

Yes

No
The sample pre-selection described in Attachment A, Event Selection, Criteria 2 \& 7, violates the fundamental statistical procedure of unbiased sampling. A population is governed by a single "process" which, when stationary, is represented by a fixed probability distribution. In this case the population is several years of events (which are the subject of Frequency Response), not of normal operating control errors which are the subject of CPM control. A sample is governed by a single process that approximates the process governing the population as the sample gets larger, in this case if it includes several years of data. Samples are measured "as they come", no triage/filtering allowed, and they are called "stratified" when their distribution approximates the population distribution. Unlike normal operating errors, samples of events are not evenly distributed over a year. The attempt in criteria $2 \& 7$ to pre-select only certain events, and not others, in such a way that the selected events occur evenly throughout the year, is papently wrong because it is trying to "fit" events into a process (even distribution over time) that does not govern events, but that instead governs normal operating errors that are the subject of CPM control, not of this Frequency Response standard. In other words, criteria $2 \& 7$ confuse Frequency Response with CPM, and events with normal operating errors. The result is a false, biased sample which destroys the integrity of this standard. Paragraph 4 on page 5 of the Background Document, on the other hand, provides a statistically correct description of event selection without sample pre-selection and should followed instead of the erroneous criteria $2 \& 7$ in Attachment A.
Yes
Paraaraph 4 on page 5 of the Backaround Document provides a statisticallv correct description of
event selection without sample pre-selection and should followed instead of the erroneous criteria 2 \& 7 in Attachment A. The risk-based approach to determining FRM, that the Background Document mentions in paragraph 4 of page 4 is being evaluated by the drafting team for application in this standard, should be considered for deployment as soon as possible to replace the administered method currently proposed in this standard, because the administered method lacks any technical justification. No such justification was ever attempted in the development of this standard. The administrative method of determining FRM is therefore but a highly dubious "quick fix" until the riskbased method is evaluated and implemented. The administrative method is in fact perverse because it discourages BAs from reducing their contribution to frequency error by refusing to reduce the BA's FRO accordingly, and because it encourages BAs to contribute to frequency error without increasing their FRO.
Yes

Yes

As a qualified professional statistician I attest that this standard commits two violations of fundamental statistical best practices: use of a median, and biased sample-preselection, as detailed in my answers to questions 1 and 6.
Sacramento Municipal Utility District (SMUD)
J oe Tarantino

No
As drafted, requirement R1 requires Balancing Authorities or Reserve Sharing Groups (RSGs) to achieve an annual Frequency Response Measure (FRM) that is equal to or more negative than its Frequency Response Obligation (FRO). As RSGs exist today, FRM performance by an RSG is not contemplated in the definition of FRM and appears to apply more towards 'secondary response'. Recommend clarifying this concept and possibly including an example in the background document to help explain how this would work. As drafted, in requirement R3, each Balancing Authority not receiving Overlap Regulation Service to operate its AGC in Tie Line Bias mode... unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area. There may be occasions in which an entity needs to perform testing or other instances where it is necessary or desirable to operate in a mode other than Tie Line Bias that does not qualify as an Adverse Reliability Impact, but never the less is necessary or desired. Recommend including language that would permit operation other than Tie Line Bias mode provided the Reliability Coordinator was notified. We seek clarification from the drafting team as to whether or not there will be any conflicts between proposed Requirement R3 and the requirements of FERC-approved regional reliability standard BAL-004-WECC-1 - Automatic Time Error Correction.

No

The standard is unclear as to if there is an upper limit to the amount of frequency response expected of the Balancing Authorities under this standard. Except for Table 2 in Attachment A, there is no discussion of an amount of Frequency Response expected on a total basis. Balancing Authorities need to know for how many tenths of a hertz they are to respond so they can determine how to plan to meet this requirement. The documents do not appear to provide any boundary on the maximum amount of Frequency Response that a BA will provide, i.e. it is not clear what will happen if an event occurs in the Eastern Interconnection that causes the frequency to drop to less than 59.6 Hz or in the Western Interconnection that causes the frequency to drop to less than 59.5 Hz , or if that event is excluded from the list used to calculate the Balancing Authorities' response or is it included with an expectation that it counts the same as any other event. Without a clear statement of what is expected, including whether there is a limit on that expectation or not, it is unclear what is expected of the Balancing Authorities.

[^57]NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Consideration of Comments

Project 2007-12 Frequency Response

The Frequency Response Drafting Team thanks all commenters who submitted comments on the first formal posting for Project 2007-12 Frequency Response. This standard was posted for a 45-day public comment period from October 25, 2011 through December 9, 2011. Stakeholders were asked to provide feedback on the standard and associated documents through a special electronic comment form. There were 43 sets of comments, including comments from approximately 133 different people from approximately 86 companies representing all 10 of the Industry Segments as shown in the table on the following pages.

Based on the comments received and the drafting team's discussion of those comments, the drafting team made the following changes to the proposed Standard, definitions, and associated documents:

- Modified the definition for Frequency Response Measure (FRM)
- Modified the definition of Frequency Bias Setting
- Removed the references to Reserve Sharing Groups (RSGs) and replaced them with Frequency Response Sharing Group
- Created a definition for Frequency Response Sharing Group (FRSG)
- Modified Requirement R2 to provide clarity and incorporate Requirement R5
- Created a new Requirement R3 for entities using variable Frequency Bias
- Removed the requirement for operating in Tie Line Bias mode as duplicative of other requirements in other standards
- Removed Requirement R5 and combined it into revised Requirement R2 and new Requirement R3
- Modified Attachment A to provide additional clarity
- Created a Procedure to provide instructions for the ERO to follow in supporting the standard
- Made conforming changes to Measures, Evidence Retention, and VSLs to align with language in the revised requirements
- Re-wrote the Background Document to incorporate additional language for justification of requirements and provide additional clarity
- The SDT is now using the method detailed in the Frequency Response Initiative Report dated September 30, 2012 to calculate the Interconnection Frequency Response Obligation.

There were some minority issues that the team was unable to resolve, including the following:

- A few stakeholders questioned a Requirement for the BA to provide Frequency Response when they typically do not own generation. The SDT explained that the NERC Functional Model and FERC cited the BA as the responsible party for providing Frequency Response and that this was outside the scope of the industry approved SAR. The SDT also stated that there were several different methods available to the BA to provide Frequency Response and that the SDT had included these in the Background Document. The SDT further stated that any entity could submit a SAR addressing this issue to the SC for consideration and that the SDT supported this option.
- A couple of the commenters felt that the median was not the proper method to use for the calculation of the FRM and that the RSG was not fully explained. The SDT stated that the statisticians note that the median is a more accurate measure of central tendency than the mean when analyzing a sample that is small and or where scores vary widely. This is the case when estimating a BA's Frequency Response. The SDT also noted that while the median was not perfect, the median approaches a BA's typical performance after $15-20$ observations and that more observations give a higher confidence in the estimate of the BA's performance.
- Some commenters disagreed with proceeding through development of the standard before the proposed measures have been thoroughly field tested. The SDT stated that it was responding to FERC Directives from Order 693 as well as the FERC Order dated March 18, 2010 which mandated development of a standard addressing the Order 693 directives within six months. FERC later granted an extension to provide a standard addressing these issues by the end of May 2012.

All comments submitted may be reviewed in their original format on the standard's project page:

http://www.nerc.com/filez/standards/Frequency Response.html

If you feel that your comment has been overlooked, please let us know immediately. Our goal is to give every comment serious consideration in this process! If you feel there has been an error or omission, you can contact the Vice President and Director of Standards, Mark Lauby, at 404-446-2560 or at mark.lauby@nerc.net. In addition, there is a NERC Reliability Standards Appeals Process. ${ }^{1}$

[^58]
Index to Questions, Comments, and Responses

1. The SDT has made minor modifications to the proposed definitions to provide additional clarity. Do you agree that these modifications provide sufficient clarity? If not, please explain in the comment area.10
2. The SDT has made minor modifications to the Requirements R1 through R4 to provide additional clarity. Do you agree that these modifications provide sufficient clarity to comply with the standard? If not, please explain in the comment area. 28
3. The SDT has developed VRFs for the proposed Requirements within this standard. Do you agree
that these VRFs are appropriately set? If not, please explain in the comment area. 82
4. The SDT has developed Measures for the proposed Requirements within this standard. Do you agree with the proposed Measures in this standard? If not, please explain in the comment area. 86
5. The SDT has developed VSLs for the proposed Requirements within this standard. Do you agree
with these VSLs? If not, please explain in the comment area. ... 93
6. The SDT divided the previously posted "Attachment A - Background Document" into two documents to provide additional clarity. The first document "Attachment A- Supporting Document" which details the methods used to develop the events to be analyzed, the FRO, FRM and Frequency Bias Setting. Do you agree that the revised Attachment A - Supporting Document provides sufficient clarity on the methodologies to be used? If not, please explain in the comment area 113
7. The SDT has developed a new document titled Attachment B - Process for Adjusting Bias Setting Floor. This document is intended to provide the methodology the ERO will use to reduce the minimum Frequency Bias Setting to become closer to natural Frequency Response. Do you agree that this document provides clear and concise instructions for the ERO to follow? If not, please explain in the comment area. 161
8. The SDT has provided an additional spreadsheet, FRS Form 2, to assist the Balancing Authority in providing the data needed to comply with the proposed standard. Do you agree that this spreadsheet is useful and the instructions are meaningful? If not, please explain in the comment area. 174
9. Please provide any other comments (that you have not already provided in response to the questions above) that you have on the draft standard BAL-003-1.184

NERC

The Industry Segments are:

1 - Transmission Owners
2 - RTOs, ISOs
3 - Load-serving Entities
4 - Transmission-dependent Utilities
5 - Electric Generators
6 - Electricity Brokers, Aggregators, and Marketers
7 - Large Electricity End Users
8 - Small Electricity End Users
9 - Federal, State, Provincial Regulatory or other Government Entities
10 - Regional Reliability Organizations, Regional Entities

Group/Individual	Commenter	Organization			Registered Ballot Body Segment									
					1	2	3	4	5	6	7	8	9	10
5. Cathy Bretz	IID	WECC 6												
3. Group	Guy Zito	Northeast Power Coordinating Council												X
Additional Member	Additional Organization		Region Segment Selection											
1. Alan Adamson	New York State Reliability Council, LLC		NPCC											
2. Greg Campoli	New York Independent System Operator		NPCC											
3. Sylvain Clermont	Hydro-Quebec TransEnergie		NPCC	1										
4. Chris de Graffenried	Consolidated Edison Co. of New York, Inc.		NPCC	1										
5. Gerry Dunbar	Northeast Power Coordinating Council		NPCC	10										
6. Brian Evans-Mongeon	U Utility Services		NPCC	8										
7. Mike Garton	Dominion Resources Services, Inc.		NPCC	5										
8. Kathleen Goodman	ISO - New England		NPCC	2										
9. Chantel Haswell	FPL Group, Inc.		NPCC	5										
10. David Kiguel	Nydro One Networks Inc.		NPCC	1										
11. Michael R. Lombardi	Northeast Utilities		NPCC	1										
12. Randy MacDonald	New Brunswick Power Transmission		NPCC	9										
13. Bruce Metruck	New York Power Authority		NPCC	6										
14. Lee Pedowicz	Northeast Power Coordinating Council		NPCC	10										
15. Robert Pellegrini	The United Illuminating Company		NPCC	1										
16. Si-Truc Phan	Hydro-Quebec TransEnergie		NPCC	1										
17. David Ramkalawan	Ontario Power Generation, Inc.		NPCC	5										
18. Saurabh Saksena	National Grid		NPCC											
19. Michael Schiavone	National Grid		NPCC	1										
20. Wayne Sipperly	New York Power Authority		NPCC	5										
21. Tina Teng	Independent Electricity System Operator		NPCC											
22. Donald Weaver	Neqw Brunswick System Operator		NPCC											
23. Ben Wu	Orange and Rockland Utilities		NPCC											
24. Peter Yost	Consolidated Edison Co. of New York, Inc. NPCC 3													
4. Group	Will Smith	MRO NSRF												X
Additional Member	Additional Organization Region Segment Selection													
1. MAHMOOD SAFI	OPPD	MRO 1, 3, 5, 6												
2. CHUCK LAWRENCE	ATC	MRO 1												

Group/Individual		Commenter	Organization	Registered Ballot Body Segment									
				1	2	3	4	5	6	7	8	9	10
26.	Individual	Dennis Sismaet	Seattle City Light	X		X	X	X	X				
27.	Individual	Michael Falvo	Independent Electricity System Operator		X								
28.	Individual	John Bussman	Associated Electric Cooperative Inc	X		X		X	X				
29.	Individual	Rich Salgo	NV Energy	X		X		X					
30.	Individual	Thad Ness	American Electric Power	X		X		X	X				
31.	Individual	RoLynda Shumpert	South Carolina Electric and Gas	X		X		X	X				
32.	Individual	Louis C. Guidry	Cleco Corporation	X		X		X	X				
33.	Individual	H. Steven Myers	ERCOT		X								
34.	Individual	Kasia Mihalchuk	Manitoba Hydro	X		X		X	X				
35.	Individual	Curtis Crews	Texas Reliability Entity										X
36.	Individual	Mark B Thompson	Alberta Electric System Operator		X								
37.	Individual	Anthony Jablonski	ReliabilityFirst										X
38.	Individual	Brenda Powell	Constellation Energy Commodities Group						X				
39.	Individual	Kirit Shah	Ameren	X		X		X	X				
40.	Individual	Michael Brytowski	Great River Energy	X		X		X	X				
41.	Individual	Si Truc PHAN	Hydro-Quebec TransEnergie	X									
42.	Individual	Greg Rowland	Duke Energy	X		X		X	X				
43.	Individual	Robert Blohm	Keen Resources Asia Ltd.								X		

1. The SDT has made minor modifications to the proposed definitions to provide additional clarity. Do you agree that these modifications provide sufficient clarity? If not, please explain in the comment area.

Summary Consideration: The majority of the commenters felt that the SDT should use the term "prevent" instead of "discourage" in the definition of FRM. The SDT explained that it did not want to use the word "prevent" since the SDT believes that the word would imply that you could stop withdrawal. The SDT does not believe that you can totally stop the withdrawal but you can discourage it.

Many of the commenters did not agree with requiring the BA to provide Frequency Response. The NERC Functional Model and FERC cite the BA as the responsible party for providing Frequency Response. There are several different methods available to the BA to provide Frequency Response and these are included in the Background Document.

A couple of the commenters felt that the median was not the proper method to use for the calculation of the FRM and that the RSG was not fully explained. Statisticians note that the median is a more accurate measure of central tendency than the mean when analyzing a sample that is small and or where scores vary widely. This is the case when estimating a BA's Frequency Response. While the median is not perfect, the median approaches a BA's typical performance after 15-20 observations and more observations give a higher confidence in the estimate of the BA's performance.

Some commenters had concerns about the use of the RSG as a means to provide Frequency Response, and in response the SDT modified the Background Document to further explain how an RSG (now FRSG) could be used to supply Frequency Response. The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."

Organization	Yes or No	Question 1 Comment
Seattle City Light	Negative	Answer: No. Comments: LADWP and SCL recommend the following change to the definition of Frequency Bias Setting. LADWP believes that this change increases the clarity of the definition:
Original A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the		

Organization	Yes or No	Question 1 Comment

| Organization | Yes or No | Question 1 Comment |
| :--- | :---: | :--- | :--- |
| outweigh the effort and cost.
 Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a
 need for a generator performance obligation, they are encouraged to submit a SAR to that effect.
 The SDT also believes that the definition you have suggested is basically saying the same thing as the definition the SDT has
 chosen to use. | | |
| Potomac Electric Power Co. | Negative | The proposed new Definitions do not stand alone and are also linked to
 Attachments. |
| Response: The SDT has modified the definitions to no longer reference any other documents. | | |

| Organization | Yes or No | Question 1 Comment |
| :--- | :--- | :--- | :--- |

| Organization | Yes or No | Question 1 Comment |
| :--- | :---: | :--- | :--- |$|$| chosen to use. | No | Duke Energy would suggest removing "usually" from the Frequency Bias
 Setting definition, as the value in the ACE equation must be in terms of
 MW/0.1Hz in order for ACE to be correctly calculated. We apologize for
 missing this point in the last round of comments. Though some would argue
 that the last phrase of the definition is more of an explanation of a function
 rather than a definition, we support keeping the phrase inserted, as it
 should be recognized that the intent is to account for the frequency
 response contribution AND keep the FBS slightly larger (in magnitude) than
 the average estimated response, to better discourage withdrawal, which
 was also recognized by Nathan Cohn.
 Should the definition for Frequency Response Measure (FRM) be specific to
 the BA, similar to the definition for Frequency Response Obligation (FRO)? |
| :--- | :--- | :--- | :--- |

| Organization | Yes or No | Question 1 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l}definition must rely on the requirements or details in a standard for

completeness. Also, it is very cumbersome that when changes are made to

FRS Form 1, the definition must be posted for industry comment and

balloting, and vice versa. When other standards begin using the term, there

will be cross references between standards. This further complicates the

update/maintenance problem without any appreciable value.

Once again, we strongly urge the SDT to consider dropping these definitions,

and have the details fully specified in the standard body. This will eliminate

the cross reference issues. After all, the definition for FRM is a simple

sentence and does not provide any clarity or specific details that cannot be

addressed by providing the appropriate wording in a requirement.

With this cross-reference issue, combined with the issues associated with

Attachments A and B (see our comments under Q6, below), we are unable

to support this standard at this time.\end{array}\right.\right\}\)

| Organization | Yes or No | Question 1 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l}in other words, the RSG's median cannot represent the sum of the medians

of its members.The last paragraph on page 5 of the Background Document

is patently wrong, invented, and supported in no probability \& statistics

literature whatsoever. As a practicing statistician, I hereby give testimony to

the utter falsehood of the statement that "In general, statisticians use the

median as the best measure of central tendency when a population has

outliers." (See http://www.robertblohm.com/BestStatistic.doc for an

explanation of "best statistic" which is a highly technical and central topic in

modern probability theory and statistics.) Also, "outliers" are falsely and

rhetorically claimed to be "noise" when in fact they are the "events" that

are the specific subject of Frequency Response. It is well known that they

do not "fit" a normal distribution. They are distinct from the normal

operating errors that are the subject of CPM control. The paragraph does

correctly conclude that the linear regression more accurately incorporates

outliers than the median does, although the paragraph uses rhetoric by

calling this improvement "skew" as if it is distortionary when, in fact, the

median distorts the reality.\end{array}\right.\right\}\)

Organization	Yes or No	Question 1 Comment
interconnection.		
While not perfect, the median approaches a BA's typical performance after 15-20 observations. More observations give a higher		
confidence in the estimate of the BA's performance.		

Response: The SDT removed the term because it was not being used within the standard itself. It was only being used in the calculation of the FRM. There is no need to create a NERC Glossary defined term if it is not being used in the standard.

Seattle City Light	No	LADWP and SCL recommend the following change (in red) to the definition of Frequency Bias Setting. LADWP believes that this change increases the clarity of the definition:OriginalA number, either fixed or variable, usually expressed in MW/O.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems.Proposed ChangeA number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage prevent response withdrawal through secondary control systems					
Response: The SDT disagrees with your definition The SDT considered using the term "prevent" but decided to use the term							
"discourage" instead. The SDT believes that the word "prevent" would imply that you could stop withdrawal. The SDT does not							
believe that you can totally stop the withdrawal but you can discourage withdrawal.			$	$	Los Angeles Department of Water and Power	No	LADWP recommends the following change to the definition of Frequency Bias Setting (replace the word "discourage" with the word "prevent").
:---	:---	:---					

Organization	Yes or No	

| Organization | Yes or No | Question 1 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l}The Balancing Authority Area's share of the required Frequency Response

needed for the reliable operation of an Interconnection.

A BA that does not own generation resources cannot provide Frequency

Response, it can only schedule and dispatch available resources capable of

such; . The BA should be responsible for taking action to schedule resources

that are capable of frequency response, and monitoring to assure frequency

response performance. The GOP (possibly the LSE when demand side

performance is involved) must be accountable for performing. However,

there is nothing in this requirement to encourage the owner of a resource

who chooses not to provide frequency response to come to the table.

There is nothing in this standard that uniformly requires all frequency

response providers to perform. This is likely to be detrimental to the

performance of a BAA and unfairly sanctions those willing to perform to to

assure reliability while others are not required to perform.\end{array}\right.\right\}\)

Organization	Yes or No	Question 1 Comment
need for a generator performance obligation, they are encouraged to submit a SAR to that effect.		
Ameren	No	The Frequency Response Measure (FRM) definition should include which Entity(ies) it applies to, similar to the definition of the FRO.
Response: The SDT has modified the definition for FRM to state that is the responsibility of the BA. The definition now read "The median of all the Frequency Response observations reported annually by Balancing Authorities for frequency events specified by the ERO. This will be calculated as MW/0.1Hz."		
Constellation Energy Commodities Group	No	The Frequency Response Obligation has two components based on Attachment 1 - an Interconnection FRO and a BA FRO. The proposed definition captures only the BA FRO.
Response: The definition is referencing the responsible entity, the BA. The interconnection's FRO is only calculated as the beginning point for the determination of the BA's FRO.		
Hydro-Quebec TransEnergie	No	The FRM and FRO definitions should precise that it is expressed in MW/0.1Hz. As for the Frequency Bias Setting definition, as written, would apply only to a multiple BA Interconnection. In a single BA Interconnection, the Frequency Bias translates the frequency error into a MW value that must be dispatched to bring back Frequency to desired value. Since Tie Lines are not controlled through AGC, there is no response withdrawal issue
Response: The FRM and FRO definitions have been modified to state MW/0.1Hz. The SDT disagrees. There can be withdrawal on any interconnection that uses a Frequency Bias estimate if that estimate is lower than Frequency Response and other factors are used to determine dispatch, i.e., future load estimate.		
Northeast Power Coordinating Council/ISO New England Inc.	No	The FRM definition should not refer to FORM 1. Also, suggest the following wording for frequency bias setting: "A number,

Organization	Yes or No	Question 1 Comment
		either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to approximate the frequency response provided by the assets within the respective Balancing Authority's area."
Response: The SDT has modified the definitions to no longer reference any other documents. The definition now read "The median of all the Frequency Response observations reported annually by Balancing Authorities for frequency events specified by the ERO. This will be calculated as MW/0.1Hz."		
The SDT agrees that the Balancing Authority does not directly supply energy. However, the NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.		
The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.		
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.		
Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.		
The SDT also believes that the definition you have suggested is basically saying the same thing as the definition the SDT has chosen to use.		
MRO NSRF	No	The FRM definition: "The median of all the Frequency Response observations reported annually on FRS Form 1" is problematic. It references an FRS Form 1 which is not included in the definition itself but is in fact an

| Organization | Yes or No | Question 1 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{ll}\hline attachment to a standard. In the current NERC Glossary of Terms, there is

no such precedence that a definition must rely on the requirements or

details in a standard for completeness.

Additionally, the definition of Frequency Bias Setting should focus on what it

is. Balancing Authorities do not supply energy. Suggest revising it

to:Frequency Bias Setting A number, either fixed or variable, usually

expressed in MW/O.1 Hz, included in a Balancing Authority's Area Control

Error equation to approximate the expected natural response provided by

the assets within the respective Balancing Authority's area.\end{array}\right.\right\}\)

Organization	Yes or No	Question 1 Comment
chosen to use.		
Alberta Electric System Operator	No	The FRO definition is specific to BAs. The Appendix 1 , which is incorporated in the standard, uses this definition in relation to requirements of the Interconnection. The SDT should consider a revision of this definition that accounts for the requirements of the Interconnection versus the BA obligation to the Interconnection.
Response: The definition is referencing the responsible entity, the BA. The Interconnection's FRO is only calculated as the beginning point for the determination of the BA's FRO.		
South Carolina Electric and Gas	No	The last phrase of the definition of Frequency Bias Setting is more of an explanation of a function rather than a definition. Therefore, we do not feel it belongs in the definition of the Frequency Bias Setting and a period should be inserted after the word "Interconnection". Should the definition for Frequency Response Measure (FRM) be specific to the BA, similar to the definition for Frequency Response Obligation (FRO)?
Response: The SDT thanks you for your suggestion but feels that the statement referenced provides further clarity and has decided to not further modify the definition based on your comments. The SDT has modified the definition for FRM to state that is the responsibility of the BA. The definition now read "The median of all the Frequency Response observations reported annually by Balancing Authorities for frequency events specified by the ERO. This will be calculated as MW/0.1Hz."		
SERC OC Standards Review Group	No	We feel that the last phrase of the definition of Frequency Bias Setting is more of an explanation of a function rather than a definition. While the SERC OC Standards Review Group understands the statement, we do not feel it belongs in the definition of the Frequency Bias Setting and a period should be inserted after the word "Interconnection". Should the definition for Frequency Response Measure (FRM) be specific to the BA, similar to the

Organization	Yes or No	Question 1 Comment
		definition for Frequency Response Obligation (FRO)?
Response: The SDT thanks you for your suggestion but feels that the statement referenced provides further clarity and has decided to not further modify the definition based on your comments. The SDT has modified the definition for FRM to state that is the responsibility of the BA. The definition now read "The median of all the Frequency Response observations reported annually by Balancing Authorities for frequency events specified by the ERO. This will be calculated as MW/0.1Hz."		
Southern Company	No	We suggest adding BA to the definition of Frequency Response Measure (FRM), similar to the definition for Frequency Response Obligation (FRO).
Response: The SDT has modified the definition for FRM to state that is the responsibility of the BA. The definition now read "The median of all the Frequency Response observations reported annually by Balancing Authorities for frequency events specified by the ERO. This will be calculated as MW/0.1 Hz."		
Associated Electric Cooperative Inc	Yes	The FRO definition incorrectly applies the historically narrow Balancing Authority scope of responsibility, while the FRM definition does not address applicability at all. But the BAL-003-1 Standard itself identifies RSGs (where applicable) and BAs as the Responsible Entities within scope of this standard. For consistency, AECI recommends using "Responsible Entities (e.g. Reserve Sharing Groups - where applicable, and Balancing Authorities)" in both the FRO and FRM definitions. Rationale: This change should help future-proof the definition, should more specific "frequency response" or "spinning reserve" sharing groups later surface within our industry. AECl agrees with the Frequency Bias Setting definition's inclusion of a bit more functionality than typical. We however recommend replacing "to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems", with "to support their Frequency Response contribution to the Interconnection". Rationale: Readability, and clarity on

Organization	Yes or No	Question 1 Comment
		the "discouraging withdrawal..." phrase, which should reside in the Background document.
Response: The SDT believes that using the term "Responsible Entities" would cause confusion since different standards could define a Responsible Entity differently. However, the SDT has defined a new term "Frequency Response Sharing Group" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members." The SDT has decided not to add the term FRSG to the definition for Frequency Response Obligation (FRO). The SDT believes that the FRO is assigned to a BA not the FRSG. The FRSG FRO is a summation of the BA FRO's. The SDT thanks you for your suggestion but feels that the statement referenced provides further clarity and has decided to not further modify the definition based on your comments.		
SCE\&G	Affirmative	The last phrase of the definition of Frequency Bias Setting is more of an explanation of a function rather than a definition. Therefore, we do not feel it belongs in the definition of the Frequency Bias Setting and a period should be inserted after the word "Interconnection". Should the definition for Frequency Response Measure (FRM) be specific to
the BA, similar to the definition for Frequency Response Obligation (FRO)?		
o The utilization of the term, "Reserve Sharing Group", is not consistent		
with the definition in the NERC Glossary of Terms, and should be deleted,		
applicability should be clarified or replaced with a new term, such as		
"Frequency Response Sharing		

| Organization | Yes or No | Question 1 Comment |
| :--- | :---: | :--- | :--- |
| The SDT agrees that using the phrase Reserve Sharing Group could cause confusion. The SDT has defined a new term
 "Frequency Response Sharing Group". The definition reads "A group whose members consist of two or more Balancing
 Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response
 Obligations of its members." The SDT has decided not to add the term FRSG to the definition for Frequency Response Obligation
 (FRO). The SDT believes that the FRO is assigned to a BA not the FRSG. The FRSG FRO is a summation of the BA FRO's. | | |
| Bonneville Power Administration | Yes | |
| Imperial Irrigation District | Yes | |
| SPP Standards Review Group | Yes | |
| Western Electricity Coordinating
 Council | Yes | |
| ACES Power Marketing Standards
 Collaborators | Yes | |
| Southwest Power Pool Regional
 Entity | Yes | |
| Salt River Project | Yes | |
| Energy Mark, Inc. | Yes | |
| Florida Power \& Light Company | Yes | |
| FPL | Yes | |
| FMPP | Yes | |

Organization	Yes or No	Question 1 Comment
Xcel Energy	Yes	
Tucson Electric Power	Yes	
NV Energy	Yes	
Cleco Corporation	Yes	
Great River Energy	Yes	

2. The SDT has made minor modifications to the Requirements R1 through R4 to provide additional clarity. Do you agree that these modifications provide sufficient clarity to comply with the standard? If not, please explain in the comment area.

Summary Consideration: The majority of the commenters felt that the use of an RSG as a method for supplying Frequency Response was not fully explained. The SDT modified the Background Document to further explain how an RSG (now FRSG) could be used to supply Frequency Response. The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."

Many of the commenters were concerned with the language in Requirement R3 stating that an entity had to be operating in Tie Line Bias mode unless there were adverse affects on the BES. The SDT removed this requirement from the proposed standard since it is duplicative of Requirement R6 and R7 in BAL-005-0.1b.

Many of the commenters did not agree with assigning the BA to provide Frequency Response. The NERC Functional Model and FERC cited the BA as the responsible party for providing Frequency Response. There are several different methods available to the BA to provide Frequency Response included in the Background Document.
A few of the commenters did not agree with lowering the minimum Frequency Bias Setting. Early research by Nathan Cohn on interconnected power system operations found that control is optimum if a BA's Bias Setting is equal to its natural Frequency Response. If there were to be a difference between the two values, it is preferable to be slightly over-biased. The drafting team has proposed to bring Bias Setting and natural Frequency Response more in line. The process to do this is outlined in a Procedure developed by the SDT which replaces Attachment B. The Procedure manages a "go slow" approach to making this happen and includes checks to confirm there are not unexpected influences injected into the CPS-related calculations. Based on concerns raised by the industry, the drafting team has modified the Procedure to make the initial minimum Bias Setting 0.9% of peak and has included a provision that the ERO will evaluate the impact caused by a change in minimum Bias Setting. The evaluation will look at both frequency performance and impact on CPS-related compliance calculations.
A couple of commenters were concerned that the BA could be responsible to supply an infinite amount of Frequency Response. They felt that a BA could not prepare for this in its planning process. The proposed standard was not clear on this subject and the SDT has added language in the "Event Selection Criteria" section of Attachment A to limit the amount of Frequency Response a BA would be required to provide to be compliant with the standard.

Organization	Yes or No	Question 2 Comment
Seattle City Light	Negative	The language in Requirement 4 needs to be clarified and recommends the following change: R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation to be equivalent to either (i) the sum of the Frequency Bias Settings of the participating Balancing Authorities as validated by the ERO, or (ii) (ii) the Frequency Bias Setting as calculated based on the entire area being combined and thereby represent the Frequency Response for the combined area being controlled. [Risk Factor: Medium][Time Horizon: Operations Planning]
Response: The SDT has modified Requirement R4 to use bullets in support of your suggestion.		
Public Utility District No. 1 of Douglas County	Negative	1. Recommend clarifying the language in R1 to include background information as to how RSGs fit into the FRM performance. 2. Recommend R3 language be modified to permit operation in other than tie-line bias mode with the requirement to notify the RC. 3. We have concern about the affect R3 will have on the WECC time error correction standard (BAL-004-WECC-1). 4. Clarification is needed between Attachment A and the Background Document for projected peak and historical peak. 5. We have a concern about the affect of lowering the minimum frequency bias obligation from 1% to $.8 \%$ and its probable affect on reliability. 6. We have a concern about he upper limit to the amount of frequency response expected from BAs.
Response: Comment 1 - The SDT has modified the Background Document to further explain how an RSG (now FRSG) can be used to supply Frequency Response. The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes		

Organization
Yes or No

Question 2 Comment

that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."

Comment 2 \& 3- The SDT has removed the Requirement R3 from the next version of the proposed standard. This removal was based on industry comments and the belief that it was duplicative with Requirements R6 and R7 in BAL-005-0.1b.

Comment 4 - The SDT has corrected the error between Attachment A and the Background Document.
Comment 5 - Early research by Nathan Cohn² on interconnected power system operations found that control is optimum if a BA's Bias Setting is equal to its natural Frequency Response. If there were to be a difference between the two values, it is preferable to be slightly over-biased.
The drafting team has proposed to bring Bias Setting and natural Frequency Response more in line. The process to do this is outlined in a Procedure developed by the SDT which replaces Attachment B. The Procedure manages a "go slow" approach to making this happen and includes checks to confirm there are not unexpected influences injected into the CPS-related calculations. Based on concerns raised by the industry, the drafting team has modified the Procedure to make the initial minimum Bias Setting 0.9% of peak and has included a provision that the ERO will evaluate the impact caused by a change in minimum Bias Setting. The evaluation will look at both frequency performance and impact on CPS-related compliance calculations.

Comment 6 - The SDT understands your concern and agrees that this could cause problems with compliance. The SDT has modified Attachment A to include language which puts an upper limit on the amount of Frequency Response required from an entity.

| Potomac Electric Power Co. | Negative | 1)The proposed Requirements do not meet all the FERC directives.
 2)The proposed Requirements fail to recognize the fact that not all BAs can provide
 primary frequency response. |
| :--- | :--- | :--- | :--- |
| 3)The proposed Requirements are not all in the standard. Some are in the | | |
| Attachments. | | |

[^59]| Organization | Yes or No | Question 2 Comment |
| :--- | :--- | :--- |
| Response: Comment $1-$ The SDT disagrees with you about their meeting all of the FERC directives. Unfortunately your comment
 does not provide specific information as to what you believe is not being addressed. The SDT has included a section within the | | | Background Document which details how this standard is meeting the FERC directives.

Comment 2 - The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.
The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.
Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.
Comment 3 - Unfortunately your comment does not provide enough information as to what parts of the attachments you believe should be in the requirements. However, the SDT has made significant modifications to both Attachment A and Attachment B now a Procedure for the ERO to follow in support of the proposed standard. The SDT believes that the requirements should be succinct and the methodologies to be used should be part of an attachment.

Seattle City Light	No	o LADWP and SCL have a concern with Requirement 3. The requirement should provide allowance for legitimate circumstances when an entity cannot run on Tie Line Bias mode and not have an Adverse Reliability Impact on the Balancing Authority's Area. An entity should not be penalized when these legitimate circumstances occur. LADWP believes that the Frequency Response Standard Background Document, on Page 8, lists examples of legitimate circumstances:- Telemetry problems that lead the operator to believe ACE is significantly in error.-

Organization	Yes or No	Question 2 Comment
		The frequency input to AGC is not reflective of the BA's true frequency (such as if the control center were operating a local generator and disconnected from the Interconnection).- During restoration (where one BA might be controlling frequency while another to which it is connected is managing interchange between them).- For training purposes.- Many AGC systems will automatically switch to an alternate mode if the EMS determines Tie Line Bias control could lead to problems. o LADWP and SCL believe that the language in Requirement 4 needs to be clarified and recommends the following change (in red):R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation to be equivalent to either (i) the sum of the Frequency Bias Settings of the participating Balancing Authorities as validated by the ERO, or (ii) calculate the Frequency Bias Setting as calculated based on the entire area being combined and thereby represent the Frequency Response for the combined area being controlled. [Risk Factor: Medium][Time Horizon: Operations Planning] o LADWP and SCL believes the language in Requirement 5 needs to be modified to be consistent with that of the second paragraph of Attachment B. SCL recommends the addition of "natural frequency response" as a third bullet item to Requirement 5 (in red). The revised requirement would read: R5. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is at least equal to one of the following: [Risk Factor: Medium][Time Horizon: Operations Planning] o The minimum percentage of the Balancing Authority Area's estimated yearly Peak Demand within its metered boundary per 0.1 Hz change as specified by the ERO in accordance with Attachment B. o The minimum percentage of the Balancing Authority Area's estimated yearly peak generation for a generation-only Balancing Authority, per 0.1 Hz change as specified by the ERO in accordance with Attachment

| Organization | Yes or No | Question 2 Comment |
| :--- | :--- | :--- |$|$

Organization	Yes or No	Question 2 Comment

Response: The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.

The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.

Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.
With regards to your comment concerning Requirement R5, you have not provided enough information for the SDT to respond. However, the SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3.

Western Electricity Coordinating Council	No	Agree with the changes made to this latest version of BAL-003-1. However, additional clarity could be added by addressing the following: R1- It is not clear what is intended by "Reserve Sharing Group". As RSGs exist today, FRM performance by an RSG is not contemplated in the definition of FRM and appears to apply more towards 'secondary response'. Recommend clarifiying this concept and possibly include an example in the background document to help explain how this would work.
	R3-There may be occasions in which an entity has a legitimate reason or a need to operate in a mode other than Tie Line Bias but that does not qualify as an Adverse Reliability Impact. Recommend including language that would permit limited operation in a mode other than Tie Line Bias mode provided the Reliability Coordinator was notified. R3 - Has the drafting team considered whether or not the	

Organization	Yes or No	Question 2 Comment
		language of Requirement R3 will have any conflict or coordination issue with the FERC-approved regional reliability standards BAL-004-WECC-1 - Automatic Time Error Correction? R5 - Suggest changing the language "at least equal to" to "greater than or equal to" for clarity.
Response: The SDT has modified the Background Document to further explain how an RSG (now FRSG) can be used to supply Frequency Response. The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."		
The SDT has removed the Requirement R3 from this version of the proposed standard. This removal was based on industry comments and the belief that it was duplicative with Requirements R6 and R7 in BAL-005-0.1b. The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. The SDT has modified the requirement and believes we have implemented the intent of your suggestion.		
Seattle City Light	Negative	Answer: No Comments: o LADWP and SCL have a concern with Requirement 3. The requirement should provide allowance for legitimate circumstances when an entity cannot run on Tie Line Bias mode and not have an Adverse Reliability Impact on the Balancing Authority's Area. An entity should not be penalized when these legitimate circumstances occur. LADWP believes that the Frequency Response Standard Background Document, on Page 8, lists examples of legitimate circumstances: Telemetry problems that lead the operator to believe ACE is significantly in error. The frequency input to AGC is not reflective of the BA's true frequency (such as if the control center were operating a local generator and disconnected from the Interconnection). - During restoration (where one BA might be controlling frequency while another to which it is connected is managing interchange between them). - For training purposes. - Many AGC systems will automatically switch to an alternate mode if the EMS determines Tie Line Bias control could lead to problems.

Organization	Yes or No	Question 2 Comment
		o LADWP and SCL believe that the language in Requirement 4 needs to be clarified and recommends the following change: R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation to be equivalent to either (i) the sum of the Frequency Bias Settings of the participating Balancing Authorities as validated by the ERO, or (ii) the Frequency Bias Setting as calculated based on the entire area being combined and thereby represent the Frequency Response for the combined area being controlled. [Risk Factor: Medium][Time Horizon: Operations Planning] o LADWP and SCL believes the language in Requirement 5 needs to be modified to be consistent with that of the second paragraph of Attachment B. SCL recommends the addition of "natural frequency response" as a third bullet item to Requirement 5. The revised requirement would read: R5. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is at least equal to one of the following: [Risk Factor: Medium][Time Horizon: Operations Planning] o The minimum percentage of the Balancing Authority Area's estimated yearly Peak Demand within its metered boundary per 0.1 Hz change as specified by the ERO in accordance with Attachment B. o The minimum percentage of the Balancing Authority Area's estimated yearly peak generation for a generation-only Balancing Authority, per 0.1 Hz change as specified by the ERO in accordance with Attachment B. o The natural frequency response
Response: The SDT has removed the Requirement R3 from this version of the proposed standard. This removal was based on industry comments and the belief that it was duplicative with Requirements R6 and R7 in BAL-005-0.1b. The SDT has modified Requirement R4 which now uses bullets in support of your suggestion. The SDT disagrees with your suggested modification. The SDT believes that your suggested modification could allow an entity to circumvent the minimum percentage process. However, the SDT has removed Requirement R5 and combined it into Requirement		

Organization	Yes or No	Question 2 Comment
R2 and a new Requirement R3.	Negative	As drafted, Requirement R1 requires Balancing Authorities or Reserve Sharing Groups (RSGs) to achieve an annual Frequency Response Measure (FRM) that is equal to or more negative than its Frequency Response Obligation (FRO). As RSGs exist today, FRM performance by an RSG is not contemplated in the definition of FRM and appears to apply more towards 'secondary response'. Recommend clarifiying this concept and possibly including an example in the background document to help explain how this would work.
Avista Corp.		Reducing frequency bias obligation is detrimental to reliability. It seems that Lowering the Minimum Frequency Bias Setting from 1\% to .8\% will result in a lower response, which in turn will lower the natural frequency response. Over time it seems this pattern would lead to poorer response.

Response: The SDT has modified the Background Document to further explain how an RSG (now FRSG) can be used to supply Frequency Response. The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."
Early research by Nathan Cohn ${ }^{3}$ on interconnected power system operations found that control is optimum if a BA's Bias Setting is equal to its natural Frequency Response. If there were to be a difference between the two values, it is preferable to be slightly over-biased.

The drafting team has proposed to bring Bias Setting and natural Frequency Response more in line. The process to do this is outlined in a Procedure developed by the SDT which replaces Attachment B. The Procedure manages a "go slow" approach to making this happen and includes checks to confirm there are not unexpected influences injected into the CPS-related calculations. Based on concerns raised by the industry, the drafting team has modified the Procedure to make the initial minimum Bias Setting

[^60]| Organization | Yes or No | Question 2 Comment |
| :---: | :---: | :---: |
| 0.9% of peak and has included a provision that the ERO will evaluate the impact caused by a change in minimum Bias Setting. The evaluation will look at both frequency performance and impact on CPS-related compliance calculations. | | |
| City of Redding, Oregon Public Utility Commission, BrightSource Energy, Inc., Clark Public Utilities, Avista, Tri-State G \& T Association, Inc.; Deseret Power | Negative | As drafted, Requirement R1 requires Balancing Authorities or Reserve Sharing Groups (RSGs) to achieve an annual Frequency Response Measure (FRM) that is equal to or more negative than its Frequency Response Obligation (FRO). As RSGs exist today, FRM performance by an RSG is not contemplated in the definition of FRM and appears to apply more towards 'secondary response'. Recommend clarifying this concept and possibly including an example in the background document to help explain how this would work. |
| Response: The SDT has modified the Background Document to further explain how an RSG (now FRSG) can be used to supply Frequency Response. The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members." | | |
| Sacramento Municipal Utility District (SMUD) | No | As drafted, requirement R1 requires Balancing Authorities or Reserve Sharing Groups (RSGs) to achieve an annual Frequency Response Measure (FRM) that is equal to or more negative than its Frequency Response Obligation (FRO). As RSGs exist today, FRM performance by an RSG is not contemplated in the definition of FRM and appears to apply more towards 'secondary response'. Recommend clarifying this concept and possibly including an example in the background document to help explain how this would work.
 As drafted, in requirement R3, each Balancing Authority not receiving Overlap Regulation Service to operate its AGC in Tie Line Bias mode... unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area. There may be occasions in which an entity needs to perform testing or other instances where it is necessary or desirable to operate in a mode other than Tie Line Bias that does not qualify as an Adverse Reliability Impact, but never the less is necessary or |

| Organization | Yes or No | Question 2 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l|l|l|}\hline desired. Recommend including language that would permit operation other than Tie

Line Bias mode provided the Reliability Coordinator was notified.We seek

clarification from the drafting team as to whether or not there will be any conflicts

between proposed Requirement R3 and the requirements of FERC-approved regional

reliability standard BAL-004-WECC-1 - Automatic Time Error Correction.\end{array}\right.\right]\)

Organization	Yes or No	Question 2 Comment
		the auditors to determine the value of the Frequency Bias Setting for BAs receiving Overlap Regulation Service. Comment 4: In general, the requirements indicate what the responsible BAs should do and when. The requirements do not indicate what the BAs that are not responsible should do and when, ie. how they are relieved from responsibility. This may create problems when the auditors are required to interpret the standards for BAs that have appropriately shifted responsibilites to others.
Response: Comment 1 - The SDT believes that Requirement R2 states the timing for implementation of the Frequency Bias Setting. The Requirement R4 is simply to provide the BA with the method for combining the Frequency Bias Settings for providers of Overlap Regulation Service. The Background Document and Attachment A have also been modified to provide further clarity. Comment 2 - The SDT has removed the Requirement R3 from this version of the proposed standard. This removal was based on industry comments and the belief that it was duplicative with Requirements R6 and R7 in BAL-005-0.1b. Comment 3 \& 4 - The SDT does not believe that there is an issue for entities receiving Overlap Regulation Service. However, the SDT has modified the Background document to further clarify this issue.		
Duke Energy	No	Duke Energy supports the concept of a group of BAs forming a group to share in Frequency Response however it should be clear that it is an option. We feel that the utilization of the term, "Reserve Sharing Group", is not consistent with the definition in the NERC Glossary of Terms which is specific to sharing of contingency reserves, and should be replaced with a new term, such as "Frequency Response Sharing Group". R4 should clarify that a BA performing Overlap Regulation Service should still be required to operate its AGC in "Tie Line Bias" mode. Though comments are provided below on the Attachments, Duke Energy believes that all NERC Reliability Standards' requirements must reside within the standard itself (which is vetted by the Industry and subject to FERC approval), and not within Attachments that may be revised without Industry review and approval. As noted below and in prior comments, given the secondary control implications of changing

Organization	Yes or No	Question 2 Comment
		the minimum Frequency Bias Setting (FBS), Duke Energy believes that subsequent revisions to the minimum FBS should be vetted through the Standards process. Duke Energy would suggest moving the details of the minimum FBS for each Interconnection into the Standard, and having the implementation plan include annual submittal of a revised minimum FBS based upon the methodology presented in Attachment B for ballot approval by the Industry.

Response: The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it also believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."
The SDT has removed the Requirement R3 from this version of the proposed standard. This removal was based on industry comments and the belief that it was duplicative with Requirements R6 and R7 in BAL-005-0.1b.

Attachments that are referenced within a Requirement are mandatory and enforceable.
Early research by Nathan Cohn ${ }^{4}$ on interconnected power system operations found that control is optimum if a BA's Bias Setting is equal to its natural Frequency Response. If there were to be a difference between the two values, it is preferable to be slightly over-biased.

The drafting team has proposed to bring Bias Setting and natural Frequency Response more in line. The process to do this is outlined in a Procedure developed by the SDT which replaces Attachment B. The Procedure manages a "go slow" approach to making this happen and includes checks to confirm there are not unexpected influences injected into the CPS-related calculations. Based on concerns raised by the industry, the drafting team has modified the Procedure to make the initial minimum Bias Setting 0.9% of peak and has included a provision that the ERO will evaluate the impact caused by a change in minimum Bias Setting. The evaluation will look at both frequency performance and impact on CPS-related compliance calculations.

[^61]| Organization | Yes or No | Question 2 Comment |
| :---: | :---: | :---: |
| | | requirements that focus on performance (i.e. WHAT must be accomplished NOT on WHY it is required or HOW it should be accomplished). The SRC has found that such explanatory statements as the SDT is proposing lead to ambiguities and confusion in the compliance application. Compliance Enforcement agents must consider not just the results but must decide if the action was taken for the given reason. To avoid such confusion, the Results based approach uses reference documents to address such background material while leaving the requirement as a direct mandate.The SRC notes:
 o All NERC Reliability Standards' requirements must reside within the standard itself (which is vetted by the Industry and subject to FERC approval).
 o Data requirements are better handled through NERC's Rules of Procedure Section 1600 than by mandating that ad hoc Forms be submitted.
 o Definitions should be generic, and should be self-contained (i.e. should not reference an external document).
 o The decisions regarding alternative methodologies should be decided by the Industry not by the SDT. The SDT should make its case and ask the Industry for its approval.
 Regarding Order 693 directives, the SRC notes that there are three directives as follows:
 (1) To include Levels of Non-Compliance;
 (2) To determine the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other requirements of the Reliability Standard are being met, and to modify Measure M1 based on that determination and
 (3) To define the necessary amount of Frequency Response needed for Reliable Operation for each balancing authority with methods of obtaining and measuring that the frequency response is achieved. |

Organization	Yes or No	Question 2 Comment
		The SRC suggests that Directive 2 be handled directly as a mandate that the ERO conduct a fixed number of Frequency Response Surveys for randomly selected events. Discussion of the number and the methodology can be explained in a reference document and leave the specifics to the requirement. Directive 3 is critical to the Industry as it relates to who is the Applicable Entity. The SDT addresses Directive 3 by mandating Balancing Authorities meet an objective. The directive is to define that Objective, but there is no requirement associated with that Objective. There is an attachment and there are discussions of what "may" be done, but there is no requirement in the Standard itself. The reference to the BA as the provider of Frequency Response (i.e. Primary Control response) runs counter to other FERC directives that mandate obligated entities be able to self-serve or to interchange provision of services. In this case the BA per se has no assets and cannot self-serve, moreover the primary response service providers have no obligations to provide the service, thus the BA potentially could face a situation where there is no physical service to be purchased but there is a federally mandated standard to comply with. The idea of creating a Primary Response Market as some have proposed does not work without an obligation on some entity to physically provide that service. One final note, the SRC points out that the ACE is an error signal used to drive secondary response; it is not a signal to drive primary response. Thus the use of the Frequency Bias setting is not for control, it is for "adjusting" the error measure that is analyzed after the fact.This standard needs: o a requirement on the ERO to compute the Obligation on each Interconnection o a requirement on the ERO to conduct Frequency Response surveys (note the SRC does not support this requirement but believes that it is needed to meet the FERC directive) o a requirement on energy supply assets (both generation and load) to provide primary response (as a function of the Interconnection obligation in the first bullet)

| Organization | Yes or No | Question 2 Comment |
| :--- | :--- | :--- | :--- |

Organization	Yes or No	Question 2 Comment

The SDT has modified the definitions to no longer reference any other documents.
The SDT is recommending a certain approach to calculating the FRM. The reference to other methods being evaluated is simply a statement that the SDT believes that further analysis would be beneficial. Any modification to the calculation methodology would require industry approval.

The SDT believes that it is meeting Directive \#2 by requiring at least 20 events to be analyzed each year.
The SDT believes that it is meeting the directive to define the "objective" by creating the BA Frequency Response Obligation (FRO). With regards to the BA being the responsible entity to provide Frequency Response the NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.

The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.

Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.
The SDT has been instructed to include a "reliability outcome" within the requirements. The SDT will forward your concerns about the wording to the Standards Committee Quality Review group for consideration.

The ERO is not defined as an applicable entity in the industry approved SAR and therefore it would be inappropriate to include them as an applicable entity.

Los Angeles Department of Water and Power	No	LADWP has a concern with Requirement 3. The requirement should provide allowance for legitimate circumstances when an entity cannot run on Tie Line Bias

Los Angeles Department of
No Water and Power
allowance for legitimate circumstances when an entity cannot run on Tie Line Bias

Organization	Yes or No	Question 2 Comment
		mode and not have an Adverse Reliability Impact on the Balancing Authority's Area. An entity should not be penalized when these legitimate circumstances occur. LADWP believes that the Frequency Response Standard Background Document, on Page 8, lists examples of legitimate circumstances:- Telemetry problems that lead the operator to believe ACE is significantly in error.- The frequency input to AGC is not reflective of the BA's true frequency (such as if the control center were operating a local generator and disconnected from the Interconnection).- During restoration (where one BA might be controlling frequency while another to which it is connected is managing interchange between them).- For training purposes.- Many AGC systems will automatically switch to an alternate mode if the EMS determines Tie Line Bias control could lead to problems. LADWP believes that the language in Requirement 4 needs to be clarified and recommends the following change:- R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation to be equivalent to either (i) the sum of the Frequency Bias Settings of the participating Balancing Authorities as validated by the ERO, or (ii) the Frequency Bias Setting as calculated based on the entire area being combined and thereby represent the Frequency Response for the combined area being controlled. [Risk Factor: Medium][Time Horizon: Operations Planning] LADWP believes the language in Requirement 5 needs to be modified to be consistent with that of the second paragraph of Attachment B. LADWP recommends the addition of "natural frequency response" as a third bullet item to Requirement 5. The revised requirement would read:- R5. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is at least equal to one of the following: [Risk Factor: Medium][Time Horizon: Operations Planning] o The minimum percentage of the Balancing Authority Area's estimated yearly Peak Demand within its metered boundary per 0.1 Hz change as specified by the ERO in accordance with Attachment B. o The minimum percentage of the Balancing Authority Area's estimated yearly peak generation for a generation-only Balancing Authority, per 0.1 Hz change as

Organization	Yes or No	
		Question 2 Comment response
Response: The SDT has removed the Requirement R3 from the next version of the proposed standard. This removal was based on industry comments and the belief that it was duplicative with Requirements R6 and R7 in BAL-005-0.1b. The SDT has modified Requirement R4 which now uses bullets in support of your suggestion.		
The SDT disagrees with your suggested modification. The SDT believes that your suggested modification could allow for an entity to circumvent the minimum percentage process. However, the SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3.		
MidAmerican Energy Co.	Negative	MidAmerican supports the comments provided by the NSRF. It is not clear if there is an upper limit to the amount of frequency response expected of the Balancing Authorities under this standard.

| Organization | Yes or No | Question 2 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l}Frequency Response. While these reserves may be frequency responsive, they are

not being shared for the purpose of expanding frequency response. Furthermore,

while reserve sharing groups may calculate a joint ACE by summing its individual BA

ACE values, RSGs do not have a Frequency Bias Setting which is necessary to assess a

Frequency Response Obligation.

Under item 3 of the Event Selection Criteria section, the delta F and Point C should

be described either in this attachment or the "Frequency Response Standard

Background Document". While many in industry may understand what these terms

mean, history has a way of getting lost with personnel turnover. Furthermore, this

would help ensure that the auditors and industry have a duplicate understanding.

In the Frequency Response Obligation section on page 2, several items require more

description. Further description of why an N-2 event was chosen for the Contingency

Protection Criteria should be provided and which N-2 event was selected so that

industry can help validate if the correct MW value was selected.\end{array}\right.\right\}\)	Furthermore, the document should clarify if the Contingency Protection Criteria
contains the "safety margin". There is a statement in the paragraph before the table	
that states it does, but then the table lists out a separate 25\% "Safety Margin". Thus,	
it is not clear if the "Safety Margin" is included in the Contingency Protection Criteria	
value listed in the table or not. "Safety margin" should be changed to "reliability	
margin". Safety has a specific meaning in the electric industry and its use here is not	
appropriate. The Base Obligation should be explained. The explanation should	
include its purpose and origin.	

Organization	Yes or No	Question 2 Comment

Response Obligations of its members."
The SDT agrees with your comment concerning further clarification on certain terms and has made significant modifications to the Background Document and Attachments A and B.

The Data Retention is stated as "the current year plus three calendar years" since it is highly unlikely that an entity will be audited exactly three years after its previous audit. The SDT recognizes that most audits will occur within the year following the third year.

PPL Electric Utilities Corp.;
PPL Generation LLC

The PPL Companies do not support proposed Reliability Standard BAL-003-1 (Frequency Response and Frequency Bias Setting) primarily because PPL believes it inappropriately subjects Reserve Sharing Groups (RSGs) to the proposed requirements. The proposed Applicability provision states that the mandatory reliability requirements would be applicable to (1) Balancing Authorities and (2) Reserve Sharing Groups (where applicable). However, it is unclear how the proposed requirements would be applicable to an RSG. RSGs typically do not provide a mechanism for sharing automatic Frequency Response. The BA Frequency Response Obligation (FRO) is a formula based on BAs and the Interconnection and has nothing to do with RSGs. Rather, RSGs collectively respond to requests for activation of contingency reserves generally after the request is made by a member Balancing Authority. The Standard Drafting Team should therefore remove RSGs from the Applicability section and should remove all other references to RSGs in the proposed standard.

Response: The SDT disagrees that an RSG is not an appropriate mechanism for providing Frequency Response. However the SDT does believe that using the term "Reserve Sharing Group" could cause confusion and has defined a new term "Frequency Response Sharing Group (FRSG)". The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."
Similar to traditional Reserve Sharing Groups for Contingency Reserves, FRSGs as proposed in this standard , are voluntary organizations whose members determine the terms and conditions of participation. The members of the FRSG would determine how to allocate sanctions among its members. This standard does not mandate the formation of FRSGs, but allows them as a

Organization	Yes or No	Question 2 Comment
means to meet one of the FERC's Order No. 693 directives. FRSG performance may be calculated on one of two ways: - Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or - Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual annual performance.		
Progress Energy	No	PGN supports the collective comments of SERC members. We feel that the utilization of the term, "Reserve Sharing Group", is not consistent with the definition in the NERC Glossary of Terms, and should be deleted, applicability should be clarified or replaced with a new term, such as "Frequency Response Sharing". R4 should clarify that a BA performing Overlap Regulation Service should still be required to operate its AGC in "Tie Line Bias" mode
Response: The SDT agrees that using the term "Reserve Sharing Group" could cause confusion and has defined a new te "Frequency Response Sharing Group (FRSG)". The new definition reads "A group whose members consist of two or mor Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Fr Response Obligations of its members." The SDT has removed the requirement to operate AGC in Tie Line Bias mode as this requirement was duplicative of the Requirements R6 and R7 in BAL-005-0.1b.		
MRO NSRF	No	R1- It is not clear what is intended by "Reserve Sharing Group" in this context. As RSGs exist today, FRM performance by an RSG is not contemplated in the definition of FRM and appears to apply more towards 'secondary response'. Recommend clarifiying this concept and possibly include an example in the background document to help explain how this would work. R2 - Please add the word "range" in-between the words "date" and "specified". The background document specifies that there is a 72-hour period to implement the FBS setting (See Background document Page 7). R2, as written, does not reflect the

Organization	Yes or No	Question 2 Comment
		period for which an entity may implement the ERO validated Bias into ACE. Also see our comment on \#7 as to the length of the comment period. Question 7 comment is provided to assist the SDT; Note from question 7: (Page 7 (3rd paragraph) of the Background document states "Given the fact that BA's can encounter staffing or EMS change issues coincident with the date the ERO sets for new Frequency Bias Setting implementation, the standard provides a 24 hour window on each side of the target date. 1. The Standard itself does not state this provision (24 hour window on each side of target date) as indicated. 2. The SDT accurately addresses the fact that BA's could have EMS or staffing issues during implementation of the ERO validated FBS. The current stated 72 -hour window is not long enough for implementation of the FBS as there may be a host of issues that could impact implementation. We suggest that a seven day window be used for implementation of the FBS.) R3 - Recommend the term "Adverse Reliability Impact" be removed from Requirement 3. Based on the NERC definition of the term, a smaller entity could never operate its AGC outside of TLB mode due to their impact on the BES not likely to result in "instability or Cascading". To ensure a more consistent and equitable approach when applying this Requirement, recommend the drafting team incorporate the reliability reasons listed within the Background Document into the actual Requirement. Additionally, the phrase "effectively coordinated control" should be removed as this is not essential to the Requirement and introduces ambiguity in its application. To this end, the following revisions are proposed: R3. Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area meets one or more of the following conditions.

Organization	Yes or No	Question 2 Comment
		o Telemetry problems that lead the operator to believe ACE is significantly in error. o The frequency input to $A G C$ is not reflective of the $B A^{\prime}$'s true frequency (such as if the control center were operating a local generator and disconnected from the Interconnection). o During restoration (where one BA might be controlling frequency while another to which it is connected is managing interchange between them). o For training purposes. o Many AGC systems will automatically switch to an alternative mode if the EMS determines Tie Line Bias control could lead to problems. o For single BA Interconnections, Flat Frequency and Tie Line Bias are equivalent. o The Reliability Coordinator has been informed and the duration is [insert time constraint language here]. R5 - Recommend to delete the phrase "In order to ensure control response". Such phrases can be needless causes of debate. If a BA uses one of the bulleted methods but does not get "adequate response" then is the BA non-compliant? What is "adequate response"? Who decides if the response is adequate? Please clarify.
Response: The SDT agrees that using the term "Reserve Sharing Group" could cause confusion and has defined a new term "Frequency Response Sharing Group (FRSG). The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."		
Similar to traditional Reserve Sharing Groups for Contingency Reserves, FRSGs as proposed in this standard, are voluntary organizations whose members determine the terms and conditions of participation. The members of the FRSG would determine how to allocate sanctions among its members. This standard does not mandate the formation of FRSGs, but allows them as a means to meet one of the FERC's Order No. 693 directives.		
FRSG perform - Calcula	lated on on measure	f two ways: group response to all events in the reporting year on a single FRS Form 1, or

Organization	Yes or No	Question 2 Comment

- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual annual performance.

The SDT has modified Requirement R2 to provide better clarity. The requirement now reads "Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO and shall use this Frequency Bias Setting until directed to change by the ERO to ensure effectively coordinated Tie Line Bias control.".

The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005-0.1b.
The SDT has been instructed to include a "reliability outcome" within the requirements. The SDT will forward your concerns about the wording to the Standards Committee Quality Review group for consideration.

Xcel Energy	No	R1- It is not clear what is intended by "Reserve Sharing Group" in this context. As RSGs exist today, FRM performance by an RSG is not contemplated in the definition of FRM and appears to apply more towards 'secondary response'. Recommend clarifiying this concept and possibly include an example in the background document to help explain how this would work. R3 - recommend modifying the language to permit AGC out of TLB mode if the RC is notified; also remove the "to ensure coordinated control" as this is not essential for the requirement. Our reasoning behind the suggested change to notification of the RC is that there are occassions where an entity would need to perform testing, etc and it could be argued that testing would not be sufficient justification for meeting the Adverse Reliability Impact definition. Here is proposed revised language:Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode, unless the Balancing Authority's Reliability Coordinator has been informed and the duration is [insert time constraint language here].
Response: The SDT agrees that using the term "Reserve Sharing Group" could cause confusion and has defined a new term "Frequency Response Sharing Group (FRSG)". The new definition reads "A group whose members consist of two or more		

Organization	Yes or No	Question 2 Comment
Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency		
Response Obligations of its members."		
The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005-0.1b.		

Constellation Energy Commodities Group	No	R1 should accommodate agreements between multiple BAs and RSGs in achieving the annual Frequency Response Measure. See proposed modification below: R1. Each Balancing Authority shall achieve an annual Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligations (FRO) to ensure that sufficient Frequency Response is provided by each BA. Either the Balancing Authority individual FRM, multiple Balancing Authority's FRM per written agreement, or the FRM of the Reserve Sharing Group must be equal to or more negative than the applicable Frequency Response Obligations (FRO) for a single Balancing Authority or the aggregate of multiple Balancing Authorities or RSGs.- In R2, "Each Balancing Authority not participating in Overlap Regulation Service" should state "Each Balancing Authority, not receiving Overlap Regulation, shall implement the appropriate Frequency Bias Setting (fixed or variable,) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control". - In R3, the explanatory language about why to operate in Tie Line Bias mode should be deleted. See proposed modification below: R3. Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area.- R5 should be modified to state only that the FBS is specified by the ERO in accordance with Attachment B. As drafted the Requirement is in conflict with Attachment B because the Requirement mandates a minimum and does not allow for a reduction to the minimum but it references Attachment B which is titled

Organization	Yes or No	Question 2 Comment
		"Process for Adjusting Minimum Frequency Bias Setting". See proposed modification below: R5. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is as specified by the ERO in accordance with Attachment B.- There should be a Requirement specifically stating there is an obligation to complete and submit FRS Form 1 by January 10th each year for clarity.- The requirements should be re-ordered to reflect the chronology of the process for frequency calculation, implementation and performance measurement. The recommended order is as follows: R5 which defines the minimum Frequency Bias Setting (FBS) for a Balancing Authority R4 which describes how the minimum FBS may be altered through Overlap Regulation Service R2 which identifies the coordination required around implementationR3 which requires operation in Tie Line Bias mode R1 which establishes the performance obligation
Response: The SDT does not see anything within the Requirement that would restrict any agreements between multiple BAs and RSGs. However, the SDT has modified the language in Requirement R1 to provide additional clarity. The requirement now reads "Each Balancing Authority or Frequency Response Sharing Group (FRSG) shall achieve an annual Frequency Response Measure (FRM) (as calculated and reported in accordance with Attachment A) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each Balancing Authority or FRSG to maintain Interconnection Frequency Response equal to or more negative than the Interconnection Frequency Response Obligation." The SDT has also defined a new term "Frequency Response Sharing Group (FRSG)" because it also believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to		

Organization	Yes or No
jointly meet the Frequency Response Obligations of its members." 2 Comment	
The SDT has modified Requirement R2 to provide better clarity. The requirement now reads "Each Balancing Authority that is a	
member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency	
Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as validated by the ERO, into its Area	
Control Error (ACE) calculation during the implementation period specified by the ERO and shall use this Frequency Bias Setting until	
directed to change by the ERO to ensure effectively coordinated Tie Line Bias control.".	

The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005-0.1b.
The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. The SDT also believes that Attachment B, now a Procedure for the ERO to follow in supporting the standard, only details the process the ERO is to use when evaluating and making modifications to the minimum Frequency Bias Setting.

The SDT disagrees with your comment concerning an additional requirement for timing of reporting. The SDT believes that this is an administrative issue and is better handled within an attachment. The SDT would also like to note that an attachment when referenced in a requirement becomes mandatory and enforceable.
The SDT thanks you for your suggested ordering for the requirements but believes that the revised proposed standard reflects the proper order in that it sets the goal at beginning of year, calculates performance, reports performance and calculates bias at the end of the year.

Constellation Energy	Negative	-R1 should accommodate agreements between multiple BAs and RSGs in achieving the annual Frequency Response Measure. See proposed modification below: R1. Each Balancing Authority shall achieve an annual Frequency Response Measure (FRM) (as detailed in Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligations (FRO) to ensure that sufficient Frequency Response is provided by each BA. Either the Balancing Authority individual FRM, multiple Balancing Authority's FRM per written agreement, or the FRM of the Reserve Sharing Group must be equal to or more negative than the applicable Frequency Response Obligations (FRO) for a single Balancing Authority or the aggregate of multiple Balancing Authorities or RSGs. -In R2, "Each Balancing Authority not participating in Overlap Regulation Service"

Organization	Yes or No	Question 2 Comment
		should state "Each Balancing Authority, not receiving Overlap Regulation, shall implement the appropriate Frequency Bias Setting (fixed or variable,) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively coordinated Tie Line Bias control". -In R3, the explanatory language about why to operate in Tie Line Bias mode should be deleted. See proposed modification below: R3. Each Balancing Authority not receiving Overlap Regulation Service shall operate its Automatic Generation Control (AGC) in Tie Line Bias mode, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area. -R5 should be modified to state only that the FBS is specified by the ERO in accordance with Attachment B. As drafted the Requirement is in conflict with Attachment B because the Requirement mandates a minimum and does not allow for a reduction to the minimum but it references Attachment B which is titled "Process for Adjusting Minimum Frequency Bias Setting". See proposed modification below: R5. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is as specified by the ERO in accordance with Attachment B. -There should be a Requirement specifically stating there is an obligation to complete and submit FRS Form 1 by January 10th each year for clarity. -The requirements should be re-ordered to reflect the chronology of the process for frequency calculation, implementation and performance measurement. The recommended order is as follows: R5 which defines the minimum Frequency Bias Setting (FBS) for a Balancing Authority R4 which describes how the minimum FBS may be altered through Overlap Regulation Service R2 which identifies the coordination required around implementation R3 which requires operation in Tie Line Bias mode R1 which establishes the performance obligation
Response: The SDT does not see anything within the Requirement that would restrict any agreements between multiple BAs and RSGs. However, the SDT has modified the language in Requirement R1 to provide additional clarity. The requirement now reads		

Organization	Yes or No	Question 2 Comment

"Each Balancing Authority or Frequency Response Sharing Group (FRSG) shall achieve an annual Frequency Response Measure (FRM) (as calculated and reported in accordance with Attachment A) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each Balancing Authority or FRSG to maintain Interconnection Frequency Response equal to or more negative than the Interconnection Frequency Response Obligation." The SDT has also defined a new term "Frequency Response Sharing Group (FRSG)" because they also believed that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."
The SDT has modified Requirement R2 to provide better clarity. The requirement now reads "Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO and shall use this Frequency Bias Setting until directed to change by the ERO to ensure effectively coordinated Tie Line Bias control.".

The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005-0.1b.
The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. The SDT also believes that Attachment A only details the process the ERO is to use when evaluating and making modifications to the minimum Frequency Bias Setting.

The SDT disagrees with your comment concerning an additional requirement for timing of reporting. The SDT believes that this is an administrative issue and is better handled within an attachment. The SDT would also like to note that an attachment when referenced in a requirement becomes mandatory and enforceable.

The SDT thanks you for your suggested ordering for the requirements but believes that the revised proposed standard reflects the proper order in that it sets the goal at beginning of year, calculates performance, reports performance and calculates bias at the end of the year.

Ameren	No	R1.While we agree with the concept of the entire requirement and the determination of the Interconnection Frequency Response Obligation, we believe that the accurate measurement of individual BA's FRM has not yet been demonstrated. This requirement should not be part of the standard (even with the additional 12 months in the effective date) until the field trial demonstrates that

| Organization | Question 2 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{ll}\hline each BA's FRM can be consistently calculated to a level that will not create false non-

compliance to this requirement. While the calculation methodology in FRS Form 1

looks promising, with the A-value and B-value average periods, we believe successful

completion of the field trial is prudent.

R5. We were not sure if it was intended for this comment question to include

Requirement R5, but have decided to include our comments here. While we agree

with the requirement of R5, it should not be at the expense of changing the value of

L10 in BAL-001, R2, which has been accepted by FERC in Order 693. An

accommodation should be made so that any changes to the Frequency Bias Setting

according to BAL-003, R5, should not affect the value of L10 used in BAL-001, R2.\end{array}\right.\right\}\)

Organization	Yes or No	Question 2 Comment
		This revision adds new performance measure responsibilities on the BA who likely has no direct control over every resource affecting their performance within their footprint. We are not necessarily challenging the performance measures themselves, nor their underlying objectives, however AEP views this as a gap in responsibilities which potentially effects reliability.

Response: The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" to eliminate any confusion with the present d3efined term "Reserve Sharing Group". The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."

Similar to traditional Reserve Sharing Groups for Contingency Reserves, FRSGs as proposed in this standard , are voluntary organizations whose members determine the terms and conditions of participation. The members of the FRSG would determine how to allocate sanctions among its members. This standard does not mandate the formation of FRSGs, but allows them as a means to meet one of the FERC's Order No. 693 directives.

FRSG performance may be calculated on one of two ways:

- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or
- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual annual performance.

The SDT has been instructed to include a "reliability outcome" within the requirements and therefore included the language "...coordinated control...". The SDT understands that this does not provide any additional clarity for complying with the requirement and could be removed. The SDT will forward your concerns about the wording to the Standards Committee Quality Review group for consideration.
The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005-0.1b.
The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.

Organization	Yes or No	Question 2 Comment

The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.

There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.
Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.

Great River Energy	No	R1: Including the Reserve Sharing Group (RSG) in the Frequency Response Obligation is outside of the boundaries of a RSG. Where or how would a Frequency Bias be determined for an RSG to determine their Frequency Response Obligation? Although it is apparent that frequency responds during the implementation of reserves, the intention of a RSG is not to share frequency response, but rather to share Reserves. Additionally, if the Frequency Response Obligation is not met by the RSG how are penalties assessed? Should they be assessed to the group as a whole or strictly to the generators that did not meet their individual obligation? R3: Needs to include verbiage for those circumstances when it would be necessary to run AGC out of TLB such as during necessary testing. The BA should have the option to operate out of TLB for a predetermined amount of time if needed when notification and coordination with the RC has been established.

Response: The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."

Similar to traditional Reserve Sharing Groups for Contingency Reserves, FRSGs as proposed in this standard , are voluntary organizations whose members determine the terms and conditions of participation. The members of the FRSG would determine

Organization	Yes or No	Question 2 Comment

how to allocate sanctions among its members. This standard does not mandate the formation of FRSGs, but allows them as a means to meet one of the FERC's Order No. 693 directives.

FRSG performance may be calculated on one of two ways:

- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or
- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual annual performance.

The SDT has modified the Background Document to further explain how an RSG (now FRSG) can be used to supply Frequency Response.

The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005-0.1b.

Tucson Electric Power

| Organization | Yes or No | Question 2 Comment |
| :--- | :--- | :--- | :--- |$|$| modified the requirement and believes we have implemented the intent of your suggestion. |
| :--- | :--- | :--- |

Organization	Yes or No	Question 2 Comment
		standard. BPA believes that R3 should include a minimal amount of time (suggesting a couple of hours per year) to allow for testing other modes. Requirement R3 requires each Balancing Authority not receiving Overlap Regulation Service to operate its AGC in Tie Line Bias mode... unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area. There may be occasions in which an entity needs to perform testing or other instances where it is necessary or desirable to operate in a mode other than Tie Line Bias that does not qualify as an Adverse Reliability Impact, but never the less is necessary or desired. BPA recommends including language that would permit operation other than Tie Line Bias mode provided the Reliability Coordinator was notified.BPA seeks clarification from the drafting team as to whether or not there will be any conflicts between proposed Requirement R3 and the requirements of FERC-approved regional reliability standard BAL-004-WECC-1 Automatic Time Error Correction. BPA agrees with the concept of R4, however, BPA again disagrees with the ERO validation of the frequency bias setting. BPA believes that reducing frequency bias obligation is detrimental to reliability. It seems that lowering the Minimum Frequency Bias Setting from 1% to $.8 \%$ will result in a lower response, which in turn will lower the natural frequency response. BPA believes that over time, it would seem that this pattern would lead to poorer response. BPA believes that R5 should read "greater than or equal to one of the following" not "at least equal to". The requirement should be a part of Form 1 or included in R2. For variable bias, the minimum percentage should be based on the forecasted month peak.
Response: R1 - The FRO can be estimated by the BA but the actual BA FRO for compliance is based on the BA's footprint and is a function of the Interconnection FRO.		

Organization	Yes or No	Question 2 Comment

Modifications the FRS Form 1 would go through the Standard Drafting Process.
The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."

Similar to traditional Reserve Sharing Groups for Contingency Reserves, FRSGs as proposed in this standard , are voluntary organizations whose members determine the terms and conditions of participation. The members of the FRSG would determine how to allocate sanctions among its members. This standard does not mandate the formation of FRSGs, but allows them as a means to meet one of the FERC's Order No. 693 directives.

FRSG performance may be calculated on one of two ways:

- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or
- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual annual performance.

The SDT has modified the Background Document to further explain how an RSG (now FRSG) can be used to supply Frequency Response.

R2 - The SDT is interested in the use of good data for the calculations but does not believe that a BA should be penalized for minor data errors. This is why the SDT proposes that the ERO validate the data. In addition, this process is used today.

R3 - The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005-0.1b.
R4 - Again, this is a process that is in use today. The SDT is not proposing that the ERO modify anything, just proposing that the ERO validate the data being supplied.

R5 - The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. However, the SDT understands your concern with the reduction of the minimum Frequency Bias Setting affecting other performance requirements. The process to do this is outlined in a Procedure developed by the SDT which replaces Attachment B. The Procedure manages a "go slow" approach to making this happen and includes checks to confirm there are not unexpected influences injected into the CPS-related calculations. Based on concerns raised by the industry, the drafting team has modified the Procedure to make the initial minimum Bias Setting 0.9% of peak and has included a provision that the ERO will evaluate the impact caused by a change

Organization	Yes or No	Question 2 Comment
in minimum Bias Setting. The evaluation will look at both frequency performance and impact on CPS-related compliance calculations.		
Manitoba Hydro	No	Regarding R1: 1. Neither R1 nor the referenced Attachment A clarifies the FRM requirements for an RSG to comply versus a BA. In particular (i) At p.3, Attachment A states that the ERO is responsible for "annually assigning an FRO and Frequency Bias Setting to each BA." No mention is made of RSGs. (ii) Attachment A only references RSGs in the context of reporting obligations for Form 1 (at p.4) and (iii) Compared to BAL-002-0 R1.1, which clearly states that the BA may elect to fulfill its obligation through an RSG and that in such cases the RSG has the same responsibilities as each BA (that is a participant in the RSG). 2. It should be clarified that this requirement applies to a BA, where the BA doesn't belong to an RSG, OR to an RSG. As it is currently drafted, the standard applies to each BA and each RSG. It is redundant in that each BA would need to comply, whether or not they are a member of an RSG that would also be required to comply. Further, the NERC Glossary definition of an RSG is a group of BAs that collectively maintain, allocate and supply operating reserves. No mention is made of the agreement including the sharing or delegation of responsibility related to FRM. Accordingly, the standard should only reference a BA being able to delegate responsibility to an RSG if the RSG Agreement allows for such delegation. 3. R1 does not specify where or how the FRO is determined. Presumably this would be determined by the ERO pursuant to Attachment A. 4. The phrase "to ensure that sufficient Frequency Response ..." should be separated from the requirement as it is

| Organization | Yes or No | Question 2 Comment |
| :--- | :--- | :--- | :--- |

Organization	Yes or No
performance.	
The SDT has modified the Background Document to further explain how an RSG (now FRSG) can be used to supply Frequency	
Response.	

Comment 3 - The process for determining the FRO is detailed in Attachment A.
Comment 4 - The SDT has been instructed to include a "reliability outcome" within the requirements. The SDT will forward your concerns about the wording to the Standards Committee Quality Review group for consideration.

R2 - Comment 1 - The Frequency Bias Setting is calculated on FRS Form 1. The ERO is only validating the data not calculating the setting. The ERO will be working with the BA to correct any data errors discovered during the validation process. This is a process that is in use today
Comment 2 \& 3 - The SDT has made significant modifications to the Background Document and Attachment A to provide additional clarity. The SDT has added language to Attachment A regarding validation of the BA data. The SDT has removed all references to a FRSG for Frequency Bias Setting. Attachment B has been removed and the information from Attachment B has been incorporated in a Procedure developed by the SDT for the ERO to follow to support this standard.

NV Energy	No	Requirement 1 seems to be the only one that has any applicability to an RSG; however, it is unclear under what circumstances this requirement applies to an RSG. Suggest changing the R1 to be addressed solely to BA's or alternatively, explain under Applicability section 1.2 what "where applicable" means.

Response: The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."

Similar to traditional Reserve Sharing Groups for Contingency Reserves, FRSGs as proposed in this standard , are voluntary organizations whose members determine the terms and conditions of participation. The members of the FRSG would determine how to allocate sanctions among its members. This standard does not mandate the formation of FRSGs, but allows them as a means to meet one of the FERC's Order No. 693 directives.

Organization	Yes or No
FRSG performance may be calculated on one of two ways:	
- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or	
- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual annual	

The SDT has modified the Background Document to further explain how an RSG (now FRSG) can be used to supply Frequency Response.

ACES Power Marketing Standards Collaborators	No	Requirement 1 should not apply to a Reserve Sharing Group. Reserve Sharing Groups (RSG) are designed to share Contingency Reserves and/or Operating Reserves not Frequency Response. While these reserves may be frequency responsive, they are not being shared for the purpose of expanding frequency response. Furthermore, while reserve sharing groups may calculate a joint ACE by summing its individual BA ACE values, RSGs do not have a Frequency Bias Setting which is necessary to assess a Frequency Response Obligation.

Response: The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."
Similar to traditional Reserve Sharing Groups for Contingency Reserves, FRSGs as proposed in this standard, are voluntary organizations whose members determine the terms and conditions of participation. The members of the FRSG would determine how to allocate sanctions among its members. This standard does not mandate the formation of FRSGs, but allows them as a means to meet one of the FERC's Order No. 693 directives.

FRSG performance may be calculated on one of two ways:

- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or
- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual annual performance.

Organization	Yes or No	Question 2 Comment
The SDT has modified the Background Document to further explain how an RSG (now FRSG) can be used to supply Frequency Response.		
City of Redding, Oregon Public Utility Commission, BrightSource Energy, Inc., Clark Public Utilities, Avista, Tri-State G \& T Association, Inc.; Deseret Power	Negative	Requirement R3 requires each Balancing Authority not receiving Overlap Regulation Service to operate its AGC in Tie Line Bias mode... unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area. There may be occasions in which an entity needs to perform testing or other instances where it is necessary or desirable to operate in a mode other than Tie Line Bias that does not qualify as an Adverse Reliability Impact, but never the less is necessary or desired. Recommend including language that would permit operation other than Tie Line Bias mode provided the Reliability Coordinator was notified.
Response: The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005-0.1b.		
Alberta Electric System Operator	No	The language used in the requirements is superfluous. This could result in confusion and incorrect assumptions being made. In R1, the comment within brackets "(as detailed in Attachment A and calculated on FRS Form 1)", is not necessary as it is already part of the FRM definition. We suggest removing this bracketed text from the requirement. Also in R1, the phrase "to ensure that sufficient Frequency Response is provided by each BA or RSG to maintain an adequate level of Frequency response in the Interconnection" is a high level objective that does not add clarity to this requirement. We suggest removing this from the requirement. R2, R3 and R5 use similar language e.g. "to ensure effectively coordinated Tie Line Bias control", "to ensure adequate control response" etc. Although it provides background information, this does not add clarity to the requirement. We suggest removing these from the requirements.
Response: Based on industry comments the SDT has modified the definition for FRM such that it no longer references any other documents. Therefore, the SDT believes that leaving the reference to Attachment in the standard is prudent, based on advice		

Organization	Yes or No
from the standards staff - without a reference to the specific Attachment, the responsible entity can't be held to compliance with the performance identified in that attachment.	
The SDT has been instructed to include a "reliability outcome" within the requirements and therefore included the language you	
are referencing. The SDT understands that this does not provide any additional clarity for complying with the requirement and	
could be removed. The SDT will forward your concerns about the wording to the Standards Committee Quality Review group for	
consideration.	

Hydro-Quebec TransEnergie	No	The objective of R2 is that all BA's implement their new Bias Setting at the same time, based on the previous year's data, so that control stays the most effective throughout the Interconnection (Tie-Line Bias). In addition, the new Bias will be in effect all year long. The process is quite simple and straightforward for a fixed Bias Setting. As for Variable Bias Setting, this process is not applicable before the fact since the Bias equation can depend on real-time values that are not known in advance. In addition, the simultaneous Bias implementation is not an issue for a single BA Interconnection. Therefore, we suggest that Requirement 2 applies only to Fixed Bias Setting.
Response: The SDT agrees with your comment and has modified Requirement R2 to reflect your concern. The SDT has also added an addition Requirement R3 to address entities using a variable Frequency Bias Setting.		
Northeast Power Coordinating Council	No	The requirements should not be directed at Balancing Authorities, as generators are the main supplier of "discretionary" frequency response. Requirement R1 refers to an attached form, which is not part of the standard and therefore not enforceable.
Response: The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.		
The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for		
generators. The drafting team is obliged to stay within the bounds of its SAR.		

Organization	Yes or No
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of	
generators in North America. It would be many times more costly and difficult to implement a standard that measures all	
generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency	
response in all Interconnections, the value of implementing a performance obligation on generators at this time would not	
outweigh the effort and cost.	
Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need	
for a generator performance obligation, they are encouraged to submit a SAR to that effect.	
If an attachment is referenced in a requirement that attachment becomes part of the requirement. The requirement has been	
modified to no longer reference an attached form.	

$\left.\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Beaches Energy Services; City } \\ \text { of Bartow, Florida; Tampa } \\ \text { Electric Co. }\end{array} & \text { Negative } & \begin{array}{l}\text { The standard is silent on the "methods to obtain Frequency Response". For instance, } \\ \text { the BA does not have authority over governor and other generator settings. There } \\ \text { should be a requirement for GOPs to incorporate setting changes directed by the BA, } \\ \text { otherwise the standard establishes requirements that BAs may not have the } \\ \text { authority to achieve. R1 includes the Reserve Sharing Group in its applicability, but } \\ \text { none of the other requirements do. }\end{array} \\ \begin{array}{lll}\text { There is no consideration of "footprint" changes of the BA resulting in different } \\ \text { allocation from the ERO during a year. The standard and Attachments seem to } \\ \text { specify an annual process with due dates in December and January with no } \\ \text { allowance for mid-year changes and associated allocation changes. }\end{array} \\ \text { If a standard has a requirement for the ERO, who will audit the ERO for compliance? } \\ \text { If the ERO does not meet its obligations, can an entity still be found non-compliant, }\end{array}\right\} \begin{array}{ll}\text { especially on a schedule basis? Wasn't there an issue of assigning standards to RROs, } \\ \text { e.g., the fill-in-the-blank standards? Are there similar issues with assigning } \\ \text { requirements to the ERO? Is the ERO a "user, owner or operator" of the BPS under } \\ \text { Section 215, e.g., at (b)(1)"... All users, owners and operators of the bulk-power } \\ \text { system shall comply with the reliability standards that take effect under this section." } \\ \text { I question how this would work from a compliance perspective. } \\ \text { On R5, the wording should be changed from "absolute value is at least equal to" to to }\end{array}\right\}$

Organization

Organization	Yes or No	Question 2 Comment
		R4 should clarify that a BA performing Overlap Regulation Service should still be required to operate its AGC in "Tie Line Bias" mode.
Response: The SDT has define presently defined term "Reser consist of two or more Balanci jointly meet the Frequency Re Similar to traditional Reserve organizations whose members how to allocate sanctions amo means to meet one of the FER FRSG performance may be calcula - Calculate a group NI_{A} a - Jointly submit the individu performance. The SDT has modified the Back Response. The SDT has removed the requ Requirements R6 and R7 in BA	new term Sharing Gro Authorities nse Obliga ring Group termine th its membe Order No. ated on one measure th al BAs' For ound Docum ment to op 05-0.1b.	equency Response Sharing Group (FRSG)" because it believes that using the " could cause confusion. The new definition reads "A group whose members hat collectively maintain, allocate, and supply operating resources required to ns of its members." or Contingency Reserves, FRSGs as proposed in this standard , are voluntary terms and conditions of participation. The members of the FRSG would determine This standard does not mandate the formation of FRSGs, but allows them as a 3 directives. two ways: group response to all events in the reporting year on a single FRS Form 1, or 1 s , with a summary spreadsheet that sums each participant's individual annual nt to further explain how an RSG (now FRSG) can be used to supply Frequency ate AGC in Tie Line Bias mode as this requirement was duplicative of the
Tri-State G \& T Association, Inc.; Tucson Electric Power Co.; U.S. Army Corps of Engineers; South California Edison ; Platte River Power Authority; Pacific Gas and Electric Company; Colorado Springs Utilities; Idaho Power	Negative	We believe that there are several modifications that, if implemented to the existing requirements, would result in an improved, clarified standard. As drafted, Requirement R1 requires Balancing Authorities or Reserve Sharing Groups (RSGs) to achieve an annual Frequency Response Measure (FRM) that is equal to or more negative than its Frequency Response Obligation (FRO). As RSGs exist today, FRM performance by an RSG is not contemplated in the definition of FRM and appears to apply more towards 'secondary response'. Recommend clarifiying this concept and possibly including an example in the background

| Organization | Yes or No | Question 2 Comment |
| :--- | :--- | :--- | \left\lvert\, | Company; California Energy |
| :--- | :--- |
| Commission; California ISO; |
| Deseret Power |\quad| document to help explain how this would work. |
| :--- |
| Requirement R3 requires each Balancing Authority not receiving Overlap Regulation |
| Service to operate its AGC in Tie Line Bias mode... unless such operation would have |
| an Adverse Reliability Impact on the Balancing Authority's Area. There may be |
| occasions in which an entity needs to perform testing or other instances where it is |
| necessary or desirable to operate in a mode other than Tie Line Bias that does not |
| qualify as an Adverse Reliability Impact, but never the less is necessary or desired. |
| Recommend including language that would permit operation other than Tie Line Bias |
| mode provided the Reliability Coordinator was notified. We seek clarification from |
| the drafting team as to whether or not there will be any conflicts between proposed |
| Requirement R3 and the requirements of FERC-approved regional reliability standard |
| BAL-004-WECC-1 - Automatic Time Error Correction. |\right.

| Organization | Yes or No | Question 2 Comment |
| :--- | :--- | :--- | :--- |
| The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005-0.1b. | | |
| ISO New England Inc | No | We do not agree with placing a requirement on Balancing Authorities, as generators
 are the main supplier of "discretionary" frequency response. Also, the requirement
 refers to an attached form, which is not part of the standard and therefore not
 enforceable. |
| Response: The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency
 Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over
 interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not | | |
| own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits. | | |
| The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for | | |
| generators. The drafting team is obliged to stay within the bounds of its SAR. | | |
| There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of | | |
| generators in North America. It would be many times more costly and difficult to implement a standard that measures all | | |
| generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency | | |
| response in all Interconnections, the value of implementing a performance obligation on generators at this time would not | | |
| outweigh the effort and cost. | | |
| Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need | | |
| for a generator performance obligation, they are encouraged to submit a SAR to that effect. | | |
| If an attachment is referenced in a requirement that attachment becomes part of the requirement. However the requirement has | | |
| been modified to no longer reference an attached form. | | |

Organization Yes or No Question 2 Comment

Organization	Yes or No	Question 2 Comment
Florida Municipal Power Agency/JEA Electric Compliance	No	We thank the SDT for their hard work and diligence in moving this Project forward. However, we have some concerns that cause us to not support the standard in its current form. In general, we believe that there has not been sufficient prudency review for the standard, especially R1, to justify a performance based standard around a Frequency Response Measure. We also believe that the proposed standard does not meet all of the conditions of the Final SAR and Supplemental SAR.The "Final SAR" was to develop methods by which a performance based standard would eventually be developed. The Final SAR states:"The proposed standard's intent is to collect data needed to accurately model existing Frequency Response. There is evidence of continuing decline in Frequency Response in the three Interconnections over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be modeled, and the reasons for the decline in Frequency Response can be identified. Once thereasons for the decline in Frequency Response are confirmed, requirements can be written to control Frequency Response to within defined reliability parameters."BAL-003-1 does not seem to complete the scope of this "Final SAR". For instance, "the reasons for the decline in Frequency Response" were not confirmed to our knowledge; and the field trial is not completed to our knowledge. The Supplemental SAR adds to the scope of the Final SAR:"To provide a minimum Frequency Response Obligation for the Balancing Authority to achieve, methods to obtain Frequency Response and provide a consistent method for calculating the Frequency Bias Setting for a Balancing Authority. In addition, the standard will specify the optimal periodicity of Frequency Response surveys."The Supplemental SAR does not eliminate the pre-requisite contained in the Final SAR to determine the reasons for the decline in frequency response and confirm them before establishing "defined reliability parameters". In addition, the standard does not complete the requirement of the Supplemental

| Organization | Yes or No | Question 2 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l}SAR to identify "methods to obtain Frequency Response". For instance, neither the

BA nor the RSG have authority over governor and other generator settings. There

should be a requirement for GOPs to incorporate setting changes directed by the BA,

otherwise the standard establishes requirements that BAs and RSGs may not have

the authority to achieve.

There is no consideration of "footprint" changes of the BA resulting in different

allocation from the ERO during a year. The standard and Attachments seem to

specify an annual process with due dates in December and January with no

allowance for mid-year changes and associated allocation changes.

If a standard has a requirement for the ERO, who will audit the ERO for compliance?

If the ERO does not meet its obligations, can an entity still be found non-compliant,

especially on a schedule basis? Wasn't there an issue of assigning standards to RROs,

e.g., the fill-in-the-blank standards? Are there similar issues with assigning

requirements to the ERO? Is the ERO a "user, owner or operator" of the BPS under

Section 215, e.g., at (b)(1)"... All users, owners and operators of the bulk-power

system shall comply with the reliability standards that take effect under this section."

We question how this would work from a compliance perspective.\end{array}\right.\right]\)

| Organization | Yes or No |
| :--- | :--- |\quad Question 2 Comment

The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.
Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.

The SDT has also included other methods that a BA can use to provide Frequency Response in the Background Document.
The SDT has added language to Attachment A to address changes in a BA's footprint.
The proposed standard is not putting a requirement on the ERO. There is language in the Attachments to provide additional time for a BA to become compliant if the ERO is late in providing the necessary information. If the ERO does not provide the necessary information then the BA would not be required to modify anything and therefore the last information provided would be that which would be used for compliance purposes.

Imperial Irrigation District	Yes	
SPP Standards Review Group	Yes	
Southwest Power Pool Regional Entity	Yes	
Salt River Project	Yes	
Florida Power \& Light Company	Yes	
Independent Electricity	Yes	

NERC

Organization	Yes or No	
System Operator		
Associated Electric Cooperative Inc	Yes	
Cleco Corporation	Yes	
Keen Resources Asia Ltd.	Yes	

3. The SDT has developed VRFs for the proposed Requirements within this standard. Do you agree that these VRFs are appropriately set? If not, please explain in the comment area.

Summary Consideration: The majority of the commenters agreed with the VRFs that the SDT has proposed for the requirements within the standard.
One commenter felt the VRFs were too high and that they should have a "lower" VRF. The SDT developed the VRFs using the NERC Violation Risk Factor guidelines approved by FERC. A lower VRF is an administrative type of requirement that, if violated would not be expected to adversely affect the electrical state or capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system; or, a requirement that is administrative in nature and a requirement in a planning time frame that, if violated, would not, under the emergency, abnormal, or restorative conditions anticipated by the preparations, be expected to adversely affect the electrical state or capability of the bulk electric system, or the ability to effectively monitor, control, or restore the bulk electric system. Violation of any of the requirements in the proposed standard could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system.
Another commenter stated that they could not fine the "Risk Severity Levels" in the standard. The SDT is not sure as to the meaning of this comment. The SDT believes that the commenter may have been mixing two different terms, Violation Risk Factors (VRFs) and Violation Severity Levels (VSLs). The question asked by the SDT was concerning the VRFs. These are located within the body of the Requirement. The VSLs are located towards the end of the proposed standard.

Organization	Yes or No	Question 3 Comment
Seattle City Light	Negative	Answer: Yes. Comments: LADWP and SCL agree with the following VRFs: - R1 - Medium - R2 - Medium - R3 - Medium - R4 - Medium - R5 - Medium
Response: The SDT thanks you for your clarifying comment.		
Energy Mark, Inc.	No	Comment 5: See comments in the non-binding poll.
Response: Please see our response to your comments from the non-binding poll.		
Florida Power \& Light Company	No	Could not find the Risk Severity Levels in the documents.

| Organization | Yes or No | Question 3 Comment |
| :--- | :--- | :--- | :--- |
| Response: The SDT is not sure as to the meaning of your comment. The SDT believes that you may be mixing two different terms,
 Violation Risk Factors (VRFs) and Violation Severity Levels (VSLs). The question asked by the SDT was concerning the VRFs. These
 are located within the body of the Requirement. The VSLs are located towards the end of the proposed standard. | | |
| Cleco Corporation | No | Please note Cleco does not use the VRFs therefore we feel too much energy and time
 is spent on the VRFs. The SDT needs to concentrate on the requirements and
 measurements. |

Organization	Yes or No	
Bonneville Power Administration	Yes	
Imperial Irrigation District	Yes	
Northeast Power Coordinating Council	Yes	
MRO NSRF	Yes	
SERC OC Standards Review Group	Yes	
SPP Standards Review Group	Yes	
ISO/RTO Council Standards Review Committee	Yes	
ACES Power Marketing Standards Collaborators	Yes	
Southwest Power Pool Regional Entity	Yes	
Salt River Project	Yes	
Progress Energy	Yes	
Southern Company	Yes	
FMPP		

NERC

Organization	Yes or No	
ISO New England Inc	Yes	
Tucson Electric Power	Yes	
Independent Electricity System Operator	Yes	
Associated Electric Cooperative Inc	Yes	
American Electric Power	Yes	
South Carolina Electric and Gas	Yes	
Manitoba Hydro	Yes	
Constellation Energy Commodities Group	Yes	
Great River Energy	Yes	
Hydro-Quebec TransEnergie	Yes	
Duke Energy	Yes	
Keen Resources Asia Ltd.	Yes	

4. The SDT has developed Measures for the proposed Requirements within this standard. Do you agree with the proposed Measures in this standard? If not, please explain in the comment area.

Summary Consideration: Many of the commenters were concerned with the language in Requirement R3 stating that an entity had to be operating in Tie Line Bias mode unless there were adverse affects on the BES and that if the requirement was modified that the measure should be modified. The SDT explained that it had removed this requirement from the proposed standard since they felt it was duplicative of Requirement R6 and R7 in BAL-005-0.1b.

Some commenters objected to the definition for FRM and the Measure referencing another document (FRS Form 1). The SDT explained that it modified the definition for FRM to no longer reference another document. The revised definition reads "The median of all the Frequency Response observations reported annually by Balancing Authorities for frequency events specified by the ERO. This will be calculated as MW/0.1 Hz."

A couple of the commenters had concerns with Requirement R5 in that it should reference "natural Frequency Response" as a third bullet. The SDT has explained that it removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. The SDT did not include the term "natural Frequency Response" within the standard itself but included it in the Background Document and Attachment A. The SDT felt that this provided additional clarity within the requirement and allowed for further explanation of the term in the Background Document and Attachment A.

Some commenters indicated that the use of an RSG as a method for supplying Frequency Response was not fully explained. The SDT modified the Background Document to further explain how an RSG (now FRSG) could be used to supply Frequency Response. The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."
A couple commenters wanted the sampling interval to be tuned on a per Interconnection basis to support HQTE's characteristics. The SDT agreed and explained that it adjusted the event selection criteria to address concerns related to response driving frequency back to pre-event level during the B value measurement period and this adjustment should address their concern.
Organization

Organization	Yes or No	Question 4 Comment
Seattle City Light	Negative	Answer: No. Comments: LADWP and SCL recommend that the Measures for Requirement 3 and Requirement 5 reflect their comments to Question 2.
Response: The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005- The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3.		
Constellation Energy Commodities Group	No	Based on language modifications proposed to the Requirements, the measures should be revisited.
Response: The SDT has revised the Measures to align with modifications made to the Requirements.		
Xcel Energy	No	Based on our suggested changes to R3 in response to Question 2, the drafting team should modify M3 to be consistent with the proposed language.
Response: The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005-0.1b.		
MRO NSRF	No	Based on suggested changes to R3 in response to Question 2, the drafting team should modify M3 to be consistent with the proposed language. Additionally, M1 should be revised to not reference a specific Form. The Form may be the format of choice but it should not be an implied requirement. Measures 3 and 4 identify the use of "operating logs" as evidence. Measure 2 identifies hard copy and electronic evidence, "or other evidence". We suggest calling out specifically "operator logs" for M2 also, in case there are system problems in capturing hard copy or electronic evidence during the short time window for implementation.
Response: The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005-0.1b.		
The SDT has modified Measure M1 which no longer references a form but does reference Attachment A to align with the requirement.		

Organization	Yes or No	Question 4 Comment

The SDT is only providing examples ("...such as...") of what could be used to reflect compliance. Other evidence can be used as long as it reflects compliance with the standard.

Bonneville Power Administration	No	BPA believes that historian data should be able to be used for evidence.
Response: The SDT is only providing examples ("...such as...") of what could be used to reflect compliance. Other evidence can be used as long as it reflects compliance with the standard. The SDT believes that the data from the software program "Historian" could be used to demonstrate compliance..		
Manitoba Hydro	No	It should be clarified that R1 requirement applies to a BA, where the BA doesn't belong to an RSG, or to an RSG. As it is currently drafted, the standard applies to each BA and each RSG. It is redundant in that each BA would need to comply, whether or not they are a member of an RSG that would also be required to comply. Further, the NERC Glossary definition of an RSG is a group of BAs that collectively maintain, allocate and supply operating reserves. No mention is made of the agreement including the sharing or delegation of responsibility related to FRM. Accordingly, the standard should only reference a BA being able to delegate responsibility to an RSG if the RSG Agreement allows for such delegation.

Response: The SDT has modified the Background Document to further explain how an RSG (now FRSG) can be used to supply Frequency Response. The SDT has modified the Applicability Section to clarify when a BA or FRSG is accountable for compliance.

The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."

Tucson Electric Power	No	It should be clear that historical data may be used to show compliance.

Response: The SDT is only providing examples ("...such as...") of what could be used to reflect compliance. Other evidence can be used as long as it reflects compliance with the standard. The SDT believes that the data used to reflect compliance would have to

Organization	Yes or No	Question 4 Comment
be historical data.		
Seattle City Light/ Los Angeles Department of Water and Power	No	LADWP and SCL recommend that the Measures for Requirement 3 and Requirement 5 reflect their comments to Question 2.
Response: The SDT has removed Requirement R3 as it is duplicative of Requirements R6 \& R7 in BAL-005-0. The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3.		
ISO/RTO Council Standards Review Committee	No	M1: The measure should not be tied to a specific Form. If a BA has the evidence but does not provide it on a given Form, how is the reliability of the Power System impacted? The Form may be the format of choice but it should not be an implied requirement. M4: This measure does not read quite right. Something seems to be missing in the part that says: "...showing when Overlap Regulation Service is provided including Frequency Bias Setting calculation to demonstrate compliance with Requirement R4." This part might have read something like: "...showing that when it performed Overlap Regulation Service, it modified its Frequency Bias Setting in its ACE calculation or it calculated the Frequency Bias Setting meeting the conditions specified in Requirement R4."
Response: The SDT has modified Measure M1 which no longer references a form, however it does reference Attachment A to alig with the associated requirement. The SDT is only providing examples ("...such as...") of what could be used to reflect compliance. Other evidence can be used as long as it reflects compliance with the standard. The SDT has modified the Measure M4 to incorporate your suggested wording.		
Independent Electricity	No	M4: This measure does not read quite right. Something seems to be missing in the

Organization	Yes or No	Question 4 Comment
System Operator		part that says: "...showing when Overlap Regulation Service is provided including Frequency Bias Setting calculation to demonstrate compliance with Requirement R4." This part might have read something like: "...showing that when it performed Overlap Regulation Service, it modified its Frequency Bias Setting in its ACE calculation or it calculated the Frequency Bias Setting meeting the conditions specified in Requirement R4."
Response: The SDT has modified the Measure M4 to incorporate your suggested wording.		
ERCOT	No	Measure should be modified to align with revised Requirements per ERCOT's comments on \#1.
Response: The SDT has modified the Measures to align with the modifications to the Requirements.		
SERC OC Standards Review Group/ Progress Energy/ South Carolina Electric and Gas/ Duke Energy	No	See comments in Question 2 regarding utilization of the term "Reserve Sharing Group".
Response: Please see our response to your comments on Question 2 regarding "Reserve Sharing Group".		
Northeast Power Coordinating Council/ISO New England Inc.	No	The sampling interval needs to be tuned on a per Interconnection basis to support HQTE's characteristics.
Response: The SDT adjusted the event selection criteria to address concerns related to response driving frequency back to preevent level during the B value measurement period. We believe that this adjustment addresses your concern.		
Florida Power \& Light Company	No	What is meant by documented formulae for M5? Is a one time snapshoot of the AGC formual sufficien? The concept is ok but this needs clarification of proof.
Response: The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3.		

| Organization | Yes or No | Question 4 Comment |
| :--- | :---: | :--- | :--- |
| Southwest Power Pool
 Regional Entity | Yes | Measures are more specific and measurable than seen in the past. This is a positive
 improvement. |
| Response: The SDT thanks you for your affirmative response and clarifying comment. | | |
| Ameren | Yes | With the understanding that any suggested changes to the proposed requirements
 would come with corresponding changes to their measure. |
| Response: The SDT thanks you for your affirmative response and clarifying comment. The SDT agrees that any modification to a
 Requirement would necessitate a re-evaluation of the corresponding Measure. | | |
| Imperial Irrigation District | Yes | |
| SPP Standards Review Group | Yes | |
| ACES Power Marketing
 Standards Collaborators | Yes | |
| Salt River Project | Yes | |
| Energy Mark, Inc. | Yes | |
| FMPP | Yes | |
| Associated Electric
 Cooperative Inc | Yes | |
| NV Energy | Yes | |
| Cleco Corporation | | |

NERC

Organization	Yes or No	
Great River Energy	Yes	
Hydro-Quebec TransEnergie	Yes	
Keen Resources Asia Ltd.	Yes	

5. The SDT has developed VSLs for the proposed Requirements within this standard. Do you agree with these VSLs? If not, please explain in the comment area.

Summary Consideration: Most of the commenters indicated that VSLs for Requirement R1 should not include language tied to whether or not a BA is in a single BA Interconnection or a multi-BA Interconnection. Frequency Response is an Interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections. Consider a small BA whose performance is 70% of its' FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this $B A$ the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.

Several commenters did not agree with the VSLs for Requirement R3. The SDT removed Requirement R3 from the revised standard since the requirement was duplicative of Requirement R6 \& R7 in BAL-005-0.1b.

With concerns about the use of the RSG as a means to provide Frequency Response, the SDT modified the Background Document to further explain how an RSG (now FRSG) could be used to supply Frequency Response. The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."

Organization	Yes or No	Question 5 Comment	
Seattle City Light	Negative	Answer: No. Comments: LADWP and SCL recommend that either the VSL for Requirement 3 reflects its comments to Question 2, or that these comments be addressed as an exception in the Measure for Requirement 3.	
Response: Based on Industry comments and further review, the drafting team has deleted R3 as the requirement is duplicative			

Organization	Yes or No	Question 5 Comment
with R6 and R7 in BAL-005-0.1b.	Negative	1. The BA and interconnection meet the FRO differently. Suggest removing the interconnection performance from the VSL and develop additional levels of BA failure to meet its FRO.
Public Utility District No. 1 of Douglas County		

Response: The drafting team does not agree, but believes an explanation would be helpful.
VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections.

Consider a small BA that whose performance is 70% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.

| BrightSource Energy, Inc. | Negative | The negative vote from BrightSource is related to the proposed VSL only. The |
| :--- | :--- | :--- | proposed VSLs for Requirement R1 treats a BA that did not meet the FRO requirement differently depending on whether or not the Interconnection met the FRO requirement. The obligation of the BA to meet its allocated FRO should be consistent regardless of what the other entities within the interconnection are doing. Suggest removing the interconnection performance from the VSLs and developing four increasing levels of BA failure to meet its FRO. Conforming changes to the VSLs would need to be made for any changes to the Requirements as suggested in the comments to the standard.

[^62]VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's

Organization	Yes or No	Question 5 Comment

impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections.

Consider a small BA that whose performance is 70% of its FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.

U.S. Army Corps of Engineers; Platte River Power Authority; Pacific Gas and Electric Company; Idaho Power Company; Colorado Springs Utilities; California Energy Commission; California ISO; Clark Public Utilities; Tucson Electric Power Co.; Tri-State G \& T Association, Inc.	Negative	The proposed VSLs for Requirement R1 treats a BA that did not meet the FRO requirement differently depending on whether or not the Interconnection met the FRO requirement. The obligation of the BA to meet its allocated FRO should be consistent regardless of what the other entities within the interconnection are doing. Suggest removing the interconnection performance from the VSLs and developing four increasing levels of BA failure to meet its FRO. Conforming changes to the VSLs would need to be made for any changes to the Requirements as suggested in the comments to the standard.

Response: The drafting team does not agree, but believes an explanation would be helpful.

VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections.

Consider a small BA that whose performance is 70% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response

Organization	Yes or No	Question 5 Comment
Obligation.		
Kansas City Power \& Light Co.	Negative	The VSL for Requirement 3 does not sufficiently reflect a thoughtful range of violation severity of duration or number of instances by which AGC is not in Tie-Line Bias mode.
Response: Based on Industry comments and further review, the drafting team has deleted R3 as the requirement is duplicative with R6 and R7 in BAL-005-0.1b.		
ACES Power Marketing; East Kentucky Power Coop.; Hoosier Energy Rural Electric Cooperative, Inc.	Negative	The VSLs on for Requirement R1 set a previously un-established precedent of relying on the performance of other registered entities to establish the severity level of the violation. This is not appropriate. The VSLs should be rewritten to provide further gradations of the violation severity based on the BA's own performance.
Response: The drafting team does not agree, but believes an explanation would be helpful. VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections. Consider a small BA that whose performance is 70% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.		
Southwest Transmission Cooperative, Inc.	Negative	The VSLs on for Requirement R1 set a previously un-established precedent of relying on the performance of other registered entities to establish the severity level of the violation. This is not appropriate. The VSLs should be rewritten to provide further gradations of the violation severity based on the BA's own

Organization Yes or No Question 5 Comment

Response: The drafting team does not agree, but believes an explanation would be helpful.

Organization	Yes or No	Question 5 Comment

VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections.

Consider a small BA that whose performance is 70% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.

Ameren Services; Ameren Energy Marketing Co./Ameren	Negative/No	It is not clear how the VSL for R1 uses the "Summation of the BA's FRM", when the requirement is BA or RSG specific.

Response: Based on comments, the drafting team has created a new definition for an entity called a Frequency Response Sharing Group (FRSG). FRSG performance may be calculated on one of two ways:

- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or
- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual annual performance.

Manitoba Hydro	Negative/No	The Violation Severity Levels for R1 penalize entities more severely depending on how the interconnection as a whole has performed. MH believes that BAs should only be held accountable for issues within their control and that the VSLs for R1 should be revised accordingly.

Response: The drafting team does not agree, but believes an explanation would be helpful.
VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections.

Organization	Yes or No	Question 5 Comment

Consider a small BA that whose performance is 70% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.

Constellation Energy Commodities Group	No	The language in the VSLs for R1 should be revisited based on the proposed language modifications above and should also clearly look to the FRM of a BA, group of BAs or RSG against the BA FRO not an Interconnection FRO.

Response: The drafting team has made conforming changes to VSLs based on wording changes to the Requirements.
Regarding the evaluation of the Interconnection, the drafting team does not agree, but believes an explanation would be helpful.
VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections.

Consider a small BA that whose performance is 70% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections.

The "Lower" and "Medium" VSLs say that the Interconnection has sufficient Frequency Response but individual BAs are deficient by small or larger amounts respectively. The High and Severe VSLs say the Interconnection does not meet the FRO and assesses sanctions based on whether the BA is deficient by a small or larger amount respectively. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.

Based on comments, the drafting team has created a new definition for an entity called a Frequency Response Sharing Group (FRSG). FRSG performance may be calculated on one of two ways:

Organization	Yes or No	Question 5 Comment
- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or - Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual annual performance.		
Bonneville Power Administration	No	BPA believes that R1 needs to be more clear and concise as to what is being conveyed in the requirement. It is difficult to understand. The proposed VSLs for Requirement R1 treats a BA that did not meet the FRO requirement differently depending on whether or not the Interconnection met the FRO requirement. The obligation of the BA to meet its allocated FRO should be consistent regardless of what the other entities within the interconnection are doing. Suggest removing the interconnection performance from the VSLs and developing four increasing levels of BA failure to meet its FRO.BPA believes that conforming changes to the VSLs would need to be made for any changes to the Requirements as suggested in the comments to the standard.
Response: The "Lower" and "Medium" VSLs say that the Interconnection has sufficient Frequency Response but individual BAs are deficient by small or larger amounts respectively. The High and Severe VSLs say the Interconnection does not meet the FRO and assesses sanctions based on whether the BA is deficient by a small or larger amount respectively. We would welcome suggested wording changes that relay this concept more clearly.		
With regard to removing a view of Interconnection performance, the drafting team does not agree, but believes an explanation would be helpful.		
VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections.		
Consider a small BA that whose performance is 70% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency		

Organization	Yes or No	Question 5 Comment

Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.

Florida Power \& Light Company	No	For R1 the low and high level descriptions appear to be identical and the high level is less than the medium risk level. For R3 there should be low, medium, and high levels. One BA not operating to TLB does not jepordize the Interconnection. Additionally, computer failures, database loads etc may require some period where TLB is not in service. Suggestion would be Lower VSL operation off of TLB for more than 5 but < 8 continuous hours or accumlative during the year of more than $8<16$ hours. Medium VSL would be operation off of TLB for more than 8 but <16 continuous hours or accumlative during the year of more than $16<24$ hours. High VSL would be operation off of TLB for more than $16<24$ continuous hours or accumlative during the year of more than $36<48$ hours. Severe VLS would be >24 continuous hours off of TLB or accumlative of >48.
Response: The "Lower" and "Medium" VSLs say that the Interconnection has sufficient Frequency Response but individual BAs are deficient by small or larger amounts respectively. The High and Severe VSLs say the Interconnection does not meet the FRO and assesses sanctions based on whether the BA is deficient by a small or larger amount respectively. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation. Based on Industry comments and further review, the drafting team has deleted R3 as the requirement is duplicative with R6 and R7 in BAL-005-0.1b.		
NV Energy	No	For R1, suggest that the VSL's not be dependent upon the aggregate performance of the BA's within an interconnection.
Response: The drafting VSLs are a starting poin mpact on reliability an VSLs are intended to p	agr	believes an explanation would be helpful. cess. The combination of the VSL and VRF is intended to measure a violation's sanction. Frequency Response is an interconnection-wide resource. The proposed ns on the same plain as single-BA Interconnections.

Organization
Yes or No
Question 5 Comment

Consider a small BA that whose performance is 70% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.

American Electric Power	No	It is not clear for R1 what the exact delineations are among Lower, Medium, High, and Severe VSL's.

Response: The "Lower" and "Medium" VSLs say that the Interconnection has sufficient Frequency Response but individual BAs are deficient by small or larger amounts respectively. The High and Severe VSLs say the Interconnection does not meet the FRO and assesses sanctions based on whether the BA is deficient by a small or larger amount respectively. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.

Seattle City Light	No	LADWP and SCL recommend that either the VSL for Requirement 3 reflects its comments to Question 2, or that these comments be addressed as an exception in the Measure for Requirement 3.

Response: Based on Industry comments and further review, the drafting team has deleted R3 as the requirement is duplicative with R6 andR7 in BAL-005-0.1b.

Los Angeles Department of Water and Power	No	LADWP recommends that either the VSL for Requirement 3 reflects its comments to Question 2, or that these comments be addressed as an exception in the Measure for Requirement 3.
Response: Based on Industry comments and further review, the drafting team has deleted R3 as the requirement is duplicative with R6 and R7 in BAL-005-0.1b.		
ReliabilityFirst	No	ReliabilityFirst thanks the SDT for their effort on this project. ReliabilityFirst has a number of concerns/questions related to the draft BAL-003-1 VSLs which include

Organization	Yes or No	Question 5 Comment
		the following: 1. General VSL Comment - For consistency with other standards, each VSL should begin with the phrase "The Responsible Entity..." or "The Balancing Authority". This is consistent with the language of the requirement and correctly pinpoints the appropriate responsible entity. 2. VSL R1 Comment - Based on the FERC Guideline \#3 "Violation Severity Level Assignment Should Be Consistent with the Corresponding Requirement". ReliabilityFirst suggests the following modification:a. Lower VSL - The Responsible Entity achieved an annual FRM within an Interconnection that was equal to or more negative than the Interconnection's FRO and the Responsible Entity's FRM was less negative than its FRO by more than 1% but by at most 30% or $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever one is the greater deviation from its FROb. Medium VSL - The Responsible Entity achieved an annual FRM within an Interconnection that was equal to or more negative than the Interconnection's FRO and the Responsible Entity's FRM was less negative than its FRO by more than 30% or by more than 15 MW/0.1 Hz, whichever one is the greater deviation from its FROc. High VSL - The responsible entity failed to achieve an annual FRM that is equal to or more negative than its FRO and the Responsible Entity's, FRM was less negative than its FRO by more than 1% but by at most 30% or $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever one is the greater deviation from its FROd. Severe VSL - The responsible entity failed to achieve an annual FRM that is equal to or more negative than its FRO and the Responsible Entity's FRM was less negative than its FRO by more than 30% or by more than 15 MW/0.1 Hz, whichever one is the greater deviation from its FRO3. VSL R4 Comment - Based on the FERC Guideline \#3 "Violation Severity Level Assignment Should Be Consistent with the Corresponding Requirement". ReliabilityFirst suggests the following modification: a. Example for Lower VSL which should be carried throughout all four VSLs - The Balancing Authority incorrectly modified the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with combined

Organization	Yes or No	

Organization	Yes or No	Question 5 Comment
- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual annual performance.		
SERC OC Standards Review Group	No	See comments in Question 2 regarding utilization of the term "Reserve Sharing Group". VSL for R1:The draft VSLs for R1 uses the summation of FRM for all BAs within an Interconnection as a factor in determining the applicable VSL. This does not seem consistent with R1. R1 is about a single BA and the individual BA's frequency response performance as measured by the FRM for that specific BA. Including the FRM summation of the Interconnection expands R1. It appears that a BA that is non-compliant with R1 could end up with either a Low/Medium or High/Severe VSL based upon the FRO performance of the Interconnection. The FRM performance of the Interconnection is beyond the knowledge and control of a single BA and should not be a determinate of the applicable VSL.Is there a technical basis for selection of the $1 \%, 30 \%$ and $15 \mathrm{MW} / .1 \mathrm{~Hz}$ VSL breakpoints? Does the Lower VSL give a 1% dead band to a BA's FRO? If so, will this be acceptable to NERC/FERC? VSL for R2:The VSL should reflect the language used in the requirement. R2 says a BA "not participating in Overlap Regulation service shall", while the VSL says a BA "not receiving Overlap Regulation Service....." The VSL language is not consistent with the requirement. VSLs for R5:Since Frequency Bias Setting is expressed as a negative value, the terms "absolute value" and "less than" must be used carefully. Wouldn't the "absolute value" of a BA's Frequency Bias Setting always be positive and thus it could never be less than the minimum specified by the ERO (a negative value)?
Response: With regard to R1, VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections.		

Organization
The "Lower" and "Medium" VSLs say that the Interconnection has sufficient Frequency Response but individual BAs are deficient by small or larger amounts respectively. The High and Severe VSLs say the Interconnection does not meet the FRO and assesses sanctions based on whether the BA is deficient by a small or larger amount respectively. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation. Regarding the 1\%, 30\% and 15MW breakpoints, the 1\% value accommodates rounding error. The 30\% or 15MW/0.1Hz is intended to comparably address both large and small BAs. The drafting team used its judgment in selecting these values and cannot predict what the FERC might accept. The SDT has modified the VSLs for Requirement R2 to correctly match the requirement. The SDT has removed Requirement R5 from the proposed standard and combined it into Requirements R2 and R3. Requirement R2 no longer references "absolute value" and Requirement R3 references "absolute value" only as a comparison to another "absolute value". Western Electricity Coordinating Council No The proposed VSLs for Requirement R1 treat a BA that did not meet the FRO requirement differently depending on whether or not the Interconnection met the FRO requirement. The obligation of the BA to meet its allocated FRO should be consistent regardless of what the other entities within the interconnection are doing. Suggest removing the interconnection performance from the VSLs and developing four increasing levels of BA failure to meet its FRO.

Organization

Response: The drafting team does not agree, but believes an explanation would be helpful.
VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections.

Consider a small BA that whose performance is 70% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response.

To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections.

The "Lower" and "Medium" VSLs say that the Interconnection has sufficient Frequency Response but individual BAs are deficient by small or larger amounts respectively. The High and Severe VSLs say the Interconnection does not meet the FRO and assesses sanctions based on whether the BA is deficient by a small or larger amount respectively. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.

JEA Electric Compliance/ MRO NSRF
No
Response: The drafting team does not agree, but believes an explanation would be helpful. The proposed VSLs for Requirement R1 treats a BA that did not meet the FRO requirement differently depending on whether or not the Interconnection met the FRO requirement. The obligation of the BA to meet its allocated FRO should be consistent regardless of what the other entities within the interconnection are doing. Suggest removing the interconnection performance from the VSLs and developing four increasing levels of BA failure to meet its FRO.
VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's
impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed
VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections.

Organization	Yes or No	Question 5 Comment

Consider a small BA that whose performance is 70% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response.

To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections.
The "Lower" and "Medium" VSLs say that the Interconnection has sufficient Frequency Response but individual BAs are deficient by small or larger amounts respectively. The High and Severe VSLs say the Interconnection does not meet the FRO and assesses sanctions based on whether the BA is deficient by a small or larger amount respectively. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.

Northeast Power Coordinating Council	No	The violation severity levels for R1 are reasonable. The technical writing needs to be enhanced for clarity.

Response: Thank you for the comment. The drafting team will look at ways to clarify the wording or provide an explanation in the Background Document.

ISO New England Inc	No	The violation severity levels for R1 seem to be reasonable. However, the technical writing needs to be enhanced for clarity

Response: Thank you for the comment. The drafting team will look at ways to clarify the wording or provide an explanation in the Background Document.

SPP Standards Review		
Group/Cleco Corporation	No	The VSLs for R2 are based on 5,15 and 25 days. What was the justification for these values? Could we just as well use 10,20 and 30 or some other set of values? In R3, we understand that brief periods of operation outside of TLB control are allowable providing 1) continued operation in TLB control would create ARI on the Interconnection or 2) that justification is provided for the periods when TLB is not used. For example, if something happens within our EMS that disables TLB control

Organization	Yes or No	Question 5 Comment
		are we compliant if we document the period as an EMS malfunction?
Response: Regarding R2, the time windows were based on judgment of the drafting team. Similar to the commenters' question, the team could have chosen 1, 7, 14 and 28 days or 1, 2, 3 or 4 days to frame the four levels of VSLs. The SDT has modified Attachment A to allow an implementation window of 3 days for implementation of the Frequency Bias Setting.		
With regard to R3, the drafting team has deleted R3 as the requirement is duplicative with R6 and R7 in BAL-005-0.1b.		
ACES Power Marketing Standards Collaborators/Great River Energy	No	The VSLs on for Requirement R1 set a previously un-established precedent of relying on the performance of other registered entities to establish the severity level of the violation. This is not appropriate. The VSLs should be rewritten to provide further gradations of the violation severity based on the BA's own performance.

Response: The drafting team does not agree, but believes an explanation would be helpful.
VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections.

Consider a small BA that whose performance is 70% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections.

The "Lower" and "Medium" VSLs say that the Interconnection has sufficient Frequency Response but individual BAs are deficient by small or larger amounts respectively. The High and Severe VSLs say the Interconnection does not meet the FRO and assesses sanctions based on whether the BA is deficient by a small or larger amount respectively. However, the SDT has added language to the requirement to reference the Interconnection Frequency Response Obligation.

Southern Company	No	VSL for R2:We suggest the language in the VSL be consistent with the language

Organization	Yes or No	Question 5 Comment
		used in the Requirement. The VSL for R2 says a BA 'not receiving Overlap Regulation Service.......' R2 says a BA 'not participating in Overlap Regulation service shall' VSLs for R5:Since Frequency Bias Setting is expressed as a negative value, the terms "absolute value" and "less than" must be used carefully. This VSL uses "absolute value" when referring to the BA's Frequency Bias Setting, but does not use "absolute value" when referring to the Frequency Response Obligation, or minimum value specified by the ERO. Consider revising this VSL so that a true comparison can be made.
Response: We agree with your suggested change for the VSL for R2 and corrected the mismatch between the requirement and the VSLs.		
The SDT has removed Requirement R5 from the proposed standard and combined it into Requirements R2 and R3. Requirement R2 no longer references "absolute value" and Requirement R3 references "absolute value" only as a comparison to another "absolute value".		
Tucson Electric Power	No	VSL's could be clearer and simpler. Allowance for the testing of other AGC modes should be considered.
Response: The drafting team has made changes to VSLs based on specific suggestions. Regarding AGC operation, the drafting team has deleted R3 as the requirement is duplicative with R6 and R7 in BAL-005-0.1b.		
Southwest Power Pool Regional Entity	Yes	Hard to follow the language for the VSL for R1. Suggest using formulas for ease of interpretation or provide an example in the Supporting Documentation.
Response: The drafting team will provide an explanation in the Background Document.		
Associated Electric Cooperative Inc	Yes	The VSLs appear reasonable for the risk and particularly where they assess higher severity when the BA or RSG Interconnection's performance was sub-standard as well.

Organization	Yes or No	Question 5 Comment
Response: Thank you for your comment.		
ISO/RTO Council Standards Review Committee	Yes	We do not have any issues with the VSLs, but wonder if the wording for R1 should have been "...Reserve Sharing Group's...". Alternatively, the wording after "interconnection's FRO" could be revised to: "...and the Balancing Authority's or the Reserve Sharing Group's FRM was..."
Response: The drafting team agrees and has made this change.		
Independent Electricity System Operator	Yes	We do not have any issues with the VSLs, but wonder if the wording for R1 should have been "...Reserve Sharing Group's...". Alternatively, the wording after "interconnection's FRO" could be revised to: "...and the Balancing Authority's or the Reserve Sharing Group's FRM was..."
Response: The drafting team agrees and has made this change.		
Texas Reliability Entity	Yes	We suggest that the Severe VSL for R3 is confusing and should be clarified as follows: "A Balancing Authority not receiving Overlap Regulation service failed to operate AGC in Tie Line Bias mode, when operation in Tie Line Bias mode would not have had an Adverse Reliability Impact on the Balancing Authority's Area."
Response: Regarding AGC operation, the drafting team has deleted R3 as the requirement is duplicative with R6 and R7 in BAL-005-0.1b.		
Imperial Irrigation District	Yes	
Salt River Project	Yes	
Energy Mark, Inc.	Yes	
FMPP	Yes	

NERC

Organization	Yes or No	Question 5 Comment
Xcel Energy	Yes	
Hydro-Quebec TransEnergie	Yes	
Keen Resources Asia Ltd.	Yes	

6. The SDT divided the previously posted "Attachment A - Background Document" into two documents to provide additional clarity. The first document "Attachment A- Supporting Document" which details the methods used to develop the events to be analyzed, the FRO, FRM and Frequency Bias Setting. Do you agree that the revised Attachment A - Supporting Document provides sufficient clarity on the methodologies to be used? If not, please explain in the comment area.

Summary Consideration: The majority of the commenters pointed out that there was a discrepancy between Attachment A and the Background Document concerning the methodology used to calculate FRO. The SDT addressed the discrepancy between the two documents to ensure that historical data is used for the allocation of an Interconnection Frequency Response Obligation to the BAs within that Interconnection.
Several of the commenters indicated that the proposed standard did not provide a limit on the amount of Frequency Response that a BA was supposed to provide. The SDT added Paragraph \#8 in Attachment A under the Event Selection Criteria to clarify that events greater than the limit in the criteria would be capped at a certain limit. This translates to a maximum expectation of Frequency Response equal to a Balancing Authority's FRO times the number of 1 Hz shown in Table 2 in Attachment A.
Some commenters were confused about the intent of Attachment A. They indicated that Attachment A was describing both a methodology to select events and providing a background for the process (not a process/methodology). The intent of Attachment A is to describe the process that will be used. There is no intent to require a filing on a certain date and to have the BA prove to the auditor that a filing was made on that date. Rather the requirement is to have an FRM that provides at least the response required of a BA based on it's FRO and provide a high-level overview of the mechanical parts of the process. The drafting team has modified the Requirements and Attachments to address the concerns raised by the comments that requirements were in the Attachments. In order to explain the process, the drafting team believes the information needs to be attached to the standard such that it cannot be changed without input from the industry.

As to the use of the term "may" in the attachment, at this time the drafting team is unable to further restrict the language due to the issues surrounding an individual event. As an example, frequency is scheduled at 60 Hz most of the time. However, when viewed on a graph or an EMS screen, it rarely sits at 60.000 for a long period of time, it fluctuates between 59.995 and 60.005 . The drafting team is unable to say at this time that an event that starts with frequency at 60.005 is materially different than an event that starts at 59.995 . Therefore, the drafting team has attempted to put guidance into the document as to what is pertinent without attempting to be overly restrictive in the selection criteria since there is no support for a restriction at this time. As more experience is gained, the process should be refined. If the refinement is significant enough to require a change to the Attachment A language, the process required to do so would be open to participation of industry and not done without public exposure.

A couple of commenters said that using older data for compliance could cause an entity to be in "double jeopardy". The SDT discussed the concern of double jeopardy several times. At this time, the drafting team believes the issue of noise in individual events and the convergence of measurement of multiple events outweighs the double jeopardy concerns. The drafting team has, however, reduced the minimum number of events in a 12 month period to 20 from 25 but is still recommending that events from a previous year be used for the calculation if this number of events cannot be found in that period.

A few o commenters indicated that the allocation of the FRO to the BAs was a "top down" approach. The SDT agrees with some of the comments made, but not in the conclusion drawn from the individual points. There is not currently an obligation to provide any amount of frequency response to a sudden change in interconnection frequency. The proposed standard addresses this shortcoming in the proposed standard.

The drafting team has also reduced the initial reduction in the minimum Frequency Bias Setting to ensure that the reduction can be studied closely to ensure no detrimental impact on the reliable operation of the Bulk Electric System.

Finally, there is ongoing disagreement in the industry as to whether it is desired to have a minimum Frequency Bias Setting that is significantly greater than the Frequency Response Characteristic.

A couple of commenters questioned whether point B was 18 seconds after the start of the disturbance. The SDT revised the language in the document to provide clarity on the 18 seconds. To the extent that the language is related to a specific definition of steady frequency, this has been worded intentionally to allow the process being developed by the ERO (specifically the Resources Subcommittee and the Frequency Working Group) to be adjusted based on experience that will only be gained through evaluation of actual events over the course of the next few years. Until that experience is gained, there will need to be some leeway in the process. The drafting team believes that the level of guidance provided in Attachment A is appropriate based on the information currently available.

Organization	Yes or No	Question 6 Comment
Western Area Power	Negative	4. The allocation of FRO among BAs is a top-down approach instead of bottom up approach currently used. Currently, BAs calculate their FRC and set their Bias based on the greater of 1\% peak load (1\% generation for gen only BAs), or the average of frequency response characteristic of their BA over a year (FRC). These calculated individual biases get summed up and it becomes the Interconnection Bias value. The proposed standard has identified a set MW (for Western Interconnection 685 MW for
Power Administration - UGP		
Marketing		

| Organization | Yes or No | Question 6 Comment |
| :--- | :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{ll}\hline 0.1 of HZ) and is allocating it among all BAs. The individual BA's allocated FRO is much

lower than what BAs obligations' presently are since the proposed standard lowers

the bar for the BAs. The current approach is definitely superior to what is proposed

since it more closely matches with the characteristic of the system and it protect the

interconnection by requiring larger contribution than proposed standard.

5. The allocation of FRO among the BAs in the interconnection favors the BAs with

more load than more installed capacity\end{array}\right.\right]\)

Organization	Yes or No	Question 6 Comment
Response: The studies from the field trial show a convergence of the measurement after approximately 20 to 25 events. Based on the studies, the drafting team believes that a sample size as suggested would be very likely to cause entities to fail inappropriately due to the large amount of noise in the data related to each event. Additionally, there is a desire to ensure that the events picked are not weighted in such a way to cause the measurements to be increased over actual response. The drafting team has attempted to minimize the effort required of the reporting entities by developing the forms needed to calculate the FRM. Finally, the calculation process is being used for more than the previous process, not to mention that the previous process is not clearly defined and therefore not be used consistently across the industry.		

Alliant Energy Corp. Services, Inc.

Negative Confusion exists around the "peak load" in that Attachment A states the allocastion is based on Projected Peak Loads and Generation but the Background Document states it will use historical Peak and Generation to make the allocation. - There appears to be a difference in how FRO is calculated in Attachment A and what is described in the Background Document. These differences should be reconciled such that both documents address the same approach. If installed capacity is used in the equation in Attachment A, how are variable/intermittent resources (e.g. wind, solar) accounted for? At full capacity of something less - please clarify. -
It is not clear if there is an upper limit to the amount of frequcncy response expected of the BA's under this standard. Except for Table 2 in Attachment A, there is no discussion of an amount of FR expected on a total basis. BA's need to know for how many tenths of a hertz they are to respond so they can determine how to plan to meet the requirements.

Response: The drafting team has addressed the discrepancy between the two documents to ensure that historical data is used for the allocation of an Interconnection Frequency Response Obligation to the BAs within that interconnection.
The drafting team has added a paragraph in the FRM section of Attachment A limiting the amount of Frequency Response for which a BA will be measured for compliance purposes. This translates to a maximum expectation of Frequency Response equal to a Balancing Authority's FRO times the number of . 1 Hz shown in Table 2 in Attachment A.
BrightSource Energy, Inc.;
Clark Public Utilities; Tri-State

Negative Confusion exists between Attachment A and the Background Document. Attachment A states peak load allocation is based on "Projected" Peak Loads and Generation, but

Organization	Yes or No	
G \& T Association, Inc.; Tucson Electric Power Co.; U.S. Army Corps of Engineers; South California Edison; Platte River Power Authority; Pacific Gas and Electric Company; Colorado Springs Utilities; Idaho Power Company; California Energy Commission; California ISO; Deseret Power	the Background Document states it will use "historical" Peak Load and Generation. Reducing frequency bias obligation is detrimental to reliability. It seems that Lowering the Minimum Frequency Bias Setting from 1\% to .8\% will result in a lower response, which in turn will lower the natural frequency response. Over time it seems this pattern would lead to poorer response.	

Organization	Yes or No	Question 6 Comment

is not withdrawn due to AGC action. With that said, there is currently not an obligation to provide any amount of frequency response to a sudden change in the interconnection's frequency. The proposed standard addresses this shortcoming in the current standard. The drafting team has modified the initial reduction in the minimum Frequency Bias Setting to ensure that the reduction can be studied closely to ensure no detrimental impact on the reliable operation of the Bulk Electric System. Finally, there is ongoing disagreement in the industry as to whether it is desired to have a minimum Frequency Bias Setting that is significantly greater than the Frequency Response Characteristic. Please refer to Order 693 P371 for further information on this issue.

The drafting team has added a paragraph in the FRM section of Attachment A limiting the amount of Frequency Response for which a BA will be measured for compliance purposes. This translates to a maximum expectation of Frequency Response equal to a Balancing Authority's FRO times the number of .1 Hz shown in Table 2 in Attachment A.

The drafting team is operating under the Standard Authorization Requests (SARs) as approved. This drafting team believes that proposing a generator requirement is beyond the scope of the SARs. To the extent that the commenter believes there is a need to have a reliability standard related to generators, the drafting team would suggest that the commenter submit a SAR to begin the development process.

Beaches Energy Services; City of Bartow, Florida; Tampa Electric Co.

Negative
On Event Selection Criteria, bullet 2, if 25 events cannot be identified then the ERO can go back in time to the previous year. This creates a double jeopardy to R1 of the standard. It also may include irrelevant data if there have been changes from one year to the next in FRO or Bias settings assigned by the ERO.

On Frequency Response Obligation, first paragraph states that "Each Interconnection will establish target contingency protection criteria"; however, the Interconnection is not a decision-making body. Does this really mean the ERO will establish FRO for each Interconnection?

The single asterisk note for the table on page 2 states: "It is extremely unlikely that an event elsewhere in the Eastern Interconnection would cause the Florida UFLS special protection scheme to "false trip".", "Special protection scheme" should be stricken from this sentence, Florida has just a regional difference in its UFLS program.

Response: The drafting team has discussed the concern of double jeopardy several times. At this time, the drafting team believes the issue of noise in individual events and the convergence of measurement of multiple events outweighs the double jeopardy

Organization	Yes or No	Question 6 Comment
concerns. After further discussions, the drafting team has reduced the minimum number of events in a 12 month period to 20 from 25 but is still recommending that events from a previous year be used for the calculation if this number of events cannot be found in that period.		

The drafting team modified the language to clarify that the ERO will set the IFRO.
This modification was made.

Salmon River Electric Cooperative	Negative	We feel that the drafting team has done an excellent job of providing clarify and reasonable reporting requirements to the right functional entity. We support the modifications but would like to have two additional minor modification in order to provide additional clarification to the Attachment I Event Table. We suggest the following clarifications: For the Event: BES Emergency resulting in automatic firm load shedding Modify the Entity with Reporting Responsibility to: Each DP or TOP that experiences the automatic load shedding within their respective distribution serving or Transmission Operating area. For the Event: Loss of Firm load for = 15 Minutes Modify the Entity with Reporting Responsibility to: Each BA, TOP, DP that experiences the loss of firm load within their respective balancing, Transmission operating, or distribution serving area. With these modifications or similar modifications we fully support the proposed Standard.
Response: The drafting team understands that this comment was submitted under the wrong project.		

Organization Yes or No Question 6 Comment

| Organization | Yes or No | Question 6 Comment |
| :--- | :--- | :--- | :--- | \(\left.\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}the calculation process is being used for more than the previous process, not to mention that the previous process is not clearly

defined and therefore not used consistently across the industry.\end{array}

\hline Manitoba Hydro \& No \& $$
\begin{array}{l}\text { 1. p.2 refers to each "Interconnection" establishing target contingency protection } \\
\text { criteria. However, an "Interconnection" as defined in the NERC Glossary is an } \\
\text { electrical system, not a Responsible Entity. This should be revised to clarify which } \\
\text { Responsible Entities must establish the protection criteria. } \\
\text { 2. Table 2, although entitled "Interconnection Frequency Response Obligations" does }\end{array}
$$

not use the term FRO in the Table itself. This terminology should be consistent.

3. There is no clear statement in Attachment A identifying the significance of Table 2.

The previous paragraph identifies Table 2 as listing "default targets", but how does

this relate to the FRO referenced in R1?

4. The "Note" on p.2 regarding the ERO being able to use additional events that don't\end{array}\right\} $$
\begin{array}{l}\text { satisfy the criteria is unreasonable as drafted. Since these events are used to } \\
\text { calculate the Frequency Bias Setting and FRM (as per p.1, s.2), the selection of events } \\
\text { should not be at the unfettered discretion of the ERO. As drafted, no grounds or } \\
\text { criteria must be satisfied. }\end{array}
$$\right\}\)

Organization	Yes or No	Question 6 Comment
		Instructions document dated September 1, 2010? If so it should be included in this document along with the added 8 and 18 second time lines being shown. What is a "narrow range" in item b.? 4. - Better define "relatively steady" (i.e. within a specific range and state it?) Also, "near 60.000 Hz " is not precise enough (i.e. if the event begins below 60.000 Hz , what range or time error correction is to be considered acceptable?) Is the " A " value also part of the figure cited in 3 ? 5. - Is the " B " value also part of the figure cited in 3 ? 6. - Change "should be excluded" to "will be excluded". 7. - Better explain "the cleanest 2 or 3 frequency excursion events" or remove the word "cleanest". Page 2 paragraph 5: Provide specific dates for the "quarterly postings" and where these will be posted (i.e. Internet address or other). Clarify the December 15 ERO annual post date with the dates stated for same posting on Page 3 paragraph 5 and the BA's January 10 deadline. The BA posts 30 days from which date? This is confusing. Page 2 Table 2: What of starting event frequencies that are $<60 \mathrm{~Hz}$? Why is the "Highest UFLS" 59.6 when the Florida setting for its load is 59.7? Page 3 FRO equation: Page 4 of the "Frequency Response Standard Background Document, October 2011" also shows this equation but uses different terms. Make the same on both documents. In the Background Document each component of the numerator is explained and reference is made to FERC Form 714 to obtain these values. There is no reference to this form for the denominator values. All of this needs to be made clear with reference to FERC Form 714 on Attachment A.
Response: 3. The SDT has modified the titles of the columns in Table 1 of the Procedure document to clarify what was intended by the table. The Point C value is defined in section 3a.		

4 - Due to the complicated nature of event evaluation and selection, the drafting team has retained the words "relatively steady" and "near 60 " in the document without providing further clarification or definition. The drafting team believes that the process being developed by NERC (specifically the NERC Resources Subcommittee and the Frequency Working Group) requires some leeway. As more experience in gained, the NERC Resources Subcommittee will attempt to document the process further. 5 - No, the B value is a calculated value not shown in the chart referenced in number 3 above. Additional language has been added in Attachment A to clarify both the A value and the B value. The A and B values are shown on Figure 2 of the Background document as green and red lines, respectively. 6 - The drafting team modified this language. 7 - Due to the complicated nature of event evaluation and selection, the drafting team has retained the word "cleanest" in the document without providing further clarification or definition. The drafting team believes that the process being developed by NERC (specifically the NERC Resources Subcommittee and the Frequency Working Group) requires some leeway. As more experience in gained, the NERC Resources Subcommittee will attempt to document the process further. NERC is developing this part of the process and an area to post this information. The drafting team has put clear language in the attachment requiring at least quarterly posting of events. It is currently the drafting team's expectation that a list of potential events would be posted shortly after they actually occur and a refined list will be made available quarterly. Modifications to Table 2 have been made to clarify what is being used. Attachment A and the Background Document have been modified so that the FRO Allocation equation is the same and the terms are fully explained.		

Organization	Yes or No	Question 6 Comment
		Pre-disturbance frequency should be relatively steady and near 60.000 Hz is vague. TEP feels that the ERO should not need to validate a BAs frequency bias setting.

Response: The drafting team has modified the standard to put the requirements there and use Attachment A to clarify the process.
After further discussion and review of the events in the Western Interconnection Form 1 for 2011, the drafting team has modified the Delta C and Under Frequency values in Table 1.

Based on language in Order 693 P355, the drafting team believes that frequency response is needed in both directions, not just one.

The drafting team has revised the language in the document to provide clarity on the 18 seconds. To the extent that the language related to a specific definition of steady frequency, this has been worded intentionally to allow the process being developed by the ERO (specifically the Resources Subcommittee and the Frequency Working Group) to be adjusted based on experience that will only be gained through evaluation of actual events over the course of the next few years. Until that experience is gained, there will need to be some leeway in the process. The drafting team believes that the level of guidance provided in Attachment A is appropriate based on the information currently available.

Due to level of detail being used to determine the FBS and FRM as well as the interactions between this standard and others, the drafting team disagrees with the commenter and continues to recommend the ERO validate the FBS of each BA.

Bonneville Power Administration	No	BPA believes that Attachment A adds additional requirements to the standard. Confusion exists between Attachment A and the Background Document. Attachment A states peak load allocation is based on "Projected" Peak Loads and Generation, but the Background Document states it will use "historical" Peak Load and Generation.
	3a: it may take longer than 8 seconds in some disturbances. This should be 10 seconds. . 05 Hz Delta F is not low enough for the Western Interconnection, it should be .075 tz to ensure there is measurable frequency response for the interconnection. Also, under frequency should be set at 59.95 Hz.	
reliability need to include over frequency events.		

Organization	Yes or No	Question 6 Comment
		3b: It is unclear if the 18 seconds is setting the B point. If this is the B point, BPA believes it should be changed to 25 seconds for the Western Interconnection. 4. Please define relatively steady and near 60 Hz . 6: For the Western Interconnection, BPA believes this needs to be 10 minutes at the top of the hour. As mid hour scheduling becomes more prevalent, the ramping at the bottom of the hour will have to be taken into account. FRO for the interconnection: Starting frequency should be the FTL limit. With RBC in place, the frequency is seldom at 60 Hz . BPA understands the theory behind setting the base obligation to the values listed in table 2. BPA would like to know if there were any studies performed to validate setting the FRO for the interconnection to such a low level? BA FRO and frequency bias setting: BPA does not agree with ERO assigning a Frequency Bias setting to each BA. This calculation is indicated as the initial FRO allocation, what is the process for changing it? BPA believes this should go through the standard drafting process for any changes. The calculation should use Peak online capacity, not the installed capacity. This would lead to the denominator being $2 \times$ Peak projected load for the interconnection. BPA has approximately $35,000 \mathrm{MW}$ of installed generation, and has never seen the actual coincidental generation go over 21,000 MW. Again, BPA doesn't believe the ERO should be validating the frequency bias setting. It is unclear to BPA how variable bias is being addressed in the standard.
Response: The drafting team has modified the requirements to address comments. The drafting team believes as modified the requirements are stated in the standard and the process to be used is in the Attachment.		
The drafting team has addressed the discrepancy between the two documents to ensure that historical data is used for the allocation of an Interconnection Frequency Response Obligation to the BAs within that interconnection.		
The drafting team has revised the language in the document to provide clarity on the 18 seconds. The drafting team has also		

Organization	Yes or No	Question 6 Comment

attempted to clarify that the B Value is the average of the scan rate data for the period from 20 to 52 seconds following the start of the event. The event selection criteria will use the frequency approximately 18 seconds (prior to the start of the B Value period) to as frequency level to determine if the change in frequency qualifies as an event for the purposes of this standard. Based on event information for the 12 month period beginning December 2010, the drafting team has modified the frequency levels used for event qualification but did not modify the 18 second frequency point.

To the extent that the language related to a specific definition of steady frequency, this has been worded intentionally to allow the process being developed by the ERO (specifically the Resources Subcommittee and the Frequency Working Group) to be adjusted based on experience that will only be gained through evaluation of actual events over the course of the next few years. Until that experience is gained, there will need to be some leeway in the process. The drafting team believes that the level of guidance provided in Attachment A is appropriate based on the information currently available.

Both the NERC Resources Subcommittee (RS) and the NERC Transmission Issues Subcommittee (TIS) evaluated the level of response needed. The drafting team decided to use the limits determined by the RS over that determined by the TIS after evaluation of both. The documents developed by both of these subcommittees are available on the NERC website under this project (http://www.nerc.com/filez/standards/Frequency Response-RF.html).

The drafting team clarifies that the ERO is not assigning the Frequency Bias Setting. The ERO will review the data to determine that the Frequency Response Measure is correctly determined by the BA and that the Frequency Bias Setting is therefore correct. The expected process is that a subcommittee under NERC will review the Form 1 and Form 2 for each entity to ensure that the BA correctly filled out the form. Assuming the BA has correctly filled out these forms, there is no ERO interaction with the number provided by the BA.
The FRO calculation is being included in the Attachment A to ensure that the process to modify the calculation would need to be open to industry input. It is not appropriate to put it in a requirement since it would not make sense to make a requirement that the FRO be allocated in a certain manner. The proposed methodology uses the average of the historical peak loads (monthly peak) and peak generation (monthly peak) and does not use installed capacity.
The drafting team revised the requirements to separate the variable bias requirement from the fixed bias setting requirement and provide clarity related to what is expected in a variable bias setting.

Energy Mark, Inc.

Organization	Yes or No	Question 6 Comment
		will be included with the data set by the ERO for determining FRS compliance." I believe that the better alternative in this case would be to use the lesser number of events. This is partly based on the consideration that if there are fewer events, the risk to the interconnection for that year was less that expected, and as a result, evaluation of fewer events will not compromise interconnection reliability. If fewer than 25 events are available in any year, the selection criteria should be adjusted to select more events. Comment 7: There are a number of problems with the use of "median" Frequency Response of the measured events. These problems make a choice other than median preferable. The following comments list some of those problems. Comment 8: The current standard uses average Frequency Response of selected events. This makes the current standard incompatible with the use of median. Comment 9: If a BA reconfigures during a measurement year, that reconfiguration will create a bi-modal distribution of the Frequency Response events. Median is incapable of representing a bi-modal distribution. The use of median will result in a standard that is incapable of measuring compliance effectively for an BA that is reconfigured during a measurement year (Dec 1 thru Nov 30). Comment 10: Any attempt to purchase additional Frequency Response from another BA for a portion of a measurement year will also cause a bi-modal distribution making the purchase of Frequency Response only effective for entire measurement years. Comment 11: Median is a non-linear measurement method. Because it is a nonlinear measurement method, there is no valid way to manage partial year measurements. Comment 12: I will offer an alternative to median to the SDT before the end of the development of responses to these comments. Comment 13: The Minimum Frequency Bias Setting and the Frequency Response Obligation are both based on a method that assigns responsibility based on a Peak

| Organization | Yes or No | Question 6 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l}Load / Peak Generation share of the interconnection. However, the method used to

set the Minimum Frequency Bias Setting is different than the method used to

determine the Frequency Response Obligation. Using these two different methods

could result in the Minimum Frequency Bias Setting being less that the FRO for a BA.

The best way to correct this problem is to use that same allocation methodology for

determining the FRO and the Minimum Frequency Bias Setting. This can be easily

accomplished by modifying R5 to use the FRO allocation method to determine the

Minimum Frequency Bias Setting. This calculation would divide the numerator from

the FRO allocation equation, divide it by two and multiply it by the percentage

specified in Attachment B. In fact, the current FRS Form 1 uses this equation with

projected rather than historic data. The best alternative would be to modify the R5 in

the standard to match the FRO allocation method and modify FRS Form 1 to use

historic data instead of projected data. This would result in only one set of Peak Load

and Peak Generation data throughout the standard, rather than three different sets

of data as currently written. When multiple sets of the same or similar data are used

within a single standard, it only creates confusion and errors in the result.\end{array}\right.\right\}\)

Organization	Yes or No	Question 6 Comment
that at this time, minimizing the changes to the current Frequency Bias Setting process provides better comparability for the purpose of evaluating the impacts of reducing the minimum setting requirement. In the alternative, the drafting team feels that allocating the FRM based on historical data provides less room to game the process since the numbers used for allocation can be verified independently.		
MRO NSRF	No	Confusion exists around the "peak load" in that Attachment A states the allocation is based on Projected Peak Loads and Generation but the Background Document states it will use a historical Peak and Generation to make the allocation. Also, for the BA installed capacity, where is that value derived from and does NERC obtain that from FERC form data or does the BA provide that information somewhere specific to this effort? Additionally, there appears to be a difference in how FRO is calculated in Attachment A and what is described in the Background Document. These differences should be reconciled such that both documents address the same approach.If installed capacity is used in the equation, how are variable/intermittent resources (e.g. wind, solar) accounted for? At full capacity? Please clarify.We suggest the SDT clarify if the materials in the revised Attachment A (and Attachment B) are "Guideline" or "Technical Background", or "requirements
Response: The drafting team has addressed the discrepancy between the two documents to ensure that historical data is used for the allocation of an Interconnection Frequency Response Obligation to the BAs within that interconnection. Installed capacity is not used in the allocation methodology. The proposed methodology uses the average of the historical peak loads (monthly peak) and peak generation (monthly peak) and does not use installed capacity.		
Xcel Energy	No	Confusion exists around the "peak load" in that the Attachment A states the allocation is based on Projected Peak Loads and Generation but the Background Document states it will use a historical Peak and Generation to make the allocation. Also, for the BA installed capacity, where does that value come from and does NERC obtain that from FERC form data or does the BA provide that information somewhere specific to this effort? Additionally, there appears to be a difference in how FRO is calculated in Attachment A and what is described in the Background Document. These differences should be reconciled such that both documents address the same

Organization	Yes or No	Question 6 Comment
		approach.If installed capacity is used in the equation, how are variable/intermittent resources (e.g. wind, solar) accounted for? At full capacity?
Response: The drafting team has addressed the discrepancy between the two documents to ensure that historical data is used for the allocation of an Interconnection Frequency Response Obligation to the BAs within that interconnection. Installed capacity is not used in the allocation methodology. The proposed methodology uses the average of the historical peak loads (monthly peak) and monthly peak generation (monthly peak) and does not use installed capacity.		
ISO/RTO Council Standards Review Committee	No	Despite the SDT's good faith effort to convert the previous Attachment A into two separate documents (Attachments A and B), the modified Attachment A is problematic. As many commenters indicated, the previous Attachment A, other than the section providing guidance on event selection, appears to be explanatory, contextual, and instructional in content. These aspects are important, but do not rise up to the level of requirements to drive reliability performance/outcome. Attachment A should include only the event selection process and calculations associated with the requirements, including an explanation of what is necessary if variable Frequency Bias Settings are implemented. If other "requirements" need to be specified, such as the reporting time frame stipulated on P. 3 of Attachment A, they should be moved to the standard itself but not imbedded in an attachment. We suggest that the SDT first determine if the materials in the revised Attachment A (and Attachment B) are "Guideline" or Technical Background", or are they "requirements". If it is the former, then Requirement R1 should not mention Attachment A at all. If it is the latter, then the as-written Attachment A is a mix bag as it on the one hand describes the ERO's process for supporting the Frequency Response Standard (FRS), in other words, the method and criteria it uses to calculate the frequency bias settings and the FRM, and on the other hand the BA's obligations to support this process. We strongly disagree that the latter requirements be imbedded in an attachment, especially one that is supposed to provide the technical background and guideline for another entity which is not held responsible for complying with the proposed method. Further, there are no measures provided for the requirements stipulated/imbedded in Attachment A so how can the Responsible Entity (BA, in this case) be assessed for compliance?We

| Organization | Yes or No | Question 6 Comment |
| :--- | :--- | :--- |$|$| suggest the SDT move those requirements on the BA to the main standard, and turn |
| :--- | :--- |
| Attachment A into an appendix describing the calculation process. An appendix is not |
| regarded as a mandatory requirement. Similar comments apply to Attachment B. |
| Moreover, if the Attachments are to be integral to the standards, the terminology |
| "may" must be replaced with "shall". |
| Finally, the two Attachments are listed in Section F - Associated Documents. This |
| Section is generally used to list reference documents that are NOT standard |
| requirements. We suggest the SDT review and revise this listing depending on its final |
| determination of the status of the two Attachments (or their revisions, where |
| appropriate). |

Organization	Yes or No	Question 6 Comment
System Operator		problematic. As many commenters indicated, the previous Attachment A, other than the section providing guidance on event selection, appears to be explanatory, contextual, and instructional in content. These aspects are important, but do not rise up to the level of requirements to drive reliability performance/outcome. Attachment A should include only the event selection process and calculations associated with the requirements, including an explanation of what is necessary if variable Frequency Bias Settings are implemented. If other "requirements" need to be specified, such as the reporting time frame stipulated on page 3 of Attachment A, they should be moved to the standard itself but not imbedded in an attachment. We suggest the SDT to first determine if the materials in the revised Attachment A (and Attachment B) are "Guideline" or "Technical Background", or are they "requirements". If it is the former, then Requirement R1 should not mention Attachment A at all. If it is the latter, then the as-written Attachment A is a mix bag as it on the one hand describes the ERO's process for supporting the Frequency Response Standard (FRS) (in other words, the method and criteria it uses to calculate the frequency bias settings and the FRM), and on the other hand the BA's obligations to support this process. We strongly disagree that the latter requirements be imbedded in an attachment, especially one that is supposed to provide the technical background and guideline for another entity which, by the way, is not held responsible for complying with the proposed method. Further, there are no measures developed for the requirements stipulated/imbedded in Attachment A so how can the Responsible Entity (BA, in this case) be assessed for compliance? We suggest the SDT to move those requirements on the BA to the main standard, and turn Attachment A into an appendix describing the calculation process. An appendix is not regarded as a mandatory requirement. Similar comments apply to Attachment B. Finally, the two Attachments are listed in Section F - Associated Documents. This Section is generally used to list reference documents that are NOT standard requirements. We suggest the SDT review and revise this listing depending on its final determination of the status of the two Attachments (or their revisions, where

0	s or N	uestion 6
Response: The intent of Attachment A is to describe the process that will be used. There is no intent to require a filing on a certain date and to have the BA prove to the auditor that a filing was made on that date. Rather the requirement is to have an FRM that provides at least the response required of a BA based on it's FRO and provide a high-level overview of the mechanical parts of the process. The drafting team has modified the Requirements and Attachments and modified them to address the concerns raised by the comments that requirements were in the Attachments. In order to explain the process, the drafting team believes the information needs to be attached to the standard such that it cannot be changed without input from the industry. As to the use of the term "may" in the attachment, at this time the drafting team is unable to further restrict the language due to the issues surrounding an individual event. As an example, frequency is scheduled at 60 Hz most of the time. However, when viewed on a graph or an EMS screen, it rarely sits at 60.000 for a long period of time, it fluctuates between 59.995 and 60.005 . The drafting team is unable to say at this time that an event that starts with frequency at 60.005 is materially different that an event that starts at 59.995. Therefore, the drafting team has attempted to put guidance into the document as to what is pertinent without attempting to be overly restrictive in the selection criteria since there is no support for a restriction at this time. As more experience is gained, the process should be refined. It the refinement is significant enough to require a change to the Attachment A language, the process required to do so would be open to participation of industry and not done without public exposure. The SDT agrees with your comment about removing the documents from Section F of the proposed standard has made this modification to the standard. In the table on page 2 the asterick references a statement that the 59.7 Hz used in Florida is a special protection scheme. This is incorrect. The special protection scheme setting was 59.82 Hz and was done away with in 2005 or earlier. The 59.7 Hz setting used within the FRCC is based on FRCC TWG studies that require this level of setting to protect the state in the event of a separation and to protect nuclear equipment. FPL supports the use of the $\mathrm{C}(\mathrm{N}-2)$ critiera. Additionally, the reference to the FERC714 report that is currently in the background data should be made part of attachment A not separated. FPL fully agrees with Table 1The formula used to derive the FRO is inconsistant with the definition used for requirement R5. R5 states that the load is " within the BA's metered boundary". The load used in the formulae is taken from FERC714. The yearly peak demand used in R5 should be the peak		

Organization	Yes or No	Question 6 Comment
		monthly load from June, July or August as reported on FERC714 to be compatible with the FRO formula.

Response: The drafting team has removed the reference to the special protection scheme. The drafting team has modified the FRO allocation formula to better explain what is desired. However, the drafting team did not adjust the formula to what is suggested by the commenter.

NV Energy	No	It is not clear whether the calculation of FRO is to utilize projections of BA load as in Att A, or past data reported in FERC Form 1 as per the Background Document.

Response: The drafting team has addressed the discrepancy between the two documents to ensure that historical data is used for the allocation of an Interconnection Frequency Response Obligation to the BAs within that interconnection. The proposed methodology uses the average of the historical peak loads (monthly peak) and peak generation (monthly peak) and does not use installed capacity.

Los Angeles Department of Water and Power	No	LADWP considers the increase in number of events to analyze (now 25) to be excessive. Previous years analyses typically involved 4-6 events; a permanent five- fold increase is not justified. LADWP suggests reducing the baseline number of events from 25 to 12 per year. Analysis of a larger number of events could be requested on a year-by-year basis if conditions warrant, but should not be mandatory for all regions in all years.

Response: The studies from the field trial show a convergence of the measurement after approximately 20 to 25 events. Based on the studies, the drafting team believes that a sample size as suggested would be very likely to cause entities to fail inappropriately due to the large amount of noise in the data related to each event. Additionally, there is a desire to ensure that the events picked are not weighted in such a way to cause the measurements to be increased over actual response. The drafting team has attempted to minimize the effort required of the reporting entities by developing the forms needed to calculate the FRM. Finally, the calculation process is being used for more than the previous process, not to mention that the previous process is not clearly defined and therefore not used consistently across the industry.

JEA Electric	No	On Event Selection Criteria, bullet 2, if 25 events cannot be identified then the ERO

Organization	Yes or No	Question 6 Comment
Compliance/Florida Municipal Power Agency		can go back in time to the previous year. This creates a double jeopardy to R1 of the standard. It also may include irrelevant data if there have been changes from one year to the next in FRO or Bias settings assigned by the ERO. On Frequency Response Obligation, first paragraph states that "Each Interconnection will establish target contingency protection criteria"; however, the Interconnection is not a decision-making body. Does this really mean the ERO will establish FRO for each Interconnection? The single asterisk note for the table on page 2 states: "It is extremely unlikely that an event elsewhere in the Eastern Interconnection would cause the Florida UFLS special protection scheme to "false trip".", "Special protection scheme" should be stricken from this sentence, Florida has just a regional difference in its UFLS program.
Response: The drafting team has discussed the concern of double jeopardy several times. At this time, the drafting team believes the issue of noise in individual events and the convergence of measurement of multiple events outweighs the double jeopardy concerns. After further discussions, the drafting team has reduced the minimum number of events in a 12 month period to 20 from 25 but is still recommending that events from a previous year be used for the calculation if this number of events cannot be found in that period. The drafting team modified the language to clarify that the ERO will set the IFRO. This modification was made.		
Duke Energy	No	On page 3 of the document it states "For a multiple Balancing Authority Interconnection, the Interconnection Frequency Response Obligation is allocated based upon either the Balancing Authority Peak Demand or peak generation", however, the initial FRO allocation equation shows that the BA allocation is based upon the sum of the Projected BA Peak Load plus installed capacity, times the Interconnection FRO, and divided by the sum of the Projected Interconnection Peak Load plus Interconnection installed capacity. Is the statement in quotes correct, or is the allocation equation correct? In addition, the equation in Attachment A referencing "installed capacity" conflicts with the equation in the BAL-003-1

| Organization | Yes or No | Question 6 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l}Background Document entitled "Frequency Response Standard Background

Document" where "Peak Gen" is used. In summary, is the FRO allocation based upon

an equation which a) sums the Projected BA Peak Load plus peak generation, b) sums

the Projected BA Peak Load plus installed capacity, or c) uses either Projected BA

Peak Load OR peak generation? All three options are currently represented in the

documentation.

Calculation of the FRO for the Eastern Interconnection: Duke Energy agrees with the

criteria suggested for the event to be protected (4500 MW), and at this time also

agrees with the "compromise" low limit of 59.6 Hz. However, knowing that another

Standard is under development which may require hourly assessment of available

"frequency responsive reserves", we are trying to determine what impact the choice

of this methodology will have on the amount of frequency responsive reserves the

industry will have to maintain - enough to cover frequency swings that only

occasionally reach down to perhaps 59.9 Hz as we see on the Interconnection today

(essentially the allocated FRO for a 0.1Hz deviation), enough to cover a 4500 MW

loss, or whatever we deem appropriate as long as we are compliant to the FRM? We

recognize that the Standard Drafting Team cannot answer this question, as the

Standard under development is not within the scope of this team, however our

comment is meant to illustrate the point that similar to our response to question 8, it

should be recognized that elements of this Standard are tightly coupled to other

current and potential Standards, and the impacts must be considered by the Industry.\end{array}\right.\right\}\)

Organization	Yes or No	Question 6 Comment
SERC OC Standards Review Group	No	The definition of Single Event Frequency Response Data (SEFRD) was struck from the draft standard but still appears in Attachment A. Since R1 of the standard references Attachment A, would the definition of SEFRD still be applicable? If the definition is to be totally struck, we don't think the term should be used in Attachment A.
Response: The SEFRD definition was moved to Attachment A. The SEFRD is used on individual events. The median of a BA's SEFRDs will be used to determine its FRM. Therefore, the drafting team believes it is appropriate to use the definition in the Attachment. Since it is not likely to be used outside of the context of this standard, the drafting team is not proposing to place the definition in the NERC Glossary.		
Hydro-Quebec TransEnergie	No	The Event Selection Criteria should be modified for the Quebec Interconnection. In Table 1, the change in frequency (Delta f) used for Quebec's Event Selection Criteria should be $0,3 \mathrm{~Hz}$ (from point " A " to point " C ") and must last for at least 7 seconds so that we don't measure AGC action. In addition, a criterion should be added by saying that events that recovered within the 20-52 second average period for point " B " should be excluded from analysis.
Response: The drafting team has modified Attachment A to address these comments.		
Keen Resources Asia Ltd.	No	The sample pre-selection described in Attachment A, Event Selection, Criteria 2 \& 7, violates the fundamental statistical procedure of unbiased sampling. A population is governed by a single "process" which, when stationary, is represented by a fixed probability distribution. In this case the population is several years of events (which are the subject of Frequency Response), not of normal operating control errors which are the subject of CPM control. A sample is governed by a single process that approximates the process governing the population as the sample gets larger, in this case if it includes several years of data. Samples are measured "as they come", no triage/filtering allowed, and they are called "stratified" when their distribution approximates the population distribution. Unlike normal operating errors, samples of events are not evenly distributed over a year. The attempt in criteria $2 \& 7$ to preselect only certain events, and not others, in such a way that the selected events

| Organization | Yes or No | Question 6 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l}occur evenly throughout the year, is papently wrong because it is trying to "fit"

events into a process (even distribution over time) that does not govern events, but

that instead governs normal operating errors that are the subject of CPM control, not

of this Frequency Response standard. In other words, criteria 2 \& 7 confuse

Frequency Response with CPM, and events with normal operating errors. The result

is a false, biased sample which destroys the integrity of this standard. Paragraph 4 on

page 5 of the Background Document, on the other hand, provides a statistically

correct description of event selection without sample pre-selection and should

followed instead of the erroneous criteria 2 \& 7 in Attachment A.\end{array}\right.\right\}\)

Organization	Yes or No	Question 6 Comment
		3. The use of 59.6 Hz as the highest UFLS setting is flawed. It should either be 59.7 Hz as a deliberate choice to protect Florida interests, or it should be 59.5 Hz without concern for Florida's unique settings. 4. In the last 2 sentences at the end of the section on Frequency Response Obligation, it refers to an Interconnection being able to offer "alternate FRO protection criteria". The Interconnection should have been an integral part of establishing its obligation. It is stated that the "ERO will confirm" the "alternate FRO protection criteria". Does this mean the ERO unconditionally approves it, or evaluates with a right of rejection? Please clarify. 5. In the formula for determining the Balancing Authority's FRO allocation, installed capacity is used. Does the industry have a clear and consistent definition for installed capacity? Also, with greater wind energy development, the delivered capacity over longer time horizons will be substantially less than nameplate machine ratings. The background document refers to the use of peak generation instead of installed capacity. Which shall be used? Please clarify. 6. Recent studies have shown that the 18-52 second sampling interval does not work well for the Quebec Interconnection, in part due to the excellent and high level of response found in that Interconnection. The standard needs to be modified such that the sampling interval is that which works the best for each individual interconnection. 7. Attachment A needs to define the point A sampling interval.
Response: The intent of Attachment A is to describe the process that will be used. There is no intent to require a filing on a certain date and to have the BA prove to the auditor that a filing was made on that date. Rather the requirement is to have an FRM that provides at least the response required of a BA based on it's FRO and provide a high-level overview of the mechanical parts of the process. The drafting team has modified the Requirements and Attachments to address the concerns raised by the comments that requirements were in the Attachments. In order to explain the process, the drafting team believes the information needs to be attached to the standard such that it cannot be changed without input from the industry. 1. The drafting team believes that Criterion 5 is clear as written. The comment does not provide any guidance as to what needs		

Organization	Yes or No	Question 6 Comment

clarification so no change was made.
2. Due to the complicated nature of event evaluation and selection, the drafting team has retained the word "cleanest" in the document without providing further clarification or definition. The drafting team believes that the process being developed by NERC (specifically the NERC Resources Subcommittee and the Frequency Working Group) requires some leeway. As more experience in gained, the NERC Resources Subcommittee will attempt to document the process further.
3. The drafting team has revised the terminology used to explain the frequency levels proposed. There was not a change to the Eastern Interconnection numbers.
4. An interconnection can recommend a change to the table. As the standards process currently works, that interconnection would need to support its alternative level with data. If the interconnection has a single Regional Reliability Organization, the ERO would typically agree to the alternative assuming it would be more restrictive (in this case a larger response requirement) than the ERO has recommended.
5. The drafting team has addressed the concerns raised by clarifying that historical data is used for the allocation of an Interconnection Frequency Response Obligation to the BAs within that interconnection. Installed capacity is not used in the allocation methodology. The proposed methodology uses the average of the historical peak loads (monthly peak) and peak generation (monthly peak) and does not use installed capacity.
6. The drafting team has modified Attachment A to address concerns with selection of an event where frequency returns to the A Value level during the measurement period. These events will be excluded from the measurement process for all interconnections.
7. The definition of the terms are provided in the background document as well as the formulas in the spreadsheets.

Sacramento Municipal Utility District (SMUD)	No	The standard is unclear as to if there is an upper limit to the amount of frequency response expected of the Balancing Authorities under this standard. Except for Table 2 in Attachment A, there is no discussion of an amount of Frequency Response expected on a total basis. Balancing Authorities need to know for how many tenths of a hertz they are to respond so they can determine how to plan to meet this requirement. The documents do not appear to provide any boundary on the maximum amount of Frequency Response that a BA will provide, i.e. it is not clear what will happen if an event occurs in the Eastern Interconnection that causes the

Organization	Yes or No	Question 6 Comment
		frequency to drop to less than 59.6 Hz or in the Western Interconnection that causes the frequency to drop to less than 59.5 Hz , or if that event is excluded from the list used to calculate the Balancing Authorities' response or is it included with an expectation that it counts the same as any other event. Without a clear statement of what is expected, including whether there is a limit on that expectation or not, it is unclear what is expected of the Balancing Authorities.
Response: The drafting team has added a paragraph in the FRM section of Attachment A limiting the amount of Frequency Response for which a BA will be measured for compliance purposes. This translates to a maximum expectation of Frequency Response equal to a Balancing Authority's FRO times the number of . 1 Hz shown in Table 2 in Attachment A.		
Western Electricity Coordinating Council	No	There is disagreement between Attachment A and the Background Document. Attachment A states peak load allocation is based on "Projected" Peak Loads and Generation, but the Background Document states it will use "historical" Peak Load and Generation. The allocation methodology of FRO among the BAs in the equation on page 3 of Attachment A favors BAs with more load than more installed capacity. Peak load is served but not all installed capacity is always dispatched.
Response: The drafting team has addressed the discrepancy between the two documents to ensure that historical data is used for the allocation of an Interconnection Frequency Response Obligation to the BAs within that interconnection. Installed capacity is not used in the allocation methodology. The proposed methodology uses the average of the historical peak loads (monthly peak) and peak generation (monthly peak) and does not use installed capacity.		
Alberta Electric System Operator	No	These documents not only provide additional clarity but also specify additional requirements, such as FRS Form 1 annual reporting by January 10. All the enforceable requirements should be included in the body of the standard. 1. Attachment A uses the terms "delta F (change in frequency)", "arresting frequency (Point C)", "B Value", "A Value". These terms are not properly defined or described in this document as drafted. The AESO suggests adding a description or definitions for

| Organization | Yes or No | Question 6 Comment |
| :--- | :--- | :--- |$|$| clarity in this document. |
| :--- | :--- |
| 2. The standard gives 2 sets of values for Interconnection Frequency Response |
| Obligation in Table 2, (1) Base Obligation and (2) the obligation including 25\% Safety |
| Margin (which seems to be implied by the "contingency protection criterion"). The |
| Attachment A does not specifiy whether the Base Obligation or the 25\% Safety |
| Margin value will be used to allocate the Interconnection FRO to the BAs. Please |
| clarify which value will be used to calculate the BA Frequency Response Obligation |
| (FRO) in the Interconnection FRO allocation formula in Attachment A. |
| 3. The "initial FRO allocation" formula in Attachment A uses Peak Load. The term |
| Peak Load is not used in the standard nor is it a defined term in the NERC Glossary. |
| The standard uses Peak Demand, which is defined in the Glossary Is "Peak Load" |
| synonymous with "Peak Demand"? If so, Peak Demand should be used in the formula |
| instead. Otherwise Peak Load should be clearly defined in this document. |
| 4. Is "Projected" in the FRO allocation formula synonymous with "Forecasted"? If so, |
| Forecasted should be used for consistency. Otherwise "Projected" or the context in |
| which it appears must be defined. |

Organization	Yes or No	Question 6 Comment
methodology uses the average of the historical peak loads (monthly peak) and peak generation (monthly peak) and does not use installed capacity.		
Great River Energy/ACES Power Marketing Standards Collaborators	No	Under item 3 of the Event Selection Criteria section, the delta F and Point C should be described either in this attachment or the "Frequency Response Standard Background Document". While many in industry may understand what these terms mean, history has a way of getting lost with personnel turnover. Furthermore, this would help ensure that the auditors and industry have a duplicate understanding. In the Frequency Response Obligation section on page 2, several items require more description. Further description of why an N-2 event was chosen for the Contingency Protection Criteria should be provided and which N-2 event was selected so that industry can help validate if the correct MW value was selected. Furthermore, the document should clarify if the Contingency Protection Criteria contains the "safety margin". There is a statement in the paragraph before the table that states it does but then the table lists out a separate 25% "Safety Margin". Thus, it is not clear if the "Safety Margin" is included in the Contingency Protection Criteria value listed in the table or not. "Safety margin" should be changed to "reliability margin". Safety has a specific meaning in the electric industry and its use here is not appropriate. The Base Obligation should be explained. The explanation should include its purpose and origin.
Response: 1. The definition of the terms are provided in the background document as well as the formulas in the spreadsheets. The drafting team has clarified Table 2 by modifying the titles for each line.		
Texas Reliability Entity	No	We have a number of concerns regarding Attachment A which are set forth below: 1. Regarding the formula for "Initial FRO Allocation" on page 3 of Attachment A, the terms for "BA installed capacity" and "Interconnection installed capacity" are undefined and could be subject to manipulation and dispute. We suggest that this formula be revised to mirror the calculation based on well-established FERC Form 714 data that is discussed in the Background document, which is based on actual

Organization	Yes or No	Question 6 Comment

Organization	Yes or No	Question 6 Comment
3. The drafting team recommends all events with a frequency deviation that meets the selection criteria should be evaluated. For the entity that lost generation (or load) to initiate the event, the calculation methodology proposed allows adjustments to be made for that event. 4. This modification was made to the Attachment B (now a Procedure). The suggested modifications are shown in Criteria 2 and 7. 5. These two documents have been conformed. 6. The ERO will notify the BAs as to the date the Frequency Bias Setting is to be implemented if they are utilizing a fixed Frequency Bias Setting.		
Southern Company	No	We suggest increasing the delta f for the East to be the same value as the West or larger. The reason for this is that the 0.04 Hz suggested is too close to the governor deadbands of .036 Hz . This would potentially omit frequency response that some units may provide for a larger excursion but not for those close to the deadband.
Response: The delta f values have been selected to balance the need to have a sufficient number of events for evaluation and the need to have sufficient frequency movement to actually measure response. At this time the drafting team is not modifying the eastern interconnection values based on the event selection process for the period December 2010 through November 2011.		
ISO New England Inc	No	We suggest the SDT to first determine if the materials in the revised Attachment A \& B are "Guideline" or Technical Background", or are they "requirements". If it is the former, then Requirement R1 should not mention Attachment A at all. If it is the latter, then the as-written Attachment A is a mix bag as it on the one hand describes the ERO's process for supporting the Frequency Response Standard (FRS), in other words, the method and criteria it uses to calculate the frequency bias settings and the FRM, and on the other hand the BA's obligations to support this process. We strongly disagree that the latter requirements be imbedded in an attachment, especially one that is supposed to provide the technical background and guideline for another entity which, by the way, is not held responsible for complying with the proposed method. An appendix is not regarded as a mandatory requirement. Additionally, BAL-003-1- Attachment A

Organization	Yes or No	Question 6 Comment
		1. Criterion 5 needs to be re-written for clarity. 2. Criterion 7 refers to the "cleanest events". Perhaps a statement of what constitutes a "clean event" is needed to avoid possible controversy in the future. 3. The use of 59.6 Hz as the highest UFLS setting seems flawed. It should either be 59.7 Hz as a deliberate choice to protect Florida interests, or, it should be 59.5 Hz without concern for Florida's unique settings. 4. In the last 2 sentences at the end of the section on Frequency Response Obligation, it refers to an Interconnection being able to offer "alternate FRO protection criteria". It seems that the Interconnection should have been an integral part of establishing its obligation. Also, it states that the "ERO will confirm" the "alternate FRO protection criteria". Does this mean the ERO unconditionally approves it, or evaluates with a right of rejection? Please clarify. 5. In the formula for determining the Balancing Authority's FRO allocation, installed capacity is used. Does the industry have a clear and consistent definition for installed capacity? Also, with greater wind energy development, the delivered capacity over longer time horizons will be substantially less than nameplate machine ratings. Also, the background document refers to the use of peak generation instead of installed capacity. Which shall be used? Please clarify. 6. Very recent studies have shown that the 18-52 second sampling interval does not work well for the Quebec Interconnection, in part due to the excellent and high level of response found in that Interconnection. The standard needs to be modified such that the sampling interval is that which works the best for each individual interconnection. 7. Attachment A needs to define the point A sampling interval.
Response: The intent of Attachment A is to describe the process that will be used. There is no intent to require a filing on a certain date and to have the BA prove to the auditor that a filing was made on that date. Rather the requirement is to have an FRM that provides at least the response required of a BA based on it's FRO and provide a high-level overview of the mechanical parts of the		

Organization	Yes or No	Question 6 Comment

process. The drafting team has modified the Requirements and Attachments to address the concerns raised by the comments that requirements were in the Attachments. In order to explain the process, the drafting team believes the information needs to be attached to the standard such that it cannot be changed without input from the industry.

1. The drafting team believes that Criterion 5 is clear as written. The comment does not provide any guidance as to what needs clarification so no change was made.
2. Due to the complicated nature of event evaluation and selection, the drafting team has retained the word cleanest in the document without providing further clarification or definition. The drafting team believes that the process being developed by NERC (specifically the NERC Resources Subcommittee and the Frequency Working Group) requires some leeway. As more experience in gained, the NERC Resources Subcommittee will attempt to document the process further.
3. The drafting team has revised the terminology used to explain the frequency levels proposed. There was not a change to the Eastern Interconnection numbers.
4. An interconnection can recommend a change to the table. As the standards process currently works, that interconnection would need to support its alternative level with data. If the interconnection has a single Regional Reliability Organization, the ERO would typically agree to the alternative assuming it would be more restrictive (in this case a larger response requirement) than the ERO has recommended.
5. The drafting team has addressed the concerns raised by clarifying that historical data is used for the allocation of an Interconnection Frequency Response Obligation to the BAs within that interconnection. Installed capacity is not used in the allocation methodology. The proposed methodology uses the average of the historical peak loads (monthly peak) and peak generation (monthly peak) and does not use installed capacity.
6. The drafting team has modified Attachment A to address concerns with selection of an event where frequency returns to the A Value level during the measurement period. These events will be excluded from the measurement process for all interconnections.
7. The definition of the terms are provided in the background document as well as the formulas in the spreadsheets.

Constellation Energy Commodities Group	Yes	Additional information relating to defining the FRO for the Interconnection would be helpful as would an example for calculating the BA FRO.

Response: The drafting team has revised Attachment A to provide better explanation and to clarify the allocation methodology to

Organization	Yes or No	Question 6 Comment
the BA.		
American Electric Power	Yes	A frequency response observation should not be used spanning multiple years, or if there does, there should at least be a reset period.
Response: The drafting team has discussed the concern of double jeopardy several times. At this time, the drafting team believes the issue of noise in individual events and the convergence of measurement of multiple events outweighs the double jeopardy concerns. After further discussions, the drafting team has reduced the minimum number of events in a 12 month period to 20 from 25 but is still recommending that events from a previous year be used for the calculation if this number of events cannot be found in that period.		
Cleco Corporation/ SPP Standards Review Group	Yes	We appreciate the effort of the SDT in developing Attachment A. It was very helpful in weeding through BAL-003.
Response: Thank you for your comments.		
Imperial Irrigation District	Yes	
Southwest Power Pool Regional Entity	Yes	
Salt River Project	Yes	
Progress Energy	Yes	
Associated Electric Cooperative Inc	Yes	
South Carolina Electric and Gas	Yes	

NERC

Organization	Yes or No	Question 6 Comment
Ameren	Yes	

7. The second document "BAL-003-1 Background Document" provides information behind the development of the standard. Do you agree that this new document provides sufficient clarity as to the development of the standard? If not, please explain in the comment area.

Summary Consideration: The majority of the commenters referenced other questions in the comments. The SDT asked them to review the response to those earlier questions.
Several of the commenters pointed out that there was a discrepancy between the Background Document and Attachment A regarding the calculation of the BA FRO. The SDT has corrected the reference so both documents agree. The drafting team is proposing to use historical information rather than forecasted information for the allocation of the Frequency Response Obligation.

Some commenters indicated that Supplemental Regulation Service is not an appropriate method to provide Frequency Response. It is inappropriate to expect supplementary regulation to transfer frequency response successfully. However the SDT does not want to prevent any innovative solution that will transfer frequency response through the use of a pseudo-tie among Balancing Authorities. Also, the SDT believes that Balancing Authorities exchanging supplementary regulation via a pseudo-tie have to be consistent in the removal or inclusion of it in their actual net interchange measurement as well as in all events across the measurement period.

Organization	Yes or No	Question 7 Comment
Seattle City Light	Negative	Answer: Yes Comments: o LADWP and SCL note that the document "BAL-003-1 Background Document" seems to be reasonable.
Response: Thank you for your comment.		
Energy Mark, Inc.	No	Comment 14: Some of the information in this document concerning the Frequency Bias Setting for BAs participating in Overlap Regulation should be moved to the Supporting Document. This change would help in addressing Comments $3 \& 4$ under Question 2.
Response: The SDT has added language to Attachment A to address your concern.		

| Organization | Yes or No | Question 7 Comment |
| :--- | :---: | :--- | :--- |
| Duke Energy | No | Please see our comments to Question 6. In addition, Duke Energy disagrees with the
 statement on page 9 that Attachment B will "ensure there is no negative impact on
 other Standards" - please see our response to Question 8 for additional information. |
| Response: Thank you for your comments. Please see the responses to Questions \#6 and \#8. | | |

Organization	Yes or No	Question 7 Comment
		through supplemental regulation. It is inappropriate to try to substitute a "minute plus" product that is deployed centrally by the Balancing Authority for a "sub-minute" product that is deployed automatically without any Balancing Authority action. When a pseudo-tie is used, changes in the ACE values due to supplemental regulation are unrelated to and not coordinated with the need to deploy frequency response. Not only should this approach not be offered as an alternative, but the FRSDT should actively conduct research to determine if supplemental regulation via a pseudo-tie should be deliberately REMOVED from any actual net interchange calculation that may include it. This comment also applies to the mentioning of supplemental regulation on page 11 as well. 5. On page 7, the reference to a 24 hour window on each side of the frequency bias setting implementation date is inconsistent with the wording of the standard. The standard states that any time within the designated date is acceptable. 6. On page 8, the inclusion of "for training purposes" as a reason to not operate in tie line bias control should be dropped. This training can be done in a training simulator. If it is determined that it should be supported, then the requirement needs to be reworded to allow it explicitly. 7. On page 14, the sentence: "This approach would only provide feedback for performance during that specific event and would not provide insight into the depth of response or other limitations" is difficult to understand. The paragraph would read better by simply deleting the sentence.

Response: Please refer to our response to Question \#6.
Comment 1 - The SDT has modified the Background Document to incorporate your suggested change.
Comment 2 - The SDT has corrected the reference so both documents agree. The drafting team is proposing to use historical information rather than forecasted information for the allocation of the Frequency Response Obligation.
Comment 3 - The SDT has removed the speculative language and replaced it with more appropriate language.
Comment 4 - While the SDT agrees that it is inappropriate to expect supplementary regulation to transfer frequency response

Organization	Yes or No	Question 7 Comment
successfully, we do not want to prevent any innovative solution that will transfer frequency response through the use of a pseudo-tie among Balancing Authorities. Also, the SDT believes that Balancing Authorities exchanging supplementary regulation via a pseudo-tie have to be consistent in the removal or inclusion of it in their actual net interchange measurement as well as all events across the measurement period. Comment 5 - The SDT has corrected the background document to accurately reflect the language proposed in the standard. Comment 6 - The SDT has modified the background document to remove the training language. Comment 7 - The SDT has revised the paragraph to provide additional clarity.		
Xcel Energy	No	Same comment here as the one in question 6.
Response: Please refer to our response to Question \#6.		
ISO New England Inc	No	See first comment in 6 above. Also, Frequency Response Standard Background Document - 1. Cite Attachment B in addition to Attachment A in the discussion of requirement 1. 2. The Balancing Authority allocation method specified in this document does not agree with that in Attachment A. 3. Drop the speculation on page 4 that most Balancing Authorities will be compliant. While it may be a commonly held belief by many that there is adequate frequency response right now, that assessment should be made after a targeted level of reliability has been defined and approved. The same comment applies on page 12. 4. On page 6, drop the inappropriate recommendation of getting frequency response through supplemental regulation. It is inappropriate to try to substitute a "minute plus" product that is deployed centrally by the Balancing Authority for a "sub-minute" product that is deployed automatically without any Balancing Authority action. When a pseudo-tie is used, changes in the ACE values due to supplemental regulation are unrelated to and not coordinated with the need to deploy frequency response. Not only should this approach not be offered as an alternative, but the FRSDT should

Organization	Yes or No	Question 7 Comment

Organization	Yes or No	Question 7 Comment
Comment 6 - The SDT has modified the background document to remove the training language. Comment 7 - The SDT has revised the paragraph to provide additional clarity.		
Western Electricity Coordinating Council	No	See response to question 6.
Response: Please refer to our response to Question \#6.		
Alberta Electric System Operator	No	The Background Document uses BA Peak Generation in the BA FRO allocation formula. Attachment A uses BA Installed Capacity. The AESO suggests making the two formulae consistent.
Response: The drafting team has corrected the reference so both documents agree. The drafting team is proposing to use historical information rather than forecasted information for the allocation of the Frequency Response Obligation.		
Florida Municipal Power Agency	No	The document does not discuss how the new reliability parameter will affect BAs
Response: The new standard will require that Balancing Authorities meet a level of response to frequency events equal to or more negative than their Frequency Response Obligation. The SDT has made significant modifications to the Background Document which should address your concern.		
JEA Electric Compliance	No	The document does not discuss how the new reliability parameter will affect BAs
Response: The new standard will require that Balancing Authorities meet a level of response to frequency events equal to or more negative than their Frequency Response Obligation. The SDT has made significant modifications to the Background Document which should address your concern.		
MRO NSRF	No	The MRO NSRF has restated the same answer as in question 6 on purpose. Confusion exists around the "peak load" in that Attachment A states the allocation is based on Projected Peak Loads and Generation but the Background Document states it will use

| Organization | Yes or No | Question 7 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\left.\begin{array}{l}a historical Peak and Generation to make the allocation. Also, for the BA installed

capacity, where is that value derived from and does NERC obtain that from FERC form

data or does the BA provide that information somewhere specific to this effort?

Additionally, there appears to be a difference in how FRO is calculated in Attachment

A and what is described in the Background Document. These differences should be

reconciled such that both documents address the same approach. If installed capacity

is used in the equation, how are variable/intermittent resources (e.g. wind, solar)

accounted for? At full capacity? Please clarify.

Page 7 (3rd paragraph) of the Background document states "Given the fact that BA's

can encounter staffing or EMS change issues coincident with the date the ERO sets

for new Frequency Bias Setting implementation, the standard provides a 24 hour

window on each side of the target date.\end{array}\right.\right\} $$
\begin{array}{l}\text { 1) The Standard itself does not state this provision (24 hour window on each side of } \\
\text { target date) as indicated. } \\
\text { 2) The SDT accurately addresses the fact that BA's could have EMS or staffing issues } \\
\text { during implementation of the ERO validated FBS. The current stated 72-hour window } \\
\text { is not long enough for implementation of the FBS as there may be a host of issues } \\
\text { that could impact implementation. We suggest that a seven day window be used for } \\
\text { implementation of the FBS. }\end{array}
$$\right\}\)

| Organization | Yes or No | Question 7 Comment |
| :--- | :---: | :--- | :--- |
| Response: The drafting team has corrected the reference so both documents agree. | | |
| Great River Energy/ACES
 Power Marketing Standards
 Collaborators | No | We can find no document titled "BAL-003-1 Background Document". We assume this
 question is referring to the "Frequency Response Standard Background Document"
 dated October 2011. We do not believe the document provides sufficient clarity. No
 explanation is provided for why RSG was added to Requirement R1.There are typos
 contained in the document. On page 6 in NIA, the A should be in subscript. On page
 7 in bullet 4 in the first sentence, "The" should be in lowercase |
| Response: Your assumption was correct. The drafting team has corrected these typos. | | |

| Organization | Yes or No | Question 7 Comment |
| :--- | :---: | :--- | :--- |
| Response: Thank you for your comments. | Yes | Paragraph 4 on page 5 of the Background Document provides a statistically correct
 description of event selection without sample pre-selection and should followed
 instead of the erroneous criteria 2 \& 7 in Attachment A. The risk-based approach to
 determining FRM, that the Background Document mentions in paragraph 4 of page 4
 is being evaluated by the drafting team for application in this standard, should be
 considered for deployment as soon as possible to replace the administered method
 currently proposed in this standard, because the administered method lacks any
 technical justification. No such justification was ever attempted in the development
 of this standard. The administrative method of determining FRM is therefore but a
 highly dubious "quick fix" until the risk-based method is evaluated and implemented.
 The administrative method is in fact perverse because it discourages BAs from
 reducing their contribution to frequency error by refusing to reduce the BA's FRO
 accordingly, and because it encourages BAs to contribute to frequency error without
 increasing their FRO. |
| Response: The standard has to be written with what will be used day one. Due to the timeline that NERC has filed with FERC, there | | |
| is not enough time to adequately evaluate a second methodology. | | |

Organization	Yes or No	Question 7 Comment
performing this process in a vacuum, but will be working with the BAs in the same manner as they presently do.		
NV Energy	Yes	This is a good reference; however see response to Question 6 in that there appears to be a discprepancy between Att A and the Background Document with regard to FRO calculation.
Response: The drafting team has corrected the discrepancy so both documents now agree. The drafting team is proposing to use historical information rather than forecasted information for the allocation of the Frequency Response Obligation.		
Cleco Corporation/SPP Standards Review Group	Yes	We appreciate the effort of the SDT in developing the Background Document. It provided insight on how the SDT got the proposed standard to where it is with this posting.
Response: Thank you for your comment.		
Imperial Irrigation District	Yes	
Southwest Power Pool Regional Entity	Yes	
Salt River Project	Yes	
Progress Energy	Yes	
Florida Power \& Light Company	Yes	
FPL	Yes	
FMPP	Yes	

Organization	Yes or No	
Tucson Electric Power	Yes	
Associated Electric Cooperative Inc	Yes	
South Carolina Electric and Gas	Yes Comment	
Ameren	Yes	
Hydro-Quebec TransEnergie	Yes	
ISO/RTO Council Standards Review Committee/ Independent Electricity System Operator	We do not have an opinion on whether or not the Background Document provides sufficient clarity to the development of the standard. We do, however, suggest that the SDT consider our comments in Q6, above, and move some of the information from Attachments A and B to or combine with the Background Document, to the Background Document to provide all the technical basis and background behind the elements stipulated in the requirements.	

8. The SDT has developed a new document titled Attachment B-Process for Adjusting Bias Setting Floor. This document is intended to provide the methodology the ERO will use to reduce the minimum Frequency Bias Setting to become closer to natural Frequency Response. Do you agree that this document provides clear and concise instructions for the ERO to follow? If not, please explain in the comment area.

Summary Consideration: The majority of commenters did not like the word "initially" that was used in the proposed standard. They felt that it caused confusion. The SDT modified the attachment to remove the reference to the word "initially" and added other clarifying language to the document.

Some commenters were concerned with how the calculation of FRO for BAs that have load and generation. The intent was that generation-only BAs would base their settings on generation. Traditional BAs would use load. The SDT revised the table to agree with the proposed standard.

One commenter indicated that the standard was measuring AGC. The SDT disagrees.. There may be some AGC influence in the measurement however the SDT believes that this impact is minor. Based on the data received from the Field Trial, the SDT did not see this phenomenon.

A couple of commenters indicated that the methodology used for calculation of the minimum Frequency Bias Setting could be adverse for a single BA interconnection. The SDT explained that to ensure comparable treatment between BAs with fixed Bias Settings, BAs with a variable Bias Setting report their monthly average Bias for the reporting year. This average will be calculated when frequency is greater than 60.036 Hz or less than 59.964 Hz . The average of the 12 months' Bias values must be equal to or more negative than the Interconnection's minimum Bias Setting.

Organization	Yes or No	Question 8 Comment
Seattle City Light	Negative	Answer: Yes Comments: o LADWP and SCL note that Attachment B seems to be reasonable.
Response: Thank you for your comment.		
Constellation Energy Commodities Group	No	Should be revisited based on the proposed modifications to the requirements.

Organization	Yes or No	Question 8 Comment
Response: The SDT has modified Attachment B, now a Procedure for the ERO to follow in supporting the standard, to reflect modifications to the requirements and suggested changes from the industry.		
MRO NSRF	No	: There could be some confusion caused by the Attachment B due to the use of the word "initially" when the reference is made to the current standard. The drafting team should change the word "initially" to "currently" or strike it to avoid the potential confusion. The second paragraph of Attachment B (which contains the two bullets):The words "initially 1% " in the second bullet contradict with the Table 1 on Attachment B, which states "Initial" and " 0.8% ". Suggest deleting the parenthetical in the second bullet as when BAL-003-1 is effective it would be referencing an old Standard version. If the initial minimum is intended to be 1% say so in the Table 1.
Response: The SDT has modified Attachment B, now a Procedure for the ERO to follow in supporting the standard, to reflect your suggested changes.		
Texas Reliability Entity	No	1. In Attachment B, we suggest removing the paragraph beginning "The $B A$ calculates . . ." because it appears to be background information that conflicts with the methods provided in this version of the standard for determining minimum bias settings. 2 . 2. Attachment B, Table 1 , refers to " 0.8% of peak load or generation." If a BA has both load and generation, will its minimum Frequency Bias Setting be based on its load, its generation, or can it pick the value that it prefers to use?
Response: The SDT agrees and has removed it from the Attachment B, now a Procedure. The SDT intended that generation-only BAs would base their settings on generation. Traditional BAs would use load. We have revised the table to agree with the proposed standard.		
Bonneville Power	No	BPA understands the concept and we disagree with it. As the ERO continues to lower the required minimum frequency bias setting for an interconnection, the BA's that

Organization	Yes or No	Question 8 Comment
Administration		have frequency response higher than the 1% will have a higher percentage of the frequency response of the interconnection. Also, this standard is primarily measuring AGC response, not natural frequency response; therefore not lowering the limit is appropriate.

Response: The SDT believes that you may be mixing the Frequency Bias Setting and Frequency Response Measure. As proposed the FRO will be assigned based upon load and generation as defined in Attachment A. Therefore actual Frequency Response will be required to come from the interconnection on that basis. To the extent an entity has a FRM greater than its Interconnection's minimum Frequency Bias Setting, its Frequency Bias Setting may grow as a percent of the Interconnections total Frequency Bias Setting. However, that is not Frequency Response.
The SDT disagrees with your comment concerning AGC. There may be some AGC influence in the measurement however the SDT believes that this impact is minor. Based on the data received from the Field Trial, the SDT did not see this phenomenon.

Duke Energy	No	Duke Energy suggests that the SDT consider a term other than "Initial' in the title for Table 1. We suggest "Proposed Frequency Bias Setting" for Table 1. Notwithstanding our suggestion that the criteria/requirements of the minimum FBS in the Attachment be incorporated into the Standard, Duke Energy has the following concerns with what is proposed: As cited in our comments to Question 8 in the last posting (extensive, so not repeated here), the secondary control measures of CPS1, CPS2 and the draft Balancing Authority ACE Limit (BAAL) are tightly coupled to the Frequency Bias Setting (FBS), and a reduction of the FBS will impact the secondary control requirements placed upon the BA. Noted in our response to Question 7 above, the statement on page 9 in the "BAL-003-1 Background Document"is not correct in stating that Attachment B will "ensure there is no negative impact on other Standards". The gradual reduction of the FBS will proportionally tighten the secondary control limits for each Balancing Authority. Even if the "natural" Frequency Response in the Eastern Interconnection remains unchanged for the next several years, under the process described allowing the ERO to annually adjust the minimum FBS for the Interconnection, the FBS will

Organization	Yes or No	Question 8 Comment
		eventually be reduced to a value approximately 10% above the calculated response in magnitude, cutting the current CPS1, CPS2 and BAAL limits in the Eastern Interconnection on average by more than half. The current FBS for the Eastern Interconnection is approximately minus $6500 \mathrm{MW} / 0.1 \mathrm{~Hz}$, estimated "natural" Frequency Response is perhaps around minus $2400 \mathrm{MW} / 0.1 \mathrm{~Hz}$. Unlike CPS1 and BAAL where the measures are based upon the FBS of the BA only, CPS2 (dependent upon the FBS of the BA and the Interconnection) will be significantly limiting to the degree that no change in a BA's own Frequency Response could significantly change its CPS2 limit if the Interconnection FBS drops over time as indicated. At least under CPS1 and the draft BAAL, the BA would have an option of improving its Frequency Response, allowing it to increase its FBS and proportionally the CPS1 and BAAL bounds using the FBS. Conclusion from our last comments submitted: Duke Energy does not believe there is a reliability need pushing the industry to tighten secondary control to the degree discussed above simply as a result of reducing the Frequency Bias Setting. If the calculated Frequency Response of the Interconnection stayed at its current level, what would be the justification for tightening the secondary control requirements of CPS1, CPS2 and the proposed BAAL? Duke Energy supports taking more of the error out of the ACE equation by having the FBS closer to the estimated Frequency Response of the Balancing Authority, however, Duke Energy does not believe the result should be a significant increase in secondary control costs to meet the CPS1, CPS2, or draft BAAL requirements. Duke Energy understands the position placed upon this Standard Drafting Team- the secondary control and reserve requirements are not under the scope of the team, however, proper consideration has not been given in Attachment B to the impact lowering the FBS will have on the industry in terms of the requirements placed upon the BA for secondary control and reserve requirements - especially for meeting CPS2. The research discussed in our comments to the last posting support that reducing the FBS while under CPS1 and the draft BAAL may be achievable, however a CPS2 bound cut potentially in half or lower will place unreasonable bounds on a BA, requiring control actions even when the BA may

Organization
Yes or No

Organization	Yes or No	Question 8 Comment
Sacramento Municipal Utility District (SMUD)	No	In addition to the requirements, reducing frequency bias obligation results in generation tripping closer to the set point. It seems that Lowering the Minimum Frequency Bias Setting from 1% to $.8 \%$ will result in a lower response, which in turn will lower the natural frequency response. Over time it seems this pattern would lead to poorer response.
Response: The SDT is unsure of what your first comment is attempting to say. Therefore the SDT cannot provide a response to your comment without further clarification. The SDT believes that you may be mixing the Frequency Bias Setting and Frequency Response Measure. As proposed the FRO will be assigned based upon load and generation as defined in Attachment A. Therefore actual Frequency Response will be required to come from the Interconnection on that basis. To the extent an entity has an FRM greater than its Interconnection's minimum Frequency Bias Setting, its Frequency Bias Setting may grow as a percent of the Interconnection's total Frequency Bias Setting. However, that is not Frequency Response.		
NV Energy	No	In Attachment B, it seems unclear whether the initial FB setting is supposed to be 1% of BA peak load or 0.8% as shown in the table. In general, I was extremely confused about what the required FB setting should be. R5 indicates a percentage of load found in Att B, but Att B indicates the greater of Natural Frequency Response or 1\% of peak, and then the table that follows indicates 0.8%. At this point, I have no idea what is being stated for the requirement.
Response: The SDT agrees and has modified the attachment. The SDT intended that generation-only BAs would base their settings on generation. Traditional BAs would use load. We have revised the table to agree with the proposed standard.		
Progress Energy	No	PGN supports the collective comments of SERC members. We suggest the SDT consider a term other than "Initial' in the title for Table 1. We suggest "Proposed Frequency Bias Setting" for Table 1

Organization	Yes or No	Question 8 Comment					
Response: The SDT agrees with your comments and has made corresponding modifications to the attachment by removing the word, "initial".							
Independent Electricity System Operator	No	Please see our comments under Q6. In brief, we do not agree with including a process description type of document as part of the standard requirement.					
Response: Please refer to our response to Question \#6.			$	$	ISO/RTO Council Standards Review Committee	No	Please see our comments under Q6. In brief, we do not agree with including a process description type of document as part of the standard requirement. Process description should be regarded guideline document and not a part of the standard requirement.
:---	:---	:---					
Response: Please refer to our response to Question \#6.							

| Organization | Yes or No | Question 8 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l}variable Bias that is calculated based upon which generator is online and it's droop

setting. Under light load condition, we might have a Bias setting that would be under

(in absolute value) than the FRM which is the median value, even though the Bias

setting would reflect the grid's frequency response. This method, as proposed, would

mandate us to have a larger Bias that what is really needed. Unlike Eastern

Interconnection, we are not over biased. By implementing this new methodology, it

would make us over biased. Having a too large Bias could lead to system instability,

based on the results of studies from our control specialists. The Minimum Frequency

Bias Setting should take into account the wide load span that we can face.

For the variable bias, we could express the Minimum Frequency Bias Setting as a

function of monthly peak loads, and remove the Natural Frequency Response term.

In addition, there is a gap between Attachment B and the text in R5. See comment

10 for explanation.\end{array}\right.\right\}\)

Organization	Yes or No	Question 8 Comment
		value, to better match the Frequency Bias Setting to the natural Frequency Response or provide technical justification for not implementing the reduction
Response: You are correct, the starting value is arbitrary. The SDT did not want to make a one step change to immediately reduce the minimum Frequency Bias Setting to natural Frequency Response. The SDT believes that a multi-year multi-step process would be better and allows for monitoring the effects on other performance standards. The SDT believes that the end result would be the same. The present wording allows for collaboration between the ERO and other entities/groups. The SDT is also concerned with putting a requirement on the ERO within an Attachment when there is not a reliability problem if it were not to happen.		
SERC OC Standards Review Group	No	We suggest the SDT consider a term other than "Initial' in the title for Table 1. We suggest "Proposed Frequency Bias Setting" for Table 1
Response: The SDT agrees with your comment and has modified the attachment by removing the word, "initial".		

Organization	Yes or No	Question 8 Comment
		proposed method. An appendix is not regarded as a mandatory requirement.
Response: The process is still being developed at NERC but an Attachment would document processes to be utilized without a measurement saying that you failed the standard.		
Southern Company	No	We suggest using the words, 'Proposed Frequency Bias Setting' in the Title of Table 1 instead of the word, 'Initial'.
Response: The SDT agrees with your comment and has modified the attachment by removing the word, "initial".		
ERCOT	No	While there is no problem with the calculation involved, it is unclear why the SDT elected to assign a grid performance element in this standard to the ERO, who has no functional (registered) role in grid performance. Since this is a cook-book calculation and transfer of data on frequency performance, why not assign it to the BA?
Response: The Attachment B, now a Procedure for the ERO to follow in supporting the standard, only outlines a process that the ERO is to use when adjusting the minimum Frequency Bias Setting. The Procedure does not place any grid performance requirement on the ERO. The SDT also believes that some authority should have oversight over the minimum setting to prevent abuses and assure fairness.		
Seattle City Light	Yes	- LADWP and SCL note that Attachment B seems to be reasonable.
Response: The SDT thanks you for your affirmative response and clarifying comment.		
Energy Mark, Inc.	Yes	Comment 15: This Yes answer assumes that the SDT addresses Comment 13 under Question 6 in these comments.
Response: The SDT thanks you for your affirmative response and clarifying comment. The SDT addressed your Comment \#13 under Question \#6.		
Ameren	Yes	Considering the comments made regarding R5, in question 2, above, which are:

Organization	Yes or No	Question 8 Comment
		R5. While we agree with the requirement of R5, it should not be at the expense of changing the value of L10 in BAL-001, R2, which has been accepted by FERC in Order 693. An accommodation should be made so that any changes to the Frequency Bias Setting according to BAL-003, R5, should not affect the value of L10 used in BAL-001, R2.
Response: The SDT thanks you for your affirmative response and clarifying comment. However, the SDT disagrees with your comment. Since L_{10} is the function of individual Frequency Bias Settings to the sum of all BA Frequency Bias Settings within an Interconnection and establishes operating boundaries, it would be inappropriate to leave L_{10} as is when a Frequency Bias Setting changes.		
Los Angeles Department of Water and Power	Yes	LADWP notes that Attachment B seems to be reasonable
Response: The SDT thanks you for your affirmative response and clarifying comment.		
FPL	Yes	Last paragraph: As stated, would that make the Minimum Frequency Bias Setting 0.7% of peak load or generation? A numerical example shown would help clarify this paragraph.
Response: The SDT thanks you for your affirmative response and clarifying comment. The SDT has added an example to the Background Document.		
Southwest Power Pool Regional Entity	Yes	Need to clarify that 2012 Bias setting will be based on 1% of peak load or generation until approval of BAL-003-1 by FERC establishing the $.08 \%$ of peak load or generation minimum threshold.
Response: We agree and we have endeavored to do so. The SDT does point out that the proposed minimum for the first year once approved by FERC is 0.9% not 0.08%.		
Associated Electric	Yes	This is a very important document, providing bounds and rationale for and future

Organization	Yes or No	Question 8 Comment
Cooperative Inc		changes, as well as initial settings going into ballot. As such, it is AECI's understanding that, upon going into effect, this BAL-003-1 will utilize these initial settings.
Response: The SDT thanks you for your affirmative response and clarifying comment.		
Imperial Irrigation District	Yes	
SPP Standards Review Group	Yes	
ACES Power Marketing Standards Collaborators	Yes	
Salt River Project	Yes	
FMPP	Yes	
American Electric Power	Yes	
Cleco Corporation	Yes	
Manitoba Hydro	Yes	
Great River Energy	Yes	
Keen Resources Asia Ltd.	Yes	

9. The SDT has provided an additional spreadsheet, FRS Form 2, to assist the Balancing Authority in providing the data needed to comply with the proposed standard. Do you agree that this spreadsheet is useful and the instructions are meaningful? If not, please explain in the comment area.

Summary Consideration: Many of the commenters expressed concern with the fact that the Excel Spreadsheets that were required to be used were in a newer version of Excel than their company was presently using. In response, the SDT developed Excel Spreadsheets that are compatible with earlier versions of Excel.

A couple of commenters expressed concern that the Excel Spreadsheets did not contain all of the information necessary to comply with the analysis required (timing of the event (hour, minute, second). Form 1 contains the time of the event including the hour, minute and second for $t(0)$ and a graph of frequency data for each event in the list. The time for each BA'st(0) may vary from this time due to different sample rates of data and physical proximity to the contingency. Since this standard does not identify an "A Point" or "B Point" but calculates an "A Value" and "B Value", providing an exact time for these provides little value. $T(0)$ is the focus of the measurement process and is the first observed change in frequency of the event. Also added to Form 1, the BA can enter the time zone of its data and the time of $t(0)$ will be converted to the correct time in that zone. We agree that the proper selection of $t(0)$ is important. This can be viewed on the "Graph 20 to 52 s " worksheet. When set correctly, the first change in frequency of the event will be exactly in the center of the graph on the vertical grid line.

Some commenters felt that it would be useful if the SDT could develop a completed form as an example to help entities better understand the methodologies used in the form. Form 2 contains actual data for frequency and NAI of an event. Sample data was added for each of the adjustments to demonstrate their use and impact on the analysis.

A couple of commenters question the meaning of "master event list" in FRS Form 2. The "Master event list" refers to the event list contained in each Interconnection's Form 1.

Organization	Yes or No	Question 9 Comment
Seattle City Light	Negative	Answer: No Comments: o LADWP and SCL note that Form 2 is not compatible with prior versions of Excel-it won't even open in Excel 2003 (which is still widely used)- and requests that all spreadsheets and calculation tools developed under 2007-12 be revised to support common software of the past 10 years.

Organization	Yes or No	Question 9 Comment
Response: Excel 2003 versions of all forms have been developed.		
Seattle City Light	No	o LADWP and SCL note that Form 2 is not compatible with prior versions of Excel-it won't even open in Excel 2003 (which is still widely used)-and requests that all spreadsheets and calculation tools developed under 2007-12 be revised to support common software of the past 10 years.
Response: Excel 2003 versions of all forms have been developed.		
Associated Electric Cooperative Inc	No	AECI believes the SDT could spare our industry both confusion and inconsistency, by specifying that identified Interconnection Disturbances include both Point A and Point B to the hour, minute, and second. While this introduces some risk of Entities over-automating their data-reports, the benefits for Eastern Interconnection respondents would be tremendous. Cautions and disclaimers should be placed on both Form 1 and Form 2, to assure respondents manually inspect their frequency data and pinpoint the specific inflection-point samples.
Response: Form 1 contains the time of the event including the hour, minute and second for $t(0)$ and a graph of frequency data for each event in the list. The time for each BA's $t(0)$ may vary from this time due to different sample rates of data and physical proximity to the contingency. Since this standard does not identify an "A Point" or "B Point" but calculates an "A Value" and "B Value", providing an exact time for these provides little value. $T(0)$ is the focus of the measurement process and is the first observed change in frequency of the event. Also added to Form 1, the BA can enter the time zone of its data and the time of $\mathrm{t}(0)$ will be converted to the correct time in that zone. We agree that the proper selection of $t(0)$ is important. This can be viewed on the "Graph 20 to 52 s " worksheet. When set correctly, the first change in frequency of the event will be exactly in the center of the graph on the vertical grid line.		
Bonneville Power Administration	No	BPA believes the form is not easily understood and is overly complicated for what it is trying to accomplish. BPA believes the form might work for an internal evaluation, just not for an external audit. Compliance is based on this form. BPA believes the standard needs to be simplified and possibly returned to a data gathering standard.

Organization	Yes or No	Question 9 Comment
Red		

Response: The addition of "Adjustments" to the analysis did add complexity to the Form. These were added based on comments received from the industry on previous postings. Some of these "Adjustments" may be removed as the field trial progresses if they are not utilized. In the latest Form 2, version 6, the multiple time period averages were removed since the final average period was selected based on the results of the first round of the field trial evaluated last fall. However, Form 2 is important to the standard in that it achieves the requirement of measuring frequency response in the same manner for all Interconnections. Returning Form 2 with Form 1 allows validation of the selection of $t(0)$ which is critical for this requirement.
The SDT does not believe that it can revert back to a "data gathering" standard. The SDT is responding to FERC Directives from Order 693 as well as the FERC Order dated March 18, 2010 which mandated development of a standard addressing the Order 693 directives within six months. FERC later granted an extension to provide a standard addressing these issues by the end of May 2012.

FPL	No	FRS Form 2 - Two-second Sample Datalnstructions tab/worksheet: What is referred to as or meant by the 'master event list'? 4. - Regarding 2 second sample rate for 25 minutes starting 2 minutes before event begins and 15 minutes after it begins, does this add up to 25 minutes or are additional minutes being required for collection? Also, FPL can report frequency at this rate, but can only report load in MW every four seconds. Move to 4 second sample rate.6-8. - Possible to add button to auto-populate cells C8 and C11 in "Entry Data' tab from the new column C and cell identifying the desired frequency change time and simplify these steps? 10. - Clarify where the "Copy" button is. Is it the one in the 'Data' tab or worksheet? Entry Data tab/worksheet:Step 6 should also be or be moved to the "Instructions"
worksheet.Are the values in column C in the "Data" worksheet labeled "Total Lost		
Generation" the same as those in column AQ in the "Evaluation" worksheet? If so,		
why are they not both labeled "Net Actual Interchange"?		
What is the definition of "Non Conforming Load" in column E?		

Response: "Master event list" refers to the event list contained in each Interconnection's Form 1.

Organization

Yes or No

Question 9 Comment

The inconsistency in the data sample totals has been corrected. The absolute minimum amount of data required for the full analysis is two minutes before the beginning of the event to 15 minutes after the beginning of the event. The calculation rate of "Load" can be at a different rate than the AGC scan rate. The Load data is not used in measuring performance. The variability of Load can impact measured performance and can be observed on the "BA Load Dampening" worksheet graph. On some Interconnections, load dampening can be observed in the data. Using the historian "data sample" collection option, it will fill the spreadsheet with the same value of Load, changing at the calculation rate.

The "auto populate" of cells C8 and C11 is a good idea. A couple BAs did this during the first phase of the field trail. The problem is that the event time of $t(0)$ in column C was set using 2 second scan data in one part of the Interconnection and the beginning of the event may be shifted one or two scans when frequency is scanned less often. This would make this automation difficult for the value in C8. It is critical for the measure for $\mathbf{t}(0)$ be set correctly. The value of $\mathbf{C 1 1}$ is less critical and is not used in the initial primary Frequency Response Measure. It is only used to demonstrate delivery of primary frequency response during the frequency recovery period.
The location of the "Copy" button has been clarified.
Step 6 on the "Data Entry" worksheet was added to the "Instructions" worksheet. The value in column C in the "Data" worksheet labeled "Total Lost Generation" is for single BA Interconnections only. It takes the place of "Net Actual Interchange" for multiple BA Interconnections. Column "AO" on the "Evaluation" worksheet is not the same as the "Contingent BA Lost Generation" data on the "Evaluation" worksheet. The "Contingent BA Lost Generation" data is only used by multiple BA Interconnection BAs not Single BA Interconnections. The "Data" worksheet for the "Single BA Interconnection" Forms has an n/a in columns G, H and I and should not be used by BAs in these Interconnections. This is noted on their "Instructions" worksheet. This should explain why they are not labeled the same.
Non-conforming Load is Load that changes abnormally different than the conventional diurnal load pattern of a Balancing Authority Area. Non-conforming Load becomes significant when the net change within a few minutes is greater than a BA's L_{10} limit. The importance here is that this Load change can be ten times larger than some BAs' FRO and makes measuring the SEFRD inaccurate. An example of non-conforming load would be an arc furnace of a significant size.
Thank you for your comments and the effort to find each of these items.

ISO/RTO Council Standards

Review Committee

If we are not mistaken, Form 2 is added as the last sheet in the Form 1 spreadsheet file. Apart from that, however, there are other sheets added to the previous Form 1. But this Comment form makes no mention of the changes, nor is there a question in

| Organization | Yes or No | Question 9 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{ll}\hline the Comment Form asking whether the additional information should be requested.

We believe this is a significant change to the standard and many commenters may

have missed the opportunity to comment on it. Compared to the previous version,

Form 1 has been significantly expanded to include not only additional sheets but

much more comprehensive data requirements even on the Data Entry sheet itself.

This makes data submission a very time-consuming task but the justification for

requiring detailed data entry has not been provided.

We question the need for such expansion on data entry requirements. We have yet

to see the reason for expanding Form 1 in assisting a BA to provide the data needed

to comply with the standard, hence we do not see how adding a Form 2 can help in

that regard. We suggest the SDT to keep data requirements to only what is minimally

needed to support the FRS reporting process. Where the SDT deems additional data

entry sheets to be necessary, it should provide the rationale for expanding from a 2

sheet form into a multiple sheet form for additional data collection. Where the SDT

deems the additional data sheet or information not necessary to support FRS

reporting, then we suggest the SDT to hide those pages not required for the standard

so as to avoid confusion, and/or to remove those analytical pages not directly used in

the standard.\end{array}\right.\right]\)| Response: The SDT points out that there are no additional data requirements. It is possible that you are seeing more |
| :--- |

Organization
versions. The absolute minimum data needed for this standard is the date/time, frequency and NAI in columns A, B and C of the
"Data" worksheet in Form 2. Columns D through I have been totally optional and can be left blank. Column J is the Bias setting in
the ACE equation and is important to BAs that utilize variable Bias. Column K, BA Load, was added by the drafting team in the
beginning to see if Load Dampening could be measured as this has been done for several years on one Interconnection. Column I
of the "Data" worksheet is the only optional data that the BA should use when it is the contingent BA during any of the events
evaluated. Utilizing this data will allow the BA's SEFRD to be calculated correctly and give the BA a full sample set for the annual
median calculation. Form 2 is necessary to standardize the measurement process on all Interconnections. You are free to hide
any analytical worksheets on Form 1 and Form 2. You can do this on your "master" Form 2 and then build each Form 2 for each
event using this master. These additional worksheets are available for BAs to utilize if they find that their performance is below
the FRO and will aid the analysis of the contributing causes.

Independent Electricity
No

System Operator

> If we are not mistaken, Form 2 is added as the last sheet in the Form 1 spreadsheet file. Apart from that, however, there are other sheets added to the previous Form 1 . But this Comment form makes no mention of the changes, nor is there a question on the additional information requested. We have a concern over this omission of attention or oversight. Compared to the previous version, Form 1 has been significantly expanded to include not only additional sheets but much more comprehensive data requirements even on the Data Entry sheet itself. This makes data submission a very time-consuming task but the justification for requiring detailed data entry has not been provided. We question the need for such expansion on data entry requirements. We have yet to see the reason for expanding Form 1 in assisting a BA to provide the data needed to comply with the standard, hence we do not see how adding a Form 2 can help in that regard. We suggest the SDT to look at the basic need for data submission that would suffice to support the FRS reporting process. Where the SDT deems additional data entry sheets to be necessary, it should provide the rationale for expanding from a 2 sheet form into a multiple sheet form for additional data collection.

Response: The SDT points out that there are no additional data requirements. It is possible that you are seeing more spreadsheets due to them being unhidden.

Organization
Form 2 is a separate stand-alone workbook. Form 1 does have a worksheet labeled "BA Form 2 Event Data" that will contain the
single event data from each of the BA's Form 2s. Two additional worksheets were added to Form 1 and several worksheets were
deleted. The "Time Zone Ref" worksheet was added to allow the ability of the BA to enter the time zone of its data and the
spreadsheet will calculate the local time of the event from the UTC time. This was added for the convenience of the BA in
collecting the correct data for each event and does not require additional data from the BA. The second worksheet added was a
worksheet that displays graphs of frequency for each event and the $t(0)$ selected correctly. This was added to aid the BA with data
collection and the selection of t(0) since this seemed to be one of the biggest problems during the first phase of the field trial. This
graph worksheet does not require the BA to do anything. It is not used in the analysis and can be deleted. Deleting this
worksheet will greatly reduce the size of Form 1. None of the data requirements on Form 1 or Form 2 have changed from previous
versions. The absolute minimum data needed for this standard is the date/time, frequency and NAI in columns A, B and C of the
"Data" worksheet in Form 2. Columns D through I have been totally optional and can be left blank. Column Jis the Bias setting in
the ACE equation and is important to BA's that utilize variable Bias. Column K, BA Load, was added by the drafting team in the
beginning to see if Load Dampening could be measured as this has been done for several years on one Interconnection. Column I
of the "Data" worksheet is the only optional data that the BA should use when it is the contingent BA during any of the events
evaluated. Utilizing this data will allow the BA's SEFRD to be calculated correctly and give the BA a full sample set for the annual
median calculation. Form 2 is necessary to standardize the measurement process on all Interconnections. You are free to hide
any analytical worksheets on Form 1 and Form 2 . You can do this on your "master" Form 2 and then build each Form 2 for each
event using this master. These additional worksheets are available for BAs to utilize if they find that their performance is below
the FRO and will aid the analysis of the contributing causes.

Los Angeles Department of Water and Power	No	LADWP notes that Form 2 is not compatible with prior versions of Excel-it won't even open in Excel 2003 (which is still widely used)-and requests that all spreadsheets and calculation tools developed under 2007-12 be revised to support common software of the past 10 years.
Response: Excel 2003 versions of all forms have been developed.		
Tucson Electric Power	No	TEP feels that Form 2 is a useful tool for internal BA use and should not be used for compliance purposes.
Response: Form 2 is not intended to be used to reflect compliance but rather for consistency in reporting.		

Organization	Yes or No	Question 9 Comment
Form 2 was developed so consistent analysis of each event could be validated. During the first round of the field trial, many BAs selected the incorrect $t(0)$, some provided data that was filtered or utilized data compression techniques that caused the analysis to be incorrect. With Form 2, the selection of $t(0)$ can be quickly evaluated and data quality reviewed. The proper selection of $t(0)$ can be made and Form 1 corrected providing validated consistent results.		
MRO NSRF	Yes	: It would be useful if the drafting team could develop a completed form as an example to help entities better understand the methodologies used in the form
Response: All versions of Form 2 contain actual data for frequency and NAI of an event. Sample data was added for each of the adjustments to demonstrate their use and impact on the analysis.		
Xcel Energy	Yes	It would be useful if the drafting team could develop a completed form as an example to help entities better understand the methodologies used in the form.
Response: All versions of Form 2 contain actual data for frequency and NAI of an event. Sample data was added for each of the adjustments to demonstrate their use and impact on the analysis.		
Ameren	Yes	We agree that the spreadsheet is meaningful, but still needs to be vetted through the field trial process, with improvements made based on experience in its use.
Response: We completely agree.		
Imperial Irrigation District	Yes	
Northeast Power Coordinating Council	Yes	
SERC OC Standards Review Group	Yes	
SPP Standards Review Group	Yes	

NERC

Organization	Yes or No	
Southwest Power Pool Regional Entity	Yes	
Salt River Project	Yes	
Progress Energy	Yes	
Southern Company	Yes	
Energy Mark, Inc.	Yes	
Florida Power \& Light Company	Yes	
FMPP	Yes	
ISO New England Inc	Yes	
NV Energy	Yes	
American Electric Power	Yes	
South Carolina Electric and Gas	Yes	
Cleco Corporation		
Manitoba Hydro		
Constellation Energy Commodities Group		

NERC

Organization	Yes or No	Question 9 Comment
Great River Energy	Yes	
Hydro-Quebec TransEnergie	Yes	
Duke Energy	Yes	
Keen Resources Asia Ltd.	Yes	

10. Please provide any other comments (that you have not already provided in response to the questions above) that you have on the draft standard BAL-003-1.

Summary Consideration: Many of the commenters referenced other questions in the comments. The SDT asked them to review the response to those earlier questions rather than repeating the responses here.

Several commenters pointed out that there was a discrepancy between the Background Document and Attachment A regarding the calculation of the BA FRO. The SDT has corrected the reference so both documents agree. The drafting team is proposing to use historical information rather than forecasted information for the allocation of the Frequency Response Obligation.

Several other commenters indicated that Supplemental Regulation Service was not an appropriate method to provide Frequency Response. The SDT agrees that it is inappropriate to expect supplementary regulation to transfer Frequency Response successfully, however the SDT did not want to prevent any innovative solution that will transfer Frequency Response through the use of a pseudo-tie among Balancing Authorities. Also, the SDT believes that Balancing Authorities exchanging Supplementary Regulation via a pseudo-tie have to be consistent in the removal or inclusion of Supplementary Regulation in their actual net interchange measurement as well as in all events across the measurement period.

Many commenters were concerned that the BA could be responsible for supplying an infinite amount of Frequency Response. They indicated that a BA could not prepare for this in its planning process. The SDT agrees that the proposed standard was not clear on this subject and added language in the "Criteria for Selection of Events" section of the revised Attachment A to limit the amount of Frequency Response a BA would be required to provide in order to be compliant with the standard.

Some commenters were concerned with the wording in Requirement R5. They indicated that the wording needed to say "greater than or" instead of "at least". The SDT removed the requirement and combined it with the revised Requirement R2 and the new Requirement R3. The SDT has modified the requirement and believes we have implemented the intent of your suggestion.

Many commenters did not agree with requiring the BA to provide Frequency Response. The NERC Functional Model and FERC both cited the BA as the responsible entity for providing Frequency Response. T There are several different methods available to the BA to provide Frequency Response and the SDT has included these in the Background Document.

Some commenters were concerned with the threshold that the SDT recommended for the Eastern Interconnection. Florida sees a greater change in frequency for a given contingency than for a comparable event elsewhere in the East. This is the reason for the higher first step of UFLS in Florida. Having all Eastern Interconnection Balancing Authorities carry extra frequency responsive reserves to protect against a target minimum frequency of 59.7 Hz would not protect Florida against a contingency inside Florida, but would require the other BAs in the Eastern Interconnection to continuously carry about 4,000 MW of frequency
responsive reserves to protect against a false trip in Florida if frequency fell below 59.7 Hz but over 59.5 Hz . This is a contingency on the order of $7,000 \mathrm{MW}$ or more. The drafting team compromised and gave the entire Interconnection an obligation based on 59.96 Hz .

A few commented did not agree with lowering the minimum Frequency Bias Setting. Early research by Nathan Cohn on interconnected power system operations found that control is optimum if a BA's Bias Setting is equal to its natural Frequency Response. If there were to be a difference between the two values, it is preferable to be slightly over-biased. The drafting team has proposed to bring Bias Setting and natural Frequency Response more in line. The process to do this is outlined in a Procedure developed by the SDT which replaces Attachment B. The Procedure manages a "go slow" approach to making this happen and includes checks to confirm there are not unexpected influences injected into the CPS-related calculations. Based on concerns raised by the industry, the drafting team has modified the Procedure to make the initial minimum Bias Setting 0.9\% of peak and has included a provision that the ERO will evaluate the impact caused by a change in minimum Bias Setting. The evaluation will look at both frequency performance and impact on CPS-related compliance calculations.

Some commenters had concerns about the use of the RSG as a means to provide Frequency Response, and the SDT modified the Background Document to further explain how an RSG (now FRSG) could supply Frequency Response. The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members."

A couple of commenters indicated that the median was not the proper method to use for the calculation of the FRM. Statisticians note that the median is a more accurate measure of central tendency than the mean when analyzing a sample that is small and or where scores vary widely. This is the case when estimating a BA's Frequency Response. While the median is not perfect, the median approaches a BA's typical performance after 15-20 observations and more observations give a higher confidence in the estimate of the BA's performance.

Organization	Yes or No	Question 10 Comment
MRO NSRF	Negative	It is not clear if there is an upper limit to the amount of frequency response expected of the Balancing Authorities under this standard. Except for Table 2 in Attachment A, there is no discussion of an amount of FR expected on a total basis. Balancing Authorities need to know for how many tenths of a hertz they are to respond so they

| Organization | Yes or No | Question 10 Comment |
| :--- | :--- | :--- |$|$| can determine how to plan to meet this requirement. The documents do not appear |
| :--- |
| to provide any boundary on the maximum amount of FR that a BA will provide, i.e. it |
| is not clear what will happen if an event occurs in the Eastern Interconnection that |
| causes the frequency to drop to less than 59.6 Hz (e.g. what if freq dips to 59.0? Is |
| the BA expected to provide a limitless amount of frequency response?). |
| Also, is that event excluded from the list used to calculate the Balancing Authorities' |
| response or is it included with an expectation that it counts the same as any other |
| event. Without a clear statement of what is expected, including whether there is a |
| limit on that expectation or not, the Balancing Authorities cannot know what is |
| expected of them and therefore cannot plan appropriately. |
| In the first paragraph of R5 delete "at least" and replace with "greater than or". This |
| phrase would now read "...absolute value is greater than or equal to one of the |
| following:" "Equal to or greater than" accurately identifies the expectation, the |
| current phrasing will lead to confusion and mis-interpretation. |
| Bullet \#1 of R5: The minimum \% is based upon the "estimated yearly Peak Demand". |
| During the NERC webinar it was mentioned that this minimum would move to being |
| based on historical reporting of Peak Demand. Where does the SDT stand on this |
| item? Please provide clarification. |

Organization	Yes or No	Question 10 Comment
Muscatine Power \& Water	Negative	"MPW agrees with the comments submitted by the MRO-NSRF."

Response: The SDT agrees with you that there was not a clear statement as to the maximum amount of Frequency Response that a BA would have to provide. The SDT has added language in Attachment A that caps the amount of Frequency Response that a BA will be required to provide.
The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. The SDT has modified the requirement and believes we have implemented the intent of your suggestion.

The SDT has corrected the reference so that both Attachment A and the Background Document agree. The drafting team is proposing to use historical information rather than forecasted information for the allocation of the Frequency Response Obligation.

JDRJC Associates	Negative	Support Midwest ISO Comments

Response: The SDT agrees with you that there was not a clear statement as to the maximum amount of Frequency Response that a BA would have to provide. The SDT has added language in Attachment A that caps the amount of Frequency Response that a BA will be required to provide.
The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. The SDT has modified the requirement and believes we have implemented the intent of your suggestion.

The SDT has corrected the reference so that both Attachment A and the Background Document agree. The drafting team is proposing to use historical information rather than forecasted information for the allocation of the Frequency Response Obligation.

Lincoln Electric System	Negative	Please see comments submitted by the MRO NSRF. (See comments for Question 5 submitted by the MRO NSRF.)

Response: The SDT agrees with you that there was not a clear statement as to the maximum amount of Frequency Response that a BA would have to provide. The SDT has added language in Attachment A that caps the amount of Frequency Response that a BA will be required to provide.
The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. The SDT has modified

Organization
Yes or No

Question 10 Comment

the requirement and believes we have implemented the intent of your suggestion.
The SDT has corrected the reference so that both Attachment A and the Background Document agree. The drafting team is proposing to use historical information rather than forecasted information for the allocation of the Frequency Response Obligation.

Madison Gas and Electric Co.	Negative	Please see the MRO NSRF comments
Response: The SDT agrees with you that there was not a clear statement as to the maximum amount of Frequency Response that a BA would have to provide. The SDT has added language in Attachment A that caps the amount of Frequency Response that a BA will be required to provide.		
The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. The SDT has modified the requirement and believes we have implemented the intent of your suggestion.		
The SDT has corrected the re proposing to use historical in Obligation.	e so that tion rath	h Attachment A and the Background Document agree. The drafting team is an forecasted information for the allocation of the Frequency Response

Midwest Reliability Organization	Negative	Please see the comments submitted by MRO NSRF. As MRO Sector 10 we agree with MRO NSRF position and recommendation to vote negative for this ballot.

Response: The SDT agrees with you that there was not a clear statement as to the maximum amount of Frequency Response that a BA would have to provide. The SDT has added language in Attachment A that caps the amount of Frequency Response that a BA will be required to provide.

The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. The SDT has modified the requirement and believes we have implemented the intent of your suggestion.
The SDT has corrected the reference so that both Attachment A and the Background Document agree. The drafting team is proposing to use historical information rather than forecasted information for the allocation of the Frequency Response Obligation.

Muscatine Power \& Water	Negative	"MPW agrees with the comments submitted by the MRO-NSRF."

| Organization | Yes or No | Question 10 Comment |
| :--- | :--- | :--- | :--- |

Response: The SDT agrees with you that there was not a clear statement as to the maximum amount of Frequency Response that a BA would have to provide. The SDT has added language in Attachment A that caps the amount of Frequency Response that a BA will be required to provide.

The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. The SDT has modified the requirement and believes we have implemented the intent of your suggestion.
The SDT has corrected the reference so that both Attachment A and the Background Document agree. The drafting team is proposing to use historical information rather than forecasted information for the allocation of the Frequency Response Obligation.

Nebraska Public Power	Negative	NPPD joins it's comments with comments submitted by the Midwest Reliability District
		Organization - NERC Standards Review Forum (MRO NSRF) submitted on December $8,2011$.

Response: The SDT agrees with you that there was not a clear statement as to the maximum amount of Frequency Response that a BA would have to provide. The SDT has added language in Attachment A that caps the amount of Frequency Response that a BA will be required to provide.

The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. The SDT has modified the requirement and believes we have implemented the intent of your suggestion.

The SDT has corrected the reference so that both Attachment A and the Background Document agree. The drafting team is proposing to use historical information rather than forecasted information for the allocation of the Frequency Response Obligation.

Omaha Public Power District
Negative
Please see MRO's comments submitted via Comment Form.
Response: The SDT agrees with you that there was not a clear statement as to the maximum amount of Frequency Response that a BA would have to provide. The SDT has added language in Attachment A that caps the amount of Frequency Response that a BA will be required to provide. The SDT has removed Requirement R5 and combined it into Requirement R2 and a new Requirement R3. The SDT has modified

Organization	Yes or No	Question 10 Comment
the requirement and believes we have implemented the intent of your suggestion.		
The SDT has corrected the reference so that both Attachment A and the Background Document agree. The drafting team is		
proposing to use historical information rather than forecasted information for the allocation of the Frequency Response		
Obligation.		

FirstEnergy Corp.; FirstEnergy Energy Delivery; FirstEnergy Solutions;Ohio Edison Company	Abstain	FirstEnergy appreciates the hard work of the drafting team but needs more time to review the standard with internal business units and with our RTO. Therefore at this time we must abstain.

Response: The SDT thanks you for your clarifying comment.

Organization	Yes or No	Question 10 Comment
		population has outliers." (See http://www.robertblohm.com/BestStatistic.doc for an explanation of "best statistic" which is a highly technical and central topic in modern probability theory and statistics.) Also, "outliers" are falsely and rhetorically claimed to be "noise" when in fact they are the "events" that are the specific subject of Frequency Response. It is well known that they do not "fit" a normal distribution. They are distinct from the normal operating errors that are the subject of CPM control. The paragraph does correctly conclude that the linear regression more accurately incorporates outliers than the median does, although the paragraph uses rhetoric by calling this improvement "skew" as if it is distortionary when, in fact, the median distorts the reality. 2. The sample pre-selection described in Attachment A, Event Selection, Criteria 2 \& 7, violates the fundamental statistical procedure of unbiased sampling. A population is governed by a single "process" which, when stationary, is represented by a fixed probability distribution. In this case the population is several years of events (which are the subject of Frequency Response), not of normal operating control errors which are the subject of CPM control. A sample is governed by a single process that approximates the process governing the population as the sample gets larger, in this case if it includes several years of data. Samples are measured "as they come", no triage/filtering allowed, and they are called "stratified" when their distribution approximates the population distribution. Unlike normal operating errors, samples of events are not evenly distributed over a year. The attempt in criteria $2 \& 7$ to preselect only certain events, and not others, in such a way that the selected events occur evenly throughout the year, is papently wrong because it is trying to "fit" events into a process (even distribution over time) that does not govern events, but that instead governs normal operating errors that are the subject of CPM control, not of this Frequency Response standard. In other words, criteria 2 \& 7 confuse Frequency Response with CPM, and events with normal operating errors. The result is a false, biased sample which destroys the integrity of this standard. Paragraph 4 on page 5 of the Background Document, on the other hand, provides a statistically correct description of event selection without sample pre-selection and should

Organization	Yes or No	Question 10 Comment

| Organization | Yes or No | Question 10 Comment |
| :--- | :--- | :--- | :--- |
| confidence in the estimate of the BA's performance. | | |
| Associated Electric
 Cooperative, Inc. | Affirmative | Please see comments submitted by John Bussman of AECI. Thanks, Chris Bolick |
| Response: Please refer to our earlier question responses to Mr. Bussman's comments. | | |
| Southwest Power Pool, Inc. | Negative | Please refer to the IRC Standards Review Committee comments which SPP is a party
 to for our concerns and recommendations for this standard. |
| Response: The SDT cannot find any comments submitted by the IRC Standards Review Committee. | | |
| City Utilities of Springfield,
 Missouri | Affirmative | SPRM supports the comments from SPP. |
| Response: The SDT cannot find any comments submitted by the IRC Standards Review Committee. | | |

Organization	Yes or No	Question 10 Comment
		information related to non compliance if the BA belongs to an RSG - the BA or the RSG or both. 4. In the fourth paragraph, it should be clarified for what length of time the last audit records must be retained.
Response: The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members." The SDT has modified the Background Document to further explain how an RSG (now FRSG) can be used to supply Frequency Response. 1 \& 3 - The SDT believes that the reporting entity would be the responsible entity to maintain records. The SDT also believes that once a BA has declared itself as part of an FRSG then the FRSG would be the responsible entity with the obligation to maintain records. 2 - The SDT agrees with your second comment and has made this modification. 4 - The last audit record should be kept until the next audit.		
Midwest ISO, Inc.	Affirmative	We would like to thank the drafting team for developing a standard responsive to the FERC Orders.
Response: The SDT thanks you for your affirmative response and clarifying comment.		
SCE\&G	Affirmative	We feel that frequency response is a function of a contingency event and the Purpose Statement should recognize this relationship. We suggest the following insertion in the Purpose Statement. Purpose: To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations (due to a contingency event) and supporting frequency until the frequency is restored. To provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting.

Organization	Yes or No	Question 10 Comment
Response: The SDT thanks you for your affirmative response and clarifying comment. The SDT believes that the Purpose Statement you are recommending is basically the same as what the SDT is proposing. For this reason the SDT has decided to propose their Purpose Statement for use in the proposed standard.		
SERC Reliability Corporation	Affirmative	Please see comments submitted by the SERC Operating Committee standards subgroup for technical suggestions to improve the standard.
Response: Please refer to the earlier question for the SDTs responses.		
Tennessee Valley Authority	Affirmative	Comments submitted by SERC OC Standards Review Group. TVA votes affirmative with comments previously submitted by SERC.
Response: Please refer to the earlier questions for the SDTs responses.		
Louisville Gas and Electric Co.	Negative	We support the comments in the SERC OC Standards Review Group Comments.
Response: Please refer to the earlier questions for the SDTs responses.		
AEP, AEP Marketing, AEP Service Corp.	Negative	AEP's negative ballot is primarily due to our concerns regarding R1. Comments are being submitted via electronic form by Thad Ness on behalf of American Electric Power.
Response: Please refer to our response for Question \#1.		
Alberta Electric System Operator	Negative	Besides the standard, the posting has two attachments, supporting material and two forms. It is not clear how enforcement will be applied given the array of explicit and implicit requirements throughout this package, and the use of undefined terminology, which will be subject to interpretations. In the SDT response to our comments to the first draft of this standard it was stated that "The expectation is events will be selected by the Balancing Authorities. The Balancing Authority may exclude events from consideration for specific conditions

Organization	Yes or No	Question 10 Comment
		such as data quality issues. " Based on the SDT's response, it is our understanding that, for the purpose of the FRM calculation, BAs could exclude or include events based on specific conditions consideration, such as data quality or event suitability (e.g. BA separation from the Interconnection). However, the standard as currently drafted, does not have any provisions to this effect. Please include such provisions in the body of the standard.
Response: The drafting team has modified the Requirements and Attachments to address the concerns raised by the comments that requirements were in the Attachments. In order to explain the process, the drafting team believes the information needs to be attached to the standard such that it cannot be changed without input from the industry.		
The SDT recognizes that data may not be available for specific events and therefore has provided in FRS Form 1 a means to exclude an event. Additionally if an entity has separated from an Interconnection this could be reason for excluding that event from its FRM calculation since the frequency it would be responding to would not be the Interconnection wide frequency. The risk caused by excluding events is that the measurement process has shown that a limited number of events does not provide suitable calculation.		
Ameren Energy Marketing Co.; Ameren Services	Negative	We believe that this is good start to a worthwhile standard, but the following issues need to be addressed in this standard: (1) The FRM methodology has not been fully vetted through the field trial process. (2)Adjusting the minimum of the Frequency Bias Setting, while an appropriate adjustment for AGC control in the ACE equation, should not be at the expense of L10 as used in BAL-001, R2. (3) The absence of any resource specific frequency response requirement in NERC standards is an issue that must be address somewhere. As the resource portfolio of our industry changes(expedited by recent EPA rulemaking), the resources used for traditional primary frequency response are becoming a lower percentage of the mix. New resources and existing resources that have not provided primary frequency response need to be incorporated into the available frequency response discussion. (4) BAL-003 is only applicable for an interconnected system, conditions that are

Organization	Yes or No	tion 10 C
Response: (1) - The issue with measuring Frequency Response is that a BA's calculated performance (as opposed to actual performance) is highly variable event to event. This is particularly true for a single BA in a multi-BA Interconnection. Calculated Frequency Response has a very large noise to signal ratio. A 5,000 MW BA in the Eastern Interconnection typically is only called to contribute about 10-15 MW for the loss of a large unit. Its minute to minute Load changes can easily wash this contribution out. An arithmetic mean or regression analysis will be influenced by noise-induced outliers. Statisticians note that the median is a more accurate measure of central tendency than the mean when analyzing a sample that is small and or where scores vary widely. This is the case when estimating a BA's Frequency Response. A regression would be appropriate if you were trying to forecast "calculated" frequency response for a BA in a multi-BA Interconnection. While not perfect, the median approaches a BA's typical performance after 15-20 observations. More observations give a higher confidence in the estimate of the BA's performance. - The drafting team has proposed to bring Bias Setting and natural Frequency Response more in line. The process to do this is outlined in a Procedure developed by the SDT which replaces Attachment B. The Procedure manages a "go slow" approach to making this happen and includes checks to confirm there are not unexpected influences injected into the CPS-related calculations. Based on concerns raised by the industry, the drafting team has modified the Procedure to make the initial minimum Bias Setting 0.9% of peak and has included a provision that the ERO will evaluate the impact caused by a change in minimum Bias Setting. The evaluation will look at both frequency performance and impact on CPS-related compliance calculations. (2) - The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.		

Organization
Yes or No
Question 10 Comment
The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient Frequency Response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.
Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.
(3) - The SDT agrees that the issue you cite should not be covered in this standard. The SDT will forward this comment on to the appropriate entity at NERC.

PJM Interconnection, L.L.C.	Negative	PJM does not believe that the BA should be the entity responsible for the frequency response obligation, moreover the SDT has not sufficiently vetted the issue of applying the response requirements on an entity that cannot provide that service. PJM is concerned that the proposed draft does not explicitly cover the FERC Order 693 directives in the proposed requirements and rather addresses the directives indirectly in the attachments. This matter of mandatory vs. informational attachments must be formally clarified before approval can be given for this approach. PJM does not agree with the additional clarifying phrases being incorporated into the requirements. Explanatory phases should be included as text boxes as proposed in NERC's Risk Based Methodology.

Organization	Yes or No	Question 10 Comment

The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.

Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.

Attachments that are referenced within a Requirement are mandatory and enforceable.
The SDT has been instructed to include a "reliability outcome" within the requirements. The SDT will forward your concerns about the wording to the Standards Committee Quality Review group for consideration.

Potomac Electric Power Co.
Negative

The proposed standard is not reliability centered and will not improve reliability. 5) Potomac Electric Power Company supports the comments provided by PJM.

Response: The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.

The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.

There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.

Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a

Organization	Yes or No	Question 10 Comment

need for a generator performance obligation, they are encouraged to submit a SAR to that effect.
Attachments that are referenced within a Requirement are mandatory and enforceable.
The SDT has been instructed to include a "reliability outcome" within the requirements. The SDT will forward your concerns about the wording to the Standards Committee Quality Review group for consideration.

Atlantic City Electric Company	Negative	See comments submitted by David Thorne in Segment 1, Potomac Electric Power Company

Response: The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.

The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.

There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.

Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.

Attachments that are referenced within a Requirement are mandatory and enforceable.
The SDT has been instructed to include a "reliability outcome" within the requirements. The SDT will forward your concerns about the wording to the Standards Committee Quality Review group for consideration.

Avista Corp.	Negative	This standard should be designed for each interconnection explicitly rather than one size fits all. Frequency is an interconnection issue and response is driven by the interconnection's topology. One size does not fit all for interconnections. This

Organization	Yes or No	Question 10 Comment
		standard should be designed around the explicit needs of each interconnection. Reducing frequency bias obligation is detrimental to reliability. It seems that Lowering the Minimum Frequency Bias Setting from 1\% to .8\% will result in a lower response, which in turn will lower the natural frequency response. Over time it seems this pattern would lead to poorer response.

Response: The SDT believes that an Interconnection has the capability to request a variance (especially one that is more restrictive), however the SDT has tried to prevent the need for variances by respecting the individuality of each of the Interconnections in setting Interconnection Frequency Excursion Threshold Values, Interconnection Frequency Response Obligations and the Frequency Bias Setting Minimums as noted in Attachment A.
Early research by Nathan Cohn ${ }^{5}$ on interconnected power system operations found that control is optimum if a BA's Bias Setting is equal to its natural Frequency Response. If there were to be a difference between the two values, it is preferable to be slightly over-biased.

The drafting team has proposed to bring Bias Setting and natural Frequency Response more in line. The process to do this is outlined in a Procedure developed by the SDT which replaces Attachment B. The Procedure manages a "go slow" approach to making this happen and includes checks to confirm there are not unexpected influences injected into the CPS-related calculations. Based on concerns raised by the industry, the drafting team has modified the Procedure to make the initial minimum Bias Setting 0.9% of peak and has included a provision that the ERO will evaluate the impact caused by a change in minimum Bias Setting. The evaluation will look at both frequency performance and impact on CPS-related compliance calculations.

Beaches Energy Services; City of Bartow, Florida; Tampa Electric Co.	Negative	We thank the SDT for their hard work and diligence in moving this Project forward. However, I have some concerns that cause me to not support the standard in its current form. In general, I believe that there has not been sufficient prudency review for the standard, especially R1, to justify a performance based standard around a Frequency Response Measure. I also believe that the proposed standard does not meet the intent of the Final SAR

[^63]| Organization | Yes or No | Question 10 Comment |
| :---: | :---: | :---: |
| | | or Supplemental SAR. The "Final SAR" was to develop methods by which a performance based standard would eventually be developed. The Final SAR states: "The proposed standard's intent is to collect data needed to accurately model existing Frequency Response. There is evidence of continuing decline in Frequency Response in the three Interconnections over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be modeled, and the reasons for the decline in Frequency Response can be identified. Once the reasons for the decline in Frequency Response are confirmed, requirements can be written to control Frequency Response to within defined reliability parameters." BAL-003-1 is beyond the scope of this "Final SAR". For instance, "the reasons for the decline in Frequency Response" were not confirmed to our knowledge; and the field trial is not completed to our knowledge. The Supplemental SAR adds to the scope of the Final SAR: "To provide a minimum Frequency Response Obligation for the Balancing Authority to achieve, methods to obtain Frequency Response and provide a consistent method for calculating the Frequency Bias Setting for a Balancing Authority. In addition, the standard will specify the optimal periodicity of Frequency Response surveys." Please note that the Standards Development Roadmap does not confirm whether this Supplemental SAR was ever approved; hence, I question whether this is actually part of the scope of the SDT. Be that as it may, the Supplemental SAR does not eliminate the pre-requisite contained in the Final SAR to determine the reasons for the decline in frequency response and confirm them before establishing "defined reliability parameters". In addition, the standard does not meet the scope requirements of the Supplemental SAR. |
| Response: The SDT is responding to FERC Directives from Order 693 as well as the FERC Order dated March 18, 2010 which mandated development of a standard addressing the Order 693 directives within six months. FERC later granted an extension to provide a standard addressing these issues by the end of May 2012.
 The SDT agrees that the original SAR was strictly for data collection. However, a supplemental SAR was developed to address the FERC March 18, 2010 Order and was subsequently approved by the industry. | | |
| | | |

\(\left.\begin{array}{|l|l|l|l|}\hline Organization \& Yes or No \&

\hline \begin{array}{l}Constellation Energy

Commodities Group\end{array} \& Negative \& Please see submitted comments for additional detail behind the negative vote.\end{array}\right]\)| Response: Please see the SDT responses to your comments to the earlier questions. | | |
| :--- | :--- | :--- |
| Energy Mark, Inc. | Negative | The issue of Median, Mean, Regression needs to be resolved using Field Trial data.
 This should be able to be completed before the end of January 2012. |

Organization	Yes or No	
		Response is a service that is automatic. It does not require operator action to activate the service. It requires that the operator set-up the system to provide the automatic response before an event requiring Frequency Response occurs. Unlike other Real Time services, if the operator fails to set-up the system to provide this service before Real Time, there is no action that the operator can take to provide the service in response to an event. Many other actions in the standards required by the system operator are considered to be Real Time because the operator can take action after an event occurs. It does not make sense to consider an action that must be taken before Real Time as Operations Assessment.
Response: The requirement does not fall into a single category. The operator is constantly taking actions some of which were set in a "longer term" horizon, some in a "real-time" horizon and this is an after-the-fact measure.		
Fort Pierce Utilities Authority	Negative	FPUA supports the comments submitted by Florida Municpal Power Agency (FMPA) through the formal comment process.
Response: Please refer to the SDT response to the comments received from FMPA in the earlier questions.		

| Organization | Yes or No | Question 10 Comment |
| :--- | :--- | :--- |$|$| Groups. A common concern that has been expressed in the industry is that the |
| :--- | :--- |
| burden of compliance is being placed solely on Balancing Authorities while the main |
| sources of discretional frequency response are generators. |
| 6 o Balancing Authorities must be able to provide sufficient frequency response and |
| be able to and the proper frequency bias settings applied in their AGC systems are |
| necessary. |
| 7 o In the formula for determining the Balancing Authority's FRO allocation, installed |
| capacity is used. Is there a clear and consistent definition for installed capacity? |
| Considering the growth of wind energy development, the delivered energy from |
| wind generation over longer time horizons will be substantially less than the machine |
| nameplate ratings. |
| 8 o The background document refers to the use of peak generation instead of |
| installed capacity. Which shall be used? |
| o Additional minor issues for the SDT consideration that should be addressed: |
| ? A link should be provided in the standard to FRS Form 1, or instructions |
| provided for how entities may find the form. |
| ? In the definitions, FRS should be spelled out before using the acronym. |

Organization	Yes or No	Question 10 Comment

3 - The SDT adjusted the event selection Criteria to address concerns related to response driving frequency back to the pre-event level during the B value measurement period. We believe that this adjustment addresses your concern.
4 - The SDT has a section in the Background Document addressing methods of obtaining Frequency Response.
The drafting team believes the following are valid methods of obtaining Frequency Response:

- Regulation services.
- Contractual service. The drafting team has developed an approach to obtain a contractual share of Frequency Response from Adjacent Balancing Authorities. See FRS Form 1. While the final rules with regard to contractual services are being defined, the current expectation is that the ERO and the associated Region(s) should be notified beforehand and that the service be at least 6 months in duration.
- Through a tariff (e.g. Frequency Response and regulation service).
- From generators through an interconnection agreement.
- Contract with an internal resource or Loads (The drafting team encourages the development of a NAESB business practice for Frequency Response service for linear (droop) and stepped (e.g. LaaR in Texas) response).

Since NERC standards should not prescribe or preclude any particular market related service, BAs and FRSGs may use whatever is most appropriate for their situation.
5 - The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.
The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.

There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not

Organization Yes or No Question 10 Comment outweigh the effort and cost. Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect. 6 - The SDT agrees with you comment. Additional minor issues The Forms will be put on a NERC website and announced once the standard is approved. The definition no longer reference FRS Form 1. Independent Electricity System Operator NegativeThe complete IESO's comments on the revised standard are provided through the electronic comment form. The summary below highlights IESO's major concerns with the revised standard: 1)The definition for Frequency Response Measure (FRM): The proposed FRM definition: "The median of all the Frequency Response observations reported annually on FRS Form 1" is problematic. It references an FRS Form 1 which is not included in the definition itself but is in fact an attachment to the standard. In the current NERC Glossary of Terms, there is no such precedence that a definition must rely on the requirements or details in a standard for completeness. Also, it is very cumbersome that when changes are made to FRS Form 1, the definition must be posted for industry comment and balloting, and vice versa. When other standards begin using the term, there will be cross references betwen standards. This further complicates the update/maintenance problem without any appreciable value. (See complete comment in Section Q1 in the electronic comment form) 2)Attachment A: Attachment A should include only the event selection process and calculations associated with the requirements, including an explanation of what is necessary if variable Frequency Bias Settings are implemented. If other "requirements" need to be specified, such as the reporting time frame stipulated on page 3 of Attachment A, they should be moved to the standard itself but not imbedded in an attachment. (See complete comment in Section Q6 in the electronic

Organization	Yes or No	Question 10 Comment
		comment form) 3)The expanded FRS Form 1 and the addition of a Form 2 ask for data entry that is excessive and whose value has not been demonstrated. (See complete comment in Section Q9 in the electronic comment form)

Response: 1) The SDT has modified the definition to no longer reference FRS Form 1. The definition now reads "The median of all the Frequency Response observations reported annually by Balancing Authorities for frequency events specified by the ERO. This will be calculated as MW/0.1Hz."
2) The intent of Attachment A is to describe the process that will be used. There is no intent to require a filing on a certain date and to have the BA prove to the auditor that a filing was made on that date. Rather the requirement is to have an FRM that provides at least the response required of a BA based on it's FRO and provide a high-level overview of the mechanical parts of the process. The drafting team has modified the Requirements and Attachments to address the concerns raised by the comments that indicated requirements were in the Attachments. In order to explain the process, the drafting team believes the information needs to be attached to the standard such that it cannot be changed without input from the industry.
3) The SDT points out that there are no additional data requirements. It is possible that you are seeing more spreadsheets due to them being unhidden.

Form 2 is a separate stand-alone workbook. Form 1 does have a worksheet labeled "BA Form 2 Event Data" that will contain the single event data from each of the BA's Form 2s. Two additional worksheets were added to Form 1 and several worksheets were deleted. The "Time Zone Ref" worksheet was added to allow the BA to enter the time zone of its data and have the spreadsheet calculate the local time of the event from the UTC time. This was added for the convenience of the BA in collecting the correct data for each event and does not require additional data from the BA. The second worksheet added was a worksheet that displays graphs of frequency for each event and the $t(0)$ selected correctly. This was added to aid the BA with data collection and the selection of $t(0)$ since this seemed to be one of the biggest problems during the first phase of the field trial. This graph worksheet does not require the BA to do anything. It is not used in the analysis and can be deleted. Deleting this worksheet will greatly reduce the size of Form 1. None of the data requirements on Form 1 or Form 2 have changed from previous versions. The absolute minimum data needed for this standard is the date/time, frequency and NAI in columns A, B and C of the "Data" worksheet in Form 2. Columns D through I have been totally optional and can be left blank. Column J is the Bias setting in the ACE equation and is important to BA's that utilize Variable Bias. Column K, BA Load, was added by the drafting team in the beginning to see if Load Dampening could be measured as this has been done for several years on one Interconnection. Column I of the

Organization	Yes or No	Question 10 Comment
"Data" worksheet is the only optional data that the BA should use when it is the contingent BA during any of the events evaluated. Utilizing this data will allow the BA's SEFRD to be calculated correctly and give the BA a full sample set for the annual median calculation. Form 2 is necessary to standardize the measurement process on all Interconnections. You are free to hide any analytical worksheets on Form 1 and Form 2. You can do this on your "master" Form 2 and then build each Form 2 for each event using this master. These additional worksheets are available for BAs to utilize if they find that their performance is below the FRO and will aid the analysis of the contributing causes.		
ISO New England, Inc.	Negative	ISO New England will not vote to approve the standard because it fails to place requirements on generators to provide frequency response. There are four substantive problems: 1 • Using 59.6 Hz as an Eastern Interconnection UFLS instead of an actual value of either 59.5 Hz or 59.7 Hz 2 - Using installed capacity in determining the Frequency Response Obligation 3 - The sampling interval needs to be tuned on a per Interconnection basis to support HQTE's characteristics 4- Do not advocate the use of supplemental regulation as a method of procuring frequency response Additionally, the SDT must decide on what the purpose of this standard is. If it is to respond to Order 693 then the standard misses the point of defining how often to run Frequency Response Surveys; it does not crisply define the "Interconnection" obligations. If the SDT does want to focus on performance then the issue of who is the default provider must be addressed. As the IRC has noted previously, all BAs do not own the service providers. To create standards that apply to entities that are dependent on other function entities to comply with a standard requirement is of great concern.

Response: 1 - Florida sees a greater change in frequency for a given contingency than for a comparable event elsewhere in the East. This is the reason for their higher first step of UFLS in Florida. Having all Eastern Interconnection Balancing Authorities carry extra frequency responsive reserves to protect against a target minimum frequency of 59.7 Hz would not protect Florida against a

Organization
Yes or No

Question 10 Comment

contingency inside Florida, but would require the other BAs in the East to continuously carry about 4000 MW of frequency responsive reserves to protect against a false trip in Florida if frequency fell below 59.7 Hz but over 59.5 Hz . This is a contingency on the order of 7,000 MW or more. The drafting team compromised and gave the entire Interconnection an obligation based on 59.96 Hz .

2 - The SDT has modified both the Background Document and Attachment A to be consistent. The calculation uses "historical data" to circumvent the problem you have described.
3 - The SDT adjusted the event selection Criteria to address concerns related to response driving frequency back to the pre-event level during the B value measurement period. We believe that this adjustment addresses your concern.

4 - The SDT has a section in the Background Document addressing methods of obtaining Frequency Response.
The drafting team believes the following are valid methods of obtaining Frequency Response:

- Regulation services.
- Contractual service. The drafting team has developed an approach to obtain a contractual share of Frequency Response from Adjacent Balancing Authorities. See FRS Form 1. While the final rules with regard to contractual services are being defined, the current expectation is that the ERO and the associated Region(s) should be notified beforehand and that the service be at least 6 months in duration.
- Through a tariff (e.g. Frequency Response and regulation service).
- From generators through an interconnection agreement.
- Contract with an internal resource or Loads (The drafting team encourages the development of a NAESB business practice for Frequency Response service for linear (droop) and stepped (e.g. LaaR in Texas) response).

Since NERC standards should not prescribe or preclude any particular market related service, BAs and FRSGs may use whatever is most appropriate for their situation.

The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.

Organization	Yes or No	Question 10 Comment

The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.
Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.
6 - The SDT agrees with you comment.
Additional minor issues
The Forms will be put on a NERC website and announced once the standard is approved.
The definition no longer reference FRS Form 1.

JEA	Negative	JEA is not comfortable with a performance based standard as written without more field testing to ensure that net interchange is not skewed by load and generation changes that are not a function of frequency. Since frequency response has components from load and generation resources, and load is not controllable for the most part, seems this standard should be directed at specific generator response methods from the GO/GOP's. This is a wide reaching standard. And, this is a performance standard (if it doesn't perform as designed, it is a violation). Because of this, more testing needs to be completed so we know the model is correct. We are not sure we know how to ensure compliance.
Don't agree the standard needs to be performance based.		

Organization	Yes or No	Question 10 Comment

events addresses the concerns raised by the noise being inside a single event. The studies from the field trial show a convergence of the measurement after approximately 20 to 25 events.
The SDT is responding to FERC Directives from Order 693 as well as the FERC Order dated March 18, 2010 which mandated development of a standard addressing the Order 693 directives within six months. FERC later granted an extension to provide a standard addressing these issues by the end of May 2012.

Kansas City Power \& Light Co.	Negative	The proposed Standard BAL-003-1 does not consider the real time operating conditions under which this standard should apply. There are no considerations for the complexities introduced by capacity energy agreements between BA's nor consideration of the differing level of Interconnection Frequency Response needed at times of minimum interconnection load conditions and interconnection peak load conditions.

Response: The method for determining the FRO is based upon the determination of the largest contingency that could occur at any time and does not vary based upon time of day or system conditions. Since the largest contingency could occur at any time, the minimum Frequency Response Obligation necessary to manage the contingency will not be dependent upon the differing conditions that can occur during different times of the day like those referred to in the question.

Lakeland Electric	Negative	In general; here has not been sufficient prudency review for the standard, especially R1, to justify a performance based standard around a Frequency Response Measure. Refer to comments submitted by FMPA on LAK behalf.

Response: The SDT is responding to FERC Directives from Order 693 as well as the FERC Order dated March 18, 2010 which mandated development of a standard addressing the Order 693 directives within six months. FERC later granted an extension to provide a standard addressing these issues by the end of May 2012.

Please refer to the SDT response to the comments received from FMPA in the earlier questions.

Liberty Electric Power LLC	Negative	Voting no due to SDT addressing FERC directives with attachments instead of in the standard requirements.
Response: The SDT disagrees with your concern about addressing FERC directives within an attachment. If a requirement		

Organization	Yes or No	Question 10 Comment
references specific performance in an Attachment, then the performance described in the Attachment is mandatory and enforceable.		
Manitoba Hydro	Negative	The Applicability of BAL-003-1 should be clarified. Specifically, Section 1.2 should be changed from "Reserve Sharing Groups (where applicable)" to "Reserve Sharing Group whose intent includes meeting Frequency Response Obligations". Regarding Data Retention: 1. As the standard is currently drafted, both the BA and the RSG would be required to retain data or evidence to show compliance with requirements R1 and M1. It is unclear whether this is the intention, or whether it would be acceptable that just one or the other would maintain such records. 2. In the first and second paragraph, the reference to 'three calendar years' should be specified to be the 'previous three calendar years'. 3. In the third paragraph, it should be clarified who is required to keep information related to non compliance if the BA belongs to an RSG - the BA or the RSG or both. 4. In the fourth paragraph, it should be clarified for what length of time the last audit records must be retained.
Response: The SDT has defined a new term "Frequency Response Sharing Group (FRSG)" because it believes that using the presently defined term "Reserve Sharing Group" could cause confusion. The new definition reads "A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members." The SDT has modified the Background Document to further explain how an RSG (now FRSG) can be used to supply Frequency Response.		
$1 \& 3$ - The SDT believes that the reporting entity would be the responsible entity to maintain records. The SDT also believes that once a BA has declared themselves as part of a FRSG then the FRSG would be the responsible entity to maintain records.		
2 - The SDT agrees with your second comment and has made this modification.		
4 - The last audit record should be kept until the next audit.		

Organization	Yes or No	Question 10 Comment
New Brunswick Power Transmission Corporation	Negative	The compliance burden should not fall on the BA as the provider of Frequency Response (i.e. Primary Control response). In this case the BA per se has no assets, moreover the primary response service providers have no obligations to provide the service, thus the BA potentially could face a situation where there is no physical service to be purchased but there is a mandated standard to comply with. The idea of creating a Primary Response Market as some have proposed does not work without an obligation on some entity to physically provide that service.
Response: The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not		
own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.		
The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for		
generators. The drafting team is obliged to stay within the bounds of its SAR.		
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of		
generators in North America. It would be many times more costly and difficult to implement a standard that measures all		
generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency		
response in all Interconnections, the value of implementing a performance obligation on generators at this time would not		
outweigh the effort and cost.		
Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need		
for a generator performance obligation, they are encouraged to submit a SAR to that effect.		

Organization	Yes or No	Question 10 Comment
Northeast Power Coordinating Council	Negative	This standard as written does not place requirements on generators to provide frequency response. There are four substantive problems: 1 • Using 59.6 Hz as an Eastern Interconnection UFLS instead of an actual value of either 59.5 Hz or 59.7 Hz . $2 \cdot$ Using installed capacity in determining the Frequency Response Obligation. 3 - The sampling interval needs to be tuned on a per Interconnection basis to support HQTE's characteristics. 4 - Do not advocate the use of supplemental regulation as a method of procuring frequency response. It must be decided as to what the purpose of this standard is. If it is to respond to Order 693 then the standard misses the target of defining how often to run Frequency Response Surveys; it does not crisply define the "Interconnection" obligations. If performance is the focus, then the issue of who is the default provider must be addressed. All BAs do not own the service providers. To create standards that apply to entities that are dependent on other functional entities to comply with a standard requirement is of great concern. FRS Form 1 is listed as being an Associated Document. Will it be attached to the standard? The acronym FRS is used in the standard. FRS should be spelled out before its acronym is used. If FRS Form 1 will not be an appendix or an attachment to the document, then a link should be provided to it, or instructions given on how to find it.
Response: 1 - Florida sees a greater change in frequency for a given contingency than for a comparable event elsewhere in the East. This is the reason for their higher first step of UFLS in Florida. Having all Eastern Interconnection Balancing Authorities carry extra frequency responsive reserves to protect against a target minimum frequency of 59.7 Hz would not protect Florida against a contingency inside Florida, but would require the other BAs in the Eastern Interconnection to continuously carry about 4000 MW		

Organization	Yes or No	Question 10 Comment

of frequency responsive reserves to protect against a false trip in Florida if frequency fell below 59.7 Hz but over 59.5 Hz . This is a contingency on the order of $7,000 \mathrm{MW}$ or more. The drafting team compromised and gave the entire Interconnection an obligation based on 59.96 Hz .
2 - The SDT has modified both the Background Document and Attachment A to be consistent. The calculation uses "historical data" to circumvent the problem you have described.

3 - The SDT adjusted the event selection Criteria to address concerns related to response driving frequency back to the pre-event level during the B value measurement period. We believe that this adjustment addresses your concern.

4 - The SDT has a section in the Background Document addressing methods of obtaining Frequency Response.
The drafting team believes the following are valid methods of obtaining Frequency Response:

- Regulation services.
- Contractual service. The drafting team has developed an approach to obtain a contractual share of Frequency Response from Adjacent Balancing Authorities. See FRS Form 1. While the final rules with regard to contractual services are being defined, the current expectation is that the ERO and the associated Region(s) should be notified beforehand and that the service be at least 6 months in duration.
- Through a tariff (e.g. Frequency Response and regulation service).
- From generators through an interconnection agreement.
- Contract with an internal resource or Loads (The drafting team encourages the development of a NAESB business practice for Frequency Response service for linear (droop) and stepped (e.g. LaaR in Texas) response).

Since NERC standards should not prescribe or preclude any particular market related service, BAs and FRSGs may use whatever is most appropriate for their situation.

The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.

The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for

Organization	Yes or No	Question 10 Comment

generators. The drafting team is obliged to stay within the bounds of its SAR.
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.

Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.

FRS Forms 1 and 2 will be Attached to the standard. The Forms will be put on a NERC website and announced once the standard is approved.
The definition no longer reference FRS Form 1.

New Brunswick System Operator	Negative	Please see comments submitted by the NPCC Reliability Standards Committee and the IRC Standards Review Committee

Response: 1 - Florida sees a greater change in frequency for a given contingency than for a comparable event elsewhere in the East. This is the reason for their higher first step of UFLS in Florida. Having all Eastern Interconnection Balancing Authorities carry extra frequency responsive reserves to protect against a target minimum frequency of 59.7 Hz would not protect Florida against a contingency inside Florida, but would require the other BAs in the East to continuously carry about 4,000 MW of frequency responsive reserves to protect against a false trip in Florida if frequency fell below 59.7 Hz but over 59.5 Hz . This is a contingency on the order of 7,000 MW or more. The drafting team compromised and gave the entire Interconnection an obligation based on 59.96 Hz .

2 - The SDT has modified both the Background Document and Attachment A to be consistent. The calculation uses "historical data" to circumvent the problem you have described.

3 - The SDT adjusted the event selection Criteria to address concerns related to response driving frequency back to the pre-event level during the B value measurement period. We believe that this adjustment addresses your concern.

4 - The SDT has a section in the Background Document addressing methods of obtaining Frequency Response.

Organization
Yes or No

Question 10 Comment

The drafting team believes the following are valid methods of obtaining Frequency Response:

- Regulation services.
- Contractual service. The drafting team has developed an approach to obtain a contractual share of Frequency Response from Adjacent Balancing Authorities. See FRS Form 1. While the final rules with regard to contractual services are being defined, the current expectation is that the ERO and the associated Region(s) should be notified beforehand and that the service be at least 6 months in duration.
- Through a tariff (e.g. Frequency Response and regulation service).
- From generators through an interconnection agreement.
- Contract with an internal resource or Loads (The drafting team encourages the development of a NAESB business practice for Frequency Response service for linear (droop) and stepped (e.g. LaaR in Texas) response).

Since NERC standards should not prescribe or preclude any particular market related service, BAs and FRSGs may use whatever is most appropriate for their situation.
The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.
The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.

There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.
Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.

FRS Forms 1 and 2 will be Attached to the standard. The Forms will be put on a NERC website and announced once the standard is

Organization
Yes or No

Question 10 Comment

approved.
The definition no longer reference FRS Form 1.

New York Independent System Operator	Negative	The NYISO's comments are included with both the Joint IRC/SRC and Joint NPCC RSC comments.

Response: 1 - Florida sees a greater change in frequency for a given contingency than for a comparable event elsewhere in the East. This is the reason for their higher first step of UFLS in Florida. Having all Eastern Interconnection Balancing Authorities carry extra frequency responsive reserves to protect against a target minimum frequency of 59.7 Hz would not protect Florida against a contingency inside Florida, but would require the other BAs in the Eastern Interconnection to continuously carry about 4,000 MW of frequency responsive reserves to protect against a false trip in Florida if frequency fell below 59.7 Hz but over 59.5 Hz . This is a contingency on the order of $7,000 \mathrm{MW}$ or more. The drafting team compromised and gave the entire Interconnection an obligation based on 59.96 Hz .

2 - The SDT has modified both the Background Document and Attachment A to be consistent. The calculation uses "historical data" to circumvent the problem you have described.

3 - The SDT adjusted the event selection Criteria to address concerns related to response driving frequency back to the pre-event level during the B value measurement period. We believe that this adjustment addresses your concern.
4 - The SDT has a section in the Background Document addressing methods of obtaining Frequency Response.
The drafting team believes the following are valid methods of obtaining Frequency Response:

- Regulation services.
- Contractual service. The drafting team has developed an approach to obtain a contractual share of Frequency Response from Adjacent Balancing Authorities. See FRS Form 1. While the final rules with regard to contractual services are being defined, the current expectation is that the ERO and the associated Region(s) should be notified beforehand and that the service be at least 6 months in duration.
- Through a tariff (e.g. Frequency Response and regulation service).
- From generators through an interconnection agreement.
- Contract with an internal resource or Loads (The drafting team encourages the development of a NAESB business practice for

Organization	Yes or No	Question 10 Comment

Frequency Response service for linear (droop) and stepped (e.g. LaaR in Texas) response).
Since NERC standards should not prescribe or preclude any particular market related service, BAs and FRSGs may use whatever is most appropriate for their situation.

The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.

The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.

There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.

Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.
FRS Forms 1 and 2 will be Attached to the standard. The Forms will be put on a NERC website and announced once the standard is approved.

The definition no longer reference FRS Form 1.

Rochester Gas and Electric Corp.	Negative	RG\&E supports comments to be submitted to NPCC.

Response: 1 - Florida sees a greater change in frequency for a given contingency than for a comparable event elsewhere in the East. This is the reason for their higher first step of UFLS in Florida. Having all Eastern Interconnection Balancing Authorities carry extra frequency responsive reserves to protect against a target minimum frequency of 59.7 Hz would not protect Florida against a contingency inside Florida, but would require the other BAs in the East to continuously carry about 4,000 MW of frequency

Organization
Yes or No
Question 10 Comment
responsive reserves to protect against a false trip in Florida if frequency fell below 59.7 Hz but over 59.5 Hz . This is a contingency on the order of 7,000 MW or more. The drafting team compromised and gave the entire Interconnection an obligation based on 59.96 Hz .

2 - The SDT has modified both the Background Document and Attachment A to be consistent. The calculation uses "historical data" to circumvent the problem you have described.

3 - The SDT adjusted the event selection Criteria to address concerns related to response driving frequency back to the pre-event level during the B value measurement period. We believe that this adjustment addresses your concern.

4 - The SDT has a section in the Background Document addressing methods of obtaining Frequency Response.
The drafting team believes the following are valid methods of obtaining Frequency Response:

- Regulation services.
- Contractual service. The drafting team has developed an approach to obtain a contractual share of Frequency Response from Adjacent Balancing Authorities. See FRS Form 1. While the final rules with regard to contractual services are being defined, the current expectation is that the ERO and the associated Region(s) should be notified beforehand and that the service be at least 6 months in duration.
- Through a tariff (e.g. Frequency Response and regulation service).
- From generators through an interconnection agreement.
- Contract with an internal resource or Loads (The drafting team encourages the development of a NAESB business practice for Frequency Response service for linear (droop) and stepped (e.g. LaaR in Texas) response).

Since NERC standards should not prescribe or preclude any particular market related service, BAs and FRSGs may use whatever is most appropriate for their situation.

The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.

The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for

Organization	Yes or No	Question 10 Comment

generators. The drafting team is obliged to stay within the bounds of its SAR.
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.

Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.

FRS Forms 1 and 2 will be Attached to the standard. The Forms will be put on a NERC website and announced once the standard is approved.

The definition no longer reference FRS Form 1.

Orlando Utilities Commission	Negative	Per LPPC comments

Response: The SDT is not sure of the entity you are referencing (LPPC). Therefore, the SDT cannot respond to your comment without further clarification.

Portland General Electric Co.	Negative	PGE agrees with the WECC whitepaper including the comments and concerns.

Response: see WECC comments.

PPL Electric Utilities Corp.; PPL Generation LLC	Negative	The PPL Companies do not support proposed Reliability Standard BAL-003-1 (Frequency Response and Frequency Bias Setting) primarily because PPL believes it inappropriately subjects Reserve Sharing Groups (RSGs) to the proposed requirements. The proposed Applicability provision states that the mandatory reliability requirements would be applicable to (1) Balancing Authorities and (2) Reserve Sharing Groups (where applicable). However, it is unclear how the proposed requirements would be applicable to an RSG. RSGs typically do not provide a mechanism for sharing automatic Frequency Response. The BA Frequency Response

Organization	Yes or No	Question 10 Comment

Organization	Yes or No	Question 10 Comment
Seattle City Light	Negative	SCL would like to see addressed in the Standard how the case is to be addressed where a BA simply has no frequency response information to provide, as could happen for a small 1-2 generator BA which has its generators out of service for an extended period for maintenance or upgrades. Assuming the BA purchases frequency response services from another entity during this period, is the BA out of compliance with the proposed Standard simply because it has no data report? And how is its next-year obligation to be computed? These issues should be addressed in the Measures or Additional Compliance information. If these are issues for "lawyers" as the Standards Drafting Team indicated during the November 14, 2011, webinar then the team should engage a NERC lawyer to resolve them prior to releasing the Standard for ballot. o Finally, SCL points out that the proposed Standard introduces a new obligation on applicable entities to maintain frequency responsive reserves. Although this obligation does not appear to be unreasonable or problematic in general, compliance may prove difficult for some entities and in some localized areas.
Response: The SDT has a section in the Background Document addressing methods of obtaining Frequency Response.		

Organization	Yes or No	Question 10 Comment
Since NERC standards should not prescribe or preclude any particular market related service, BAs and FRSGs may use whatever is most appropriate for their situation.		
Public Utility District No. 1 of Snohomish County/Snohomish County PUD No. 1	Negative	Public Utility District No. 1 of Snohomish County supports the comments filed by Seattle City Light.

Response: The ERO will be posting preliminary events throughout the year. The criteria contained in attachment A should allow an entity to evaluate events as they occur. This coupled with the Forms $1 \& 2$ should allow an entity to be looking forward throughout the year. In addition the standard allows 30 -days for providing information.
The SDT has a section in the Background Document addressing methods of obtaining Frequency Response.
The drafting team believes the following are valid methods of obtaining Frequency Response:

- Regulation services.
- Contractual service. The drafting team has developed an approach to obtain a contractual share of Frequency Response from Adjacent Balancing Authorities. See FRS Form 1. While the final rules with regard to contractual services are being defined, the current expectation is that the ERO and the associated Region(s) should be notified beforehand and that the service be at least 6 months in duration.
- Through a tariff (e.g. Frequency Response and regulation service).
- From generators through an interconnection agreement.
- Contract with an internal resource or Loads (The drafting team encourages the development of a NAESB business practice for Frequency Response service for linear (droop) and stepped (e.g. LaaR in Texas) response).

Since NERC standards should not prescribe or preclude any particular market related service, BAs and FRSGs may use whatever is most appropriate for their situation.

South California Edison	Negative	SCE's "No" vote, like the WECC position, regarding Project 2007-12 is based on the

Organization	Yes or No	Question 10 Comment
Company		following five points: 1) Clarification is needed whether there will/ will not be conflicts between proposed Requirement R3 and the requirements of FERC-approved regional reliability standard BAL-004-WECC-1 - Automatic Time Error Correction 2) Confusion exists between Attachment A and the Background Document: 2a) Attachment A states peak load allocation is based on "Projected" Peak Loads and Generation, versus 2b) The Background Document which states it will use "historical" Peak Load and Generation. 3) Reducing frequency bias obligation is detrimental to reliability. It seems that Lowering the Minimum Frequency Bias Setting from 1% to $.8 \%$ will result in a lower response, which in turn will lower the natural frequency response. Over time it seems this pattern would lead to poorer response. 4) There is no clear statement of what is expected from the Balancing Authorities and whether or not there is a limit on that expectation. 5) Why are there no requirements on governor installation, settings, and operation for a frequency response standard?
Response: 1) The SDT has removed Requirement R3. The SDT believes that this requirement is duplicative of BAL-005-0.1b Requirements R6 \& R7. 2) The SDT has modified both the Background Document and Attachment A to be consistent. The calculation uses "historical data" to circumvent the problem you have described. 3) Early research by Nathan Cohn ${ }^{6}$ on interconnected power system operations found that control is optimum if a BA's Bias Setting is equal to its natural Frequency Response. If there were to be a difference between the two values, it is preferable to be slightly over-biased.		

[^64]| Organization | Yes or No | Question 10 Comment |
| :--- | :--- | :--- |

The drafting team has proposed to bring Bias Setting and natural Frequency Response more in line. The process to do this is outlined in a Procedure developed by the SDT which replaces Attachment B. The Procedure manages a "go slow" approach to making this happen and includes checks to confirm there are not unexpected influences injected into the CPS-related calculations. Based on concerns raised by the industry, the drafting team has modified the Procedure to make the initial minimum Bias Setting 0.9% of peak and has included a provision that the ERO will evaluate the impact caused by a change in minimum Bias Setting. The evaluation will look at both frequency performance and impact on CPS-related compliance calculations.
4) The SDT understands your concern and has added language in Attachment A that caps the amount of Frequency Response that a BA will be required to provide
5) The NERC Functional Model Technical Document identifies the BA as the entity that manages and deploys Frequency Response. This is because a BA controls the amount and distribution of spinning reserves and also has some control over interruptible resources. This is similar to the relationship between the TOP and voltage control. Even though the TOP may not own generators or capacitor banks, the TOP is still responsible for controlling voltage within limits.

The industry-approved Standards Authorization Request (SAR) for BAL-003 did not include a performance obligation for generators. The drafting team is obliged to stay within the bounds of its SAR.
There are two primary reasons the SAR did not apply a performance obligation on generators. First, there are thousands of generators in North America. It would be many times more costly and difficult to implement a standard that measures all generators and verifies performance is properly calculated. Secondly, given the fact that there presently is sufficient frequency response in all Interconnections, the value of implementing a performance obligation on generators at this time would not outweigh the effort and cost.
Again, the drafting team cannot include requirements beyond the bounds of its SAR. If the commenter(s) believes there is a need for a generator performance obligation, they are encouraged to submit a SAR to that effect.

Western Area Power Administration	Negative	1. Reducing frequency bias obligation is a detriment to reliability of interconnection and the proposed standard aims to reduce the bias obligation from the current minimum level of 1% load to 0.8% and subsequently to a lower percentage. 2. The proposed standard is very confusing and complex in regard to data collection

Organization	Yes or No	Question 10 Comment
		and compliance. 3. The proposed standard is encompassing reserve sharing group (where applicable), why? What reserve sharing group operates AGC? It is not clear whether the compliance period is monthly or yearly for R1 \& R5. The issue of non-binding standard and whether it serves a purpose to go through complicated data submission and found in compliance or out of compliance without any consequences.
Response: 1. Early research by Nathan Cohn ${ }^{7}$ on interconnected power system operations found that control is optimum if a BA's Bias Setting is equal to its natural Frequency Response. If there were to be a difference between the two values, it is preferable to be slightly over-biased.		
The drafting team has proposed to bring Bias Setting and natural Frequency Response more in line. The process to do this is outlined in a Procedure developed by the SDT which replaces Attachment B. The Procedure manages a "go slow" approach to making this happen and includes checks to confirm there are not unexpected influences injected into the CPS-related calculations. Based on concerns raised by the industry, the drafting team has modified the Procedure to make the initial minimum Bias Setting 0.9% of peak and has included a provision that the ERO will evaluate the impact caused by a change in minimum Bias Setting. The evaluation will look at both frequency performance and impact on CPS-related compliance calculations.		
3. The SDT has modified the Background Document to provide additional information and clarity.		
4. The SDT modified R1 so that it no longer applies to an RSG _ the SDT defined new term, "Frequency Response Sharing Group" to address stakeholder concerns that the RSG is not the correct entity. The definition of Frequency Response Sharing Group is:		
A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members.		
3. Requirement R1 is calculated on an annual basis. The SDT has removed Requirement R5 and combined it into Requirement R2		

[^65]| Organization | Yes or No | Question 10 Comment |
| :--- | :--- | :--- | :--- | | and new Requirement R3.
 The SDT made modifications to Attachment A to try to distinguish mandatory performance assigned to the BA from process steps
 performed by the ERO. | | |
| :--- | :--- | :--- |
| Xcel Energy, Inc. | Negative | It is not clear if there is an upper limit to the amount of frequency response expected
 of the Balancing Authorities under this standard. Except for Table 2 in Attachment A,
 there is no discussion of an amount of FR expected on a total basis. Balancing
 Authorities need to know for how many tenths of a hertz they are to respond so they
 can determine how to plan to meet this requirement. The documents do not appear
 to provide any boundary on the maximum amount of FR that a BA will provide, i.e. it
 is not clear what will happen if an event occurs in the Eastern Interconnection that
 causes the frequency to drop to less than 59.6 Hz (e.g. what if freq dips to 59.0? Is
 the BA expected to provide a limitless amount of frequency response?). Also, is that
 event excluded from the list used to calculate the Balancing Authorities' response or
 is it included with an expectation that it counts the same as any other event. Without
 a clear statement of what is expected, including whether there is a limit on that
 expectation or not, the Balancing Authorities cannot know what is expected of them
 and therefore cannot plan appropriately. |

| Organization | Yes or No | Question 10 Comment |
| :--- | :--- | :--- | :--- |
| | | the Balancing Authority's AGC system.
 A link should be provided in the proposed standard to FRS Form 1. |
| Response: Florida sees a greater change in frequency for a given contingency than for a comparable event elsewhere in the East.
 This is the reason for their higher first step of UFLS in Florida. Having all Eastern Interconnection Balancing Authorities carry extra
 frequency responsive reserves to protect against a target minimum frequency of 59.7 Hz would not protect Florida against a
 contingency inside Florida, but would require the other BAs in the East to continuously carry about 4,000 MW of frequency
 responsive reserves to protect against a false trip in Florida if frequency fell below 59.7 Hz but over 59.5 Hz. This is a contingency
 on the order of 7,000 MW or more. The drafting team compromised and gave the entire Interconnection an obligation based on
 59.96Hz.
 The SDT has modified both the Background Document and Attachment A to be consistent. The calculation uses "historical data"
 to circumvent the problem you have described.
 The SDT has a section in the Background Document addressing methods of obtaining Frequency Response.
 The drafting team believes the following are valid methods of obtaining Frequency Response:
 - Regulation services.
 - Contractual service. The drafting team has developed an approach to obtain a contractual share of Frequency Response from
 Adjacent Balancing Authorities. See FRS Form 1. While the final rules with regard to contractual services are being defined,
 the current expectation is that the ERO and the associated Region(s) should be notified beforehand and that the service be at
 least 6 months in duration.
 - Through a tariff (e.g. Frequency Response and regulation service).
 - From generators through an interconnection agreement.
 - Contract with an internal resource or Loads (The drafting team encourages the development of a NAESB business practice for
 Frequency Response service for linear (droop) and stepped (e.g. LaaR in Texas) response).
 Since NERC standards should not prescribe or preclude any particular market related service, BAs and FRSGs may use whatever is
 most appropriate for their situation. | | |

NERC

Organization	Yes or No	Question 10 Comment
The SDT agrees with you comment.		
The Forms will be put on a NERC website and announced once the standard is approved.		

END OF REPORT

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Unofficial Comment Form
 Frequency Response Technical Conferences

Please use the electronic comment form to submit comments on the Frequency Response Technical Conferences held on May 22, 2012 and May 24, 2012. These comments will be posted on the project webpage as part of the development record and considered by the FRSDT as it continues to develop BAL-003. Comments must be submitted by June 15, 2012. If you have questions please contact Darrel Richardson (email) or by telephone at (609) 613-1848.

Background I nformation:

NERC recently held two technical conferences on Frequency Response. The first conference was held on May 22, 2012 in Arlington, VA and the second was held in Denver, Colorado on May 24, 2012. The purpose of these conferences was to obtain industry input on the development of a Frequency Response standard. The information provided in the conferences primarily dealt with the following three areas.

1. The work that has been done on the standard to date
2. Which Functional Entity should be responsible for Frequency Response.
3. How to measure Frequency Response

A complete set of presentations from the conferences can be found at the following link.

http://www.nerc.com/filez/standards/Frequency Response-RF.html

NERC is requesting industry comments pertaining to the information provided in the conferences or suggestions for further consideration in the development of a Frequency Response standard. Please share your thoughts on the Technical Conference and the associated subject matter below.

Enter All Comments in Simple Text Format.

1. Please provide any comments on the Technical Conference and associated subject matter in the comment area below.

Comments:

Standards Announcement Frequency Response Technical Conferences

Comment Period: May 30 - J une 15, 2012

Now Available

NERC recently held two technical conferences on Frequency Response. The first conference was held on May 22, 2012 in Arlington, VA and the second was held in Denver, Colorado on May 24, 2012. The purpose of these conferences was to obtain industry input on the development of a Frequency Response standard. The information provided in the conferences primarily dealt with the following three areas.

1. The work that has been done on the standard to date
2. Which Functional Entity should be responsible for Frequency Response.
3. How to measure Frequency Response

A complete set of presentations from the conferences can be found at the following link.

> http://www.nerc.com/filez/standards/Frequency Response-RF.html

NERC is requesting industry comments pertaining to the information provided in the conferences or suggestions for further consideration in the development of a Frequency Response standard. Please share your thoughts on the Technical Conference and the associated subject matter by providing your comments using the electronic comment form. The deadline to submit comments is 8 p.m. ET Friday, June 15, 2012. An off-line, unofficial copy of the comment form for administrative use is available on the project page.

For more information or assistance, please contact Monica Benson at monica.benson@nerc.net.

> Name (9 Responses) Organization (9 Responses) Group Name (6 Responses) Lead Contact (6 Responses) Contact Organization (6 Responses) Question 1 (0 Responses) Question 1 Comments (15 Responses)

Abstract

Individual Don Tench on Behalf of ENBALA ENBALA Power Networks I. INTRODUCTION ENBALA Power Networks (ENBALA) respectfully submits these comments in response to the North American Electric Reliability Corporation (NERC) Technical Conference on Frequency Response held in Arlington VA on May 22, 2012 and Denver CO on May 24, 2012. ENBALA rewards large electricity users for participation in the Smart Grid. The ENBALA Power Network enables industrial, commercial and municipal partners to be financially rewarded for the inherent flexibility of their electrical equipment. Resource partners incur no cost in connecting to this platform and receive payments for helping to bring continuous balance to the electricity system. The purpose of these conferences was to provide background on the development, and implementation of BAL-003-1 - Frequency Response Standard (FRS) and to explain the rationale and considerations for the Requirements and their associated compliance information as well as to solicit feedback from industry participants on the standard. ENBALA provides these comments in support of draft standard BAL-0031 II. BACKGROUND The requirement to continuously balance load and generation to maintain stable frequency is a critically important aspect of interconnected power system operation. Frequency Response is the characteristic of load and generation within Balancing Authorities and Interconnections that reacts or responds to changes in load-resource balance and resulting changes in system frequency. Primary Frequency Control is defined by NERC as those actions provided by the Interconnection to arrest and stabilize frequency in response to frequency deviations, typically caused by a significant system loss. Primary Control comes from mechanical inertia, followed by automatic generator governor response, load response (typically from motors), and other devices that provide an immediate response based on local (device-level) control systems. Primary Frequency Response (PFR) is the first stage of overall frequency control and is the response, which begins immediately, of resources and load to a locally sensed change in frequency to arrest that change in frequency. This is distinct from Secondary Frequency Control, defined to be those actions provided by an individual BA or its Reserve Sharing Group to correct the resource - load unbalance that created the original frequency deviation, which will restore both Scheduled Frequency and Primary Frequency Response. Secondary Control comes from automated dispatch from a centralized control system. The original Standards Authorization Request (SAR) to establish mandatory standards with respect to this critical requirement were established in BAL-003-0, finalized on June 30, 2007. In Order No. 693, the Federal Energy Regulatory Commission (FERC) directed additional changes to this standard. We interpret the objective of the FERC direction to be to establish concrete measures and allocation of Interconnection Frequency Response to ensure continued reliable operation III. COMMENTS Presentations and discussion at the conference provided the following understanding; - The system currently has enough PFR to operate reliably. The concern is that continuing decline could result in unreliability at a future date. The immediate concern is to ensure that the decline on the Eastern Interconnection is halted. - Approximately 30% of generators provide governor response and hence primary frequency control at any time in the Eastern and Western Interconnections. - Primary Frequency Response (PFR) should not be viewed as event driven but rather as continuous control. - The draft standard has been written to give the Balancing Authority (BA) responsibility to meet the standard. The main issue with this is a concern that BA's are being given responsibility but do not have the requisite authority to impose requirements on participants (eg. generators) to provide the PFR. The discussion at the conference focused almost exclusively on the ability of generators to supply PFR through governor action. This is not surprising given the fact that the interconnected power system is based on rotating machines (for the most part) and that speed governors are a necessary part of generator control systems and have been providing PFR for many years. However, there is growing evidence that some generation operators prefer not to provide this service as only a fraction of qenerators actually

provide PFR to the interconnection at any time. Many reasons were discussed that generators do not provide response, ranging from regulatory restrictions, environmental restrictions, and operation at full output, economic choices to make the plant more efficient, and physical constraints, among others. But in our opinion, all of these reasons come down to a fundamental consideration - the generators must sacrifice some efficiency to provide PFR. This is not a surprising outcome. Prior to electricity deregulation many 'ancillary services ' provided by generators were considered to be delivered at low or no cost. However, organized electricity markets have shown that these services have considerable value. Primary Frequency Response is another example. This is not to say that generators may not be the most effective way to provide the majority of PFR. However, generation resources may not be the least cost supplier of PFR. It is important to recognize that this service has a cost and different technologies are able to provide the service at different costs. These costs vary even amongst generation technologies. In addition, there are alternatives to providing all PFR from generation. ENBALA's experience in providing Secondary Frequency Control (SFC) to organized markets has shown that aggregated mid-sized commercial and industrial facilities can provide very high quality SFC, demonstrably better performance than the majority of generation. This technology can be extended to provide localized PFR as well. It is our opinion that PFR from load can be of higher 'quality' than that provided by generation. The ability of individual aggregated loads to increase or decrease nearly instantaneously in response to frequency provides an immediate stabilizing influence on frequency that works together with generator inertia to arrest frequency deviations more quickly than generation alone. Recent studies by California ISO identify that this response can be several times more valuable than slower generation response. Given the facts that; PFR is a valuable reliability service, the cost of providing PFR varies with technology, decisions must be made with respect to who will provide PFR, and alternatives exist to continuing with the provision of generator only PFR, we respectfully make the following suggestions; - The standard should continue as drafted and not limit the technology to provide PFR (eg. generators only) - PFR should be recognized as a reliability service in the same manner as other ancillary services. - The standard should apply to an entity like the BA, as drafted, that has defined responsibility for balancing load and generation Mechanisms should be developed to procure PFR sufficient to meet NERC standards, on an economic basis either through market or tariff provisions IV. CONCLUSION It is ENBALA's belief that unless the value of Primary Frequency Response can be made transparent to the marketplace, efficient alternatives will not be implemented and inefficient decisions with respect to existing technologies will be made leading to higher costs for consumers. Treatment of PFR as a market priced reliability service will allow the industry to determine the most efficient and effective way to provide necessary Frequency Response, independent of changes taking place in the supply mix of generation. Respectfully Submitted,

Individual

Robert Blohm

Keen Resources Asia Ltd.

17-year NERC veteran's, long-standing active FRS drafting team contributor's, ex NERC Standards Committee member's, and Columbia-University-postgraduated statistician's expert comments on "Avoiding a Trifecta of Statistics Errors in the NERC Frequency Response Standard". Please review my 6 -slide powerpoint presentation downloadable at http://www.robertblohm.com/3FRSissues.pptx or http://www.robertblohm.com/3FRSissues.ppt and submitted but never posted for inclusion in the technical conference. The last 3 slides highlight the following 3 fundamental statistics errors in the FRS as drafted so far: (1) confusion of (the correct probabilistic measure of "largest contingency" consisting of) "largest event to occur at least as often as once in 10 years" with (the incorrect probabilistic measure of "largest contingency" consisting of) "largest event in the last 10 years" which may be the "largest event to occur at least as often as once in MUCH MORE THAN 10 years"; (2) sampling of frequency responses to events that is not true "random", "unbiased" or "stratified" sampling which requires samples that are distributed unevenly over time just like the population of responses to events is: every month or season of the year cannot be forced to have the same number of samples; otherwise what is being measured is not the population of responses to events, but something else (like responses to regular small operating errors that are the domain of CPS, not the FRS) with a probability density over time in the shape of a flat-top box; (3) use of a median measure of frequency-response performance, which is impossible for 3 reasons: because there is a practical infinity of possible Frequency Responsive Reserve Sharing Groups or overlap regulation arrangements, because use of the median incents the formation of those whose actual provision of
frequency response is over-represented by the median and would in that case deteriorate below the actual minimum amount required for system reliability, and because use of the median disincents the formation of those whose actual provision of of frequency response is under-represented by the median. The first 3 slides clarify the following 3 technical points: (1) the resistance of load to adjust to sudden change in generation output prompts frequency (but not generator output) to change and to thereby involuntarily change the load whose resistance to that adjustment prompts frequency to change even more and only until the sudden generation output change is reversed enough in order first to stop the frequency change and then begin to reverse the frequency change; [The involuntary load response/adjustment provides the energy used by generation inertia to immediately slow down frequency change until frequency response is deployed to stop and begin to reverse the frequency change as illustrated in this 4 -slide powerpoint presentation of 4 errors in the Cummings presentation's slide of frequency response
http://www.robertblohm.com/CummingsVsIllianLoadResponse.pptx or
http://www.robertblohm.com/CummingsVsIIlianLoadResponse.ppt . The 2 graphs depicted therein show that load response and inertia are inseparable and provide the entirety of frequency response during more than the initial half of the 5 or 6 second pre-arresting period, and this supports the next slide.] (2) the FRS is a standard for "system" frequency response (the 1st of NERC's 2 glossary definitions of "frequency response"), not for "equipment" frequency response (the 2nd of NERC's 2 glossary definitions of "frequency response"); the FRS is a BA-Response System Operation and Measurement Standard, not a Connection and Maintenance Standard for Individual Pieces of Equipment; in other words, all sharp large-enough tie-line and frequency changes of whatever kind for whatever reason are counted ("summed") and managed (and included in the probability density curve of frequency events and responses thereto), not just measurements of a construed pure machine response to one single imagined un-overlapped change (shorn of supposed "contaminants" of an idealized "equipment" reality non-existent at actual "system" level); (3) the probability density function of frequency events that are un-uniformly distributed over time governs the FRS and is different from the standard normal distribution of operating errors (that governs CPS) that are evenly distributed over time in a uniform distribution.

Group

Dominion
Connie Lowe

Dominion

Dominion agrees that resources other than generators could supply some limited frequency response, but believe that all resources providing reliability-related services should be subject to applicable NERC reliability standards. We also agree that relationships can exist between reliability and compensation, especially in organized markets. In order for generators to be able to respond to a low frequency event, they would need to operate slightly below their maximum output. The Balancing Authority is the entity best suited to make the determination of how to balance efficiency and reliability. There may be financial consequences for resources that do not meet their assigned schedule and we encourage further discussion of this with NAESB to determine whether this issue might be ripe for discussions and possible solutions from NERC (reliability) and NAESB (commercial/financial). As noted in the Duke presentation, alignment is also needed in the new NERC standards and Glossary of terms (clarification is needed on specific terms used by engineering vs. the Generator Operator) as it pertains to frequency response.

Individual

Terry Bilke

MISO

The standard sets a rational backstop for reliability without forcing undue costs for undefined improvements in reliability. My primary concern is the reliability gap created for variable bias BAs. There is no discernible reason why a variable bias BA should ever have a bias less negative than say 30% of its FRO. The variable bias BA should also have an average annual bias at least 90% of its FRO. This can be managed through the year and still will be well less than the current obligation under BAL-003-0. Since there is no firm technical guidance on how variable bias is to be set, to leave this gap will cause a mass movement of BAs to report as variable bias entities. It will also leave the door open to gaming to artificially improve CPS and DCS and BAAL performance.

Group

SPP Standards Review Group

Robert Rhodes

Southwest Power Pool
Requirement 3 of the standard covers the use of variable bias. However, the requirement does not establish a minimum limit for variable bias. In order to prevent what could be perceived as a way to 'game' the requirement, we would suggest incorporating a minimum limit on variable bias that does not allow the value to be positive.
Individual
John Seelke
Public Service Enterprise Group
PSEG Comments on Project 2007-12 - Frequency Response A. SUMMARY OF COMMENTS 1. The standard drafting team (SDT) for Project 2007-12 has not explained how compliance with draft standard BAL-003-1 is achievable; therefore, a key goal of Order 693 has not been met. a. BAL-0031's objectives (from the project's web page) states "There is evidence of continuing decline in Frequency Response in the three Interconnections over the past 10 years, but no confirmed reason for the apparent decline." If one does not know why Frequency Response is declining, how can a BA ensure itself that it has sufficient Frequency Response in its area to meet its obligation? b. BAL-003-1 assigns Balancing Authorities (BAs) the requirement to meet a Frequency Response Obligation for their respective areas. However, BAs have no the authority to set requirements for suppliers of Frequency Response service: Generator Owners (GOs) as well as demand response resources. 2. Two existing standards (BAL-001-0.1a and BAL-002-0) also address Frequency Response. However, the pro forma Open Access Transmission Tariff (OATT) contained ancillary services associated with these standards prior to the standards being approved. a. The SDT needs to explain the relationship between BAL-001-0.1a, BAL-002-0, and draft standard BAL-003-1 since they all address an aspect of Frequency Response. b. BAL-003-1's objectives (from the project's web page) do not include a statement that having sufficient Frequency Response is necessary to arrest the frequency decline within the first seconds of a disturbance so that underfrequency load shedding (UFLS) is minimized. 3. There is no OATT ancillary service for the service in draft standard BAL-003-1. Unless commercial terms are established which define the relationship between BAs and Frequency Response providers, BAL-003-1 will not be implementable. Because commercial terms need to be defined in the OATT, we encourage NERC to work with FERC's Office of Energy Market Regulation and/or its Office of Energy Policy and Innovation to initiate proceeding with the goal of developing a new ancillary service Primary Frequency Response Service. 4. A plot of frequency versus time after the sudden loss of generation is only contained in presentations for the technical conferences, but a plot is not in any of BAL-003-1's documents. Such a plot is needed in the standard (or in an attachment to it) so that the familiar reference points - A, B, and C - can be used in the standard's documents. 5. With regard to setting the Frequency Response Obligation by Interconnections in BAL-003-1: a. How can two Interconnections (Eastern and Quebec), which are not Registered Entities, comply with the requirement in Attachment A to set a Frequency Response Obligation? b. The SDT should explain its rationale for choosing "the largest category C ($N-2$) event identified" as the basis for setting an Interconnection's Frequency Response Obligation. 6. Project 2010-14-1 is related to Project 2007-10, and the two project teams should coordinate on these items: a. Both SDTs should put themselves in the position of a BA that must comply with R3 and all its subparts in draft standard BAL-012-1 and develop a hypothetical implementation plan for a BA to meet its Frequency Response Obligation. b. Both SDTs should work together to explain the relationship between Regulating Reserve, Contingency Reserve, and Frequency Response Reserve contained in BAL-012-1. B. REGULATORY BACKGROUND When FERC approved BAL-003-0 - Frequency Response and Bias - in Order 693, it issued NERC a directive in P. 375: ...the Commission directs the ERO to develop a modification to BAL-003-0 through the Reliability Standards development process that: ...(3) defines the necessary amount of Frequency Response needed for Reliable Operation for each balancing authority with methods of obtaining and measuring that the frequency response is achieved." The standard drafting team for Project 2007-12 is currently addressing all but one of the items in the Order 693 directive. See below: Order 693, P. 375 (3) Directive Addressed by SDT? 1. Define the necessary amount of Frequency Response for each BA Yes 2. Define methods of obtaining Frequency Response No 3. Define methods of measuring that Frequency Response is achieved Yes This second item is critical. "Methods" can describe technical options, but it can also describe process options. While the project's "Frequency Response Backaround Document" dated October 2011 has a section on "methods of obtainina Freauencv

Response" on p. 11, that section has six bullet points on the topic. The points are not integrated into a coherent approach that explains how compliance is achievable. Draft standard BAL-003-1 assigns BAs the requirement to meet a Frequency Response Obligation for their respective areas. However, BAs have no the authority to set requirements for suppliers of Frequency Response service: GOs as well as demand response resources. In addition, there are no OATT provisions that will compensate suppliers for the service BAs will ask them to provide. C. TECHNICAL COMMENTS 1. BAL-001-0.1a and BAL-002-0 NERC's Glossary defines of Frequency Response and Frequency Bias as follows: Frequency Response: (Equipment) The ability of a system or elements of the system to react or respond to a change in system frequency. (System) The sum of the change in demand, plus the change in generation, divided by the change in frequency, expressed in megawatts per 0.1 Hertz (MW/0.1 Hz). Frequency Bias: A value, usually expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$, set into a Balancing Authority [Area Control Area] ACE algorithm that allows the Balancing Authority to contribute its frequency response to the Interconnection. Two existing standards are related to draft standard BAL-003-1. a. BAL-001-0.1a - Real Power Control Performance - addresses maintenance of frequency, within limits, by a BA in a steady-state (no disturbance) environment by measuring ACE. This requires BAs to have sufficient Regulating Reserve. The ACE equation includes a component for Frequency Bias. This component adjusts ACE when frequency deviates from 60 Hz , allowing a BA to contribute its Frequency Response to the Interconnection. In the OATT, this service is Schedule 3 - Regulation and Frequency Response. b. BAL-002-1- Disturbance Control Performance - requires BAs to provide sufficient Contingency Reserve so that ACE can be returned to its pre-disturbance level within 15 minutes. In the OATT, this service is incorporated into two schedules: Schedule 5 - Operating Reserve - Spinning Reserve Service and Schedule 6 - Operating Reserve - Supplemental Reserve Service. In both standards, the needed ancillary services were in the OATT PRIOR to the standards being approved. The reliability standards set performance requirements while the OATT sets the commercial structure for compensating providers. To meet the requirements of BAL-001-0.1a and BAL-002-1, BAs need Frequency Response (equipment) so that they have the "ability... to react or respond to a change in system frequency." Maintaining ACE is a Frequency Response service, but it is different from the type of service in draft standard BAL-003-1 and as described in the technical conference. The SDT should explain the relationship of all three standards since they all address an aspect of Frequency Response. 2. Draft BAL-003-1 Objectives The objectives of Project 2007-12 are excerpted below from its web page: Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. Failure to maintain frequency can disrupt the operation of equipment and initiate disconnection of power plant equipment to prevent them from being damaged, which could lead to wide-spread blackouts. THERE IS EVIDENCE OF CONTINUING DECLINE IN FREQUENCY RESPONSE IN THE THREE INTERCONNECTIONS OVER THE PAST 10 YEARS, BUT NO CONFIRMED REASON FOR THE APPARENT DECLINE (emphasis added). The proposed standard would set a minimum Frequency Response obligation for each Balancing Authority, provide a uniform calculation of Frequency Response and Frequency Bias Settings that transition to values closer to natural Frequency Response, and encourage coordinated AGC operation. This statement has two shortcomings. First, the emphasized sentence above is discouraging because if one does not know why Frequency Response is declining, how can a BA ensure itself that it has sufficient Frequency Response in its area to meet its obligation? The standard should describe how a BA might comply with its Frequency Response Obligation in an appendix. (See the comments in Section D below.) Second, it makes no mention that having sufficient Frequency Response is necessary TO ARREST FREQUENCY DECLINE WITHING THE FIRST SECONDS OF A DISTURBANCE SO THAT UNDERFREQUENCY LOAD SHEDDING (UFLS) IS MINI MIZED. 3. Graphics A plot of frequency versus time after the sudden loss of generation is only contained in the presentations for the technical conferences, not in any of BAL-003-1's documents. Such a plot is needed in the standard (or in an attachment to it) so that the familiar reference points - A, B, and C - can be used in the standard's documents. 4. Physical response to loss of generation The workshop did a good job in explaining what occurs physically within an Interconnection after generation is lost. Those are summarized below for the SDT to review for any misunderstanding. a. At point A (pre-disturbance), an unspecified amount of generation is lost. b. Between point A and point C (the frequency nadir), several changes occur: i. Due to the loss of generation, load is greater than generation, and in response to this imbalance, generators "slow down" and frequency drops. Each generator's loss of speed releases power to serve the load, albeit at a reduced frequency. Generators with areater mass are preferred since thev have more stored rotatina power to release. Freauencv

Bias setting in each BA's ACE equation allows this power to flow into the Interconnection. ii. Load is also reduced when frequency is reduced because loads such as motors slow down also and consume less power. Load reduction aids in arresting frequency decline. However, unless the frequency decline triggers the first UFLS step, no connected is lost. iii. Generator governors begin to respond. A generator's governor that can increase output when frequency declines provided certain characteristics are met. 1) The generator must be operating below its maximum capacity that can be achieved under automatic (i.e. non-operator intervention) operation. A generator with a 100 MW capacity and operating at 80 MW has "head room" to respond while the same generator operating at 100 MW cannot. 2) The governor's "dead band," which defines a range (+/-) of frequency changes that do not activate the governor, must not be so wide so as to effectively disable the governor from responding to frequency changes during a disturbance. 3) The governor cannot be overridden by "outer loop controls" on the generator. These controls countermand the governor's response, keeping the generator's output level unchanged. Governor response is the last to occur - it begins within seconds after the disturbance and continues until the generators with active governors reach their maximum capacity or until frequency is restored. In addition, properly devised demand response resources can substitute for governor-responsive generators. C. At point B, frequency is stabilized. All of items above occur automatically, without operator intervention. Collectively, these actions are referred to the "primary response" of the Interconnection to loss of generation. Subsequent responses involve operator actions that eventually return system frequency and ACE to a pre-disturbance ACE target. These subsequent responses are not the objective of draft BAL-003-1, but they are the objective of BAL-002-1. 5. Frequency Response Obligation Determination Regarding the Frequency Response Obligation for an Interconnection, Attachment A in draft BAL-003-1 states "Each Interconnection will establish target contingency protection criteria," with the default target "based on the largest category C ($\mathrm{N}-2$) event identified." We have several questions: a. How can two Interconnections (Eastern and Quebec), which are not Registered Entities, comply with the requirement in Attachment A to set a Frequency Response Obligation? In fact, no Interconnection is listed in the Applicability section of BAL-003-1. b. We assume that "category C" in the Attachment A language above references Table 1 in the current TPL standards, but that should be clarified by the SDT. Does the SDT intend to restrict the category C events to those that only result in the loss of two Elements? This question is asked because category C in Table 1 is described as "Event(s) resulting in the loss of two or more (multiple) elements." c. The default target contingency in Attachment A is greater than minimum Contingency Reserve requirement in BAL-002-1 (R3.1), which is based on "the most severe single contingency." Why was the minimum requirement in BAL-002-1 not used? The SDT should explain its rationale for choosing "the largest category C ($\mathrm{N}-2$) event identified" as the basis for setting an Interconnection's Frequency Response Obligation. 6. Frequency Response Obligation Measurement We summarized Frequency Response Obligation measurement below for the SDT to review for any misunderstanding. a. Frequency Response will be measured at point B due to technical limitations in measuring each BA's point C. However, point C can be measured for an Interconnection. Because the C to B ratio is highly consistent within an Interconnection, measuring the response at B also measures the decline at C is achieved. b. For compliance purposes, each BA's performance in meeting its Frequency Response Obligation will be based upon its median Frequency Response of at least 25 events, expressed in megawatts per $0.1 \mathrm{Hertz}(\mathrm{MW} / 0.1 \mathrm{~Hz})$. D. FREQUENCY RESPONSE OPTIONS The discussion below is not inclusive, and the SDT is encouraged to provide guidance on compliance as recommended in Section C. 2 above. 1. Value high inertia generators. Generators that are on line and spinning, even if loaded to their maximum capacity, provide MW by slowing down, and generators with greater mass are preferred. In engineering parlance, this is termed the inertia constant, H , which, for a given generator is: $\mathrm{H}=$ (Stored kinetic energy in megajoules at synchronous speed)/(Generator rating in MVA) Generators with a greater H constant have more value in arresting frequency decline than similarly rated generators with a lower H constant. 2. Value interruptible load on underfrequency relays. Many utilities have interruptible loads, and some of these could be configured to be shed load based upon frequency steps that are above the first UFLS step. As an example, direct load control programs for cycling residential air conditioners and water heaters could be configured to interrupt all appliances on the program for several minutes after a disturbance, with the appliances gradually restored after the frequency decline is arrested. 3. For generators that provide primary Frequency Response through governor action, value rapid response. The rate of increase in generator output due to governor response is both governor and prime-mover specific. The governor's droop determines how much it will increase signal generator power to increase when freauencv declines. Also, aenerators with rapid power increase capabilitv.
such as simple cycle gas turbines, can deliver the governor's signal to increase power more quickly. The more rapid a generator's response capability, the more it should be valued. a. Generators providing primary Frequency Response through governor action or automatically curtailed interruptible load also provide "Operating Reserve - Spinning," which is a component of Operating Reserve. It is defined in the NERC Glossary as follows: Operating Reserve - Spinning The portion of Operating Reserve consisting of: i. Generation synchronized to the system and fully available to serve load within the Disturbance Recovery Period following the contingency event; or ii. Load fully removable from the system within the Disturbance Recovery Period following the contingency event. The term "Disturbance Recovery Period" is used in BAL-002-1, and its default value is 15 minutes. To minimize UFLS activation, which can occur within seconds after a disturbance, primary Frequency Response is the key requirement, and the 15 minute time frame in Operating Reserve - Spinning is not relevant. However, a GO that provides primary Frequency Response via an active governor or a demand response provider that provides automatically curtailed interruptible load is also providing Operating Reserves - Spinning. E. OATT PROVISIONS Unless commercial terms are established which define the relationship between BAs and Frequency Response providers (GOs and demand response resources), BAL-003-1 will not be implementable. Because commercial terms need to be defined in the OATT, we encourage NERC to work with FERC's Office of Energy Market Regulation and/or its Office of Energy Policy and Innovation to initiate proceeding with the goal of developing a new ancillary service - Primary Frequency Response Service. This service would address automatic Frequency Response within a short time frame (up to about 30 seconds) after a disturbance. Overlap between Spinning Reserve Service and Primary Frequency Response Service would need to be addressed. F. COORDINATION WITH PROJ ECT 2010-14.1 After preparing the majority of our comments, a first-time request for comments on a related project, Project 2010-14.1 - Phase 1 of Balancing Authority Reliability-based Controls Reserves - was posted on June 4. This project includes a new draft standard BAL-012-1 that has a proposed definition for Frequency Response Reserve - "An amount of reserve automatically responsive to locally sensed frequency deviation during the primary control time frame." That definition is similar to the ancillary service proposed above. Both SDTs should put themselves in the position of a BA that must comply with R3 and all its subparts in draft standard BAL-012-1 and develop a hypothetical implementation plan for a BA to meet its Frequency Response Obligation. If they did, they would understand why BAs have little understanding of what they must do to comply with draft BAL-003-1. Both SDTs work together to explain the relationship between Regulating Reserve, Contingency Reserve, and Frequency Response Reserve contained in BAL-012-1.

Group

Bonneville Power Administration

Chris Higgins

Transmission Reliability Program
Chris Higgins Bonneville Power Administration Transmission Reliability Program cmiggins@bpa.gov 360-418-2132 Submitting on behalf of the BPA's AGC team. BPA continues to fundamentally disagree with the approach that BAL-003-1 is developing into. Please reference BPA's extensive comments submitted on 12/8/11 for Project 2007-12 Frequency Response found here:
http://www.nerc.com/docs/standards/sar/2007-12_comments_received_120911.pdf. BPA also believes that having a special interest group present their perspective on the standard and a consultant provide a sales pitch in relation to load response was inappropriate and ill-served. Individual

Don Mcl nnis

Florida Power \& Light

The conference was very informative. Of particular interest was who should be responsible for providing frequency response. The assignment to the BA was well supported and logically presented. The details presented in the conference were different than those in the original version of the standard i.e. the frequency selected to protect for was modified from 59.7 to "prevailing". The prevailing frequency if prevailing is interpreted as dominant is 59.3 Hz yet the standards team choose 59.5 Hz without explanation or justification. There was also a lack of technical justification in increasing the frequency bias minimum from the original 0.8% to 0.9%. While a minimum should be established there should be no link to frequency response as the two are no longer related.

Individual

Bob Frost

Portland General Electric

1. BAL-003-1, Attachment A, states that the ERO will provide quarterly posting of candidate frequency events. It then states it will post the final list of frequency excursion events used for standard compliance by December 15 each year. Because the quarterly postings are only candidates and the median frequency response is the measure, Balancing Authorities cannot always be certain they will be compliant with the Standard until December 15. 2. FRS Form 1, sheet "Data Entry", requests entry by the Balancing Authority of next year's FRO (cell O31). However, per Attachment A, this information is provided by the ERO only after Form 1 is submitted by the Balancing Authority. A Balancing Authority is only able to estimate their FRO. 3. FRS Form 2, sheet "Entry Data", has the Balancing Authority modify formulas for cells C8 and C11 in order to identify the beginning and recovery from the event. This is tedious as Form 2 must be completed a minimum of 25 times each year. The spreadsheet should be authored so that the user does not need to modify formulas. The sheet "Data" on Form 2 could have cells adjacent to the data that are marked to identify these points.

Group

MISO Standards Collaborators

Marie Knox

MISO
We have a strong concern related to the handling of variable bias. The drafting team is fully removing the floor for the minimum amount of bias for these BAs and only asks bias to be equal to natural frequency response when frequency is off normal. There should always be some bias (perhaps 40\% of FRO) provided to the Interconnection and there should be some minimum annual average. This can be managed through the year and still will be well less than the current obligation under BAL-003-0. Since there is no firm technical guidance on how variable bias is to be set, to leave this gap will cause a mass movement of BAs to report as variable bias entities. It will also leave the door open to gaming to artificially improve CPS, DCS and BAAL performance. For example, an algorithm that takes bias to a small positive number once each 15 minutes would assure the BA will never fail DCS or BAAL.

Group

LG\&E and KU Services

Brent Ingebrigtson

LG\&E and KU Services

LG\&E and KU Services have two comments/questions related to the material presented at the FR Technical Conference: 1. Data was presented that illustrates a decline in the Frequency Response of the Eastern Interconnect for the period 1994 through 2010. Since FR is partially related to the amount of on-line generation available at the time of the contingency, has the SDT investigated the amount of spinning reserves typically available on the Eastern Interconnect during the same 1994 to 2010 period? If so, was there a correlation between the decline of Frequency Response and available spinning reserve? 2. During the conference, mention was made that there is a cost for obtaining Frequency Response - mainly the cost of unused spinning generator capacity. However, no data, analysis or estimates were presented as to what these costs might be. Cost estimates for attaining the desired amount of Frequency Response would be useful to the industry and FERC in evaluating the proposed Frequency Response standard.

I ndividual

Michael Goggin

American Wind Energy Association
AWEA appreciates the opportunity to comment on NERC's ongoing work on frequency response standards. Based on the presentations at NERC's May 2012 technical conferences on frequency response issues, it appears that consensus exists around three important points, which we would like to highlight in our comments. We are pleased that these points appear to be embodied in the ongoing work of the standards drafting team on frequency response (BAL-003-1). 1. The balancing authority
(BA) should be the entity responsible for meeting a frequency response standard. This responsibility would fit in well with a BA's existing responsibilities for maintaining system frequency within acceptable bounds, such as CPS 1\&2 and DCS requirements. Just as a BA currently obtains the reserves and other services required to meet these frequency standards and operates according to these standards, the BA is the logical entity for taking on those responsibilities for frequency
response. The BA is the only entity that has a real-time awareness of overall power system needs and capabilities, and is thus ideally suited for meeting a frequency response standard. 2. A BA's selection of resources to provide frequency response service should be market-based. As was explained at the technical conferences, different resources have widely divergent costs for providing frequency response. Many resources are likely to be able to provide significant frequency response at very low cost, while other resources are likely to face significantly higher costs for providing this service. For example, maintaining the capability to provide sustained frequency response from a wind plant would require holding the wind plant below its operating capability at all times, foregoing significant production of near-zero-marginal cost, zero emissions wind energy. As a result, under normal operating conditions, the wind plant's opportunity cost for providing frequency response capability is likely to be significantly higher than the cost for many other generating resources, which would be able to save on fuel costs by operating below their maximum output. Innovative technologies, including some forms of demand response and energy storage, are also likely to be able to provide frequency response at relatively low cost. The BA is well-positioned to use a market-based mechanism to select the least-cost frequency response resources from the available resources, as conditions change in real-time. This market-based incentive should also provide sufficient incentive for most potential resources to install any equipment necessary to provide frequency response. The market mechanism should be designed to pay for performance, so that frequency response resources are incentivized to provide services with the maximum value for the power system. 3. The decline in frequency response on the Eastern U.S. power system pre-dates the introduction of wind energy and appears to have been caused by changes in how conventional power plants are operated, and not in any way tied to the increased use of wind energy. As NERC noted in comments submitted to FERC on October 14, 2010: "Frequency response of the interconnected North American electric systems has shown a significant decline for several years. The reasons for the decline are numerous, including: - A trend toward larger governor deadband settings, exceeding the historical typical setting of ± 36 millihertz (mHz); • Use of steam turbine sliding pressure controls; • Loading units to 100 percent of capacity leaving no "headroom" for response to losses of generation; • Blocked governor response; • Once-through boilers; • Gas Turbine inverse response; • Withdrawal of primary frequency response of generators by MW setpoints, resulting in limited time of response; and • Changes in the frequency response characteristics of the load. These changes have been evolving for some time and are not the direct result of the emergence of renewable resources such as wind and solar." Data presented at the technical conference indicated that only around 30% of generators are currently providing frequency response. Much of the decline in frequency response provision appears to result from generator owners maximizing efficiency and minimizing costs under current market structures. Implementing a market-based mechanism to select the least-cost frequency response resources from the available resource pool would allow conventional generators to be appropriately compensated for any costs they incur for providing frequency response while simultaneously selecting the least-cost resources for the power system. The technical conference also discussed the fact that only $1 / 3$ of the 30% of generators that are providing frequency response (so 10% of the total generation fleet) sustain that frequency response for more than a short period of time. Part of the problem appears to be that some current energy imbalance tariff provisions may penalize generators that increase their output beyond the scheduled amount, and therefore generators are limiting the duration of frequency response following a system disturbance to avoid imbalance penalties. At the technical conference, there appeared to be widespread support for reforming those energy imbalance tariff provisions to remove that perverse incentive, which is commendable.

Group

ISO/RTO Standards Review Committee

Albert DiCaprio

PJ M

Introduction The undersigned members of the ISO/RTO Standards Review Committee (SRC) appreciate that NERC provided the opportunity to comment upon NERC's Frequency Response Technical Conference. The Conference addressed an important topic in which the SRC is deeply interested - primary control. The SRC notes that the Conference's presentation of the various and diverse perspectives of this topic highlighted the continued need to resolve and address several issues: - The need for a common language for discussion - The need for an objective analysis of a reliability need • Given the proof of such an objective reliability need, there is a need to define the quantitative parameters involved in measuring the objective • The need to justify the creation of a
mandatory standard that is relevant to the current and future BES. That includes: o Reviewing relevancy of old standards o Clarifying discussions o Objectively assigning responsibilities Discussion Terminology/Common Language The SRC noted that the presenters did not share a common set of terms. The term Frequency Response was used to address issues that are separated by time frames and that deserve separate discussions. Frequency Response was used generically to mean any activity related to controlling frequency. Frequency Response was also used to mean undirected control (such as the change in generator output caused by a governor). Frequency Response was used to mean directed control (aka secondary control). It was also used to mean the Area Control Error equation. Rather than relying on the broad and ill-defined term Frequency Response, the SRC suggests that either newly minted terms be created or that more traditional terms such as Primary Control Response and Secondary Control Response be used. All too often the presenters crossed the traditional boundaries thereby decreasing the clarity (and the value) of the discussion. There was also a tendency to use the term "Service" for both the traditional Ancillary Services (Load Following (aka Economic Dispatch); Spinning reserves; Supplemental reserves; Regulation service (aka AGC); Reactive and voltage control service; Black start) and for conditions that exist (i.e. the reaction from generators to changes in frequency). There is a tendency to equate Frequency Control through tie-line bias (typically this is AGC or secondary control) with Primary control (Dave Lemmons); Bias vs. Beta (is also a secondary control issue but it is linked because the parameters themselves are related to the primary response experienced; but they drive secondary control problems and solutions). In short the Bias is a 1st order approximation of what the magnitude of primary response that goes into the ACE equation to drive secondary control. Unless care is taken with the terms, it is easy to envision differences in discussions. Good resolutions of problems caused on the secondary control system were presented (Terry Bilke) but that need is relatively independent of this SDT. For our comments the SRC will focus on Primary Control response and use the terms primary, primary response, or primary frequency response rather than Frequency Response. Need The SRC notes that the presenters offered a variety of reasons for a "Frequency Response" standard: - Because the governor response in the Eastern Interconnection changed (or appears to be changing) - To avoid Under-Frequency Load Shedding relay operation - To avoid problems for Secondary control (valid need but not a valid justification for Primary Frequency control standard) (Howard IIlian) • FERC Order 693 o Determine the appropriate periodicity of frequency response surveys o Define necessary amount of Frequency Response for reliable operations with methods of obtaining response and measuring that the frequency response is achieved • FERC Technical Conference The SRC observes that the presenters are attempting to address the goal of operating at a reasonable margin away from both UFLS (underfrequency) and OFR (over-frequency) settings, and to avoid any single event (contingency) causing those relays to activate. The SRC fully supports that objective. Several presenters mentioned the above objective and addressed the amount of post-event governor response, i.e. response that was activated after the frequency was arrested. Presenters recognized that not all suppliers are generators, and not all generators have governors, and not all of those generators respond in the same way. They also note that BAs do not all own generators. One presenter documented that the Eastern Interconnection has the worst post event response but also has the highest frequency arrest level (i.e. are farthest from a relay trip point) Most presenters expressed preference to impose Frequency response production requirements on BAs. Most presenters want to focus on the Eastern Interconnection. The SRC believes the requirement addressing primary frequency response must: • Relate to the frequency nadir point not the post event response • Apply to and be assigned to "ALL" Functional Entities registered for that applicable group • Reflect the capabilities of the functional entity to provide the mandated service. - Address both supply capabilities as well as appropriateness of relay settings If the objective is to avoid tripping relays and to minimize the risk of tripping those relays then the requirement must focus on that objective. Some presenters stated that it is traditional and simply easier to focus a Frequency Response requirement on BAs. Others stated that there were too many suppliers to impose a frequency response mandate on the suppliers. The SRC as well as NERC have stated the intention to have performance based standards and to move away from procedural requirements. The majority of the Technical Conference presenters focused on procedural solutions (i.e. governor response) and tried to indicate that both generation and demand response could serve as response providers. Bob Cummings of NERC showed that the typical worst response of the EI was equal to or higher than the best responses in ERCOT or WECC. In effect the concern about lack of post event response does not reflect the margin of reliability experienced even with the "hockey stick" response. Given the fact that none of the presenters proposed increasing the ERCOT and WECC responses to be as effective as the EI response, the observed decrease in the Eastern
interconnection could be seen as a type of "right-sizing" of response - i.e. the east is now coming closer to the rest of North America. Supply The SRC does recognize the change in frequency response in the EI, but is concerned that mandating ill-advised requirements on the wrong applicable entities will foster the loss of the provision of primary response service and not help it. If the "supply" requirement is placed on a coordinator, then the energy producing assets have no incentive to provide a service that takes away from other more lucrative products. If the requirement is placed on a subset of suppliers then those suppliers will likely mimic the suppliers in the other subset and not offer any service at all. The idea of focusing on one given solution - governor response - creates disincentives for new technologies. The Industry is now adopting those innovations without a mandate and should be allowed to continue that expansion without the threat of a standard that would impede such expansion. Suggestions The SRC believes there is a need for more open presentations including people not as focused on governors. The majority of presenters were experts in a given area. Their expertise seemed to preclude exploration of other options than the current option/approach. It should be noted that a Governor-centric requirement violates Order 693's mandate to be resource neutral. It is time to have a discussion of the role of coordinators (like RCs, TOPs and BAs) who can and do use a palette of tools and services to address a given system condition without being obligated to answer for non-production. An alternative could be that such entities are required to provide assessment and analysis but not production; or they are required to arrange for, purchase, or otherwise provide capacity (not energy) capable of providing the primary frequency response. Many of the presenters seemed to be in a vertically integrated industry where the coordinator is the owner and operator. That is no longer universally true. A primary frequency response service for an interconnection may be calculated as discussed by the presenters, but the mandate must be developed so that the default entity will be obligated to provide or purchase the obligation (thus opening the opportunity to all new innovations). Should that be the LSEs who use the service; the suppliers who provide the service; the coordinators who integrate all of the services; or to allow a combination without specifying "how" it must be done? Other SRC Considerations raised by presenters' comments It is invalid to avoid imposing a requirement on the appropriate applicable entity simply because there are many of them; if other standards apply to the same applicable entities then this one can also. Speed should not be a driver contrary to what one presenter stated. As presenters said we are fine today without any mandatory standard for primary control. This prompts the question "why the need for speed?" Because we can correct problems with the requirements later, via SARs, is NOT a justification for creating an inaccurate standard. Why should TOPs be permitted to set relays anywhere, but GOPs be obligated to set governors to avoid those relays? Focusing on improving details of what we have today does not make today's paradigm better!!!! A standard should not serve as a field test for an idea!!!!
Individual
Laura Lee

Duke Energy

Duke Energy appreciates having the opportunity to participate in the Frequency Response Technical Conference. It was a very helpful for our team to hear the issues that were brought by others to the discussion, along with the opinions of NERC staff, the Frequency Response Standard Drafting Team (FRRSDT), and FERC staff. Duke Energy provides the following comments and proposed resolutions to some of the issues we believe should be addressed. Frequency Response Obligation (FRO) As the FRRSDT reviews all of the issues discussed and subsequent comments provided, we ask that consideration be given to drilling down to the "root cause" of the issues, to see what is driving them. We have found one of the root causes of a few issues to be the allocation of the FRO. In the current proposal, a BA's FRO is the Interconnection Frequency Response Obligation applied to the ratio of the BA's generation and load at peak divided by the Interconnection BA totals of generation and load at peak. Including generation in the allocation helps accommodate treatment of generation-only BAs (representing perhaps one percent of the total generation in the Interconnection), but in the process creates issues for both individual generating resources and all other BAs. Duke Energy believes that the FRO allocation should be based upon load only, based upon the numerous issues and inequities that an FRO allocation based upon load and generation would otherwise create, including but not limited to: a) An FRO allocation based upon generation at peak treats resources on a non-comparable basis within a "traditional" (load and generation) BA, biased against resources dedicated to peaking operation (CTs as an example), and in favor of resources which may not operate at peak capacity during such times (wind resources as an example). b) A third party resource added to a BA footprint
would add to the BA's response requirement, but the third party resource would have no requirement to provide frequency response. If such resources are only providing peaking energy to off-system loads, the generation would add to the response requirement for the BA for the year, though the resources may run a small fraction of that time. Even if the resources were capable of providing frequency response when online, they may do little to compensate the BA for the increased yearround requirement. The allocation methodology creates the issue that the BA must now address compensation for the increased response requirement or some other tariff provision to make it whole. c) The allocation methodology creates a gaming opportunity - a strategy to purchase external energy across the peak would be a small premium to pay to achieve a reduced Frequency Response Obligation for the year - but a large price to pay for the BA with the resources selling off-system outside its control. d) Discussed further below, the inclusion of generation in the FRO allocation creates a significant discrepancy between the methodology used to determine the FRO and the methodology used to determine the minimum Frequency Bias Setting. In our opinion, these are among the issues that neither the BAs nor the resources need to face. An allocation based upon the load within the BA rather than load plus generation would resolve them. An additional modification to enhance equitable treatment and eliminate gaming is the use of total energy for the period rather than peak loads in the FRO allocation. There is uncertainty that the use of 12 monthly peaks accurately represents the load benefiting from the continuous provision of Frequency Response. Similar to the gaming discussed above for generation, BAs capable of "peak shaving" are able to reduce a year-round requirement based upon a few hours of operation. Duke Energy proposes that the determination of a BA's FRO be the Interconnection FRO applied to the ratio of the BA's NEL (for those submitting EIA-714 reports, this would be the annual total in column e of Part II, Schedule 3; for others, this would be the sum of LSE NELs in the BA as reported for determination of NERC and Regional fees) divided by the Interconnection BA totals of these NELs. Basing the FRO allocation upon annual energies rather than peak loads eliminates the potential for a year-round FRO to be pushed to others by peak shaving if a peak value is used. The FRO for generation-only BAs (representing approximately 1% of the total generation within an Interconnection) can be set to a fixed percentage of total capacity, similar to current requirements for calculating the Frequency Bias Setting. Frequency Bias Setting (FBS) Notwithstanding our concern raised in the past that the secondary control measures are too tightly bound to the FBS and believing that in some cases the FBS is used as a convenient measure of BA size, Duke Energy agrees with the proposal to gradually reduce the magnitude of the FBS to some margin above the natural Frequency Response of the Interconnection. However, as proposed in the "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard" dated February 21, 2012, the allocation of the FBS reduction would be a margin based upon peak load or peak generation, rather than a margin based upon a methodology similar to that used for the allocation of the Frequency Response Obligation. As an example, based upon the proposed FRO allocation using load plus generation at peak, two BAs with the same peak load, but with differing levels of generation at peak due to off-system transactions, would have a different FRO allocation; however, these two BAs would be given the same minimum Frequency Bias Setting based upon a percentage of peak load only. A generation-only BA with the same amount of generation as a traditional BA serving a similar amount of load, would have an FRO allocation approximately half that of the traditional BA, however these two BAs would be given the same minimum FBS. Under the proposed procedure for reducing the magnitude of the FBS, the generation-only BA would always have a minimum FBS set almost twice what it would need to have compared to the traditional BA. We believe that the incremental reduction in the FBS will not achieve an equitable allocation in its final state. Duke Energy believes that the minimum FBS for each BA should be reduced in magnitude to a fixed percentage above each BA's FRO (but no lower individually than its FRM), while assuring that the Interconnection FBS remains at some margin above the Interconnection FRM. The current procedure posted for the FBS reduction will not achieve that equitable allocation, as the minimum FBS will always be based upon a different methodology than the FRO allocation in its current form. Upon request, Duke Energy can provide a procedure which could be used for determining the minimum FBS which would allow the minimum FBS for each BA to be incrementally reduced in magnitude over time based upon the FRO allocation, and ensure that the Interconnection FBS remains at some margin above the Interconnection FRM. However, given the timeline for moving this standard forward, Duke Energy would propose that consideration be given to basing the FRO allocation on load only as discussed above, setting a value for the generation-only BAs, and returning to the issue of aligning the methodologies used for the FRO allocation and minimum FBS calculation at a later time. Variable Freauencv Bias Settina Duke Enerav disaarees with the FRRSDT's proposal not to reauire a minimum

FBS for BAs using a Variable FBS in multiple BA Interconnections. There are no defined requirements on how a Variable FBS SHALL be calculated, yet its use changes not only the ACE measured against the BAL-001 secondary control requirements, but also the bounds of those secondary control requirements. Overall, Duke Energy questions whether the proposed standard should continue to allow the use of a Variable FBS in calculating ACE or secondary control performance. Duke Energy does not question the value of a BA implementing the logic of a variable FBS in its generation control algorithm, along with other factors to more efficiently control resources, however its operation should be measured in a manner consistent with all other BAs. Nathan Cohn was of the opinion that the secondary control assistance provided by the FBS should be a shared obligation. In the publication "IEEE Transactions on Power Systems, Vol. 3, No. 3, August 1988", Cohn noted the following in the article VARIABLE, NON-LINEAR TIE-LINE FREQUENCY BIAS FOR INTERCONNECTED SYSTEMS CONTROL: "The very conditions that create a variable frequency response to which an area bias is linked as in the subject paper would create a variable level of bias assistance by the area in fulfilling system needs." Nathan Cohn goes on to state, "It is of course recognized that the extent of bias assistance to be scheduled by individual areas is, as are all operating practices, a matter for system operating personnel to determine. This discusser suggests, however, that there are potential advantages in bias assistance based on a common percentage-of-peak for all areas. It would provide an equitable, cooperative, and democratic systems approach." As supported by the statements of Cohn, Duke Energy believes that the assistance provided by the FBS should be a shared obligation equally applied to all BAs by using a fixed FBS in the calculation of ACE and secondary control performance. BAL-003-1 Documents The document, "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard" dated February 21, 2012, no longer has a reference to being "Attachment B" to the draft BAL-003-1 standard. Duke Energy would appreciate clarification of whether this document is within the scope of what will be eventually be included in the ballot of Project 2007-12 - Frequency Response, and what process would be required to make any subsequent revisions to the procedure.

Individual
 Rebecca Moore Darrah

MISO
The Midwest Independent Transmission System Operator, Inc. ("MISO") appreciates the opportunity to comment on the technical conferences that NERC recently held on Frequency Response issues, and, in particular, the proposed changes to BAL-003. MISO adds only two brief comments here. MISO agrees with the proposed change in BAL-003-1 with respect to the calculation of minimum amount of frequency response to be provided by a Balancing Authority (this is the Frequency Response Obligation under Requirement R1 of BAL-003-1). The allocation of Frequency Response Obligation among Balancing Authorities in an Interconnection is to be based on peak load data, which is a reasonable approach to determining what proportion of frequency response should be contributed to each Balancing Authority. MISO also agrees with the manner of calculating each Balancing Authority's Frequency Response Obligation under Requirement R1; the proposal by the Standards Drafting Team will ensure that adequate frequency response is provided by each Balancing Authority. At the same time, the Standards Drafting Team should reconsider its approach to variable bias. Balancing Authorities with variable bias are not subject to some of the requirements. Variable bias methodologies are not identified, and that lack of an identified methodology opens the opportunity for individual Balancing Authorities to engage in gaming (such as having bias go to zero or a small positive number every 15 minutes to ensure DCS and BAAL is never failed).

Standard Development Roadmap

This section is maintained by the drafting team during the development of the standard and will be removed when the standard becomes effective.

Development Steps Completed:

1. The Standards Committee approved the SAR for posting on January 13, 2005.
2. The SAR was posted for industry comment from January 17, 2005 through February 17, 2005.
3. Reply comments and a revised SAR were posted for a second industry comment period from April 4, 2006 through May 3, 2006.
4. Reply comments and a revised SAR were posted for a third industry comment period from February 8, 2007 through March 9, 2007.
5. Standards Committee approved moving the project into the standards development phase on July 12, 2007.
6. The Standards Committee appointed the Standard Drafting Team on August 13, 2007.
7. The draft standard was posted for a 30 day formal comment period from February 4, 2011 through March 7, 2011.
8. The draft standard was posted for a 45-day formal comment period and a 10 day initial ballot from October 25, 2011 through December 8, 2011.

Proposed Action Plan and Description of Current Draft:

This is the third posting of the proposed standard and its associated documents for a 30 day formal comment period and a successive 10 day ballot, from October 5, 2012 through November 5, 2012.

Future Development Plan:

Anticipated Actions	Anticipated Date
1. Respond to comments submitted within the comment period and with the successive ballot. 2. Conduct a recirculation ballot for ten days. January, 2013	
3. BOT adoption.	February, 2013

Definitions of Terms used in the Standard

Frequency Response Measure (FRM)

The median of all the Frequency Response observations reported annually by Balancing Authorities or Frequency Response Sharing Groups for frequency events specified by the ERO. This will be calculated as MW/0.1Hz.

Frequency Response Obligation (FRO)

The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection. This will be calculated as MW/0.1Hz.

Frequency Bias Setting

A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's inverse Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems.

Frequency Response Sharing Group (FRSG)

A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the sum of the Frequency Response Obligations of its members.

A. Introduction

Title: Frequency Response and Frequency Bias Setting

Number: BAL-003-1
Purpose: To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored to its scheduled value. To provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting.

Applicability:
1.1. Balancing Authority
1.1.1 The Balancing Authority is the responsible entity unless the Balancing Authority is a member of a Frequency Response Sharing Group, in which case, the Frequency Response Sharing Group becomes the responsible entity.
1.2. Frequency Response Sharing Group

Effective Date:

1.3. In those jurisdictions where regulatory approval is required, Requirements R2, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R2, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
1.4. In those jurisdictions where regulatory approval is required, Requirements R 1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.

B. Requirements

R1. Each Frequency Response Sharing Group (FRSG) or Balancing Authority that is not a member of a FRSG shall achieve an annual Frequency Response Measure (FRM) (as calculated and reported in accordance with Attachment A) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each FRSG or BA that is not a member of a FRSG to maintain Interconnection Frequency Response equal to or more negative than the Interconnection Frequency Response Obligation. [Risk Factor: Medium][Time Horizon: Real-time Operations]

R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO and shall use this Frequency Bias Setting until directed to change by the ERO. [Risk Factor: Medium][Time Horizon: Operations Planning]

R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and is utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias Setting that is: [Risk Factor: Medium][Time Horizon: Operations Planning]
3.1 Less than zero at all times, and
3.2 Equal to or more negative than its Frequency Response Obligation when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$.

R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation, in order to represent the Frequency Bias Setting for the combined Balancing Authority Area, to be equivalent to either: [Risk Factor: Medium][Time Horizon: Operations Planning]

- The sum of the Frequency Bias Settings as shown on FRS Form 1 and FRS Form 2 for the participating Balancing Authorities as validated by the ERO, or
- \quad The Frequency Bias Setting shown on FRS Form 1 and FRS Form 2 for the entirety of the participating Balancing Authorities’ Areas.

C. Measures

M1. Each Frequency Response Sharing Group or Balancing Authority that is not a member of a Frequency Response Sharing Group shall have evidence such as dated data plus documented formula in either hardcopy or electronic format that it achieved an annual FRM)in accordance with the methods specified by the ERO in Attachment A with data from FRS Form 1 reported to the ERO as specified in Attachment A) that is equal to or more negative than its FRO to demonstrate compliance with Requirement R1.

M2. The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service shall have evidence such as a dated document in hard copy or electronic format showing the ERO validated Frequency Bias Setting was implemented into its ACE calculation within the implementation period specified or other evidence to demonstrate compliance with Requirement R2.

M3. The Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and is utilizing variable Frequency Bias shall have evidence such as a dated report in hard copy or electronic format showing the average clock-minute average Frequency Bias Setting was less than zero and during periods when the clock-minute average frequency is outside of the
range 59.964 Hz to 60.036 Hz was equal to or more negative than its Frequency Response Obligation to demonstrate compliance with Requirement R3.

M4. The Balancing Authority shall have evidence such as a dated operating log, database or list in hard copy or electronic format showing that when it performed Overlap Regulation Service, it modified its Frequency Bias Setting in its ACE calculation as specified in Requirement R4 to demonstrate compliance with Requirement R4.

D. Compliance

1. Compliance Monitoring Process

1.1. Compliance Enforcement Authority

The Regional Entity is the Compliance Enforcement Authority except where the responsible entity works for the Regional Entity. Where the responsible entity works for the Regional Entity, the Regional Entity will establish an agreement with the ERO or another entity approved by the ERO and FERC (i.e. another Regional Entity), to be responsible for compliance enforcement.

1.2. Compliance Monitoring and Assessment Processes:

Compliance Audits
Self-Certifications
Spot Checking
Compliance Investigation
Self-Reporting
Complaints

1.3. Data Retention

The following evidence retention periods identify the period of time an entity is required to retain specific evidence to demonstrate compliance. For instances where the evidence retention period specified below is shorter than the time since the last audit, the Compliance Enforcement Authority may ask an entity to provide other evidence to show that it was compliant for the full time period since the last audit.

The Balancing Authority shall retain data or evidence to show compliance with Requirements R1, R2, R3 and R4, Measures M1, M2, M3 and M4 for the current year plus the previous three calendar years unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation.

The Frequency Response Sharing Group shall retain data or evidence to show compliance with Requirement R1 and Measure M1 for the current year plus the previous three calendar years unless directed by its Compliance Enforcement

Authority to retain specific evidence for a longer period of time as part of an investigation.

If a Balancing Authority or Frequency Response Sharing Group is found noncompliant, it shall keep information related to the non-compliance until found compliant or for the time period specified above, whichever is longer.
The Compliance Enforcement Authority shall keep the last audit records and all subsequent requested and submitted records.

1.4. Additional Compliance Information

For Interconnections that are also Balancing Authorities, Tie Line Bias control and flat frequency control are equivalent and either is acceptable.

2.0 Violation Severity Levels

R\#	Lower VSL	Medium VSL	High VSL	Severe VSL
R1	The summation of the Balancing Authorities' FRM within an Interconnection was equal to or more negative than the Interconnection's FRO, and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 1% but by at most 30% or 15 MW/0.1 Hz , whichever one is the greater deviation from its FRO	The summation of the Balancing Authorities' FRM within an Interconnection was equal to or more negative than the Interconnection's FRO, and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 30% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO	The summation of the Balancing Authorities' FRM within an Interconnection did not meet its FRO, and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 1% but by at most 30% or 15 MW/0.1 Hz , whichever one is the greater deviation from its FRO	The summation of the Balancing Authorities' FRM within an Interconnection did not meet its FRO, and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 30% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO
R2	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation

	Service and uses a fixed Frequency Bias Setting failed to implement the validated Frequency Bias Setting value into its ACE calculation within the implementation period specified but did so within 5 calendar days from the implementation period specified by the ERO.	Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 5 calendar days but less than or equal to 15 calendar days from the implementation period specified by the ERO.	Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 15 calendar days but less than or equal to 25 calendar days from the implementation period specified by the ERO.	Service and uses a fixed Frequency Bias Setting did not implement the validated Frequency Bias Setting value into its ACE calculation in more than 25 calendar days from the implementation period specified by the ERO.
R3	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 1% but by at most 10\%.	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 10% but by at most 20\%.	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 20% but by at most 30%.	The Balancing Authority that is a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response obligation by more than 30\%..
R4	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline & \begin{array}{l}\text { Overlap Regulation } \\
\text { Services with } \\
\text { combined footprint } \\
\text { setting-error less } \\
\text { than or equal to } 10 \% \\
\text { of the validated or } \\
\text { calculated value. }\end{array} & \begin{array}{l}\text { Overlap Regulation } \\
\text { Services with } \\
\text { combined footprint } \\
\text { setting-error more } \\
\text { than 10\% but less } \\
\text { than or equal to 20\% } \\
\text { of the validated or } \\
\text { calculated value. }\end{array} & \begin{array}{l}\text { Overlap Regulation } \\
\text { Services with } \\
\text { combined footprint } \\
\text { setting-error more } \\
\text { than 20\% but less } \\
\text { than or equal to 30\% } \\
\text { of the validated or } \\
\text { calculated value. }\end{array} & \begin{array}{l}\text { Overlap Regulation } \\
\text { Services with } \\
\text { combined footprint } \\
\text { setting-error more } \\
\text { than 30\% of the } \\
\text { validated or } \\
\text { calculated value. } \\
\text { OR }\end{array}
$$

The Balancing

Authority failed to

change the

Frequency Bias\end{array}\right\}\)| Setting value used in |
| :--- |
| its ACE calculation |
| when providing |
| Overlap Regulation |
| Services. |

E. Regional Variance

None

F. Associated Documents

Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard
FRS Form 1
FRS Form 2
Frequency Response Standard Background Document

G. Version History

Version	Date	Action	Change Tracking
0	April 1, 2005	Effective Date	New
1		Complete Revision under Project 2007-12	Revision

Standard Development Roadmap

This section is maintained by the drafting team during the development of the standard and will be removed when the standard becomes effective.

Development Steps Completed:

1. The Standards Committee approved the SAR for posting on January 13, 2005.
2. The SAR was posted for industry comment from January 17, 2005 through February 17, 2005.
3. Reply comments and a revised SAR were posted for a second industry comment period from April 4, 2006 through May 3, 2006.
4. Reply comments and a revised SAR were posted for a third industry comment period from February 8, 2007 through March 9, 2007.
5. Standards Committee approved moving the project into the standards development phase on July 12, 2007.
6. The Standards Committee appointed the Standard Drafting Team on August 13, 2007.
7. The draft standard was posted for a 30 day formal comment period from February 4, 2011 through March 7, 2011.
8. The draft standard was posted for a 45-day formal comment period and a 10 day initial ballot from October 25, 2011 through December 8, 2011.

Proposed Action Plan and Description of Current Draft:

This is the third posting of the proposed standard and its associated documents for a 30 day formal comment period and a successive 10 day ballot, from October 5, 2012 through November 5, 2012.

Future Development Plan:

Anticipated Actions	Anticipated Date
1. Respond to comments submitted within the comment period and with the successive ballot. 2. Conduct a recirculation ballot for ten days. January, 2013	
3. BOT adoption.	February, 2013

Definitions of Terms used in the Standard

Frequency Response Measure (FRM)

The median of all the Frequency Response observations reported annually by Balancing Authorities or Frequency Response Sharing Groups for frequency events specified by the EROon FRS Form 1. This will be calculated as MW/0.1Hz.

Frequency Response Obligation (FRO)

The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection. This will be calculated as MW/0.1Hz.

Frequency Bias Setting

A numbervalue, (either a-fixed or variable-Frequency Bias), usually expressed in MW/0.1 Hz , included inset inte a Balancing Authority's Area Control Error equation to account forthat allows the Balancing Authority's inverse Frequency Response contributionto contribute its Frequency Response to the Interconnection, and discourage response withdrawal through secondary control systems.

Frequency Response Sharing Group (FRSG)
A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the sum of the Frequency Response Obligations of its members.

A. Introduction

Title: Frequency Response and Frequency Bias Setting

Number: BAL-003-1

Purpose: To require sufficient Frequency Response from the Balancing Authority to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored to its scheduled value. To provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting.

Applicability:
1.1. Balancing Authority

> 1.1-1.1.1 The Balancing Authority is the responsible entity unless the Balancing Authority is a member of a Frequency Response Sharing Group, in which case, the Frequency Response Sharing Group becomes the responsible entity.

Effective Date:

1.2-1.3. In those jurisdictions where regulatory approval is required, Requirements R2, R3 and R4 and R5 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R2, R3 and, R4 and R5 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
1.3.1.4. In those jurisdictions where regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.

B. Requirements

R1. Each Frequency Response Sharing Group (FRSG) or Balancing Authority that is not a member of a FRSG(BA) or Reserve Sharing Group (RSG) shall achieve an annual Frequency Response Measure (FRM) (as calculated and reported detailed in accordance with Attachment A and calculated on FRS Form 1) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each FRSG or BA that is not a member of a FRSGor RSG to maintain an adequate level of Frequency Response in the Interconnection Frequency Response equal to or more negative than the Interconnection Frequency Response Obligation. [Risk Factor: Medium][TTime Horizon: Real-time OperationsOperations Assessment]

R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receivingparticipating in Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as (fixed or variable)-validated by the ERO, into its Area Control Error (ACE) calculation during the implementation periodbeginning on the date specified by the ERO and shall use this Frequency Bias Setting until directed to change by the EROto ensure effectively coordinated Tie Line Bias control. [Risk Factor: Medium][Time Horizon: Operations Planning]

R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and is utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias Setting that is: θ perate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area. [Risk Factor: Medium][Time Horizon: Operations PlanningReal time Operations]
3.1 Less than zero at all times, and
3.13.2 Equal to or more negative than its Frequency Response Obligation when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$.

R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation, in order to represent the Frequency Bias Setting for the combined Balancing Authority Area, to be equivalent to eitherthe sum of the Frequency Bias Settings of the participating Balancing Authorities as validated by the ERO or calculate the Frequency Bias Setting based on the entire area being combined and thereby represent the Frequency Response for the combined area being controlled.: [Risk Factor: Medium][Time Horizon: Operations Planning]

- \quad The sum of the Frequency Bias Settings as shown on FRS Form 1 and FRS Form 2 for the participating Balancing Authorities as validated by the ERO, or
- The Frequency Bias Setting shown on FRS Form 1 and FRS Form 2 for the entirety of the participating Balancing Authorities' Areas.

R3. In order to ensure adequate control response, each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is at least equal to one of the following: [Risk Factor: Medium][Time Horizon: Operations Planning

The minimum percentage of the Balancing Authority Area's estimated yearly Peak Demand within its metered boumdary per 0.1 Hz change as specified by the ERO in accordance with Attachment B.

The minimum percentage of the Balancing Authority Area's estimated yearly peak generation for a generation-only Balancing Authority, per 0.1 Hz change as specified by the ERO in accordance with Attachment B.

C. Measures

M1. Each The-Frequency Response Sharing Group or Balancing Authority that is not a member of a Frequency Response Sharing Group or Reserve Sharing Group-shall have evidence such as dated data plus documented formula in either hardcopy or electronic format that it achieved an annual FRM)in accordance with the methods specified by the ERO in Attachment A with data from FRS Form 1 reported to the ERO as specified in Attachment A) that with data to show that its FRM is equal to or more negative than its FRO to demonstrate compliance with Requirement R1.
M2. The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service shall have evidence such as a dated document in hard copy or electronic format showing the ERO validated Frequency Bias Setting was implementedentered into its ACE calculation within the implementation perioden the date specified or other evidence to demonstrate compliance with Requirement R2.
M3. The Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and is utilizing variable Frequency Bias shall have evidence such as a dated reportoperating log, database or list in hard copy or electronic format showing the average clock-minute average Frequency Bias Setting was less than zero and during periods when the clock-minute average frequency is outside of the range 59.964 Hz to 60.036 Hz was equal to or more negative than its Frequency Response Obligation or operator interviews supported by other evidence showing the AGC operating mode including explanation when operating in other than Tie Line Bias mode-to demonstrate compliance with Requirement R3.

M4.-The Balancing Authority shall have evidence such as a dated operating log, database or list in hard copy or electronic format showing that when it performed Overlap Regulation Service, it modified its Frequency Bias Setting in its ACE calculation as specified in Requirement R4when Overlap Regulation Service is provided including Frequency Bias Setting calculation to to demonstrate compliance with Requirement R4.

M5.M4. _The Balancing Authority shall have evidence such as dated data plus documented formula to suppert the calculation retained in either hardcopy or electronic format showing the monthly average Frequency Bias Setting or other evidence to demonstrate compliance with Requirement R5.

D. Compliance

1. Compliance Monitoring Process

1.1. Compliance Enforcement Authority

The Regional Entity is the Compliance Enforcement Authority except where the responsible entity works for the Regional Entity. Where the responsible entity
works for the Regional Entity, the Regional Entity will establish an agreement with the ERO or another entity approved by the ERO and FERC (i.e. another Regional Entity), to be responsible for compliance enforcement.

1.2. Compliance Monitoring and Assessment Processes:

Compliance Audits
Self-Certifications
Spot Checking
Compliance Violation-Investigations
Self-Reporting
Complaints
Periodic Data Submittals

1.3. Data Retention

The following evidence retention periods identify the period of time an entity is required to retain specific evidence to demonstrate compliance. For instances where the evidence retention period specified below is shorter than the time since the last audit, the Compliance Enforcement Authority may ask an entity to provide other evidence to show that it was compliant for the full time period since the last audit.

The Balancing Authority shall retain data or evidence to show compliance with Requirements R1, R2, R3 and, R4 and R5, Measures M1, M2, M3 and, M4, and M5 for the current year plus the previous three calendar years unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation.

The Frequency Responseeserve Sharing Group shall retain data or evidence to show compliance with Requirement R1 and Measure M1 for the current year plus the previous three calendar years unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation.

If a Balancing Authority or Frequency Responseeserve Sharing Group is found non-compliant, it shall keep information related to the non-compliance until found compliant or for the time period specified above, whichever is longer.

The Compliance Enforcement Authority shall keep the last audit records and all subsequent requested and submitted records.

1.4. Additional Compliance Information

For Interconnections that are also Balancing Authorities, Tie Line Bias control and $\underline{f} \mp$ lat \ddagger frequency control are equivalent and either is acceptable.

2.0 Violation Severity Levels

R\#	Lower VSL	Medium VSL	High VSL	Severe VSL
R1	The summation of the Balancing Authorities' FRM within an Interconnection was equal to or more negative than the Interconnection's FRO_{2} and the Balancing Authority's, or Frequency Responseeserve Sharing Group’s, FRM was less negative than its FRO by more than 1% but by at most 30% or $15 \mathrm{MW} / 0.1$ Hz , whichever one is the greater deviation from its FRO	The summation of the Balancing Authorities' FRM within an Interconnection was equal to or more negative than the Interconnection's FRO_{2} and the Balancing Authority's, or Frequency Responseeserve Sharing Group's, FRM was less negative than its FRO by more than 30\% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO	The summation of the Balancing Authorities' FRM within an Interconnection did not meet its FRO_{2} and the Balancing Authority's, or Frequency Responseeserve Sharing Group's, FRM was less negative than its FRO by more than 1% but by at most 30% or 15 MW/0.1 Hz , whichever one is the greater deviation from its FRO	The summation of the Balancing Authorities' FRM within an Interconnection did not meet its FRO_{2} and the Balancing Authority's, or Frequency Responseeserve Sharing Group's, FRM was less negative than its FRO by more than 30% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO
R2	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting failed to implement the validated Frequency Bias Setting value into its ACE calculation within the implementation perioden the date specified but did so within 5 calendar days from the implementation	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 5 calendar days but less than or equal to 15 calendar days from the implementation periodollowing the	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 15 calendar days but less than or equal to 25 calendar days from the implementation periodellowing the	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting did not implement the validated Frequency Bias Setting value into its ACE calculation in more than 25 calendar days from the implementation periodollowing the date specified by the ERO.

	periodollowing the date specified by the ERO.	date specified by the ERO.	date specified by the ERO.	
R3	N/AThe Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 1% but by at most 10\%.	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 10% but by at most 20\%.N/A	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 20% but by at most 30\%.N/A	The Balancing Authority that is a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response obligation by more than 30%..The Balancing Authority not receiving Overlap Regulation service failed to operate AGC in Tie Line Bias mode and such operation would not have had an Adverse Reliability Impact on the Balancing Authority's Area.
R4	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with

	combined footprint setting-error less than or equal to 105\% of the validated or calculatedeorrect value.	combined footprint setting-error more than 105% but less than or equal to 2015\% of the validated or calculatedeorrect value.	combined footprint setting-error more than 2015\% but less than or equal to 3025\% of the correct validated or calculated value.	combined footprint setting-error more than $\underline{3025 \%}$ of the eorrect validated or calculated value. OR The Balancing Authority failed to change the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services.
R5	The absolute value of the Balancing Authorities? ealculated monthly average Frequency Bias Setting was less than or equal to 5% below the minimum specified by the ERO.	The absolute value of the Balancing Authorities' ealculated monthly average Frequency Bias Setting was more than 5\% but less tham or equal to 15% below the minimum specified by the ERO.	The absolute value of the Balancing Authorities' ealculated monthly average Frequency Bias Setting was more than 15% but less than or equal to 25\% below the minimum specified by the ERO.	The absolute value of the Balaneing Authorities' ealculated monthly average Frequency Bias Setting was more than 25\% below the minimum specified by the ERO.

E. Regional Variance

None

F. Associated Documents

Attachment A Frequency Response Standard Supporting Document
Attachment B-Process for Adjusting Bias Setting FloorProcedure for ERO Support of Frequency Response and Frequency Bias Setting Standard

FRS Form 1
FRS Form 2
Frequency Response Standard Background Document
G. Version History

0	April 1, 2005	Effective Date	New
1		Complete Revision under Project 2007-12	Revision

Attachment A

BAL-003-1 Frequency Response \& Frequency Bias Setting Standard

Supporting Document

Frequency Response Obligation (FRO) for the Interconnection

The ERO, in consultation with regional representatives, has established a target contingency protection criterion for each Interconnection. The default target listed in Table 1 is based on the largest category C ($\mathrm{N}-2$) event identified except for the Eastern Interconnection, which uses the largest event in the last 10 years. Additionally, this contingency protection criterion includes uncertainty adjustments at a 95% confidence level to prevent Point C from encroaching on the interconnection's highest Under Frequency Load Shed (UFLS) step for credible contingencies. The Obligation for each Interconnection in Table 1 is calculated by dividing the Target Protection Criteria MWs by 10 times the difference between the starting frequency and the Prevailing UFLS First Step. This number is then multiplied by the C to B Ratio to arrive at a $\mathrm{MW} / 0.1 \mathrm{~Hz}$ number. In the Eastern Interconnection there is an additional adjustment for the event nadir being below the Value B due to primary frequency response withdrawal. This Interconnection Frequency Response Obligation (FRO) includes uncertainty adjustments at a 95 \% confidence level. Detailed descriptions of the calculations used in Table 1 below are defined in the Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard.

Table 1: Interconnection Frequency Response Obligations
*The Eastern Interconnection UFLS set point listed is a compromise value set midway between the stable frequency minimum established in PRC-006-1 (59.3 Hz) and the local protection UFLS setting of 59.7 Hz used in Florida and Manitoba.
**In the Base Obligation measure for ERCOT, 1400 MW (Load Resources triggered by Under Frequency Relays at 59.70 Hz) was reduced from its Contingency Protection Criteria level of 2750 MW to get 239 MW/0.1 Hz. This was reduced to accurately account for designed response from Load Resources within 30 cycles.

An Interconnection may propose alternate FRO protection criteria to the ERO by submitting a SAR with supporting technical documentation.

Balancing Authority Frequency Response Obligation (FRO) and Frequency Bias Setting

The ERO will manage the administrative procedure for annually assigning an FRO and implementation of the Frequency Bias Setting for each Balancing Authority. The annual timeline for all activities described in this section are shown below.

For a multiple Balancing Authority interconnection, the Interconnection Frequency Response Obligation shown in Table 1 is allocated based on the Balancing Authority annual load and annual generation. The FRO allocation will be based on the following method:

$$
\mathrm{FRO}_{\mathrm{BA}}=\mathrm{FRO}_{\mathrm{Int}} \times \frac{\text { Annual Gen }_{\mathrm{BA}}+\text { Annual Load }}{\mathrm{BA}} \text { Annual Gen }
$$

Where:

- Annual $\operatorname{Gen}_{B A}$ is the total annual "Output of Generating Plants" within the Balancing Authority Area (BAA), on FERC Form 714, column c of Part II - Schedule 3.
- Annual Load ${ }_{B A}$ is total annual Load within the BAA, on FERC Form 714, column e of Part II Schedule 3.
- Annual Gen $_{\text {Int }}$ is the sum of all Annual $\operatorname{Gen}_{B A}$ values reported in that interconnection.
- Annual Load ${ }_{\text {Int }}$ is the sum of all Annual Load ${ }_{B A}$ values reported in that interconnection.

The data used for this calculation is from the most recently filed Form 714. As an example, a report to NERC in January 2013 would use the Form 714 data filed in 2012, which utilized data from 2011.

Balancing Authorities that are not FERC jurisdictional should use the Form 714 Instructions to assemble and submit equivalent data to the ERO for use in the FRO Allocation process.

Balancing Authorities that elect to form a FRSG will calculate a FRSG FRO by adding together the individual BA FRO's.

Balancing Authorities that elect to form a FRSG as a means to jointly meet the FRO will calculate their FRM performance one of two ways:

- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or
- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that that contains the sum of each participant's individual event performance.

Balancing Authorities that merge or that transfer load or generation are encouraged to notify the ERO of the change in footprint and corresponding changes in allocation such that the net obligation to the Interconnection remains the same and so that CPS limits can be adjusted.

Each Balancing Authority reports its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO each year to allow the ERO to validate the revised Frequency Bias Settings on FRS Form 1. If the ERO posts the official list of events after the date specified in the timeline below, Balancing Authorities will be given 30 days from the date the ERO posts the official list of events to submit their FRS Form 1.

Once the ERO reviews the data submitted in FRS Form 1 and FRS Form 2 for all Balancing Authorities, the ERO will use FRS Form 1 data to post the following information for each Balancing Authority for the upcoming year:

- Frequency Bias Setting
- Frequency Response Obligation (FRO)

Once the data listed above is fully posted, the ERO will announce the three-day implementation period for changing the Frequency Bias Setting if it differs from that shown in the timeline below.

A BA using a fixed Frequency Bias Setting sets its Frequency Bias Setting to the greater of (in absolute value):

- Any number the BA chooses between 100% and 125% of its Frequency Response Measure as calculated on FRS Form 1
- Interconnection Minimum as determined by the ERO

For purposes of calculating the minimum Frequency Bias Setting, a Balancing Authority participating in a Frequency Response Sharing Group will need to calculate its stand-alone Frequency Response Measure using FRS Form 1 and FRS Form 2 to determine its minimum Frequency Bias Setting.

A Balancing Authority providing Overlap Regulation will report the historic peak demand and generation of its combined BAs' areas on FRS Form 1 as described in Requirement R4.

There are occasions when changes are needed to Bias Settings outside of the normal schedule. Examples are footprint changes between Balancing Authorities and major changes in load or generation or the formation of new Balancing Authorities. In such cases the changing Balancing Authorities will

Attachment A
BAL-003-1 Frequency Response and Frequency Bias Setting
Supporting Document
work with their Regions, NERC and the Resources Subcommittee to confirm appropriate changes to Bias Settings, FRO, CPS limits and Inadvertent Interchange balances.

If there is no net change to the Interconnection total Bias, the Balancing Authorities involved will agree on a date to implement their respective change in Bias Settings. The Balancing Authorities and ERO will also agree to the allocation of FRO such that the sum remains the same.

If there is a net change to the Interconnection total Bias, this will cause a change in CPS2 limits and FRO for other Balancing Authorities in the Interconnection. In this case, the ERO will notify the impacted Balancing Authorities of their respective changes and provide an implementation window for making the Bias Setting changes.

Frequency Response Measure (FRM)

The Balancing Authority will calculate its FRM from Single Event Frequency Response Data (SEFRD), defined as: "the data from an individual event from a Balancing Authority that is used to calculate its Frequency Response, expressed in MW/0.1Hz" as calculated on FRS Form 2 for each event shown on FRS Form 1. The events in FRS Form 1 are selected by the ERO using the Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard. The SEFRD for a typical Balancing Authority in an Interconnection with more than one Balancing Authority is basically the change in its Net Actual Interchange on its tie lines with its adjacent Balancing Authorities divided by the change in Interconnection frequency. (Some Balancing Authorities may choose to apply corrections to their Net Actual Interchange ($N A_{1}$) values to account for factors such as nonconforming loads. FRS Form 1 and 2 shows the types of adjustments that are allowed. Note that with the exception of the Contingent BA column, any adjustments made must be made for all events in an evaluation year. As an example, if an entity has non-conforming loads and makes an adjustment for one event, all events must show the nonconforming load, even if the non-conforming load does not impact the calculation. This ensures that the reports are not utilizing the adjustments only when they are favorable to the BA.) The ERO will use a standardized sampling interval of approximately 16 seconds before the event up to the time of the event for the pre-event $N A_{1}$, and frequency (A values) and approximately 20 to 52 seconds after the event for the post-event $N A_{1}(B$ values) in the computation of SEFRD values, dependent on the data scan rate of the Balancing Authority's Energy Management System (EMS).

All events listed on FRS Form 1 need to be included in the annual submission of FRS Forms 1 and 2. The only time a Balancing Authority should exclude an event is if its tie-line data or its Frequency data is corrupt or its EMS was unavailable. FRS Form 2 has instructions on how to correct the BA's data if the given event is internal to the BA or if other authorized adjustments are used.

Assuming data entry is correct FRS Form 1 will automatically calculate the Balancing Authority's FRM for the past 12 months as the median of the SEFRD values. A Balancing Authority electing to report as an FRSG or a provider of Overlap Regulation Service will provide an FRS Form 1 for the aggregate of its participants.

Attachment A

BAL-003-1 Frequency Response and Frequency Bias Setting
Supporting Document
To allow Balancing authorities to plan its operations, events with a "Point C" that cause the Interconnection Frequency to be lower than that shown in Table 1 above (for example, an event in the Eastern Interconnection that causes the Interconnection Frequency to go to 59.4 Hz) or higher than an equal change in frequency going above 60 Hz may be included in the list of events for that interconnection. However, the calculation of the BA response to such an event will be adjusted to show a frequency change only to the Target Minimum Frequency shown in Table 1 above (in the previous example this adjustment would cause Frequency to be shown as 59.5 Hz rather than 59.4 HZ) or a high frequency amount of an equal quantity. Should such an event happen, the ERO will provide additional guidance.

Timeline for Balancing Authority Frequency Response and Frequency Bias Setting Activities

Described below is the timeline for the exchange of information between the ERO and Balancing Authorities (BA) to:

- Facilitate the assignment of BA Frequency Response Obligations (FRO)
- Calculate BA Frequency Response Measures (FRM)
- Determine BA Frequency Bias Settings (FBS)

Target Date	Activity
April 30	The ERO reviews candidate frequency events and selects frequency events for the first quarter (December to February).
May 10	Form1 is posted with selected events from the first quarter for BA usage by the ERO.
May 15	The BAs receive a request to provide load and generation data as described in Attachment A to support FRO assignments and determining minimum FBS for BAs.
July 15	The BAs provide load and generation data as described in Attachment A to the ERO.
July 30	The ERO reviews candidate frequency events and selects frequency events for the second quarter (March to May).
August 10	Form1 is posted with selected events from the first and second quarters for BA usage by the ERO.
October 30	The ERO reviews candidate frequency events and selects frequency events for the third quarter (June to August)
November 10	Form1 is posted with selected events from the first, second, and third quarters for BA usage by the ERO.
November 20	If necessary, the ERO provides any updates to the necessary Frequency Response.
November 20	The ERO provides the fractional responsibility of each BA for the Interconnection's FRO and Minimum FBS to the BAs.
January 30	The ERO reviews candidate frequency events and selects frequency events for the fourth quarter (September to November).

BAL-003-1 Frequency Response and Frequency Bias Setting Supporting Document

$2^{\text {nd }}$ business day in February	Form1 is posted with all selected events for the year for BA usage by the ERO.
February 10	The ERO assigns FRO values to the BAs for the upcoming year.
March 7	BAs complete their frequency response sampling for all four quarters and their FBS calculation, returning the results to the ERO.
March 24	The ERO validates FBS values, computes the sum of all FBS values for each Interconnection, and determines L10 values for the CPS 2 criterion for each BA as applicable.
Any time during first 3 business days of April (unless specified otherwise by the ERO)	The BA implements any changes to their FBS and L10 value.

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

I mplementation Plan for BAL-003-1 - Frequency Response \& Frequency Bias Setting Standard

Prerequisite Approvals

There are no other reliability standards or Standard Authorization Requests (SARs), in progress or approved, that must be implemented before this standard can be implemented.

Modified Standards

BAL-003-0.1b should be retired at midnight of the day immediately prior to the Effective Date of BAL-003-1 in the Jurisdiction in which the new standard is becoming effective.

New or Modified Definitions

The following definitions shall become effective when BAL-003-1 Requirements R2, R3, R4 and R5 become effective:

Frequency Response Measure (FRM): The median of all the Frequency Response observations reported annually on FRS Form 1.

Frequency Response Obligation (FRO): The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection.

Frequency Bias Setting: A numbervalue, either fixed or variable, usually expressed in MW/0.1 Hz , included inset into a Balancing Authority's Area Control Error equation to account for algorithm that allows the Balancing Authority's Frequency Response contributionto contribute its frequency response to the Interconnection and discourage withdrawal through secondary control systems.

The existing definition of Frequency Bias Setting should be retired at midnight of the day immediately prior to the Effective Date of BAL-003-1 in the Jurisdiction in which the new standard is becoming effective.

The proposed revised definition for "Frequency Bias Setting" is incorporated in the following NERC approved standards:

- BAL-001-0.1a Real Power Balancing Control Performance
- BAL-004-0 Time Error Correction
- BAL-004-1 Time Error Correction
- BAL-005-0.1b Automatic Generation Control

Compliance with Standards

Once this standard becomes effective, the responsible entities identified in the applicability section of the standard must comply with the requirements. These include:

- Balancing Authorities
- Reserve Sharing Groups

Proposed Effective Date

Compliance with BAL-003-1 shall be implemented over a two-year period, as follows:

- In those jurisdictions where regulatory approval is required, Requirements R2, R3, R4 and R5 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R2, R3, R4 and R5 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
- In those jurisdictions where regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.

Implementation Plan for BAL-003-1 - Frequency Response \& Frequency Bias Setting Standard

Prerequisite Approvals

There are no other reliability standards or Standard Authorization Requests (SARs), in progress or approved, that must be implemented before this standard can be implemented.

Modified Standards

BAL-003-0.1b-Requirements R1, R2, R3, R4 and R6 should be retired midnight of the day immediately prior to the Effective Date of BAL-003-1 in the Jurisdiction in which the new standard is becoming becomes-effective.

BAL-003-0 Re1quirement R5 should be retired as outlined in the following table.
For those Balancing Authorities that serve native load:

- May 2011 through December $2011 \quad-0.8 \%$ of peak 0.1 Hz
- January 2012 through December $2012 \quad 0.6 \%$ of peak 10.1 Hz
- January 2013 through December $2013 \quad-0.4 \%$ of peak $/ 0.1 \mathrm{~Hz}$
- January 2014 through December $2014 \quad-0.2 \%$ of peak 10.1 Hz
- January 2015 through 0.0% of peak $/ 0.1 \mathrm{~Hz}$

For those Balancing Authorities that do not serve native load:

- May 2011 through December $2011 \quad-0.8 \%$ of upcoming years maximum generation/ 0.1 Hz
- January 2012 through December 2012 0.6\% of upcoming years maximum generation $/ 0.1 \mathrm{~Hz}$
- January 2013 through December 2013 -0.4\% of upcoming years maximum generation $/ 0.1 \mathrm{~Hz}$
- January 2014 through December $2014 \quad 0.2 \%$ of upcoming years maximum generation $/ 0.1 \mathrm{~Hz}$
- January 2015 through -0.0\% of upcoming years maximum generation/ 0.1 Hz

The FRR drafting team, NERC and the NERC Resources Subcommittee will observe the impact on frequency and will implement a reversion plan should frequency performance decline.

New or Modified Definitions

The following definitions shall become effective when BAL-003-1 Requirements R2, R3, R4 and R5 become effective:

July 12, 2011
116-390 Village Boulevard, Princeton, New Jersey 08540-5721
Phone: 609.452.8060 • Fax: 609.452.9550 • www.nerc.com

Frequency Response Measure (FRM): The median of all the Frequency Response observations reported annually on FRS Form 1.

Frequency Response Obligation (FRO): The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection.

Frequency Bias Setting: A number, either a fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems.

The existing definition of Frequency Bias Setting should be retired midnight of the day immediately prior to the Effective Date of BAL-003-1 in the Jurisdiction in which the new standard is becoming effective.

The proposed revised definition for "Frequency Bias Setting" is incorporated in the following NERC approved standards:

- BAL-001-0.1a Real Power Balancing Control Performance
- BAL-004-0 Time Error Correction
- BAL-004-1 Time Error Correction
- BAL-005-0.1b Automatic Generation Control

Compliance with Standards

Once this standard becomes effective, the responsible entities identified in the applicability section of the standard must comply with the requirements. These include:

- Balancing Authorities
- Reserve Sharing Groups

Proposed Effective Date

Compliance with BAL-003-1 shall be implemented over a two-year period, as follows:

- In those jurisdictions where regulatory approval is required, Requirements R21, R3, R4 and R 54 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required,
| Requirements R21, R3, R4 and R54 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
- In those jurisdictions where regulatory approval is required, Requirements R1Z of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is
| required, Requirements R $\underline{1 z}$ of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.

Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard

Event Selection Process

This procedure outlines the ERO process for supporting the Frequency Response Standard (FRS). A Procedure revision request may be submitted to the ERO for consideration. The revision request must provide a technical justification for the suggested modification. The ERO shall post the suggested modification for a 45 -day comment period and discuss the revision request in a public meeting. The ERO will make a recommendation to the NERC BOT, which may adopt the revision request, reject it, or adopt it with modifications. Any approved revision to this Procedure shall be filed with FERC for informational purposes.

Event Selection Objectives

The goals of this procedure are to outline a transparent, repeatable process to annually identify a list of frequency events to be used by Balancing Authorities (BA) to calculate their Frequency Response to determine:

- Whether the BA met its Frequency Response Obligation, and
- An appropriate fixed Bias Setting.

Event Selection Criteria

1. The ERO will use the following criteria to select FRS frequency excursion events for analysis. The events that best fit the criteria will be used to support the FRS. The evaluation period for performing the annual Frequency Bias Setting and the Frequency Response Measure (FRM) calculation is December 1 of the prior year through November 30 of the current year.
2. The ERO will identify 20 to 35 frequency excursion events in each Interconnection for calculating the Frequency Bias Setting and the FRM. If the ERO cannot identify 20 frequency excursion events in a 12 month evaluation period satisfying the criteria below, then similar acceptable events from the subsequent year's evaluation period will be included with the data set by the ERO for determining FRS compliance. This is described later.
3. The ERO will use three criteria to determine if an acceptable frequency excursion event for the FRM has occurred:
a. The change in frequency as defined by the difference from the A Value to Point C and the arrested frequency Point C exceeds the excursion threshold values specified for the Interconnection in Table 1 below.
i. The A Value is computed as an average over the period from -16 seconds to 0 seconds before the frequency transient begins to decline.
ii. Point C is the arrested value of frequency observed within 12 seconds following the start of the excursion.

Interconnection	A Value to Pt C	Point C (Low)	Point C (High)
East	0.04 Hz	<59.96	>60.04
West	0.07 Hz	<59.95	>60.05
ERCOT	0.15 Hz	<59.90	>60.10
HQ	0.30 Hz	<59.85	>60.15

Table 1: Interconnection Frequency Excursion Threshold Values
b. The time from the start of the rapid change in frequency until the point at which Frequency has stabilized within a narrow range should be less than 18 seconds.
c. If any data point in the B Value average recovers to the A Value, the event will not be included.
4. Pre-disturbance frequency should be relatively steady and near 60.000 Hz for the A Value. The A Value is computed as an average over the period from -16 seconds to 0 seconds before the frequency transient begins to decline. For example, given the choice of the two events below, the one on the right is preferred as the pre-disturbance frequency is stable and also closer to 60 Hz .

5. Excursions that include 2 or more events that do not stabilize within 18 seconds will not be considered.
6. Frequency excursion events occurring during periods when large interchange schedule ramping or load change is happening, and frequency excursion events occurring within 5 minutes of the top of the hour, will be excluded from consideration if other acceptable frequency excursion events from the same quarter are available.
7. The ERO will select the largest (A Value to Point C) 2 or 3 frequency excursion events occurring each month. If there are not 2 frequency excursion events satisfying the selection criteria in a month, then other frequency excursion events should be picked in the following sequence:
a. From the same event quarter of the year.

October 1, 2012

Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard

b. From an adjacent month.
c. From a similar load season in the year (shoulder vs. summer/winter)
d. The largest unused event.

As noted earlier, if a total of 20 events are not available in an evaluation year, then similar acceptable events from the next year's evaluation period will be included with the data set by the ERO for determining Frequency Response Obligation (FRO) compliance. The first year's small set of data will be reported and used for Bias Setting purposes, but compliance evaluation on the FRO will be done using a 24 month data set.

To assist Balancing Authority preparation for complying with this standard, the ERO will provide quarterly posting of candidate frequency excursion events for the current year FRM calculation. The ERO will post the final list of frequency excursion events used for standard compliance as specified in Attachment A of BAL-003-1. The following is a general description of the process that the ERO will use to ensure that BAs can evaluate events during the year in order to monitor their performance throughout the year.

Monthly

Candidate events will be initially screened by the "Frequency Event Detection Methodology" shown on the following link located on the NERC Resources Subcommittee area of the NERC website:
http://www.nerc.com/docs/oc/rs/Frequency Event Detection Methodology and Criteria Oct 2011.p df. Each month's list will be posted by the end of the following month on the NERC website, http://www.nerc.com/filez/rs.html and listed under "Candidate Frequency Events".

Quarterly

The monthly event lists will be reviewed quarterly with the quarters defined as:

- December through February
- March through May
- June through August
- September through November

Based on criteria established in the "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard", events will be selected to populate the FRS Form 1 for each Interconnection. The Form 1's will be posted on the NERC website, in the Resources Subcommittee area under the title "Frequency Response Standard Resources". Updated Form 1's will be posted at the end of each quarter listed above after a review by the NERC RS' Frequency Working Group. While the events on this list are expected to be final, as outlined in the selection criteria, additional events may be considered, if the
number of events throughout the year do not create a list of at least 20 events. It is intended that this quarterly posting of updates to the FRS Form 1 would allow BAs to evaluate the events throughout the year, lessening the burden when the yearly posting is made.

Annually

The final FRS Form 1 for each Interconnection, which would contain the events from all four quarters listed above, will be posted as specified in Attachment A. Each Balancing Authority reports its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO as specified in Attachment A using the final FRS Form 1. The ERO will check for errors and use the FRS Form 1 data to calculate CPS limits and FROs for the upcoming year.

Once the data listed above is fully reviewed, the ERO may adjust the implementation specified in Attachment A for changing the Frequency Bias Settings and CPS limits. This allows flexibility in when each BA implements its settings.

Process for Adjusting Interconnection Minimum Frequency Bias Setting

This procedure outlines the process the ERO is to use for modifying minimum Frequency Bias Settings to better meet reliability needs. The ERO will adjust the Frequency Bias Setting minimum in accordance with this procedure.

The ERO will post the minimum Frequency Bias Setting values on the ERO website along with other balancing standard limits.

Under BAL-003-1, the minimum Frequency Bias Settings will be moved toward the natural Frequency Response in each interconnection. In the first year, the minimum Frequency Bias Setting for each interconnection is shown in Table 2 below. Each Interconnection Minimum Frequency Bias Setting is based on the sum of the non-coincident peak loads for each BA from the currently available FERC 714 Report or equivalent. This non-coincident peak load sum is multiplied by the percentage shown in Table 1 to get the Interconnection Minimum Frequency Bias Setting. The Interconnection Minimum Frequency Bias Setting is allocated among the BAs on an interconnection using the same allocation method as is used for the allocation of the Frequency Response Obligation (FRO).

Interconnection	Interconnection Minimum Frequency Bias Setting (in MW/0.1Hz)
Eastern	0.9% of non-coincident peak load
Western	0.9% of non-coincident peak load
ERCOT*	N/A
HQ* *	N/A

Table 2. Frequency Bias Setting Minimums
*The minimum Frequency Bias Setting requirement does not apply to a Balancing Authority that is the only Balancing Authority in its Interconnection. These Balancing Authorities are solely responsible for providing reliable frequency control of their Interconnection. These Balancing Authorities are responsible for converting frequency error into a megawatt error to provide reliable frequency control, and the imposition of a minimum bias setting greater than the magnitude the Frequency Response Obligation may have the potential to cause control system hunting, and instability in the extreme.

The ERO, in coordination with the regions of each interconnection, will annually review Frequency Bias Setting data submitted by BAs. If an Interconnection's total minimum Frequency Bias Setting exceeds (in absolute value) the Interconnection's total natural Frequency Response by more (in absolute value) than 0.2 percentage points of peak load (expressed in $M W / 0.1 \mathrm{~Hz}$), the minimum Frequency Bias Setting for BAs within that Interconnection may be reduced (in absolute value) based on the technical evaluation and consultation with the regions affected by 0.1 percentage point of peak load (expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$) to better match that Frequency Bias Setting and natural Frequency Response.

The ERO, in coordination with the regions of each Interconnection, will monitor the impact of the reduction of minimum frequency bias settings, if any, on frequency performance, control performance,

October 1, 2012
and system reliability. If unexpected and undesirable impacts such as, but not limited to, sluggish postcontingency restoration of frequency to schedule or control performance problems occur, then the prior reduction in the minimum frequency bias settings may be reversed, and/or the prospective reduction based on the criterion stated above may not be implemented.

Interconnection Frequency Response Obligation Methodology

This procedure outlines the process the ERO is to use for determining the Interconnection Frequency Response Obligation (IFRO).

The following are the formulae that comprise the calculation of the IFROs.

$$
\begin{gathered}
D F_{\text {Base }}=F_{\text {Start }}-U F L S \\
D F_{C C}=D F_{B a s e}-C C_{A d j} \\
D F_{C B R}=\frac{D F_{C C}}{C B_{R}} \\
M D F=D F_{C B R}-B C^{\prime}{ }_{A d j} \\
A R L P C=R L P C-C L R \\
I F R O=\frac{A R L P C}{M D F}
\end{gathered}
$$

Where:

- $\mathrm{DF}_{\text {Base }}$ is the base delta frequency.
- $\mathrm{F}_{\text {start }}$ is the starting frequency determined by the statistical analysis.
- UFLS is the highest UFLS trip setpoint for the interconnection.
- $\mathrm{CC}_{\text {Adj }}$ is the adjustment for the differences between 1-second and sub-second Point C observations for frequency events. A positive value indicates that the sub-second C data is lower than the 1 -second data.
- $\quad \mathrm{DF}_{\mathrm{cc}}$ is the delta frequency adjusted for the differences between 1-second and sub-second Point C observations for frequency events.
- CB_{R} is the statistically determined ratio of the Point C to Value B .
- $\mathrm{DF}_{C B R}$ is the delta frequency adjusted for the ratio of the Point C to Value B.
- $\mathrm{BC}^{\prime}{ }_{A D J}$ is the statistically determined adjustment for the event nadir being below the Value B (Eastern Interconnection only) during primary frequency response withdrawal.
- MDF is the maximum allowable delta frequency.
- RLPC is the resource loss protection criteria.
- CLR is the credit for load resources.
- ARLPC is the adjusted resource loss protection criteria adjusted for the credit for load resources.
- IFRO is the interconnection frequency response obligation.

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Frequency Response Standard Background Document October, 2012

RELIABILITY | ACCOUNTABILITY

3353 Peachtree Road NE

Table of Contents

Table of Contents 1
Introduction 2
Background 2
Rationale by Requirement 224
Requirement 1 224
Background and Rationale 224
Requirement 2 328
Background and Rationale 329
Requirement 3 349
Requirement 4 3410
Background and Rationale 3510
Requirement 5 3510
Background and Rationale Error! Bookmark not defined. 10
How this Standard Meets the FERC Order 693 Directives 3611
FERC Directive 3611

1. Levels of Non-Compliance 3611
2. Determine the appropriate periodicity of frequency response surveys necessary to
| ensure that Requirement R2 and other Requirements of the Reliability Standard are met 3612
3. Define the necessary amount of Frequency Response needed for Reliable Operation foreach Balancing Authority with methods of obtaining and measuring that the frequencyresponse is achieved3612
Necessary Amount of Frequency Response 3612
Methods of Obtaining Frequency Response 3713
Measuring that the Frequency Response is Achieved 3713
Going Beyond the Directive 3813
Future Work Error! Bookmark not defined. 13
Good Practices and Tools 3914
Background 3914
Identifying and Estimating Frequency Responsive Reserves 3914
Using FRS Form 1 Data 4015
Tools 4015
Field Trial Error! Bookmark not defined. 16

Introduction

This document provides background on the development, testing and implementation of BAL-003-1 - Frequency Response Standard (FRS). ${ }^{1}$ The intent is to explain the rationale and considerations for the Requirements of this standard and their associated compliance information. The document also provides good practices and tips for Balancing Authorities ("BAs") with regard to Frequency Response.

In Order No. 693, the Federal Energy Regulatory Commission ("FERC" or the "Commission") directed additional changes to BAL-003. ${ }^{2}$ This document explains how compliance with those directives is met by BAL-003-1.

The original Standards Authorization Request ("SAR"), finalized on June 30, 2007, assumed there was adequate Frequency Response in all the North American Interconnections. The goal of the SAR was to update the Standard to make the measurement process of frequency response more objective and to provide this objective data to Planners and Operators for improved modeling. The updated models will improve understanding of the trends in Frequency Response to determine if reliability limits are being approached. The Standard would also lay the process groundwork for a transition to a performance-based Standard if reliability limits are approached.

This document will be periodically updated by the FRS Drafting Team (FRSDT) until the Standard is approved. Once approved, this document will then be maintained and updated by the ERO and the NERC Resources Subcommittee to be used as a reference and training resource.

Background

This section discusses the different components of frequency control and the individual components of Primary Frequency Control also known as Frequency Response.

Frequency Control

Most system operators generally have a good understanding of frequency control and Bias Setting as outlined in the balancing standards and the references to them in the NERC Operating Manual. Frequency control can be divided into four overlapping windows of time as outlined below.

Primary Frequency Control (Frequency Response) - Actions provided by the Interconnection to arrest and stabilize frequency in response to frequency deviations. Primary Control comes from automatic generator governor response (also known as speed

[^66]regulation), load response (typically from motors), and other devices that provide an immediate response based on local (device-level) control systems.

Secondary Frequency Control - Actions provided by an individual BA or its Reserve Sharing Group to correct the resource - load unbalance that created the original frequency deviation, which will restore both Scheduled Frequency and Primary Frequency Response. Secondary Control comes from either manual or automated dispatch from a centralized control system.

Tertiary Frequency Control - Actions provided by Balancing Authorities on a balanced basis that are coordinated so there is a net zero effect on Area Control Error (ACE). Examples of Tertiary Control include dispatching generation to serve native load; economic dispatch; dispatching generation to affect Interchange; and re-dispatching generation. Tertiary Control actions are intended to replace Secondary Control Response by reconfiguring reserves.

Time Control includes small offsets to scheduled frequency to keep long term average frequency at 60 Hz .

Primary Frequency Control - Frequency Response

Primary Frequency Control, also known generally as Frequency Response, is the first stage of overall frequency control and is the response of resources and load to a locally sensed change in frequency in order to arrest that change in frequency. Frequency Response is automatic, not driven by any centralized system, and begins within seconds rather than minutes. Different resources, loads, and systems provide Frequency Response with different response times, based on current system conditions such as total resource/load and their respective mix.

The proposed NERC Glossary of Terms defines Frequency Response as:

- (Equipment) The immediate and automatic reaction or response of power from a system or power from elements of the system to a change in locally sensed system frequency.
- (System) The sum of the change in demand, and the change in generation, divided by the change in frequency, expressed in megawatts per 0.1 Hertz (MW/0.1 Hz).

As noted above, Frequency Response is the characteristic of load and generation within Balancing Authorities and Interconnections. It reacts or responds with changes in power to attempt changes in load-resource balance that result in changes to system frequency. Because the loss of a large generator is much more likely than a sudden loss of an equivalent amount of load, Frequency Response is typically discussed in the context of a loss of a large generator. Included within Frequency Response are many components of that response. Understanding Frequency Response and the FRS requires an understanding of each of these components and how they relate to each other.

Frequency Response Illustration

The following simple example is presented to illustrate the components of Frequency Response in graphical form. It includes a series of seven graphs that illustrate the various components of

Frequency Response and a brief discussion of each describing how these components react to attempted changes in the load-resource balance and resulting changes in system frequency. The illustration is based on an assumed Disturbance event of the sudden loss of 1000 MW of generation. Although a large event is used to illustrate the response components, even small frequently occurring events will result in similar reactions or responses. The magnitude of the event only affects the shape of the curves on the graph; it does not obviate the need for Frequency Response.

The first graph, Primary Frequency Control - Frequency Response - Graph 1, presents a sudden loss of generation of 1000 MW . The components are presented relative to time as shown on the horizontal Time axis in seconds. This simplified example assumes a Disturbance event of the sudden loss of generation resulting from a breaker trip that instantaneously removes 1000 MW of generation from the interconnection. This sudden loss is illustrated by the power deficit line shown in black using the MW scale on the left. Interconnection frequency is illustrated by the frequency line shown in red using the Hertz scale on the right. Since the Scheduled Frequency is normally 60 Hz , it is assumed that this is the frequency when the Disturbance event occurs.

Even though the generation has tripped and power injected by the generator has been removed from the interconnection, the loads continue to use the same amount of power. The
"Law of Conservation of Energy" ${ }^{3}$ requires that the 1000 MW must be supplied to the interconnection if energy balance is to be "conserved". This additional 1000 MW of power is produced by extracting kinetic energy that was stored in the rotating mass of all of the synchronized generators and motors on the interconnection when they were increased from zero to synchronous speed - essentially using this equipment as a giant flywheel. The extracted energy supplies the "balancing inertia" ${ }^{4}$ power required to maintain the power and energy balance on the interconnection. This balancing inertia power is produced by the generators' spinning inertial mass' resistance to the slowdown in speed of the rotating equipment on the interconnection that both provides the stored kinetic energy and reduces the frequency of the interconnection. This is illustrated in the second graph, Primary Frequency Control - Frequency Response - Graph 2, by the orange dots representing the balancing inertia power that exactly overlay and offset the power deficit.

As the frequency decreases, synchronized motors slow, as does the work they are providing, resulting in a decrease in load called "load damping." This load damping is the reason that the power deficit initially declines. Synchronously operated motors will contribute to load damping. Variable speed drives that are decoupled from the interconnection frequency do not

[^67]contribute to load damping. In general, any load that does not change with interconnection frequency including resistive load will not contribute to load damping or Frequency Response.

It is important to note that the power deficit equals exactly the balancing inertia, indicating that there is no power or energy imbalance at any time during this process. What is normally considered as "balancing power or energy" is actually power or energy required to correct the frequency error from scheduled frequency. Any apparent power or energy imbalance is corrected instantaneously by the balancing inertia power and energy extracted from the interconnection. Thus the balancing function is really a frequency control function described as a balancing function because ACE is calculated in MWs instead of Hertz, frequency error.

During the initial seconds of the Disturbance event, the governors have yet to respond to the frequency decline. This is illustrated with the Blue line on the third graph, Primary Frequency Control - Frequency Response - Graph 3, showing Governor Response. This time delay results from the time that it takes the controller to adjust the equipment and the time it takes the mass to flow from the source of the energy (main steam control valve for steam turbines, the combustor for gas turbines, or the gate valve for hydro turbines) to the turbine-generator blades where the power is converted to electrical energy.

Note that the frequency continues to decline due to the ongoing extraction by balancing inertia power of energy from the rotating turbine-generators and synchronous motors on the interconnection. The reduction in load also continues as the effect of load damping continues
to reduce the load while frequency declines. During this time delay (before the governor response begins) the balancing inertia limits the rate of change of frequency.

After a short time delay, the governor response begins to increase rapidly in response to the initial rapid decline in frequency, as illustrated on the fourth graph, Primary Frequency Control - Frequency Response - Graph 4. Governor response exactly offsets the power deficit at the point in time that the frequency decline is arrested. At this point in time, the balancing inertia has provided its contribution to reliability and its power contribution is reduced to zero as it is replaced by the governor response. If the time delay associated with the delivery of governor response is reduced, the amount of balancing inertia required to limit the change in frequency by the Disturbance event can also be reduced. This supports the conclusion that balancing inertia is required to manage the time delays associated with the delivery of Frequency Response. Not only is the rapid delivery of Frequency Response important, but the shortening of the time delay associated with its delivery is also important. Therefore, two important components of Frequency Response are 1) how long the time delay is before the initial delivery of response begins; and 2) how much of the response is delivered before the frequency change is arrested.

This point, at which the frequency is first arrested, is defined as "Point C" and Frequency Response calculated at this point is called the "arrested frequency response." The arrested frequency is normally the minimum (maximum for load loss events) frequency that will be
experienced during a Disturbance event. From a reliability perspective, this minimum frequency is the frequency that is of concern. Adequate reliability requires that frequency at the time frequency is arrested remain above the under-frequency relay settings so as not to trip these relays and the firm load interrupted by them. Frequency Response delivered after frequency is arrested at this minimum level provides less reliability value than Frequency Response delivered before Point C, but greater value than Secondary Frequency Control power and energy which is delivered minutes later.

Once the frequency decline is arrested, the governors continue to respond because of the time delay associated with their Governor Response. This results in the frequency partially recovering from the minimum arrested value and results in an oscillating transient that follows the minimum frequency (arrested frequency) until power flows and frequency settle during the transient period that ends roughly 20 seconds after the Disturbance event. This postdisturbance transient period is included on the fifth illustrative graph, Primary Frequency Control - Frequency Response - Graph 5.

The total Disturbance event illustration is presented on the sixth graph, Primary Frequency Control - Frequency Response - Graph 6. Frequency and power contributions stabilize at the end of the transient period. Frequency Response calculated from data measured during this settled period is called the "Settled Frequency Response." The Settled Frequency Response is the best measure to use as an estimator for the "Frequency Bias Setting" discussed later.

The final Disturbance event illustration is presented on the seventh graph, Primary Frequency Control - Frequency Response - Graph 7. This graph shows the averaging periods used to estimate the pre-disturbance A-Value averaging period and the post-disturbance B-Value averaging period used to calculate the settled frequency response. A discussion of the measurement of Frequency Response immediately follows these graphs. That discussion includes consideration of the factors that affect the methods chosen to measure Frequency Response for implementation in a reliability standard.

Frequency Response Measurement (FRM)

The classic Frequency Response points A, C, and B, shown below in Fig. 1 Frequency Response Characteristic, are used for measurement as found in the Frequency Response Characteristic Survey Training Document within the NERC operating manual, found at http://www.nerc.com/files/opman 7-1-11.pdf. This traditional Frequency Response Measure has recently been more specifically termed "settled frequency response." This term has been used because it provides the best Frequency Response Measure to estimate the Frequency Bias Setting in Tie-line Bias Control based Automatic Generation Control Systems. However, the industry has recognized that there is considerable variability in measurement resulting from the selection of Point A and Point B in the traditional measure making the traditional measurement method unsuitable as the basis for an enforceable reliability standard in a real world setting of multiple Balancing Authority interconnections.

Figure 1. Frequency Response Characteristic

By contrast, measuring an Interconnection's settled frequency response is straightforward and fairly accurate. All that's needed to make the calculation is to know the size of a given contingency (MW), divide this value by the change in frequency and multiply the results by 10 since frequency response is expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$.

Measuring a BA's frequency response is more challenging. Prior to BAL-003-1, NERC's Frequency Response Characteristic Survey Training Document provided guidance to calculate Frequency Response. In short, it told the reader to identify the BA's interchange values "immediately before" and "immediately after" the Disturbance event and use the difference to calculate the MWs the BA deployed for the event. There are two challenges with this approach:

- Two people looking at the same data would come up with different values when assessing which exact points were immediately before and after the event.
- In practice, the actual response provided by the BA can change significantly in the window of time between point B and when secondary and tertiary control can assist in recovery.

Therefore, the measurement of settled frequency response has been standardized in a number of ways to limit the variability in measurement resulting from the poorly specified selection of Point A and Point B. It should be noted that $\mathrm{t}-0$ has been defined as the first scan value that
shows a deviation in frequency of some significance, usually approaching about 10 mHz . The goal is such that the first scan prior to t-0 was unaffected by the deviation and appropriate for one of the averaging points.

- The A-value averaging period of approximately the previous 16 seconds prior to t-0 was selected to allow for an averaging of at least 2 scans for entities utilizing 6 second scan rates. (All time average period references in this document are for 2 second scan rates unless noted otherwise.)
- The B-value averaging period of approximately ($\mathrm{t}+20 \mathrm{to} \mathrm{t}+52$ seconds) was selected to attempt to obtain the average of the data after primary frequency response was deployed and the transient completed(settled), but before significance influence of secondary control. Multiple periods were considered for averaging the B-value:
- 12 to 24 sec
- 18 to 30 sec
- 20 to 40 sec
- 18 to 52 sec
- 20 to 52 sec

It is necessary for all BAs from an interconnection to use the same averaging periods to provide consistent results. In addition, the SDT decided that until more experience is gained, it is also desirable for all interconnections to use the same averaging periods to allow comparison between interconnections.

The methods presented in this document only address the values required to calculate the frequency response associated with the frequency change between the initial frequency, AValue, and the settling frequency, B-Value. No reasonable or consistent calculations can be made relating to the arresting frequency, C-Value, using Energy Management System (EMS) scan rate data as long as 6 -seconds or tie-line flow values associated with the minimum value of the frequency response characteristic (C-value) as measured at the BA level.

Both the calculation of the frequency at Point A and the frequency at Point B began with the assumption that a 6 -second scan rate was the source of the data. Once the averaging periods for a 6 -second scan rate were selected, the averaging periods for the other scan rates were selected to provide as much consistency as possible between BAs with different scan rates.

The Frequency at Point A was initially defined as the average of the two scans immediately prior to the frequency event. All other averaging periods were selected to be as consistent as possible with this 12 second average scan from the 6 -second scan rate method. In addition, the "actual net interchange immediately before Disturbance" is defined as the average of the same scans as used for the Point A frequency average.

The Frequency at Point B was then selected to be an average as long as the average of 6 -second scan data as possible that would not begin until most of the hydro governor response had been delivered and would end before significant Automatic Generation Control (AGC) recovery response had been initiated as indicated by a consistent frequency restoration slope. The "actual net interchange immediately after Disturbance" is defined as the average of the same scans as used for the Point B frequency average.

B Averaging Period Selection:

Experience from the Electric Reliability Council of Texas ("ERCOT") and the field trail on other interconnections indicated that the 12 to 24 second and 18 to 30 second averaging periods were not suitable because they did not provide the consistency in results that the other averaging periods provided, and that the remaining measuring periods do not provide significantly different results from each other. The team believed that this was observed because the transients were not complete in all of the samples using these averaging periods.

The 18 to 52 second and 20 to 52 second averaging periods were compared to each other, with the 20 to 52 second period providing more consistent values, believed to result from the incomplete transient in some of the 18 to 52 second samples.

This left a choice between the 20 to 40 second and the 20 to 52 second averaging periods. The team recognized that there would be more AGC response in the 20 to 52 second period, but the team also recognized that the 20 to 52 second period would provide a better measure of squelched response from outer loop control action. The 20 to 52 second period was selected because it would indicate squelched response from outer-loop control and provide incentive to reduce response withdrawal. The final selections for the data averaging periods used in FRS Form 1 are shown in the table below.

Definitions of Frequency Values for Frequency Response Calculation			
Scan Rate	T 0 Scan	A Value (average)	B Value (average)
6-Seconds	Identify first significant change in frequency as the T 0 scan	Average of T-1 through T-2 scans	Average of $\mathrm{T}+4$ through $\mathrm{T}+8$ scans
5-Seconds		Average of T-1 through T-2 scans	Average of T+5 through T+10 scans
4-Seconds		Average of T-1 through T-3 scans	Average of T+6 through T+12 scans
3-Seconds		Average of T-1 through T-5 scans	Average of $\mathrm{T}+7$ through $\mathrm{T}+17$ scans
2-Seconds		Average of T-1 through T-8 scans	Average of T+10 through T+26 scans

Consistent measurement of Primary Frequency Response is achievable for a selected number of events and can produce representative frequency response values, provided an appropriate sample size is used in the analysis. Available research investigating the minimum sample size to provide consistent measurements of Frequency Response has shown that a minimum sample size of 20 events should be adequate.

Measurement of Primary Frequency Response on an individual resource or load basis requires analysis of energy amounts that are often small and difficult to measure using current methods. In addition, the number of an interconnection's resources and loads providing their response could be problematic when compiling results for multiple events.

Measurement of Primary Frequency Response on an interconnection (System) basis is straight forward provided that an accurate frequency metering source is available and the magnitude of the resource/load imbalance is known in MWs.

Measurement on a Balancing Authority basis can be a challenge, since the determination of change in MWs is determined by the change in the individual BA's metered tie lines.
Summation of tie lines is accomplished by summing the results of values obtained by the digital scanning of meters at intervals up to six seconds, resulting in a non-coincidental summing of values. Until the technology to GPS time stamp tie line values at the meter and the summing of those values for coincidental times is in use throughout the industry, it is necessary to use averaging of values described above to obtain consistent results.

Figure 2. Frequency Response Measurement

The standardized measure is shown graphically in Fig. 2 Frequency Response Measurement with the averaging periods shown by the solid blue lines on the graph. Since FERC directed a performance obligation for BAL-003-1, it is important to be more objective in the measurement process. The standardized calculation is available on FRS Form 2 for EMS scan rates of 2, 3, 4, 5, and 6 seconds at http://www.nerc.com/filez/standards/Frequency Response.html.

Arrested Frequency Response

There is another measure of Frequency Response that is of interest when developing a Frequency Response estimate that not only will be used for estimating the Frequency Bias Setting, but will also be used to assure reliability by operating in a manner that will bound interconnection frequency and prevent the operation of Under-frequency Relays. This Frequency Response Measure has recently been named "arrested frequency response." This Frequency Response is significantly affected by the inertial Frequency Response, the governor Frequency Response and the time delays associated with the delivery of governor Frequency Response. It is calculated by using the change in frequency between the initial frequency, A,
and the maximum frequency change during the event, C , instead of using the change between A and B . Arrested Frequency Response is the correct response for determining the minimum Frequency Response related to under-frequency relay operation and the support of interconnection reliability. This is because it can be used to provide a direct estimate of the maximum frequency deviation an interconnection will experience for an initial frequency and a given size event in MW. Unfortunately, arrested frequency response cannot currently be measured using the existing EMS-based measurement infrastructure. This limitation exists because the scan rates currently used in industry EMSs are incapable of measuring the net actual interchange at the same instant that the maximum frequency deviation is reached. Fortunately, the ratio of arrested frequency response and settled frequency response tends to be stable on an interconnection. This allows the settled frequency response value to be used as a surrogate for the arrested frequency response and implement a reasonable measure upon which to base a standard. One consequence of using the settled frequency response as a surrogate for the arrested frequency response is the inclusion of a large reliability margin in Interconnection Frequency Response Obligation to allow for the difference between the settled frequency response as measured and the arrested frequency response that indicates reliability.

As measurement infrastructure improves one might expect the Frequency Response Obligation to transition to a measurement based directly on the arrested frequency response while the Frequency Bias Setting will continue to be based on the settled frequency response. However, at this time, the measurement devices and methods in use do not support the necessary level of accuracy to estimate arrested frequency response contribution for an individual Balancing Authority.

Frequency Response Definition and Examples

Limitations of the measurement infrastructure determine the measurement methods recommended in this standard. The measurement limitations provide opportunities to improve the Frequency Response as measured in the standard without contributing to an improvement in Frequency Response that contributes to reliability. These definitions and examples provide a basis for determining which contributions to Frequency Response contribute the most to improved reliability. They also provide the basis for determining on a case by case basis whether the individual contributors to the Frequency Response Measure are also contributing to reliability.

General Frequency Response Characteristics

In the simplest case Frequency Response includes any automatic response to changes in local frequency. If that response works to decrease that change in frequency, it is beneficial to reliability. If that response works to increase that change in frequency, it is detrimental to reliability. However, this definition does not address the relative value of one response as compared to other responses that may be provided in a specific case.

There are numerous characteristics associated with the Frequency Response that affect the reliability value and economic value of the response. These characteristics include:

1. Inertial - the response is inertial or approximates inertial response Inertial response provides power without delay that is proportional to the frequency and the change in frequency. Therefore, power provided by electronic control as
synthetic inertial response must be proportional to the frequency and change in frequency and be provided without a time delay.
2. Immediate - no unnecessary intentional time delays or reduction in the rate of response delivery
a. time delay before the beginning of the response

Turbines that convert heat or kinetic energy have time delays related to the time delay from the time that the control valves are moved to initiate the change in power and the time that the power is delivered to the generator. These times are usually associated with the time it takes a change in mass flow to travel from the control valve to the first blades of the turbine in the turbine generator.
b. reduction in the rate of response delivery

There are natural delays associated with the rate of response delivery that are related to the mass flow travel from the first turbine blades to the last turbine blades. In addition, some turbines have intentional delays designed into the control system to slow the rate of change in the delivery of the kinetic energy or fuel to the turbine to prevent the turbine or other equipment from being damaged, hydro turbines, or to prevent the turbine from tripping due to excessive rate of change, gas turbines.
3. Proportional - the amount of the total response is proportional to the frequency error
a. No Deadband - the response is proportional across the entire frequency range
b. Deadband - the response is only proportional outside of a defined deadband
4. Bi-directional - the response occurs to both increases and decreases in frequency
5. Continuous - there are no discontinuities in the delivery of the response (no step changes)
6. Sustained - the response is sustained until frequency is returned to schedule

Frequency Response Reliability Value

This section contains a more detailed discussion of the various characteristics of Frequency Response listed in the previous section. It also provides an indication of the relative value of these characteristics with respect to their contribution to reliability. Finally, it includes some examples of the described responses.

Inertial Response is provided from the stored energy in the rotating mass of the turbinegenerators and synchronous motors on the interconnection. It limits the rate of change of frequency until sufficient Frequency Response can be supplied to arrest the change in frequency. Its reliability value increases as the time delay associated with the delivery of other Frequency Response on the interconnection increases. If those time delays are minimal, then the value of inertial response is low. If all time delays associated with the Frequency Response could be eliminated, then inertial response would have little value.

The reliability value of Inertial Response is the greatest on small interconnections because the size of the Disturbance events is larger relative to the inertia of the interconnection. Electronic
controls have been developed to provide synthetic inertial response from the stored energy in asynchronous generators to supplement the natural inertial response. Some Type III \& IV Wind Turbines have this capability. In addition, electronically controlled SCRs have been developed that can store energy in the electrical system and release this stored energy to supply synthetic inertial response when required.

Immediate Response is provided by load damping and because the time delays associated with its delivery are very short (related to the speed of electrical signal in the electrical system); load damping requires very little inertial response to limit arrested frequency effectively. Synthetic immediate response can also be supplied from loads because in many cases, there is no mass flow time delay associated with the load process providing the power and energy reduction. Therefore, loads can provide an immediate response with a higher reliability value than generators with time delays required by the physics of the turbine-generator.

Governor response has time delays associated with its delivery. Governor response provided with shorter time delays has a higher reliability value because those shorter time delays require less inertial response to arrest frequency. Governor response is provided by the turbinegenerators on the interconnection. Time delays associated with governor response vary depending on the type of turbine-generator providing the response.

The longest time delays are usually associated with high head hydro turbine-generators that require long times from the governor action until the additional mass flow through the turbine. These units may also have the longest delivery time associated with the full delivery of response because of the timing designed into the governor response. ${ }^{5}$

Intermediate time delays are usually associated with steam turbine-generators. The response begins when the steam control valves are adjusted and the steam mass flows from the valves to the first high pressure turbine blades. The delivery times associated with the full delivery of response may require the steam to flow through high, intermediate and low pressure turbines including reheat flows before full power is delivered. These times are shorter than those of the hydro turbine-generators in general, but not as fast as the times associated with gas turbines. ${ }^{6}$

Gas turbines typically have the shortest time delays, because control is provided by injecting more or less fuel into the turbine combustor and adjusting the air control dampers. These control changes can be initiated rapidly and the mass flow has the shortest path to the turbine blades. There may be timing limitations related to the rate of change in output of the gas turbine-generator to maintain flame stability in some cases slowing the rate of change. ${ }^{7}$

[^68]Synthetic Governor Response can be supplied by certain loads and storage systems. The immediacy of the response is normally limited only by the electronic controls used to activate the desired response. Synthetic response, when it can be supplied immediately without significant time delay, has a higher reliability value because it requires less inertial response to achieve smaller arrested frequency deviations.

Proportional Response indicates that the response provided is proportional in magnitude to the frequency error. Response deadbands cause a non-proportional response and reduce the value of the response with respect to reliability. Contrary to general consensus, deadbands do not reduce the amount of Frequency Response that must be provided, they only transfer the responsibility for providing that Frequency Response from one source on the interconnection to another. For a given response, the response with the smaller deadband has the greater reliability value. Therefore, deadbands should be set to the smallest value that supports overall reliable operation including the reliable operation of the generator.

Electronic controls have also been developed to provide synthetic governor response. When these controls are applied to certain loads or stored energy systems, they can be programmed to provide synthetic governor response similar to the proportional response of a turbinegenerator governor. Governor response in generators is limited to a small percentage of the output of the generating unit, while synthetic governor response could be applied to much larger percentages of loads or storage devices providing such response.

Load damping provides a proportional response.
Continuous Response is response that has no discontinuous (step) changes in the frequency versus response curve. Step changes (Non-continuous Response) in the Governor Response curve can lead to frequency instabilities at frequencies near the changes. The ERCOT Interconnection observed this and has since prohibited the use of governor response characteristics incorporating step responses.

Step responses also occur with the implementation of load interruption using under-frequency or over-frequency relays.

Bi-directional Response is response that occurs in both directions, when the frequency is increasing and when the frequency is decreasing. A uni-directional response is a response that only occurs once when frequency is decreasing or when frequency is increasing.

Inertial response, governor response and load damping are all bi-directional responses. Certain loads are capable of providing proportional bi-directional response while others are only capable of providing non-proportional bi-directional response.

The ERCOT Load Resource program is a uni-directional response program. Loads are only tripped when frequency declines below a given set-point. When frequency is restored above that set-point, the loads must be manually reconnected. As a consequence, the Frequency Response only occurs once with declining frequency and does not oppose the increase in frequency after the initial decline. If there should be a frequency oscillation, the uni-directional response will not contribute to the opposition of a second frequency decline across the set-
point during an oscillation event. Once a uni-directional response has occurred, it is unavailable for a second decline before reset.

Step or proportional responses implemented bi-directionally can lead to frequency instability when there is less continuous frequency response than the magnitude of the change in continuous response between the trip and reset frequencies in step, or the proportional response rate of change is greater than the underlying continuous response. A step bidirectional response will have the load reconnected as frequency recovers from the event thus opposing the increase in frequency during recovery, and also resetting the load response for the next frequency decline automatically. Bi-directional response obviously has a greater reliability value than uni-directional response.

Sustained Response is provided at its full value until frequency is restored to its scheduled value. On today's interconnections, few frequency responses are fully sustained until frequency has been restored to its scheduled value. On steam based turbine-generators, the steam pressure may drop after a time as the result of the additional steam flow from governor action. However, in general this has not been a problem because most responses are incomplete at the time that frequency has been initially arrested and the additional response has generally been sufficient to make up for more than the these unpreventable reductions in response. However, the intentional withdrawal of response before frequency has been restored to schedule can cause a decline in frequency beyond that which would be otherwise expected. This intentional withdrawal of response is highly detrimental to reliability. Therefore, it can be concluded in general that sustained response has a higher reliability value than un-sustained response.

On an interconnection, the withdrawal of response due to the loss of steam pressure on the steam units may be offset by the slower response of hydro turbine-generators. In these cases, the reliability of the combined response provides greater reliability value than the individual response of each type. The steam turbine-generators provide a fast response that may be reduced, while the hydro turbine-generators provide a slower response, contributing less to the arresting response, offsetting any reduction by the steam turbine-generators to assure a sustained response.

Sustained Response must also be considered for any resource that has a limited duration associated with its response. The amount of stored energy available from a resource may limit its ability to sustain response for a duration of time necessary to support reliability.

Frequency Response Cost Factors

In every system of exchange there are two sides; the supply side and the demand side. The supply side provides the services used by the demand side. In the case of Frequency Response, the supply side includes all providers of Frequency Response and the demand side includes all participants that create the need for Frequency Response.

Frequency Response Costs - Supply Side

There are a number of factors that affect the cost of providing Frequency Response from resources. Since there is a cost associated with those factors, some method of appropriate compensation could be made available to those resources providing Frequency Response.

Without compensation, providers of Frequency Response will be put in the position of incurring additional cost that can be avoided only by reducing or eliminating the response they provide. These costs are incurred independently of whether provided for in a formal Regional Transmission Organization/Independent System Operator (RTO/ISO) market or in a traditional BA subject to the FERC pro-forma tariffs.

It is the responsibility of the BA or the RTO/ISO to acquire the necessary amount of Frequency Response to support reliability in the most cost effective manner. This function is performed best when the suppliers are evaluated based on the value of the Frequency Response they provide and compensated appropriately for that Frequency Response. Suppliers provide Frequency Response when they are assured that they will receive fair compensation. Before considering how to perform this evaluation and compensation, the costs associated with providing Frequency Response should be understood and evaluated with respect to the level of reliability they offer.

Some cost factors that have been identified for providing Frequency Response include:

1. Capacity Opportunity Cost - the costs, including opportunity costs, associated with reserving capacity to provide Frequency Response. These costs are usually associated with the alternative use of the same capacity to provide energy or other ancillary services. There may also be capacity opportunity costs associated with the loss in average capacity by a load providing Frequency Response.
2. Fuel Cost - The cost of fuel used to provide the Frequency Response. The costs for fuel to provide Frequency Response can result in energy costs significantly different from the system marginal energy cost, both higher and lower. This is the case when Frequency Response is provided by resources that are not at the system marginal cost.
3. Energy Efficiency Penalty Costs - the costs associated with the loss in efficiency when the resource is operated in a mode that supports the delivery of Frequency Response. This cost is usually in the form of additional fuel use to provide the same amount of energy. An example is the difference between operating a steam turbine in valve control mode with an active governor and sliding pressure mode with valves wide open and no active governor control except for over-speed. This cost is incurred for all of the energy provided by the resource, not just the energy provided for Frequency Response. There may be additional energy costs associated with a load providing Frequency Response from loss in efficiency of their process when load is reduced.
4. Capacity Efficiency Penalty Costs - the costs associated with any reduction in capacity resulting from the loss of capacity associated with the loss in energy efficiency. When efficiency is lost, capacity may be lost at the same time because of limitations in the amount of input energy that can be provided to the resource.
5. Maintenance Costs - the operation of the resource in a manner necessary to provide Frequency Response may result in increases in the maintenance costs associated with the resource.
6. Emissions Costs - the additional costs incurred to manage any additional emissions that result when the resource is providing Frequency Response or stands ready to provide Frequency Response.

A good contract for the acquisition of Frequency Response from a resource will provide appropriate compensation to the resource all of the costs the resource incurs to provide Frequency Response. It will also provide a method to evaluate the least cost mix of resources necessary to provide the minimum required Frequency Response for maintaining reliability. Finally, it will provide the least complex method of evaluation considering the complexity and efficiency of the acquisition process.

Frequency Response Costs - Demand Side

Not only are there costs associated with acquiring Frequency Response from the supplying resources, there are costs associated with the amount of Frequency Response that must be acquired and influenced by those participants that create the need for Frequency Response. If the costs of acquiring Frequency Response from the supply resources can be assigned to those parties that create the need for Frequency Response, there is the promise that the amount of Frequency Response required to maintain reliability can be minimized. The considerations are the same as those that are driving the development of "real time pricing" and "dynamic pricing". If the costs are passed on to those contributing to the need for Frequency Response, incentives are created to reduce the need for Frequency Response making interconnection operations less expensive and more reliable. The problem is to balance both cost and complexity against reliability on both the supply side and the demand side.

Rationale by Requirement

Requirement 1

R1. Each Frequency Response Sharing Group (FRSG) or Balancing Authority that is not a member of a FRSG shall achieve an annual Frequency Response Measure (FRM) (as calculated and reported in accordance with Attachment A) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each FRSG or Balancing Authority that is not a member of a FRSG to maintain Interconnection Frequency Response equal to or more negative than the Interconnection Frequency Response Obligation.

Background and Rationale

R1 is intended to meet the following primary objectives:

- Determine whether a Balancing Authority (BA) has sufficient Frequency Response for reliable operations.
- Provide the feeder information needed to calculate CPS limits and Frequency Bias Settings.

Primary Objective

With regard to the first objective, FRS Form 1 and the process in Attachment A provide the method for determining the Interconnections' necessary amount of Frequency Response and allocating it to the Balancing Authorities. The field trial for BAL-003-1 is testing an allocation methodology based on the amount of load and generation in the BA. This is to accommodate the wide spectrum of BAs from generation-only all the way to load-only.

Frequency Response Sharing Groups (FRSGs)

This standard proposes an entity called FRSG, which is defined as:
A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the sum of the Frequency Response Obligations of its members.

This standard allows Balancing Authorities to cooperatively form FRSGs as a means to jointly meet the FRS. There is no obligation to form or be a part of FRSGs. The members of the FRSG would determine how to allocate sanctions among its members. This standard does not mandate the formation of FRSGs, but allows them as a means to meet one of FERC's Order No. 693 directives.

FRSG performance may be calculated one of two ways:

- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or
- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual event performance.

Frequency Response Obligation and Calculation

The basic Frequency Response Obligation is based on non-coincident peak load and generation data reported in FERC Form 714 (where applicable, see below for non-jurisdictional entities) for the previous full calendar year. The basic allocation formula used by NERC is:

Where:

- Annual Gen ${ }_{B A}$ is the annual "Net Generation (MWh)", FERC Form 714, line 13, column c of Part II - Schedule 3.
- Annual Load ${ }_{B A}$ is the annual "Net Energy for Load (MWh)", FERC Form 714, line 13, column e of Part II - Schedule 3.
- Annual Gen $_{\text {Int }}$ is the sum of all Annual Gen $_{B A}$ values reported in that interconnection.
- Annual Load ${ }_{1 n t}$ is the sum of all Annual $\operatorname{Load}_{\mathrm{BA}}$ values reported in that interconnection.

Balancing Authorities that are not FERC jurisdictional should use the Form 714 Instructions to assemble and submit equivalent data. Until the BAL-003-1 process outlined in Attachment 1 is implemented, Balancing Authorities can approximate their FRO by multiplying their Interconnection's FRO by their share of Interconnection Bias. The data used for this calculation should be for the most recently filed Form 714. As an example, a report to NERC in January 2013 would use the Form 714 data filed in 2012, which utilized data from 2011.

Balancing Authorities that merge or that transfer load or generation need to notify the ERO of the change in footprint and corresponding changes in allocation such that the net obligation for the Interconnection remains the same and so that CPS limits can be adjusted.

Attachment A proposes the following Interconnection event criteria as a basis to determine an Interconnection's Frequency Response Obligation:

- Largest category C loss-of-resource (N-2) event.
- Largest total generating plant with common voltage switchyard.
- Largest loss of generation in the interconnection in the last 10 years.

With regard to the second objective above (determining Frequency Bias Settings and CPS limits), Balancing Authorities have been asked to perform annual reviews of their Frequency Bias Settings by measuring their Frequency Response, dating back to Policy 1. This obligation was carried forward into BAL-003-01.b. While the associated training document provided useful information, it left many of the details to the judgment of the person doing the analysis. The FRS Form 1 and FRS Form 2 provide a consistent, objective process for calculating Frequency Response to develop an annual measure, the FRM.

The FRM will be computed from Single Event Frequency Response Data (SEFRD), defined as: "the data from an individual event from a Balancing Authority that is used to calculate its Frequency Response, expressed in MW/0.1Hz". The SEFRD for a typical Balancing Authority in an Interconnection with more than one Balancing Authority is basically the change of its net actual interchange on its tie lines with its adjacent Balancing Authorities divided by the change in interconnection frequency. (Some Balancing Authorities may choose to apply corrections to their net actual interchange values to account for factors such as nonconforming loads. FRS Form 1 shows the types of adjustments that are allowed.)

A standardized sampling interval of approximately 20 to 52 seconds will be used in the computation of SEFRD values. Microsoft Exce ${ }^{\circledR}$ spreadsheet interfaces for EMS scan rates of 2 through 6 seconds are provided to support the computation.

Single Event Frequency Response Data ${ }^{8}$

The use of a "single event measure" was considered early in the development of the FRS for compliance because a single event measure could be enforced for each event on the interconnection making compliance enforcement a simpler process. The variability of the measurement of Frequency Response for an individual BA for an individual Disturbance event was evaluated to determine its suitability for use as a compliance measure. The individual Disturbance events were normalized and plotted for each BA on the Eastern and Western Interconnections. This data was plotted with a dot representing each event. Events with a measured Frequency Response above the FRO were shown as blue dots and events with a measured Frequency Response below the FRO were shown as red dots. In order to show the full variability of the results the plots have been provide with two scales, a large scale to show all of the events and small scale to show the events closer to the FRO or a value of 1.0. This data is presented on four charts titled Frequency Response Events as Normalized by FRO.

Analysis of this data indicates a single event based compliance measure is unsuitable for compliance evaluation when the data has the large degree of variability shown in these charts. Based on the field trial data provided, only 3 out of 19 BAs on the Western Interconnection would be compliant for all events with a standard based on a single event measure. Only 1 out of 31 BAs on the Eastern Interconnection would be compliant for all events with a standard based on a single event measure. The general consensus of the industry is that there is not a reliability issue with insufficient Frequency Response on any of the North American Interconnections at this time. Therefore, it is unreasonable to even consider a standard that would indicate over 90% of the BAs in North American to be non-compliant with respect to maintaining sufficient Frequency Response to maintain adequate reliability.

In an attempt to balance the workload of Balancing Authorities with the need for accuracy in the FRM, the standard will require at least 20 samples selected during the course of the year to compute the FRM. Research conducted by the FRSDT indicated that a Balancing Authority's FRM will converge to a reasonably stable value with at least 20 samples.

[^69]

Sample Size

In order to support field trial evaluations of sample size, sampling intervals, and aggregation techniques, the FRSDT will be retrieving scan rate data from the Balancing Authorities for each SEFRD. Additional frequency events may also be requested for research purposes, though they will not be included in the FRM computation.

FERC Order No. 693 directed the ERO (at P 375) to define the number of Frequency Response surveys that were conducted each year and to define a necessary amount of Frequency Response. R1 addresses both of these directives:

- There is a single annual survey of at least 20 events each year.
- The FRM calculated on FRS Form 1 is compared by the ERO against the FRO determined 12 months earlier (when the last FRS Form 1 was submitted) to verify the Balancing Authority provided its share of Interconnection Frequency Response.

Median as the Standard's Measure of Balancing Authority Performance

The FRSDT evaluated different approaches for "averaging" individual event observations to compute a technically sound estimate of Frequency Response Measure. The MW contribution for a single BA in a multi-BA Interconnection is small compared to the minute to minute changes in load, interchange and generation. For example, a 3000 MW BA in the east may only be called on to contribute 10MW for the loss of a 1000MW. The 10 MW of governor and load response may easily be masked as a coincident change in load.

In general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FRSDT has shown the Median to be less influenced by noise in the measurement process and the team has chosen the median as the initial metric for calculating the BAs' Frequency Response Measure.

The FRSDT performed extensive empirical studies and engaged in lively discussions in an attempt to determine the best aggregation technique for a sample set size of at least 20 events. Mean, median, and linear regression techniques were used on a trial basis with the data that was available during the early phases of the effort.

A key characteristic of the "aggregation challenge" is related to the use of actual net interchange data for measuring frequency response. The tie line flow measurements are varying continuously due to other operational phenomena occurring concurrently with the provision of frequency response. (See Appendix 1 for details.) All samples have "noise" in them, as most operational personnel who have computed the frequency response of their BA can attest. What has also become apparent to the FRSDT is that while the majority of the frequency response samples have similar levels of noise in them, a few of the samples may have much larger errors in them than the others that result in unrepresentative results. And with the sample set size of interest, it is common to have unrepresentative errors in these few samples to be very large and asymmetric. For example, one BA's subject matter expert observed recently that 4 out of 31 samples had a much larger error contribution than the other 27 samples, and that 3 out of 4 of the very high error samples grossly underestimated the frequency response. The median value demonstrated greater resiliency to this data quality problem than the mean with this data set. (The median has also demonstrated superiority to
linear regression in the presence of these described data quality problems in other analyses conducted by the FRSDT, but the linear regression showed better performance than the mean.)

The above can be demonstrated with a relatively simple example. Let's assume that a Balancing Authority's true frequency response has an average value of $-200 \mathrm{MW} / .1 \mathrm{~Hz}$. Let's also assume that this Balancing Authority installed "special" perfect metering on key loads and generators, so that we could know the true frequency response of each sample. And then we will compare them with that measured by typical tie line flow metering, with the kind of noise and error that occurs commonly and "not so commonly". Let's start with the following 4 samples having a common level of noise, with MW/ .1 Hz as the unit of measurement.

Perfect measurement	Noise	Samples from tie lines
-190	-30	-220
-210	-20	-230
-220	10	-210
-180	20	-160
-200	Mean	-205
-200	Median	-215

Now let's add a fifth sample, which is highly contaminated with noise and error that grossly underestimates frequency response.

Perfect measurement	Noise	Samples from tie lines
-190	-30	-220
-210	-20	-230
-220	10	-210
-180	20	-160
-200	250	+50
-200	Mean	-154
-200	Median	-210

It is clear from the above simplistic example that the mean drops by about 25% while the median is affected minimally by the single highly contaminated value.

Based on the analyses performed thus far, the FRSDT believes that the median's superior resiliency to this type of data quality problem makes it the best aggregation technique at this time. However, the FRSDT sees merit and promise in future research with sample filtering combined with a technique such as linear regression.

When compared with the mean, linear regression shows superior performance with respect to the elimination of noise because the measured data is weighted by the size of the frequency change associated with the event. Since the noise is independent from frequency change, the greater weighting on larger events provides a superior technique for reducing the effect of noise on the results.

However, linear regression does not provide a better method when dealing with a few samples with large magnitudes of noise and unrepresentative error. There are only two alternatives to improve over the use of median when dealing with these larger unrepresentative errors:

1. Increase the sample size, or
2. Actively eliminate outliers due to unrepresentative error.

Unfortunately, the first alternative, increasing the sample size is not available because significantly more sample events are not available within the measurement time period of one year. Linear regression techniques are being investigated that have an active outlier elimination algorithm that would eliminate data that lie outside ranges of the 96th percentile and 99th percentile, for example.

Still, the use of linear regression has value in the context of this standard. The NERC Resources Subcommittee will use linear regression to evaluate Interconnection frequency response, particularly to evaluate trends, seasonal impacts, time of day influences, etc. The Good Practices and Tools section of this document outlines how a BA can use linear regression to develop a predictive tool for its operators.

Additional discussion on this topic is contained in "Appendix 1 - Data Quality Concerns Related to the Use of Actual Net Interchange Value" of this document.

The NERC Frequency Response Initiative Report addressed the relative merits of using the median versus linear regression for aggregating single event frequency response samples into a frequency response measurement score for compliance evaluation. This report provided 11 evaluation criteria as a basis for recommending the use of linear regression instead of the median for the frequency response measurement aggregation technique. The FRSDT made its own assessment on the basis of these evaluation criteria on September 20, 2012, but concluded that the median would be the best aggregation technique to use initially when the relative importance of each criterion was considered. A brief summary of the FRSDT majority consensus on the basis of each evaluation criterion is provided below.

- Provides two dimensional measurement - The FRSDT agrees that the two dimensional concept is a useful way to perceive frequency response characteristics, and that it may be useful for potential future modeling activities. Better data quality would increase support for such future efforts, and the use of the median for initial compliance evaluations within BAL-003-1 should not hinder any such effort. The FRSDT perceived this as a mild advantage for linear regression.
- Represents nonlinear characteristics - With considerations similar to those applied to the previous criterion, the FRSDT perceived this as a mild advantage for linear regression.
- Provides a single best estimator - The FRSDT put gave minimal importance to the characteristic of the median averaging the middle values when used with an even number of samples.
- Is part of a linear system - With considerations similar to those applied to the first two criteria, the FRSDT perceived this as a mild advantage for linear regression (particularly in the modeling area.)
- Represents bimodal distributions - The FRSDT put minimal weight of this criterion, as a change in Balancing Authority footprint does not seem to be addressed adequately by any aggregation technique.
- Quality statistics available - The FRSDT perceived this as a mild advantage for linear regression in that the statistics would be coupled directly to the compliance evaluation. The FRSDT also included this criterion as part of the modeling advantages cited above.

The FRSDT supports collecting data and performing quality statistical analysis. If it is determined that the use of the median, as opposed to a mean or linear regression aggregation, is yielding undesirable consequences, the FRSDT recommends that other aggregation techniques be re-evaluated at that time.

- Reducing influence of noise - This is the dominant concern of the FRSDT, and it perceives the median to have a major advantage over linear regression in addressing noise in the change in actual net interchange calculation. The FRSDT bases this judgment on: prior FRSDT studies that have shown that the median produces more stable results; the data used in the NERC Frequency Response Initiative document exhibits large quantities of noise; prior efforts of FRSDT members in performing frequency response sampling for their own Balancing Authorities over many years; and similar observations of noise in the CERTS frequency Monitoring Application. The FRSDT has serious concerns that the influence of noise has a greater tendency to yield a "false positive" compliance violation with linear regression than with the median. Also, limited studies performed by the FRSDT indicates the possibility that the resultant frequency response measure would yield more measurement variation across years with linear regression versus the median while the actual Balancing Authority performance remains unchanged.
- Reducing the influence of outliers - This is related to the previous criterion. The FRSDT recognizes four main sources of noise: concurrent operating phenomena (described elsewhere in this document), transient tie line flows for nearby contingencies, data acquisition time skew in tie line data measurements, and time skew and data compression issues in archiving techniques and tools such as PI. Some outliers may be caused in part by true variation in the actual frequency response, and it is desirable to include those in the frequency response measure. The FRSDT supports efforts in the near future to distinguish between outliers caused by noise versus true frequency response, and progress in this area may make it feasible and desirable to replace the median with linear regression, or some other validated technique. The FRSDT does note that this is a substantial undertaking, and it would require substantial input from a sufficient number of experts to help distinguish noise from true frequency response.
- Easy to calculate - The FRSDT perceives this to be a minor to moderate advantage for the median. However, more complex (but reasonably so) techniques would receive more support if clear progress can be made in noise elimination.
- Familiar indicator - The FRSDT perceives this to be a minor to moderate advantage for the median. However, more complex (but reasonably so) techniques would receive more support if clear progress can be made as a result of noise elimination.
- Currently used as a measure in BAL-003 - The present standard refers to an average and does not provide specific guidance on the computation of that average, but the FRSDT puts minimal weight on this evaluation criterion.

In summary, the FRSDT perceives an approximate balance between the modeling advantage for linear regression and the simplicity advantage of the median. However, the clear determinant in endorsing the use of the median is the data quality issue related to concurrent operational phenomena, transient tie line flows, and data acquisition and archiving limitations.

FERC Order No. 693 also directed the Standard (at P 375) to identify methods for Balancing Authorities to obtain Frequency Response. Requirement R1 allows Balancing Authorities to participate in Frequency Response Sharing Groups (FRSGs) to provide or obtain Frequency Response. These may be the same FRSGs that cooperate for BAL-002-0 or may be FRSGs that form for the purposes of BAL-003-1.

If BAs participate as an FRSG for BAL-003-1, compliance is based on the sum of the participants' performance.

Two other ways that BAs could obtain Frequency Response are through Supplemental Service or Overlap Regulation Service:

- No special action is needed if a BA provides or receives supplemental regulation. If the regulation occurs via Pseudo Tie, the transfer occurs automatically as part of Net Actual Interchange (NIA) and in response to information transferred from recipient to provider.
- If a BA provides overlap regulation, its FRS Form 1 will include the Frequency Bias setting as well as peak load and generation of the combined Balancing Authority Areas. The FRM event data will be calculated on the sum of the provider's and recipient's performance.

In the Violation Severity Levels for Requirement R1, the impact of a BA not having enough frequency response depends on two factors:

- Does the Interconnection have sufficient response?
- How short is the BA in providing its FRO?

The VSL takes these factors into account. While the VSLs look different than some other standards, an explanation would be helpful.

VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plane as single-BA Interconnections.

Consider a small BA whose performance is 70% of its FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response, because this would treat multi-BA Interconnections more harshly than single BA Interconnections on a significant scale.

The "Lower" and "Medium" VSLs say that the Interconnection has sufficient Frequency Response but individual BAs are deficient by small or larger amounts respectively. The High and Severe VSLs say the Interconnection does not meet the FRO and assesses sanctions based on whether the BA is deficient by a small or larger amount respectively.

Requirement 2

R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO.

Background and Rationale

Attachment A of the Standard discusses the process the ERO will follow to validate the BA's FRS Form 1 data and publish the official Frequency Bias Settings. Historically, it has taken multiple rounds of validation and outreach to confirm each BA's data due to transcription errors, misunderstanding of instructions, and other issues. While BAs historically submit Bias Setting data by January 1, it often takes one or more months to complete the process.

The target is to have BAs submit their data by January 10. The BAs are given 30 days to assemble their data since the BAs are dependent on the ERO to provide them with FRS Form 1, and there may be process delays in distributing the forms since they rely on identification of frequency events through November 30 of the preceding year.

Frequency Bias Settings generally change little from year to year. Given the fact that BAs can encounter staffing or EMS change issues coincident with the date the ERO sets for new Frequency Bias Setting implementation, the standard provides a 24 hour window on each side of the target date.

To recap the annual process:

1. The ERO posts the official list of frequency events to be used for this Standard in early December. The FRS Form 1 for each Interconnection will be posted shortly thereafter.
2. The Balancing Authority submits its revised annual Frequency Bias Setting value to NERC by January 10.
3. The ERO and the Resources Subcommittee validate Frequency Bias Setting values, perform error checking, and calculate, validate, and update CPS2 L10 values. This data collection and validation process can take as long as two months.
4. Once the L10 and Frequency Bias Setting values are validated, The ERO posts the values for the upcoming year and also informs the Balancing Authorities of the date on which to implement revised Frequency Bias Setting values. Implementation typically would be on or about March $1^{\text {st }}$ of each year.

BAL-003-0.1b standard requires a minimum Frequency Bias Setting equal in absolute value to one percent of the Balancing Authority's estimated yearly peak demand (or maximum generation level if native load is not served). For most Balancing Authorities this calculated amount of Frequency Bias is significantly greater in absolute value than their actual Frequency Response characteristic (which represents an over-bias condition) resulting in over-control
since a larger magnitude response is realized. This is especially true in the Eastern Interconnection where this condition requires excessive secondary frequency control response which degrades overall system performance and increases operating cost as compared to requiring an appropriate balance of primary and secondary frequency control response.

Balancing Authorities were given a minimum Frequency Bias Setting obligation because there had never been a mandatory Frequency Response Obligation. This historic "one percent of peak per 0.1 Hz " obligation, dating back to NERC's predecessor, NAPSIC, was intended to ensure all BAs provide some support to Interconnection frequency.

The ideal system control state exists when the Frequency Bias Setting of the Balancing Authority exactly matches the actual Frequency Response characteristic of the Balancing Authority. If this is not achievable, over-bias is significantly better from a control perspective than under-bias with the caveat that Frequency Bias is set relatively close in magnitude to the Balancing Authority actual Frequency Response characteristic. Setting the Frequency Bias to better approximate the Balancing Authority natural Frequency Response characteristic will improve the quality and accuracy of ACE control, CPS \& DCS and general AGC System control response. This is the technical basis for recommending an adjustment to the long standing " 1% of peak/0.1Hz" Frequency Bias Setting. The Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard is intended to bring the Balancing Authorities' Frequency Bias Setting closer to their natural Frequency Response. Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard balances the following objectives:

- Bring the Frequency Bias Setting and Frequency Response closer together.
- Allow time to analyze impact on other Standards (CPS, BAAL and to a lesser extent DCS) by adjustments in the minimum Frequency Bias Setting, by accommodating only minor adjustments.
- Do not allow the Frequency Bias Setting minimum to drop below natural Frequency Response, because under-biasing could affect an Interconnection adversely.

Additional flexibility has been added to the Frequency Bias Setting based on the actual Frequency Response (FRM) by allowing the Frequency Bias Setting to have a value in the range from 100% of FRM to 125% of FRM. This change has been included for the following reasons:

- When the new standardized measurement method is applied to BAs with a Frequency Response close to the interconnection minimum response, the requirement to use FRM is as likely to result in a Frequency Bias Setting below the actual response as it is to result in a response above the actual response. From a reliability perspective, it is
always better to have a Frequency Bias Setting slightly above the actual Frequency Response.
- As with single BA interconnections, the tuning of the control system may require that the BA implement a Frequency Response Setting slightly greater in absolute terms than its actual Frequency Response to get the best performance.
- The new standardized measurement method for determining FRM in some cases results in a measured Frequency Response significantly lower than the previous methods used by some BAs. It is desirable to not require significant change in the Frequency Bias Setting for these BAs that experience a reduction in their measured Frequency Response.

Requirement 3

R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias Setting that is:

- Less than zero at all times, and
- Equal to or more negative than its Frequency Response Obligation when the Frequency varies from 60 Hz by more that +/- 0.036 Hz .

Background and Rationale

In multi-Balancing Authority interconnections, the Frequency Bias Setting should be coordinated among all BAs on the interconnection. When there is a minimum Frequency Bias Setting requirement, it should apply for all BAs. However, BAs using a variable Frequency Bias Setting may have non-linearity in their actual response for a number of reasons including the dead-bands implemented on their generator governors. The measurement to ensure that these BAs are conforming to the interconnection minimum is adjusted to remove the deadband range from the calculated average Frequency Bias Setting actually used. For BAs using variable bias, FRS Form 1 has a data entry location for the previous year's average monthly Bias. The Balancing Authority and the ERO can compare this value to the previous year's Frequency Bias Setting minimum to ensure R3 has been met.

On single BA interconnections, there is no need to coordinate the Frequency Bias Setting with other BAs. This eliminates the need to maintain a minimum Frequency Bias Setting for any reason other than meeting the reliability requirement as specified by the Frequency Response Obligation.

Requirement 4

R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation, in order to represent the Frequency Bias Setting for the combined Balancing Authority Area, to be equivalent to either:

- The sum of the Frequency Bias Settings as shown on FRS Form 1 and FRS Form 2 for the participating Balancing Authorities as validated by the ERO, or
- The Frequency Bias Setting as shown on FRS Form 1 and FRS Form 2 for the entirety of the participating Balancing Authorities' Areas.

Background and Rationale

This requirement reflects the operating principles first established by NERC Policy 1 and is similar to Requirement R6 of the approved BAL-003-0.1b standard. Overlap Regulation Service is a method of providing regulation service in which the Balancing Authority providing the regulation service incorporates another Balancing Authority's actual interchange, frequency response, and schedules into the providing Balancing Authority's AGC/ACE equation.

As noted earlier, a BA that is providing Overlap Regulation will report the sum of the Bias Settings in its FRS Form 1. Balancing Authorities receiving Overlap Regulation Service have an ACE and Frequency Bias Setting equal to zero (0).

How this Standard Meets the FERC Order 693 Directives

FERC Directive

The following is the relevant paragraph of Order No. 693.
Accordingly, the Commission approves Reliability Standard BAL-003-0 as mandatory and enforceable. In addition, the Commission directs the ERO to develop a modification to BAL-003-0 through the Reliability Standards development process that: (1) includes Levels of Non-Compliance; (2) determines the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other requirements of the Reliability Standard are being met, and to modify Measure M1 based on that determination and (3) defines the necessary amount of Frequency Response needed for Reliable Operation for each balancing authority with methods of obtaining and measuring that the frequency response is achieved.

1. Levels of Non-Compliance

VRFs and VSLs are an equally effective way of assigning compliance elements to the standard.
2. Determine the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other Requirements of the Reliability Standard are met
BAL-003 V0 R2 (the basis of Order No. 693) deals with the calculation of Frequency Bias Setting such that it reflects natural Frequency Response.

The drafting team has determined that a sample size on the order of at least 20 events is necessary to have a high confidence in the estimate of a BA's Frequency Response. Selection of the frequency excursion events used for analysis will be done via a method outlined in Attachment A to the Standard.

On average, these events will represent the largest 2-3 "clean" frequency excursions occurring each month.

Since Frequency Bias Setting is an annual obligation, the survey of the at least 20 frequency excursion events will occur once each year.

3. Define the necessary amount of Frequency Response needed for Reliable Operation for each Balancing Authority with methods of obtaining and measuring that the frequency response is achieved

Necessary Amount of Frequency Response

The drafting team has proposed the following approach to defining the necessary amount of frequency response. In general, the goal is to avoid triggering the first step of under-frequency load shedding (UFLS) in the given Interconnection for reasonable contingencies expected. The
methodology for determining each Interconnection's and Balancing Authority's obligation is outlined in Attachment A to the Standard.

It should be noted the standard cannot guarantee there will never be a triggering of UFLS as the magnitude of "point C" differs throughout an interconnection during a disturbance and there are local areas that see much wider swings in frequency.

The contingency protection criterion is the largest reasonably expected contingency in the Interconnection. This can be based on the largest observed credible contingency in the previous 10 years or the largest Category C event for the Interconnection.

Attachment A to the standard presents the base obligation by Interconnection and adds a Reliability Margin. The Reliability Margin included addresses the difference between Points B and C and accounts for variables.

For multiple BA interconnections, the Frequency Response Obligation is allocated to BAs based on size. This allocation will be based on the following calculation:

Methods of Obtaining Frequency Response

The drafting team believes the following are valid methods of obtaining Frequency Response:

- Regulation services.
- Contractual service. The drafting team has developed an approach to obtain a contractual share of Frequency Response from Adjacent Balancing Authorities. See FRS Form 1. While the final rules with regard to contractual services are being defined, the current expectation is that the ERO and the associated Region(s) should be notified beforehand and that the service be at least 6 months in duration.
- Through a tariff (e.g. Frequency Response and regulation service).
- From generators through an interconnection agreement.
- Contract with an internal resource or loads (The drafting team encourages the development of a NAESB business practice for Frequency Response service for linear (droop) and stepped (e.g. LaaR in Texas) response).

Since NERC standards should not prescribe or preclude any particular market related service, BAs and FRSGs may use whatever is most appropriate for their situation.

Measuring that the Frequency Response is Achieved

FRS Form 1 and the underlying data retained by the BA will be used for measuring whether Frequency Response was provided. FRS Form 1 will provide the guidance on how to account for and measure Frequency Response.

Going Beyond the Directive

Based on the combined operating experience of the SDT, the drafting team consensus is that each Interconnection has sufficient Frequency Response. If margins decline, there may be a need for additional standards or tools. The drafting team and the Resources Subcommittee are working with the ERO on its Frequency Response Initiative to develop processes and good practices so the Interconnections are prepared. These good practices and tools are described in the following section.

The drafting team is also evaluating a risk-based approach for basing the Interconnection Frequency Response Obligation on an historic probability density of frequency error, and for allocating the obligation on the basis of the Balancing Authority's average annual ACE share of frequency error. This allocation method uses the inverse of the rationale for allocating the CPS1 epsilon requirement by Bias share.

Good Practices and Tools

Background

This section outlines tips and tools to help Balancing Authorities meet the Frequency Response Standard or to operate more reliably. If you have suggested additions, please send them to balancing@nerc.com.

Identifying and Estimating Frequency Responsive Reserves

Knowing the quantity and depth of frequency responsive reserves in real time is a possible next step to being better prepared for the next event. The challenge in achieving this is having the knowledge of the capabilities of all sources of frequency response. Presently the primary source of Frequency Response remains with the generation resources in our fleets.

Understanding how each of these sources performs to changes in system frequency and knowing their limitations would improve the BA's ability to measure frequency responsive reserves. Presently there are only guidelines, criteria and protocols in some regions of the industry that identify specific settings and performance expectations of Primary Frequency Response of resources.

One method of gaining a better understanding of performance is to measure performance during actual events that occur on the system. Measuring performance during actual events would only provide feedback for performance during that specific event and would not provide insight into depth of response or other limitations.

Repeated measurements will increase confidence in expected performance. NERC modeling standards are in process to be revised that will improve the BA's insight into predicting available frequency responsive reserves. However, knowing how resources are operated, what modes of operation provide sustained Primary Frequency Response and knowing the operating range of this response would give the BA the knowledge to accurately predict frequency response and the amount of frequency responsive reserves available in real time.

Some benefits have been realized by communicating to generation resources (GO) the importance of operating in modes that allow Primary Frequency Response to be sustained by the control systems of the resource. Other improvements in implementation of Primary Frequency Response have been achieved through improved settings on turbine governors through the elimination of "step" frequency response with the simultaneous reduction in governor dead-band settings.

Improvements in the full AGC control loop of the generating resource, which accounts for the expected Primary Frequency Response, have improved the delivery of quality Primary Frequency Response while minimizing secondary control actions of generators. Some of these actions can provide quick improvement in delivery of Primary Frequency Response.

Once Primary Frequency Response sources are known, the BA could calculate available reserves that are frequency responsive. Planning for these reserves during normal and emergency operations could be developed and added to the normal planning process.

Using FRS Form 1 Data

The information collected for this standard can be supplemented by a few data points to provide the Balancing Authority useful tools and information. The BA could do a regression analysis of its frequency response against the following values:

- Load (value A).
- Interchange (Value A).
- Total generation.
- Spinning reserve.

While the last two values above are not part of Form 1, they should be readily available. Small BAs might even include headroom on its larger generators as part of the regression.

The regression would provide a formula the BA could program in its EMS to present the operator a real time estimate of the BA's Frequency Response.

Statistical outliers in the regression would point to cases meriting further inspection to find causes of low Frequency Response or opportunities for improvement.

Tools

Single generating resource performance evaluation tools for steam turbine, combustion turbine (simple cycle or combined cycle) and for intermittent resources are available at the following link. http://texasre.org/standards rules/standardsdev/rsc/sar003/Pages/Default.aspx.

These tools and the regional standard associated with them are in their final stages of development in the Texas region.

These tools will be posted on the NERC website.

References

NERC Frequency Response Characteristic Survey Training Document (Found in the NERC Operating Manual)

NERC Resources Subcommittee Position Paper on Frequency Response
NERC TIS Report Interconnection Criteria for Frequency Response Requirements (for the Determination Interconnection Frequency Response Obligations (IFRO)

Frequency Response Standard Field Trial Analysis, September 17, 2012

Appendix 1 - Data Quality Concerns Related To The Use Of The Actual Net Interchange Value

Actual net interchange for a typical Balancing Authority (BA) is the summation of its tie lines to other BAs. In some cases, there are pseudo-ties in it which reflect the effective removal or addition of load and/or generation from another BA, or it could include supplemental regulation as well. But in the typical scenario, actual net interchange values that are extracted from EMS data archiving can be influenced by data latency times in the data acquisition process, and also any timestamp skewing in the archival process.

Of greater concern, however, are the inevitable variations of other operating phenomena occurring concurrently with a frequency event. The impacts of these phenomena are superimposed on actual net interchange values along with the frequency response that we wish to measure through the use of the actual net interchange value.

To explore this issue further, let's begin with the idealized condition:

- frequency is fairly stable at some value near or a little below 60 Hz
- ACE of the non-contingent BA of interest is 0 and has been 0 for an extended period, and AGC control signals have not been issued recently
- Actual net interchange is "on schedule", and there are no schedule changes in the immediate future
- BA load is flat
- All generators not providing AGC are at their targets
- Variable generation such as wind and solar are not varying
- Operators have not directed any manual movements of generation recently

And when the contingency occurs in this idealized state, the change in actual net interchange will be measuring only the decline in load due to lesser frequency and generator governor response, and, none of the contaminating influences. While the ACE may become negative due to the actual frequency response being less than that called for by the frequency bias setting within the BA's AGC system, this contaminating influence on measuring frequency response will not appear in the actual net interchange value if the measurement interval ends before the generation on AGC responds.

Now let's explore the sensitivity of the resultant frequency response sampling to the relaxation of these idealized circumstances.

1. The " 60 Hz load" increases moderately due to time of day concurrent with the frequency event. If the frequency event happens before AGC or operator-directed manual load adjustments occur, then the actual net interchange will be reduced by the moderate increase in load and the frequency response will be underestimated. But if the frequency event happens while AGC response and/or manual adjustments occur, then the actual net interchange will be increased by the AGC response (and/or manual adjustments) and the frequency response will be overestimated.
2. The " 60 Hz load" decreases moderately due to time of day concurrent with the frequency event. If the frequency event happens before AGC or operator-directed manual load adjustments occur, then the actual net interchange will be increased by the moderate reduction in load and the frequency response will be overestimated. But if the frequency event happens while AGC response and/or manual adjustments occur, then the actual net interchange will be decreased by the AGC response (and/or manual adjustments) and the frequency response will be underestimated.
3. In anticipation of increasing load during the next hour, the operator increases manual generation before the load actually appears. If the frequency event happens while the generation "leading" the load is increasing, then the actual net interchange will be increased by the increase in manual generation and the frequency response will be overestimated. But if the frequency event occurs when the result of AGC signals sent to offset the operator's leading actions take effect, then the actual net interchange will be decreased and the frequency response is underestimated.
4. In anticipation of decreasing load during the next hour, the operator decreases manual generation before the load actually declines. If the frequency event happens while the generation "leading" the load downward is decreasing, then the actual net interchange will be decreased by the reduction in manual generation and the frequency response will be underestimated. But if the frequency event occurs when the result of AGC signals sent to offset the operator's leading actions take effect, then the actual net interchange will be increased and the frequency response is overestimated.
5. A schedule change to export more energy is made at 5 minutes before the top of the hour. The BA's " 60 Hz load" is not changing. The schedule change is small enough that the operator is relying on upward movement of generators on AGC to provide the additional energy to be exported. The time at which the AGC generators actually begin to provide the additional energy is dependent on how much time passes before the AGC algorithm gets out of its deadbands, the individual generator control errors get large enough for sending out the control signal, and maybe 20 seconds to 3 minutes for the response to be effected. The key point here is that it is not clear when the effects of a schedule change, as manifested in a change in generation and then ultimately a change in actual net interchange, will occur.
6. With the expected penetration of wind in the near future, unanticipated changes in their output will tend to affect actual net interchange and add noise to the frequency response observation process.

To a greater or lesser extent, 1 through 4 above are happening continuously for the most part with most BAs in the Eastern and Western Interconnections. The frequency response is buried within the typical hour to hour operational cacophony superimposed on actual net interchange values. The choice of metrics will be important to artfully extract frequency response from the noise and other unrepresentative error.

A. Introduction

1. Title: Frequency Response and Bias
2. Number: BAL-003-0.1b
3. Purpose: This standard provides a consistent method for calculating the Frequency Bias component of ACE.
4. Applicability:
4.1. Balancing Authorities.
5. Effective Date: Immediately after approval of applicable regulatory authorities.

B. Requirements

R1. Each Balancing Authority shall review its Frequency Bias Settings by January 1 of each year and recalculate its setting to reflect any change in the Frequency Response of the Balancing Authority Area.

R1.1. The Balancing Authority may change its Frequency Bias Setting, and the method used to determine the setting, whenever any of the factors used to determine the current bias value change.

R1.2. Each Balancing Authority shall report its Frequency Bias Setting, and method for determining that setting, to the NERC Operating Committee.

R2. Each Balancing Authority shall establish and maintain a Frequency Bias Setting that is as close as practical to, or greater than, the Balancing Authority's Frequency Response.
Frequency Bias may be calculated several ways:
R2.1. The Balancing Authority may use a fixed Frequency Bias value which is based on a fixed, straight-line function of Tie Line deviation versus Frequency Deviation. The Balancing Authority shall determine the fixed value by observing and averaging the Frequency Response for several Disturbances during on-peak hours.

R2.2. The Balancing Authority may use a variable (linear or non-linear) bias value, which is based on a variable function of Tie Line deviation to Frequency Deviation. The Balancing Authority shall determine the variable frequency bias value by analyzing Frequency Response as it varies with factors such as load, generation, governor characteristics, and frequency.

R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability.

R4. Balancing Authorities that use Dynamic Scheduling or Pseudo-ties for jointly owned units shall reflect their respective share of the unit governor droop response in their respective Frequency Bias Setting.

R4.1. Fixed schedules for Jointly Owned Units mandate that Balancing Authority (A) that contains the Jointly Owned Unit must incorporate the respective share of the unit governor droop response for any Balancing Authorities that have fixed schedules (B and C). See the diagram below.

R4.2. The Balancing Authorities that have a fixed schedule (B and C) but do not contain the Jointly Owned Unit shall not include their share of the governor droop response in their Frequency Bias Setting.

R5. Balancing Authorities that serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of the Balancing Authority's estimated yearly peak demand per 0.1 Hz change.

R5.1. Balancing Authorities that do not serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of its estimated maximum generation level in the coming year per 0.1 Hz change.

R6. A Balancing Authority that is performing Overlap Regulation Service shall increase its Frequency Bias Setting to match the frequency response of the entire area being controlled. A Balancing Authority shall not change its Frequency Bias Setting when performing Supplemental Regulation Service.

C. Measures

M1. Each Balancing Authority shall perform Frequency Response surveys when called for by the Operating Committee to determine the Balancing Authority's response to Interconnection Frequency Deviations.
D. Compliance

Not Specified.

E. Regional Differences

None identified.

F. Associated Documents

1. Appendix 1 - Interpretation of Requirement R3 (October 23, 2007).
2. Appendix 2 - Interpretation of Requirements R2, R2.2, R5, and R5.1 (February 12, 2008).

Version History

Version	Date	Action	Change Tracking
0	April 1, 2005	Effective Date	New
0	August 8, 2005	Removed "Proposed" from Effective Date	Errata
0	March 16, 2007	FERC Approval — Order 693	New

0a	December 19, 2007	Added Appendix 1 — Interpretation of R3 approved by BOT on October 23, 2007	Addition
0a	July 21, 2008	FERC Approval of Interpretation of R3	Addition
0b	February 12, 2008	Added Appendix 2 — Interpretation of R2, R2.2, R5, and R5.1 approved by BOT on February 12, 2008	Addition
0.1b	January 16, 2008	Section F: added "1."; changed hyphen to "en dash." Changed font style for "Appendix 1" to Arial; updated version number to "0.1b"	Errata
0.1b	October 29, 2008	BOT approved errata changes	Errata
0.1a	May 13, 2009	FERC Approved errata changes - version changed to 0.1a (Interpretation of R2, R2.2, R5, and R5.1 not yet approved)	Errata
0.1b	May 21, 2009	FERC Approved Interpretation of R2, R2.2, R5, and R5.1	Addition

Appendix 1

Interpretation of Requirement 3

Request: Does the WECC Automatic Time Error Control Procedure (WATEC) violate Requirement 3 of BAL-003-0?

Interpretation:

Requirement 3 of BAL-003-0 - Frequency Response and Bias deals with Balancing Authorities using Tie-Line Frequency Bias as the normal mode of automatic generation control.

BAL-003-0

R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability.

- Tie-Line Frequency Bias is one of the three foundational control modes available in a Balancing Authority's energy management system. (The other two are flat-tie and flat-frequency.) Many Balancing Authorities layer other control objectives on top of their basic control mode, such as automatic inadvertent payback, CPS optimization, time control (in single BA Interconnections).
- As long as Tie-Line Frequency Bias is the underlying control mode and CPS1 is measured and reported on the associated ACE equation, there is no violation of BAL-003-0 Requirement 3 :

$$
\mathrm{ACE}=\left(\mathrm{NI}_{\mathrm{A}}-\mathrm{NI}_{\mathrm{S}}\right)-10 \mathrm{~B}\left(\mathrm{~F}_{\mathrm{A}}-\mathrm{F}_{\mathrm{S}}\right)-\mathrm{I}_{\mathrm{ME}}
$$

Appendix 2

Interpretation of Requirements R2, R2.2, R5, R5.1

Request: ERCOT specifically requests clarification that a Balancing Authority is entitled to use a variable bias value as authorized by Requirement R2.2, even though Requirement 5 seems not to account for the possibility of variable bias settings.

Interpretation:

The consensus of the Resources Subcommittee is that BAL-003-0 - Frequency Response and Bias Requirement R2 does not conflict with BAL-003-0 Requirement R5.

BAL-003-0 - Frequency Response and Bias Requirement 2 requires a Balancing Authority to analyze its response to frequency excursions as a first step in determining its frequency bias setting. The Balancing Authority may then choose a fixed bias (constant through the year) per Requirement 2.1, or a variable bias (varies with load, specific generators, etc.) per Requirement 2.2.

BAL-003-0

R2. Each Balancing Authority shall establish and maintain a Frequency Bias Setting that is as close as practical to, or greater than, the Balancing Authority's Frequency Response. Frequency Bias may be calculated several ways:

R2.1. The Balancing Authority may use a fixed Frequency Bias value which is based on a fixed, straight-line function of Tie Line deviation versus Frequency Deviation. The Balancing Authority shall determine the fixed value by observing and averaging the Frequency Response for several Disturbances during on-peak hours.

R2.2. The Balancing Authority may use a variable (linear or non-linear) bias value, which is based on a variable function of Tie Line deviation to Frequency Deviation. The Balancing Authority shall determine the variable frequency bias value by analyzing Frequency Response as it varies with factors such as load, generation, governor characteristics, and frequency.

BAL-003-0 - Frequency Response and Bias Requirement 5 sets a minimum contribution for all Balancing Authorities toward stabilizing interconnection frequency. The 1% bias setting establishes a minimum level of automatic generation control action to help stabilize frequency following a disturbance. By setting a floor on bias, Requirement 5 also helps ensure a consistent measure of control performance among all Balancing Authorities within a multi-Balancing Authority interconnection. However, ERCOT is a single Balancing Authority interconnection. The bias settings ERCOT uses do produce, on average, the best level of automatic generation control action to meet control performance metrics. The bias value in a single Balancing Authority interconnection does not impact the measure of control performance.

BAL-003-0

R5. Balancing Authorities that serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of the Balancing Authority's estimated yearly peak demand per 0.1 Hz change.
R5.1. Balancing Authorities that do not serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of its estimated maximum generation level in the coming year per 0.1 Hz change.

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Unofficial Comment Form Project 2007-12 Frequency Response

Please DO NOT use this form to submit comments. Please use the electronic form to submit comments on the BAL-003-1 Frequency Response and Bias Setting. The electronic comment form must be completed by 8 p.m. ET November 5, 2012.
http://www.nerc.com/filez/standards/Frequency Response.html
If you have questions please contact Darrel Richardson at darrel.richardson@nerc.net or by telephone at (609) 613-1848.

Background I nformation

This posting is soliciting formal comment.

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be analyzed, and the reasons for the decline in Frequency Response can be identified. The standard would set a minimum Frequency Response obligation for each Balancing Authority, provide a uniform calculation of Frequency Response and Frequency Bias Settings that transition to values closer to natural Frequency Response, and encourage coordinated AGC operation.

The Drafting Team made significant modifications to the proposed standard BAL-003-1 and associated documents based on industry comments from the second posting and initial ballot. These modifications include:

- Modifying the definition for Frequency Response Measure
- Removing reference to Reserve Sharing Groups and replacing with Frequency Response Sharing Group
- Creation of definition for Frequency Response Sharing Group
- Modifying Requirement R2
- Creating a new Requirement R3 for entities using variable Frequency Bias
- Removing requirement for operating in Tie Line Bias mode
- Removing Requirement R5 and combining into revised Requirement R2 and new Requirement R3
- Modifying Attachment A to provide additional clarity
- Creating a Procedure to provide instructions for the ERO to follow in supporting the standard
- Re-writing the Background Document to incorporate additional language for justification of requirements and provide additional clarity

You do not have to answer all questions. Enter all comments in simple text format.

1. The SDT has made minor modifications to the proposed definition for Frequency Response Measure based on industry comments. Do you agree that these modifications provide sufficient clarity? If not, please explain in the comment area.

Yes
No
Comments:
2. The SDT has created a definition for Frequency Response Sharing Group. The definition is as follows:

A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members.

Do you agree with this definition? If not, please explain in the comment area.

Yes

Comments:
3. The SDT has added Requirement R3 for entities using variable Frequency Bias.

R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias Setting that is:

3.1 Less than zero at all times, and

3.3 Equal to or more negative than its Frequency Response Obligation when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$.

Do you agree with the proposed requirement? If not, please explain in the comment area.Yes
No
Comments:
4. Based on Industry comments the SDT has modified "Attachment A- Supporting Document" to provide additional clarity. Do you agree with the modifications? If not, what modifications do you disagree with?
No
Comments:
5. The SDT has moved a portion of the material located in Attachment A and all of the material located in "Attachment B- Process for Adjusting Bias Setting Floor" into a new document "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard". The SDT created this document to assign tasks to the ERO and provide instructions for the ERO to follow when carrying them out under the BAL-003-1 standard. Do you agree that the ERO should perform these tasks and that this document provides sufficient detail for the ERO to do it under the BAL-003-1 standard? If not, what needs to be added to the document?".
\square
Yes
No
Comments:
6. The SDT is now using the method detailed in the Frequency Response Initiative Report dated September 30, 2012 to calculate the Interconnection Frequency Response Obligation. Do you agree that this method provides for the proper amount of Frequency Response? If not, what specifically needs to be changed?

Comments:
7. Based on Industry comments received the SDT made significant clarifying modifications to the Background Document. Do you agree that this document provides sufficient information to justify the rationale used by the SDT in developing the draft standard and provides the industry with sufficient understanding of the issues being addressed by the standard?Yes
\square No
Comments:
8. If you are not in support of this draft standard, what modifications do you believe need to be made in order for you to support the standard? Please list the issues and your proposed solution to the issue.
\square Yes
\square No
Comments:
9. Please provide any other comments (that you have not already provided in response to the questions above) that you have on the draft standard BAL-003-1.

Comments:

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Project 2007-12 Frequency Response BAL-003-1

Mapping Document

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting		
Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
R1. Each Balancing Authority shall	This	Attachment A
review its Frequency Bias Settings by January 1 of each year and recalculate its setting	Requirement has been moved into	Balancing Authorities that merge or that transfer load or generation are encouraged to notify the ERO of the change
to reflect any change in the Frequency Response of the	BAL-003-1 Attachment A	in footprint and corresponding changes in allocation such that the net obligation to the Interconnection remains the
Balancing Authority Area. R1.1. The Balancing Authority may change its Frequency	\& FRS Form 1 as described in the Proposed	same and so that CPS limits can be adjusted. Each Balancing Authority reports its previous year's
Bias Setting, and the method used to determine	Language Section	Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the
the setting, whenever any of the factors used to		ERO each year to allow the ERO to validate the revised Frequency Bias Settings on FRS Form 1. If the ERO posts
value change. R1.2. Each Balancing Authority		the official list of events after the date specified in the timeline below, Balancing Authorities will be given 30 days
shall report its Frequency Bias Setting, and method		from the date the ERO posts the official list of events to

Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
for determining that setting, to the NERC Operating Committee.		submit their FRS Form 1. AND FRS Form 1 Note: Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1.
R2. Each Balancing Authority shall establish and maintain a Frequency Bias Setting that is as close as practical to, or greater than, the Balancing Authority's Frequency Response. Frequency Bias may be calculated several ways: R2.1. The Balancing Authority may use a fixed Frequency Bias value which is based on a fixed, straight-line function of Tie Line deviation versus Frequency Deviation. The	This Requirement is included in BAL-003-1 as described in the Proposed Language Section.	R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO. R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and is utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias setting that is:

Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
Balancing Authority shall determine the fixed value by observing and averaging the Frequency Response for several Disturbances during on-peak hours. R2.2. The Balancing Authority may use a variable (linear or non-linear) bias value, which is based on a variable function of Tie Line deviation to Frequency Deviation. The Balancing Authority shall determine the variable frequency bias value by analyzing Frequency Response as it varies with factors such as load, generation, governor characteristics, and frequency.		3.1 Less than zero at all times, and 3.2 Equal to or more negative than its Frequency Response Obligation when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$. AND Attachment A Each Balancing Authority reports its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO each year to allow the ERO to validate the revised Frequency Bias Settings on FRS Form 1. If the ERO posts the official list of events after the date specified in the timeline below, Balancing Authorities will be given 30 days from the date the ERO posts the official list of events to submit their FRS Form 1. AND FRS Form 1

Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
		Note : Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1. AND A portion of this Requirement is being phased out in accordance with the process detailed in the Procedure. This phase out is intended to bring the Frequency Bias Setting closer or equal to the natural Frequency Response.
R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability.	This Requirement has been removed from the BAL-003-1 standard.	This Requirement has been removed from proposed standard BAL-003-I. It is duplicative of BAL-005-0.1b Requirements R6 and R7. BAL-005-0.1b R6. The Balancing Authority's AGC shall compare total Net Actual Interchange to total Net Scheduled Interchange plus Frequency Bias obligation to determine the Balancing Authority's ACE. Single Balancing Authorities operating asynchronously may employ alternative ACE calculations such as (but not limited to) flat frequency control. If a Balancing Authority is unable to calculate ACE for more than 30 minutes it shall notify its

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting

| Requirement in Approved Standard |
| :--- | :--- | :--- |

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting		
Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
schedules (B and C). R4.2. The Balancing Authorities that have a fixed schedule (B and C) but do not contain the Jointly Owned Unit shall not include their share of the governor droop response in their Frequency Bias Setting.		
R5. Balancing Authorities that serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of the Balancing Authority's estimated yearly peak demand per 0.1 Hz change. R5.1. Balancing Authorities that do not serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of its estimated maximum generation level in the coming year per 0.1 Hz change.	This Requirement has been combined into Requirements R2 and R3 of BAL-003-1.	R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO. R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and is utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias setting that is: 3.1 Less than zero at all times, and 3.2 Equal to or more negative than its Frequency

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting

Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
		Response Obligation when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$.
R6. A Balancing Authority that is performing Overlap Regulation Service shall increase its Frequency Bias Setting to match the frequency response of the entire area being controlled. A Balancing Authority shall not change its Frequency Bias Setting when performing Supplemental Regulation Service.	This Requirement has been moved into BAL-003-1 Requirement R4.	R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation, in order to represent the Frequency Bias Setting for the combined Balancing Authority Area, to be equivalent to either: - The sum of the Frequency Bias Settings as shown on FRS Form 1 and FRS Form 2 for the participating Balancing Authorities as validated by the ERO, or - The Frequency Bias Setting as shown on FRS Form 1 and FRS Form 2 for the entirety of the participating Balancing Authorities' Areas.

Project 2007-12 Frequency Response BAL-003-1

Mapping Document

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting		
Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
		FRS Form 1 Note: Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1.
R2. Each Balancing Authority shall establish and maintain a Frequency Bias Setting that is as close as practical to, or greater than, the Balancing Authority's Frequency Response. Frequency Bias may be calculated several ways: R2.1. The Balancing Authority may use a fixed Frequency Bias value which is based on a fixed, straight-line function of Tie Line deviation versus Frequency Deviation. The Balancing Authority shall determine the fixed value by observing and averaging the Frequency Response for several Disturbances during on-peak hours. R2.2. The Balancing Authority may use a variable (linear or nonlinear) bias value, which is based on a variable function of Tie Line deviation to Frequency Deviation.	This Requirement is included in BAL- 003-1 as described in the Proposed Language Section.	R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO. R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and is utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias setting that is: 3.1 Less than zero at all times, and 3.2 Equal to or more negative than its Frequency Response Obligation when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$. R2. Each Balancing Authority not participating in Overlap Regulation Service shall implement the Frequency Bias Setting (fixed or variable) validated by the ERO, into its Area Control Error (ACE) calculation beginning on the date specified by the ERO to ensure effectively

[^70]BAL-003-1 Mapping Document

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting		
Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
The Balancing Authority shall determine the variable frequency bias value by analyzing Frequency Response as it varies with factors such as load, generation, governor characteristics, and frequency.		eoordinated Tie Line Bias control. AND Attachment A Each Balancing Authority shall-reports its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO on FRS Form 1 by January 10-each year to allow the ERO to validate the revised Frequency Bias Settings on FRS Form 1. If the ERO posts the official list of events after the date specified in the timeline belowDecember 10, Balancing Authorities will be given 30 days from the date the ERO posts the official list of events to submit their FRS Form 1. AND FRS Form 1 Note: Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1.

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting		
Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
		A portion of this Requirement is being phased out in accordance with the process detailed in the ProcedureAttachment B. This phase out is intended to bring the Frequency Bias Setting closer or equal to the natural Frequency Response.
R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability.	This Requirement has been removed frominte the BAL-003-1 standard Requirement R3.	R3. Each Balancing Authority not receiving Overlap Regulation Service shall-operate its Automatic Generation Control (AGC) in Tie Line Bias mode to ensure effectively coordinated control, unless such operation would have an Adverse Reliability Impact on the Balancing Authority's Area. This Requirement has been removed from proposed standard BAL-003-I. It is duplicative of BAL-0050.1 b Requirements R6 and R7. BAL-005-0.1b R6. The Balancing Authority's AGC shall compare total Net Actual Interchange to total Net Scheduled Interchange plus Frequency Bias obligation to determine the Balancing Authority's ACE. Single Balancing Authorities operating asynchronously may employ alternative ACE calculations such as (but not limited to) flat frequency control. If a Balancing Authority is unable to calculate ACE for more than 30 minutes it shall notify its Reliability Coordinator. R7. The Balancing Authority shall operate AGC continuously unless such operation adversely impacts the reliability of the Interconnection. If AGC has become inoperative, the Balancing Authority shall use manual control to adjust generation to maintain the Net Scheduled Interchange.

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting		
Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
R4. Balancing Authorities that use Dynamic Scheduling or Pseudo-ties for jointly owned units shall reflect their respective share of the unit governor droop response in their respective Frequency Bias Setting. R4.1. Fixed schedules for Jointly Owned Units mandate that Balancing Authority (A) that contains the Jointly Owned Unit must incorporate the respective share of the unit governor droop response for any Balancing Authorities that have fixed schedules (B and C). R4.2. The Balancing Authorities that have a fixed schedule (B and C) but do not contain the Jointly Owned Unit shall not include their share of the governor droop response in their Frequency Bias Setting.	This Requirement has been removed from the BAL-003-1 standard.	This Requirement addresses how to calculate Frequency Bias Settings. This is no longer needed since the Frequency Bias Settings are calculated in FRS Form 1 using Frequency Response associated with the "official" list of events and a couple of "floor or ceiling" limits (\% of peak load/gen and FRO). The entire calculation is built into the FRS Form 1 workbook.
R5. Balancing Authorities that serve native load shall have a monthly average Frequency Bias Setting that is at least 1\% of the Balancing Authority's estimated yearly peak demand per 0.1 Hz change. R5.1. Balancing Authorities that do not serve native load shall	This Requirement has been combined into Requirements R2 and R3	R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting		
Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
have a monthly average Frequency Bias Setting that is at least 1% of its estimated maximum generation level in the coming year per 0.1 Hz change.	ofmoved inte BAL-003-1 Requirement R 5 .	period specified by the ERO. R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and is utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias setting that is: 3.1 Less than zero at all times, and 3.2 Equal to or more negative than its Frequency Response Obligation when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$. R5. In order to ensure adequate control response each Balancing Authority shall use a monthly average Frequency Bias Setting whose absolute value is at least equal to one of the following: The minimum percentage of the Balaneing Authority Area's estimated yearly Peak Demand within its metered boundary per 0.1 Hz change as specified by the ERO in accordance with Attachment B. The minimum percentage of the Balancing Authority Area's estimated yearly peak generation for a generation-only Balancing Authority, per 0.1 Hz change as specified by the ERO in accordance with Attachment B.
R6. A Balancing Authority that is performing Overlap Regulation Service	This Requirement	R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in

Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
shall increase its Frequency Bias Setting to match the frequency response of the entire area being controlled. A Balancing Authority shall not change its Frequency Bias Setting when performing Supplemental Regulation Service.	has been moved into BAL-003-1 Requirement R4.	its ACE calculation, in order to represent the Frequency Bias Setting for the combined Balancing Authority Area, to be equivalent to either: - \quad The sum of the Frequency Bias Settings as shown on FRS Form 1 and FRS Form 2 for the participating Balancing Authorities as validated by the ERO, or - \quad The Frequency Bias Setting as shown on FRS Form 1 and FRS Form 2 for the entirety of the participating Balancing Authorities' Areas. R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation to be equivalent to the sum of the Frequency Bias Settings of the participating Balancing Authorities as validated by the ERO Of calculate the Frequency Bias Setting based on the entire area being combined and thereby represent the Frequency Response for the combined area being controlled.

Violation Risk Factor and Violation Severity Level Assignments

Project 2007-12 - Frequency Response

This document provides the drafting team's justification for assigning draft standard Requirement violation risk factors (VRFs) and violation severity levels (VSLs) for:

- BAL-003-1 - Frequency Response and Frequency Bias Setting

Each primary Requirement is assigned a VRF and a set of one or more VSLs. These elements support the determination of an initial value range for the Base Penalty Amount regarding violation of requirements in FERC-approved Reliability Standards, as defined in the ERO Sanction Guidelines.

J ustification for Assignment of Violation Risk Factors

The Frequency Response Standard Drafting Team applied the following NERC criteria when proposing VRFs for the requirements under this project:

High Risk Requirement

A requirement that, if violated, could directly cause or contribute to bulk electric system instability, separation, or a cascading sequence of failures, or could place the bulk electric system at an unacceptable risk of instability, separation, or cascading failures; or, a requirement in a planning time frame that, if violated, could, under emergency, abnormal, or restorative conditions anticipated by the preparations, directly cause or contribute to bulk electric system instability, separation, or a cascading sequence of failures, or could place the bulk electric system at an unacceptable risk of instability, separation, or cascading failures, or could hinder restoration to a normal condition.

Medium Risk Requirement

A requirement that, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system. However, violation of a medium risk requirement is unlikely to lead to bulk electric system instability, separation, or cascading failures; or, a requirement in a planning time frame that, if violated, could, under emergency, abnormal, or restorative conditions anticipated by the preparations, directly and adversely affect the electrical state or capability of the bulk electric system, or the ability to effectively monitor, control, or restore the bulk electric system. However, violation of a medium risk requirement is unlikely, under emergency, abnormal, or restoration conditions anticipated by the preparations, to lead to bulk electric system instability, separation, or cascading failures, nor to hinder restoration to a normal condition.

Lower Risk Requirement

A requirement that is administrative in nature and a requirement that, if violated, would not be expected to adversely affect the electrical state or capability of the bulk electric system, or the
ability to effectively monitor and control the bulk electric system; or, a requirement that is administrative in nature and a requirement in a planning time frame that, if violated, would not, under the emergency, abnormal, or restorative conditions anticipated by the preparations, be expected to adversely affect the electrical state or capability of the bulk electric system, or the ability to effectively monitor, control, or restore the bulk electric system. A planning requirement that is administrative in nature.

The SDT also considered consistency with the FERC Violation Risk Factor Guidelines for setting VRFs ${ }^{1}$:

Guideline (1) - Consistency with the Conclusions of the Final Blackout Report

The Commission seeks to ensure that Violation Risk Factors assigned to Requirements of Reliability Standards in these identified areas appropriately reflect their historical critical impact on the reliability of the Bulk-Power System.

In the VSL Order, FERC listed critical areas (from the Final Blackout Report) where violations could severely affect the reliability of the Bulk-Power System: ${ }^{2}$

- Emergency operations
- Vegetation management
- Operator personnel training
- Protection systems and their coordination
- Operating tools and backup facilities
- Reactive power and voltage control
- System modeling and data exchange
- Communication protocol and facilities
- Requirements to determine equipment ratings
- Synchronized data recorders
- Clearer criteria for operationally critical facilities
- Appropriate use of transmission loading relief

Guideline (2) — Consistency within a Reliability Standard

The Commission expects a rational connection between the sub-Requirement Violation Risk Factor assignments and the main Requirement Violation Risk Factor assignment.

Guideline (3) - Consistency among Reliability Standards
The Commission expects the assignment of Violation Risk Factors corresponding to Requirements that address similar reliability goals in different Reliability Standards would be treated comparably.

[^71]Guideline (4) — Consistency with NERC's Definition of the Violation Risk Factor Level Guideline (4) was developed to evaluate whether the assignment of a particular Violation Risk Factor level conforms to NERC's definition of that risk level.

Guideline (5) — Treatment of Requirements that Co-mingle More Than One Obligation Where a single Requirement co-mingles a higher risk reliability objective and a lesser risk reliability objective, the VRF assignment for such Requirements must not be watered down to reflect the lower risk level associated with the less important objective of the Reliability Standard.

J ustification for Assignment of Violation Severity Levels:

In developing the VSLs for the standards under this project, the SDT anticipated the evidence that would be reviewed during an audit, and developed its VSLs based on the noncompliance an auditor may find during a typical audit. The SDT based its assignment of VSLs on the following NERC criteria:

Lower	Moderate	High	Severe
Missing a minor element (or a small percentage) of the required performance The performance or product measured has significant value as it almost meets the full intent of the requirement.	Missing at least one significant element (or a moderate percentage) of the required performance. The performance or product measured still has significant value in meeting the intent of the requirement.	Missing more than one significant element (or is missing a high percentage) of the required performance or is missing a single vital component. The performance or product has limited value in meeting the intent of the requirement.	Missing most or all of the significant elements (or a significant percentage) of the required performance. The performance measured does not meet the intent of the requirement or the product delivered cannot be used in meeting the intent of the requirement.

FERC VSL guidelines are presented below, followed by an analysis of whether the VSLs proposed for each requirement in this standard meet the FERC Guidelines for assessing VSLs:

Guideline 1: Violation Severity Level Assignments Should Not Have the Unintended Consequence of Lowering the Current Level of Compliance

Compare the VSLs to any prior levels of non-compliance and avoid significant changes that may encourage a lower level of compliance than was required when levels of non-compliance were used.

Guideline 2: Violation Severity Level Assignments Should Ensure Uniformity and Consistency in the Determination of Penalties

A violation of a "binary" type requirement must be a "Severe" VSL.
Do not use ambiguous terms such as "minor" and "significant" to describe noncompliant performance.

Guideline 3: Violation Severity Level Assignment Should Be Consistent with the Corresponding Requirement

VSLs should not expand on what is required in the requirement.

Guideline 4: Violation Severity Level Assignment Should Be Based on a Single Violation, Not on a Cumulative Number of Violations

Unless otherwise stated in the requirement, each instance of non-compliance with a requirement is a separate violation. Section 4 of the Sanction Guidelines states that assessing penalties per violation per day basis is the "default" for penalty calculations.

VRF and VSL J ustification

BAL-003-1 VRF and VSL Justifications

Discussion	
Proposed Lower VSL	The summation of the Balancing Authorities' FRM within an Interconnection was equal to or more negative than the Interconnection's FRO and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 1% but by at most 30% or 15 MW/0.1 Hz, whichever one is the greater deviation from its FRO
Proposed Moderate VSL	The summation of the Balancing Authorities' FRM within an Interconnection was equal to or more negative than the Interconnection's FRO and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 30% or by more than 15 MW/0.1 Hz , whichever is the greater deviation from its FRO
Proposed High VSL	The summation of the Balancing Authorities' FRM within an Interconnection did not meet its FRO and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 1% but by at most 30% or $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever one is the greater deviation from its FRO
Proposed Severe VSL	The summation of the Balancing Authorities' FRM within an Interconnection did not meet its FRO and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 30% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO
Compliance with NERC Revised VSL Guidelines	The NERC VSL guidelines are satisfied by incorporating percentage of noncompliance performance for the calculated FRM being less negative than FRO.
FERC VSL G1 Discussion	This is not applicable since there was not a Requirement mandating a certain level of Frequency Response prior to this standard.
FERC VSL G2 Discussion	Proposed VSL's is not binary. Proposed VSL language does not include ambiguous terms and ensures uniformity and consistency in the determination of penalties based only on the amount the calculated FRM is less negative than FRO.
FERC VSL G3 Discussion	Proposed VSL's do not expand on what is required. The VSL's assigned only consider results of the calculation required. Proposed VSL's are consistent with the requirement.
FERC VSL G4 Discussion	Proposed VSL's are based on a single violation and not a cumulative violation methodology.

	Proposed VRF	Medium
	NERC VRF Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support f the contingency. This is consistent with the NERC definition.
	FERC VRF G1 Discussion	This Requirement is more administrative in nature requiring entities to implement the Frequency Bias Setting validated by the ERO. The requirement does not directly correlate to the list of critical areas identified in the FERC VRF Guideline 1. Guideline 1 appears to conflict with guideline 4. Guideline 1 identifies a list of topics that encompass nearly all topics within the NERC Reliability Standards and implies that these requirements should be assigned a High VRF. Guideline 4 directs assignment of VRFs based on the impact of a specific requirement on the reliability of the system. The SDT believes that Guideline 4 better reflects the intent for assigning VRFs for this standard since this approach is focused on the reliability impact of the requirement.
R2	FERC VRF G2 Discussion	Consistency within a Reliability Standard exists. This Requirement does not contain Parts. Requirement action is unique with respect to other standard requirements. All standard requirements have a common reliability focus relevant to Frequency Response and Frequency Bias Setting.
	FERC VRF G3 Discussion	The Requirement VRF is consistent with other BES standards addressing responsiveness. This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R1 which specifies a Lower VRF however BAL-003-1 Requirements R1, R3, and R4 specify a Medium VRF and the SDT believes it is appropriate for this Requirement to also possess a Medium VRF given the nature of the revision to BAL-003-0.1b.
	FERC VRF G4 Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support f the contingency. This is consistent with the NERC definition.
	FERC VRF G5 Discussion	This requirement does not co-mingle reliability objectives.

	Proposed Lower VSL	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting failed to implement the validated Frequency Bias Setting value into its ACE calculation within the implementation period specified but did so within 5 calendar days from the implementation period specified by the ERO.
	Proposed Moderate VSL	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 5 calendar days but less than or equal to 15 calendar days from the implementation period specified by the ERO.
	Proposed High VSL	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 15 calendar days but less than or equal to 25 calendar days from the implementation period specified by the ERO.
	Proposed Severe VSL	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting did not implement the validated Frequency Bias Setting value into its ACE calculation in more than 25 calendar days from the implementation period specified by the ERO.
	Compliance with NERC Revised VSL Guidelines	The NERC VSL guidelines are satisfied by incorporating increments for tardiness implementing the validated Frequency Bias Setting into the ACE calculation.
	FERC VSL G1 Discussion	This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R1 which specifies a Lower VRF. Proposed VSL's meet or exceed the current threshold of compliance.
	FERC VSL G2 Discussion	Proposed VSL's is not binary. Proposed VSL language does not include ambiguous terms and ensures uniformity and consistency in the determination of penalties based only on how late the validated Frequency Bias Setting is implemented.
	FERC VSL G3 Discussion	Proposed VSL's do not expand on what is required. The VSL's assigned only consider performance of required action. Proposed VSL's are consistent with the requirement.
	FERC VSL G4	Proposed VSL's are based on a single violation and not a cumulative

	Discussion	violation methodology.
R3	Proposed VRF	Medium
	NERC VRF Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting in its ACE equation and would provide support for a contingency. This is consistent with the NERC definition.
	FERC VRF G1 Discussion	This Requirement is more administrative in nature requiring entities to implement a Frequency Bias Setting validated by the ERO. The requirement does not directly correlate to the list of critical areas identified in the FERC VRF Guideline 1. Guideline 1 appears to conflict with guideline 4. Guideline 1 identifies a list of topics that encompass nearly all topics within the NERC Reliability Standards and implies that these requirements should be assigned a High VRF. Guideline 4 directs assignment of VRFs based on the impact of a specific requirement on the reliability of the system. The SDT believes that Guideline 4 better reflects the intent for assigning VRFs for this standard since this approach is focused on the reliability impact of the requirement.
	FERC VRF G2 Discussion	Consistency within a Reliability Standard exists. This Requirement does not contain Parts. Requirement action is unique with respect to other standard requirements. All standard requirements have a common reliability focus relevant to Frequency Response and Frequency Bias Setting.
	FERC VRF G3 Discussion	The Requirement VRF is consistent with other BES standards addressing responsiveness. This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R1 which specifies a Lower VRF however BAL-003-1 Requirements R1, R2, and R4 specify a Medium VRF and the SDT believes it is appropriate for this Requirement to also possess a Medium VRF given the nature of the revision to BAL-003-0.1b.
	FERC VRF G4 Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support for a contingency. This is consistent with the NERC definition.
	FERC VRF G5	This requirement does not co-mingle reliability objectives.

Discussion	
Proposed Lower VSL	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock- minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 1\% but by at most 10\%.
Proposed Moderate VSL	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock- minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 10\% but by at most 20\%.
Proposed High VSL	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock- minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 20\% but by at most 30\%.
Proposed Severe VSL	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock- minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response obligation by more than 30\%..
oERC VSL G1 Discussion	The NERC VSL guidelines are satisfied by incorporating percentage of noncompliance performance for the calculated average Frequency Bias Setting being less negative than its minimum as defined in Attachment B.
FERC VSL G2	This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R1 which specifies a Medium VRF. Proposed VSL’s meet or exceed the current threshold of compliance.
Discussion	Proposed VSL is not binary. Proposed VSL language does not include ambiguous terms and ensures uniformity and consistency in the determination of penalties based on the calculated average Frequency Bias Setting being less negative than its minimum as defined in Attachment B.

	FERC VSL G3 Discussion	Proposed VSL does not expand on what is required. The VSLs assigned only consider compliance with the Frequency Bias Setting calculation and implementation required. Proposed VSL's are consistent with the requirement.
	FERC VSL G4 Discussion	Proposed VSL's are based on a single violation and not a cumulative violation methodology.
	Proposed VRF	Medium
	NERC VRF Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support f the contingency. This is consistent with the NERC definition. In addition, this Requirement VRF is consistent with the BAL-003-0 Requirement which has been approved by FERC.
R4	FERC VRF G1 Discussion	This Requirement is more administrative in nature requiring entities providing Overlap Regulation Services to correctly increase its Frequency Bias Setting. The requirement does not directly correlate to the list of critical areas identified in the FERC VRF Guideline 1. Guideline 1 appears to conflict with guideline 4. Guideline 1 identifies a list of topics that encompass nearly all topics within the NERC Reliability Standards and implies that these requirements should be assigned a High VRF. Guideline 4 directs assignment of VRFs based on the impact of a specific requirement on the reliability of the system. The SDT believes that Guideline 4 better reflects the intent for assigning VRFs for this standard since this approach is focused on the reliability impact of the requirement.
	FERC VRF G2 Discussion	Consistency within a Reliability Standard exists. This Requirement does not contain Parts. Requirement action is unique with respect to other standard requirements. All standard requirements have a common reliability focus relevant to Frequency Response and Frequency Bias Setting.
	FERC VRF G3 Discussion	The Requirement VRF is consistent with other BES standards addressing responsiveness. This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R6 which specifies a Medium VRF
	FERC VRF G4 Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Previous year’s Frequency Bias Setting already in its ACE equation } \\ \text { and would provide support f the contingency. This is consistent with } \\ \text { the NERC definition. In addition, this Requirement VRF is consistent } \\ \text { with the BAL-003-0 Requirement which has been approved by } \\ \text { FERC. }\end{array} \\ \hline \begin{array}{l}\text { FERC VRF G5 } \\ \text { Discussion }\end{array} & \text { This requirement does not co-mingle reliability objectives. } \\ \hline \text { Proposed Lower VSL } & \begin{array}{l}\text { The Balancing Authority incorrectly changed the Frequency Bias } \\ \text { Setting value used in its ACE calculation when providing Overlap } \\ \text { Regulation Services with combined footprint setting error less than } \\ \text { 10\% of the validated or calculated value. }\end{array} \\ \hline \text { Proposed Moderate VSL } & \begin{array}{l}\text { The Balancing Authority incorrectly changed the Frequency Bias } \\ \text { Setting value used in its ACE calculation when providing Overlap } \\ \text { Regulation Services with combined footprint setting error more than } \\ \text { 10\% but less than or equal to 20\% of the validated or calculated value }\end{array} \\ \hline \text { Proposed High VSL } & \begin{array}{l}\text { The Balancing Authority incorrectly changed the Frequency Bias } \\ \text { Setting value used in its ACE calculation when providing Overlap } \\ \text { Regulation Services with combined footprint setting error more than } \\ \text { 20\% but less than or equal to 30\% of the validated or calculated } \\ \text { value. }\end{array} \\ \hline \text { Proposed Severe VSL } & \begin{array}{l}\text { The Balancing Authority incorrectly changed the Frequency Bias } \\ \text { Setting value used in its ACE calculation when providing Overlap } \\ \text { Regulation Services with setting error more than 30\% of the validated } \\ \text { or calculated value. }\end{array} \\ \hline \begin{array}{l}\text { FERC VSL G1 } \\ \text { Discussion }\end{array} & \begin{array}{l}\text { The Balancing Authority failed to change the Frequency Bias Setting } \\ \text { value used in its ACE calculation when providing Overlap Regulation } \\ \text { Services }\end{array} \\ \hline \begin{array}{l}\text { FERC VSL G2 } \\ \text { Discussion }\end{array} & \begin{array}{l}\text { The NERC VSL guidelines are satisfied by incorporating percentage } \\ \text { of noncompliance performance for the absolute value of the } \\ \text { Balancing Authorities' calculated monthly average Frequency Bias } \\ \text { Setting being below the minimum percentage specified by the ERO. } \\ \text { The VSL also includes a binary requirement for failing to change the } \\ \text { Frequency Bias Setting value when providing Overlap Regulation } \\ \text { Services. }\end{array} \\ \hline \text { Compliance with NERC Requirement is similar in concept to the current enforceable } \\ \text { Revised VSL Guidelines } \\ \text { BAL-003-0.1b Requirement R6 which specifies a Medium VRF. } \\ \text { Proposed VSL’s meet or exceed the current threshold of compliance. }\end{array}\right\}$

| | by the ERO or if the entity fails to change the Frequency Bias Setting
 value when providing Overlap Regulation Services. |
| :--- | :--- | :--- |
| FERC VSL G3
 Discussion | Proposed VSL's do not expand on what is required. The VSL's
 assigned only consider results of the calculation required and if the
 Frequency Bias Setting is correctly set when providing Overlap
 Regulation Services. Proposed VSL's are consistent with the
 requirement. |
| FERC VSL G4
 Discussion | Proposed VSL's are based on a single violation and not a cumulative
 violation methodology. |

Violation Risk Factor and Violation Severity Level Assignments

Project 2007-12 - Frequency Response

This document provides the drafting team's justification for assigning draft standard Requirement violation risk factors (VRFs) and violation severity levels (VSLs) for:

- BAL-003-1 — Frequency Response and Frequency Bias Setting

Each primary Requirement is assigned a VRF and a set of one or more VSLs. These elements support the determination of an initial value range for the Base Penalty Amount regarding violation of requirements in FERC-approved Reliability Standards, as defined in the ERO Sanction Guidelines.

Justification for Assignment of Violation Risk Factors

The Frequency Response Standard Drafting Team applied the following NERC criteria when proposing VRFs for the requirements under this project:

High Risk Requirement

A requirement that, if violated, could directly cause or contribute to bulk electric system instability, separation, or a cascading sequence of failures, or could place the bulk electric system at an unacceptable risk of instability, separation, or cascading failures; or, a requirement in a planning time frame that, if violated, could, under emergency, abnormal, or restorative conditions anticipated by the preparations, directly cause or contribute to bulk electric system instability, separation, or a cascading sequence of failures, or could place the bulk electric system at an unacceptable risk of instability, separation, or cascading failures, or could hinder restoration to a normal condition.

Medium Risk Requirement

A requirement that, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system. However, violation of a medium risk requirement is unlikely to lead to bulk electric system instability, separation, or cascading failures; or, a requirement in a planning time frame that, if violated, could, under emergency, abnormal, or restorative conditions anticipated by the preparations, directly and adversely affect the electrical state or capability of the bulk electric system, or the ability to effectively monitor, control, or restore the bulk electric system. However, violation of a medium risk requirement is unlikely, under emergency, abnormal, or restoration conditions anticipated by the preparations, to lead to bulk electric system instability, separation, or cascading failures, nor to hinder restoration to a normal condition.

Lower Risk Requirement

A requirement that is administrative in nature and a requirement that, if violated, would not be expected to adversely affect the electrical state or capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system; or, a requirement that is administrative in nature and a requirement in a planning time frame
that, if violated, would not, under the emergency, abnormal, or restorative conditions anticipated by the preparations, be expected to adversely affect the electrical state or capability of the bulk electric system, or the ability to effectively monitor, control, or restore the bulk electric system. A planning requirement that is administrative in nature.

The SDT also considered consistency with the FERC Violation Risk Factor Guidelines for setting VRFs ${ }^{1}$:

Guideline (1) — Consistency with the Conclusions of the Final Blackout Report The Commission seeks to ensure that Violation Risk Factors assigned to Requirements of Reliability Standards in these identified areas appropriately reflect their historical critical impact on the reliability of the Bulk-Power System.

In the VSL Order, FERC listed critical areas (from the Final Blackout Report) where violations could severely affect the reliability of the Bulk-Power System: ${ }^{2}$

- Emergency operations
- Vegetation management
- Operator personnel training
- Protection systems and their coordination
- Operating tools and backup facilities
- Reactive power and voltage control
- System modeling and data exchange
- Communication protocol and facilities
- Requirements to determine equipment ratings
- Synchronized data recorders
- Clearer criteria for operationally critical facilities
- Appropriate use of transmission loading relief

Guideline (2) — Consistency within a Reliability Standard

The Commission expects a rational connection between the sub-Requirement Violation
Risk Factor assignments and the main Requirement Violation Risk Factor assignment.

Guideline (3) — Consistency among Reliability Standards

The Commission expects the assignment of Violation Risk Factors corresponding to Requirements that address similar reliability goals in different Reliability Standards would be treated comparably.

Guideline (4) - Consistency with NERC's Definition of the Violation Risk Factor Level
 Guideline (4) was developed to evaluate whether the assignment of a particular Violation Risk Factor level conforms to NERC's definition of that risk level.

[^72]
Guideline (5) - Treatment of Requirements that Co-mingle More Than One Obligation

Where a single Requirement co-mingles a higher risk reliability objective and a lesser risk reliability objective, the VRF assignment for such Requirements must not be watered down to reflect the lower risk level associated with the less important objective of the Reliability Standard.

Justification for Assignment of Violation Severity Levels:

In developing the VSLs for the standards under this project, the SDT anticipated the evidence that would be reviewed during an audit, and developed its VSLs based on the noncompliance an auditor may find during a typical audit. The SDT based its assignment of VSLs on the following NERC criteria:

Lower	Moderate	High	Severe
Missing a minor element (or a small percentage) of the required performance The performance or product measured has significant value as it almost meets the full intent of the requirement.	Missing at least one significant element (or a moderate percentage) of the required performance. The performance or product measured still has significant value in meeting the intent of the requirement.	Missing more than one significant element (or is missing a high percentage) of the required performance or is missing a single vital component. The performance or product has limited value in meeting the intent of the requirement.	Missing most or all of the significant elements (or a significant percentage) of the required performance. The performance measured does not meet the intent of the requirement or the product delivered cannot be used in meeting the intent of the requirement.

FERC VSL guidelines are presented below, followed by an analysis of whether the VSLs proposed for each requirement in this standard meet the FERC Guidelines for assessing VSLs:

Guideline 1: Violation Severity Level Assignments Should Not Have the Unintended Consequence of Lowering the Current Level of Compliance

Compare the VSLs to any prior levels of non-compliance and avoid significant changes that may encourage a lower level of compliance than was required when levels of noncompliance were used.

Guideline 2: Violation Severity Level Assignments Should Ensure Uniformity and Consistency in the Determination of Penalties

A violation of a "binary" type requirement must be a "Severe" VSL.
Do not use ambiguous terms such as "minor" and "significant" to describe noncompliant performance.

Guideline 3: Violation Severity Level Assignment Should Be Consistent with the Corresponding Requirement

VSLs should not expand on what is required in the requirement.
Guideline 4: Violation Severity Level Assignment Should Be Based on a Single Violation, Not on a Cumulative Number of Violations

Unless otherwise stated in the requirement, each instance of non-compliance with a requirement is a separate violation. Section 4 of the Sanction Guidelines states that assessing penalties per violation per day basis is the "default" for penalty calculations.

VRF and VSL Justification

BAL-003-1 VRF and VSL Justifications

Proposed VRF	Medium
NERC VRF Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support for the contingency. This is consistent with the NERC definition.
FERC VRF G1 Discussion	This Requirement is more administrative in nature requiring calculated FRM to be equal to or more negative than FRO. The requirement does not directly correlate to the list of critical areas identified in the FERC VRF Guideline 1. Guideline 1 appears to conflict with guideline 4. Guideline 1 identifies a list of topics that encompass nearly all topics within the NERC Reliability Standards and implies that these requirements should be assigned a High VRF. Guideline 4 directs assignment of VRFs based on the impact of a specific requirement on the reliability of the system. The SDT believes that Guideline 4 better reflects the intent for assigning VRFs for this standard since this approach is focused on the reliability impact of the requirement.
R1	Consistency within a Reliability Standard exists. This Requirement does not contain Parts. Requirement action is unique with respect to other standard requirements. All standard requirements have a common reliability focus relevant to Frequency Response and Frequency Bias Setting.
Discussion	

FERC VSL G3 Discussion Proposed VSL's do not expand on what is required. The VSL's assigned only consider results of the calculation required. Proposed VSL's are consistent with the requirement. FERC VSL G4 Discussion Proposed VSL's are based on a single violation and not a cumulative violation methodology. Proposed VRF Medium NERC VRF Discussion This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support f the contingency. This is consistent with the NERC definition. FERC VRF G1 Discussion This Requirement is more administrative in nature requiring entities to implement the Frequency Bias Setting validated by the ERO. The requirement does not directly correlate to the list of critical areas identified in the FERC VRF Guideline 1. Guideline 1 appears to conflict with guideline 4. Guideline 1 identifies a list of topics that encompass nearly all topics within the NERC Reliability Standards and implies that these requirements should be assigned a High VRF. Guideline 4 directs assignment of VRFs based on the impact of a specific requirement on the reliability of the system. The SDT believes that Guideline 4 better reflects the intent for assigning VRFs for this standard since this approach is focused on the reliability impact of the requirement.
R2

	FERC VRF G5 Discussion	This requirement does not co-mingle reliability objectives.
	Proposed Lower VSL	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting failed to implement the validated Frequency Bias Setting value into its ACE calculation within the implementation period specified but did so within 5 calendar days from the implementation period specified by the ERO. The Balancing Authority failed to implement the validated Frequency Bias Setting value in to its ACE calculation on the date specified but did so within 5 calendar days following the date specified by the ERO.
	Proposed Moderate VSL	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 5 calendar days but less than or equal to 15 calendar days from the implementation period specified by the ERO. The Balaneing Authority implemented the validated Frequeney Bias Setting value in to its ACE calculation in more than 5 calendar days but less than or equal to 15 calendar days following the date specified by the ERO.
	Proposed High VSL	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 15 calendar days but less than or equal to 25 calendar days from the implementation period specified by the ERO. The Balancing Authority implemented the validated Frequency Bias Setting value in to its ACE calculation in more than 15 calendar days following the date specified by the ERO, but the new Bias Setting was within 10% of the previous year's Bias Setting
	Proposed Severe VSL	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting did not implement the validated Frequency Bias Setting value into its ACE calculation in more than 25 calendar days from the implementation period specified by the ERO. The Balancing Authority implemented the validated Frequency Bias Setting value in to its ACE calculation in more than 15 calendar days following the date specified by the ERO and the Bias Setting was more than 10% different from the previous year.
	Compliance with NERC Revised VSL Guidelines	The NERC VSL guidelines are satisfied by incorporating increments for tardiness implementing the validated Frequency Bias Setting into the ACE calculation..

	FERC VSL G1 Discussion	This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R1 which specifies a Lower VRF. Proposed VSL's meet or exceed the current threshold of compliance.
	FERC VSL G2 Discussion	Proposed VSL's is not binary. Proposed VSL language does not include ambiguous terms and ensures uniformity and consistency in the determination of penalties based only on how late the validated Frequency Bias Setting is implemented.
	FERC VSL G3 Discussion	Proposed VSL's do not expand on what is required. The VSL's assigned only consider performance of required action. Proposed VSL's are consistent with the requirement.
	FERC VSL G4 Discussion	Proposed VSL's are based on a single violation and not a cumulative violation methodology.
R3	Proposed VRF	Medium
	NERC VRF Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting in its ACE equation and would provide support for a contingency who was not operating its AGC in Tie Line Bias would typically be the only Balancing Authority that is operating in this manner and the rest of the Balancing Authorities would pick up the slack. In addition, this Requirement VRF is the same as the BAL 003-0 standard VRF and was approved by FERC. This is consistent with the NERC definition.
	FERC VRF G1 Discussion	This Requirement is more administrative in nature requiring entities to implement a Frequency Bias Setting validated by the EROeperate AGC in Tie Line Bias mode. The requirement does not directly correlate to the list of critical areas identified in the FERC VRF Guideline 1. Guideline 1 appears to conflict with guideline 4. Guideline 1 identifies a list of topics that encompass nearly all topics within the NERC Reliability Standards and implies that these requirements should be assigned a High VRF. Guideline 4 directs assignment of VRFs based on the impact of a specific requirement on the reliability of the system. The SDT believes that Guideline 4 better reflects the intent for assigning VRFs for this standard since this approach is focused on the reliability impact of the requirement.
	FERC VRF G2 Discussion	Consistency within a Reliability Standard exists. This Requirement does not contain Parts. Requirement action is unique with respect to other standard requirements. All standard requirements have a common reliability focus relevant to Frequency Response and Frequency Bias Setting.
	FERC VRF G3 Discussion	The Requirement VRF is consistent with other BES standards addressing responsiveness. This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R1 which

		specifies a Lower VRF however BAL-003-1 Requirements R1, R2, and R4 specify a Medium VRF and the SDT believes it is appropriate for this Requirement to also possess a Medium VRF given the nature of the revision to BAL-003-0.1b.R3 which specifies a Medium VRF
	FERC VRF G4 Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support for a contingency who was not operating its AGC in Tie Line Bias would typically be the only Balaneing Authority that is operating in this manner and the rest of the Balancing Authorities would pick up the slack. In addition, this Requirement VRF is the same as the BAL-003-0 standard VRF and was approved by FERG. This is consistent with the NERC definition.
	FERC VRF G5 Discussion	This requirement does not co-mingle reliability objectives.
	Proposed Lower VSL	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clockminute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 1% but by at most 10%. The Balaneing Authority could not provide the type of evidence as outlined in Measure M3 that Tie Line Bias is the normal mode of AGC.
	Proposed Moderate VSL	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clockminute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 10% but by at most 20\%.N/A
	Proposed High VSL	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clockminute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligtation by more than 20% but by at most 30%. A spot check during an audit found the Balaneing Authority's AGC out of Tie Line Bias mode without documentation supporting the need to operate in a different AGC mode.

Proposed Severe VSL		The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clockminute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response obligation by more than 30%.. A system event occurred and it was found that a contributing factor was that the Balaneing Authority failed to operate AGC in Tie Line Bias mode.
	Compliance with NERC Revised VSL Guidelines	The NERC VSL guidelines are satisfied by incorporating percentage of noncompliance performance for the calculated average Frequency Bias Setting being less negative than its minimum as defined in Attachment B. The NERC VSL guidelines are satisfied by incorporating a binary requirement for failing to operating AGC in Tie Line Bias mode when an Adverse Reliability Impact did not exist.
	FERC VSL G1 Discussion	This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R13 which specifies a Medium VRF. Proposed VSL's meet or exceed the current threshold of compliance.
	FERC VSL G2 Discussion	Proposed VSL is not binary. Proposed VSL language does not include ambiguous terms and ensures uniformity and consistency in the determination of penalties based enly on the calculated average Frequency Bias Setting being less negative than its minimum as defined in Attachment B.if AGC is not operating in Tie Line Bias mode umless there is an Adverse Reliability Impact.
	FERC VSL G3 Discussion	Proposed VSL does not expand on what is required. The VSLs assigned only consider compliance with the Frequency Bias Setting calculation and implementationAGC control mode status required. Proposed VSL's are consistent with the requirement.
	FERC VSL G4 Discussion	Proposed VSL's are based on a single violation and not a cumulative violation methodology.
	Proposed VRF	Medium
R4	NERC VRF Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support f the contingency. This is consistent with the NERC definition. In addition, this Requirement VRF is consistent with the BAL-003-0 Requirement which has been approved by FERC.
	FERC VRF G1 Discussion	This Requirement is more administrative in nature requiring entities providing Overlap Regulation Services to correctly increase its Frequency Bias Setting. The requirement does not directly correlate to the list of critical areas identified in the FERC VRF Guideline 1.

	Guideline 1 appears to conflict with guideline 4. Guideline 1 identifies a list of topics that encompass nearly all topics within the NERC Reliability Standards and implies that these requirements should be assigned a High VRF. Guideline 4 directs assignment of VRFs based on the impact of a specific requirement on the reliability of the system. The SDT believes that Guideline 4 better reflects the intent for assigning VRFs for this standard since this approach is focused on the reliability impact of the requirement.				
FERC VRF G2 Discussion	Consistency within a Reliability Standard exists. This Requirement does not contain Parts. Requirement action is unique with respect to other standard requirements. All standard requirements have a common reliability focus relevant to Frequency Response and Frequency Bias Setting.				
FERC VRF G3 Discussion	The Requirement VRF is consistent with other BES standards addressing responsiveness. This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R6 which specifies a Medium VRF				
FERC VRF G4 Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support f the contingency. This is consistent with the NERC definition. In addition, this Requirement VRF is consistent with the BAL-003-0 Requirement which has been approved by FERC.				
FERC VRF G5	This requirement does not co-mingle reliability objectives.				
Discussion		$	$	Proposed Lower VSL	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with combined footprint setting error less than 105\% of the validated or calculatedeorrect value.
:---	:---				
Proposed High VSL Moderate VSL	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with combined footprint setting error more than 105\% but less than or equal to 2015\% of the validated or calculatedeorreet value				
The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services with combined footprint setting error more than 2015\% but less than or equal to 3025\% of the validated or calculatedeorreet value.					

| Proposed Severe VSL | The Balancing Authority incorrectly changed the Frequency Bias
 Setting value used in its ACE calculation when providing Overlap
 Regulation Services with setting error more than 3025\% of the
 validated or calculatedeorrect value.
 OR |
| :--- | :--- | :--- |
| | The Balancing Authority failed to change the Frequency Bias Setting
 value used in its ACE calculation when providing Overlap Regulation
 Services |
| Compliance with NERC
 Revised VSL Guidelines | The NERC VSL guidelines are satisfied by incorporating percentage
 of noncompliance performance for the absolute value of the
 Balancing Authorities' calculated monthly average Frequency Bias
 Setting being below the minimum percentage specified by the ERO.
 The VSL also includes a binary requirement for failing to change the
 Frequency Bias Setting value when providing Overlap Regulation
 Services. |
| FERC VSL G1
 Discussion | This Requirement is similar in concept to the current enforceable
 BAL-003-0.1b Requirement R6 which specifies a Medium VRF.
 Proposed VSL's meet or exceed the current threshold of compliance. |
| FERC VSL G2
 Discussion | Proposed VSL's has both a percentage of noncompliance
 performance and binary element. The binary element is designated
 severe. Proposed VSL language does not include ambiguous terms
 and ensures uniformity and consistency in the determination of
 penalties based only on the amount the calculated monthly average
 Frequency Bias Setting is below the minimum percentage specified
 by the ERO or if the entity fails to change the Frequency Bias Setting
 value when providing Overlap Regulation Services. |
| | Proposed VSL's do not expand on what is required. The VSL's
 assigned only consider results of the calculation required and if the
 Frequency Bias Setting is correctly set when providing Overlap
 Regulation Services. Proposed VSL's are consistent with the
 requirement. |
| FERC VRF G1 | |
| Diseussion | |

	meets specified criteria. The requirement does not directly correlate to the list of critical areas identified in the FERC VRF Guideline - 1. Guideline 1 appears to conflict with guideline 4. Guideline 1 identifies a list of topies that encompass nearly all topics within the NERC Reliability Standards and implies that these requirements should be assigned a High VRF. Guideline 4 directs assignment of VRFs based on the impact of a specific requirement on the reliability of the system. The SDT believes that Guideline 4 better reflects the intent for assigning VRFs for this standard since this approach is focused on the reliability impact of the requirement.
FERC VRF GZ Discussion	Gonsistency within a Reliability Standard exists. This Requirement does not contain Parts. Requirement action is unique with respect to ether standard requirements. All stamdard requirements have a common reliability focus relevant to Frequency Response and Frequency Bias Setting.
FERC VRF G3 Discussion	The Requirement VRF is consistent with other BES standards addressing responsiveness. This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R5 which specifies a Medium VRF
FERC VRF G4 Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or eascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support f the contingency. This is consistent with the NERC definition. In addition, this Requirement VRF is consistent with the BAL-003-0 Requirement which has been approved by FERC.
FERC VRF G5 Discussion	This requirement does not co-mingle reliability objectives.
Proposed Lower VSL	The absolute value of the Balaneing Authorities' calculated monthly average Frequency Bias Setting is 5% or less below the minimum specified by the ERO.
Proposed Moderate VSL	The absolute value of the Balancing Authorities' calculated monthly average Frequency Bias Setting is more than 5% but less than or equal to 15% below the minimum specified by the ERO.
Proposed High VSL	The absolute value of the Balancing Authorities' calculated monthly average Frequency Bias Setting is more than 15% but less than or equal to 25% below the minimum specified by the ERO.
Proposed Severe VSL	The absolute value of the Balaneing Authorities' calculated monthly average Frequency Bias Setting is more than 25% below the minimum specified by the ERO.
Gompliance with NERC Revised VSL Guidelines	The NERC VSL guidelines are satisfied by incorporating percentage of noncompliance performance for the calculated monthly average

	Frequency Bias Setting absolute value being below the minimumm specified by the ERO.
FERC VSL G1 Discussion	This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R5 which specifies a Medium VRF. Proposed VSL's meet or exceed the current threshold of compliance.
FERC VSL GZ Discussion	Propesed VSL's is not binary. Propesed VSL language does not inelude ambiguous terms and ensures uniformity and consistency in the determination of penalties based only on the amount the ealculated monthly average Frequency Bias Setting absolute value is below the minimum specified by the ERO.
FERC VSL G3 Discussion	Propesed VSL's do not expand on what is required. The VSL's assigned only consider results of the calculation required. Proposed VSL's are consistent with the requirement.
FERC VSL G4 Discussion	Proposed VSL's are based on a single violation and not a cummulative violation methodology.

Step 2 For identified events in column C of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list.
Detailed Instructions for utilizing the "Adjustments" are located on the "Adjustments" worksheet below the table,
Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list.
Step 4 Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells C7 through D18. Use Copy/PasteSpecial/Values to enter data Your current year's Frequency Response Obligation will be calculated in cell R20 of the "Data Entry" worksheet.
a) If a Fixed Bias was selected, cell R27 will calculate the minimum Bias (least negative) allowed based on your Peak Demand or Peak Generation for Generation only BAs b) If a Fixed Bias was selected, cell R28 will calculate the minimum (in absolute terms) Bias allowed based on 100% of your FRN d) If R29 was more negative than the value in R27, you may choose a Bias setting that is between R29 and the lesser of R27 or R28 and enter it here. Based on your choice, your Bias Setting wil appear in cell R 33 .

Step 6 -a) If a Variable Bias was selected, cell R27 will indicate "not applicable" where there is no maximum or minimum Bias Setting. a Variable Bias was selected, enter "Variable" in cell R31.
c) If a Variable Bias was selected, cell R30 will calculate the minimum Bias (in absolute terms) allowed based on your FRM and Peak Demand/Peak Generation. Calculate your monthly one minute average Variable Bias setting when frequency is lower than 59.964 Hz or higher than 60.036 Hz and enter these monthly values on the "Variable Bias Supplemental Info" worksheet in cells B2 through D13.
an俍 e) Depending on when the Implementation date is each year for the annual Bias Setting, the ERO may be required to edit the selection of each months' minimum average FBS value. This should be completed by the ERO before each year's FRS Form 1 is published.
analysis prior to the current year and the dates in the table starting at J 3 will indicate the appropriate year's data to use. For example, if it is Feb 1, 2013 and you are calculating your 2012 FBS time weigted average, the minimum FBS value will be determined from your FRM that you calculated in Feb of 2012 and based on the Peak Demand/Peak Gen reported in June of 2011 for 2010 data. Enter each field in green using the appropriate year's data.
Two FRMs are calculated. One for the BA Bias Setting and one for meeting R1 of the standard
The FRM for the BA Bias Setting will use all selected events and all SEFRD values will use the delta frequency as measured
The FRM for the BA compliance to R1 will limit the delta frequency to no greater than those listed in Table 2 of Attachment A for each Interconnection. (Eastern $+/-0.500 \mathrm{~Hz}$, Western $+/-0.500 \mathrm{~Hz}$, ERCOT $+/-0.700 \mathrm{~Hz}$ and HQ $+/-1.500 \mathrm{~Hz}$.)

Step 7 Save this workbook using the following file name format:NYISO_yyyy_FRS_Form_1.9.xlsx. (where NYISO is replaced with your Balancing Authority abbreviation). See cell "G74" on the Data Entry worksheet for your exact file name.
Step 8

Report 714 Data (in MW) Part II Schedule 3	
Column (b) Month	Column (j) Peak Demand
January	
February	
March	
April	
May	
June	
July	
August	
September	
October	
November	
December	
Average	
Maximum	

	Balancing Authority	MyBA	Jou Dynamic Schedules		$\begin{gathered} \text { Non } \\ \text { conforming } \\ \text { Looad } \end{gathered}$		Pumped Hydro		Not Used		Transferred Frequency Response		Contingent BAAdjustment		$\begin{gathered}\text { Net Total } \\ \text { Adjustments }\end{gathered}$Vatue $\mathbf{B} 20$ to 5 2 seconds
Even		Deifrea		Valus ${ }^{\text {Vatuen }}$	Value ${ }_{\text {Vatismen }}$	Adistuen	Salue	Adiusment	dajusment	Adisusment			Adiustent		
			${ }_{0}^{0.0}$	0,0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	0.0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	0.0 0.0
			0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0	0.0 0.0 0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0	0.0 0.0 0	0.0 0.0 0.0
${ }_{6}^{5}$			0.0 0.0 0.0	0.0 0.0 0.0	a, 0.0 0.0	0.0 0.0 0.0	a, 0.0 0.0	0.0 0.0 0.0	(100	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	(0,	a, 0 0.0 0	0.0 0.0
$\stackrel{6}{7}$			0.0 0.0 0.0	(0.0	(0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	-	(eo
$\stackrel{8}{9}$			0.0 0.0 0 0	0.0 0.0 0 0	0.0 0.0 0	0.0 0.0 0 0	0.0 0.0 0 0	0.0 0.0 0 0	0.0 0.0 0	0.0 0.0 0.0	0.0 0.0 0	0.0 0.0 0	0.0 0.0 0	0.0 0.0 0 0	0.0 0.0 0.0
${ }_{11}^{11}$			0.0 0	${ }^{0.0}$	-0.0	0.0 0.0 0	-0.0	-0.0	0.0 0.0	-0.0	-0.0	0.0 0.0	-0.0	-0.0	000
${ }_{\substack{12 \\ 14}}^{14}$			0.0 0.0 0 0	0.0 0.0 0 0	0.0 0.0 0 0	0.0 0.0 0 0	0.0 0.0 0 0	0.0 0.0 0 0	0.0 0.0 0	0.0 0.0 0 0	0.0 0.0 0 0	0.0 0 0 0	0.0 0.0 0 0	0.0 0.0 0 0	0.0 0.0 0
14 ${ }_{16}$ 16 16			0.0 0.0 0.0	0.0 0 0	0.0 0 0	0.0 0 0 0	0.0 0 0 0	0.0 0 0	0.0 0 0.0 0	0.0 0 0	0.0 0 0	-0.0	0.0 0.0 0	0.0 0 0	0.0 0.0 0
${ }_{17}^{16}$			0.0 0.0	0.0 0.0	0.0 0.0 0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$
${ }_{19}^{18}$			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0	0.0 0.0	0.0 0.0	0.0 0.0	0	0.0 0.0
${ }_{21}^{20}$			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
22			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$	0.0	0.0	0.0	0.0	0.0
$\begin{aligned} & 20 \\ & 25 \\ & 25 \end{aligned}$			0.0 0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0 0.0 0	0.0 0.0 0	0.0 0.0 0	0.0 0.0	0.0 0.0 0	0.0 0.0	0.0 0.0 0	0.0 0.0	-0,
${ }^{26}$			0.0 0.0 0	-0,	0.0 0.0	0.0 0.0 0	-0.0	0.0 0.0 0	0.0 0.0 0	0.0 0.0 0	0.0 0.0	${ }_{0}^{0.0}$	-	0.0 0.0 0	0.0 0.0
${ }_{28}^{27}$			0.0 0.0	0.0 0.0		0.0 0.0	0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	¢00	0.0 0.0		0.0 0.0	0.0 0.0
${ }_{30}^{29}$			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$	0.0 0.0	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$
${ }_{31}^{31}$			0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0
$\begin{aligned} & 36 \\ & 34 \\ & 34 \end{aligned}$			0.0 0.0	0.0 0.0 0.0	0.0 0.0 0	0.0 0.0 0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
${ }_{3}^{35}$			${ }^{0.0}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	${ }^{0.0}$	${ }^{0.0}$	${ }_{0}^{0.0}$	${ }^{0.0}$	0.0
${ }^{3}$									0.0 0.0 0		0.0 0.0		-0.0		
			0.0	${ }_{0}^{0} 0$	0	0.0	0.0	0.0	0.0 0	0.0 0.0	-0,	${ }_{0}^{0.0}$	-0,	0.0 0.0	0
${ }_{40}^{39}$			-0.0	-0.0	0.0	0.0 0 0	-0.0	-0.0	000	0.0 0 0	000	-0.0	-0.0	0.0 0 0	-0,
${ }_{41}$						0.0				0.0	0.0	0.0	0.0		0.0
			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Sign Convention for scan data collected in Form 2		mports: MWs are Exports: MWs are		Loads in MW as		Load MW as -Generation MW as +		Enter Gen MW as +		amount in MW Receiver enters - Deliverer enters + on Form 2 Data she		$\begin{aligned} & \text { Generation MW as + } \\ & \text { (If demand occurs due to gen } \\ & \text { loss, enter MW as - at value } \\ & \text { B) } \end{aligned}$		

Instructions for utilizing Adiustments:

2)

5) Ranping Uniss -values an opsitive values.

Full name	Abbreviat ion	Offset	Time zone
Atlantic Daylight Time	ADT	$3: 00$	UTC -3 hours
Atlantic Standard Time	AST	$4: 00$	UTC -4 hours
Central Daylight Time	CDT	$5: 00$	UTC -5 hours
Central Standard Time	CST	$6: 00$	UTC -6 hours
Eastern Daylight Time	EDT	$4: 00$	UTC -4 hours
Eastern Standard Time	EST	5:00	UTC -5 hours
Mountain Daylight Time	MDT	$6: 00$	UTC -6 hours
Mountain Standard Time	MST	$7: 00$	UTC -7 hours
Pacific Daylight Time	PDT	$7: 00$	UTC -7 hours
Pacific Standard Time	PST	$8: 00$	UTC -8 hours

50.020 Monday, January 30, 2012

Friday, March 23, 2012

Saturday, April 14, 2012

Friday, May 04, 2012

$T+166$ Performance Adjusted P.U. Based on Bias Sete netting

FPl. NERC Freavencor Resonsens mianave

Step 2 For identified events in column C of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list.
Detailed Instructions for utilizing the "Adjustments" are located on the "Adjustments" worksheet below the table,
Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list.
Step 4 Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells C7 through D18. Use Copy/PasteSpecial/Values to enter data Your current year's Frequency Response Obligation will be calculated in cell R20 of the "Data Entry" worksheet.
a) If a Fixed Bias was selected, cell R27 will calculate the minimum Bias (least negative) allowed based on your Peak Demand or Peak Generation for Generation only BAs b) If a Fixed Bias was selected, cell R28 will calculate the minimum (in absolute terms) Bias allowed based on 100% of your FRN d) If R29 was more negative than the value in R27, you may choose a Bias setting that is between R29 and the lesser of R27 or R28 and enter it here. Based on your choice, your Bias Setting wil appear in cell R 33 .

Step 6 -a) If a Variable Bias was selected, cell R27 will indicate "not applicable" where there is no maximum or minimum Bias Setting. a Variable Bias was selected, enter "Variable" in cell R31.
c) If a Variable Bias was selected, cell R30 will calculate the minimum Bias (in absolute terms) allowed based on your FRM and Peak Demand/Peak Generation. Calculate your monthly one minute average Variable Bias setting when frequency is lower than 59.964 Hz or higher than 60.036 Hz and enter these monthly values on the "Variable Bias Supplemental Info" worksheet in cells B2 through D13.
an俍 e) Depending on when the Implementation date is each year for the annual Bias Setting, the ERO may be required to edit the selection of each months' minimum average FBS value. This should be completed by the ERO before each year's FRS Form 1 is published.
analysis prior to the current year and the dates in the table starting at J 3 will indicate the appropriate year's data to use. For example, if it is Feb 1, 2013 and you are calculating your 2012 FBS time weigted average, the minimum FBS value will be determined from your FRM that you calculated in Feb of 2012 and based on the Peak Demand/Peak Gen reported in June of 2011 for 2010 data. Enter each field in green using the appropriate year's data.
Two FRMs are calculated. One for the BA Bias Setting and one for meeting R1 of the standard
The FRM for the BA Bias Setting will use all selected events and all SEFRD values will use the delta frequency as measured
The FRM for the BA compliance to R1 will limit the delta frequency to no greater than those listed in Table 2 of Attachment A for each Interconnection. (Eastern $+/-0.500 \mathrm{~Hz}$, Western $+/-0.500 \mathrm{~Hz}$, ERCOT $+/-0.700 \mathrm{~Hz}$ and HQ $+/-1.500 \mathrm{~Hz}$.)

Step 7 Save this workbook using the following file name format:NYISO_yyyy_FRS_Form_1.9.xlsx. (where NYISO is replaced with your Balancing Authority abbreviation). See cell "G74" on the Data Entry worksheet for your exact file name.
Step 8

Report 714 Data (in MW) Part II Schedule 3	
Column (b) Month	Column (j) Peak Demand
January	
February	
March	
April	
May	
June	
July	
August	
September	
October	
November	
December	
Average	
Maximum	

	Balancing Authority	ercot	$\begin{gathered} \text { Load } \\ \text { Resources } \\ \text { Tripped } \end{gathered}$		$\begin{gathered} \text { Non } \\ \text { conforming } \\ \text { Load } \end{gathered}$		Not Used		Not Used		Not Used		Not Used		(Net Total
Event		Deffrea		$\xrightarrow{\text { ajulus }}$ Ademt	${ }_{\text {a }}^{\text {Valusue } e n}$	Aajusment		${ }_{\text {adiusmen }}$		${ }_{\text {dajusumen }}^{\text {value }}$		${ }_{\text {ate }}$		${ }_{\text {diulumen }}^{\text {Value }}$	Value 200152 secoonds
			0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	0.0	0	${ }^{0.0}$	0
${ }^{3}$			0	0.0	0	0	0.0	0	0	0	0	0.0	0.0	0	0.0
			-0.0	000	-0.0	0.0 0 0	0	000	-	-0.0	- 00	00	0	-0,	000
			0	0	0,	0	\%00	0	-0.0	0	000	0	0.0	-0,	0
9			-0.0	0.0 0.0	0.0 0.0 0	0.0 0.0 0	0.0	0.0 0.0 0	0.0 0.0 0	-0.0	0.0 0 0	0	0	0.0 0.0 0	0.0
${ }_{11}^{10}$			000	0.0 0.0	-0.0	0.0 0.0	0.0 0.0	0,0	0.0 0.0	0	0.0 0.0	${ }_{0}^{0.0}$	0	0.0 0.0	0.0 0.0
${ }_{13}^{12}$			${ }_{0}^{0.0}$	0.0 0.0	0.0 0.0	0.0 0.0	0	$\stackrel{0.0}{0.0}$	0.0 0.0	0.0 0.0	${ }^{0.0} 0$	${ }_{0}^{0.0}$	0	0.0 0.0 0.0	0.0 0.0
$\begin{aligned} & 10 \\ & { }_{15}^{10} \end{aligned}$			0.0 0.0	0,0	0,0	0.0 0.0	0.0	0	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$	0	-0.0	0	0.0
$1{ }^{16}$			0	0	0	0	0.0	0	0	0.0	0.0	0	0.0	0.0	0.0
${ }_{18}^{17}$			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$	0.0 0.0	0.0 0.0	0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	0.0	0.0 0.0 0.0	0
${ }_{20}^{19}$			0.0 0.0	0.0 0.0		0.0 0.0	-0.0	0.0 0.0		0.0 0.0	-0.0	0.0 0.0	-0.	0.0 0.0 0.0	0.0
${ }_{22}^{21}$			0.0 0.0	-0.0	0.0 0.0	0,0	0.0	0,0		0,0	0,00	0,0	0.0	-0.0	0
${ }^{24}$			-0,	-	(-0,	\%	-	-	0,0	-	0,	-	-	-0,
$\begin{aligned} & 26 \\ & 20 \\ & 20 \end{aligned}$			0.0 0.0	0.0 0.0 0	0.0 0.0	0.0 0.0	-0.0	0.0 0.0	0.0 0.0 0	0.0 0.0	0.0 0.0	-	-	0.0 0.0 0.0	(0,0
$\begin{aligned} & 26 \\ & 28 \\ & 28 \end{aligned}$			loin	0.0 0.0 0.0	0.0 0.0 0	-	-	0.0 0.0 0	0.0 0.0 0.0	-	0.0 0.0 0.0	¢0,	-	0.0 0.0 0.0	(100
${ }_{30}^{29}$			0.0 0.0	10 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	loio	-	0.0 0.0 0.0 0.0	0.0 0.0 0
${ }_{31}$			${ }_{0} 0$	${ }_{0} 0.0$	${ }_{0}^{0} 0$	${ }_{0} 0.0$	0.0	0.0	0.0	${ }_{0} 0.0$	${ }_{0} 0$	${ }_{0}^{0} 0$	0.0	${ }_{0} 0$	0.0
$\begin{aligned} & 32 \\ & 33 \\ & 33^{3} \end{aligned}$			0.0 0.0 0	0.0 0.0	0.0 0.0 0	0.0 0.0 0	0		-0.0				0	-0.0	
$\begin{aligned} & { }_{34}^{33} \end{aligned}$			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$	0	0	0.0
$\begin{aligned} & 35 \\ & 36 \end{aligned}$			-0.0	-0,	0,	-0,	0	0	0,0	000	-0.0	0	0	0	000
${ }_{\substack{37 \\ 38 \\ 38}}$			0.0 0.0 0.0	0.0 0.0 0.0	0, 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	loio	loin	0.0 0.0 0.0	(0,
${ }^{39}$			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	${ }^{0.0}$	0.0	0.0	0.0
40			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	${ }_{0} 0$	0.0	0.0	0.0
${ }_{42}^{41}$	仡		0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$
	Sign Convention for scan data collected in Form 2		Imports: MWs are Exports: MWs are		Loads in MW as -		Load MW as -Generation MW as +		Enter Gen MW as +		MW amount in Deliverer enters on Form 2 Data she		Generation MW as +(If demand occurs due to genloss, enter MW as - at valueB)		

Instructions for utilizing Adiustments:

5) Ranping Uniss -values an opsitive values.

Coningent Balancing Authority Adisument
.

Full name	Abbreviat ion	Offset	Time zone
Atlantic Daylight Time	ADT	$3: 00$	UTC -3 hours
Atlantic Standard Time	AST	$4: 00$	UTC -4 hours
Central Daylight Time	CDT	$5: 00$	UTC -5 hours
Central Standard Time	CST	$6: 00$	UTC -6 hours
Eastern Daylight Time	EDT	$4: 00$	UTC -4 hours
Eastern Standard Time	EST	5:00	UTC -5 hours
Mountain Daylight Time	MDT	$6: 00$	UTC -6 hours
Mountain Standard Time	MST	$7: 00$	UTC -7 hours
Pacific Daylight Time	PDT	$7: 00$	UTC -7 hours
Pacific Standard Time	PST	$8: 00$	UTC -8 hours

FPl NeRC F Fevemencr Resonose nemanave

The

T+166 Performance Adjusted P.U. Based on Bias Setting

Step 4 Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells C7 through D18. Use Copy/PasteSpecial/Values to enter data. Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells

Step 5 a) If a Fixed Bias was selected, cell R27 will calculate the minimum Bias (least negative) allowed based on your Peak Demand or Peak Generation for Generation only BAs b) If a Fixed Bias was selected, cell R28 will calculate the minimum (in absolute terms) Bias allowed based on 100% of your FRM c) If a Fixed Bias was selected, cell R29 will calculate the maximum Bias (in absolute terms) allowed based on 125% of your FRM
d) If R29 was more negative than the value in R27, you may choose a Bias setting that is between R29 and the lesser of R27 or R28 and enter it here. Based on your choice, your Bias Setting will appear in cell R33.
Step 6 a) If a Variable Bias was selected, cell R27 will indicate "not applicable" where there is no maximum or minimum Bias Setting,
) If a Variable Bias was selected, enter "Variable" in cell R31.
c) If a Variable Bias was selected, cell R30 will calculate the minimum Bias (in absolute terms) allowed based on your FRM and Peak Demand/Peak Generation. Calculate your monthly one minute average Variable Bias setting when frequency is lower than 59.964 Hz or higher than 60.036 Hz and enter these monthly values on the "Variable Bias Supplemental Info" worksheet in cells B2 through d) If the "average annual Variable Bias Setting" in cell D14 on the "Variable Bias Supplemental Info" worksheet is less negative than cell E14 of this worksheet, R3 of the standard has not been met and cell D14 on the "Variable Bias Supplementa Info" worksheet will turn red. The average minimum Bias Setting will cover two different reporting periods and Cells J3 through K10 require past year's data from those year's Form 1 s for this evaluation.
e) Depending on when the Implementation date is each year for the annual Bias Setting, the ERO may be required to edit the selection of each months' minimum average FBS value. This should be ompleted by the ERO before each year's FRS Form 1 is published.
example, if it is Feb 1, 2013 and you are calculating your 2 previous year's analysis prior to the current year and the dates in the table starting at J 3 will indicate the appropriate year's data to use. For he Peak Demand/Peak Gen reported in June of 2011 for 2010 FBS time weigted average, the minimum FBS value will be determined from your FRM that you calculated in Feb of 2012 and based on - 2010 data. Enter each field in green using the appropriate year's data.

Two FRMs are calculated. One for the BA Bias Setting and one for meeting R1 of the standard
The FRM for the BA Bias Setting will use all selected events and all SEFRD values will use the delta frequency as measured.
he FRM for the BA compliance to R1 will limit the delta frequency to no greater than those listed in Table 2 of Attachment A for each Interconnection. (Eastern $+/-0.500 \mathrm{~Hz}$, Western $+/-0.500 \mathrm{~Hz}$, ERCOT $+/-0.700 \mathrm{~Hz}$ and $\mathrm{HQ}+/-1.500 \mathrm{~Hz}$.)

Step 7 Save this workbook using the following file name format:NYISO_yyy__FRS_Form_1.9.xlsx. (where NYISO is replaced with your Balancing Authority abbreviation). See cell "G74" on the Data Entry worksheet for your exact file name. Step 8 Send completed Form 1 and each Form 2 to NERC.

$\begin{array}{c}\text { Report 714 Data (in MW) } \\ \text { Part II Schedule 3 }\end{array}$	
Column (b)	
Month	

Peak Demand\end{array}\right]\)

	Balancing Authority	HQT	Load Resources Tripped		Non conforming Load		Not Used		Not Used		Not Used		Not Used		Net Total Adjustments
Event Number	Date/Time (t-0) (Central Prevailing)	DelFreq	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value B 20 to 52 seconds
1			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
32			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
33			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
34			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
36			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
37			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
42			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Sign Convention for scan data collected in Form 2

Instructions for utilizing Adjustments:

1) Balancing Authorities making adjustments must retain evidence to verify

Adjustment values are determined from scan-cycle data using Value A and Value B averaging periods. Scan-cycle data must be available if adjustments are made. Adjustments are necessary to improve accuracy of calculations compared to using Net Actual Interchange solely.
Said differently, unless an adjustment compensates for significant known error, it should not be made. However, as noted in the next item, once a decision to include an adjustment for one or more of the five types is made for one event, the entity must calculate adjustments for that (those) type(s) for all events except for the Contengent BA Adjustment which is only utilized for the events that you are contengent during that event.

Adjustments are included consistently for all events (e.g. if adjustments for nonconforming load are made for one event, the load must be included for all events, etc.).
2) Dynamic Schedules:

Adjustments should include only dynamic schedules accounting for joint-owned units. Other dynamic schedules should be ignored
3) Nonconforming Loads:

- Values must be negative numbers.

4) Pumped Hydro:

Values for pumping must be negative values

- Values for generating must be positive values.

5) Rampling Units

Values are positive values.
6) Transferred Frequency Response:

This value is the amount agreed upon between the entities expressed in MW/0.1 Hz . Form 2 will adjust this amount for the frequency deviation experienced
(e.g. if an entity agrees to provide $20 \mathrm{MW} / 0.1 \mathrm{~Hz}$ to another entity and a frequency event with a deviation of 50 mHz occurs, the delivering entity should enter +20 in the data column of Form 2 and the receiving entity should enter - 20. The spreadsheet will adjust the SEFRD for each entity by the 10 for this event.)
Values for the entity receiving the response must be entered as a negative number.
Values for the entity delivering the response must be entered as a positive number.
Values between entities must sum to zero
7) Contingent Balancing Authority Adjustment

Data for Value A is the pre-contingency scan rate generation (+MW values) from the contingent unit(s).
Data for Value B is usually 0 MW , but may be the demand (-MW values) that remains on the system that was "netted" out by the now offline generation.

Time
Time weighted ** weighted ${ }^{* *}$ minimum average FBS* for month month

alancing Authority: HOT

1899 Reporting period FRS Form 1 data
0.001899 Reporting period: Balancinig Authority FRM MW/0.1 Hz, enter from FRS Form 1 for that year's FRM. If not know enter zero.
1.00\% 1899 Reporting period: Interconnection Minimum Fixed Frequency Bias Setting \% of Peak Demand or Peak Generation (Set by ERO) 1899 Reporting period: Your BA's Annual Peak Demand or Peak Gen for Gen only BAs from your BA Form 714.
0.00 Your BA's lowest absolute Fixed Frequency Bias Setting based on BA Peak Demand (Peak Generation for Generation only BA) MW/0.1 Hz
0.00 Your BA's lowest absolute Fixed Frequency Bias Setting based on 100% of FRM.
0.001900 Minimum, lowest absolute, conditional average Frequency Bias Setting MW/ 0.1 Hz

* Frequency Bias Setting (FBS)
${ }^{* *}$ Based on the one minute values used in BAL 001 when frequency is greater than 60.036 Hz or less than 59.964 Hz .

Full name	Abbreviat ion	Offset	Time zone
Atlantic Daylight Time	ADT	$3: 00$	UTC -3 hours
Atlantic Standard Time	AST	$4: 00$	UTC -4 hours
Central Daylight Time	CDT	$5: 00$	UTC -5 hours
Central Standard Time	CST	$6: 00$	UTC -6 hours
Eastern Daylight Time	EDT	$4: 00$	UTC -4 hours
Eastern Standard Time	EST	5:00	UTC -5 hours
Mountain Daylight Time	MDT	$6: 00$	UTC -6 hours
Mountain Standard Time	MST	$7: 00$	UTC -7 hours
Pacific Daylight Time	PDT	$7: 00$	UTC -7 hours
Pacific Standard Time	PST	$8: 00$	UTC -8 hours

II- NERC F Fequency Response iniaidive

 Sone basic obsenvaions toon tilis staxa

Step 2 For identified events in column C of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list. Detailed Instructions for utilizing the "Adjustments" are located on the "Adjustments" worksheet below the table.
Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list.
Step 4 Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells C7 through D18. Use Copy/PasteSpecial/Values to enter data Your current year's Frequency Response Obligation will be calculated in cell R20 of the "Data Entry" Worksheet.
a) If a Fixed Bias was selected, cell R27 will calculate the minimum Bias (least negative) allowed based on your Peak Demand or Peak Generation for Generation only BAs. b) If a Fixed Bias was selected, cell R28 wil calculate the minimum (in absolute terms) Bias allowed based on 100% of your FRN.
d) If R29 was more negative than the value in R27, you may choose a Bias setting that is between R29 and the lesser of R27 or R28 and enter it here. Based on your choice, your Bias Setting wil appear in cell R33.

Step 6 a) If a Variable Bias was selected, cell R27 will indicate "not applicable" where there is no maximum or minimum Bias Setting. If a Variable Bias was selected, enter "Variable" in cell R31.
c) If a Variable Bias was selected, cell R30 will calculate the minimum Bias (in absolute terms) allowed based on your FRM and Peak Demand/Peak Generation. Calculate your monthly one minute average Variable Bias setting when frequency is lower than 59.964 Hz or higher than 60.036 Hz and enter these monthly values on the "Variable Bias Supplemental Info" worksheet in cells B2 through D13
dell D14 average annual Variable Bias Setting" in cell D14 on the "Variable Bias Supplemental Info" worksheet is less negative than cell E14 of this worksheet, R3 of the standard has not been met and
 e) those year's Form 1 is for this evaluation.
completed by the whe the Implementation date is each year for the an completed by the ERO before each year's FRS Form 1 is published
 the Peak Demand/Peak Gen reported in June of 2011 for 2010 data. data. Enter each field in green using the appropriate year's data.
Two FRMs are calculated. One for the BA Bias Setting and one for meeting R1 of the standard
The FRM for the BA Bias Setting will use all selected events and all SEFRD values will use the delta frequency as measured
 ERCOT $+/-0.700 \mathrm{~Hz}$ and $\mathrm{HQ}+/-1.500 \mathrm{~Hz}$.)
Step 7 Save this workbook using the following file name format:NYISO_yyyy_FRS_Form_1.9.x|sx. (where NYISO is replaced with your Balancing Authority abbreviation). See cell "G74" on the Data Entry worksheet for your exact file name.
Step 8 Send completed Form 1 and each Form 2 to NERC.

Report 714 Data (in MW) Part II Schedule 3 Column (b) Month	
January	Column (j) Peak Demand
February	
March	
April	
May	
June	
July	
August	
September	
October	
November	
December	
Average Maximum	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& Balancing Authority \& МувA \& \multicolumn{2}{|l|}{$$
\begin{gathered}
\text { Jou } \\
\text { Dynamic } \\
\text { Schedules }
\end{gathered}
$$} \& \multicolumn{2}{|l|}{$$
\begin{gathered}
\text { Non } \\
\text { conforming } \\
\text { Load } \\
\hline
\end{gathered}
$$} \& \multicolumn{2}{|l|}{Pumped Hydro} \& \multicolumn{2}{|l|}{Not Used} \& \multicolumn{2}{|l|}{Transferred Frequency Response} \& \multicolumn{2}{|l|}{Contingent BA Adjustment} \& $$
\begin{array}{|c|}
\hline \text { Net Total } \\
\text { Adjustments } \\
\hline
\end{array}
$$

\hline Event \& \& Deffreq \& \& ${ }_{\text {Adiusment }}^{\text {value }}$ \& Adiustmen \& Adiustmen \& Adiusmen \& ${ }_{\text {Adiustme }}$ Vat \& Adiusmen \& ${ }_{\text {Adiusmen }}^{\text {value }}$ \& \& ${ }_{\text {Adjusment }}$ \& Adiustmen \& Adiustment \&

\hline ${ }_{2}^{1}$ \& \& \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0

0 \& ${ }_{0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0

\hline ${ }_{4}^{3}$ \& \& \& 0,0 \& -0.0 \& 0.0
0
0 \& -0.0 \& -0.0 \& 0.0 \& 0,0 \& 000 \& 0.0 \& 000 \& -0.0 \& 0,0 \& 0,0

\hline 5 \& \& \& 0.0 \& 0 \& 0.0 \& 0.0 \& ${ }^{0.0}$ \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline 7 \& \& \& 0.0 \& 0 \& 0.0 \& 000 \& 0 \& 0 \& 0 \& 0.0 \& 000 \& 0 \& 0 \& 0 \& 0.0

\hline ${ }_{9}^{8}$ \& \& \& 0.0
0.0 \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0 \& 0.0

\hline \& \& \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline $$
\begin{aligned}
& 11 \\
& { }_{12}
\end{aligned}
$$ \& \& \& ${ }_{0}^{0.0}$ \& 0.0

0.0 \& -0.0 \& - \& -0.0 \& 0.0 \& -0.0 \& ${ }^{0.0}$ \& -0.0 \& ${ }_{0}^{0.0}$ \& 0.0 \& 0 \& 0.0

\hline $$
\begin{aligned}
& 12 \\
& 14 \\
& 14
\end{aligned}
$$ \& \& \& ${ }_{0}^{0.0}$ \& 0.0

0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0

0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& ${ }_{0.0}^{0.0}$

\hline 15
16
16 \& \& \& 0.0
0.0 \& 0.0
0.0
0 \& 0.0
0.0
0 \& 0.0
0.0
0.0 \& 0.0
0.0

0 \& 0.0
0.0
0.0 \& 0.0
0.0
0 \& 0.0
0.0 \& 0.0
0.0
0 \& 0.0
0.0 \& 0.0
0.0
0 \& 0.0 \& 0.0

\hline ${ }_{18}^{17}$ \& \& \& 000 \& 0 \& 000 \& 000 \& 000 \& 000 \& 000 \& 0 \& 000 \& 0 \& ${ }_{0}^{0.0}$ \& 000 \& 0

\hline ${ }_{20}^{19}$ \& \& \& 0.0
0.0
0.0 \& 0.0
0.0
0.0
0.0 \& 0.0
0.0
0.0
0.0 \& 0.0
0.0
0.0
0.0 \& 0.0
0.0
0.0
0.0 \& 0.0
0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0

\hline ${ }_{21}^{20}$ \& \& \& 0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline \& \& \& 0.0
0.0 \& 0.0
0.0 \& \& \& 0.0
0.0 \& \& \& \& 0.0 \& 0 \& 0.0
0.0

0 \& \& 0.0

\hline ${ }_{24}^{23}$ \& \& \& -0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& -0.0 \& -0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& -0.0 \& -0.0 \& 0.0

\hline 25
26 \& \& \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0

0 \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& ${ }_{0.0}^{0.0}$

\hline ${ }_{28}^{27}$ \& \& \& 0.0
0.0
0 \& 0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0

\hline 29
30 \& \& \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$

\hline ${ }^{31}$ \& \& \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& ${ }_{0} 0.0$ \& 0.0

\hline ${ }_{33}^{32}$ \& \& \& 0.0 \& | 0.0 |
| :--- |
| 0.0 | \& 0.0

0
0 \& 0.0
0.0
0 \& 0.0
0
0 \& 0 \& 0.0 \& 0.0
0
0 \& \& \& \& 0.0 \& 0.0

\hline 33
34 \& \& \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$

\hline ${ }^{35}$ \& \& \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline -36 \& \& \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& 0.0 \& 0.0 \& 0.0 \& ${ }^{0.0}$ \& 0.0

\hline ${ }_{38}$ \& \& \& ${ }_{0}^{0.0}$ \& 0.0 \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& 0.0

\hline ${ }^{39}$ \& \& \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& 0.0 \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& 0.0

\hline ${ }_{41}$ \& \& \& \& \& \& \& \& \& \& \& \& 0 \& \& \&

\hline $$
\begin{aligned}
& 41 \\
& 42
\end{aligned}
$$ \& \& \& 0.0

0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0

\hline \& Sign Convention for data collected in Fo \& \[
$$
\begin{aligned}
& \text { scan } \\
& \mathrm{m} 2
\end{aligned}
$$

\] \& \multicolumn{2}{|l|}{| Imports: MWs are - |
| :--- |
| Exports: MWs are |} \& \multicolumn{2}{|l|}{Loads in MW as -} \& \multicolumn{2}{|l|}{Load MW as -

Generation MW as} \& \multicolumn{2}{|l|}{Enter Gen Mw as +} \& \multicolumn{2}{|l|}{amount in Weceiver enters on Form 2 Data shee} \& \multicolumn{2}{|l|}{Generation MW as +
(If demand occurs due to gen
loss, enter MW as - at value B)} \&

\hline
\end{tabular}

Instructions for utilizing Adjustments:

2) Dynamic Scheduses
3) Noncontoming Loads:

5) ${ }^{\text {5) }}$ Rampling Units: -values are positive values.
6) Transerend Fiequency Response - This value is the anount asteed upon

 \qquad

Time
Time weighted ** weighted ${ }^{* *}$ minimum average FBS* for FBS for
month

| Minimum
 FBS* for
 month | Maximum
 FBS* for
 month | weighted
 average
 FBS* for
 month |
| :---: | :---: | :---: | | |
| :---: |
| FBS* for
 month |
| merage |
| mont |

Balancing Authority: MyBA
1899 Reporting period FRS Form 1 data
0.001899 Reporting period: Balancinig Authority FRM MW/0.1 Hz, enter from FRS Form 1 for that year's FRM. If not know enter zero.
$1.00 \% 1899$ Reporting period: Interconnection Minimum Fixed Frequency Bias Setting \% of Peak Demand or Peak Generation (Set by ERO) 1899 Reporting period: Your BA's Annual Peak Demand or Peak Gen for Gen only BAs from your BA Form 714
0.00 Your BA's lowest absolute Fixed Frequency Bias Setting based on BA Peak Demand (Peak Generation for Generation only BA) MW/0.1 Hz
0.00 Your BA's lowest absolute Fixed Frequency Bias Setting based on 100% of FRM.
0.001900 Minimum, lowest absolute, conditional average Frequency Bias Setting MW/ 0.1 Hz

* Frequency Bias Setting (FBS)
${ }^{* *}$ Based on the one minute values used in BAL 001 when frequency is greater than 60.036 Hz or less than 59.964 Hz .

Full name	Abbreviat ion	Offset	Time zone
Atlantic Daylight Time	ADT	$3: 00$	UTC -3 hours
Atlantic Standard Time	AST	$4: 00$	UTC -4 hours
Central Daylight Time	CDT	$5: 00$	UTC -5 hours
Central Standard Time	CST	$6: 00$	UTC -6 hours
Eastern Daylight Time	EDT	$4: 00$	UTC -4 hours
Eastern Standard Time	EST	5:00	UTC -5 hours
Mountain Daylight Time	MDT	$6: 00$	UTC -6 hours
Mountain Standard Time	MST	$7: 00$	UTC -7 hours
Pacific Daylight Time	PDT	$7: 00$	UTC -7 hours
Pacific Standard Time	PST	$8: 00$	UTC -8 hours

Saturday, April 14, 2012

Monday, April 30, 2012

FR1- NeRC F Fequency Response nitaidive

Sone basic obsenaions toom his satax

Step 4 Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells C7 through D18. Use Copy/PasteSpecial/Values to enter data. Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells

Step 5 a) If a Fixed Bias was selected, cell R27 will calculate the minimum Bias (least negative) allowed based on your Peak Demand or Peak Generation for Generation only BAs b) If a Fixed Bias was selected, cell R28 will calculate the minimum (in absolute terms) Bias allowed based on 100% of your FRM c) If a Fixed Bias was selected, cell R29 will calculate the maximum Bias (in absolute terms) allowed based on 125% of your FRM
d) If R29 was more negative than the value in R27, you may choose a Bias setting that is between R29 and the lesser of R27 or R28 and enter it here. Based on your choice, your Bias Setting will appear in cell R33.
Step 6 a) If a Variable Bias was selected, cell R27 will indicate "not applicable" where there is no maximum or minimum Bias Setting,
) If a Variable Bias was selected, enter "Variable" in cell R31.
c) If a Variable Bias was selected, cell R30 will calculate the minimum Bias (in absolute terms) allowed based on your FRM and Peak Demand/Peak Generation. Calculate your monthly one minute average Variable Bias setting when frequency is lower than 59.964 Hz or higher than 60.036 Hz and enter these monthly values on the "Variable Bias Supplemental Info" worksheet in cells B2 through d) If the "average annual Variable Bias Setting" in cell D14 on the "Variable Bias Supplemental Info" worksheet is less negative than cell E14 of this worksheet, R3 of the standard has not been met and cell D14 on the "Variable Bias Supplementa Info" worksheet will turn red. The average minimum Bias Setting will cover two different reporting periods and Cells J3 through K10 require past year's data from those year's Form 1 s for this evaluation.
e) Depending on when the Implementation date is each year for the annual Bias Setting, the ERO may be required to edit the selection of each months' minimum average FBS value. This should be ompleted by the ERO before each year's FRS Form 1 is published.
example, if it is Feb 1, 2013 and you are calculating your 2 previous year's analysis prior to the current year and the dates in the table starting at J 3 will indicate the appropriate year's data to use. For he Peak Demand/Peak Gen reported in June of 2011 for 2010 FBS time weigted average, the minimum FBS value will be determined from your FRM that you calculated in Feb of 2012 and based on - 2010 data. Enter each field in green using the appropriate year's data.

Two FRMs are calculated. One for the BA Bias Setting and one for meeting R1 of the standard
The FRM for the BA Bias Setting will use all selected events and all SEFRD values will use the delta frequency as measured.
he FRM for the BA compliance to R1 will limit the delta frequency to no greater than those listed in Table 2 of Attachment A for each Interconnection. (Eastern $+/-0.500 \mathrm{~Hz}$, Western $+/-0.500 \mathrm{~Hz}$, ERCOT $+/-0.700 \mathrm{~Hz}$ and $\mathrm{HQ}+/-1.500 \mathrm{~Hz}$.)

Step 7 Save this workbook using the following file name format:NYISO_yyy__FRS_Form_1.9.xlsx. (where NYISO is replaced with your Balancing Authority abbreviation). See cell "G74" on the Data Entry worksheet for your exact file name. Step 8 Send completed Form 1 and each Form 2 to NERC.

\square

$\begin{array}{c}\text { Report 714 Data (in MW) } \\ \text { Part II Schedule 3 }\end{array}$	
Column (b)	
Month	

Peak Demand\end{array}\right]\)

Eve	Balancing Authority	ERCOT	Load Resources Tripped		Non conforming Load		Not Used		Not Used		Not Used		Not Used		Net Total Adjustments
	$\begin{gathered} \text { Date/TTime }(t-0) \\ \text { (Central Prevailing) } \\ \hline \end{gathered}$	DelFreq	$\begin{array}{\|c\|} \hline \text { Value A } \\ \text { Adjustment } \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \text { Value } A \\ \text { Adjustment } \end{array}$	$\begin{array}{\|c\|} \hline \text { Value B } \\ \text { t Adjustment } \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline \text { Value A } \\ \text { Adjustment } \\ \hline \end{array}$	Value B Adjustment	$\begin{array}{\|c\|} \hline \text { Value A } \\ \text { Adjustment } \\ \hline \end{array}$	Value B Adjustment	$\begin{array}{\|c\|} \hline \text { Value A } \\ \text { Adjustment } \\ \hline \end{array}$	$\begin{gathered} \text { Value B } \\ \text { Adjustment } \end{gathered}$	Value B 20 to 52 seconds
1			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{2}$			0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
${ }_{4}^{3}$			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0
5			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7			0.0	0.0 0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0
8												0.0	0.0	0.0	
10			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0
11			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15 16			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
17			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
22			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24 25 25			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25 26			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
27			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28			0.0	0.0	0.0	0.0	0.0	0.0	0.0	${ }_{0} 0$	0.0	0.0	0.0	0.0	0.0
29			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }^{33}$			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
34			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
36			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
37 38			0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0
39			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }^{42}$			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Sign Convention for data collected in Fo	$\begin{aligned} & \text { scan } \\ & \text { rcm } \end{aligned}$	Imports: Exports:	MWs are MWs are +	Loads in	MW as -	Load M Generation	W as . MW as +	Enter Gen	MW as +		sactional unt in er enters enters + Data sheet			

Instructions for utilizing Adjustments:

1) Balancing Authorities making adjustments mustretain evidence to verify:

Said dififerenty, unless an adjustment compensates for sigifificant known error, it should not be made. However. as noted in the next item, once a decision to incluce an
adiustment tor one or more of the five types is made for one event, the entity must calculuate adjustments for that (those) type(s) for all events except for the Contengent BA Adiustment

2) Dynamic Schedules:

Adjustments should include only dynamic schedules
3) Nonconforming Loads:
4) Pumped Hydro:
-Values for pumping must be negative values.
-Values for generating must be positive values.
5) Rampling Units
,
6) Transferred Frequency Response-
-This value is the amount agreed upon between the entities expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$. Form 2 will adjust this amount for the frequency deviaion experienced.
(e.g. if a en entity agrees to provide $20 \mathrm{MW} / 0.1 \mathrm{~Hz}$ to another entity and a frequency event with a deviation of 50 mHz occurs, the delivering entity should enter +20 in the
data column of Form 2 and the receiving entity should enter - 20 . The spreadsheet will adjust the SEFRD for each entity by the 10 for this event.)

- Values for the entity receiving the response must be entered as a negative number.
- Values for the entity delivering the response must be entered as a positive number.

Contingent Balancing Authority Adiustment.

- Data or Value A is the pre-contingency scan rate generation (+MW values) from the contingent unit(s)
- Data for Value B is usually 0 MW , but may be the demand (-MW values) that remains on the system

Time
Time ${ }_{\text {Time }}^{\text {weighted }}{ }^{* *}$

Minimum FBS* for month	Maximum FBS* for month	weighted ** average FBS* for month	minimum average FBS* for month
r			

alancing Authority: ERCOT

1899 Reporting period FRS Form 1 data
0.001899 Reporting period: Balancinig Authority FRM MW/0.1 Hz, enter from FRS Form 1 for that year's FRM. If not know enter zero.
$1.00 \% 1899$ Reporting period: Interconnection Minimum Fixed Frequency Bias Setting \% of Peak Demand or Peak Generation (Set by ERO) 1899 Reporting period: Your BA's Annual Peak Demand or Peak Gen for Gen only BAs from your BA Form 714.
0.00 Your BA's lowest absolute Fixed Frequency Bias Setting based on BA Peak Demand (Peak Generation for Generation only BA) MW/0.1 HZ 0.00 Your BA's lowest absolute Fixed Frequency Bias Setting based on 100% of FRM.
0.001900 Minimum, lowest absolute, conditional average Frequency Bias Setting MW/0.1 Hz.
$0.0 \quad 0.0 \quad 1900$ Average Annual Bias MW/0.1 Hz

* Frequency Bias Setting (FBS)
${ }^{* *}$ Based on the one minute values used in BAL 001 when frequency is greater than $\mathbf{6 0 . 0 3 6} \mathrm{Hz}$ or less than 59.964 Hz

Full name	Abbreviat ion	Offset	Time zone
Atlantic Daylight Time	ADT	$3: 00$	UTC -3 hours
Atlantic Standard Time	AST	$4: 00$	UTC -4 hours
Central Daylight Time	CDT	$5: 00$	UTC -5 hours
Central Standard Time	CST	$6: 00$	UTC -6 hours
Eastern Daylight Time	EDT	$4: 00$	UTC -4 hours
Eastern Standard Time	EST	5:00	UTC -5 hours
Mountain Daylight Time	MDT	$6: 00$	UTC -6 hours
Mountain Standard Time	MST	$7: 00$	UTC -7 hours
Pacific Daylight Time	PDT	$7: 00$	UTC -7 hours
Pacific Standard Time	PST	$8: 00$	UTC -8 hours

FR1- NERC F Fequenerv Ressonsen nitiaive

Sone easic obsenaions stom this datax

Step 2 For identified events in column C of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list. Detailed Instructions for utilizing the "Adjustments" are located on the "Adjustments" worksheet below the table.
Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list.
Step 4 Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells C7 through D18. Use Copy/PasteSpecial/Values to enter data Your current year's Frequency Response Obligation will be calculated in cell R20 of the "Data Entry" Worksheet.
a) If a Fixed Bias was selected, cell R27 will calculate the minimum Bias (least negative) allowed based on your Peak Demand or Peak Generation for Generation only BAs. b) If a Fixed Bias was selected, cell R28 wil calculate the minimum (in absolute terms) Bias allowed based on 100% of your FRN.
d) If R29 was more negative than the value in R27, you may choose a Bias setting that is between R29 and the lesser of R27 or R28 and enter it here. Based on your choice, your Bias Setting wil appear in cell R33.

Step 6 a) If a Variable Bias was selected, cell R27 will indicate "not applicable" where there is no maximum or minimum Bias Setting. If a Variable Bias was selected, enter "Variable" in cell R31.
c) If a Variable Bias was selected, cell R30 will calculate the minimum Bias (in absolute terms) allowed based on your FRM and Peak Demand/Peak Generation. Calculate your monthly one minute average Variable Bias setting when frequency is lower than 59.964 Hz or higher than 60.036 Hz and enter these monthly values on the "Variable Bias Supplemental Info" worksheet in cells B2 through D13
dell D14 average annual Variable Bias Setting" in cell D14 on the "Variable Bias Supplemental Info" worksheet is less negative than cell E14 of this worksheet, R3 of the standard has not been met and
 e) those year's Form 1 is for this evaluation.
completed by the whe the Implementation date is each year for the an completed by the ERO before each year's FRS Form 1 is published
 the Peak Demand/Peak Gen reported in June of 2011 for 2010 data. data. Enter each field in green using the appropriate year's data.
Two FRMs are calculated. One for the BA Bias Setting and one for meeting R1 of the standard
The FRM for the BA Bias Setting will use all selected events and all SEFRD values will use the delta frequency as measured
 ERCOT $+/-0.700 \mathrm{~Hz}$ and $\mathrm{HQ}+/-1.500 \mathrm{~Hz}$.)
Step 7 Save this workbook using the following file name format:NYISO_yyyy_FRS_Form_1.9.x|sx. (where NYISO is replaced with your Balancing Authority abbreviation). See cell "G74" on the Data Entry worksheet for your exact file name.
Step 8 Send completed Form 1 and each Form 2 to NERC.

$\begin{array}{c}\text { Report 714 Data (in MW) } \\ \text { Part II Schedule 3 }\end{array}$	
Column (b)	
Month	

Peak Demand\end{array}\right]\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& Balancing Authority \& нот \& \multicolumn{2}{|l|}{$$
\begin{gathered}
\text { Load } \\
\text { Resources } \\
\text { Tripped } \\
\hline
\end{gathered}
$$} \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& \text { Non } \\
& \text { conforming } \\
& \text { Load }
\end{aligned}
$$} \& \multicolumn{2}{|l|}{Not Used} \& \multicolumn{2}{|l|}{Not Used} \& \multicolumn{2}{|l|}{Not Used} \& \multicolumn{2}{|l|}{Not Used} \& $$
\begin{array}{|c|}
\hline \text { Net Total } \\
\text { Adjustments } \\
\hline
\end{array}
$$

\hline Event \& \& Delfreq \& \& ${ }_{\text {Adiustmen }}$ \& Value ${ }_{\text {den }}^{\text {Adiusmen }}$ \& Adiusmen \& ${ }_{\text {Adiusment }}^{\text {Value }}$ \& ${ }_{\text {Adiusment }}^{\text {Value }}$ \& \& ${ }_{\text {Adiustuen }}^{\text {value }}$ \& Adalusment \& Adiustume $_{\text {a }}^{\text {value }}$ \& $\xrightarrow{\text { Value } A}$ \& ${ }_{\text {Adiusmen }}$ \& Value 820 to 52 seconds

\hline $\frac{1}{2}$ \& \& \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0

0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0

\hline ${ }_{4}^{3}$ \& \& \& 000 \& 0.0
0
0 \& 0.0 \& 00 \& 0.0
0
0 \& 000 \& 0.0 \& 000 \& 0,0 \& 000 \& 0,0 \& 0,0 \& 000

\hline 5 \& \& \& 0.0 \& 0 \& 0.0 \& 0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& ${ }^{0.0}$ \& 0.0 \& 0.0 \& 0.0

\hline 7 \& \& \& 0 \& 0 \& 0.0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0.0 \& 0 \& 0.0 \& 0 \& 0.0

\hline ${ }_{9}$ \& \& \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0 \& ${ }_{0}^{0.0}$ \& 0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$

\hline \& \& \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& 0 \&

\hline ${ }_{12}^{11}$ \& \& \& 0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0 \& 0.0 \& ${ }_{0}^{0.0}$ \& 00.0 \& 0.0
0.0 \& 0.0
0.0

\hline 13
14
14 \& \& \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& ${ }_{0.0}^{0.0}$

\hline 15
16
16 \& \& \& 0.0 \& 0.0
0.0
0 \& 0.0
0.0
0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0 \& 0.0
0.0
0 \& ${ }_{0}^{0.0}$ \& 0.0
0.0
0 \& 0.0 \& 0.0

\hline 17
18
18 \& \& \& 0.0
0.0

0 \& 0.0
0.0
0 \& 0.0
0.0
0 \& 0.0
0.0
0 \& 0.0
0.0
0 \& 0.0
0.0
0 \& 0.0
0.0
0 \& 0.0
0.0
0 \& 0.0
0.0
0 \& 0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0 \& 0.0
0.0

\hline ${ }_{20}^{19}$ \& \& \& 0.0
0.0 \& 0.0
0.0 \& 0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0 \& 0.0
0.0
0 \& 0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0

\hline ${ }_{22}^{21}$ \& \& \& 000 \& 0 \& 0.0 \& 0 \& 0 \& 0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0 \& 0

\hline ${ }_{23}^{23}$ \& \& \& 0 \& 0.0 \& 0.0 \& 0.0 \& 0 \& 0.0 \& 0.0 \& 0.0 \& \& 0.0 \& 0.0 \& 0.0 \& 0.0
0.0

\hline ${ }_{25}^{24}$ \& \& \& ${ }_{0.0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& ${ }_{0.0}^{0.0}$ \& 0.0
0.0 \& \& ${ }_{0.0}^{0.0}$ \& 0.0
0.0 \& \&

\hline \& \& \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline ${ }_{28}^{27}$ \& \& \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& -0.0 \& 0.0
0.0 \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0.0}^{0.0}$

\hline ${ }_{30}^{29}$ \& \& \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& 0.0
0.0 \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& 0.0
0.0 \& ${ }_{0}^{0.0}$

\hline ${ }_{32}^{31}$ \& \& \& 0.0 \& 0 \& ${ }^{0.0}$ \& 0.0 \& 0.0 \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline ${ }_{33}$ \& \& \& ${ }^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0.0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0

\hline ${ }_{34}$ \& \& \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& ${ }^{0.0}$ \& 0.0 \& 0.0 \& 0.0

\hline \& \& \& ${ }^{0.0}$ \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& ${ }^{0.0}$ \& ${ }^{0.0}$

\hline ${ }_{37}^{36}$ \& \& \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& 0.0
0.0 \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& ${ }_{0}^{0.0}$ \& 0.0
0.0 \& 0.0
0.0 \& 0.0

\hline ${ }^{38}$ \& \& \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline 39
40 \& \& \& 0.0
0.0
0 \& 0.0
0.0 \& (0.0 \& 0.0
0.0
0.0 \& 0.0
0.0 \& 0.0
0.0
0.0 \& 0.00 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0 \& 0.0
0.0
0.0 \& 0.0
0.0
0.0 \& 0.0
0.0

\hline $$
\begin{aligned}
& 40 \\
& 41
\end{aligned}
$$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline ${ }_{42}$ \& \& \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& ${ }_{0}^{0.0}$ \& 0.0 \& 0.0 \& 0.0 \& 0.0 \& ${ }_{0} 0$

\hline \& Sign Convention for data collected in Fo \& $$
\begin{aligned}
& \text { scan } \\
& \text { m }
\end{aligned}
$$ \& \multicolumn{2}{|l|}{Imports: MWs are Exports: MWs are +} \& \multicolumn{2}{|l|}{Loads in MW as} \& \multicolumn{2}{|l|}{Load MW as Generation MW as +} \& \multicolumn{2}{|l|}{Enter Gen MW as +} \& \multicolumn{2}{|l|}{amount in MW Receiver enters Deliverer enters ${ }^{+}$Form 2 Data sheet} \& \multicolumn{2}{|l|}{Generation MW as + (if demand occurs due to gen

loss, enter MW as - at value B)} \&

\hline
\end{tabular}

Instructions for utilizing Adjustments:

2) Dynamic scheduess

5) ${ }^{\text {5) }}$ Rampling Units: -values are positive values.

Time
Time weighted ** weighted ${ }^{* *}$ minimum average FBS* for month month

alancing Authority: HOT

1899 Reporting period FRS Form 1 data
0.001899 Reporting period: Balancinig Authority FRM MW/0.1 Hz, enter from FRS Form 1 for that year's FRM. If not know enter zero.
1.00\% 1899 Reporting period: Interconnection Minimum Fixed Frequency Bias Setting \% of Peak Demand or Peak Generation (Set by ERO) 1899 Reporting period: Your BA's Annual Peak Demand or Peak Gen for Gen only BAs from your BA Form 714.
0.00 Your BA's lowest absolute Fixed Frequency Bias Setting based on BA Peak Demand (Peak Generation for Generation only BA) MW/0.1 Hz
0.00 Your BA's lowest absolute Fixed Frequency Bias Setting based on 100% of FRM.
0.001900 Minimum, lowest absolute, conditional average Frequency Bias Setting MW/ 0.1 Hz

* Frequency Bias Setting (FBS)
${ }^{* *}$ Based on the one minute values used in BAL 001 when frequency is greater than 60.036 Hz or less than 59.964 Hz .

Full name	Abbreviat ion	Offset	Time zone
Atlantic Daylight Time	ADT	$3: 00$	UTC -3 hours
Atlantic Standard Time	AST	$4: 00$	UTC -4 hours
Central Daylight Time	CDT	$5: 00$	UTC -5 hours
Central Standard Time	CST	$6: 00$	UTC -6 hours
Eastern Daylight Time	EDT	$4: 00$	UTC -4 hours
Eastern Standard Time	EST	5:00	UTC -5 hours
Mountain Daylight Time	MDT	$6: 00$	UTC -6 hours
Mountain Standard Time	MST	$7: 00$	UTC -7 hours
Pacific Daylight Time	PDT	$7: 00$	UTC -7 hours
Pacific Standard Time	PST	$8: 00$	UTC -8 hours

FRII NERC Fequenency Responsen nitaidive

Some assic obsenvaions toon his staxa

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34		Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:17:26	60.007	3679.946	350	-331.852966	0	81.5	10	15	-103	7553.79		0				
10/12/09 02:17:28	60.009	3679.44	350	-331.852966	0	82	10	15	-103	7554.12	0	0	0	0.002	0.002	
10/12/09 02:17:30	60.009	3679.912	350	-331.852966	0	82.5	10	15	-103	7554.45	0	0	0	0.000	0.000	
10/12/09 02:17:32	60.006	3679.517	350	-331.852966	0	83	10	15	-103	7554.78	0	0	0	-0.003	0.003	
10/12/09 02:17:34	60.006	3679.888	350	-331.852966	0	83.5	10	15	-103	7555.11	0	0	0	0.000	0.000	
10/12/09 02:17:36	60.009	3679.608	350	-329.98822	0	84	10	15	-103	7555.44	0	0	0	0.003	0.003	
10/12/09 02:17:38	60.009	3679.06	350	-329.98822	0	84.5	10	15	-103	7555.77	0	0	0	0.000	0.000	
10/12/09 02:17:40	60.008	3679.261	350	-329.98822	0	85	10	15	-103	7556.1	0	0	0	-0.001	0.001	
10/12/09 02:17:42	60.009	3679.164	350	-329.98822	0	85.5	10	15	-103	7556.43	0	0	0	0.001	0.001	
10/12/09 02:17:44	60.009	3679.025	350	-329.98822	0	86	10	15	-103	7556.76	0	0	0	0.000	0.000	
10/12/09 02:17:46	60.005	3679.152	350	-255.444168	0	86.5	10	15	-103	7557.09	0	0	0	-0.004	0.004	
10/12/09 02:17:48	60.004	3678.572	350	-255.444168	0	87	10	15	-103	7557.42	0	0	0	-0.001	0.001	
10/12/09 02:17:50	60.001	3678.295	350	-255.444168	0	87.5	10	15	-103	7557.75	0	0	0	-0.003	0.003	
10/12/09 02:17:52	59.999	3678.249	350	-255.444168	0	88	10	15	-103	7558.08	0	0	0	-0.002	0.002	
10/12/09 02:17:54	59.993	3678.236	350	-255.444168	0	88.5	10	15	-103	7558.41	0	0	0	-0.006	0.006	
10/12/09 02:17:56	59.991	3677.83	350	-254.838303	0	89	10	15	-103	7558.74	0	0	0	-0.002	0.002	
10/12/09 02:17:58	59.994	3677.955	350	-254.838303	0	89.5	10	15	-103	7559.07	0	0	0	0.003	0.003	
10/12/09 02:18:00	59.992	3677.772	350	-254.838303	0	90	10	15	-103	7559.4	0	0	0	-0.002	0.002	
10/12/09 02:18:02	59.994	3676.666	350	-254.838303	0	90.5	10	15	-103	7559.73	0	0	0	0.002	0.002	
10/12/09 02:18:04	59.992	3677.093	350	-254.838303	0	91	10	15	-103	7560.06	0	0	0	-0.002	0.002	
10/12/09 02:18:06	59.994	3677.141	350	-257.146973	0	91.5	10	15	-103	7560.39	0	0	0	0.002	0.002	
10/12/09 02:18:08	59.995	3676.401	350	-257.146973	0	92	10	15	-103	7560.72	0	0	0	0.001	0.001	
10/12/09 02:18:10	59.993	3678.516	350	-257.146973	0	92.5	10	15	-103	7561.05	0	0	0	-0.002	0.002	
10/12/09 02:18:12	59.99	3679.872	350	-257.146973	0	93	10	15	-103	7561.38	0	0	0	-0.003	0.003	
10/12/09 02:18:14	59.99	3680.197	350	-257.146973	0	93.5	10	15	-103	7561.71	0	0	0	0.000	0.000	
10/12/09 02:18:16	59.987	3678.743	350	-262.289368	0	94	10	15	-103	7562.04	0	0	0	-0.003	0.003	
10/12/09 02:18:18	59.983	3678.428	350	-262.289368	0	94.5	10	15	-103	7562.37	0	0	0	-0.004	0.004	
10/12/09 02:18:20	59.977	3677.921	350	-262.289368	0	95	10	15	-103	7562.7	0	0	0	-0.006	0.006	
10/12/09 02:18:22	59.977	3680.254	350	-262.289368	0	95.5	10	15	-103	7563.03	0	0	0	0.000	0.000	
10/12/09 02:18:24	59.989	3682.07	350	-262.289368	0	96	10	15	-103	7563.36	0	0	0	0.012	0.012	
10/12/09 02:18:26	59.995	3681.329	350	-256.647949	0	96.5	10	15	-103	7563.69	0	0	0	0.006	0.006	
10/12/09 02:18:28	59.999	3678.656	350	-256.647949	0	97	10	15	-103	7564.02	0	0	0	0.004	0.004	
10/12/09 02:18:30	59.994	3678.077	350	-256.647949	0	97.5	10	15	-103	7564.35	0	0	0	-0.005	0.005	
10/12/09 02:18:32	59.989	3677.78	350	-256.647949	0	98	10	15	-103	7564.68	0	0	0	-0.005	0.005	
10/12/09 02:18:34	59.987	3678.427	350	-256.647949	0	98.5	10	15	-103	7565.01	0	0	0	-0.002	0.002	
10/12/09 02:18:36	59.986	3678.473	350	-256.307251	0	99	10	15	-103	7565.34	0	0	0	-0.001	0.001	
10/12/09 02:18:38	59.984	3678.278	350	-256.307251	0	99.5	10	15	-103	7565.67	0	0	0	-0.002	0.002	
10/12/09 02:18:40	59.983	3677.822	350	-256.307251	0	100	10	15	-103	7566	0	0	0	-0.001	0.001	
10/12/09 02:18:42	59.985	3676.615	350	-256.307251	0	100.5	10	15	-103	7566.33	0	0	0	0.002	0.002	

Time (T)	Hz	Net Actual Interchange MW	jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34		Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:18:44	59.986	3677.397	350	-256.307251	0	101	10	15	-103	7566.66	0	0	0	0.001	0.001	
10/12/09 02:18:46	59.985	3677.917	350	-249.086395	0	101.5	10	15	-103	7566.99	0	0	0	-0.001	0.001	
10/12/09 02:18:48	59.986	3677.95	350	-249.086395	0	102	10	15	-103	7567.32	0	0	0	0.001	0.001	
10/12/09 02:18:50	59.98	3678.617	350	-249.086395	0	102.5	10	15	-103	7567.65	0	0	0	-0.006	0.006	
10/12/09 02:18:52	59.981	3678.963	350	-249.086395	0	103	10	15	-103	7567.98	0	0	0	0.001	0.001	
10/12/09 02:18:54	59.981	3681.252	350	-249.086395	0	103.5	10	15	-103	7568.31	0	0	0	0.000	0.000	
10/12/09 02:18:56	59.989	3680.737	350	-253.742477	0	104	10	15	-103	7568.64	0	0	0	0.008	0.008	
10/12/09 02:18:58	59.998	3680.045	350	-253.742477	0	104.5	10	15	-103	7568.97	0	0	0	0.009	0.009	
10/12/09 02:19:00	60.007	3678.161	350	-253.742477	0	105	10	15	-103	7569.3	0	0	0	0.009	0.009	
10/12/09 02:19:02	60.007	3674.076	350	-253.742477	0	105.5	10	15	-103	7569.63	0	0	0	0.000	0.000	
10/12/09 02:19:04	59.997	3676.222	350	-253.742477	0	106	10	15	-103	7569.96	0	0	0	-0.010	0.010	
10/12/09 02:19:06	59.986	3676.669	350	-257.421204	0	106.5	10	15	-103	7570.29	0	0	0	-0.011	0.011	
10/12/09 02:19:08	59.981	3677.497	350	-257.421204	0	107	10	15	-103	7570.62	0	0	0	-0.005	0.005	
10/12/09 02:19:10	59.977	3677.49	350	-257.421204	0	107.5	10	15	-103	7570.95	0	0	0	-0.004	0.004	
10/12/09 02:19:12	59.974	3675.186	350	-257.421204	0	108	10	15	-103	7571.28	0	0	0	-0.003	0.003	
10/12/09 02:19:14	59.976	3675.437	350	-257.421204	0	108.5	10	15	-103	7571.61	0	0	0	0.002	0.002	
10/12/09 02:19:16	59.974	3680.451	350	-261.73822	0	109	10	15	-103	7571.94	0	0	0	-0.002	0.002	
10/12/09 02:19:18	59.974	3682.032	350	-261.73822	0	109.5	10	15	-103	7572.27	0	0	0	0.000	0.000	
10/12/09 02:19:20	59.977	3683.829	350	-261.73822	0	110	10	15	-103	7572.6	0	0	0	0.003	0.003	
10/12/09 02:19:22	59.979	3682.843	350	-261.73822	0	110.5	10	15	-103	7572.93	0	0	0	0.002	0.002	
10/12/09 02:19:24	59.979	3681.108	350	-261.73822	0	111	10	15	-103	7573.26	0	0	0	0.000	0.000	
10/12/09 02:19:26	59.982	3680.566	350	-271.875977	0	111.5	10	15	-103	7573.59	0	0	0	0.003	0.003	
10/12/09 02:19:28	59.984	3678.229	350	-271.875977	0	112	10	15	-103	7573.92	0	0	0	0.002	0.002	
10/12/09 02:19:30	59.987	3676.752	350	-271.875977	0	112.5	10	15	-103	7574.25	0	0	0	0.003	0.003	
10/12/09 02:19:32	59.988	3675.759	350	-271.875977	0	113	10	15	-103	7574.58	0	0	0	0.001	0.001	
10/12/09 02:19:34	59.988	3671.942	350	-271.875977	0	113.5	10	15	-103	7574.91	0	0	0	0.000	0.000	
10/12/09 02:19:36	59.987	3671.166	350	-262.073486	0	114	10	15	-103	7575.24	0	0	0	-0.001	0.001	
10/12/09 02:19:38	59.987	3670.476	350	-262.073486	0	114.5	10	15	-103	7575.57	0	0	0	0.000	0.000	
10/12/09 02:19:40	59.987	3670.129	350	-262.073486	0	115	10	15	-103	7575.9	0	0	0	0.000	0.000	
10/12/09 02:19:42	59.985	3671.542	350	-262.073486	0	115.5	10	15	-103	7576.23	0	0	0	-0.002	0.002	
10/12/09 02:19:44	59.984	3672.048	350	-262.073486	0	116	10	15	-103	7576.56	0	0	0	-0.001	0.001	
10/12/09 02:19:46	59.982	3671.576	350	-260.36441	0	116.5	10	15	-103	7576.89	0	0	0	-0.002	0.002	
10/12/09 02:19:48	59.983	3672.104	350	-260.36441	0	117	10	15	-103	7577.22	0	0	0	0.001	0.001	
10/12/09 02:19:50	59.989	3672.414	350	-260.36441	0	117.5	10	15	-103	7577.55	0	0	0	0.006	0.006	
10/12/09 02:19:52	59.989	3671.882	350	-260.36441	0	118	10	15	-103	7577.88	0	0	0	0.000	0.000	
10/12/09 02:19:54	59.988	3671.837	350	-260.36441	0	118.5	10	15	-103	7578.21	0	0	0	-0.001	0.001	
10/12/09 02:19:56	59.984	3671.336	350	-352.644379	0	119	10	15	-103	7578.54	0	0	0	-0.004	0.004	
10/12/09 02:19:58	59.982	3670.726	350	-352.644379	0	119.5	10	15	-103	7578.87	0	0	0	-0.002	0.002	
10/12/09 02:20:00	59.983	3670.372	350	-352.644379	0	120	10	15	-103	7579.2	0	0	0	0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:20:02	59.981	3671.364	350	-352.644379	0	120.5	10	15	-103	7579.53	0	0	0	-0.002	0.002	
10/12/09 02:20:04	59.982	3671.401	350	-352.644379	0	121	10	15	-103	7579.86	0	0	0	0.001	0.001	
10/12/09 02:20:06	59.983	3672.156	350	-354.89566	0	121.5	10	15	-103	7580.19	0	0	0	0.001	0.001	
10/12/09 02:20:08	59.986	3672.181	350	-354.89566	0	122	10	15	-103	7580.52	0	0	0	0.003	0.003	
10/12/09 02:20:10	59.989	3670.296	350	-354.89566	0	122.5	10	15	-103	7580.85	0	0	0	0.003	0.003	
10/12/09 02:20:12	59.987	3668.071	350	-354.89566	0	123	10	15	-103	7581.18	0	0	0	-0.002	0.002	
10/12/09 02:20:14	59.985	3668.59	350	-354.89566	0	123.5	10	15	-103	7581.51	0	0	0	-0.002	0.002	
10/12/09 02:20:16	59.98	3669.908	350	-340.46936	0	124	10	15	-103	7581.84	0	0	0	-0.005	0.005	
10/12/09 02:20:18	59.98	3670.399	350	-340.46936	0	124.5	10	15	-103	7582.17	0	0	0	0.000	0.000	
10/12/09 02:20:20	59.983	3670.263	350	-340.46936	0	125	10	15	-103	7582.5	0	0	0	0.003	0.003	
10/12/09 02:20:22	59.98	3669.382	350	-340.46936	0	125.5	10	15	-103	7582.83	0	0	0	-0.003	0.003	
10/12/09 02:20:24	59.979	3670.102	350	-340.46936	0	126	10	15	-103	7583.16	0	0	0	-0.001	0.001	
10/12/09 02:20:26	59.979	3670.438	350	-337.642914	0	126.5	10	15	-103	7583.49	0	0	0	0.000	0.000	
10/12/09 02:20:28	59.981	3671.403	350	-337.642914	0	127	10	15	-103	7583.82	0	0	0	0.002	0.002	
10/12/09 02:20:30	59.981	3672.442	350	-337.642914	0	127.5	10	15	-103	7584.15	0	0	0	0.000	0.000	
10/12/09 02:20:32	59.98	3672.372	350	-337.642914	0	128	10	15	-103	7584.48	0	0	0	-0.001	0.001	
10/12/09 02:20:34	59.98	3671.947	350	-337.642914	0	128.5	10	15	-103	7584.81	0	0	0	0.000	0.000	
10/12/09 02:20:36	59.981	3670.938	350	-284.36084	0	129	10	15	-103	7585.14	0	0	0	0.001	0.001	
10/12/09 02:20:38	59.98	3670.705	350	-284.36084	0	129.5	10	15	-103	7585.47	0	0	0	-0.001	0.001	
10/12/09 02:20:40	59.98	3670.137	350	-284.36084	0	130	10	15	-103	7585.8	0	0	0	0.000	0.000	
10/12/09 02:20:42	59.977	3669.279	350	-284.36084	0	130.5	10	15	-103	7586.13	0	0	0	-0.003	0.003	
10/12/09 02:20:44	59.979	3672.391	350	-284.36084	0	131	10	15	-103	7586.46	0	0	0	0.002	0.002	
10/12/09 02:20:46	59.981	3672.558	350	-260.467987	0	131.5	10	15	-103	7586.79	0	0	0	0.002	0.002	
10/12/09 02:20:48	59.979	3674.052	350	-260.467987	0	132	10	15	-103	7587.12	0	0	0	-0.002	0.002	
10/12/09 02:20:50	59.976	3672.626	350	-260.467987	0	132.5	10	15	-103	7587.45	0	0	0	-0.003	0.003	
10/12/09 02:20:52	59.977	3671.8	350	-260.467987	0	133	10	15	-103	7587.78	0	0	0	0.001	0.001	
10/12/09 02:20:54	59.972	3673.183	350	-260.467987	0	133.5	10	15	-103	7588.11	0	0	0	-0.005	0.005	
10/12/09 02:20:56	59.971	3673.874	350	-253.141541	0	134	10	15	-103	7588.44	0	0	0	-0.001	0.001	
10/12/09 02:20:58	59.973	3676.263	350	-253.141541	0	134.5	10	15	-103	7588.77	0	0	0	0.002	0.002	
10/12/09 02:21:00	59.973	3676.623	350	-253.141541	0	135	10	15	-103	7589.1	0	0	0	0.000	0.000	
10/12/09 02:21:02	59.973	3676.87	350	-253.141541	0	135.5	10	15	-103	7589.43	0	0	0	0.000	0.000	
10/12/09 02:21:04	59.974	3676.543	350	-253.141541	0	136	10	15	-103	7589.76	0	0	0	0.001	0.001	
10/12/09 02:21:06	59.971	3675.464	350	-251.929871	0	136.5	10	15	-103	7590.09	0	0	0	-0.003	0.003	
10/12/09 02:21:08	59.975	3675.752	350	-251.929871	0	137	10	15	-103	7590.42	0	0	0	0.004	0.004	
10/12/09 02:21:10	59.977	3675.256	350	-251.929871	0	137.5	10	15	-103	7590.75	0	0	0	0.002	0.002	
10/12/09 02:21:12	59.977	3674.87	350	-251.929871	0	138	10	15	-103	7591.08	0	0	0	0.000	0.000	
10/12/09 02:21:14	59.975	3671.277	350	-251.929871	0	138.5	10	15	-103	7591.41	0	0	0	-0.002	0.002	
10/12/09 02:21:16	59.976	3671.593	350	-250.674194	0	139	10	15	-103	7591.74	0	0	0	0.001	0.001	
10/12/09 02:21:18	59.98	3670.587	350	-250.674194	0	139.5	10	15	-103	7592.07	0	0	0	0.004	0.004	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:21:20	59.979	3669.963	350	-250.674194	0	140	10	15	-103	7592.4	0	0	0	-0.001	0.001	
10/12/09 02:21:22	59.981	3669.54	350	-250.674194	0	140.5	10	15	-103	7592.73	0	0	0	0.002	0.002	
10/12/09 02:21:24	59.982	3669.497	350	-250.674194	0	141	10	15	-103	7593.06	0	0	0	0.001	0.001	
10/12/09 02:21:26	59.982	3668.706	350	-253.631866	0	141.5	10	15	-103	7593.39	0	0	0	0.000	0.000	
10/12/09 02:21:28	59.982	3667.677	350	-253.631866	0	142	10	15	-103	7593.72	0	0	0	0.000	0.000	
10/12/09 02:21:30	59.982	3666.482	350	-253.631866	0	142.5	10	15	-103	7594.05	0	0	0	0.000	0.000	
10/12/09 02:21:32	59.981	3666.599	350	-253.631866	0	143	10	15	-103	7594.38	0	0	0	-0.001	0.001	
10/12/09 02:21:34	59.982	3666.911	350	-253.631866	0	143.5	10	15	-103	7594.71	0	0	0	0.001	0.001	
10/12/09 02:21:36	59.984	3666.442	350	-246.957306	0	144	10	15	-103	7595.04	0	0	0	0.002	0.002	
10/12/09 02:21:38	59.985	3666.405	350	-246.957306	0	144.5	10	15	-103	7595.37	0	0	0	0.001	0.001	
10/12/09 02:21:40	59.987	3667.456	350	-246.957306	0	145	10	15	-103	7595.7	0	0	0	0.002	0.002	
10/12/09 02:21:42	59.989	3666.38	350	-246.957306	0	145.5	10	15	-103	7596.03	0	0	0	0.002	0.002	
10/12/09 02:21:44	59.993	3665.262	350	-246.957306	0	146	10	15	-103	7596.36	0	0	0	0.004	0.004	
10/12/09 02:21:46	59.996	3664.031	350	-254.541779	0	146.5	10	15	-103	7596.69	0	0	0	0.003	0.003	
10/12/09 02:21:48	59.998	3663.825	350	-254.541779	0	147	10	15	-103	7597.02	0	0	0	0.002	0.002	
10/12/09 02:21:50	59.998	3663.229	350	-254.541779	0	147.5	10	15	-103	7597.35	0	0	0	0.000	0.000	
10/12/09 02:21:52	60.004	3662.055	350	-254.541779	0	148	10	15	-103	7597.68	0	0	0	0.006	0.006	
10/12/09 02:21:54	60.007	3661.695	350	-254.541779	0	148.5	10	15	-103	7598.01	0	0	0	0.003	0.003	
10/12/09 02:21:56	60.01	3662.076	350	-256.571594	0	149	10	15	-103	7598.34	0	0	0	0.003	0.003	
10/12/09 02:21:58	60.013	3662.224	350	-256.571594	0	149.5	10	15	-103	7598.67	0	0	0	0.003	0.003	
10/12/09 02:22:00	60.014	3662.959	350	-256.571594	0	150	10	15	-103	7599	0	0	0	0.001	0.001	
10/12/09 02:22:02	60.013	3663.794	350	-256.571594	0	150.5	10	15	-103	7599.33	0	0	0	-0.001	0.001	
10/12/09 02:22:04	60.008	3664.139	350	-256.571594	0	151	10	15	-103	7599.66	0	0	0	-0.005	0.005	
10/12/09 02:22:06	60.008	3665.278	350	-258.37262	0	151.5	10	15	-103	7599.99	0	0	0	0.000	0.000	
10/12/09 02:22:08	60.01	3664.159	350	-258.37262	0	152	10	15	-103	7600.32	0	0	0	0.002	0.002	
10/12/09 02:22:10	60.019	3663.265	350	-258.37262	0	152.5	10	15	-103	7600.65	0	0	0	0.009	0.009	
10/12/09 02:22:12	60.019	3663.184	350	-258.37262	0	153	10	15	-103	7600.98	0	0	0	0.000	0.000	
10/12/09 02:22:14	60.023	3661.929	350	-258.37262	0	153.5	10	15	-103	7601.31	0	0	0	0.004	0.004	
10/12/09 02:22:16	60.021	3661.512	350	-263.047363	0	154	10	15	-103	7601.64	0	0	0	-0.002	0.002	
10/12/09 02:22:18	60.02	3659.172	350	-263.047363	0	154.5	10	15	-103	7601.97	0	0	0	-0.001	0.001	
10/12/09 02:22:20	60.021	3658.661	350	-263.047363	0	155	10	15	-103	7602.3	0	0	0	0.001	0.001	
10/12/09 02:22:22	60.021	3656.785	350	-263.047363	0	155.5	10	15	-103	7602.63	0	0	0	0.000	0.000	
10/12/09 02:22:24	60.02	3657.571	350	-263.047363	0	156	10	15	-103	7602.96	0	0	0	-0.001	0.001	
10/12/09 02:22:26	60.019	3658.126	350	-260.984375	0	156.5	10	15	-103	7603.29	0	0	0	-0.001	0.001	
10/12/09 02:22:28	60.019	3657.71	350	-260.984375	0	157	10	15	-103	7603.62	0	0	0	0.000	0.000	
10/12/09 02:22:30	60.022	3658.015	350	-260.984375	0	157.5	10	15	-103	7603.95	0	0	0	0.003	0.003	
10/12/09 02:22:32	60.025	3660.228	350	-260.984375	0	158	10	15	-103	7604.28	0	0	0	0.003	0.003	
10/12/09 02:22:34	60.025	3659.224	350	-260.984375	0	158.5	10	15	-103	7604.61	0	0	0	0.000	0.000	
10/12/09 02:22:36	60.026	3658.698	350	-261.318329	0	159	10	15	-103	7604.94	0	0	0	0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:22:38	60.02	3658.669	350	-261.318329	0	159.5	10	15	-103	7605.27	0	0	0	-0.006	0.006	
10/12/09 02:22:40	60.02	3658.155	350	-261.318329	0	160	10	15	-103	7605.6	0	0	0	0.000	0.000	
10/12/09 02:22:42	60.018	3659.13	350	-261.318329	0	160.5	10	15	-103	7605.93	0	0	0	-0.002	0.002	
10/12/09 02:22:44	60.018	3659.778	350	-261.318329	0	161	10	15	-103	7606.26	0	0	0	0.000	0.000	
10/12/09 02:22:46	60.02	3660.82	350	-262.1026	0	161.5	10	15	-103	7606.59	0	0	0	0.002	0.002	
10/12/09 02:22:48	60.019	3662.531	350	-262.1026	0	162	10	15	-103	7606.92	0	0	0	-0.001	0.001	
10/12/09 02:22:50	60.019	3662.387	350	-262.1026	0	162.5	10	15	-103	7607.25	0	0	0	0.000	0.000	
10/12/09 02:22:52	60.023	3662.079	350	-262.1026	0	163	10	15	-103	7607.58	0	0	0	0.004	0.004	
10/12/09 02:22:54	60.022	3662.39	350	-262.1026	0	163.5	10	15	-103	7607.91	0	0	0	-0.001	0.001	
10/12/09 02:22:56	60.022	3662.678	350	-262.71701	0	164	10	15	-103	7608.24	0	0	0	0.000	0.000	
10/12/09 02:22:58	60.025	3663.577	350	-262.71701	0	164.5	10	15	-103	7608.57	0	0	0	0.003	0.003	
10/12/09 02:23:00	60.02	3663.539	350	-262.71701	0	165	10	15	-103	7608.9	0	0	0	-0.005	0.005	
10/12/09 02:23:02	60.02	3662.959	350	-262.71701	0	165.5	10	15	-103	7609.23	0	0	0	0.000	0.000	
10/12/09 02:23:04	60.02	3662.552	350	-262.71701	0	166	10	15	-103	7609.56	0	0	0	0.000	0.000	
10/12/09 02:23:06	60.02	3662.543	350	-260.016479	0	166.5	10	15	-103	7609.89	0	0	0	0.000	0.000	
10/12/09 02:23:08	60.02	3663.601	350	-260.016479	0	167	10	15	-103	7610.22	0	0	0	0.000	0.000	
10/12/09 02:23:10	60.021	3663.91	350	-260.016479	0	167.5	10	15	-103	7610.55	0	0	0	0.001	0.001	
10/12/09 02:23:12	60.021	3663.69	350	-260.016479	0	168	10	15	-103	7610.88	0	0	0	0.000	0.000	
10/12/09 02:23:14	60.018	3662.791	350	-260.016479	0	168.5	10	15	-103	7611.21	0	0	0	-0.003	0.003	
10/12/09 02:23:16	60.014	3663.396	350	-263.87323	0	169	10	15	-103	7611.54	0	0	0	-0.004	0.004	
10/12/09 02:23:18	60.014	3663.698	350	-263.87323	0	169.5	10	15	-103	7611.87	0	0	0	0.000	0.000	
10/12/09 02:23:20	60.014	3664.315	350	-263.87323	0	170	10	15	-103	7612.2	0	0	0	0.000	0.000	
10/12/09 02:23:22	60.013	3665.313	350	-263.87323	0	170.5	10	15	-103	7612.53	0	0	0	-0.001	0.001	
10/12/09 02:23:24	60.013	3665.798	350	-263.87323	0	171	10	15	-103	7612.86	0	0	0	0.000	0.000	
10/12/09 02:23:26	60.01	3666.141	350	-264.5979	0	171.5	10	15	-103	7613.19	0	0	0	-0.003	0.003	
10/12/09 02:23:28	60.008	3666.726	350	-264.5979	0	172	10	15	-103	7613.52	0	0	0	-0.002	0.002	
10/12/09 02:23:30	60.011	3667.677	350	-264.5979	0	172.5	10	15	-103	7613.85	0	0	0	0.003	0.003	
10/12/09 02:23:32	60.011	3667.545	350	-264.5979	0	173	10	15	-103	7614.18	0	0	0	0.000	0.000	
10/12/09 02:23:34	60.012	3666.688	350	-264.5979	0	173.5	10	15	-103	7614.51	0	0	0	0.001	0.001	
10/12/09 02:23:36	60.012	3666.449	350	-262.415924	0	174	10	15	-103	7614.84	0	0	0	0.000	0.000	
10/12/09 02:23:38	60.009	3666.71	350	-262.415924	0	174.5	10	15	-103	7615.17	0	0	0	-0.003	0.003	
10/12/09 02:23:40	60.009	3667.696	350	-262.415924	0	175	10	15	-103	7615.5	0	0	0	0.000	0.000	
10/12/09 02:23:42	60.009	3667.398	350	-262.415924	0	175.5	10	15	-103	7615.83	0	0	0	0.000	0.000	
10/12/09 02:23:44	60.009	3667.043	350	-262.415924	0	176	10	15	-103	7616.16	0	0	0	0.000	0.000	
10/12/09 02:23:46	60.005	3666.624	350	-259.685242	0	176.5	10	15	-103	7616.49	0	0	0	-0.004	0.004	
10/12/09 02:23:48	60.002	3666.223	350	-259.685242	0	177	10	15	-103	7616.82	0	0	0	-0.003	0.003	
10/12/09 02:23:50	59.999	3665.88	350	-259.685242	0	177.5	10	15	-103	7617.15	0	0	0	-0.003	0.003	
10/12/09 02:23:52	59.996	3665.403	350	-259.685242	0	178	10	15	-103	7617.48	0	0	0	-0.003	0.003	
10/12/09 02:23:54	59.995	3665.802	350	-259.685242	0	178.5	10	15	-103	7617.81	0	0	0	-0.001	0.001	

Time (T)	$\mathrm{Hz}^{\text {In }}$	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:23:56	59.997	3665.68	350	-255.911011	0	179	10	15	-103	7618.14	0	0	0	0.002	0.002	
10/12/09 02:23:58	59.998	3665.352	350	-255.911011	0	179.5	10	15	-103	7618.47	0	0	0	0.001	0.001	
10/12/09 02:24:00	59.998	3664.948	350	-255.911011	0	180	10	15	-103	7618.8	0	0	0	0.000	0.000	
10/12/09 02:24:02	59.998	3665.065	350	-255.911011	0	180.5	10	15	-103	7619.13	0	0	0	0.000	0.000	
10/12/09 02:24:04	59.998	3666.133	350	-255.911011	0	181	10	15	-103	7619.46	0	0	0	0.000	0.000	
10/12/09 02:24:06	59.995	3666.64	350	-258.148193	0	181.5	10	15	-103	7619.79	0	0	0	-0.003	0.003	
10/12/09 02:24:08	59.995	3666.735	350	-258.148193	0	182	10	15	-103	7620.12	0	0	0	0.000	0.000	
10/12/09 02:24:10	59.992	3667.084	350	-258.148193	0	182.5	10	15	-103	7620.45	0	0	0	-0.003	0.003	
10/12/09 02:24:12	59.993	3667.557	350	-258.148193	0	183	10	15	-103	7620.78	0	0	0	0.001	0.001	
10/12/09 02:24:14	59.988	3667.337	350	-258.148193	0	183.5	10	15	-103	7621.11	0	0	0	-0.005	0.005	
10/12/09 02:24:16	59.988	3667.853	350	-258.873596	0	184	10	15	-103	7621.44	0	0	0	0.000	0.000	
10/12/09 02:24:18	59.982	3668.116	350	-258.873596	0	184.5	10	15	-103	7621.77	0	0	0	-0.006	0.006	
10/12/09 02:24:20	59.982	3668.691	350	-258.873596	0	185	10	15	-103	7622.1	0	0	0	0.000	0.000	
10/12/09 02:24:22	59.982	3669.399	350	-258.873596	0	185.5	10	15	-103	7622.43	0	0	0	0.000	0.000	
10/12/09 02:24:24	59.982	3669.606	350	-258.873596	0	186	10	15	-103	7622.76	0	0	0	0.000	0.000	
10/12/09 02:24:26	59.984	3671.228	350	-249.33757	0	186.5	10	15	-103	7623.09	0	0	0	0.002	0.002	
10/12/09 02:24:28	59.982	3670.25	350	-249.33757	0	187	10	15	-103	7623.42	0	0	0	-0.002	0.002	
10/12/09 02:24:30	59.978	3670.265	350	-249.33757	0	187.5	10	15	-103	7623.75	0	0	0	-0.004	0.004	
10/12/09 02:24:32	59.978	3671.549	350	-249.33757	0	188	10	15	-103	7624.08	0	0	0	0.000	0.000	
10/12/09 02:24:34	59.976	3673.243	350	-249.33757	0	188.5	10	15	-103	7624.41	0	0	0	-0.002	0.002	
10/12/09 02:24:36	59.975	3674.263	350	-258.278168	0	189	10	15	-103	7624.74	0	0	0	-0.001	0.001	
10/12/09 02:24:38	59.974	3675.824	350	-258.278168	0	189.5	10	15	-103	7625.07	0	0	0	-0.001	0.001	
10/12/09 02:24:40	59.974	3676.418	350	-258.278168	0	190	10	15	-103	7625.4	0	0	0	0.000	0.000	
10/12/09 02:24:42	59.979	3676.306	350	-258.278168	0	190.5	10	15	-103	7625.73	0	0	0	0.005	0.005	
10/12/09 02:24:44	59.98	3674.637	350	-258.278168	0	191	10	15	-103	7626.06	0	0	0	0.001	0.001	
10/12/09 02:24:46	59.981	3675.329	350	-258.406372	0	191.5	10	15	-103	7626.39	0	0	0	0.001	0.001	
10/12/09 02:24:48	59.98	3675.226	350	-258.406372	0	192	10	15	-103	7626.72	0	0	0	-0.001	0.001	
10/12/09 02:24:50	59.984	3674.768	350	-258.406372	0	192.5	10	15	-103	7627.05	0	0	0	0.004	0.004	
10/12/09 02:24:52	59.987	3674.399	350	-258.406372	0	193	10	15	-103	7627.38	0	0	0	0.003	0.003	
10/12/09 02:24:54	59.988	3673.514	350	-258.406372	0	193.5	10	15	-103	7627.71	0	0	0	0.001	0.001	
10/12/09 02:24:56	59.988	3673.04	350	-260.538879	0	194	10	15	-103	7628.04	0	0	0	0.000	0.000	
10/12/09 02:24:58	59.99	3672.442	350	-260.538879	0	194.5	10	15	-103	7628.37	0	0	0	0.002	0.002	
10/12/09 02:25:00	59.992	3673.056	350	-260.538879	0	195	10	15	-103	7628.7	0	0	0	0.002	0.002	
10/12/09 02:25:02	59.991	3671.68	350	-260.538879	0	195.5	10	15	-103	7629.03	0	0	0	-0.001	0.001	
10/12/09 02:25:04	59.991	3671.493	350	-260.538879	0	196	10	15	-103	7629.36	0	0	0	0.000	0.000	
10/12/09 02:25:06	59.991	3669.53	350	-257.88208	0	196.5	10	15	-103	7629.69	0	0	0	0.000	0.000	
10/12/09 02:25:08	59.993	3670.066	350	-257.88208	0	197	10	15	-103	7630.02	0	0	0	0.002	0.002	
10/12/09 02:25:10	59.993	3670.028	350	-257.88208	0	197.5	10	15	-103	7630.35	0	0	0	0.000	0.000	
10/12/09 02:25:12	59.996	3671.744	350	-257.88208	0	198	10	15	-103	7630.68	0	0	0	0.003	0.003	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:25:14	60.002	3671.578	350	-257.88208	0	198.5	10	15	-103	7631.01	0	0	0	0.006	0.006	
10/12/09 02:25:16	60.002	3672.625	350	-258.588654	0	199	10	15	-103	7631.34	0	0	0	0.000	0.000	
10/12/09 02:25:18	60.003	3672.674	350	-258.588654	0	199.5	10	15	-103	7631.67	0	0	0	0.001	0.001	
10/12/09 02:25:20	60.004	3673.819	350	-258.588654	0	200	10	15	-103	7632	0	0	0	0.001	0.001	
10/12/09 02:25:22	60.005	3673.25	350	-258.588654	0	200.5	10	15	-103	7632.33	0	0	0	0.001	0.001	
10/12/09 02:25:24	60.004	3673.182	350	-258.588654	0	201	10	15	-103	7632.66	0	0	0	-0.001	0.001	
10/12/09 02:25:26	60.002	3673.496	350	-261.906158	0	201.5	10	15	-103	7632.99	0	0	0	-0.002	0.002	
10/12/09 02:25:28	60.004	3672.418	350	-261.906158	0	202	10	15	-103	7633.32	0	0	0	0.002	0.002	
10/12/09 02:25:30	60.008	3672.363	350	-261.906158	0	202.5	10	15	-103	7633.65	0	0	0	0.004	0.004	
10/12/09 02:25:32	60.01	3672.217	350	-261.906158	0	203	10	15	-103	7633.98	0	0	0	0.002	0.002	
10/12/09 02:25:34	60.01	3672.261	350	-261.906158	0	203.5	10	15	-103	7634.31	0	0	0	0.000	0.000	
10/12/09 02:25:36	60.01	3673.182	350	-256.747803	0	204	10	15	-103	7634.64	0	0	0	0.000	0.000	
10/12/09 02:25:38	60.011	3673.603	350	-256.747803	0	204.5	10	15	-103	7634.97	0	0	0	0.001	0.001	
10/12/09 02:25:40	60.013	3673.553	350	-256.747803	0	205	10	15	-103	7635.3	0	0	0	0.002	0.002	
10/12/09 02:25:42	60.014	3674.312	350	-256.747803	0	205.5	10	15	-103	7635.63	0	0	0	0.001	0.001	
10/12/09 02:25:44	60.013	3674.537	350	-256.747803	0	206	10	15	-103	7635.96	0	0	0	-0.001	0.001	
10/12/09 02:25:46	60.012	3673.813	350	-167.431976	0	206.5	10	15	-103	7636.29	0	0	0	-0.001	0.001	
10/12/09 02:25:48	60.011	3673.204	350	-167.431976	0	207	10	15	-103	7636.62	0	0	0	-0.001	0.001	
10/12/09 02:25:50	60.011	3672.563	350	-167.431976	0	207.5	10	15	-103	7636.95	0	0	0	0.000	0.000	
10/12/09 02:25:52	60.017	3673.068	350	-167.431976	0	208	10	15	-103	7637.28	0	0	0	0.006	0.006	
10/12/09 02:25:54	60.022	3672.388	350	-167.431976	0	208.5	10	15	-103	7637.61	0	0	0	0.005	0.005	
10/12/09 02:25:56	60.017	3672.52	350	-164.973404	0	209	10	15	-103	7637.94	0	0	0	-0.005	0.005	
10/12/09 02:25:58	60.014	3671.25	350	-164.973404	0	209.5	10	15	-103	7638.27	0	0	0	-0.003	0.003	
10/12/09 02:26:00	60.013	3671.288	350	-164.973404	0	210	10	15	-103	7638.6	0	0	0	-0.001	0.001	
10/12/09 02:26:02	60.014	3672.989	350	-164.973404	0	210.5	10	15	-103	7638.93	0	0	0	0.001	0.001	
10/12/09 02:26:04	60.017	3672.982	350	-164.973404	0	211	10	15	-103	7639.26	0	0	0	0.003	0.003	
10/12/09 02:26:06	60.017	3672.915	350	-157.628082	0	211.5	10	15	-103	7639.59	0	0	0	0.000	0.000	
10/12/09 02:26:08	60.019	3671.952	350	-157.628082	0	212	10	15	-103	7639.92	0	0	0	0.002	0.002	
10/12/09 02:26:10	60.019	3671.193	350	-157.628082	0	212.5	10	15	-103	7640.25	0	0	0	0.000	0.000	
10/12/09 02:26:12	60.019	3671.627	350	-157.628082	0	213	10	15	-103	7640.58	0	0	0	0.000	0.000	
10/12/09 02:26:14	60.027	3671.189	350	-157.628082	0	213.5	10	15	-103	7640.91	0	0	0	0.008	0.008	
10/12/09 02:26:16	60.026	3668.611	350	-155.531708	0	214	10	15	-103	7641.24	0	0	0	-0.001	0.001	
10/12/09 02:26:18	60.026	3665.232	350	-155.531708	0	214.5	10	15	-103	7641.57	0	0	0	0.000	0.000	
10/12/09 02:26:20	60.022	3664.495	350	-155.531708	0	215	10	15	-103	7641.9	0	0	0	-0.004	0.004	
10/12/09 02:26:22	60.019	3666.062	350	-155.531708	0	215.5	10	15	-103	7642.23	0	0	0	-0.003	0.003	
10/12/09 02:26:24	60.017	3666.821	350	-155.531708	0	216	10	15	-103	7642.56	0	0	0	-0.002	0.002	
10/12/09 02:26:26	60.019	3666.787	350	-160.447235	0	216.5	10	15	-103	7642.89	0	0	0	0.002	0.002	
10/12/09 02:26:28	60.02	3670.454	350	-160.447235	0	217	10	15	-103	7643.22	0	0	0	0.001	0.001	
10/12/09 02:26:30	60.019	3670.267	350	-160.447235	0	217.5	10	15	-103	7643.55	0	0	0	-0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:26:32	60.021	3671.668	350	-160.447235	0	218	10	15	-103	7643.88	0	0	0	0.002	0.002	
10/12/09 02:26:34	60.021	3672.493	350	-160.447235	0	218.5	10	15	-103	7644.21	0	0	0	0.000	0.000	
10/12/09 02:26:36	60.021	3672.685	350	-163.958603	0	219	10	15	-103	7644.54	0	0	0	0.000	0.000	
10/12/09 02:26:38	60.019	3672.857	350	-163.958603	0	219.5	10	15	-103	7644.87	0	0	0	-0.002	0.002	
10/12/09 02:26:40	60.018	3672.164	350	-163.958603	0	220	10	15	-103	7645.2	0	0	0	-0.001	0.001	
10/12/09 02:26:42	60.022	3671.413	350	-163.958603	0	220.5	10	15	-103	7645.53	0	0	0	0.004	0.004	
10/12/09 02:26:44	60.031	3669.983	350	-163.958603	0	221	10	15	-103	7645.86	0	0	0	0.009	0.009	
10/12/09 02:26:46	60.037	3666.467	350	-166.072449	0	221.5	10	15	-103	7646.19	0	0	0	0.006	0.006	
10/12/09 02:26:48	60.037	3663.758	350	-166.072449	0	222	10	15	-103	7646.52	0	0	0	0.000	0.000	
10/12/09 02:26:50	60.036	3661.599	350	-166.072449	0	222.5	10	15	-103	7646.85	0	0	0	-0.001	0.001	
10/12/09 02:26:52	60.037	3660.672	350	-166.072449	0	223	10	15	-103	7647.18	0	0	0	0.001	0.001	
10/12/09 02:26:54	60.046	3651.492	350	-166.072449	0	223.5	10	15	-103	7647.51	0	0	0	0.009	0.009	
10/12/09 02:26:56	60.048	3649.19	350	-163.766586	0	224	10	15	-103	7647.84	0	0	0	0.002	0.002	
10/12/09 02:26:58	60.048	3650.025	350	-163.766586	0	224.5	10	15	-103	7648.17	0	0	0	0.000	0.000	
10/12/09 02:27:00	60.043	3648.246	350	-163.766586	0	225	10	15	-103	7648.5	0	0	0	-0.005	0.005	
10/12/09 02:27:02	60.041	3649.512	350	-163.766586	0	225.5	10	15	-103	7648.83	0	0	0	-0.002	0.002	
10/12/09 02:27:04	60.041	3654.294	350	-163.766586	0	226	10	15	-103	7649.16	0	0	0	0.000	0.000	
10/12/09 02:27:06	60.041	3655.007	350	-165.101685	0	226.5	10	15	-103	7649.49	0	0	0	0.000	0.000	
10/12/09 02:27:08	60.039	3651.874	350	-165.101685	0	227	10	15	-103	7649.82	0	0	0	-0.002	0.002	
10/12/09 02:27:10	60.041	3651.059	350	-165.101685	0	227.5	10	15	-103	7650.15	0	0	0	0.002	0.002	
10/12/09 02:27:12	60.043	3649.187	350	-165.101685	0	228	10	15	-103	7650.48	0	0	0	0.002	0.002	
10/12/09 02:27:14	60.045	3648.236	350	-165.101685	0	228.5	10	15	-103	7650.81	0	0	0	0.002	0.002	
10/12/09 02:27:16	60.046	3645.387	350	-165.476395	0	229	10	15	-103	7651.14	0	0	0	0.001	0.001	
10/12/09 02:27:18	60.041	3644.628	350	-165.476395	0	229.5	10	15	-103	7651.47	0	0	0	-0.005	0.005	
10/12/09 02:27:20	60.041	3645.446	350	-165.476395	0	230	10	15	-103	7651.8	0	0	0	0.000	0.000	
10/12/09 02:27:22	60.041	3640.682	350	-165.476395	0	230.5	10	15	-103	7652.13	0	0	0	0.000	0.000	
10/12/09 02:27:24	60.039	3641.191	350	-165.476395	0	231	10	15	-103	7652.46	0	0	0	-0.002	0.002	
10/12/09 02:27:26	59.978	3659.465	350	-206.459106	0	231.5	10	15	-103	7652.79	0	0	1	-0.061	0.061	
10/12/09 02:27:28	59.852	3696.362	350	-206.459106	0	232	10	0	-103	7616	1	0	1	-0.126	0.126	
10/12/09 02:27:30	59.836	3734.904	335	-206.459106	0	232.5	10	0	-103	7626	1	0	1	-0.016	0.016	
10/12/09 02:27:32	59.869	3734.673	335	-206.459106	0	233	10	0	-103	7632	1	0	1	0.033	0.033	
10/12/09 02:27:34	59.892	3737.157	335	-206.459106	0	233.5	10	0	-103	7632	1	0	1	0.023	0.023	
10/12/09 02:27:36	59.891	3761.25	335	-211.256042	0	234	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:27:38	59.88	3766.113	335	-211.256042	1	234.5	10	0	-103	7632	1	0	1	-0.011	0.011	
10/12/09 02:27:40	59.876	3766.194	335	-211.256042	1	235	10	0	-103	7632	1	0	1	-0.004	0.004	
10/12/09 02:27:42	59.875	3768.877	335	-211.256042	1	235.5	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:27:44	59.883	3769.925	335	-211.256042	1	236	10	0	-103	7632	1	0	1	0.008	0.008	
10/12/09 02:27:46	59.887	3780.621	335	-214.346695	1	236.5	10	0	-103	7632	1	0	1	0.004	0.004	
10/12/09 02:27:48	59.886	3781.592	335	-214.346695	1	237	10	0	-103	7632	1	0	1	-0.001	0.001	

Time (T)	$\mathrm{Hz}^{\text {In }}$	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:27:50	59.885	3782.5	335	-214.346695	1	237.5	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:27:52	59.887	3784.962	335	-214.346695	2	238	10	0	-103	7632	1	0	1	0.002	0.002	
10/12/09 02:27:54	59.888	3784.73	335	-214.346695	3	238.5	10	0	-103	7632	1	0	1	0.001	0.001	
10/12/09 02:27:56	59.89	3784.419	335	-212.172699	4	239	10	0	-103	7632	1	0	1	0.002	0.002	
10/12/09 02:27:58	59.895	3788.072	335	-212.172699	5	239.5	10	0	-103	7632	1	0	1	0.005	0.005	
10/12/09 02:28:00	59.894	3788.328	335	-212.172699	6	240	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:28:02	59.893	3788.868	335	-212.172699	7	240.5	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:28:04	59.894	3788.472	335	-212.172699	8	241	10	0	-103	7632	1	0	1	0.001	0.001	
10/12/09 02:28:06	59.894	3792.276	335	-215.598175	9	241.5	10	0	-103	7632	1	0	1	0.000	0.000	
10/12/09 02:28:08	59.891	3793.074	335	-215.598175	10	242	10	0	-103	7632	1	0	1	-0.003	0.003	
10/12/09 02:28:10	59.89	3794.374	335	-215.598175	11	242.5	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:28:12	59.885	3799.428	335	-215.598175	12	243	10	0	-103	7632	1	0	1	-0.005	0.005	
10/12/09 02:28:14	59.885	3800.427	335	-215.598175	13	243.5	10	0	-103	7632	1	0	1	0.000	0.000	
10/12/09 02:28:16	59.888	3799.959	335	-218.327255	14	244	10	0	-103	7632	1	0	,	0.003	0.003	
10/12/09 02:28:18	59.887	3803.625	335	-218.327255	15	244.5	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:28:20	59.888	3802.925	335	-218.327255	16	245	10	0	-103	7632	1	0	1	0.001	0.001	
10/12/09 02:28:22	59.888	3802.951	335	-218.327255	16	245.5	10	0	-103	7632	1	0	1	0.000	0.000	
10/12/09 02:28:24	59.89	3804.388	335	-218.327255	16	246	10	0	-103	7632	1	0	1	0.002	0.002	
10/12/09 02:28:26	59.889	3805.496	335	-217.379425	16	246.5	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:28:28	59.882	3805.617	335	-217.379425	16	247	10	0	-103	7632	1	0	1	-0.007	0.007	
10/12/09 02:28:30	59.873	3809.237	335	-217.379425	16	247.5	10	0	-103	7631	1	0	1	-0.009	0.009	
10/12/09 02:28:32	59.857	3811.503	335	-217.379425	16	248	10	0	-103	7625	1	0	1	-0.016	0.016	
10/12/09 02:28:34	59.849	3814.862	335	-217.379425	16	248.5	10	0	-103	7623	1	0	1	-0.008	0.008	
10/12/09 02:28:36	59.852	3815.889	335	-214.830353	16	249	10	0	-103	7621	1	0	1	0.003	0.003	
10/12/09 02:28:38	59.858	3825.643	335	-214.830353	16	249.5	10	0	-103	7623	1	0	1	0.006	0.006	
10/12/09 02:28:40	59.863	3826.053	335	-214.830353	16	250	10	0	-103	7625	1	0	1	0.005	0.005	
10/12/09 02:28:42	59.866	3826.002	335	-214.830353	16	250.5	10	0	-103	7627	1	0	1	0.003	0.003	
10/12/09 02:28:44	59.865	3827.524	335	-214.830353	16	251	10	0	-103	7628	1	0	1	-0.001	0.001	
10/12/09 02:28:46	59.867	3826.753	335	-227.655914	16	251.5	10	0	-103	7628	1	0	1	0.002	0.002	
10/12/09 02:28:48	59.866	3826.783	335	-227.655914	16	252	10	0	-103	7629	1	0	,	-0.001	0.001	
10/12/09 02:28:50	59.871	3826.454	335	-227.655914	16	252.5	10	0	-103	7630	1	0	1	0.005	0.005	
10/12/09 02:28:52	59.874	3825.713	335	-227.655914	16	253	10	0	-103	7631	1	0	1	0.003	0.003	
10/12/09 02:28:54	59.879	3823.826	335	-227.655914	16	253.5	10	0	-103	7635	,	0	,	0.005	0.005	
10/12/09 02:28:56	59.88	3822.505	335	-225.018082	16	254	10	0	-103	7638	1	0	1	0.001	0.001	
10/12/09 02:28:58	59.883	3819.081	335	-225.018082	16	254.5	10	0	-103	7639	1	0	1	0.003	0.003	
10/12/09 02:29:00	59.886	3818.055	335	-225.018082	16	255	10	0	-103	7642	1	0	1	0.003	0.003	
10/12/09 02:29:02	59.89	3816.815	335	-225.018082	16	255.5	10	0	-103	7644	1	0	1	0.004	0.004	
10/12/09 02:29:04	59.892	3815.01	335	-225.018082	16	256	10	0	-103	7645	1	0	1	0.002	0.002	
10/12/09 02:29:06	59.889	3813.783	335	-228.365158	16	256.5	10	0	-103	7647	1	0	1	-0.003	0.003	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:29:08	59.893	3811.838	335	-228.365158	16	257	10	0	-103	7648	1	0	1	0.004	0.004	
10/12/09 02:29:10	59.899	3809.652	335	-228.365158	16	257.5	10	0	-103	7649	1	0	1	0.006	0.006	
10/12/09 02:29:12	59.903	3806.972	335	-228.365158	16	258	10	0	-103	7650	1	0	1	0.004	0.004	
10/12/09 02:29:14	59.902	3805.593	335	-228.365158	16	258.5	10	0	-103	7651	1	0	1	-0.001	0.001	
10/12/09 02:29:16	59.902	3804.188	335	-234.075333	16	259	10	0	-103	7652	1	0	1	0.000	0.000	
10/12/09 02:29:18	59.904	3796.078	335	-234.075333	16	259.5	10	0	-103	7653	1	0	1	0.002	0.002	
10/12/09 02:29:20	59.907	3793.975	335	-234.075333	16	260	10	0	-103	7654	1	0	1	0.003	0.003	
10/12/09 02:29:22	59.911	3792.169	335	-234.075333	16	260.5	10	0	-103	7655	1	0	1	0.004	0.004	
10/12/09 02:29:24	59.916	3791.502	335	-234.075333	16	261	10	0	-103	7655	1	0	1	0.005	0.005	
10/12/09 02:29:26	59.916	3789.534	335	-228.798157	16	261.5	10	0	-103	7656	1	0	1	0.000	0.000	
10/12/09 02:29:28	59.917	3788.132	335	-228.798157	16	262	10	0	-103	7656	1	0	1	0.001	0.001	
10/12/09 02:29:30	59.918	3784.563	335	-228.798157	16	262.5	10	0	-103	7657	1	0	1	0.001	0.001	
10/12/09 02:29:32	59.92	3783.028	335	-228.798157	16	263	10	0	-103	7657	1	0	1	0.002	0.002	
10/12/09 02:29:34	59.921	3781.701	335	-228.798157	16	263.5	10	0	-103	7658	1	0	1	0.001	0.001	
10/12/09 02:29:36	59.92	3776.358	335	-229.466965	16	264	10	0	-103	7658	1	0	1	-0.001	0.001	
10/12/09 02:29:38	59.917	3775.635	335	-229.466965	16	264.5	10	0	-103	7659	1	0	1	-0.003	0.003	
10/12/09 02:29:40	59.92	3774.604	335	-229.466965	16	265	10	0	-103	7659	1	0	1	0.003	0.003	
10/12/09 02:29:42	59.921	3773.334	335	-229.466965	16	265.5	10	0	-103	7659	1	0	1	0.001	0.001	
10/12/09 02:29:44	59.923	3773.958	335	-229.466965	16	266	10	0	-103	7660	1	0	1	0.002	0.002	
10/12/09 02:29:46	59.926	3772.722	335	-228.980164	16	266.5	10	0	-103	7660	1	0	1	0.003	0.003	
10/12/09 02:29:48	59.925	3771.67	335	-228.980164	16	267	10	0	-103	7661	1	0	1	-0.001	0.001	
10/12/09 02:29:50	59.928	3769.63	335	-228.980164	16	267.5	10	0	-103	7661	1	0	1	0.003	0.003	
10/12/09 02:29:52	59.927	3768.707	335	-228.980164	16	268	10	0	-103	7662	1	0	1	-0.001	0.001	
10/12/09 02:29:54	59.932	3767.643	335	-228.980164	16	268.5	10	0	-103	7662	1	0	1	0.005	0.005	
10/12/09 02:29:56	59.927	3767.021	335	-219.975555	16	269	10	0	-103	7663	1	0	1	-0.005	0.005	
10/12/09 02:29:58	59.928	3767.408	335	-219.975555	16	269.5	10	0	-103	7663	1	0	1	0.001	0.001	
10/12/09 02:30:00	59.931	3766.788	335	-219.975555	16	270	10	0	-103	7664	1	0	1	0.003	0.003	
10/12/09 02:30:02	59.929	3766.259	335	-219.975555	16	270.5	10	0	-103	7664	1	0	1	-0.002	0.002	
10/12/09 02:30:04	59.931	3765.672	335	-219.975555	16	271	10	0	-103	7665	1	0	1	0.002	0.002	
10/12/09 02:30:06	59.933	3766.123	335	-229.089249	16	271.5	10	0	-103	7666	1	0	1	0.002	0.002	
10/12/09 02:30:08	59.937	3764.243	335	-229.089249	16	272	10	0	-103	7666	1	0	1	0.004	0.004	
10/12/09 02:30:10	59.937	3765.105	335	-229.089249	16	272.5	10	0	-103	7667	1	0	1	0.000	0.000	
10/12/09 02:30:12	59.945	3762.935	335	-229.089249	16	273	10	0	-103	7668	,	0	,	0.008	0.008	
10/12/09 02:30:14	59.949	3758.387	335	-229.089249	16	273.5	10	0	-103	7668	1	0	1	0.004	0.004	
10/12/09 02:30:16	59.947	3753.922	335	-229.663269	16	274	10	0	-103	7669	1	0	1	-0.002	0.002	
10/12/09 02:30:18	59.942	3749.867	335	-229.663269	16	274.5	10	0	-103	7669	1	0	1	-0.005	0.005	
10/12/09 02:30:20	59.941	3746.889	335	-229.663269	16	275	10	0	-103	7670	1	0	1	-0.001	0.001	
10/12/09 02:30:22	59.942	3747.875	335	-229.663269	16	275.5	10	0	-103	7670	1	0	1	0.001	0.001	
10/12/09 02:30:24	59.945	3749.593	335	-229.663269	16	276	10	0	-103	7671	1	0	1	0.003	0.003	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:30:26	59.948	3748.661	335	-229.233856	16	276.5	10	0	-103	7671	1	0	1	0.003	0.003	
10/12/09 02:30:28	59.947	3746.706	335	-229.233856	16	277	10	0	-103	7672	1	0	1	-0.001	0.001	
10/12/09 02:30:30	59.949	3749.077	335	-229.233856	16	277.5	10	0	-103	7673	1	0	1	0.002	0.002	
10/12/09 02:30:32	59.951	3742.741	335	-229.233856	16	278	10	0	-103	7673	1	0	1	0.002	0.002	
10/12/09 02:30:34	59.952	3740.259	350	-229.233856	16	278.5	10	0	-103	7673	1	0	1	0.001	0.001	
10/12/09 02:30:36	59.953	3736.139	350	-231.409882	16	279	10	0	-103	7673	1	0	1	0.001	0.001	
10/12/09 02:30:38	59.951	3731.382	350	-231.409882	16	279.5	10	0	-103	7673	1	0	1	-0.002	0.002	
10/12/09 02:30:40	59.952	3727.838	350	-231.409882	16	280	10	0	-103	7673	1	0	1	0.001	0.001	
10/12/09 02:30:42	59.952	3725.952	350	-231.409882	16	280.5	10	0	-103	7673	1	0	1	0.000	0.000	
10/12/09 02:30:44	59.952	3722.649	350	-231.409882	16	281	10	0	-103	7673	1	0	1	0.000	0.000	
10/12/09 02:30:46	59.955	3720.578	350	-218.622284	16	281.5	10	0	-103	7673	1	0	1	0.003	0.003	
10/12/09 02:30:48	59.952	3717.996	350	-218.622284	16	282	10	0	-103	7673	1	0	1	-0.003	0.003	
10/12/09 02:30:50	59.954	3718.142	350	-218.622284	16	282.5	10	0	-103	7673	1	0	1	0.002	0.002	
10/12/09 02:30:52	59.952	3715.753	350	-218.622284	16	283	10	0	-103	7673	1	0	,	-0.002	0.002	
10/12/09 02:30:54	59.953	3713.694	350	-218.622284	16	283.5	10	0	-103	7673	1	0	1	0.001	0.001	
10/12/09 02:30:56	59.953	3713.484	350	-213.535858	16	284	10	0	-103	7673	1	0	1	0.000	0.000	
10/12/09 02:30:58	59.952	3710.848	350	-213.535858	16	284.5	10	0	-103	7673	1	0	1	-0.001	0.001	
10/12/09 02:31:00	59.954	3710.81	350	-213.535858	16	285	10	0	-103	7673	1	0	1	0.002	0.002	
10/12/09 02:31:02	59.954	3712.092	350	-213.535858	16	285.5	10	0	-103	7674	1	0	1	0.000	0.000	
10/12/09 02:31:04	59.959	3714.623	350	-213.535858	16	286	10	0	-103	7675	1	0	1	0.005	0.005	
10/12/09 02:31:06	59.957	3715.13	350	-225.651855	16	286.5	10	0	-103	7676	1	0	1	-0.002	0.002	
10/12/09 02:31:08	59.956	3716.168	350	-225.651855	16	287	10	0	-103	7677	1	0	1	-0.001	0.001	
10/12/09 02:31:10	59.954	3716.461	350	-225.651855	16	287.5	10	0	-103	7678	1	0	1	-0.002	0.002	
10/12/09 02:31:12	59.956	3716.98	350	-225.651855	16	288	10	0	-103	7679	1	0	1	0.002	0.002	
10/12/09 02:31:14	59.955	3717.759	350	-225.651855	16	288.5	10	0	-103	7680	1	0	1	-0.001	0.001	
10/12/09 02:31:16	59.958	3722.361	350	-212.573639	16	289	10	0	-103	7681	1	0	1	0.003	0.003	
10/12/09 02:31:18	59.961	3721.973	350	-212.573639	16	289.5	10	0	-103	7682	1	0	1	0.003	0.003	
10/12/09 02:31:20	59.962	3722.658	350	-212.573639	16	290	10	0	-103	7684	1	0	1	0.001	0.001	
10/12/09 02:31:22	59.962	3722.267	350	-212.573639	16	290.5	10	0	-103	7685	1	0	1	0.000	0.000	
10/12/09 02:31:24	59.968	3722.278	350	-212.573639	16	291	10	0	-103	7687	1	0	1	0.006	0.006	
10/12/09 02:31:26	59.966	3721.787	350	-219.897293	16	291.5	10	0	-103	7689	1	0	1	-0.002	0.002	
10/12/09 02:31:28	59.966	3723.091	350	-219.897293	16	292	10	0	-103	7690	1	0	1	0.000	0.000	
10/12/09 02:31:30	59.968	3723.984	350	-219.897293	16	292.5	10	0	-103	7692	1	0	1	0.002	0.002	
10/12/09 02:31:32	59.97	3723.435	350	-219.897293	16	293	10	0	-103	7692	1	0	1	0.002	0.002	
10/12/09 02:31:34	59.974	3723.893	350	-219.897293	16	293.5	10	0	-103	7693	1	0	1	0.004	0.004	
10/12/09 02:31:36	59.97	3725.403	350	-231.1754	16	294	10	0	-103	7693	1	0	1	-0.004	0.004	
10/12/09 02:31:38	59.969	3727.121	350	-231.1754	16	294.5	10	0	-103	7694	1	0	1	-0.001	0.001	
10/12/09 02:31:40	59.969	3728.053	350	-231.1754	16	295	10	0	-103	7694	1	0	1	0.000	0.000	
10/12/09 02:31:42	59.97	3731.13	350	-231.1754	16	295.5	10	0	-103	7695	1	0	1	0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	Jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34		Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:31:44	59.971	3732.53	350	-231.1754	16	296	10	0	-103	7695	1	0	1	0.001	0.001	
10/12/09 02:31:46	59.973	3733.327	350	-226.634125	16	296.5	10	0	-103	7695	1	0	1	0.002	0.002	
10/12/09 02:31:48	59.973	3736.535	350	-226.634125	16	297	10	0	-103	7696	1	0	1	0.000	0.000	
10/12/09 02:31:50	59.976	3736.907	350	-226.634125	16	297.5	10	0	-103	7696	1	0	1	0.003	0.003	
10/12/09 02:31:52	59.978	3736.822	350	-226.634125	16	298	10	0	-103	7697	1	0	1	0.002	0.002	
10/12/09 02:31:54	59.978	3738.699	350	-226.634125	16	298.5	10	0	-103	7697	1	0	1	0.000	0.000	
10/12/09 02:31:56	59.976	3739.944	350	-227.255066	16	299	10	0	-103	7697	1	0	1	-0.002	0.002	
10/12/09 02:31:58	59.978	3740.877	350	-227.255066	16	299.5	10	0	-103	7698	1	0	1	0.002	0.002	
10/12/09 02:32:00	59.976	3741.794	350	-227.255066	16	300	10	0	-103	7698	1	0	1	-0.002	0.002	
10/12/09 02:32:02	59.978	3745.234	350	-227.255066	16	300.5	10	0	-103	7698.33	1	0	1	0.002	0.002	
10/12/09 02:32:04	59.977	3746.608	350	-227.255066	16	301	10	0	-103	7698.66	1	0	1	-0.001	0.001	
10/12/09 02:32:06	59.98	3748.3	350	-229.290222	16	301.5	10	0	-103	7698.99	1	0	1	0.003	0.003	
10/12/09 02:32:08	59.982	3750.716	350	-229.290222	16	302	10	0	-103	7699.32	1	0	1	0.002	0.002	
10/12/09 02:32:10	59.981	3751.558	350	-229.290222	16	302.5	10	0	-103	7699.65	1	0	1	-0.001	0.001	
10/12/09 02:32:12	59.98	3752.748	350	-229.290222	16	303	10	0	-103	7699.98	1	0	1	-0.001	0.001	
10/12/09 02:32:14	59.979	3755.599	350	-229.290222	16	303.5	10	0	-103	7700.31	1	0	1	-0.001	0.001	
10/12/09 02:32:16	59.98	3756.407	350	-221.461365	16	304	10	0	-103	7700.64	1	0	1	0.001	0.001	
10/12/09 02:32:18	59.979	3756.975	350	-221.461365	16	304.5	10	0	-103	7700.97	1	0	1	-0.001	0.001	
10/12/09 02:32:20	59.983	3760.405	350	-221.461365	16	305	10	0	-103	7701.3	1	0	1	0.004	0.004	
10/12/09 02:32:22	59.983	3760.982	350	-221.461365	16	305.5	10	0	-103	7701.63	1	0	1	0.000	0.000	
10/12/09 02:32:24	59.984	3761.407	350	-221.461365	16	306	10	0	-103	7701.96	1	0	1	0.001	0.001	
10/12/09 02:32:26	59.988	3762.737	350	-241.274368	16	306.5	10	0	-103	7702.29	1	0	1	0.004	0.004	
10/12/09 02:32:28	59.989	3763.212	350	-241.274368	16	307	10	0	-103	7702.62	1	0	1	0.001	0.001	
10/12/09 02:32:30	59.987	3764.958	350	-241.274368	16	307.5	10	0	-103	7702.95	1	0	1	-0.002	0.002	
10/12/09 02:32:32	59.987	3766.085	350	-241.274368	16	308	10	0	-103	7703.28	1	0	1	0.000	0.000	
10/12/09 02:32:34	59.991	3766.433	350	-241.274368	16	308.5	10	0	-103	7703.61	1	0	1	0.004	0.004	
10/12/09 02:32:36	59.993	3767.251	350	-243.071854	16	309	10	0	-103	7703.94	1	0	1	0.002	0.002	
10/12/09 02:32:38	59.992	3767.792	350	-243.071854	16	309.5	10	0	-103	7704.27	1	0	1	-0.001	0.001	
10/12/09 02:32:40	59.991	3768.634	350	-243.071854	16	310	10	0	-103	7704.6	1	0	1	-0.001	0.001	
10/12/09 02:32:42	59.989	3771.146	350	-243.071854	16	310.5	10	0	-103	7704.93	1	0	1	-0.002	0.002	
10/12/09 02:32:44	59.986	3772.445	350	-243.071854	16	311	10	0	-103	7705.26	1	0	1	-0.003	0.003	
10/12/09 02:32:46	59.983	3773.695	350	-241.670212	16	311.5	10	0	-103	7705.59	1	0	1	-0.003	0.003	
10/12/09 02:32:48	59.983	3774.668	350	-241.670212	16	312	10	0	-103	7705.92	1	0	1	0.000	0.000	
10/12/09 02:32:50	59.988	3775.841	350	-241.670212	16	312.5	10	0	-103	7706.25	1	0	1	0.005	0.005	
10/12/09 02:32:52	59.993	3775.363	350	-241.670212	16	313	10	0	-103	7706.58	1	0	1	0.005	0.005	
10/12/09 02:32:54	59.996	3774.866	350	-241.670212	16	313.5	10	0	-103	7706.91	1	0	1	0.003	0.003	
10/12/09 02:32:56	59.998	3775.492	350	-228.149307	16	314	10	0	-103	7707.24	1	0	1	0.002	0.002	
10/12/09 02:32:58	59.999	3776.42	350	-228.149307	16	314.5	10	0	-103	7707.57	1	0	1	0.001	0.001	
10/12/09 02:33:00	60.001	3778.554	350	-228.149307	16	315	10	0	-103	7707.9	1	1	1	0.002	0.002	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:33:02	59.999	3779.692	350	-228.149307	16	315.5	10	0	-103	7708.23	1	0	1	-0.002	0.002	
10/12/09 02:33:04	59.999	3781.256	350	-228.149307	16	316	10	0	-103	7708.56	1	0	1	0.000	0.000	
10/12/09 02:33:06	59.999	3780.595	350	-235.128983	16	316.5	10	0	-103	7708.89	1	0	1	0.000	0.000	
10/12/09 02:33:08	60.002	3783.092	350	-235.128983	16	317	10	0	-103	7709.22	1	1	1	0.003	0.003	
10/12/09 02:33:10	60.005	3783.896	350	-235.128983	16	317.5	10	0	-103	7709.55	1	1	1	0.003	0.003	
10/12/09 02:33:12	60.007	3784.421	350	-235.128983	16	318	10	0	-103	7709.88	1	1	1	0.002	0.002	
10/12/09 02:33:14	60.008	3785.768	350	-235.128983	16	318.5	10	0	-103	7710.21	1	1	1	0.001	0.001	
10/12/09 02:33:16	60.011	3785.463	350	-246.433136	16	319	10	0	-103	7710.54	1	1	1	0.003	0.003	
10/12/09 02:33:18	60.014	3786.85	350	-246.433136	16	319.5	10	0	-103	7710.87	1	1	1	0.003	0.003	
10/12/09 02:33:20	60.017	3786.304	350	-246.433136	16	320	10	0	-103	7711.2	1	1	1	0.003	0.003	
10/12/09 02:33:22	60.019	3787.259	350	-246.433136	16	320.5	10	0	-103	7711.53	1	1	1	0.002	0.002	
10/12/09 02:33:24	60.021	3787.516	350	-246.433136	16	321	10	0	-103	7711.86	1	1	1	0.002	0.002	
10/12/09 02:33:26	60.017	3787.955	350	-236.553543	16	321.5	10	0	-103	7712.19	1	1	1	-0.004	0.004	
10/12/09 02:33:28	60.017	3788.03	350	-236.553543	16	322	10	0	-103	7712.52	1	1	1	0.000	0.000	
10/12/09 02:33:30	60.019	3788.607	350	-236.553543	16	322.5	10	0	-103	7712.85	1	1	1	0.002	0.002	
10/12/09 02:33:32	60.023	3789.216	350	-236.553543	16	323	10	0	-103	7713.18	1	1	1	0.004	0.004	
10/12/09 02:33:34	60.024	3787.537	350	-236.553543	16	323.5	10	0	-103	7713.51	1	1	1	0.001	0.001	
10/12/09 02:33:36	60.025	3785.842	350	-230.297562	16	324	10	0	-103	7713.84	1	1	1	0.001	0.001	
10/12/09 02:33:38	60.021	3786.077	350	-230.297562	16	324.5	10	0	-103	7714.17	1	1	1	-0.004	0.004	
10/12/09 02:33:40	60.019	3787.93	350	-230.297562	16	325	10	0	-103	7714.5	1	1	1	-0.002	0.002	
10/12/09 02:33:42	60.024	3788.76	350	-230.297562	16	325.5	10	0	-103	7714.83	1	1	1	0.005	0.005	
10/12/09 02:33:44	60.024	3786.875	350	-230.297562	16	326	10	0	-103	7715.16	1	1	1	0.000	0.000	
10/12/09 02:33:46	60.021	3786.55	350	-231.175537	16	326.5	10	0	-103	7715.49	1	1	1	-0.003	0.003	
10/12/09 02:33:48	60.02	3787.358	350	-231.175537	16	327	10	0	-103	7715.82	1	1	,	-0.001	0.001	
10/12/09 02:33:50	60.025	3785.018	350	-231.175537	16	327.5	10	0	-103	7716.15	1	1	1	0.005	0.005	
10/12/09 02:33:52	60.024	3785.614	350	-231.175537	16	328	10	0	-103	7716.48	1	1	1	-0.001	0.001	
10/12/09 02:33:54	60.02	3785.949	350	-231.175537	16	328.5	10	0	-103	7716.81	1	1	1	-0.004	0.004	
10/12/09 02:33:56	60.02	3785.804	350	-225.61763	16	329	10	0	-103	7717.14	1	1	1	0.000	0.000	
10/12/09 02:33:58	60.022	3786.864	350	-225.61763	16	329.5	10	0	-103	7717.47	1	1	1	0.002	0.002	
10/12/09 02:34:00	60.022	3786.877	350	-225.61763	16	330	10	0	-103	7717.8	1	1	,	0.000	0.000	
10/12/09 02:34:02	60.022	3785.254	350	-225.61763	16	330.5	10	0	-103	7718.13	1	1	1	0.000	0.000	
10/12/09 02:34:04	60.021	3785.726	350	-225.61763	16	331	10	0	-103	7718.46	1	1	1	-0.001	0.001	
10/12/09 02:34:06	60.021	3786.347	350	-230.734421	16	331.5	10	0	-103	7718.79	1	1	1	0.000	0.000	
10/12/09 02:34:08	60.023	3785.821	350	-230.734421	16	332	10	0	-103	7719.12	1	1	1	0.002	0.002	
10/12/09 02:34:10	60.023	3785.798	350	-230.734421	16	332.5	10	0	-103	7719.45	1	1	1	0.000	0.000	
10/12/09 02:34:12	60.022	3786.284	350	-230.734421	16	333	10	0	-103	7719.78	1	1	1	-0.001	0.001	
10/12/09 02:34:14	60.019	3786.939	350	-230.734421	16	333.5	10	0	-103	7720.11	1	1	1	-0.003	0.003	
10/12/09 02:34:16	60.016	3787.627	350	-234.847107	16	334	10	0	-103	7720.44	1	1	1	-0.003	0.003	
10/12/09 02:34:18	60.018	3789.444	350	-234.847107	16	334.5	10	0	-103	7720.77	1	1	1	0.002	0.002	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:34:20	60.018	3789.673	350	-234.847107	16	335	10	0	-103	7721.1	1	1	1	0.000	0.000	
10/12/09 02:34:22	60.018	3789.404	350	-234.847107	16	335.5	10	0	-103	7721.43	1	1	1	0.000	0.000	
10/12/09 02:34:24	60.019	3788.479	350	-234.847107	16	336	10	0	-103	7721.76	1	1	1	0.001	0.001	
10/12/09 02:34:26	60.019	3789.183	350	-228.960922	16	336.5	10	0	-103	7722.09	1	1	1	0.000	0.000	
10/12/09 02:34:28	60.016	3789.369	350	-228.960922	16	337	10	0	-103	7722.42	1	1	1	-0.003	0.003	
10/12/09 02:34:30	60.015	3789.005	350	-228.960922	16	337.5	10	0	-103	7722.75	1	1	1	-0.001	0.001	
10/12/09 02:34:32	60.016	3788.665	350	-228.960922	16	338	10	0	-103	7723.08	1	1	1	0.001	0.001	
10/12/09 02:34:34	60.014	3788.933	350	-228.960922	16	338.5	10	0	-103	7723.41	1	1	1	-0.002	0.002	
10/12/09 02:34:36	60.013	3790.667	350	-231.177917	16	339	10	0	-103	7723.74	1	1	1	-0.001	0.001	
10/12/09 02:34:38	60.012	3790.805	350	-231.177917	16	339.5	10	0	-103	7724.07	1	1	1	-0.001	0.001	
10/12/09 02:34:40	60.012	3790.411	350	-231.177917	16	340	10	0	-103	7724.4	1	1	1	0.000	0.000	
10/12/09 02:34:42	60.01	3789.769	350	-231.177917	16	340.5	10	0	-103	7724.73	1	1	1	-0.002	0.002	
10/12/09 02:34:44	60.007	3791.54	350	-231.177917	16	341	10	0	-103	7725.06	1	1	1	-0.003	0.003	
10/12/09 02:34:46	60.007	3792.945	350	-236.489288	16	341.5	10	0	-103	7725.39	1	1	1	0.000	0.000	
10/12/09 02:34:48	60.009	3791.027	350	-236.489288	16	342	10	0	-103	7725.72	1	1	1	0.002	0.002	
10/12/09 02:34:50	60.009	3791.443	350	-236.489288	16	342.5	10	0	-103	7726.05	1	1	1	0.000	0.000	
10/12/09 02:34:52	60.01	3791.426	350	-236.489288	16	343	10	0	-103	7726.38	1	1	1	0.001	0.001	
10/12/09 02:34:54	60.003	3790.603	350	-236.489288	16	343.5	10	0	-103	7726.71	1	1	1	-0.007	0.007	
10/12/09 02:34:56	59.999	3790.457	350	-245.038925	16	344	10	0	-103	7727.04	1	0	1	-0.004	0.004	
10/12/09 02:34:58	59.995	3790.216	350	-245.038925	16	344.5	10	0	-103	7727.37	1	0	1	-0.004	0.004	
10/12/09 02:35:00	59.992	3789.585	350	-245.038925	16	345	10	0	-103	7727.7	1	0	1	-0.003	0.003	
10/12/09 02:35:02	59.991	3788.457	350	-245.038925	16	345.5	10	0	-103	7728.03	1	0	1	-0.001	0.001	
10/12/09 02:35:04	59.992	3788.105	350	-245.038925	16	346	10	0	-103	7728.36	1	0	1	0.001	0.001	
10/12/09 02:35:06	59.992	3788.057	350	-223.605682	16	346.5	10	0	-103	7728.69	1	0	1	0.000	0.000	
10/12/09 02:35:08	59.988	3788.189	350	-223.605682	16	347	10	0	-103	7729.02	1	0	1	-0.004	0.004	
10/12/09 02:35:10	59.986	3788.497	350	-223.605682	16	347.5	10	0	-103	7729.35	1	0	1	-0.002	0.002	
10/12/09 02:35:12	59.985	3788.54	350	-223.605682	16	348	10	0	-103	7729.68	1	0	1	-0.001	0.001	
10/12/09 02:35:14	59.984	3788.571	350	-223.605682	16	348.5	10	0	-103	7730.01	1	0	1	-0.001	0.001	
10/12/09 02:35:16	59.985	3788.101	350	-231.119354	16	349	10	0	-103	7730.34	1	0	1	0.001	0.001	
10/12/09 02:35:18	59.984	3787.133	350	-231.119354	16	349.5	10	0	-103	7730.67	1	0	1	-0.001	0.001	
10/12/09 02:35:20	59.982	3786.453	350	-231.119354	16	350	10	0	-103	7731	1	0	1	-0.002	0.002	
10/12/09 02:35:22	59.981	3787.732	350	-231.119354	16	350.5	10	0	-103	7731.33	1	0	1	-0.001	0.001	
10/12/09 02:35:24	59.982	3788.813	350	-231.119354	16	351	10	0	-103	7731.66	1	0	1	0.001	0.001	
10/12/09 02:35:26	59.979	3789.285	350	-237.20665	16	351.5	10	0	-103	7731.99	1	0	1	-0.003	0.003	
10/12/09 02:35:28	59.977	3788.256	350	-237.20665	16	352	10	0	-103	7732.32	1	0	1	-0.002	0.002	
10/12/09 02:35:30	59.976	3788.41	350	-237.20665	16	352.5	10	0	-103	7732.65	1	0	1	-0.001	0.001	
10/12/09 02:35:32	59.976	3790.467	350	-237.20665	16	353	10	0	-103	7732.98	1	0	1	0.000	0.000	
10/12/09 02:35:34	59.979	3790.665	350	-237.20665	16	353.5	10	0	-103	7733.31	1	0	1	0.003	0.003	
10/12/09 02:35:36	59.982	3790.42	350	-240.516373	16	354	10	0	-103	7733.64	1	0	1	0.003	0.003	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:35:38	59.978	3789.674	350	-240.516373	16	354.5	10	0	-103	7733.97	1	0	1	-0.004	0.004	
10/12/09 02:35:40	59.976	3789.267	350	-240.516373	16	355	10	0	-103	7734.3	1	0	1	-0.002	0.002	
10/12/09 02:35:42	59.974	3789.148	350	-240.516373	16	355.5	10	0	-103	7734.63	1	0	1	-0.002	0.002	
10/12/09 02:35:44	59.976	3790.43	350	-240.516373	16	356	10	0	-103	7734.96	1	0	1	0.002	0.002	
10/12/09 02:35:46	59.977	3789.914	350	-237.566055	16	356.5	10	0	-103	7735.29	1	0	1	0.001	0.001	
10/12/09 02:35:48	59.977	3786.243	350	-237.566055	16	357	10	0	-103	7735.62	1	0	1	0.000	0.000	
10/12/09 02:35:50	59.975	3787.442	350	-237.566055	16	357.5	10	0	-103	7735.95	1	0	1	-0.002	0.002	
10/12/09 02:35:52	59.973	3788.963	350	-237.566055	16	358	10	0	-103	7736.28	1	0	1	-0.002	0.002	
10/12/09 02:35:54	59.969	3790.602	350	-237.566055	16	358.5	10	0	-103	7736.61	1	0	1	-0.004	0.004	
10/12/09 02:35:56	59.97	3791.877	350	-231.581421	16	359	10	0	-103	7736.94	1	0	1	0.001	0.001	
10/12/09 02:35:58	59.971	3792.911	350	-231.581421	16	359.5	10	0	-103	7737.27	1	0	1	0.001	0.001	
10/12/09 02:36:00	59.973	3792.311	350	-231.581421	16	360	10	0	-103	7737.6	1	0	1	0.002	0.002	
10/12/09 02:36:02	59.978	3789.125	350	-231.581421	16	360.5	10	0	-103	7737.93	1	0	1	0.005	0.005	
10/12/09 02:36:04	59.981	3788.08	350	-231.581421	16	361	10	0	-103	7738.26	1	0	1	0.003	0.003	
10/12/09 02:36:06	59.978	3787.844	350	-235.850845	16	361.5	10	0	-103	7738.59	1	0	1	-0.003	0.003	
10/12/09 02:36:08	59.975	3787.135	350	-235.850845	16	362	10	0	-103	7738.92	1	0	1	-0.003	0.003	
10/12/09 02:36:10	59.972	3787.164	350	-235.850845	16	362.5	10	0	-103	7739.25	1	0	1	-0.003	0.003	
10/12/09 02:36:12	59.976	3786.996	350	-235.850845	16	363	10	0	-103	7739.58	1	0	1	0.004	0.004	
10/12/09 02:36:14	59.975	3787.405	350	-235.850845	16	363.5	10	0	-103	7739.91	1	0	1	-0.001	0.001	
10/12/09 02:36:16	59.973	3786.487	350	-233.559982	16	364	10	0	-103	7740.24	1	0	1	-0.002	0.002	
10/12/09 02:36:18	59.969	3787.079	350	-233.559982	16	364.5	10	0	-103	7740.57	1	0	1	-0.004	0.004	
10/12/09 02:36:20	59.966	3789.214	350	-233.559982	16	365	10	0	-103	7740.9	1	0	1	-0.003	0.003	
10/12/09 02:36:22	59.965	3790.512	350	-233.559982	16	365.5	10	0	-103	7741.23	1	0	1	-0.001	0.001	
10/12/09 02:36:24	59.966	3791.221	350	-233.559982	16	366	10	0	-103	7741.56	1	0	1	0.001	0.001	
10/12/09 02:36:26	59.969	3792.218	350	-219.009995	16	366.5	10	0	-103	7741.89	1	0	1	0.003	0.003	
10/12/09 02:36:28	59.97	3790.959	350	-219.009995	16	367	10	0	-103	7742.22	1	0	1	0.001	0.001	
10/12/09 02:36:30	59.968	3788.824	350	-219.009995	16	367.5	10	0	-103	7742.55	1	0	1	-0.002	0.002	
10/12/09 02:36:32	59.965	3789.026	350	-219.009995	16	368	10	0	-103	7742.88	1	0	1	-0.003	0.003	
10/12/09 02:36:34	59.964	3789.167	350	-219.009995	16	368.5	10	0	-103	7743.21	1	0	1	-0.001	0.001	
10/12/09 02:36:36	59.97	3787.394	350	-205.338913	16	369	10	0	-103	7743.54	1	0	1	0.006	0.006	
10/12/09 02:36:38	59.972	3785.69	350	-205.338913	16	369.5	10	0	-103	7743.87	1	0	1	0.002	0.002	
10/12/09 02:36:40	59.967	3784.831	350	-205.338913	16	370	10	0	-103	7744.2	1	0	1	-0.005	0.005	
10/12/09 02:36:42	59.967	3785.01	350	-205.338913	16	370.5	10	0	-103	7744.53	,	0	1	0.000	0.000	
10/12/09 02:36:44	59.969	3784.32	350	-205.338913	16	371	10	0	-103	7744.86	1	0	1	0.002	0.002	
10/12/09 02:36:46	59.968	3782.809	350	-236.285355	16	371.5	10	0	-103	7745.19	1	0	1	-0.001	0.001	
10/12/09 02:36:48	59.969	3782.11	350	-236.285355	16	372	10	0	-103	7745.52	1	0	1	0.001	0.001	
10/12/09 02:36:50	59.967	3779.352	350	-236.285355	16	372.5	10	0	-103	7745.85	1	0	1	-0.002	0.002	
10/12/09 02:36:52	59.967	3779.056	350	-236.285355	16	373	10	0	-103	7746.18	1	0	1	0.000	0.000	
10/12/09 02:36:54	59.966	3778.633	350	-236.285355	16	373.5	10	0	-103	7746.51	1	0	1	-0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:36:56	59.965	3779.212	350	-223.015732	16	374	10	0	-103	7746.84	1	0	1	-0.001	0.001	
10/12/09 02:36:58	59.971	3779.335	350	-223.015732	16	374.5	10	0	-103	7747.17	1	0	1	0.006	0.006	
10/12/09 02:37:00	59.967	3776.429	350	-223.015732	16	375	10	0	-103	7747.5	1	0	1	-0.004	0.004	
10/12/09 02:37:02	59.965	3775.647	350	-223.015732	16	375.5	10	-	-103	7747.83	1	0	1	-0.002	0.002	
10/12/09 02:37:04	59.962	3776.597	350	-223.015732	16	376	10	0	-103	7748.16	1	0	1	-0.003	0.003	
10/12/09 02:37:06	59.964	3776.559	350	-223.015732	16	376.5	10	0	-103	7748.49	1	0	1	0.002	0.002	
10/12/09 02:37:08	59.97	3776.023	350	-223.015732	16	377	10	0	-103	7748.82	1	0	1	0.006	0.006	
10/12/09 02:37:10	59.967	3773.17	350	-223.015732	16	377.5	10	0	-103	7749.15	1	0	1	-0.003	0.003	
10/12/09 02:37:12	59.969	3771.73	350	-223.015732	16	378	10	0	-103	7749.48	1	0	1	0.002	0.002	
10/12/09 02:37:14	59.968	3768.793	350	-223.015732	16	378.5	10	0	-103	7749.81	1	0	1	-0.001	0.001	
10/12/09 02:37:16	59.963	3768.503	350	-223.015732	16	379	10	0	-103	7750.14	1	0	1	-0.005	0.005	
10/12/09 02:37:18	59.965	3768.917	350	-223.015732	16	379.5	10	0	-103	7750.47	1	0	1	0.002	0.002	
10/12/09 02:37:20	59.97	3767.366	350	-223.015732	16	380	10	0	-103	7750.8	1	0	1	0.005	0.005	
10/12/09 02:37:22	59.973	3764.786	350	-223.015732	16	380.5	10	0	-103	7751.13	1	0	1	0.003	0.003	
10/12/09 02:37:24	59.968	3760.295	350	-223.015732	16	381	10	0	-103	7751.46	1	0	1	-0.005	0.005	
10/12/09 02:37:26	59.965	3759.592	350	-223.015732	16	381.5	10	0	-103	7751.79	1	0	1	-0.003	0.003	
10/12/09 02:37:28	59.968	3761.894	350	-223.015732	16	382	10	0	-103	7752.12	1	0	1	0.003	0.003	
10/12/09 02:37:30	59.969	3761.777	350	-223.015732	16	382.5	10	0	-103	7752.45	1	0	1	0.001	0.001	
10/12/09 02:37:32	59.967	3760.583	350	-223.015732	16	383	10	0	-103	7752.78	1	0	1	-0.002	0.002	
10/12/09 02:37:34	59.964	3760.157	350	-223.015732	16	383.5	10	0	-103	7753.11	1	0	1	-0.003	0.003	
10/12/09 02:37:36	59.966	3759.781	350	-223.015732	16	384	10	0	-103	7753.44	1	0	1	0.002	0.002	
10/12/09 02:37:38	59.979	3759.495	350	-223.015732	16	384.5	10	0	-103	7753.77	1	0	1	0.013	0.013	
10/12/09 02:37:40	59.99	3757.773	350	-223.015732	16	385	10	0	-103	7754.1	1	0	1	0.011	0.011	
10/12/09 02:37:42	59.983	3753.277	350	-223.015732	16	385.5	10	0	-103	7754.43	1	0	1	-0.007	0.007	
10/12/09 02:37:44	59.974	3753.087	350	-223.015732	16	386	10	0	-103	7754.76	1	0	1	-0.009	0.009	
10/12/09 02:37:46	59.967	3751.637	350	-223.015732	16	386.5	10	0	-103	7755.09	1	0	1	-0.007	0.007	
10/12/09 02:37:48	59.965	3753.751	350	-223.015732	16	387	10	0	-103	7755.42	1	0	1	-0.002	0.002	
10/12/09 02:37:50	59.962	3758.225	350	-223.015732	16	387.5	10	0	-103	7755.75	1	0	1	-0.003	0.003	
10/12/09 02:37:52	59.962	3759.25	350	-223.015732	16	388	10	0	-103	7756.08	1	0	1	0.000	0.000	
10/12/09 02:37:54	59.961	3758.041	350	-223.015732	16	388.5	10	0	-103	7756.41	1	0	,	-0.001	0.001	
10/12/09 02:37:56	59.961	3760.965	350	-223.015732	16	389	10	0	-103	7756.74	1	0	1	0.000	0.000	
10/12/09 02:37:58	59.96	3762.022	350	-223.015732	16	389.5	10	0	-103	7757.07	1	0	1	-0.001	0.001	
10/12/09 02:38:00	59.963	3763.822	350	-223.015732	16	390	10	0	-103	7757.4	,	0	1	0.003	0.003	
10/12/09 02:38:02	59.959	3763.1	350	-223.015732	16	390.5	10	0	-103	7757.73	1	0	,	-0.004	0.004	
10/12/09 02:38:04	59.956	3763.858	350	-223.015732	16	391	10	0	-103	7758.06	1	0	1	-0.003	0.003	
10/12/09 02:38:06	59.951	3764.158	350	-223.015732	16	391.5	10	0	-103	7758.39	1	0	1	-0.005	0.005	
10/12/09 02:38:08	59.953	3766.127	350	-223.015732	16	392	10	0	-103	7758.72	1	0	1	0.002	0.002	
10/12/09 02:38:10	59.954	3768.339	350	-223.015732	16	392.5	10	0	-103	7759.05	1	0	1	0.001	0.001	
10/12/09 02:38:12	59.957	3767.972	350	-223.015732	16	393	10	0	-103	7759.38	1	0	1	0.003	0.003	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:38:14	59.956	3767.438	350	-223.015732	16	393.5	10	0	-103	7759.71	1	0	1	-0.001	0.001	
10/12/09 02:38:16	59.961	3765.606	350	-223.015732	16	394	10	0	-103	7760.04	1	0	1	0.005	0.005	
10/12/09 02:38:18	59.963	3762.688	350	-223.015732	16	394.5	10	0	-103	7760.37	1	0	1	0.002	0.002	
10/12/09 02:38:20	59.961	3761.57	350	-223.015732	16	395	10	,	-103	7760.7	1	0	1	-0.002	0.002	
10/12/09 02:38:22	59.959	3761.92	350	-223.015732	16	395.5	10	0	-103	7761.03	1	0	1	-0.002	0.002	
10/12/09 02:38:24	59.963	3759.627	350	-223.015732	16	396	10	0	-103	7761.36	1	0	1	0.004	0.004	
10/12/09 02:38:26	59.963	3758.522	350	-223.015732	16	396.5	10	0	-103	7761.69	1	0	1	0.000	0.000	
10/12/09 02:38:28	59.965	3752.429	350	-223.015732	16	397	10	0	-103	7762.02	1	0	1	0.002	0.002	
10/12/09 02:38:30	59.968	3750.102	350	-223.015732	16	397.5	10	0	-103	7762.35	1	0	1	0.003	0.003	
10/12/09 02:38:32	59.968	3753.83	350	-223.015732	16	398	10	0	-103	7762.68	1	0	1	0.000	0.000	
10/12/09 02:38:34	59.968	3753.51	350	-223.015732	16	398.5	10	0	-103	7763.01	1	0	1	0.000	0.000	
10/12/09 02:38:36	59.97	3753.523	350	-223.015732	16	399	10	0	-103	7763.34	1	0	1	0.002	0.002	
10/12/09 02:38:38	59.973	3752.741	350	-223.015732	16	399.5	10	0	-103	7763.67	1	0	1	0.003	0.003	
10/12/09 02:38:40	59.971	3753.178	350	-223.015732	16	400	10	0	-103	7764	1	0	,	-0.002	0.002	
10/12/09 02:38:42	59.965	3752.729	350	-223.015732	16	400.5	10	0	-103	7764.33	1	0	1	-0.006	0.006	
10/12/09 02:38:44	59.967	3753.291	350	-223.015732	16	401	10	0	-103	7764.66	1	0	1	0.002	0.002	
10/12/09 02:38:46	59.967	3752.872	350	-223.015732	16	401.5	10	0	-103	7764.99	1	0	1	0.000	0.000	
10/12/09 02:38:48	59.972	3752.359	350	-223.015732	16	402	10	0	-103	7765.32	1	0	1	0.005	0.005	
10/12/09 02:38:50	59.976	3749.398	350	-223.015732	16	402.5	10	0	-103	7765.65	1	0	1	0.004	0.004	
10/12/09 02:38:52	59.975	3747.476	350	-223.015732	16	403	10	0	-103	7765.98	1	0	1	-0.001	0.001	
10/12/09 02:38:54	59.969	3740.37	350	-223.015732	16	403.5	10	0	-103	7766.31	1	0	1	-0.006	0.006	
10/12/09 02:38:56	59.973	3741.285	350	-223.015732	16	404	10	0	-103	7766.64	1	0	1	0.004	0.004	
10/12/09 02:38:58	59.974	3746.651	350	-223.015732	16	404.5	10	0	-103	7766.97	1	0	1	0.001	0.001	
10/12/09 02:39:00	59.978	3745.738	350	-223.015732	16	405	10	0	-103	7767.3	1	0	,	0.004	0.004	
10/12/09 02:39:02	59.981	3743.351	350	-223.015732	16	405.5	10	0	-103	7767.63	1	0	1	0.003	0.003	
10/12/09 02:39:04	59.981	3741.618	350	-223.015732	16	406	10	0	-103	7767.96	1	0	1	0.000	0.000	
10/12/09 02:39:06	59.981	3740.306	350	-223.015732	16	406.5	10	0	-103	7768.29	1	0	1	0.000	0.000	
10/12/09 02:39:08	59.982	3738.484	350	-223.015732	16	407	10	0	-103	7768.62	1	0	1	0.001	0.001	
10/12/09 02:39:10	59.982	3738.901	350	-223.015732	16	407.5	10	0	-103	7768.95	1	0	1	0.000	0.000	
10/12/09 02:39:12	59.984	3737.404	350	-223.015732	16	408	10	0	-103	7769.28	1	0	1	0.002	0.002	
10/12/09 02:39:14	59.982	3737.273	350	-223.015732	16	408.5	10	0	-103	7769.61	1	0	1	-0.002	0.002	
10/12/09 02:39:16	59.981	3736.308	350	-223.015732	16	409	10	0	-103	7769.94	1	0	1	-0.001	0.001	
10/12/09 02:39:18	59.979	3736.272	350	-223.015732	16	409.5	10	0	-103	7770.27	,	0	1	-0.002	0.002	
10/12/09 02:39:20	59.98	3735.448	350	-223.015732	16	410	10	0	-103	7770.6	1	0	1	0.001	0.001	
10/12/09 02:39:22	59.978	3735.65	350	-223.015732	16	410.5	10	0	-103	7770.93	1	0	1	-0.002	0.002	
10/12/09 02:39:24	59.978	3737.541	350	-223.015732	16	411	10	0	-103	7771.26	1	0	1	0.000	0.000	
10/12/09 02:39:26	59.98	3738.012	350	-223.015732	16	411.5	10	0	-103	7771.59	1	0	1	0.002	0.002	
10/12/09 02:39:28	59.981	3736.748	350	-223.015732	16	412	10	0	-103	7771.92	1	0	1	0.001	0.001	
10/12/09 02:39:30	59.98	3736.693	350	-223.015732	16	412.5	10	0	-103	7772.25	1	0	1	-0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:39:32	59.978	3736.067	350	-223.015732	16	413	10	0	-103	7772.58	1	0	1	-0.002	0.002	
10/12/09 02:39:34	59.976	3736.094	350	-223.015732	16	413.5	10	0	-103	7772.91	1	0	1	-0.002	0.002	
10/12/09 02:39:36	59.972	3736.575	350	-223.015732	16	414	10	0	-103	7773.24	1	0	1	-0.004	0.004	
10/12/09 02:39:38	59.971	3738.571	350	-223.015732	16	414.5	10	0	-103	7773.57	1	0	1	-0.001	0.001	
10/12/09 02:39:40	59.969	3738.875	350	-223.015732	16	415	10	0	-103	7773.9	1	0	1	-0.002	0.002	
10/12/09 02:39:42	59.974	3738.935	350	-223.015732	16	415.5	10	0	-103	7774.23	1	0	1	0.005	0.005	
10/12/09 02:39:44	59.975	3738.647	350	-223.015732	16	416	10	0	-103	7774.56	1	0	1	0.001	0.001	
10/12/09 02:39:46	59.976	3737.684	350	-223.015732	16	416.5	10	0	-103	7774.89	1	0	1	0.001	0.001	
10/12/09 02:39:48	59.972	3737.382	350	-223.015732	16	417	10	0	-103	7775.22	1	0	1	-0.004	0.004	
10/12/09 02:39:50	59.969	3737.892	350	-223.015732	16	417.5	10	0	-103	7775.55	1	0	1	-0.003	0.003	
10/12/09 02:39:52	59.971	3740.017	350	-223.015732	16	418	10	0	-103	7775.88	1	0	1	0.002	0.002	
10/12/09 02:39:54	59.974	3740.329	350	-223.015732	16	418.5	10	0	-103	7776.21	1	0	1	0.003	0.003	
10/12/09 02:39:56	59.972	3742.053	350	-223.015732	16	419	10	0	-103	7776.54	1	0	1	-0.002	0.002	
10/12/09 02:39:58	59.972	3742.424	350	-223.015732	16	419.5	10	0	-103	7776.87	1	0	1	0.000	0.000	
10/12/09 02:40:00	59.972	3742.524	350	-223.015732	16	420	10	0	-103	7777.2	1	0	1	0.000	0.000	
10/12/09 02:40:02	59.977	3742.245	350	-223.015732	16	420.5	10	0	-103	7777.53	1	0	1	0.005	0.005	
10/12/09 02:40:04	59.982	3741.723	350	-223.015732	16	421	10	0	-103	7777.86	1	0	1	0.005	0.005	
10/12/09 02:40:06	59.978	3740.085	350	-223.015732	16	421.5	10	0	-103	7778.19	1	0	1	-0.004	0.004	
10/12/09 02:40:08	59.976	3740.629	350	-223.015732	16	422	10	0	-103	7778.52	1	0	1	-0.002	0.002	
10/12/09 02:40:10	59.973	3739.964	350	-223.015732	16	422.5	10	0	-103	7778.85	1	0	1	-0.003	0.003	
10/12/09 02:40:12	59.974	3740.775	350	-223.015732	16	423	10	0	-103	7779.18	1	0	1	0.001	0.001	
10/12/09 02:40:14	59.977	3742.833	350	-223.015732	16	423.5	10	0	-103	7779.51	1	0	1	0.003	0.003	
10/12/09 02:40:16	59.977	3741.268	350	-223.015732	16	424	10	0	-103	7779.84	1	0	1	0.000	0.000	
10/12/09 02:40:18	59.978	3739.776	350	-223.015732	16	424.5	10	0	-103	7780.17	1	0	,	0.001	0.001	
10/12/09 02:40:20	59.979	3738.966	350	-223.015732	16	425	10	0	-103	7780.5	1	0	1	0.001	0.001	
10/12/09 02:40:22	59.981	3738.706	350	-223.015732	16	425.5	10	0	-103	7780.83	1	0	1	0.002	0.002	
10/12/09 02:40:24	59.977	3738.879	350	-223.015732	16	426	10	0	-103	7781.16	1	0	1	-0.004	0.004	
10/12/09 02:40:26	59.974	3739.86	350	-223.015732	16	426.5	10	0	-103	7781.49	1	0	1	-0.003	0.003	
10/12/09 02:40:28	59.971	3738.102	350	-223.015732	16	427	10	0	-103	7781.82	1	0	1	-0.003	0.003	
10/12/09 02:40:30	59.971	3738.558	350	-223.015732	16	427.5	10	0	-103	7782.15	1	0	1	0.000	0.000	
10/12/09 02:40:32	59.971	3743.507	350	-223.015732	16	428	10	0	-103	7782.48	1	0	1	0.000	0.000	
10/12/09 02:40:34	59.972	3743.419	350	-223.015732	16	428.5	10	0	-103	7782.81	1	0	1	0.001	0.001	
10/12/09 02:40:36	59.968	3745.251	350	-223.015732	16	429	10	0	-103	7783.14	,	0	1	-0.004	0.004	
10/12/09 02:40:38	59.966	3745.744	350	-223.015732	16	429.5	10	0	-103	7783.47	1	0	1	-0.002	0.002	
10/12/09 02:40:40	59.966	3747.34	350	-223.015732	16	430	10	0	-103	7783.8	1	0	1	0.000	0.000	
10/12/09 02:40:42	59.971	3750.7	350	-223.015732	16	430.5	10	0	-103	7784.13	1	0	1	0.005	0.005	
10/12/09 02:40:44	59.973	3749.75	350	-223.015732	16	431	10	0	-103	7784.46	1	0	1	0.002	0.002	
10/12/09 02:40:46	59.972	3746.217	350	-223.015732	16	431.5	10	0	-103	7784.79	1	0	1	-0.001	0.001	
10/12/09 02:40:48	59.969	3744.683	350	-223.015732	16	432	10	0	-103	7785.12	1	0	1	-0.003	0.003	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:40:50	59.972	3743.745	350	-223.015732	16	432.5	10	0	-103	7785.45	1	0	1	0.003	0.003	
10/12/09 02:40:52	59.974	3743.149	350	-223.015732	16	433	10	0	-103	7785.78	1	0	1	0.002	0.002	
10/12/09 02:40:54	59.973	3740.299	350	-223.015732	16	433.5	10	0	-103	7786.11	1	0	1	-0.001	0.001	
10/12/09 02:40:56	59.97	3739.453	350	-223.015732	16	434	10	,	-103	7786.44	1	0	1	-0.003	0.003	
10/12/09 02:40:58	59.971	3733.376	350	-223.015732	16	434.5	10	0	-103	7786.77	1	0	1	0.001	0.001	
10/12/09 02:41:00	59.974	3731.83	350	-223.015732	16	435	10	0	-103	7787.1	1	0	1	0.003	0.003	
10/12/09 02:41:02	59.982	3737.583	350	-223.015732	16	435.5	10	0	-103	7787.43	1	0	1	0.008	0.008	
10/12/09 02:41:04	59.985	3736.229	350	-223.015732	16	436	10	0	-103	7787.76	1	0	1	0.003	0.003	
10/12/09 02:41:06	59.985	3734.897	350	-223.015732	16	436.5	10	0	-103	7788.09	1	0	1	0.000	0.000	
10/12/09 02:41:08	59.985	3733.434	350	-223.015732	16	437	10	0	-103	7788.42	1	0	1	0.000	0.000	
10/12/09 02:41:10	59.987	3733.115	350	-223.015732	16	437.5	10	0	-103	7788.75	1	0	1	0.002	0.002	
10/12/09 02:41:12	59.989	3730.51	350	-223.015732	16	438	10	0	-103	7789.08	1	0	1	0.002	0.002	
10/12/09 02:41:14	59.989	3729.18	350	-223.015732	16	438.5	10	0	-103	7789.41	1	0	1	0.000	0.000	
10/12/09 02:41:16	59.986	3725.459	350	-223.015732	16	439	10	0	-103	7789.74	1	0	,	-0.003	0.003	
10/12/09 02:41:18	59.987	3724.785	350	-223.015732	16	439.5	10	0	-103	7790.07	1	0	1	0.001	0.001	
10/12/09 02:41:20	59.99	3720.108	350	-223.015732	16	440	10	0	-103	7790.4	1	0	1	0.003	0.003	
10/12/09 02:41:22	59.994	3720.938	350	-223.015732	16	440.5	10	0	-103	7790.73	1	0	1	0.004	0.004	
10/12/09 02:41:24	59.996	3725.661	350	-223.015732	16	441	10	0	-103	7791.06	1	0	1	0.002	0.002	
10/12/09 02:41:26	60.001	3725.677	350	-223.015732	16	441.5	10	0	-103	7791.39	1	1	1	0.005	0.005	
10/12/09 02:41:28	60.003	3727.754	350	-223.015732	16	442	10	0	-103	7791.72	1	1	1	0.002	0.002	
10/12/09 02:41:30	60.004	3727.825	350	-223.015732	16	442.5	10	0	-103	7792.05	1	1	1	0.001	0.001	
10/12/09 02:41:32	60.006	3727.683	350	-223.015732	16	443	10	0	-103	7792.38	1	1	1	0.002	0.002	
10/12/09 02:41:34	60.012	3727.231	350	-223.015732	16	443.5	10	0	-103	7792.71	1	1	1	0.006	0.006	
10/12/09 02:41:36	60.014	3725.012	350	-223.015732	16	444	10	0	-103	7793.04	1	1	,	0.002	0.002	
10/12/09 02:41:38	60.019	3726.446	350	-223.015732	16	444.5	10	0	-103	7793.37	1	1	1	0.005	0.005	
10/12/09 02:41:40	60.021	3726.016	350	-223.015732	16	445	10	0	-103	7793.7	1	1	1	0.002	0.002	
10/12/09 02:41:42	60.025	3719.123	350	-223.015732	16	445.5	10	0	-103	7794.03	1	1	1	0.004	0.004	
10/12/09 02:41:44	60.026	3716.375	350	-223.015732	16	446	10	0	-103	7794.36	1	1	1	0.001	0.001	
10/12/09 02:41:46	60.027	3717.333	350	-223.015732	16	446.5	10	0	-103	7794.69	1	1	1	0.001	0.001	
10/12/09 02:41:48	60.029	3717.56	350	-223.015732	16	447	10	0	-103	7795.02	1	1	1	0.002	0.002	
10/12/09 02:41:50	60.029	3717.142	350	-223.015732	16	447.5	10	0	-103	7795.35	1	1	1	0.000	0.000	
10/12/09 02:41:52	60.037	3715.166	350	-223.015732	16	448	10	0	-103	7795.68	1	1	1	0.008	0.008	
10/12/09 02:41:54	60.036	3713.632	350	-223.015732	16	448.5	10	0	-103	7796.01	,	1	1	-0.001	0.001	
10/12/09 02:41:56	60.037	3710.283	350	-223.015732	16	449	10	0	-103	7796.34	1	1	1	0.001	0.001	
10/12/09 02:41:58	60.037	3710.158	350	-223.015732	16	449.5	10	0	-103	7796.67	1	1	1	0.000	0.000	
10/12/09 02:42:00	60.036	3699.356	350	-223.015732	16	450	10	0	-103	7797	1	1	1	-0.001	0.001	
10/12/09 02:42:02	60.041	3698.591	350	-223.015732	16	450.5	10	0	-103	7797.33	1	1	1	0.005	0.005	
10/12/09 02:42:04	60.043	3704.591	350	-223.015732	16	451	10	0	-103	7797.66	1	1	1	0.002	0.002	
10/12/09 02:42:06	60.044	3703.275	350	-223.015732	16	451.5	10	0	-103	7797.99	1	1	1	0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:42:08	60.043	3702.482	350	-223.015732	16	452	10	0	-103	7798.32	1	1	1	-0.001	0.001	
10/12/09 02:42:10	60.046	3701.316	350	-223.015732	16	452.5	10	0	-103	7798.65	1	1	1	0.003	0.003	
10/12/09 02:42:12	60.048	3700.826	350	-223.015732	16	453	10	0	-103	7798.98	1	1	1	0.002	0.002	
10/12/09 02:42:14	60.046	3699.529	350	-223.015732	16	453.5	10	0	-103	7799.31	1	1	1	-0.002	0.002	
10/12/09 02:42:16	60.046	3699.726	350	-223.015732	16	454	10	0	-103	7799.64	1	1	1	0.000	0.000	
10/12/09 02:42:18	60.043	3690.1	350	-223.015732	16	454.5	10	0	-103	7799.97	1	1	1	-0.003	0.003	
10/12/09 02:42:20	60.043	3690.477	350	-223.015732	16	455	10	0	-103	7800.3	1	1	1	0.000	0.000	
10/12/09 02:42:22	60.044	3696.865	350	-223.015732	16	455.5	10	0	-103	7800.63	1	1	1	0.001	0.001	
10/12/09 02:42:24	60.043	3696.877	350	-223.015732	16	456	10	0	-103	7800.96	1	1	1	-0.001	0.001	
10/12/09 02:42:26	60.043	3696.182	350	-223.015732	16	456.5	10	0	-103	7801.29	1	1	1	0.000	0.000	
10/12/09 02:42:28	60.045	3696.541	350	-223.015732	16	457	10	0	-103	7801.62	1	1	1	0.002	0.002	
10/12/09 02:42:30	60.04	3696.968	350	-223.015732	16	457.5	10	0	-103	7801.95	1	1	1	-0.005	0.005	
10/12/09 02:42:32	60.041	3698.686	350	-223.015732	16	458	10	0	-103	7802.28	1	1	1	0.001	0.001	
10/12/09 02:42:34	60.039	3699.631	350	-223.015732	16	458.5	10	0	-103	7802.61	1	1	,	-0.002	0.002	
10/12/09 02:42:36	60.039	3698.787	350	-223.015732	16	459	10	0	-103	7802.94	1	1	1	0.000	0.000	
10/12/09 02:42:38	60.036	3699.712	350	-223.015732	16	459.5	10	0	-103	7803.27	1	1	1	-0.003	0.003	
10/12/09 02:42:40	60.038	3700.106	350	-223.015732	16	460	10	0	-103	7803.6	1	1	1	0.002	0.002	
10/12/09 02:42:42	60.033	3699.968	350	-223.015732	16	460.5	10	0	-103	7803.93	1	1	1	-0.005	0.005	
10/12/09 02:42:44	60.034	3701.122	350	-223.015732	16	461	10	0	-103	7804.26	1	1	1	0.001	0.001	
10/12/09 02:42:46	60.037	3701.865	350	-223.015732	16	461.5	10	0	-103	7804.59	1	1	1	0.003	0.003	
10/12/09 02:42:48	60.037	3701.614	350	-223.015732	16	462	10	0	-103	7804.92	1	1	1	0.000	0.000	
10/12/09 02:42:50	60.035	3701.998	350	-223.015732	16	462.5	10	0	-103	7805.25	1	1	1	-0.002	0.002	
10/12/09 02:42:52	60.03	3702.913	350	-223.015732	16	463	10	0	-103	7805.58	1	1	1	-0.005	0.005	
10/12/09 02:42:54	60.033	3703.909	350	-223.015732	16	463.5	10	0	-103	7805.91	1	1	1	0.003	0.003	
10/12/09 02:42:56	60.036	3705.522	350	-223.015732	16	464	10	0	-103	7806.24	1	1	1	0.003	0.003	
10/12/09 02:42:58	60.033	3704.967	350	-223.015732	16	464.5	10	0	-103	7806.57	1	1	1	-0.003	0.003	
10/12/09 02:43:00	60.034	3704.087	350	-223.015732	16	465	10	0	-103	7806.9	1	1	1	0.001	0.001	
10/12/09 02:43:02	60.032	3702.771	350	-223.015732	16	465.5	10	0	-103	7807.23	1	1	1	-0.002	0.002	
10/12/09 02:43:04	60.032	3703.706	350	-223.015732	16	466	10	0	-103	7807.56	1	1	1	0.000	0.000	
10/12/09 02:43:06	60.034	3704.905	350	-223.015732	16	466.5	10	0	-103	7807.89	1	1	1	0.002	0.002	
10/12/09 02:43:08	60.033	3705.435	350	-223.015732	16	467	10	0	-103	7808.22	1	1	1	-0.001	0.001	
10/12/09 02:43:10	60.037	3704.36	350	-223.015732	16	467.5	10	0	-103	7808.55	1	1	1	0.004	0.004	
10/12/09 02:43:12	60.035	3702.588	350	-223.015732	16	468	10	0	-103	7808.88	,	1	1	-0.002	0.002	
10/12/09 02:43:14	60.035	3702.204	350	-223.015732	16	468.5	10	0	-103	7809.21	1	1	1	0.000	0.000	
10/12/09 02:43:16	60.036	3701.942	350	-223.015732	16	469	10	0	-103	7809.54	1	1	1	0.001	0.001	
10/12/09 02:43:18	60.039	3702.25	350	-223.015732	16	469.5	10	0	-103	7809.87	1	1	1	0.003	0.003	
10/12/09 02:43:20	60.037	3703.318	350	-223.015732	16	470	10	0	-103	7810.2	1	1	1	-0.002	0.002	
10/12/09 02:43:22	60.039	3702.457	350	-223.015732	16	470.5	10	0	-103	7810.53	1	1	1	0.002	0.002	
10/12/09 02:43:24	60.036	3702.525	350	-223.015732	16	471	10	0	-103	7810.86	1	1	1	-0.003	0.003	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ $\mathrm{t}($ Recovery $)$ Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:43:26	60.034	3703.269	350	-223.015732	16	471.5	10	0	-103	7811.19	1	1	1	-0.002	0.002	
10/12/09 02:43:28	60.038	3703.844	350	-223.015732	16	472	10	0	-103	7811.52	1	1	1	0.004	0.004	
10/12/09 02:43:30	60.037	3702.865	350	-223.015732	16	472.5	10	0	-103	7811.85	1	1	1	-0.001	0.001	
10/12/09 02:43:32	60.037	3702.518	350	-223.015732	16	473	10	0	-103	7812.18	1	1	1	0.000	0.000	
10/12/09 02:43:34	60.037	3702.28	350	-223.015732	16	473.5	10	0	-103	7812.51	1	1	1	0.000	0.000	
10/12/09 02:43:36	60.038	3692.427	350	-223.015732	16	474	10	0	-103	7812.84	1	1	1	0.001	0.001	
10/12/09 02:43:38	60.04	3692.178	350	-223.015732	16	474.5	10	0	-103	7813.17	1	1	1	0.002	0.002	
10/12/09 02:43:40	60.043	3700.276	350	-223.015732	16	475	10	0	-103	7813.5	1	1	1	0.003	0.003	
10/12/09 02:43:42	60.045	3698.755	350	-223.015732	16	475.5	10	0	-103	7813.83	1	1	1	0.002	0.002	
10/12/09 02:43:44	60.045	3697.729	350	-223.015732	16	476	10	0	-103	7814.16	1	1	1	0.000	0.000	
10/12/09 02:43:46	60.042	3696.916	350	-223.015732	16	476.5	10	0	-103	7814.49	1	1	1	-0.003	0.003	
10/12/09 02:43:48	60.043	3697.368	350	-223.015732	16	477	10	0	-103	7814.82	1	1	1	0.001	0.001	
10/12/09 02:43:50	60.04	3697.346	350	-223.015732	16	477.5	10	0	-103	7815.15	1	1	1	-0.003	0.003	
10/12/09 02:43:52	60.044	3698.429	350	-223.015732	16	478	10	0	-103	7815.48	1	1	1	0.004	0.004	
10/12/09 02:43:54	60.046	3694.763	350	-223.015732	16	478.5	10	0	-103	7815.81	1	1	1	0.002	0.002	
10/12/09 02:43:56	60.042	3693.584	350	-223.015732	16	479	10	0	-103	7816.14	1	1	1	-0.004	0.004	
10/12/09 02:43:58	60.034	3693.241	350	-223.015732	16	479.5	10	0	-103	7816.47	1	1	1	-0.008	0.008	
10/12/09 02:44:00	60.039	3696.798	350	-223.015732	16	480	10	0	-103	7816.8	1	1	1	0.005	0.005	
10/12/09 02:44:02	60.039	3699.364	350	-223.015732	16	480.5	10	0	-103	7817.13	1	1	1	0.000	0.000	
10/12/09 02:44:04	60.036	3701.791	350	-223.015732	16	481	10	0	-103	7817.46	1	1	1	-0.003	0.003	
10/12/09 02:44:06	60.037	3700.708	350	-223.015732	16	481.5	10	0	-103	7817.79	1	1	1	0.001	0.001	
10/12/09 02:44:08	60.034	3700.753	350	-223.015732	16	482	10	0	-103	7818.12	1	1	1	-0.003	0.003	
10/12/09 02:44:10	60.033	3702.148	350	-223.015732	16	482.5	10	0	-103	7818.45	1	1	1	-0.001	0.001	
10/12/09 02:44:12	60.032	3705.213	350	-223.015732	16	483	10	0	-103	7818.78	1	1	1	-0.001	0.001	
10/12/09 02:44:14	60.031	3707.521	350	-223.015732	16	483.5	10	0	-103	7819.11	1	1	1	-0.001	0.001	
10/12/09 02:44:16	60.033	3707.287	350	-223.015732	16	484	10	0	-103	7819.44	1	1	1	0.002	0.002	
10/12/09 02:44:18	60.027	3706.988	350	-223.015732	16	484.5	10	0	-103	7819.77	1	1	1	-0.006	0.006	
10/12/09 02:44:20	60.031	3707.34	350	-223.015732	16	485	10	0	-103	7820.1	1	1	1	0.004	0.004	
10/12/09 02:44:22	60.032	3707.917	350	-223.015732	16	485.5	10	0	-103	7820.43	1	1	1	0.001	0.001	
10/12/09 02:44:24	60.031	3707.384	350	-223.015732	16	486	10	0	-103	7820.76	1	1	1	-0.001	0.001	
10/12/09 02:44:26	60.031	3706.857	350	-223.015732	16	486.5	10	0	-103	7821.09	1	1	1	0.000	0.000	
10/12/09 02:44:28	60.033	3707.615	350	-223.015732	16	487	10	0	-103	7821.42	1	1	1	0.002	0.002	
10/12/09 02:44:30	60.039	3706.823	350	-223.015732	16	487.5	10	0	-103	7821.75	1	1	1	0.006	0.006	
10/12/09 02:44:32	60.039	3703.746	350	-223.015732	16	488	10	0	-103	7822.08	1	1	1	0.000	0.000	
10/12/09 02:44:34	60.038	3701.582	350	-223.015732	16	488.5	10	0	-103	7822.41	1	1	1	-0.001	0.001	
10/12/09 02:44:36	60.037	3700.847	350	-223.015732	16	489	10	0	-103	7822.74	1	1	1	-0.001	0.001	
10/12/09 02:44:38	60.035	3701.208	350	-223.015732	16	489.5	10	0	-103	7823.07	1	1	1	-0.002	0.002	
10/12/09 02:44:40	60.037	3702.212	350	-223.015732	16	490	10	0	-103	7823.4	1	1	1	0.002	0.002	
10/12/09 02:44:42	60.04	3701.686	350	-223.015732	16	490.5	10	0	-103	7823.73	1	,	1	0.003	0.003	

Time (T)	Hz	Net Actual Interchang ϵ MW	Jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta\quadHz $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:44:44	60.042	3700.397	350	-223.015732	16	491	10	0	-103	7824.06	1	1	1	0.002	0.002	
10/12/09 02:44:46	60.035	3699.69	350	-223.015732	16	491.5	10	0	-103	7824.39	1	1	1	-0.007	0.007	
10/12/09 02:44:48	60.036	3700.366	350	-223.015732	16	492	10	0	-103	7824.72	1	1	1	0.001	0.001	
10/12/09 02:44:50	60.04	3700.827	350	-223.015732	16	492.5	10	0	-103	7825.05	1	1	1	0.004	0.004	
10/12/09 02:44:52	60.045	3700.662	350	-223.015732	16	493	10	0	-103	7825.38	1	1	1	0.005	0.005	
10/12/09 02:44:54	60.045	3696.935	350	-223.015732	16	493.5	10	0	-103	7825.71	1	1	1	0.000	0.000	
10/12/09 02:44:56	60.048	3695.688	350	-223.015732	16	494	10	0	-103	7826.04	1	1	1	0.003	0.003	
10/12/09 02:44:58	60.042	3695.819	350	-223.015732	16	494.5	10	0	-103	7826.37	1	1	1	-0.006	0.006	
10/12/09 02:45:00	60.044	3693.824	350	-223.015732	16	495	10	0	-103	7826.7	1	1	1	0.002	0.002	
10/12/09 02:45:02	60.044	3694.799	350	-223.015732	16	495.5	10	0	-103	7827.03	1	1	1	0.000	0.000	
10/12/09 02:45:04	60.044	3696.897	350	-223.015732	16	496	10	0	-103	7827.36	1	1	1	0.000	0.000	
10/12/09 02:45:06	60.041	3696.023	350	-223.015732	16	496.5	10	0	-103	7827.69	1	1	1	-0.003	0.003	
10/12/09 02:45:08	60.04	3697.502	350	-223.015732	16	497	10	0	-103	7828.02	1	1	1	-0.001	0.001	
10/12/09 02:45:10	60.04	3698.424	350	-223.015732	16	497.5	10	0	-103	7828.35	1	1	1	0.000	0.000	
10/12/09 02:45:12	60.045	3699.427	350	-223.015732	16	498	10	0	-103	7828.68	1	1	1	0.005	0.005	
10/12/09 02:45:14	60.044	3700.177	350	-223.015732	16	498.5	10	0	-103	7829.01	1	1	1	-0.001	0.001	
10/12/09 02:45:16	60.042	3699.806	350	-223.015732	16	499	10	0	-103	7829.34	1	1	1	-0.002	0.002	
10/12/09 02:45:18	60.039	3697.577	350	-223.015732	16	499.5	10	0	-103	7829.67	1	1	1	-0.003	0.003	
10/12/09 02:45:20	60.042	3697.681	350	-223.015732	16	500	10	0	-103	7830	1	1	1	0.003	0.003	
10/12/09 02:45:22	60.042	3698.507	350	-223.015732	16	500.5	10	0	-103	7830.33	1	1	1	0.000	0.000	
10/12/09 02:45:24	60.041	3698.359	350	-223.015732	16	501	10	0	-103	7830.66	1	1	1	-0.001	0.001	
10/12/09 02:45:26	60.038	3698.466	350	-223.015732	16	501.5	10	0	-103	7830.99	1	1	1	-0.003	0.003	
10/12/09 02:45:28	60.036	3699.077	350	-223.015732	16	502	10	0	-103	7831.32	1	1	1	-0.002	0.002	
10/12/09 02:45:30	60.037	3700.262	350	-223.015732	16	502.5	10	0	-103	7831.65	1	1	1	0.001	0.001	
10/12/09 02:45:32	60.039	3701.592	350	-223.015732	16	503	10	0	-103	7831.98	1	1	1	0.002	0.002	
10/12/09 02:45:34	60.038	3700.902	350	-223.015732	16	503.5	10	0	-103	7832.31	1	1	1	-0.001	0.001	
10/12/09 02:45:36	60.04	3700.143	350	-223.015732	16	504	10	0	-103	7832.64	1	1	1	0.002	0.002	
10/12/09 02:45:38	60.039	3700.27	350	-223.015732	16	504.5	10	0	-103	7832.97	1	1	1	-0.001	0.001	
10/12/09 02:45:40	60.037	3701.139	350	-223.015732	16	505	10	0	-103	7833.3	1	1	1	-0.002	0.002	
10/12/09 02:45:42	60.038	3701.586	350	-223.015732	16	505.5	10	0	-103	7833.63	1	1	1	0.001	0.001	
10/12/09 02:45:44	60.039	3700.264	350	-223.015732	16	506	10	0	-103	7833.96	1	1	1	0.001	0.001	
10/12/09 02:45:46	60.04	3699.458	350	-223.015732	16	506.5	10	0	-103	7834.29	1	1	1	0.001	0.001	
10/12/09 02:45:48	60.037	3699.721	350	-223.015732	16	507	10	0	-103	7834.62	1	1	1	-0.003	0.003	
10/12/09 02:45:50	60.037	3700.458	350	-223.015732	16	507.5	10	0	-103	7834.95	1	1	1	0.000	0.000	
10/12/09 02:45:52	60.037	3699.505	350	-223.015732	16	508	10	0	-103	7835.28	1	1	1	0.000	0.000	
10/12/09 02:45:54	60.039	3698.794	350	-223.015732	16	508.5	10	0	-103	7835.61	1	1	1	0.002	0.002	
10/12/09 02:45:56	60.038	3699.216	350	-223.015732	16	509	10	0	-103	7835.94	1	1	1	-0.001	0.001	
10/12/09 02:45:58	60.036	3699.4	350	-223.015732	16	509.5	10	0	-103	7836.27	1	1	1	-0.002	0.002	
10/12/09 02:46:00	60.035	3700.661	350	-223.015732	16	510	10	0	-103	7836.6	1	1	1	-0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	Jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta\quadHz $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:46:02	60.033	3702.173	350	-223.015732	16	510.5	10	0	-103	7836.93	1	1	1	-0.002	0.002	
10/12/09 02:46:04	60.031	3702.968	350	-223.015732	16	511	10	0	-103	7837.26	1	1	1	-0.002	0.002	
10/12/09 02:46:06	60.03	3705.195	350	-223.015732	16	511.5	10	0	-103	7837.59	1	1	1	-0.001	0.001	
10/12/09 02:46:08	60.032	3704.952	350	-223.015732	16	512	10	0	-103	7837.92	1	1	1	0.002	0.002	
10/12/09 02:46:10	60.032	3705.775	350	-223.015732	16	512.5	10	0	-103	7838.25	1	1	1	0.000	0.000	
10/12/09 02:46:12	60.037	3705.621	350	-223.015732	16	513	10	0	-103	7838.58	1	1	1	0.005	0.005	
10/12/09 02:46:14	60.042	3703.744	350	-223.015732	16	513.5	10	0	-103	7838.91	1	1	1	0.005	0.005	
10/12/09 02:46:16	60.041	3701.981	350	-223.015732	16	514	10	0	-103	7839.24	1	1	1	-0.001	0.001	
10/12/09 02:46:18	60.036	3700.756	350	-223.015732	16	514.5	10	0	-103	7839.57	1	1	1	-0.005	0.005	
10/12/09 02:46:20	60.031	3700.747	350	-223.015732	16	515	10	0	-103	7839.9	1	1	1	-0.005	0.005	
10/12/09 02:46:22	60.032	3702.213	350	-223.015732	16	515.5	10	0	-103	7840.23	1	1	1	0.001	0.001	
10/12/09 02:46:24	60.031	3705.059	350	-223.015732	16	516	10	0	-103	7840.56	1	1	1	-0.001	0.001	
10/12/09 02:46:26	60.034	3705.514	350	-223.015732	16	516.5	10	0	-103	7840.89	1	1	1	0.003	0.003	
10/12/09 02:46:28	60.034	3704.449	350	-223.015732	16	517	10	0	-103	7841.22	1	1	1	0.000	0.000	
10/12/09 02:46:30	60.032	3703.831	350	-223.015732	16	517.5	10	0	-103	7841.55	1	1	1	-0.002	0.002	
10/12/09 02:46:32	60.038	3703.62	350	-223.015732	16	518	10	0	-103	7841.88	1	1	1	0.006	0.006	
10/12/09 02:46:34	60.043	3702.795	350	-223.015732	16	518.5	10	0	-103	7842.21	1	1	1	0.005	0.005	
10/12/09 02:46:36	60.044	3701.432	350	-223.015732	16	519	10	0	-103	7842.54	1	1	1	0.001	0.001	
10/12/09 02:46:38	60.042	3697.38	350	-223.015732	16	519.5	10	0	-103	7842.87	1	1	1	-0.002	0.002	
10/12/09 02:46:40	60.045	3696.25	350	-223.015732	16	520	10	0	-103	7843.2	1	1	1	0.003	0.003	
10/12/09 02:46:42	60.04	3696.302	350	-223.015732	16	520.5	10	0	-103	7843.53	1	1	1	-0.005	0.005	
10/12/09 02:46:44	60.04	3693.518	350	-223.015732	16	521	10	0	-103	7843.86	1	1	1	0.000	0.000	
10/12/09 02:46:46	60.043	3693.577	350	-223.015732	16	521.5	10	0	-103	7844.19	1	1	1	0.003	0.003	
10/12/09 02:46:48	60.043	3695.197	350	-223.015732	16	522	10	0	-103	7844.52	1	1	1	0.000	0.000	
10/12/09 02:46:50	60.041	3695.186	350	-223.015732	16	522.5	10	0	-103	7844.85	1	1	1	-0.002	0.002	
10/12/09 02:46:52	60.04	3693.786	350	-223.015732	16	523	10	0	-103	7845.18	1	1	1	-0.001	0.001	
10/12/09 02:46:54	60.038	3694.753	350	-223.015732	16	523.5	10	0	-103	7845.51	1	1	1	-0.002	0.002	
10/12/09 02:46:56	60.043	3694.926	350	-223.015732	16	524	10	0	-103	7845.84	1	1	1	0.005	0.005	
10/12/09 02:46:58	60.044	3694.938	350	-223.015732	16	524.5	10	0	-103	7846.17	1	1	1	0.001	0.001	
10/12/09 02:47:00	60.042	3694.159	350	-223.015732	16	525	10	0	-103	7846.5	1	1	1	-0.002	0.002	
10/12/09 02:47:02	60.036	3691.33	350	-223.015732	16	525.5	10	0	-103	7846.83	1	1	1	-0.006	0.006	
10/12/09 02:47:04	60.043	3692.686	350	-223.015732	16	526	10	0	-103	7847.16	1	1	1	0.007	0.007	
10/12/09 02:47:06	60.041	3693.238	350	-223.015732	16	526.5	10	0	-103	7847.49	1	1	1	-0.002	0.002	
10/12/09 02:47:08	60.042	3693.39	350	-223.015732	16	527	10	0	-103	7847.82	1	1	1	0.001	0.001	
10/12/09 02:47:10	60.043	3692.357	350	-223.015732	16	527.5	10	0	-103	7848.15	1	1	1	0.001	0.001	
10/12/09 02:47:12	60.043	3690.951	350	-223.015732	16	528	10	0	-103	7848.48	1	1	1	0.000	0.000	
10/12/09 02:47:14	60.036	3690.836	350	-223.015732	16	528.5	10	0	-103	7848.81	1	1	1	-0.007	0.007	
10/12/09 02:47:16	60.039	3692.042	350	-223.015732	16	529	10	0	-103	7849.14	1	1	1	0.003	0.003	
10/12/09 02:47:18	60.039	3693.114	350	-223.015732	16	529.5	10	0	-103	7849.47	1	1	1	0.000	0.000	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:47:20	60.037	3694.117	350	-223.015732	16	530	10	0	-103	7849.8	1	1	1	-0.002	0.002	
10/12/09 02:47:22	60.034	3695.258	350	-223.015732	16	530.5	10	0	-103	7850.13	1	1	1	-0.003	0.003	
10/12/09 02:47:24	60.035	3695.581	350	-223.015732	16	531	10	0	-103	7850.46	1	1	1	0.001	0.001	
10/12/09 02:47:26	60.035	3695.949	350	-223.015732	16	531.5	10	0	-103	7850.79	1	1	1	0.000	0.000	
10/12/09 02:47:28	60.035	3695.491	350	-223.015732	16	532	10	0	-103	7851.12	1	1	1	0.000	0.000	
10/12/09 02:47:30	60.036	3696.305	350	-223.015732	16	532.5	10	0	-103	7851.45	1	1	1	0.001	0.001	
10/12/09 02:47:32	60.03	3696.486	350	-223.015732	16	533	10	0	-103	7851.78	1	1	1	-0.006	0.006	
10/12/09 02:47:34	60.03	3697.336	350	-223.015732	16	533.5	10	0	-103	7852.11	1	1	1	0.000	0.000	
10/12/09 02:47:36	60.03	3699.171	350	-223.015732	16	534	10	0	-103	7852.44	1	1	1	0.000	0.000	
10/12/09 02:47:38	60.031	3699.357	350	-223.015732	16	534.5	10	0	-103	7852.77	1	1	1	0.001	0.001	
10/12/09 02:47:40	60.031	3699.251	350	-223.015732	16	535	10	0	-103	7853.1	1	1	1	0.000	0.000	
10/12/09 02:47:42	60.032	3699.117	350	-223.015732	16	535.5	10	0	-103	7853.43	1	1	1	0.001	0.001	
10/12/09 02:47:44	60.031	3699.105	350	-223.015732	16	536	10	0	-103	7853.76	1	1	1	-0.001	0.001	
10/12/09 02:47:46	60.032	3699.126	350	-223.015732	16	536.5	10	0	-103	7854.09	1	1	1	0.001	0.001	
10/12/09 02:47:48	60.032	3698.954	350	-223.015732	16	537	10	0	-103	7854.42	1	1	1	0.000	0.000	
10/12/09 02:47:50	60.032	3698.136	350	-223.015732	16	537.5	10	0	-103	7854.75	1	1	1	0.000	0.000	
10/12/09 02:47:52	60.033	3698.277	350	-223.015732	16	538	10	0	-103	7855.08	1	1	1	0.001	0.001	
10/12/09 02:47:54	60.037	3697.412	350	-223.015732	16	538.5	10	0	-103	7855.41	1	1	1	0.004	0.004	
10/12/09 02:47:56	60.04	3695.94	350	-223.015732	16	539	10	0	-103	7855.74	1	1	1	0.003	0.003	
10/12/09 02:47:58	60.039	3693.736	350	-223.015732	16	539.5	10	0	-103	7856.07	1	1	1	-0.001	0.001	
10/12/09 02:48:00	60.042	3693.224	350	-223.015732	16	540	10	0	-103	7856.4	1	1	1	0.003	0.003	
10/12/09 02:48:02	60.036	3691.759	350	-223.015732	16	540.5	10	0	-103	7856.73	1	1	1	-0.006	0.006	
10/12/09 02:48:04	60.039	3691.919	350	-223.015732	16	541	10	0	-103	7857.06	1	1	1	0.003	0.003	
10/12/09 02:48:06	60.041	3692.798	350	-223.015732	16	541.5	10	0	-103	7857.39	1	1	1	0.002	0.002	
10/12/09 02:48:08	60.04	3691.582	350	-223.015732	16	542	10	0	-103	7857.72	1	1	1	-0.001	0.001	
10/12/09 02:48:10	60.035	3692.374	350	-223.015732	16	542.5	10	0	-103	7858.05	1	1	1	-0.005	0.005	
10/12/09 02:48:12	60.036	3693.302	350	-223.015732	16	543	10	0	-103	7858.38	1	1	1	0.001	0.001	
10/12/09 02:48:14	60.038	3694.71	350	-223.015732	16	543.5	10	0	-103	7858.71	1	1	1	0.002	0.002	
10/12/09 02:48:16	60.037	3694.331	350	-223.015732	16	544	10	0	-103	7859.04	1	1	1	-0.001	0.001	
10/12/09 02:48:18	60.041	3693.815	350	-223.015732	16	544.5	10	0	-103	7859.37	1	1	1	0.004	0.004	
10/12/09 02:48:20	60.04	3693.617	350	-223.015732	16	545	10	0	-103	7859.7	1	1	1	-0.001	0.001	
10/12/09 02:48:22	60.036	3694.324	350	-223.015732	16	545.5	10	0	-103	7860.03	1	1	1	-0.004	0.004	
10/12/09 02:48:24	60.033	3694.27	350	-223.015732	16	546	10	0	-103	7860.36	1	1	1	-0.003	0.003	
10/12/09 02:48:26	60.034	3694.66	350	-223.015732	16	546.5	10	0	-103	7860.69	1	1	1	0.001	0.001	
10/12/09 02:48:28	60.038	3693.748	350	-223.015732	16	547	10	0	-103	7861.02	1	1	1	0.004	0.004	
10/12/09 02:48:30	60.04	3692.532	350	-223.015732	16	547.5	10	0	-103	7861.35	1	1	1	0.002	0.002	
10/12/09 02:48:32	60.041	3691.445	350	-223.015732	16	548	10	0	-103	7861.68	1	1	1	0.001	0.001	
10/12/09 02:48:34	60.037	3691.012	350	-223.015732	16	548.5	10	0	-103	7862.01	1	1	1	-0.004	0.004	
10/12/09 02:48:36	60.037	3691.799	350	-223.015732	16	549	10	0	-103	7862.34	1	,	1	0.000	0.000	

Time (T)	Hz	Net Actual Interchange MW	jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34		Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:48:38	60.036	3693.077	350	-223.015732	16	549.5	10	0	-103	7862.67	1	1	1	-0.001	0.001	
10/12/09 02:48:40	60.037	3693.727	350	-223.015732	16	550	10	0	-103	7863	1	1	1	0.001	0.001	
10/12/09 02:48:42	60.038	3693.117	350	-223.015732	16	550.5	10	0	-103	7863.33	1	1	1	0.001	0.001	
10/12/09 02:48:44	60.039	3692.641	350	-223.015732	16	551	10	0	-103	7863.66	1	1	1	0.001	0.001	
10/12/09 02:48:46	60.038	3688.159	350	-223.015732	16	551.5	10	0	-103	7863.99	1	1	1	-0.001	0.001	
10/12/09 02:48:48	60.034	3689.02	350	-223.015732	16	552	10	0	-103	7864.32	1	1	1	-0.004	0.004	
10/12/09 02:48:50	60.033	3688.208	350	-223.015732	16	552.5	10	0	-103	7864.65	1	1	1	-0.001	0.001	
10/12/09 02:48:52	60.031	3690.092	350	-223.015732	16	553	10	0	-103	7864.98	1	1	1	-0.002	0.002	
10/12/09 02:48:54	60.034	3693.172	350	-223.015732	16	553.5	10	0	-103	7865.31	1	1	1	0.003	0.003	
10/12/09 02:48:56	60.029	3693.321	350	-223.015732	16	554	10	0	-103	7865.64	1	1	1	-0.005	0.005	
10/12/09 02:48:58	60.029	3694.593	350	-223.015732	16	554.5	10	0	-103	7865.97	1	1	1	0.000	0.000	
10/12/09 02:49:00	60.031	3695.225	350	-223.015732	16	555	10	0	-103	7866.3	1	1	1	0.002	0.002	
10/12/09 02:49:02	60.03	3694.609	350	-223.015732	16	555.5	10	0	-103	7866.63	1	1	1	-0.001	0.001	
10/12/09 02:49:04	60.03	3693.412	350	-223.015732	16	556	10	0	-103	7866.96	1	1	1	0.000	0.000	
10/12/09 02:49:06	60.026	3693.509	350	-223.015732	16	556.5	10	0	-103	7867.29	1	1	1	-0.004	0.004	
10/12/09 02:49:08	60.022	3696.026	350	-223.015732	16	557	10	0	-103	7867.62	1	1	1	-0.004	0.004	
10/12/09 02:49:10	60.021	3698.012	350	-223.015732	16	557.5	10	0	-103	7867.95	1	1	1	-0.001	0.001	
10/12/09 02:49:12	60.024	3699.062	350	-223.015732	16	558	10	0	-103	7868.28	1	1	1	0.003	0.003	
10/12/09 02:49:14	60.023	3699.414	350	-223.015732	16	558.5	10	0	-103	7868.61	1	1	1	-0.001	0.001	
10/12/09 02:49:16	60.02	3698.935	350	-223.015732	16	559	10	0	-103	7868.94	1	1	1	-0.003	0.003	
10/12/09 02:49:18	60.021	3700.084	350	-223.015732	16	559.5	10	0	-103	7869.27	1	1	1	0.001	0.001	
10/12/09 02:49:20	60.023	3700.544	350	-223.015732	16	560	10	0	-103	7869.6	1	1	1	0.002	0.002	
10/12/09 02:49:22	60.025	3700.486	350	-223.015732	16	560.5	10	0	-103	7869.93	1	1	1	0.002	0.002	
10/12/09 02:49:24	60.026	3698.596	350	-223.015732	16	561	10	0	-103	7870.26	1	1	1	0.001	0.001	
10/12/09 02:49:26	60.026	3697.961	350	-223.015732	16	561.5	10	0	-103	7870.59	1	1	1	0.000	0.000	
10/12/09 02:49:28	60.025	3699.914	350	-223.015732	16	562	10	0	-103	7870.92	1	1	1	-0.001	0.001	
10/12/09 02:49:30	60.024	3700.802	350	-223.015732	16	562.5	10	0	-103	7871.25	1	1	1	-0.001	0.001	
10/12/09 02:49:32	60.024	3701.301	350	-223.015732	16	563	10	0	-103	7871.58	1	1	1	0.000	0.000	
10/12/09 02:49:34	60.025	3701.45	350	-223.015732	16	563.5	10	0	-103	7871.91	1	1	1	0.001	0.001	
10/12/09 02:49:36	60.023	3701.349	350	-223.015732	16	564	10	0	-103	7872.24	1	1	1	-0.002	0.002	
10/12/09 02:49:38	60.023	3701.094	350	-223.015732	16	564.5	10	0	-103	7872.57	1	1	1	0.000	0.000	
10/12/09 02:49:40	60.022	3701.702	350	-223.015732	16	565	10	0	-103	7872.9	1	1	1	-0.001	0.001	
10/12/09 02:49:42	60.026	3702.07	350	-223.015732	16	565.5	10	0	-103	7873.23	1	1	1	0.004	0.004	
10/12/09 02:49:44	60.029	3701.965	350	-223.015732	16	566	10	0	-103	7873.56	1	1	1	0.003	0.003	
10/12/09 02:49:46	60.026	3700.269	350	-223.015732	16	566.5	10	0	-103	7873.89	1	1	1	-0.003	0.003	
10/12/09 02:49:48	60.024	3700.241	350	-223.015732	16	567	10	0	-103	7874.22	1	1	1	-0.002	0.002	
10/12/09 02:49:50	60.021	3701.09	350	-223.015732	16	567.5	10	0	-103	7874.55	1	1	1	-0.003	0.003	
10/12/09 02:49:52	60.025	3701.268	350	-223.015732	16	568	10	0	-103	7874.88	1	1	1	0.004	0.004	
10/12/09 02:49:54	60.025	3701.205	350	-223.015732	16	568.5	10	0	-103	7875.21	1	1	1	0.000	0.000	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:49:56	60.025	3700.587	350	-223.015732	16	569	10	0	-103	7875.54	1	1	1	0.000	0.000	
10/12/09 02:49:58	60.023	3700.532	350	-223.015732	16	569.5	10	0	-103	7875.87	1	1	1	-0.002	0.002	
10/12/09 02:50:00	60.026	3700.177	350	-223.015732	16	570	10	0	-103	7876.2	1	1	1	0.003	0.003	
10/12/09 02:50:02	60.024	3700.295	350	-223.015732	16	570.5	10	,	-103	7876.53	1	1	1	-0.002	0.002	
10/12/09 02:50:04	60.022	3700.277	350	-223.015732	16	571	10	0	-103	7876.86	1	1	1	-0.002	0.002	
10/12/09 02:50:06	60.023	3700.841	350	-223.015732	16	571.5	10	0	-103	7877.19	1	1	1	0.001	0.001	
10/12/09 02:50:08	60.026	3700.863	350	-223.015732	16	572	10	0	-103	7877.52	1	1	1	0.003	0.003	
10/12/09 02:50:10	60.025	3700.26	350	-223.015732	16	572.5	10	0	-103	7877.85	1	1	1	-0.001	0.001	
10/12/09 02:50:12	60.02	3700.052	350	-223.015732	16	573	10	0	-103	7878.18	1	1	1	-0.005	0.005	
10/12/09 02:50:14	60.02	3699.926	350	-223.015732	16	573.5	10	0	-103	7878.51	1	1	1	0.000	0.000	
10/12/09 02:50:16	60.019	3700.965	350	-223.015732	16	574	10	0	-103	7878.84	1	1	1	-0.001	0.001	
10/12/09 02:50:18	60.015	3702.581	350	-223.015732	16	574.5	10	0	-103	7879.17	1	1	1	-0.004	0.004	
10/12/09 02:50:20	60.016	3703.516	350	-223.015732	16	575	10	0	-103	7879.5	1	1	1	0.001	0.001	
10/12/09 02:50:22	60.017	3703.824	350	-223.015732	16	575.5	10	0	-103	7879.83	1	1	1	0.001	0.001	
10/12/09 02:50:24	60.015	3703.672	350	-223.015732	16	576	10	0	-103	7880.16	1	1	1	-0.002	0.002	
10/12/09 02:50:26	60.015	3703.689	350	-223.015732	16	576.5	10	0	-103	7880.49	1	1	1	0.000	0.000	
10/12/09 02:50:28	60.017	3703.003	350	-223.015732	16	577	10	0	-103	7880.82	1	1	1	0.002	0.002	
10/12/09 02:50:30	60.017	3702.921	350	-223.015732	16	577.5	10	0	-103	7881.15	1	1	1	0.000	0.000	
10/12/09 02:50:32	60.012	3703	350	-223.015732	16	578	10	0	-103	7881.48	1	1	1	-0.005	0.005	
10/12/09 02:50:34	60.01	3703.167	350	-223.015732	16	578.5	10	0	-103	7881.81	1	1	1	-0.002	0.002	
10/12/09 02:50:36	60.008	3703.918	350	-223.015732	16	579	10	0	-103	7882.14	1	1	1	-0.002	0.002	
10/12/09 02:50:38	60.002	3703.616	350	-223.015732	16	579.5	10	0	-103	7882.47	1	1	1	-0.006	0.006	
10/12/09 02:50:40	59.999	3703.775	350	-223.015732	16	580	10	0	-103	7882.8	1	0	1	-0.003	0.003	
10/12/09 02:50:42	59.999	3703.751	350	-223.015732	16	580.5	10	0	-103	7883.13	1	0	,	0.000	0.000	
10/12/09 02:50:44	60.002	3701.534	350	-223.015732	16	581	10	0	-103	7883.46	1	1	1	0.003	0.003	
10/12/09 02:50:46	60.003	3700.617	350	-223.015732	16	581.5	10	0	-103	7883.79	1	1	1	0.001	0.001	
10/12/09 02:50:48	60.004	3700.88	350	-223.015732	16	582	10	0	-103	7884.12	1	1	1	0.001	0.001	
10/12/09 02:50:50	60.001	3700.625	350	-223.015732	16	582.5	10	0	-103	7884.45	1	1	1	-0.003	0.003	
10/12/09 02:50:52	59.996	3701.389	350	-223.015732	16	583	10	0	-103	7884.78	1	0	1	-0.005	0.005	
10/12/09 02:50:54	59.993	3701.737	350	-223.015732	16	583.5	10	0	-103	7885.11	1	0	1	-0.003	0.003	
10/12/09 02:50:56	59.992	3700.671	350	-223.015732	16	584	10	0	-103	7885.44	1	0	1	-0.001	0.001	
10/12/09 02:50:58	59.989	3700.826	350	-223.015732	16	584.5	10	0	-103	7885.77	1	0	1	-0.003	0.003	
10/12/09 02:51:00	59.987	3700.977	350	-223.015732	16	585	10	0	-103	7886.1	,	0	1	-0.002	0.002	
10/12/09 02:51:02	59.985	3700.7	350	-223.015732	16	585.5	10	0	-103	7886.43	1	0	1	-0.002	0.002	
10/12/09 02:51:04	59.985	3699.854	350	-223.015732	16	586	10	0	-103	7886.76	1	0	1	0.000	0.000	
10/12/09 02:51:06	59.986	3700.237	350	-223.015732	16	586.5	10	0	-103	7887.09	1	0	1	0.001	0.001	
10/12/09 02:51:08	59.984	3700.342	350	-223.015732	16	587	10	0	-103	7887.42	1	0	1	-0.002	0.002	
10/12/09 02:51:10	59.981	3700.77	350	-223.015732	16	587.5	10	0	-103	7887.75	1	0	1	-0.003	0.003	
10/12/09 02:51:12	59.98	3700.789	350	-223.015732	16	588	10	0	-103	7888.08	1	0	1	-0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	Jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34		Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:51:14	59.977	3701.625	350	-223.015732	16	588.5	10	0	-103	7888.41	1	0	1	-0.003	0.003	
10/12/09 02:51:16	59.975	3703.166	350	-223.015732	16	589	10	0	-103	7888.74	1	0	1	-0.002	0.002	
10/12/09 02:51:18	59.976	3704.187	350	-223.015732	16	589.5	10	0	-103	7889.07	1	0	1	0.001	0.001	
10/12/09 02:51:20	59.972	3704.785	350	-223.015732	16	590	10	0	-103	7889.4	1	0	1	-0.004	0.004	
10/12/09 02:51:22	59.974	3705.811	350	-223.015732	16	590.5	10	0	-103	7889.73	1	0	1	0.002	0.002	
10/12/09 02:51:24	59.977	3706.958	350	-223.015732	16	591	10	0	-103	7890.06	1	0	1	0.003	0.003	
10/12/09 02:51:26	59.975	3706.688	350	-223.015732	16	591.5	10	0	-103	7890.39	1	0	1	-0.002	0.002	
10/12/09 02:51:28	59.973	3706.543	350	-223.015732	16	592	10	0	-103	7890.72	1	0	1	-0.002	0.002	
10/12/09 02:51:30	59.971	3706.257	350	-223.015732	16	592.5	10	0	-103	7891.05	1	0	1	-0.002	0.002	
10/12/09 02:51:32	59.971	3707.027	350	-223.015732	16	593	10	0	-103	7891.38	1	0	1	0.000	0.000	
10/12/09 02:51:34	59.976	3710.118	350	-223.015732	16	593.5	10	0	-103	7891.71	1	0	1	0.005	0.005	
10/12/09 02:51:36	59.979	3710.531	350	-223.015732	16	594	10	0	-103	7892.04	1	0	1	0.003	0.003	
10/12/09 02:51:38	59.98	3708.701	350	-223.015732	16	594.5	10	0	-103	7892.37	1	0	1	0.001	0.001	
10/12/09 02:51:40	59.979	3708.018	350	-223.015732	16	595	10	0	-103	7892.7	1	0	1	-0.001	0.001	
10/12/09 02:51:42	59.982	3706.942	350	-223.015732	16	595.5	10	0	-103	7893.03	1	0	1	0.003	0.003	
10/12/09 02:51:44	59.982	3706.343	350	-223.015732	16	596	10	0	-103	7893.36	1	0	1	0.000	0.000	
10/12/09 02:51:46	59.983	3706.125	350	-223.015732	16	596.5	10	0	-103	7893.69	1	0	1	0.001	0.001	
10/12/09 02:51:48	59.981	3706.311	350	-223.015732	16	597	10	0	-103	7894.02	1	0	1	-0.002	0.002	
10/12/09 02:51:50	59.979	3706.119	350	-223.015732	16	597.5	10	0	-103	7894.35	1	0	1	-0.002	0.002	
10/12/09 02:51:52	59.978	3706.19	350	-223.015732	16	598	10	0	-103	7894.68	1	0	1	-0.001	0.001	
10/12/09 02:51:54	59.976	3707.721	350	-223.015732	16	598.5	10	0	-103	7895.01	1	0	1	-0.002	0.002	
10/12/09 02:51:56	59.978	3709.409	350	-223.015732	16	599	10	0	-103	7895.34	1	0	1	0.002	0.002	
10/12/09 02:51:58	59.977	3708.971	350	-223.015732	16	599.5	10	0	-103	7895.67	1	0	1	-0.001	0.001	
10/12/09 02:52:00	59.976	3708.531	350	-223.015732	16	600	10	0	-103	7896	1	0	1	-0.001	0.001	
10/12/09 02:52:02	59.978	3708.071	350	-223.015732	16	600.5	10	0	-103	7896.33	1	0	1	0.002	0.002	
10/12/09 02:52:04	59.975	3707.24	350	-223.015732	16	601	10	0	-103	7896.66	1	0	1	-0.003	0.003	
10/12/09 02:52:06	59.971	3709.213	350	-223.015732	16	601.5	10	0	-103	7896.99	1	0	1	-0.004	0.004	
10/12/09 02:52:08	59.97	3709.961	350	-223.015732	16	602	10	0	-103	7897.32	1	0	1	-0.001	0.001	
10/12/09 02:52:10	59.97	3711.75	350	-223.015732	16	602.5	10	0	-103	7897.65	1	0	1	0.000	0.000	
10/12/09 02:52:12	59.971	3711.98	350	-223.015732	16	603	10	0	-103	7897.98	1	0	1	0.001	0.001	
10/12/09 02:52:14	59.99	3710.695	350	-223.015732	16	603.5	10	0	-103	7898.31	1	0	1	0.019	0.019	
10/12/09 02:52:16	59.998	3707.867	350	-223.015732	16	604	10	0	-103	7898.64	1	0	1	0.008	0.008	
10/12/09 02:52:18	59.999	3704.912	350	-223.015732	16	604.5	10	0	-103	7898.97	1	0	1	0.001	0.001	
10/12/09 02:52:20	59.999	3705.639	350	-223.015732	16	605	10	0	-103	7899.3	1	0	1	0.000	0.000	
10/12/09 02:52:22	59.998	3703.787	350	-223.015732	16	605.5	10	0	-103	7899.63	1	0	1	-0.001	0.001	
10/12/09 02:52:24	59.999	3703.191	350	-223.015732	16	606	10	0	-103	7899.96	1	0	1	0.001	0.001	
10/12/09 02:52:26	60.003	3702.071	350	-223.015732	16	606.5	10	0	-103	7900.29	1	1	1	0.004	0.004	
10/12/09 02:52:28	60.005	3699.51	350	-223.015732	16	607	10	0	-103	7900.62	1	1	1	0.002	0.002	
10/12/09 02:52:30	60.005	3698.658	350	-223.015732	16	607.5	10	0	-103	7900.95	1	1	1	0.000	0.000	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:52:32	60.01	3698.137	350	-223.015732	16	608	10	0	-103	7901.28	1	1	1	0.005	0.005	
10/12/09 02:52:34	60.013	3697.882	350	-223.015732	16	608.5	10	0	-103	7901.61	1	1	1	0.003	0.003	
10/12/09 02:52:36	60.02	3698.668	350	-223.015732	16	609	10	0	-103	7901.94	1	1	1	0.007	0.007	
10/12/09 02:52:38	60.022	3698.604	350	-223.015732	16	609.5	10		-103	7902.27	1	1	1	0.002	0.002	
10/12/09 02:52:40	60.024	3697.868	350	-223.015732	16	610	10	0	-103	7902.6	1	1	1	0.002	0.002	
10/12/09 02:52:42	60.025	3694.672	350	-223.015732	16	610.5	10	0	-103	7902.93	1	1	1	0.001	0.001	
10/12/09 02:52:44	60.025	3693.912	350	-223.015732	16	611	10	0	-103	7903.26	1	1	1	0.000	0.000	
10/12/09 02:52:46	60.024	3693.418	350	-223.015732	16	611.5	10	0	-103	7903.59	1	1	1	-0.001	0.001	
10/12/09 02:52:48	60.023	3688.301	350	-223.015732	16	612	10	0	-103	7903.92	1	1	1	-0.001	0.001	
10/12/09 02:52:50	60.029	3688.021	350	-223.015732	16	612.5	10	0	-103	7904.25	1	1	1	0.006	0.006	
10/12/09 02:52:52	60.029	3689.143	350	-223.015732	16	613	10	0	-103	7904.58	1	1	1	0.000	0.000	
10/12/09 02:52:54	60.029	3688.237	350	-223.015732	16	613.5	10	0	-103	7904.91	1	1	1	0.000	0.000	
10/12/09 02:52:56	60.028	3687.878	350	-223.015732	16	614	10	0	-103	7905.24	1	1	1	-0.001	0.001	
10/12/09 02:52:58	60.028	3687.026	350	-223.015732	16	614.5	10	0	-103	7905.57	1	1	1	0.000	0.000	
10/12/09 02:53:00	60.031	3686.683	350	-223.015732	16	615	10	0	-103	7905.9	1	1	1	0.003	0.003	
10/12/09 02:53:02	60.032	3685.276	350	-223.015732	16	615.5	10	0	-103	7906.23	1	1	1	0.001	0.001	
10/12/09 02:53:04	60.033	3685.576	350	-223.015732	16	616	10	0	-103	7906.56	1	1	1	0.001	0.001	
10/12/09 02:53:06	60.031	3685.985	350	-223.015732	16	616.5	10	0	-103	7906.89	1	1	1	-0.002	0.002	
10/12/09 02:53:08	60.03	3686.418	350	-223.015732	16	617	10	0	-103	7907.22	1	1	1	-0.001	0.001	
10/12/09 02:53:10	60.022	3687.159	350	-223.015732	16	617.5	10	0	-103	7907.55	1	1	1	-0.008	0.008	
10/12/09 02:53:12	60.021	3687.873	350	-223.015732	16	618	10	0	-103	7907.88	1	1	1	-0.001	0.001	
10/12/09 02:53:14	60.019	3688.997	350	-223.015732	16	618.5	10	0	-103	7908.21	1	1	1	-0.002	0.002	
10/12/09 02:53:16	60.017	3690.426	350	-223.015732	16	619	10	0	-103	7908.54	1	1	1	-0.002	0.002	
10/12/09 02:53:18	60.017	3690.776	350	-223.015732	16	619.5	10	0	-103	7908.87	1	1	,	0.000	0.000	
10/12/09 02:53:20	60.017	3692.715	350	-223.015732	16	620	10	0	-103	7909.2	1	1	1	0.000	0.000	
10/12/09 02:53:22	60.016	3692.578	350	-223.015732	16	620.5	10	0	-103	7909.53	1	1	1	-0.001	0.001	
10/12/09 02:53:24	60.015	3692.462	350	-223.015732	16	621	10	0	-103	7909.86	1	1	1	-0.001	0.001	
10/12/09 02:53:26	60.015	3693.173	350	-223.015732	16	621.5	10	0	-103	7910.19	1	1	1	0.000	0.000	
10/12/09 02:53:28	60.012	3693.249	350	-223.015732	16	622	10	0	-103	7910.52	1	1	1	-0.003	0.003	
10/12/09 02:53:30	60.009	3693.743	350	-223.015732	16	622.5	10	0	-103	7910.85	1	1	,	-0.003	0.003	
10/12/09 02:53:32	60.008	3695.124	350	-223.015732	16	623	10	0	-103	7911.18	1	1	1	-0.001	0.001	
10/12/09 02:53:34	60.008	3694.681	350	-223.015732	16	623.5	10	0	-103	7911.51	1	1	1	0.000	0.000	
10/12/09 02:53:36	60.005	3694.741	350	-223.015732	16	624	10	0	-103	7911.84	,	1	1	-0.003	0.003	
10/12/09 02:53:38	60.005	3694.199	350	-223.015732	16	624.5	10	0	-103	7912.17	1	1	1	0.000	0.000	
10/12/09 02:53:40	60.003	3693.75	350	-223.015732	16	625	10	0	-103	7912.5	1	1	1	-0.002	0.002	
10/12/09 02:53:42	59.999	3693.624	350	-223.015732	16	625.5	10	0	-103	7912.83	1	0	1	-0.004	0.004	
10/12/09 02:53:44	59.997	3692.806	350	-223.015732	16	626	10	0	-103	7913.16	1	0	1	-0.002	0.002	
10/12/09 02:53:46	59.999	3691.15	350	-223.015732	16	626.5	10	0	-103	7913.49	1	0	1	0.002	0.002	
10/12/09 02:53:48	60	3691.407	350	-223.015732	16	627	10	0	-103	7913.82	1	0	1	0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:53:50	59.998	3691.077	350	-223.015732	16	627.5	10	0	-103	7914.15	1	0	1	-0.002	0.002	
10/12/09 02:53:52	59.995	3690.588	350	-223.015732	16	628	10	0	-103	7914.48	1	0	1	-0.003	0.003	
10/12/09 02:53:54	59.994	3689.797	350	-223.015732	16	628.5	10	0	-103	7914.81	1	0	1	-0.001	0.001	
10/12/09 02:53:56	59.992	3688.483	350	-223.015732	16	629	10	0	-103	7915.14	1	0	1	-0.002	0.002	
10/12/09 02:53:58	59.993	3689.445	350	-223.015732	16	629.5	10	0	-103	7915.47	1	0	1	0.001	0.001	
10/12/09 02:54:00	59.988	3689.553	350	-223.015732	16	630	10	0	-103	7915.8	1	0	1	-0.005	0.005	
10/12/09 02:54:02	59.985	3689.525	350	-223.015732	16	630.5	10	0	-103	7916.13	1	0	1	-0.003	0.003	
10/12/09 02:54:04	59.986	3689.736	350	-223.015732	16	631	10	0	-103	7916.46	1	0	1	0.001	0.001	
10/12/09 02:54:06	59.988	3688.853	350	-223.015732	16	631.5	10	0	-103	7916.79	1	0	1	0.002	0.002	
10/12/09 02:54:08	59.988	3688.24	350	-223.015732	16	632	10	0	-103	7917.12	1	0	1	0.000	0.000	
10/12/09 02:54:10	59.985	3687.494	350	-223.015732	16	632.5	10	0	-103	7917.45	1	0	1	-0.003	0.003	
10/12/09 02:54:12	59.983	3687.475	350	-223.015732	16	633	10	0	-103	7917.78	1	0	1	-0.002	0.002	
10/12/09 02:54:14	59.983	3686.707	350	-223.015732	16	633.5	10	0	-103	7918.11	1	0	1	0.000	0.000	
10/12/09 02:54:16	59.985	3685.66	350	-223.015732	16	634	10	0	-103	7918.44	1	0	1	0.002	0.002	
10/12/09 02:54:18	59.986	3684.51	350	-223.015732	16	634.5	10	0	-103	7918.77	1	0	1	0.001	0.001	
10/12/09 02:54:20	59.987	3684.333	350	-223.015732	16	635	10	0	-103	7919.1	1	0	1	0.001	0.001	
10/12/09 02:54:22	59.99	3683.911	350	-223.015732	16	635.5	10	0	-103	7919.43	1	0	1	0.003	0.003	
10/12/09 02:54:24	59.986	3683.735	350	-223.015732	16	636	10	0	-103	7919.76	1	0	1	-0.004	0.004	
10/12/09 02:54:26	59.985	3684.208	350	-223.015732	16	636.5	10	0	-103	7920.09	1	0	1	-0.001	0.001	
10/12/09 02:54:28	59.984	3683.811	350	-223.015732	16	637	10	0	-103	7920.42	1	0	1	-0.001	0.001	
10/12/09 02:54:30	59.983	3683.473	350	-223.015732	16	637.5	10	0	-103	7920.75	1	0	1	-0.001	0.001	
10/12/09 02:54:32	59.982	3684.258	350	-223.015732	16	638	10	0	-103	7921.08	1	0	1	-0.001	0.001	
10/12/09 02:54:34	59.982	3684.884	350	-223.015732	16	638.5	10	0	-103	7921.41	1	0	1	0.000	0.000	
10/12/09 02:54:36	59.98	3685.092	350	-223.015732	16	639	10	0	-103	7921.74	1	0	,	-0.002	0.002	
10/12/09 02:54:38	59.978	3685.654	350	-223.015732	16	639.5	10	0	-103	7922.07	1	0	1	-0.002	0.002	
10/12/09 02:54:40	59.977	3685.087	350	-223.015732	16	640	10	0	-103	7922.4	1	0	1	-0.001	0.001	
10/12/09 02:54:42	59.975	3685.491	350	-223.015732	16	640.5	10	0	-103	7922.73	1	0	1	-0.002	0.002	
10/12/09 02:54:44	59.973	3685.196	350	-223.015732	16	641	10	0	-103	7923.06	1	0	1	-0.002	0.002	
10/12/09 02:54:46	59.975	3687.412	350	-223.015732	16	641.5	10	0	-103	7923.39	1	0	1	0.002	0.002	
10/12/09 02:54:48	59.976	3688.417	350	-223.015732	16	642	10	0	-103	7923.72	1	0	1	0.001	0.001	
10/12/09 02:54:50	59.976	3688.599	350	-223.015732	16	642.5	10	0	-103	7924.05	1	0	1	0.000	0.000	
10/12/09 02:54:52	59.979	3687.848	350	-223.015732	16	643	10	0	-103	7924.38	1	0	1	0.003	0.003	
10/12/09 02:54:54	59.982	3686.678	350	-223.015732	16	643.5	10	0	-103	7924.71	1	0	,	0.003	0.003	
10/12/09 02:54:56	59.979	3685.782	350	-223.015732	16	644	10	0	-103	7925.04	1	0	1	-0.003	0.003	
10/12/09 02:54:58	59.979	3684.89	350	-223.015732	16	644.5	10	0	-103	7925.37	1	0	1	0.000	0.000	
10/12/09 02:55:00	59.977	3685.143	350	-223.015732	16	645	10	0	-103	7925.7	1	0	1	-0.002	0.002	
10/12/09 02:55:02	59.977	3684.549	350	-223.015732	16	645.5	10	0	-103	7926.03	1	0	1	0.000	0.000	
10/12/09 02:55:04	59.978	3684.093	350	-223.015732	16	646	10	0	-103	7926.36	1	0	1	0.001	0.001	
10/12/09 02:55:06	59.978	3684.555	350	-223.015732	16	646.5	10	0	-103	7926.69	1	0	1	0.000	0.000	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:55:08	59.978	3682.814	350	-223.015732	16	647	10	0	-103	7927.02	1	0	1	0.000	0.000	
10/12/09 02:55:10	59.979	3682.318	350	-223.015732	16	647.5	10	0	-103	7927.35	1	0	1	0.001	0.001	
10/12/09 02:55:12	59.983	3682.366	350	-223.015732	16	648	10	0	-103	7927.68	1	0	1	0.004	0.004	
10/12/09 02:55:14	59.981	3682.647	350	-223.015732	16	648.5	10	0	-103	7928.01	1	0	1	-0.002	0.002	
10/12/09 02:55:16	59.98	3682.855	350	-223.015732	16	649	10	0	-103	7928.34	1	0	1	-0.001	0.001	
10/12/09 02:55:18	59.978	3683.557	350	-223.015732	16	649.5	10	0	-103	7928.67	1	0	1	-0.002	0.002	
10/12/09 02:55:20	59.979	3684.052	350	-223.015732	16	650	10	0	-103	7929	1	0	1	0.001	0.001	
10/12/09 02:55:22	59.978	3684.318	350	-223.015732	16	650.5	10		-103	7929.33	1	0	1	-0.001	0.001	
10/12/09 02:55:24	59.979	3686.049	350	-223.015732	16	651	10	0	-103	7929.66	1	0	1	0.001	0.001	
10/12/09 02:55:26	59.983	3686.629	350	-223.015732	16	651.5	10	0	-103	7929.99	1	0	1	0.004	0.004	
10/12/09 02:55:28	59.987	3685.286	350	-223.015732	16	652	10	0	-103	7930.32	1	0	1	0.004	0.004	
10/12/09 02:55:30	59.99	3683.415	350	-223.015732	16	652.5	10	0	-103	7930.65	1	0	1	0.003	0.003	
10/12/09 02:55:32	59.992	3682.416	350	-223.015732	16	653	10	0	-103	7930.98	1	0	1	0.002	0.002	
10/12/09 02:55:34	59.993	3681.403	350	-223.015732	16	653.5	10	0	-103	7931.31	1	0	1	0.001	0.001	
10/12/09 02:55:36	59.99	3679.012	350	-223.015732	16	654	10	0	-103	7931.64	1	0	1	-0.003	0.003	
10/12/09 02:55:38	59.988	3679.436	350	-223.015732	16	654.5	10	0	-103	7931.97	1	0	1	-0.002	0.002	
10/12/09 02:55:40	59.988	3671.761	350	-223.015732	16	655	10	0	-103	7932.3	1	0	1	0.000	0.000	
10/12/09 02:55:42	59.99	3670.717	350	-223.015732	16	655.5	10	0	-103	7932.63	1	0	1	0.002	0.002	
10/12/09 02:55:44	59.993	3670.159	350	-223.015732	16	656	10	0	-103	7932.96	1	0	1	0.003	0.003	
10/12/09 02:55:46	59.994	3679	350	-223.015732	16	656.5	10	0	-103	7933.29	1	0	1	0.001	0.001	
10/12/09 02:55:48	59.993	3680.176	350	-223.015732	16	657	10	0	-103	7933.62	1	0	1	-0.001	0.001	
10/12/09 02:55:50	59.994	3681.799	350	-223.015732	16	657.5	10	0	-103	7933.95	1	0	1	0.001	0.001	
10/12/09 02:55:52	59.994	3682.7	350	-223.015732	16	658	10	0	-103	7934.28	1	0	1	0.000	0.000	
10/12/09 02:55:54	59.993	3684.116	350	-223.015732	16	658.5	10	0	-103	7934.61	1	0	,	-0.001	0.001	
10/12/09 02:55:56	59.989	3685.03	350	-223.015732	16	659	10	0	-103	7934.94	1	0	1	-0.004	0.004	
10/12/09 02:55:58	59.984	3684.878	350	-223.015732	16	659.5	10	0	-103	7935.27	1	0	1	-0.005	0.005	
10/12/09 02:56:00	59.986	3684.165	350	-223.015732	16	660	10	0	-103	7935.6	1	0	1	0.002	0.002	
10/12/09 02:56:02	59.985	3684.478	350	-223.015732	16	660.5	10	0	-103	7935.93	1	0	1	-0.001	0.001	
10/12/09 02:56:04	59.988	3685.584	350	-223.015732	16	661	10	0	-103	7936.26	1	0	1	0.003	0.003	
10/12/09 02:56:06	59.987	3685.148	350	-223.015732	16	661.5	10	0	-103	7936.59	1	0	1	-0.001	0.001	
10/12/09 02:56:08	59.986	3684.587	350	-223.015732	16	662	10	0	-103	7936.92	1	0	1	-0.001	0.001	
10/12/09 02:56:10	59.987	3684.976	350	-223.015732	16	662.5	10	0	-103	7937.25	1	0	1	0.001	0.001	
10/12/09 02:56:12	59.985	3683.674	350	-223.015732	16	663	10	0	-103	7937.58	1	0	,	-0.002	0.002	
10/12/09 02:56:14	59.982	3684.872	350	-223.015732	16	663.5	10	0	-103	7937.91	1	0	1	-0.003	0.003	
10/12/09 02:56:16	59.981	3684.245	350	-223.015732	16	664	10	0	-103	7938.24	1	0	1	-0.001	0.001	
10/12/09 02:56:18	59.982	3684.711	350	-223.015732	16	664.5	10	0	-103	7938.57	1	0	1	0.001	0.001	
10/12/09 02:56:20	59.987	3685.589	350	-223.015732	16	665	10	0	-103	7938.9	1	0	1	0.005	0.005	
10/12/09 02:56:22	59.992	3683.736	350	-223.015732	16	665.5	10	0	-103	7939.23	1	0	1	0.005	0.005	
10/12/09 02:56:24	59.997	3682.579	350	-223.015732	16	666	10	0	-103	7939.56	1	0	1	0.005	0.005	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:56:26	60	3682.234	350	-223.015732	16	666.5	10	0	-103	7939.89	1	0	1	0.003	0.003	
10/12/09 02:56:28	60.003	3682.138	350	-223.015732	16	667	10	0	-103	7940.22	1	1	1	0.003	0.003	
10/12/09 02:56:30	60.003	3682.224	350	-223.015732	16	667.5	10	0	-103	7940.55	1	1	1	0.000	0.000	
10/12/09 02:56:32	60.003	3681.689	350	-223.015732	16	668	10	0	-103	7940.88	1	1	1	0.000	0.000	
10/12/09 02:56:34	60.002	3681.458	350	-223.015732	16	668.5	10	0	-103	7941.21	1	1	1	-0.001	0.001	
10/12/09 02:56:36	60.003	3681.65	350	-223.015732	16	669	10	0	-103	7941.54	1	1	1	0.001	0.001	
10/12/09 02:56:38	60.002	3681.013	350	-223.015732	16	669.5	10	0	-103	7941.87	1	1	1	-0.001	0.001	
10/12/09 02:56:40	60.003	3680.167	350	-223.015732	16	670	10	0	-103	7942.2	1	1	1	0.001	0.001	
10/12/09 02:56:42	60.004	3679.943	350	-223.015732	16	670.5	10	0	-103	7942.53	1	1	1	0.001	0.001	
10/12/09 02:56:44	60.005	3679.429	350	-223.015732	16	671	10	0	-103	7942.86	1	1	1	0.001	0.001	
10/12/09 02:56:46	60.006	3679.669	350	-223.015732	16	671.5	10	0	-103	7943.19	1	1	1	0.001	0.001	
10/12/09 02:56:48	60.009	3678.981	350	-223.015732	16	672	10	0	-103	7943.52	1	1	1	0.003	0.003	
10/12/09 02:56:50	60.012	3678.267	350	-223.015732	16	672.5	10	0	-103	7943.85	1	1	1	0.003	0.003	
10/12/09 02:56:52	60.017	3676.796	350	-223.015732	16	673	10	0	-103	7944.18	1	1	1	0.005	0.005	
10/12/09 02:56:54	60.021	3676.81	350	-223.015732	16	673.5	10	0	-103	7944.51	1	1	1	0.004	0.004	
10/12/09 02:56:56	60.022	3674.798	350	-223.015732	16	674	10	0	-103	7944.84	1	1	1	0.001	0.001	
10/12/09 02:56:58	60.021	3673.906	350	-223.015732	16	674.5	10	0	-103	7945.17	1	1	1	-0.001	0.001	
10/12/09 02:57:00	60.02	3671.145	350	-223.015732	16	675	10	0	-103	7945.5	1	1	1	-0.001	0.001	
10/12/09 02:57:02	60.018	3670.51	350	-223.015732	16	675.5	10	0	-103	7945.83	1	1	1	-0.002	0.002	
10/12/09 02:57:04	60.021	3673.648	350	-223.015732	16	676	10	0	-103	7946.16	1	1	1	0.003	0.003	
10/12/09 02:57:06	60.02	3673.684	350	-223.015732	16	676.5	10	0	-103	7946.49	1	1	1	-0.001	0.001	
10/12/09 02:57:08	60.02	3675.865	350	-223.015732	16	677	10	0	-103	7946.82	1	1	1	0.000	0.000	
10/12/09 02:57:10	60.018	3676.676	350	-223.015732	16	677.5	10	0	-103	7947.15	1	1	1	-0.002	0.002	
10/12/09 02:57:12	60.018	3676.404	350	-223.015732	16	678	10	0	-103	7947.48	1	1	,	0.000	0.000	
10/12/09 02:57:14	60.019	3676.437	350	-223.015732	16	678.5	10	0	-103	7947.81	1	1	1	0.001	0.001	
10/12/09 02:57:16	60.019	3677.185	350	-223.015732	16	679	10	0	-103	7948.14	1	1	1	0.000	0.000	
10/12/09 02:57:18	60.018	3677.659	350	-223.015732	16	679.5	10	0	-103	7948.47	1	1	1	-0.001	0.001	
10/12/09 02:57:20	60.017	3678.828	350	-223.015732	16	680	10	0	-103	7948.8	1	1	1	-0.001	0.001	
10/12/09 02:57:22	60.016	3679.289	350	-223.015732	16	680.5	10	0	-103	7949.13	1	1	1	-0.001	0.001	
10/12/09 02:57:24	60.016	3678.915	350	-223.015732	16	681	10	0	-103	7949.46	1	1	1	0.000	0.000	
10/12/09 02:57:26	60.016	3679.276	350	-223.015732	16	681.5	10	0	-103	7949.79	1	1	1	0.000	0.000	
10/12/09 02:57:28	60.015	3678.599	350	-223.015732	16	682	10	0	-103	7950.12	1	1	1	-0.001	0.001	
10/12/09 02:57:30	60.014	3678.367	350	-223.015732	16	682.5	10	0	-103	7950.45	,	1	1	-0.001	0.001	
10/12/09 02:57:32	60.014	3678.25	350	-223.015732	16	683	10	0	-103	7950.78	1	1	1	0.000	0.000	
10/12/09 02:57:34	60.013	3678.589	350	-223.015732	16	683.5	10	0	-103	7951.11	1	1	1	-0.001	0.001	
10/12/09 02:57:36	60.013	3677.251	350	-223.015732	16	684	10	0	-103	7951.44	1	1	1	0.000	0.000	
10/12/09 02:57:38	60.015	3675.698	350	-223.015732	16	684.5	10	0	-103	7951.77	1	1	1	0.002	0.002	
10/12/09 02:57:40	60.017	3674.669	350	-223.015732	16	685	10	0	-103	7952.1	1	1	1	0.002	0.002	
10/12/09 02:57:42	60.016	3674.87	350	-223.015732	16	685.5	10	0	-103	7952.43	1	1	1	-0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:57:44	60.019	3674.402	350	-223.015732	16	686	10	0	-103	7952.76	1	1	1	0.003	0.003	
10/12/09 02:57:46	60.021	3674.546	350	-223.015732	16	686.5	10	0	-103	7953.09	1	1	1	0.002	0.002	
10/12/09 02:57:48	60.021	3672.969	350	-223.015732	16	687	10	0	-103	7953.42	1	1	1	0.000	0.000	
10/12/09 02:57:50	60.02	3671.914	350	-223.015732	16	687.5	10	0	-103	7953.75	1	1	1	-0.001	0.001	
10/12/09 02:57:52	60.022	3671.982	350	-223.015732	16	688	10	0	-103	7954.08	1	1	1	0.002	0.002	
10/12/09 02:57:54	60.024	3670.946	350	-223.015732	16	688.5	10	0	-103	7954.41	1	1	1	0.002	0.002	
10/12/09 02:57:56	60.026	3670.821	350	-223.015732	16	689	10	0	-103	7954.74	1	1	1	0.002	0.002	
10/12/09 02:57:58	60.025	3671.06	350	-223.015732	16	689.5	10	0	-103	7955.07	1	1	1	-0.001	0.001	
10/12/09 02:58:00	60.026	3671.539	350	-223.015732	16	690	10	0	-103	7955.4	1	1	1	0.001	0.001	
10/12/09 02:58:02	60.022	3673.794	350	-223.015732	16	690.5	10	0	-103	7955.73	1	1	1	-0.004	0.004	
10/12/09 02:58:04	60.021	3674.01	350	-223.015732	16	691	10	0	-103	7956.06	1	1	1	-0.001	0.001	
10/12/09 02:58:06	60.022	3675.102	350	-223.015732	16	691.5	10	0	-103	7956.39	1	1	1	0.001	0.001	
10/12/09 02:58:08	60.024	3675.284	350	-223.015732	16	692	10	0	-103	7956.72	1	1	1	0.002	0.002	
10/12/09 02:58:10	60.027	3676.051	350	-223.015732	16	692.5	10	0	-103	7957.05	1	1	1	0.003	0.003	
10/12/09 02:58:12	60.029	3675.704	350	-223.015732	16	693	10	0	-103	7957.38	1	1	1	0.002	0.002	
10/12/09 02:58:14	60.028	3672.583	350	-223.015732	16	693.5	10	0	-103	7957.71	1	1	1	-0.001	0.001	
10/12/09 02:58:16	60.028	3671.343	350	-223.015732	16	694	10	0	-103	7958.04	1	1	1	0.000	0.000	
10/12/09 02:58:18	60.032	3670.232	350	-223.015732	16	694.5	10	0	-103	7958.37	1	1	1	0.004	0.004	
10/12/09 02:58:20	60.035	3668.654	350	-223.015732	16	695	10	0	-103	7958.7	1	1	1	0.003	0.003	
10/12/09 02:58:22	60.03	3668.767	350	-223.015732	16	695.5	10	0	-103	7959.03	1	1	1	-0.005	0.005	
10/12/09 02:58:24	60.028	3666.312	350	-223.015732	16	696	10	0	-103	7959.36	1	1	1	-0.002	0.002	
10/12/09 02:58:26	60.021	3667.322	350	-223.015732	16	696.5	10	0	-103	7959.69	1	1	1	-0.007	0.007	
10/12/09 02:58:28	60.021	3657.164	350	-223.015732	16	697	10	0	-103	7960.02	1	1	1	0.000	0.000	
10/12/09 02:58:30	60.024	3657.714	350	-223.015732	16	697.5	10	0	-103	7960.35	1	1	1	0.003	0.003	
10/12/09 02:58:32	60.025	3668.637	350	-223.015732	16	698	10	0	-103	7960.68	1	1	1	0.001	0.001	
10/12/09 02:58:34	60.024	3669.309	350	-223.015732	16	698.5	10	0	-103	7961.01	1	1	1	-0.001	0.001	
10/12/09 02:58:36	60.022	3670.112	350	-223.015732	16	699	10	0	-103	7961.34	1	1	1	-0.002	0.002	
10/12/09 02:58:38	60.023	3670.735	350	-223.015732	16	699.5	10	0	-103	7961.67	1	1	1	0.001	0.001	
10/12/09 02:58:40	60.021	3671.332	350	-223.015732	16	700	10	0	-103	7962	1	1	1	-0.002	0.002	
10/12/09 02:58:42	60.02	3672.095	350	-223.015732	16	700.5	10	0	-103	7962.33	1	1	1	-0.001	0.001	
10/12/09 02:58:44	60.02	3672.683	350	-223.015732	16	701	10	0	-103	7962.66	1	1	1	0.000	0.000	
10/12/09 02:58:46	60.02	3673.833	350	-223.015732	16	701.5	10	0	-103	7962.99	1	1	1	0.000	0.000	
10/12/09 02:58:48	60.02	3674.645	350	-223.015732	16	702	10	0	-103	7963.32	1	1	,	0.000	0.000	
10/12/09 02:58:50	60.017	3675.641	350	-223.015732	16	702.5	10	0	-103	7963.65	1	1	1	-0.003	0.003	
10/12/09 02:58:52	60.014	3675.971	350	-223.015732	16	703	10	0	-103	7963.98	1	1	1	-0.003	0.003	
10/12/09 02:58:54	60.012	3677.009	350	-223.015732	16	703.5	10	0	-103	7964.31	1	1	1	-0.002	0.002	
10/12/09 02:58:56	60.01	3678.314	350	-223.015732	16	704	10	0	-103	7964.64	1	1	1	-0.002	0.002	
10/12/09 02:58:58	60.011	3679.393	350	-223.015732	16	704.5	10	0	-103	7964.97	1	1	1	0.001	0.001	
10/12/09 02:59:00	60.01	3680.02	350	-223.015732	16	705	10	0	-103	7965.3	1	1	1	-0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:59:02	60.01	3679.792	350	-223.015732	16	705.5	10	0	-103	7965.63	1	1	1	0.000	0.000	
10/12/09 02:59:04	60.01	3679.597	350	-223.015732	16	706	10	0	-103	7965.96	1	1	1	0.000	0.000	
10/12/09 02:59:06	60.012	3680.315	350	-223.015732	16	706.5	10	0	-103	7966.29	1	1	1	0.002	0.002	
10/12/09 02:59:08	60.012	3680.11	350	-223.015732	16	707	10	0	-103	7966.62	1	1	1	0.000	0.000	
10/12/09 02:59:10	60.013	3679.062	350	-223.015732	16	707.5	10	0	-103	7966.95	1	1	1	0.001	0.001	
10/12/09 02:59:12	60.014	3679.127	350	-223.015732	16	708	10	0	-103	7967.28	1	1	1	0.001	0.001	
10/12/09 02:59:14	60.013	3679.587	350	-223.015732	16	708.5	10	0	-103	7967.61	1	1	1	-0.001	0.001	
10/12/09 02:59:16	60.012	3679.637	350	-223.015732	16	709	10	0	-103	7967.94	1	1	1	-0.001	0.001	
10/12/09 02:59:18	60.011	3679.02	350	-223.015732	16	709.5	10	0	-103	7968.27	1	1	1	-0.001	0.001	
10/12/09 02:59:20	60.01	3678.418	350	-223.015732	16	710	10	0	-103	7968.6	1	1	1	-0.001	0.001	
10/12/09 02:59:22	60.008	3679.383	350	-223.015732	16	710.5	10	0	-103	7968.93	1	1	1	-0.002	0.002	
10/12/09 02:59:24	60.01	3679.681	350	-223.015732	16	711	10	0	-103	7969.26	1	1	1	0.002	0.002	
10/12/09 02:59:26	60.011	3679.932	350	-223.015732	16	711.5	10	0	-103	7969.59	1	1	1	0.001	0.001	
10/12/09 02:59:28	60.013	3679.138	350	-223.015732	16	712	10	0	-103	7969.92	1	1	,	0.002	0.002	
10/12/09 02:59:30	60.016	3678.469	350	-223.015732	16	712.5	10	0	-103	7970.25	1	1	1	0.003	0.003	
10/12/09 02:59:32	60.018	3678.499	350	-223.015732	16	713	10	0	-103	7970.58	1	1	1	0.002	0.002	
10/12/09 02:59:34	60.019	3678.456	350	-223.015732	16	713.5	10	0	-103	7970.91	1	1	1	0.001	0.001	
10/12/09 02:59:36	60.019	3677.615	350	-223.015732	16	714	10	0	-103	7971.24	1	1	1	0.000	0.000	
10/12/09 02:59:38	60.019	3677.446	350	-223.015732	16	714.5	10	0	-103	7971.57	1	1	1	0.000	0.000	
10/12/09 02:59:40	60.02	3677.431	350	-223.015732	16	715	10	0	-103	7971.9	1	1	1	0.001	0.001	
10/12/09 02:59:42	60.02	3677.451	350	-223.015732	16	715.5	10	0	-103	7972.23	1	1	1	0.000	0.000	
10/12/09 02:59:44	60.018	3677.315	350	-223.015732	16	716	10	0	-103	7972.56	1	1	1	-0.002	0.002	
10/12/09 02:59:46	60.018	3678.151	350	-223.015732	16	716.5	10	0	-103	7972.89	1	1	1	0.000	0.000	
10/12/09 02:59:48	60.016	3678.362	350	-223.015732	16	717	10	0	-103	7973.22	1	1	,	-0.002	0.002	
10/12/09 02:59:50	60.016	3678.874	350	-223.015732	16	717.5	10	0	-103	7973.55	1	1	1	0.000	0.000	
10/12/09 02:59:52	60.019	3680.771	350	-223.015732	16	718	10	0	-103	7973.88	1	1	1	0.003	0.003	
10/12/09 02:59:54	60.023	3681.058	350	-223.015732	16	718.5	10	0	-103	7974.21	1	1	1	0.004	0.004	
10/12/09 02:59:56	60.022	3680.353	350	-223.015732	16	719	10	0	-103	7974.54	1	1	1	-0.001	0.001	
10/12/09 02:59:58	60.018	3679.167	350	-223.015732	16	719.5	10	0	-103	7974.87	1	1	1	-0.004	0.004	
10/12/09 03:00:00	60.015	3679.553	350	-223.015732	16	720	10	0	-103	7975.2	1	1	1	-0.003	0.003	
10/12/09 03:00:02	60.016	3680.672	350	-223.015732	16	720.5	10	0	-103	7975.53	1	1	1	0.001	0.001	
10/12/09 03:00:04	60.017	3682.73	350	-223.015732	16	721	10	0	-103	7975.86	1	1	1	0.001	0.001	
10/12/09 03:00:06	60.015	3682.714	350	-223.015732	16	721.5	10	0	-103	7976.19	,	1	1	-0.002	0.002	
10/12/09 03:00:08	60.01	3681.915	350	-223.015732	16	722	10	0	-103	7976.52	1	1	1	-0.005	0.005	
10/12/09 03:00:10	60.004	3682.01	350	-223.015732	16	722.5	10	0	-103	7976.85	1	1	1	-0.006	0.006	
10/12/09 03:00:12	59.999	3682.483	350	-223.015732	16	723	10	0	-103	7977.18	1	0	1	-0.005	0.005	
10/12/09 03:00:14	59.995	3683.813	350	-223.015732	16	723.5	10	0	-103	7977.51	1	0	1	-0.004	0.004	
10/12/09 03:00:16	59.99	3685.306	350	-223.015732	16	724	10	0	-103	7977.84	1	0	1	-0.005	0.005	
10/12/09 03:00:18	59.982	3684.846	350	-223.015732	16	724.5	10	0	-103	7978.17	1	0	1	-0.008	0.008	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:00:20	59.974	3684.643	350	-223.015732	16	725	10	0	-103	7978.5	1	0	1	-0.008	0.008	
10/12/09 03:00:22	59.97	3687.527	350	-223.015732	16	725.5	10	0	-103	7978.83	1	0	1	-0.004	0.004	
10/12/09 03:00:24	59.97	3689.404	350	-223.015732	16	726	10	0	-103	7979.16	1	0	1	0.000	0.000	
10/12/09 03:00:26	59.968	3692.287	350	-223.015732	16	726.5	10	0	-103	7979.49	1	0	1	-0.002	0.002	
10/12/09 03:00:28	59.968	3692.966	350	-223.015732	16	727	10	0	-103	7979.82	1	0	1	0.000	0.000	
10/12/09 03:00:30	59.968	3693.793	350	-223.015732	16	727.5	10	0	-103	7980.15	1	0	1	0.000	0.000	
10/12/09 03:00:32	59.972	3694.397	350	-223.015732	16	728	10	0	-103	7980.48	1	0	1	0.004	0.004	
10/12/09 03:00:34	59.967	3694.974	350	-223.015732	16	728.5	10	0	-103	7980.81	1	0	1	-0.005	0.005	
10/12/09 03:00:36	59.966	3697.407	350	-223.015732	16	729	10	0	-103	7981.14	1	0	1	-0.001	0.001	
10/12/09 03:00:38	59.964	3698.502	350	-223.015732	16	729.5	10	0	-103	7981.47	1	0	1	-0.002	0.002	
10/12/09 03:00:40	59.965	3698.617	350	-223.015732	16	730	10	0	-103	7981.8	1	0	1	0.001	0.001	
10/12/09 03:00:42	59.966	3698.992	350	-223.015732	16	730.5	10	0	-103	7982.13	1	0	1	0.001	0.001	
10/12/09 03:00:44	59.963	3699.85	350	-223.015732	16	731	10	0	-103	7982.46	1	0	1	-0.003	0.003	
10/12/09 03:00:46	59.963	3702.645	350	-223.015732	16	731.5	10	0	-103	7982.79	1	0	1	0.000	0.000	
10/12/09 03:00:48	59.965	3701.989	350	-223.015732	16	732	10	0	-103	7983.12	1	0	1	0.002	0.002	
10/12/09 03:00:50	59.968	3702.218	350	-223.015732	16	732.5	10	0	-103	7983.45	1	0	1	0.003	0.003	
10/12/09 03:00:52	59.97	3704.023	350	-223.015732	16	733	10	0	-103	7983.78	1	0	1	0.002	0.002	
10/12/09 03:00:54	59.97	3703.365	350	-223.015732	16	733.5	10	0	-103	7984.11	1	0	1	0.000	0.000	
10/12/09 03:00:56	59.97	3702.988	350	-223.015732	16	734	10	0	-103	7984.44	1	0	1	0.000	0.000	
10/12/09 03:00:58	59.973	3703.814	350	-223.015732	16	734.5	10	0	-103	7984.77	1	0	1	0.003	0.003	
10/12/09 03:01:00	59.972	3704.899	350	-223.015732	16	735	10	0	-103	7985.1	1	0	1	-0.001	0.001	
10/12/09 03:01:02	59.976	3705.625	350	-223.015732	16	735.5	10	0	-103	7985.43	1	0	1	0.004	0.004	
10/12/09 03:01:04	59.975	3704.293	350	-223.015732	16	736	10	0	-103	7985.76	1	0	1	-0.001	0.001	
10/12/09 03:01:06	59.975	3702.094	350	-223.015732	16	736.5	10	0	-103	7986.09	1	0	,	0.000	0.000	
10/12/09 03:01:08	59.977	3701.944	350	-223.015732	16	737	10	0	-103	7986.42	1	0	1	0.002	0.002	
10/12/09 03:01:10	59.976	3703.142	350	-223.015732	16	737.5	10	0	-103	7986.75	1	0	1	-0.001	0.001	
10/12/09 03:01:12	59.976	3704.669	350	-223.015732	16	738	10	0	-103	7987.08	1	0	1	0.000	0.000	
10/12/09 03:01:14	59.974	3705.376	350	-223.015732	16	738.5	10	0	-103	7987.41	1	0	1	-0.002	0.002	
10/12/09 03:01:16	59.975	3705.662	350	-223.015732	16	739	10	0	-103	7987.74	1	0	1	0.001	0.001	
10/12/09 03:01:18	59.974	3705.855	350	-223.015732	16	739.5	10	0	-103	7988.07	1	0	1	-0.001	0.001	
10/12/09 03:01:20	59.974	3706.776	350	-223.015732	16	740	10	0	-103	7988.4	1	0	1	0.000	0.000	
10/12/09 03:01:22	59.976	3707.514	350	-223.015732	16	740.5	10	0	-103	7988.73	1	0	1	0.002	0.002	
10/12/09 03:01:24	59.977	3706.928	350	-223.015732	16	741	10	0	-103	7989.06	,	0	1	0.001	0.001	
10/12/09 03:01:26	59.979	3706.446	350	-223.015732	16	741.5	10	0	-103	7989.39	1	0	1	0.002	0.002	
10/12/09 03:01:28	59.981	3706.335	350	-223.015732	16	742	10	0	-103	7989.72	1	0	1	0.002	0.002	
10/12/09 03:01:30	59.983	3706.771	350	-223.015732	16	742.5	10	0	-103	7990.05	1	0	1	0.002	0.002	
10/12/09 03:01:32	59.985	3705.943	350	-223.015732	16	743	10	0	-103	7990.38	1	0	1	0.002	0.002	
10/12/09 03:01:34	59.983	3704.127	350	-223.015732	16	743.5	10	0	-103	7990.71	1	0	1	-0.002	0.002	
10/12/09 03:01:36	59.98	3704.777	350	-223.015732	16	744	10	0	-103	7991.04	1	0	1	-0.003	0.003	

Time (T)	Hz	Net Actual Interchang ϵ MW	jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response $\operatorname{Rec}(-) \operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event DetectionRow306473307	$\begin{aligned} & \text { Recovery } \\ & \text { Target Freq: } \\ & \text { 60.000 } \\ & \text { 2:27:26 } \\ & \text { 2:33:00 } \\ & \text { 05:34 } \end{aligned}$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm :ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
10/12/09 03:01:38	59.979	3705.974	350	-223.015732	16	744.5	10	0	-103	7991.37	1	0	1	-0.001	0.001	
10/12/09 03:01:40	59.983	3705.968	350	-223.015732	16	745	10	0	-103	7991.7	1	0	1	0.004	0.004	
10/12/09 03:01:42	59.987	3705.356	350	-223.015732	16	745.5	10	0	-103	7992.03	1	0	1	0.004	0.004	
10/12/09 03:01:44	59.986	3704.683	350	-223.015732	16	746	10	0	-103	7992.36	1	0	1	-0.001	0.001	
10/12/09 03:01:46	59.984	3703.913	350	-223.015732	16	746.5	10	0	-103	7992.69	1	0	1	-0.002	0.002	
10/12/09 03:01:48	59.98	3704.361	350	-223.015732	16	747	10	0	-103	7993.02	1	0	1	-0.004	0.004	
10/12/09 03:01:50	59.982	3704.988	350	-223.015732	16	747.5	10	0	-103	7993.35	1	0	1	0.002	0.002	
10/12/09 03:01:52	59.984	3705.05	350	-223.015732	16	748	10	0	-103	7993.68	1	0	1	0.002	0.002	
10/12/09 03:01:54	59.985	3704.893	350	-223.015732	16	748.5	10	0	-103	7994.01	1	0	1	0.001	0.001	
10/12/09 03:01:56	59.987	3703.741	350	-223.015732	16	749	10	0	-103	7994.34	1	0	1	0.002	0.002	
10/12/09 03:01:58	59.989	3701.831	350	-223.015732	16	749.5	10	0	-103	7994.67	1	0	1	0.002	0.002	
10/12/09 03:02:00	59.992	3701.795	350	-223.015732	16	750	10	0	-103	7995	1	0	1	0.003	0.003	
10/12/09 03:02:02	59.996	3700.07	350	-223.015732	16	750.5	10	0	-103	7995.33	1	0	1	0.004	0.004	
10/12/09 03:02:04	59.999	3701.308	350	-223.015732	16	751	10	0	-103	7995.66	1	0	1	0.003	0.003	
10/12/09 03:02:06	59.997	3700.429	350	-223.015732	16	751.5	10	0	-103	7995.99	1	0	1	-0.002	0.002	
10/12/09 03:02:08	59.997	3700.913	350	-223.015732	16	752	10	0	-103	7996.32	1	0	1	0.000	0.000	
10/12/09 03:02:10	59.997	3700.541	350	-223.015732	16	752.5	10	0	-103	7996.65	1	0	1	0.000	0.000	
10/12/09 03:02:12	59.997	3699.927	350	-223.015732	16	753	10	0	-103	7996.98	1	0	1	0.000	0.000	
10/12/09 03:02:14	59.996	3700.858	350	-223.015732	16	753.5	10	0	-103	7997.31	1	0	1	-0.001	0.001	
10/12/09 03:02:16	59.997	3700.549	350	-223.015732	16	754	10	0	-103	7997.64	1	0	1	0.001	0.001	
10/12/09 03:02:18	59.996	3700.614	350	-223.015732	16	754.5	10	0	-103	7997.97	1	0	1	-0.001	0.001	
10/12/09 03:02:20	59.998	3700.224	350	-223.015732	16	755	10	0	-103	7998.3	1	0	1	0.002	0.002	
10/12/09 03:02:22	60.003	3699.5	350	-223.015732	16	755.5	10	0	-103	7998.63	1	1	1	0.005	0.005	
10/12/09 03:02:24	60.009	3698.032	350	-223.015732	16	756	10	0	-103	7998.96	1	1	1	0.006	0.006	
10/12/09 03:02:26	60.01	3697.96	350	-223.015732	16	756.5	10	0	-103	7999.29	1	1	1	0.001	0.001	
10/12/09 03:02:28	60.008	3699.409	350	-223.015732	16	757	10	0	-103	7999.62	1	1	1	-0.002	0.002	
10/12/09 03:02:30	60.005	3699.241	350	-223.015732	16	757.5	10	0	-103	7999.95	1	1	1	-0.003	0.003	
10/12/09 03:02:32	60.004	3700.738	350	-223.015732	16	758	10	0	-103	8000.28	1	1	1	-0.001	0.001	
10/12/09 03:02:34	60.006	3701.11	350	-223.015732	16	758.5	10	0	-103	8000.61	1	1	1	0.002	0.002	
10/12/09 03:02:36	60.003	3701.238	350	-223.015732	16	759	10	0	-103	8000.94	1	1	1	-0.003	0.003	
10/12/09 03:02:38	60.001	3699.998	350	-223.015732	16	759.5	10	0	-103	8001.27	1	1	1	-0.002	0.002	
10/12/09 03:02:40	60.002	3700.22	350	-223.015732	16	760	10	0	-103	8001.6	1	1	1	0.001	0.001	
10/12/09 03:02:42	60.004	3701.823	350	-223.015732	16	760.5	10	0	-103	8001.93	1	1	1	0.002	0.002	
10/12/09 03:02:44	60.007	3702.554	350	-223.015732	16	761	10	0	-103	8002.26	1	1	1	0.003	0.003	
10/12/09 03:02:46	60.007	3702.276	350	-223.015732	16	761.5	10	0	-103	8002.59	1	1	1	0.000	0.000	
10/12/09 03:02:48	60.008	3701.026	350	-223.015732	16	762	10	0	-103	8002.92	1	1	1	0.001	0.001	
10/12/09 03:02:50	60.008	3701.923	350	-223.015732	16	762.5	10	0	-103	8003.25	1	1	1	0.000	0.000	
10/12/09 03:02:52	60.006	3702.943	350	-223.015732	16	763	10	0	-103	8003.58	1	1	1	-0.002	0.002	
10/12/09 03:02:54	60.006	3704.093	350	-223.015732	16	763.5	10	0	-103	8003.91	1	1	1	0.000	0.000	

Time (T)	$\mathrm{Hz}^{\text {In }}$	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:02:56	60.006	3703.96	350	-223.015732	16	764	10	0	-103	8004.24	1	1	1	0.000	0.000	
10/12/09 03:02:58	60.005	3703.819	350	-223.015732	16	764.5	10	0	-103	8004.57	1	1	,	-0.001	0.001	
10/12/09 03:03:00	60	3704.455	350	-223.015732	16	765	10	0	-103	8004.9	1	0	1	-0.005	0.005	
10/12/09 03:03:02	59.999	3704.346	350	-223.015732	16	765.5	10	0	-103	8005.23	1	0	1	-0.001	0.001	
10/12/09 03:03:04	60	3705.329	350	-223.015732	16	766	10	0	-103	8005.56	1	0	1	0.001	0.001	
10/12/09 03:03:06	60	3704.93	350	-223.015732	16	766.5	10	0	-103	8005.89	1	0	1	0.000	0.000	
10/12/09 03:03:08	60.004	3704.405	350	-223.015732	16	767	10	0	-103	8006.22	1	1	1	0.004	0.004	
10/12/09 03:03:10	60.008	3703.675	350	-223.015732	16	767.5	10	0	-103	8006.55	1	1	1	0.004	0.004	
10/12/09 03:03:12	60.013	3702.748	350	-223.015732	16	768	10	0	-103	8006.88	1	1	1	0.005	0.005	
10/12/09 03:03:14	60.015	3702.669	350	-223.015732	16	768.5	10		-103	8007.21	1	1	1	0.002	0.002	
10/12/09 03:03:16	60.015	3703.017	350	-223.015732	16	769	10	0	-103	8007.54	1	1	1	0.000	0.000	
10/12/09 03:03:18	60.012	3703.416	350	-223.015732	16	769.5	10	0	-103	8007.87	1	1	1	-0.003	0.003	
10/12/09 03:03:20	60.009	3703.297	350	-223.015732	16	770	10	0	-103	8008.2	1	1	1	-0.003	0.003	
10/12/09 03:03:22	60.005	3705.189	350	-223.015732	16	770.5	10	0	-103	8008.53	1	1	,	-0.004	0.004	
10/12/09 03:03:24	60.008	3705.279	350	-223.015732	16	771	10	0	-103	8008.86	1	1	1	0.003	0.003	
10/12/09 03:03:26	60.011	3704.646	350	-223.015732	16	771.5	10	0	-103	8009.19	1	1	1	0.003	0.003	
10/12/09 03:03:28	60.011	3704.051	350	-223.015732	16	772	10	0	-103	8009.52	1	1	1	0.000	0.000	
10/12/09 03:03:30	60.013	3703.438	350	-223.015732	16	772.5	10	0	-103	8009.85	1	1	1	0.002	0.002	
10/12/09 03:03:32	60.016	3704.255	350	-223.015732	16	773	10	0	-103	8010.18	1	1	1	0.003	0.003	
10/12/09 03:03:34	60.018	3703.708	350	-223.015732	16	773.5	10	0	-103	8010.51	1	1	1	0.002	0.002	
10/12/09 03:03:36	60.018	3703.83	350	-223.015732	16	774	10	0	-103	8010.84	1	1	1	0.000	0.000	
10/12/09 03:03:38	60.019	3704.524	350	-223.015732	16	774.5	10	0	-103	8011.17	1	1	1	0.001	0.001	
10/12/09 03:03:40	60.018	3704.139	350	-223.015732	16	775	10	0	-103	8011.5	1	1	1	-0.001	0.001	
10/12/09 03:03:42	60.013	3704.27	350	-223.015732	16	775.5	10	0	-103	8011.83	1	1	1	-0.005	0.005	
10/12/09 03:03:44	60.011	3705.429	350	-223.015732	16	776	10	0	-103	8012.16	1	1	1	-0.002	0.002	
10/12/09 03:03:46	60.009	3705.942	350	-223.015732	16	776.5	10	0	-103	8012.49	1	1	1	-0.002	0.002	
10/12/09 03:03:48	60.009	3705.54	350	-223.015732	16	777	10	0	-103	8012.82	1	1	1	0.000	0.000	
10/12/09 03:03:50	60.008	3705.634	350	-223.015732	16	777.5	10	0	-103	8013.15	1	1	1	-0.001	0.001	
10/12/09 03:03:52	60.009	3705.749	350	-223.015732	16	778	10	0	-103	8013.48	1	1	1	0.001	0.001	
10/12/09 03:03:54	60.011	3707.267	350	-223.015732	16	778.5	10	0	-103	8013.81	1	1	1	0.002	0.002	
10/12/09 03:03:56	60.015	3706.945	350	-223.015732	16	779	10	0	-103	8014.14	1	1	1	0.004	0.004	
10/12/09 03:03:58	60.02	3706.63	350	-223.015732	16	779.5	10	0	-103	8014.47	1	1	1	0.005	0.005	
10/12/09 03:04:00	60.021	3705.655	350	-223.015732	16	780	10	0	-103	8014.8	1	1	1	0.001	0.001	
10/12/09 03:04:02	60.018	3703.895	350	-223.015732	16	780.5	10	0	-103	8015.13	1	1	1	-0.003	0.003	
10/12/09 03:04:04	60.017	3704.224	350	-223.015732	16	781	10	0	-103	8015.46	1	1	1	-0.001	0.001	
10/12/09 03:04:06	60.019	3703.887	350	-223.015732	16	781.5	10	0	-103	8015.79	1	1	1	0.002	0.002	
10/12/09 03:04:08	60.019	3704.648	350	-223.015732	16	782	10	0	-103	8016.12	1	1	1	0.000	0.000	
10/12/09 03:04:10	60.021	3704.795	350	-223.015732	16	782.5	10	0	-103	8016.45	1	1	1	0.002	0.002	
10/12/09 03:04:12	60.022	3704.167	350	-223.015732	16	783	10	0	-103	8016.78	1	1	1	0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:04:14	60.025	3702.764	350	-223.015732	16	783.5	10	0	-103	8017.11	1	1	1	0.003	0.003	
10/12/09 03:04:16	60.027	3702.008	350	-223.015732	16	784	10	0	-103	8017.44	1	1	1	0.002	0.002	
10/12/09 03:04:18	60.03	3700.36	350	-223.015732	16	784.5	10	0	-103	8017.77	1	1	1	0.003	0.003	
10/12/09 03:04:20	60.027	3701.063	350	-223.015732	16	785	10	0	-103	8018.1	1	1	1	-0.003	0.003	
10/12/09 03:04:22	60.023	3700.34	350	-223.015732	16	785.5	10	0	-103	8018.43	1	1	1	-0.004	0.004	
10/12/09 03:04:24	60.021	3699.369	350	-223.015732	16	786	10	0	-103	8018.76	1	1	1	-0.002	0.002	
10/12/09 03:04:26	60.023	3701.568	350	-223.015732	16	786.5	10	0	-103	8019.09	1	1	1	0.002	0.002	
10/12/09 03:04:28	60.023	3702.959	350	-223.015732	16	787	10	0	-103	8019.42	1	1	1	0.000	0.000	
10/12/09 03:04:30	60.02	3704.25	350	-223.015732	16	787.5	10	0	-103	8019.75	1	1	1	-0.003	0.003	
10/12/09 03:04:32	60.024	3703.621	350	-223.015732	16	788	10	0	-103	8020.08	1	1	1	0.004	0.004	
10/12/09 03:04:34	60.024	3703.374	350	-223.015732	16	788.5	10	0	-103	8020.41	1	1	1	0.000	0.000	
10/12/09 03:04:36	60.022	3703.036	350	-223.015732	16	789	10	0	-103	8020.74	1	1	1	-0.002	0.002	
10/12/09 03:04:38	60.022	3703.931	350	-223.015732	16	789.5	10	0	-103	8021.07	1	1	1	0.000	0.000	
10/12/09 03:04:40	60.024	3704.947	350	-223.015732	16	790	10	0	-103	8021.4	1	1	1	0.002	0.002	
10/12/09 03:04:42	60.025	3704.208	350	-223.015732	16	790.5	10	0	-103	8021.73	1	1	1	0.001	0.001	
10/12/09 03:04:44	60.023	3703.541	350	-223.015732	16	791	10	0	-103	8022.06	1	1	1	-0.002	0.002	
10/12/09 03:04:46	60.024	3703.16	350	-223.015732	16	791.5	10	0	-103	8022.39	1	1	1	0.001	0.001	
10/12/09 03:04:48	60.02	3703.397	350	-223.015732	16	792	10	0	-103	8022.72	1	1	1	-0.004	0.004	
10/12/09 03:04:50	60.018	3704.376	350	-223.015732	16	792.5	10	0	-103	8023.05	1	1	1	-0.002	0.002	
03:04:52 10/12/09	60.013	3705.441	350	-223.015732	16	793	10	0	-103	8023.38	1	1	1	-0.005	0.005	
10/12/09 03:04:54	60.008	3706.995	350	-223.015732	16	793.5	10	0	-103	8023.71	1	1	1	-0.005	0.005	
10/12/09 03:04:56	60.012	3710.072	350	-223.015732	16	794	10	0	-103	8024.04	1	1	1	0.004	0.004	
10/12/09 03:04:58	60.017	3707.971	350	-223.015732	16	794.5	10	0	-103	8024.37	1	1	1	0.005	0.005	
10/12/09 03:05:00	60.019	3707.767	350	-223.015732	16	795	10	0	-103	8024.7	1	1	1	0.002	0.002	
10/12/09 03:05:02	60.019	3707.609	350	-223.015732	16	795.5	10	0	-103	8025.03	1	1	1	0.000	0.000	
10/12/09 03:05:04	60.015	3708.831	350	-223.015732	16	796	10	0	-103	8025.36	1	1	1	-0.004	0.004	
10/12/09 03:05:06	60.016	3709.465	350	-223.015732	16	796.5	10	0	-103	8025.69	1	1	1	0.001	0.001	
10/12/09 03:05:08	60.015	3709.813	350	-223.015732	16	797	10	0	-103	8026.02	1	1	1	-0.001	0.001	
10/12/09 03:05:10	60.016	3709.817	350	-223.015732	16	797.5	10	0	-103	8026.35	1	1	1	0.001	0.001	
10/12/09 03:05:12	60.014	3709.99	350	-223.015732	16	798	10	0	-103	8026.68	1	1	1	-0.002	0.002	
10/12/09 03:05:14	60.016	3709.094	350	-223.015732	16	798.5	10	0	-103	8027.01	1	1	1	0.002	0.002	
10/12/09 03:05:16	60.018	3709.642	350	-223.015732	16	799	10	0	-103	8027.34	1	1	1	0.002	0.002	
10/12/09 03:05:18	60.019	3709.812	350	-223.015732	16	799.5	10	0	-103	8027.67	1	1	1	0.001	0.001	
10/12/09 03:05:20	60.016	3709.933	350	-223.015732	16	800	10	0	-103	8028	1	1	1	-0.003	0.003	
10/12/09 03:05:22	60.014	3710.677	350	-223.015732	16	800.5	10	0	-103	8028.33	1	1	1	-0.002	0.002	
10/12/09 03:05:24	60.014	3710.591	350	-223.015732	16	801	10	0	-103	8028.66	1	1	1	0.000	0.000	
10/12/09 03:05:26	60.018	3709.354	350	-223.015732	16	801.5	10	0	-103	8028.99	1	1	1	0.004	0.004	
10/12/09 03:05:28	60.022	3707.696	350	-223.015732	16	802	10	0	-103	8029.32	1	1	1	0.004	0.004	
10/12/09 03:05:30	60.023	3707.38	350	-223.015732	16	802.5	10	0	-103	8029.65	1	,	1	0.001	0.001	

Time (T)	$\mathrm{Hz}^{\text {In }}$	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:05:32	60.024	3707.12	350	-223.015732	16	803	10	0	-103	8029.98	1	1	1	0.001	0.001	
10/12/09 03:05:34	60.026	3706.99	350	-223.015732	16	803.5	10	0	-103	8030.31	1	1	1	0.002	0.002	
10/12/09 03:05:36	60.026	3705.848	350	-223.015732	16	804	10	0	-103	8030.64	1	1	1	0.000	0.000	
10/12/09 03:05:38	60.024	3704.185	350	-223.015732	16	804.5	10	0	-103	8030.97	1	1	1	-0.002	0.002	
10/12/09 03:05:40	60.022	3704.406	350	-223.015732	16	805	10	0	-103	8031.3	1	1	1	-0.002	0.002	
10/12/09 03:05:42	60.02	3704.963	350	-223.015732	16	805.5	10	0	-103	8031.63	1	1	1	-0.002	0.002	
10/12/09 03:05:44	60.019	3706.567	350	-223.015732	16	806	10	0	-103	8031.96	1	1	1	-0.001	0.001	
10/12/09 03:05:46	60.022	3705.516	350	-223.015732	16	806.5	10	0	-103	8032.29	1	1	1	0.003	0.003	
10/12/09 03:05:48	60.025	3704.869	350	-223.015732	16	807	10	0	-103	8032.62	1	1	1	0.003	0.003	
10/12/09 03:05:50	60.028	3704.428	350	-223.015732	16	807.5	10	0	-103	8032.95	1	1	1	0.003	0.003	
10/12/09 03:05:52	60.03	3704.773	350	-223.015732	16	808	10	0	-103	8033.28	1	1	1	0.002	0.002	
10/12/09 03:05:54	60.031	3703.532	350	-223.015732	16	808.5	10	0	-103	8033.61	1	1	1	0.001	0.001	
10/12/09 03:05:56	60.029	3702.686	350	-223.015732	16	809	10	0	-103	8033.94	1	1	1	-0.002	0.002	
10/12/09 03:05:58	60.026	3702.093	350	-223.015732	16	809.5	10	0	-103	8034.27	1	1	,	-0.003	0.003	
10/12/09 03:06:00	60.026	3703.169	350	-223.015732	16	810	10	0	-103	8034.6	1	1	1	0.000	0.000	
10/12/09 03:06:02	60.029	3703.676	350	-223.015732	16	810.5	10	0	-103	8034.93	1	1	1	0.003	0.003	
10/12/09 03:06:04	60.03	3701.52	350	-223.015732	16	811	10	0	-103	8035.26	1	1	1	0.001	0.001	
10/12/09 03:06:06	60.033	3700.106	350	-223.015732	16	811.5	10	0	-103	8035.59	1	1	1	0.003	0.003	
10/12/09 03:06:08	60.03	3698.222	350	-223.015732	16	812	10	0	-103	8035.92	1	1	1	-0.003	0.003	
10/12/09 03:06:10	60.022	3698.009	350	-223.015732	16	812.5	10	0	-103	8036.25	1	1	1	-0.008	0.008	
10/12/09 03:06:12	60.016	3700.28	350	-223.015732	16	813	10	0	-103	8036.58	1	1	1	-0.006	0.006	
10/12/09 03:06:14	60.019	3703.192	350	-223.015732	16	813.5	10	0	-103	8036.91	1	1	1	0.003	0.003	
10/12/09 03:06:16	60.03	3703.815	350	-223.015732	16	814	10	0	-103	8037.24	1	1	1	0.011	0.011	
10/12/09 03:06:18	60.028	3701.863	350	-223.015732	16	814.5	10	0	-103	8037.57	1	1	1	-0.002	0.002	
10/12/09 03:06:20	60.021	3699.956	350	-223.015732	16	815	10	0	-103	8037.9	1	1	1	-0.007	0.007	
10/12/09 03:06:22	60.015	3700.816	350	-223.015732	16	815.5	10	0	-103	8038.23	1	1	1	-0.006	0.006	
10/12/09 03:06:24	60.015	3703.802	350	-223.015732	16	816	10	0	-103	8038.56	1	1	1	0.000	0.000	
10/12/09 03:06:26	60.012	3706.943	350	-223.015732	16	816.5	10	0	-103	8038.89	1	1	1	-0.003	0.003	
10/12/09 03:06:28	60.011	3708.527	350	-223.015732	16	817	10	0	-103	8039.22	1	1	1	-0.001	0.001	
10/12/09 03:06:30	60.014	3707.49	350	-223.015732	16	817.5	10	0	-103	8039.55	1	1	1	0.003	0.003	
10/12/09 03:06:32	60.013	3707.647	350	-223.015732	16	818	10	0	-103	8039.88	1	1	1	-0.001	0.001	
10/12/09 03:06:34	60.014	3706.991	350	-223.015732	16	818.5	10	0	-103	8040.21	1	1	1	0.001	0.001	
10/12/09 03:06:36	60.016	3707.495	350	-223.015732	16	819	10	0	-103	8040.54	,	1	1	0.002	0.002	
10/12/09 03:06:38	60.016	3705.584	350	-223.015732	16	819.5	10	0	-103	8040.87	1	1	1	0.000	0.000	
10/12/09 03:06:40	60.015	3705.398	350	-223.015732	16	820	10	0	-103	8041.2	1	1	1	-0.001	0.001	
10/12/09 03:06:42	60.013	3707.12	350	-223.015732	16	820.5	10	0	-103	8041.53	1	1	1	-0.002	0.002	
10/12/09 03:06:44	60.007	3709.144	350	-223.015732	16	821	10	0	-103	8041.86	1	1	1	-0.006	0.006	
10/12/09 03:06:46	59.997	3708.99	350	-223.015732	16	821.5	10	0	-103	8042.19	1	0	1	-0.010	0.010	
10/12/09 03:06:48	59.994	3708.291	350	-223.015732	16	822	10	0	-103	8042.52	1	0	1	-0.003	0.003	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:06:50	59.993	3706.193	350	-223.015732	16	822.5	10	0	-103	8042.85	1	0	1	-0.001	0.001	
10/12/09 03:06:52	59.99	3707.304	350	-223.015732	16	823	10	0	-103	8043.18	1	0	1	-0.003	0.003	
10/12/09 03:06:54	59.993	3707.903	350	-223.015732	16	823.5	10	0	-103	8043.51	1	0	1	0.003	0.003	
10/12/09 03:06:56	59.994	3706.76	350	-223.015732	16	824	10	0	-103	8043.84	1	0	1	0.001	0.001	
10/12/09 03:06:58	59.993	3706.921	350	-223.015732	16	824.5	10	0	-103	8044.17	1	0	1	-0.001	0.001	
10/12/09 03:07:00	59.994	3706.683	350	-223.015732	16	825	10	0	-103	8044.5	1	0	1	0.001	0.001	
10/12/09 03:07:02	59.993	3706.888	350	-223.015732	16	825.5	10	0	-103	8044.83	1	0	1	-0.001	0.001	
10/12/09 03:07:04	59.996	3704.934	350	-223.015732	16	826	10	0	-103	8045.16	1	0	1	0.003	0.003	
10/12/09 03:07:06	59.988	3705.678	350	-223.015732	16	826.5	10	0	-103	8045.49	1	0	1	-0.008	0.008	
10/12/09 03:07:08	59.985	3706.481	350	-223.015732	16	827	10	0	-103	8045.82	1	0	1	-0.003	0.003	
10/12/09 03:07:10	59.983	3707.071	350	-223.015732	16	827.5	10	0	-103	8046.15	1	0	1	-0.002	0.002	
10/12/09 03:07:12	59.982	3706.696	350	-223.015732	16	828	10	0	-103	8046.48	1	0	1	-0.001	0.001	
10/12/09 03:07:14	59.98	3707.479	350	-223.015732	16	828.5	10	0	-103	8046.81	1	0	1	-0.002	0.002	
10/12/09 03:07:16	59.977	3708.246	350	-223.015732	16	829	10	0	-103	8047.14	1	0	1	-0.003	0.003	
10/12/09 03:07:18	59.981	3709.436	350	-223.015732	16	829.5	10	0	-103	8047.47	1	0	1	0.004	0.004	
10/12/09 03:07:20	59.982	3710.419	350	-223.015732	16	830	10	0	-103	8047.8	1	0	1	0.001	0.001	
10/12/09 03:07:22	59.978	3710.134	350	-223.015732	16	830.5	10	0	-103	8048.13	1	0	1	-0.004	0.004	
10/12/09 03:07:24	59.98	3708.708	350	-223.015732	16	831	10	0	-103	8048.46	1	0	1	0.002	0.002	
10/12/09 03:07:26	59.98	3710.024	350	-223.015732	16	831.5	10	0	-103	8048.79	1	0	1	0.000	0.000	
10/12/09 03:07:28	59.977	3709.192	350	-223.015732	16	832	10	0	-103	8049.12	1	0	1	-0.003	0.003	
10/12/09 03:07:30	59.98	3708.335	350	-223.015732	16	832.5	10	0	-103	8049.45	1	0	1	0.003	0.003	
10/12/09 03:07:32	59.983	3709.399	350	-223.015732	16	833	10	0	-103	8049.78	1	0	1	0.003	0.003	
10/12/09 03:07:34	59.984	3707.911	350	-223.015732	16	833.5	10	0	-103	8050.11	1	0	1	0.001	0.001	
10/12/09 03:07:36	59.981	3709.004	350	-223.015732	16	834	10	0	-103	8050.44	1	0	1	-0.003	0.003	
10/12/09 03:07:38	59.981	3707.638	350	-223.015732	16	834.5	10	0	-103	8050.77	1	0	1	0.000	0.000	
10/12/09 03:07:40	59.98	3709.689	350	-223.015732	16	835	10	0	-103	8051.1	1	0	1	-0.001	0.001	
10/12/09 03:07:42	59.981	3708.945	350	-223.015732	16	835.5	10	0	-103	8051.43	1	0	1	0.001	0.001	
10/12/09 03:07:44	59.981	3706.541	350	-223.015732	16	836	10	0	-103	8051.76	1	0	1	0.000	0.000	
10/12/09 03:07:46	59.981	3711.256	350	-223.015732	16	836.5	10	0	-103	8052.09	1	0	1	0.000	0.000	
10/12/09 03:07:48	59.98	3711.362	350	-223.015732	16	837	10	0	-103	8052.42	1	0	1	-0.001	0.001	
10/12/09 03:07:50	59.978	3712.303	350	-223.015732	16	837.5	10	0	-103	8052.75	1	0	1	-0.002	0.002	
10/12/09 03:07:52	59.978	3712.012	350	-223.015732	16	838	10	0	-103	8053.08	1	0	1	0.000	0.000	
10/12/09 03:07:54	59.979	3711.703	350	-223.015732	16	838.5	10	0	-103	8053.41	1	0	,	0.001	0.001	
10/12/09 03:07:56	59.978	3712.093	350	-223.015732	16	839	10	0	-103	8053.74	1	0	1	-0.001	0.001	
10/12/09 03:07:58	59.976	3713.992	350	-223.015732	16				-103	8054.07	1	0	1	-0.002	0.002	
10/12/09 03:08:00	59.976	3714.612	350	-223.015732	16				-103	8054.4	1	0	1	0.000	0.000	
10/12/09 03:08:02	59.975	3715.083	350	-223.015732	16				-103	8054.73	1	0	1	-0.001	0.001	
10/12/09 03:08:04	59.976	3715.323	350	-223.015732	16				-103	8055.06	1	0	1	0.001	0.001	
10/12/09 03:08:06	59.975	3714.794	350	-223.015732	16				-103	8055.39	1	0	1	-0.001	0.001	

Time (T)	Hz	Net Actual Interchange MW	Jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response $\operatorname{Rec}(-) \operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row306473307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ \text { 05:34 } \end{gathered}$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
10/12/09 03:08:08	59.979	3714.717	350	-223.015732	16				-103	8055.72	1	0	1	0.004	0.004	
10/12/09 03:08:10	59.978	3715.161	350	-223.015732	16				-103	8056.05	1	0	1	-0.001	0.001	
10/12/09 03:08:12	59.975	3715.001	350	-223.015732	16				-103	8056.38	1	0	1	-0.003	0.003	
10/12/09 03:08:14	59.976	3713.996	350	-223.015732	16				-103	8056.71	1	0	1	0.001	0.001	
10/12/09 03:08:16	59.981	3714.063	350	-223.015732	16				-103	8057.04	1	0	1	0.005	0.005	
10/12/09 03:08:18	59.977	3714.335	350	-223.015732	16				-103	8057.37	1	0	1	-0.004	0.004	
10/12/09 03:08:20	59.975	3715.631	350	-223.015732	16				-103	8057.7	1	0	1	-0.002	0.002	
10/12/09 03:08:22	59.976	3715.688	350	-223.015732	16				-103	8058.03	1	0	1	0.001	0.001	
10/12/09 03:08:24	59.979	3715.567	350	-223.015732	16				-103	8058.36	1	0	1	0.003	0.003	
10/12/09 03:08:26	59.98	3715.725	350	-223.015732	16				-103	8058.69	1	0	1	0.001	0.001	
10/12/09 03:08:28	59.979	3714.848	350	-223.015732	16				-103	8059.02	1	0	1	-0.001	0.001	
10/12/09 03:08:30	59.978	3713.142	350	-223.015732	16				-103	8059.35	1	0	1	-0.001	0.001	
10/12/09 03:08:32	59.979	3713.358	350	-223.015732	16				-103	8059.68	1	0	1	0.001	0.001	
10/12/09 03:08:34	59.982	3712.275	350	-223.015732	16				-103	8060.01	1	0	1	0.003	0.003	
10/12/09 03:08:36	59.983	3712.619	350	-223.015732	16				-103	8060.34	1	0	1	0.001	0.001	
10/12/09 03:08:38	59.987	3712.153	350	-223.015732	16				-103	8060.67	1	0	1	0.004	0.004	
10/12/09 03:08:40	59.988	3710.05	350	-223.015732	16				-103	8061	1	0	1	0.001	0.001	
10/12/09 03:08:42	59.984	3709.082	350	-223.015732	16				-103	8061.33	1	0	1	-0.004	0.004	
10/12/09 03:08:44	59.98	3710.472	350	-223.015732	16				-103	8061.66	1	0	1	-0.004	0.004	
10/12/09 03:08:46	59.979	3710.624	350	-223.015732	16				-103	8061.99	1	0	1	-0.001	0.001	
10/12/09 03:08:48	59.98	3710.946	350	-223.015732	16				-103	8062.32	1	0	1	0.001	0.001	
10/12/09 03:08:50	59.979	3710.2	350	-223.015732	16				-103	8062.65	1	0	1	-0.001	0.001	
10/12/09 03:08:52	59.978	3710.475	350	-223.015732	16				-103	8062.98	1	0	1	-0.001	0.001	
10/12/09 03:08:54	59.975	3709.462	350	-223.015732	16				-103	8063.31	1	0	1	-0.003	0.003	
10/12/09 03:08:56	59.979	3710.803	350	-223.015732	16				-103	8063.64	1	0	1	0.004	0.004	
10/12/09 03:08:58	59.982	3709.286	350	-223.015732	16				-103	8063.97	1	0	1	0.003	0.003	
10/12/09 03:09:00	59.983	3710.573	350	-223.015732	16				-103	8064.3	1	0	1	0.001	0.001	
10/12/09 03:09:02	59.983	3709.525	350	-223.015732	16				-103	8064.63	1	0	1	0.000	0.000	
10/12/09 03:09:04	59.985	3708.371	350	-223.015732	16				-103	8064.96	1	0	1	0.002	0.002	
10/12/09 03:09:06	59.99	3708.527	350	-223.015732	16				-103	8065.29	1	0	1	0.005	0.005	
10/12/09 03:09:08	59.987	3706.512	350	-223.015732	16				-103	8065.62	1	0	1	-0.003	0.003	
10/12/09 03:09:10	59.984	3707.49	350	-223.015732	16				-103	8065.95	1	0	1	-0.003	0.003	
10/12/09 03:09:12	59.976	3708.962	350	-223.015732	16				-103	8066.28	1	0	1	-0.008	0.008	
10/12/09 03:09:14	59.979	3709.894	350	-223.015732	16				-103	8066.61	1	0	1	0.003	0.003	
10/12/09 03:09:16	59.985	3712.303	350	-223.015732	16				-103	8066.94	1	0	1	0.006	0.006	
10/12/09 03:09:18	59.983	3711.35	350	-223.015732	16				-103	8067.27	1	0	1	-0.002	0.002	
10/12/09 03:09:20	59.979	3711.627	350	-223.015732	16				-103	8067.6	1	0	1	-0.004	0.004	
10/12/09 03:09:22	59.981	3712.076	350	-223.015732	16				-103	8067.93	1	0	1	0.002	0.002	
10/12/09 03:09:24	59.978	3712.393	350	-223.015732	16				-103	8068.26	1	0	1	-0.003	0.003	

Time (T)	Hz	Net Actual Interchange MW	Jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response $\operatorname{Rec}(-) \operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row306473307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ \text { 05:34 } \end{gathered}$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
10/12/09 03:09:26	59.975	3712.999	350	-223.015732	16				-103	8068.59	1	0	1	-0.003	0.003	
10/12/09 03:09:28	59.978	3713.51	350	-223.015732	16				-103	8068.92	1	0	1	0.003	0.003	
10/12/09 03:09:30	59.989	3716.626	350	-223.015732	16				-103	8069.25	1	0	1	0.011	0.011	
10/12/09 03:09:32	59.999	3715.443	350	-223.015732	16				-103	8069.58	1	0	1	0.010	0.010	
10/12/09 03:09:34	59.994	3712.092	350	-223.015732	16				-103	8069.91	1	0	1	-0.005	0.005	
10/12/09 03:09:36	59.989	3713.906	350	-223.015732	16				-103	8070.24	1	0	1	-0.005	0.005	
10/12/09 03:09:38	59.986	3714.894	350	-223.015732	16				-103	8070.57	1	0	1	-0.003	0.003	
10/12/09 03:09:40	59.984	3714.953	350	-223.015732	16				-103	8070.9	1	0	1	-0.002	0.002	
10/12/09 03:09:42	59.983	3716.122	350	-223.015732	16				-103	8071.23	1	0	1	-0.001	0.001	
10/12/09 03:09:44	59.982	3716.308	350	-223.015732	16				-103	8071.56	1	0	1	-0.001	0.001	
10/12/09 03:09:46	59.98	3715.438	350	-223.015732	16				-103	8071.89	1	0	1	-0.002	0.002	
10/12/09 03:09:48	59.99	3714.764	350	-223.015732	16				-103	8072.22	1	0	1	0.010	0.010	
10/12/09 03:09:50	59.995	3714.714	350	-223.015732	16				-103	8072.55	1	0	1	0.005	0.005	
10/12/09 03:09:52	59.995	3715.068	350	-223.015732	16				-103	8072.88	1	0	1	0.000	0.000	
10/12/09 03:09:54	59.99	3715.927	350	-223.015732	16				-103	8073.21	1	0	1	-0.005	0.005	
10/12/09 03:09:56	59.989	3715.791	350	-223.015732	16				-103	8073.54	1	0	1	-0.001	0.001	
10/12/09 03:09:58	59.991	3716.285	350	-223.015732	16				-103	8073.87	1	0	1	0.002	0.002	
10/12/09 03:10:00	59.996	3715.324	350	-223.015732	16				-103	8074.2	1	0	1	0.005	0.005	
10/12/09 03:10:02	60	3714.46	350	-223.015732	16				-103	8074.53	1	0	1	0.004	0.004	
10/12/09 03:10:04	60.002	3711.708	350	-223.015732	16				-103	8074.86	1	1	1	0.002	0.002	
10/12/09 03:10:06	60.004	3712.698	350	-223.015732	16				-103	8075.19	1	1	1	0.002	0.002	
10/12/09 03:10:08	60.004	3712.851	350	-223.015732	16				-103	8075.52	1	1	1	0.000	0.000	
10/12/09 03:10:10	60.002	3713.362	350	-223.015732	16				-103	8075.85	1	1	1	-0.002	0.002	
10/12/09 03:10:12	59.999	3716.641	350	-223.015732	16				-103	8076.18	1	0	1	-0.003	0.003	
10/12/09 03:10:14	59.998	3718.292	350	-223.015732	16				-103	8076.51	1	0	1	-0.001	0.001	
10/12/09 03:10:16	59.995	3719.079	350	-223.015732	16				-103	8076.84	1	0	1	-0.003	0.003	
10/12/09 03:10:18	59.996	3718.233	350	-223.015732	16				-103	8077.17	1	0	1	0.001	0.001	
10/12/09 03:10:20	60.001	3717.815	350	-223.015732	16				-103	8077.5	1	1	1	0.005	0.005	
10/12/09 03:10:22	60.002	3717.889	350	-223.015732	16				-103	8077.83	1	1	1	0.001	0.001	
10/12/09 03:10:24	60.001	3718.56	350	-223.015732	16				-103	8078.16	1	1	1	-0.001	0.001	
10/12/09 03:10:26	60.003	3718.195	350	-223.015732	16				-103	8078.49	1	1	1	0.002	0.002	
10/12/09 03:10:28	60.005	3719.021	350	-223.015732	16				-103	8078.82	1	1	1	0.002	0.002	
10/12/09 03:10:30	60.004	3718.821	350	-223.015732	16				-103	8079.15	1	1	1	-0.001	0.001	
10/12/09 03:10:32	60.004	3719.897	350	-223.015732	16				-103	8079.48	1	1	1	0.000	0.000	
10/12/09 03:10:34	60.004	3719.299	350	-223.015732	16				-103	8079.81	1	1	1	0.000	0.000	
10/12/09 03:10:36	60.006	3719.643	350	-223.015732	16				-103	8080.14	1	1	1	0.002	0.002	
10/12/09 03:10:38	60.003	3719.527	350	-223.015732	16				-103	8080.47	1	1	1	-0.003	0.003	
10/12/09 03:10:40	60.005	3719.731	350	-223.015732	16				-103	8080.8	1	1	1	0.002	0.002	
10/12/09 03:10:42	60.006	3720.279	350	-223.015732	16				-103	8081.13	1	1	1	0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response $\operatorname{Rec}(-) \operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	\quad Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.033 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
10/12/09 03:10:44	60.009	3718.58	350	-223.015732	16				-103	8081.46	1	1	1	0.003	0.003	
10/12/09 03:10:46	60.009	3718.976	350	-223.015732	16				-103	8081.79	1	1	1	0.000	0.000	
10/12/09 03:10:48	60.01	3718.982	350	-223.015732	16				-103	8082.12	1	1	1	0.001	0.001	
10/12/09 03:10:50	60.009	3720.034	350	-223.015732	16				-103	8082.45	1	1	1	-0.001	0.001	
10/12/09 03:10:52	60.013	3720.609	350	-223.015732	16				-103	8082.78	1	1	1	0.004	0.004	
10/12/09 03:10:54	60.015	3720.811	350	-223.015732	16				-103	8083.11	1	1	1	0.002	0.002	
10/12/09 03:10:56	60.014	3721.239	350	-223.015732	16				-103	8083.44	1	1	1	-0.001	0.001	
10/12/09 03:10:58	60.009	3720.38	350	-223.015732	16				-103	8083.77	1	1	1	-0.005	0.005	
10/12/09 03:11:00	60.009	3719.447	350	-223.015732	16				-103	8084.1	1	1	1	0.000	0.000	
10/12/09 03:11:02	60.008	3720.807	350	-223.015732	16				-103	8084.43	1	1	1	-0.001	0.001	
10/12/09 03:11:04	60.011	3721.272	350	-223.015732	16				-103	8084.76	1	1	1	0.003	0.003	
10/12/09 03:11:06	60.01	3720.592	350	-223.015732	16				-103	8085.09	1	1	1	-0.001	0.001	
10/12/09 03:11:08	60.009	3721.245	350	-223.015732	16				-103	8085.42	1	1	1	-0.001	0.001	
10/12/09 03:11:10	60.013	3721.594	350	-223.015732	16				-103	8085.75	1	1	1	0.004	0.004	
10/12/09 03:11:12	60.013	3722.176	350	-223.015732	16				-103	8086.08	1	1	1	0.000	0.000	
10/12/09 03:11:14	60.014	3721.999	350	-223.015732	16				-103	8086.41	1	1	1	0.001	0.001	
10/12/09 03:11:16	60.014	3721.646	350	-223.015732	16				-103	8086.74	1	1	1	0.000	0.000	
10/12/09 03:11:18	60.012	3721.678	350	-223.015732	16				-103	8087.07	1	1	1	-0.002	0.002	
10/12/09 03:11:20	60.01	3720.86	350	-223.015732	16				-103	8087.4	1	1	1	-0.002	0.002	
10/12/09 03:11:22	60.011	3721.645	350	-223.015732	16				-103	8087.73	1	1	1	0.001	0.001	
10/12/09 03:11:24	60.007	3723.816	350	-223.015732	16				-103	8088.06	1	1	1	-0.004	0.004	
10/12/09 03:11:26	60.003	3725.07	350	-223.015732	16				-103	8088.39	1	1	1	-0.004	0.004	
10/12/09 03:11:28	60.001	3724.656	350	-223.015732	16				-103	8088.72	1	1	1	-0.002	0.002	
10/12/09 03:11:30	60	3724.869	350	-223.015732	16				-103	8089.05	1	0	1	-0.001	0.001	
10/12/09 03:11:32	59.998	3724.661	350	-223.015732	16				-103	8089.38	1	0	1	-0.002	0.002	
10/12/09 03:11:34	59.998	3723.696	350	-223.015732	16				-103	8089.71	1	0	1	0.000	0.000	
10/12/09 03:11:36	59.999	3723.58	350	-223.015732	16				-103	8090.04	1	0	1	0.001	0.001	
10/12/09 03:11:38	60.002	3723.405	350	-223.015732	16				-103	8090.37	1	1	1	0.003	0.003	
10/12/09 03:11:40	60.003	3721.879	350	-223.015732	16				-103	8090.7	1	1	1	0.001	0.001	
10/12/09 03:11:42	60.003	3722.401	350	-223.015732	16				-103	8091.03	1	1	1	0.000	0.000	
10/12/09 03:11:44	59.999	3722.906	350	-223.015732	16				-103	8091.36	1	0	1	-0.004	0.004	
10/12/09 03:11:46	59.998	3724.142	350	-223.015732	16				-103	8091.69	1	0	1	-0.001	0.001	
10/12/09 03:11:48	60.001	3723.65	350	-223.015732	16				-103	8092.02	1	1	1	0.003	0.003	
10/12/09 03:11:50	59.995	3723.201	350	-223.015732	16				-103	8092.35	1	0	1	-0.006	0.006	
10/12/09 03:11:52	59.989	3723.639	350	-223.015732	16				-103	8092.68	1	0	1	-0.006	0.006	
10/12/09 03:11:54	59.987	3723.881	350	-223.015732	16				-103	8093.01	1	0	1	-0.002	0.002	
10/12/09 03:11:56	59.988	3724.654	350	-223.015732	16				-103	8093.34	1	0	1	0.001	0.001	
10/12/09 03:11:58	59.988	3725.361	350	-223.015732	16				-103	8093.67	1	0	1	0.000	0.000	
10/12/09 03:12:00	59.99	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.002	0.002	

Time (T)	Hz	Net Actual Interchange MW	jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event DetectionRow306473307	$\begin{aligned} & \text { Recovery } \\ & \text { Target Freq: } \\ & \text { 60.000 } \\ & \text { 2:27:26 } \\ & \text { 2:33:00 } \\ & 05: 34 \end{aligned}$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm :ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
10/12/09 03:12:02	59.999	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.009	0.009	
10/12/09 03:12:04	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:12:06	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:12:08	60.0005	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:12:10	59.998	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:12:12	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:14	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:16	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:18	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:20	59.995	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:22	59.994	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:24	59.993	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:26	59.992	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:28	59.991	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:30	59.99	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:32	59.991	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:34	59.992	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:36	59.993	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:38	59.994	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:40	59.995	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:42	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:44	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:46	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:48	59.9965	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:50	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:52	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:54	59.997	3724.944	350	-223.015732	16				-103	8094	1		1	0.000	0.000	
10/12/09 03:12:56	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:58	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:13:00	59.999	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.002	0.002	
10/12/09 03:13:02	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:13:04	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:06	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:08	60.004	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.003	0.003	
10/12/09 03:13:10	60.007	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.003	0.003	
10/12/09 03:13:12	60.009	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:13:14	60.011	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:13:16	60.0085	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.003	0.003	
10/12/09 03:13:18	60.006	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	

Time (T)	Hz	Net Actual Interchang ϵ MW	Jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) $\operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row306473307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ \text { 05:34 } \end{gathered}$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
10/12/09 03:13:20	60.007	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:13:22	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:13:24	60.01	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:13:26	60.012	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:13:28	60.012	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:30	60.012	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:32	60.01	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:13:34	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:13:36	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:38	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:40	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:42	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:44	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:46	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:48	60.007	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:13:50	60.006	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:13:52	60.005	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:13:54	60.004	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:13:56	60.004	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:58	60.004	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:14:00	60.0025	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:14:02	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:14:04	59.9995	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:14:06	59.998	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:14:08	59.9965	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:14:10	59.995	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:14:12	59.995	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:14	59.995	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:16	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:14:18	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:14:20	59.995	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:14:22	59.993	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:14:24	59.9925	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:26	59.992	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:28	59.9905	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:14:30	59.989	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:14:32	59.99	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:14:34	59.991	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:14:36	59.989	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
10/12/09 03:14:38	59.987	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:14:40	59.9875	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:42	59.988	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:44	59.988	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:46	59.988	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:48	59.987	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:14:50	59.986	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:14:52	59.9855	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:54	59.985	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:56	59.9845	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:58	59.984	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:15:00	59.984	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:15:02	59.984	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:15:04	59.985	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:15:06	59.986	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:15:08	59.987	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:15:10	59.988	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:15:12	59.992	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.004	0.004	
10/12/09 03:15:14	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.004	0.004	
10/12/09 03:15:16	59.9975	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:15:18	59.999	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.002	0.002	
10/12/09 03:15:20	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:15:22	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:15:24	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:15:26	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:15:28	60.0055	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.003	0.003	
10/12/09 03:15:30	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:15:32	60.01	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:15:34	60.012	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:15:36	60.0105	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:15:38	60.009	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:15:40	60.01	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:15:42	60.011	3724.944	350	-223.015732	16				-103	8094	,	1	1	0.001	0.001	
10/12/09 03:15:44	60.012	3724.944	350	-223.015732	16				-103	8094	1	1	,	0.001	0.001	
10/12/09 03:15:46	60.013	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:15:48	60.013	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:15:50	60.013	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:15:52	60.0145	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:15:54	60.016	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	Jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response $\operatorname{Rec}(-) \operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:15:56	60.0155	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:15:58	60.015	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:15:59	60.014	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:01	60.013	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:03	60.012	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:05	60.011	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:07	60.0105	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:09	60.01	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:16:11	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:16:13	60.006	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:16:15	60.006	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:16:17	60.006	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:16:19	60.0045	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:21	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:16:23	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:16:25	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:16:27	60.0035	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:16:29	60.004	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:16:31	60.0025	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:33	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:16:35	59.999	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:16:37	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:16:39	59.9965	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:16:41	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:16:43	59.9965	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:16:45	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:16:47	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:16:49	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:16:51	59.998	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:16:53	59.999	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:16:55	59.9985	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:16:57	59.998	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:16:59	59.9985	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:17:01	59.999	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:17:03	59.998	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:17:05	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:17:07	59.9985	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:17:09	60	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:17:11	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event DetectionRow306473307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34		Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:17:13	60.002	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:17:15	60.0015	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:17:17	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:17:19	60.0035	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.003	0.003	
10/12/09 03:17:21	60.006	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:17:23	60.0055	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:17:25	60.005	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	

隹

Min

 \& 4 צ

man

\# of rows to shift T(0)

Azeroval 1
A zero value aligns the data to the hightest Frequency change value. Usually the event begins one or two data scans earlier than this scan.

Increasing this value shifts graph data to the right.
Decreasing this value shifts graph data to the left.

Note: The P.U. Performance values indicate performance as a P.U. value of BA Bias setting. For BAs that utilize a variable Bias, the Bias average during $T(+20)$ to $T(+52)$ is used.
P.U. values above 1.0 indicate that the Bias setting was below measured Frequency Response P.U. values below 1.0 indicate that the Bias setting was above measured Frequency Response.

First change in frequency of the event should occur here on the vertical grid line. It is important that the pre-event frequency average to NOT contain frequency data of the event, "Average Frequency" trend to the left of center of the graph. To shift the data on the graph left or right, adjust the value in cell Q 3 highlighted in yellow above.

Steps To be completed for each event evaluated.
1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order Column A: Date and Time in this format, mm/dd/yy HH:MM:S
Column B: Frequency Hz
Column C: Net Actual Interchange
Column D: Joint Owned Unit dynamic schedule
Column E: Non Conforming Load
Column F: Pumped Hydro
Column G: Not Used
Column H: Transferred Frequency Response
Column I: Contingent BA Lost load or generatio
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D, E, F and H are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign (+/-) convention defined in FRS Form 1.
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must start a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event with up to 60 minutes of data. Be sure the "Data" worksheet is clear of any old data. Collect the same total minutes of data for each event evaluated to minimize your effort and time.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data.
5 Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on the graph on the "Copy Results" worksheet.
If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process

6 Once data is in place in the "Data" worksheet, confirm the Auto selection of the beginning of the event by observing the "Graph 20 to 52 s " worksheet. Adjust the selection if necessary To make an adjustment, change the value in cell "Q3" on the "Graph 20 to 52 s " worksheet. Usually a 0,1 or 2 will achive the correct alignment of $\mathrm{T}(0)$.

7 If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency (red trend) of the event on the center vertical grid line of the graph.
8 The end of the event will be Auto selected based on the frequency value in cell " N 2 " on the Data worksheet. This will be the frequency at the beginning of the event or 60 Hz , whichever is lower. (for low Hz events) This value controls the end of the "Sustained Frequency Response" evaluation period.
Primary Frequency Response should be sustained during the event recovery period. This evaluation determines how well you achieved this goal.
9 Use the "Copy Form 2 data for Pasting into Form 1" button provided on the "Copy Results" worksheet (Cells B21 through B28) to copy the evaluation and event specific data for the "FRS Form 1" of this field trial. This data is summarized in the correct order on worksheet "Form 1 Summary Data".
10 Use PasteSpecial/Values and paste the copied data into FRS Form 1 on the appropriate event row. Be sure to use the latest version of Form 1, currently Form 1.9
11 Save this Form 2 using the file name convention on the "Copy Results" worksheet. The complete file name is in bold in cell B38. Return all completed Form 2 s with your form 1 to NERC.

Steps To be completed the first time you use Form 2 for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Copy Results" worksheet. For example: "NYISO".
B For informational and educational purposes, a "Sustained" performance evaluation is provided in the "Evaluation" worksheet and in the "Sustained" Graph. This evaluation uses a Time Constant (TC) to model the frequency response of your BA. The time constant is located in cell "L13" of the "Evaluation" spreadsheet and should be edited for the types of generators in your BA. Presently this time constant is set at 0.35 .
The higher the value of the time constant, the faster the delivery of frequency response is expected. Setting the TC to 1.0 effectively turns off the delay and instantaneous frequency response will be modeled. Do not set higher than 1.0 . This time constant is only used in the "Sustained" evaluation and is not used for the Field Trial evaluation of performance to the FRO.
A typical setting for this time constant is 0.08 to 0.15 for hydro units, 0.10 to 0.20 for large steam turbines and 0.20 to 0.40 for combustion turbines,
By observing the slope of your "Interchange Actual" on the "Sustained" Graph, adjust the time constant until the initial slope of the "Target" is similar to the slope of the NAI data.
When set appropriately, the "Target" trend on the "Sustained" graph will model what the Net Actua Interchange should have done during the event recovery period based on your Bias setting during the event.

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:40:00	60.0097	471		0		0			-653	29756.85		0				
05/16/11 07:40:02	60.00745	471		0		0			-653	29756.85	0	0	0	-0.002	0.002	
05/16/11 07:40:04	60.00452	471		0		0			-653	29756.82	0	0	0	-0.003	0.003	
05/16/11 07:40:06	60.00259	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:08	60.00034	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:10	59.99872	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:12	59.9971	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:14	59.99548	471		0		0			-653	29766.46	0	0	0	-0.002	0.002	
05/16/11 07:40:16	59.99353	471		0		0			-653	29766.46	0	0	0	-0.002	0.002	
05/16/11 07:40:18	59.99063	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:20	59.9874	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:22	59.98416	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:24	59.98093	471		0		0			-653	29766.37	0	0	0	-0.003	0.003	
05/16/11 07:40:26	59.97867	471		0		0			-653	29766.37	0	0	0	-0.002	0.002	
05/16/11 07:40:28	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:30	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:32	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:34	59.97577	471		0		0			-653	29780.98	0	0	0	-0.003	0.003	
05/16/11 07:40:36	59.97382	471		0		0			-653	29780.98	0	0	0	-0.002	0.002	
05/16/11 07:40:38	59.97223	471		0		0			-653	29780.98	0	0	0	-0.002	0.002	
05/16/11 07:40:40	59.97223	471		0		0			-653	29780.98	0	0	0	0.000	0.000	
05/16/11 07:40:42	59.97318	471		0		0			-653	29780.98	0	0	0	0.001	0.001	
05/16/11 07:40:44	59.97351	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:46	59.97415	471		0		0			-653	29780.95	0	0	0	0.001	0.001	
05/16/11 07:40:48	59.97287	471		0		0			-653	29780.95	0	0	0	-0.001	0.001	
05/16/11 07:40:50	59.97287	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:52	59.97287	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:54	59.96832	471		0		0			-653	29770.34	0	0	0	-0.005	0.005	
05/16/11 07:40:56	59.96768	471		0		0			-653	29770.34	0	0	0	-0.001	0.001	
05/16/11 07:40:58	59.96899	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:00	59.97028	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:02	59.97223	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:04	59.97382	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:06	59.97479	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:08	59.9761	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:10	59.97769	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:12	59.97998	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:14	59.98318	471		0		0			-653	29782.73	0	0	0	0.003	0.003	
05/16/11 07:41:16	59.98578	471		0		0			-653	29782.73	0	0	0	0.003	0.003	
05/16/11 07:41:18	59.9874	471		0		0			-653	29782.73	0	0	0	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:41:20	59.98868	471		0		0			-653	29782.73	0	0	0	0.001	0.001	
05/16/11 07:41:22	59.98999	471		0		0			-653	29782.73	0	0	0	0.001	0.001	
05/16/11 07:41:24	59.99191	471		0		0			-653	29782.82	0	0	0	0.002	0.002	
05/16/11 07:41:26	59.99353	471		0		0			-653	29782.82	0	0	0	0.002	0.002	
05/16/11 07:41:28	59.99612	471		0		0			-653	29782.82	0	0	0	0.003	0.003	
05/16/11 07:41:30	59.99805	471		0		0			-653	29782.82	0	0	0	0.002	0.002	
05/16/11 07:41:32	59.99902	471		0		0			-653	29782.82	0	0	0	0.001	0.001	
05/16/11 07:41:34	59.99902	471		0		0			-653	29786.15	0	0	0	0.000	0.000	
05/16/11 07:41:36	59.99774	471		0		0			-653	29786.15	0	0	0	-0.001	0.001	
05/16/11 07:41:38	59.99646	471		0		0			-653	29786.15	0	0	0	-0.001	0.001	
05/16/11 07:41:40	59.99579	471		0		0			-653	29786.15	0	0	0	-0.001	0.001	
05/16/11 07:41:42	59.99612	471		0		0			-653	29786.15	0	0	0	0.000	0.000	
05/16/11 07:41:44	59.9971	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:46	59.99774	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:48	59.99838	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:50	59.99936	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:52	60	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:54	60.00064	471		0		0			-653	29778.98	0	0	0	0.001	0.001	
05/16/11 07:41:56	60.00128	471		0		0			-653	29778.98	0	0	-	0.001	0.001	
05/16/11 07:41:58	60.00226	471		0		0			-653	29778.98	0	0	0	0.001	0.001	
05/16/11 07:42:00	60.00388	471		0		0			-653	29778.98	0	0	0	0.002	0.002	
05/16/11 07:42:02	60.00647	471		0		0			-653	29778.98	0	0	0	0.003	0.003	
05/16/11 07:42:04	60.0097	471		0		0			-653	29778.92	0	0	0	0.003	0.003	
05/16/11 07:42:06	60.01358	471		0		0			-653	29778.92	0	0	0	0.004	0.004	
05/16/11 07:42:08	60.01614	471		0		0			-653	29778.92	0	0	0	0.003	0.003	
05/16/11 07:42:10	60.01776	471		0		0			-653	29778.92	0	0	0	0.002	0.002	
05/16/11 07:42:12	60.01776	471		0		0			-653	29778.92	0	0	0	0.000	0.000	
05/16/11 07:42:14	60.01486	471		0		0			-653	29787.9	0	0	0	-0.003	0.003	
05/16/11 07:42:16	60.01163	471		0		0			-653	29787.9	0	0	0	-0.003	0.003	
05/16/11 07:42:18	60.00903	471		0		0			-653	29787.9	0		0	-0.003	0.003	
05/16/11 07:42:20	60.00775	471		0		0			-653	29787.9	0		0	-0.001	0.001	
05/16/11 07:42:22	60.00775	471		0		0			-653	29787.9	0	0	0	0.000	0.000	
05/16/11 07:42:24	60.00903	471		0		0			-653	29787.84			0	0.001	0.001	
05/16/11 07:42:26	60.00903	471		0		0			-653	29787.84	0	0	0	0.000	0.000	
05/16/11 07:42:28	60.01324	471		0		0			-653	29787.84	0	0	0	0.004	0.004	
05/16/11 07:42:30	60.01486	471		0		0			-653	29787.84	0	0	0	0.002	0.002	
05/16/11 07:42:32	60.0152	471		0		0			-653	29787.84	0	0	0	0.000	0.000	
05/16/11 07:42:34	60.0152	471		0		0			-653	29813.39	0	0	0	0.000	0.000	
05/16/11 07:42:36	60.01486	471		0		0			-653	29813.39	0	0	0	0.000	0.000	
05/16/11 07:42:38	60.01422	471		0		0			-653	29813.39	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW } / 0.1 \mathrm{~Hz} \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz ```0 . 0 7 8 t(0) t(Recovery)``` Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:42:40	60.01358	471		0		0			-653	29813.39	0		0	-0.001	0.001	
05/16/11 07:42:42	60.01227	471		0		0			-653	29813.39	0	0	0	-0.001	0.001	
05/16/11 07:42:44	60.01099	471		0		0			-653	29813.33	0	0	0	-0.001	0.001	
05/16/11 07:42:46	60.00873	471		0		0			-653	29813.33	0	0	0	-0.002	0.002	
05/16/11 07:42:48	60.00647	471		0		0			-653	29813.33	0	0	0	-0.002	0.002	
05/16/11 07:42:50	60.00485	471		0		0			-653	29813.33	0	0	0	-0.002	0.002	
05/16/11 07:42:52	60.00354	471		0		0			-653	29813.33	0	0	0	-0.001	0.001	
05/16/11 07:42:54	60.00195	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:42:56	60	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:42:58	59.99774	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:43:00	59.99612	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:43:02	59.99646	471		0		0			-653	29797.46	0	0	0	0.000	0.000	
05/16/11 07:43:04	59.99741	471		0		0			-653	29797.52	0	0	0	0.001	0.001	
05/16/11 07:43:06	59.99838	471		0		0			-653	29797.52	0	0	0	0.001	0.001	
05/16/11 07:43:08	59.99936	471		0		0			-653	29797.52	0	0	0	0.001	0.001	
05/16/11 07:43:10	59.99902	471		0		0			-653	29797.52	0	0	0	0.000	0.000	
05/16/11 07:43:12	59.99872	471		0		0			-653	29797.52	0	0	0	0.000	0.000	
05/16/11 07:43:14	59.99774	471		0		0			-653	29780.33	0	0	0	-0.001	0.001	
05/16/11 07:43:16	59.99646	471		0		0			-653	29780.33	0	0	0	-0.001	0.001	
05/16/11 07:43:18	59.99677	471		0		0			-653	29780.33	0	0	0	0.000	0.000	
05/16/11 07:43:20	59.99677	471		0		0			-653	29780.33	0	0	0	0.000	0.000	
05/16/11 07:43:22	59.99774	471		0		0			-653	29780.33	0	0	0	0.001	0.001	
05/16/11 07:43:24	59.99805	471		0		0			-653	29780.27	0	0	0	0.000	0.000	
05/16/11 07:43:26	59.99774	471		0		0			-653	29780.27	0	0	0	0.000	0.000	
05/16/11 07:43:28	59.99579	471		0		0			-653	29780.27	0	0	0	-0.002	0.002	
05/16/11 07:43:30	59.99387	471		0		0			-653	29780.27	0	0	0	-0.002	0.002	
05/16/11 07:43:32	59.99255	471		0		0			-653	29780.27	0	0	0	-0.001	0.001	
05/16/11 07:43:34	59.99127	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:36	59.98999	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:38	59.98965	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:40	59.98837	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:42	59.98709	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:44	59.98642	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:46	59.98642	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:48	59.98642	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:50	59.98676	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:52	59.98676	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:54	59.98642	471		0		0			-653	29787.12	0	-	0	0.000	0.000	
05/16/11 07:43:56	59.98611	471		0		0			-653	29787.12	0	0	0	0.000	0.000	
05/16/11 07:43:58	59.98611	471		0		0			-653	29787.12	0		0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:44:00	59.98514	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:02	59.98416	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:04	59.98352	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:06	59.98224	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:08	59.98029	471		0		0			-653	29787.12	0	0	0	-0.002	0.002	
05/16/11 07:44:10	59.979	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:12	59.97769	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:14	59.97675	471		0		0			-653	29780.67	0	0	0	-0.001	0.001	
05/16/11 07:44:16	59.97641	471		0		0			-653	29780.67	0	0	0	0.000	0.000	
05/16/11 07:44:18	59.97739	471		0		0			-653	29780.67	0	0	0	0.001	0.001	
05/16/11 07:44:20	59.97998	471		0		0			-653	29780.67	0	0	0	0.003	0.003	
05/16/11 07:44:22	59.98318	471		0		0			-653	29780.67	0	0	0	0.003	0.003	
05/16/11 07:44:24	59.98611	471		0		0			-653	29780.76	0	0	0	0.003	0.003	
05/16/11 07:44:26	59.98837	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:28	59.9903	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:30	59.99191	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:32	59.99353	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:34	59.99579	471		0		0			-653	29777.7	0	0	0	0.002	0.002	
05/16/11 07:44:36	60	471		0		0			-653	29777.7	0	0	-	0.004	0.004	
05/16/11 07:44:38	60.00354	471		0		0			-653	29777.7	0	0	0	0.004	0.004	
05/16/11 07:44:40	60.00647	471		0		0			-653	29777.7	0	0	0	0.003	0.003	
05/16/11 07:44:42	60.00839	471		0		0			-653	29777.7	0	0	0	0.002	0.002	
05/16/11 07:44:44	60.00903	471		0		0			-653	29777.7	0	0	0	0.001	0.001	
05/16/11 07:44:46	60.00873	471		0		0			-653	29777.7	0	0	0	0.000	0.000	
05/16/11 07:44:48	60.00873	471		0		0			-653	29777.7	0	0	0	0.000	0.000	
05/16/11 07:44:50	60.00937	471		0		0			-653	29777.7	0	0	0	0.001	0.001	
05/16/11 07:44:52	60.01099	471		0		0			-653	29777.7	0	0	0	0.002	0.002	
05/16/11 07:44:54	60.01453	471		0		0			-653	29788.63	0	0	0	0.004	0.004	
05/16/11 07:44:56	60.0181	471		0		0			-653	29788.63	0	0	0	0.004	0.004	
05/16/11 07:44:58	60.02002	471		0		0			-653	29788.63	0		0	0.002	0.002	
05/16/11 07:45:00	60.02036	471		0		0			-653	29788.63	0		0	0.000	0.000	
05/16/11 07:45:02	60.02002	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:04	60.02002	471		0		0			-653	29788.63			0	0.000	0.000	
05/16/11 07:45:06	60.01907	471		0		0			-653	29788.63	0	0	0	-0.001	0.001	
05/16/11 07:45:08	60.0181	471		0		0			-653	29788.63	0	0	0	-0.001	0.001	
05/16/11 07:45:10	60.01712	471		0		0			-653	29788.63	0	0	0	-0.001	0.001	
05/16/11 07:45:12	60.01712	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:14	60.01712	471		0		0			-653	29788.51	0	0	0	0.000	0.000	
05/16/11 07:45:16	60.01453	471		0		0			-653	29788.51	0	0	0	-0.003	0.003	
05/16/11 07:45:18	60.01358	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz $\begin{aligned} & \mathrm{t}(0) \\ & \mathrm{t}(\text { Recovery }) \end{aligned}$ Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:45:20	60.01227	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:22	60.01163	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:24	60.01065	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:26	60.0097	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:28	60.00839	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:30	60.00745	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:32	60.00775	471		0		0			-653	29788.51	0	0	0	0.000	0.000	
05/16/11 07:45:34	60.00839	471		0		0			-653	29780.62	0	0	0	0.001	0.001	
05/16/11 07:45:36	60.00839	471		0		0			-653	29780.62	0	0	0	0.000	0.000	
05/16/11 07:45:38	60.00809	471		0		0			-653	29780.62	0	0	0	0.000	0.000	
05/16/11 07:45:40	60.00745	471		0		0			-653	29780.62	0	0	0	-0.001	0.001	
05/16/11 07:45:42	60.00711	471		0		0			-653	29780.62	0	0	0	0.000	0.000	
05/16/11 07:45:44	60.00839	471		0		0			-653	29780.56	0	0	0	0.001	0.001	
05/16/11 07:45:46	60.00937	471		0		0			-653	29780.56	0	0	0	0.001	0.001	
05/16/11 07:45:48	60.0097	471		0		0			-653	29780.56	0	0	0	0.000	0.000	
05/16/11 07:45:50	60.01001	471		0		0			-653	29780.56	0	0	0	0.000	0.000	
05/16/11 07:45:52	60.01065	471		0		0			-653	29780.56	0	0	0	0.001	0.001	
05/16/11 07:45:54	60.01196	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:45:56	60.01324	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:45:58	60.01453	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:46:00	60.01614	471		0		0			-653	29784.96	0	0	0	0.002	0.002	
05/16/11 07:46:02	60.01712	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:46:04	60.01712	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:06	60.01614	471		0		0			-653	29784.93	0	0	0	-0.001	0.001	
05/16/11 07:46:08	60.01584	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:10	60.01614	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:12	60.01584	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:14	60.01486	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:16	60.01422	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:18	60.01227	471		0		0			-653	29760.42	0	0	0	-0.002	0.002	
05/16/11 07:46:20	60.0097	471		0		0			-653	29760.42	0	0	0	-0.003	0.003	
05/16/11 07:46:22	60.00711	471		0		0			-653	29760.42	0	0	0	-0.003	0.003	
05/16/11 07:46:24	60.00583	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:26	60.00516	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:28	60.00516	471		0		0			-653	29760.42	0	0	0	0.000	0.000	
05/16/11 07:46:30	60.00485	471		0		0			-653	29760.42	0	0	0	0.000	0.000	
05/16/11 07:46:32	60.00388	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:34	60.00259	471		0		0			-653	29782.35	0	0	0	-0.001	0.001	
05/16/11 07:46:36	59.99902	471		0		0			-653	29782.35	0	0	0	-0.004	0.004	
05/16/11 07:46:38	59.9971	471		0		0			-653	29782.35	0	0	0	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:46:40	59.99646	471		0		0			-653	29782.35	0	0	0	-0.001	0.001	
05/16/11 07:46:42	59.99579	471		0		0			-653	29782.35	0	0	0	-0.001	0.001	
05/16/11 07:46:44	59.99417	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:46	59.99225	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:48	59.9903	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:50	59.98804	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:52	59.98709	471		0		0			-653	29782.44	0	0	0	-0.001	0.001	
05/16/11 07:46:54	59.98676	471		0		0			-653	29785.52	0	0	0	0.000	0.000	
05/16/11 07:46:56	59.98578	471		0		0			-653	29785.52	0	0	0	-0.001	0.001	
05/16/11 07:46:58	59.9845	471		0		0			-653	29785.52	0	0	0	-0.001	0.001	
05/16/11 07:47:00	59.98288	471		0		0			-653	29785.52	0	0	0	-0.002	0.002	
05/16/11 07:47:02	59.98224	471		0		0			-653	29785.52	0	0	0	-0.001	0.001	
05/16/11 07:47:04	59.98224	471		0		0			-653	29785.55	0	0	0	0.000	0.000	
05/16/11 07:47:06	59.98224	471		0		0			-653	29785.55	0	0	0	0.000	0.000	
05/16/11 07:47:08	59.98254	471		0		0			-653	29785.55	0	0	0	0.000	0.000	
05/16/11 07:47:10	59.98386	471		0		0			-653	29785.55	0	0	0	0.001	0.001	
05/16/11 07:47:12	59.9848	471		0		0			-653	29785.55	0	0	0	0.001	0.001	
05/16/11 07:47:14	59.98578	471		0		0			-653	29788.21	0	0	0	0.001	0.001	
05/16/11 07:47:16	59.98642	471		0		0			-653	29788.21	0	0	-	0.001	0.001	
05/16/11 07:47:18	59.98999	471		0		0			-653	29788.21	0	0	0	0.004	0.004	
05/16/11 07:47:20	59.99225	471		0		0			-653	29788.21	0	0	0	0.002	0.002	
05/16/11 07:47:22	59.99323	471		0		0			-653	29788.21	0	0	0	0.001	0.001	
05/16/11 07:47:24	59.99646	471		0		0			-653	29788.06	0	0	0	0.003	0.003	
05/16/11 07:47:26	59.99902	471		0		0			-653	29788.06	0	0	0	0.003	0.003	
05/16/11 07:47:28	60.00064	471		0		0			-653	29788.06	0	0	0	0.002	0.002	
05/16/11 07:47:30	60.00647	471		0		0			-653	29788.06	0	0	0	0.006	0.006	
05/16/11 07:47:32	60.00903	471		0		0			-653	29788.06	0	0	0	0.003	0.003	
05/16/11 07:47:34	60.01099	471		0		0			-653	29776.11	0	0	0	0.002	0.002	
05/16/11 07:47:36	60.01132	471		0		0			-653	29776.11	0	0	0	0.000	0.000	
05/16/11 07:47:38	60.01291	471		0		0			-653	29776.11	0		0	0.002	0.002	
05/16/11 07:47:40	60.01324	471		0		0			-653	29776.11	0		0	0.000	0.000	
05/16/11 07:47:42	60.01324	471		0		0			-653	29776.11	0	0	0	0.000	0.000	
05/16/11 07:47:44	60.01422	471		0		0			-653	29776.17		0	0	0.001	0.001	
05/16/11 07:47:46	60.0181	471		0		0			-653	29776.17	0	0	0	0.004	0.004	
05/16/11 07:47:48	60.01907	471		0		0			-653	29776.17	0	0	0	0.001	0.001	
05/16/11 07:47:50	60.02133	471		0		0			-653	29776.17	0	0	0	0.002	0.002	
05/16/11 07:47:52	60.02197	471		0		0			-653	29776.17	0	0	0	0.001	0.001	
05/16/11 07:47:54	60.02164	471		0		0			-653	29794.69	0	0	0	0.000	0.000	
05/16/11 07:47:56	60.01971	471		0		0			-653	29794.69	0	0	0	-0.002	0.002	
05/16/11 07:47:58	60.01907	471		0		0			-653	29794.69	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW } / 0.1 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz ```0 . 0 7 8 t(0) t(Recovery)``` Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:48:00	60.01746	471		0		0			-653	29794.69	0		0	-0.002	0.002	
05/16/11 07:48:02	60.01776	471		0		0			-653	29794.69	0	0	0	0.000	0.000	
05/16/11 07:48:04	60.0184	471		0		0			-653	29794.66	0	0	0	0.001	0.001	
05/16/11 07:48:06	60.01776	471		0		0			-653	29794.66	0	0	0	-0.001	0.001	
05/16/11 07:48:08	60.0152	471		0		0			-653	29794.66	0	0	0	-0.003	0.003	
05/16/11 07:48:10	60.01389	471		0		0			-653	29794.66	0	0	0	-0.001	0.001	
05/16/11 07:48:12	60.01422	471		0		0			-653	29794.66	0	0	0	0.000	0.000	
05/16/11 07:48:14	60.0152	471		0		0			-653	29804.78	0	0	0	0.001	0.001	
05/16/11 07:48:16	60.01614	471		0		0			-653	29804.78	0	0	0	0.001	0.001	
05/16/11 07:48:18	60.01614	471		0		0			-653	29804.78	0	0	0	0.000	0.000	
05/16/11 07:48:20	60.01422	471		0		0			-653	29804.78	0	0	0	-0.002	0.002	
05/16/11 07:48:22	60.01196	471		0		0			-653	29804.78	0	0	0	-0.002	0.002	
05/16/11 07:48:24	60.01035	471		0		0			-653	29804.86	0	0	0	-0.002	0.002	
05/16/11 07:48:26	60.00809	471		0		0			-653	29804.86	0	0	0	-0.002	0.002	
05/16/11 07:48:28	60.00613	471		0		0			-653	29804.86	0	0	0	-0.002	0.002	
05/16/11 07:48:30	60.00516	471		0		0			-653	29804.86	0	0	0	-0.001	0.001	
05/16/11 07:48:32	60.00452	471		0		0			-653	29804.86	0	0	0	-0.001	0.001	
05/16/11 07:48:34	60.00354	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:36	60.00128	471		0		0			-653	29800.12	0	0	0	-0.002	0.002	
05/16/11 07:48:38	60	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:40	59.99936	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:42	59.99838	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:44	59.99741	471		0		0			-653	29800.18	0	0	0	-0.001	0.001	
05/16/11 07:48:46	59.99579	471		0		0			-653	29800.18	0	0	0	-0.002	0.002	
05/16/11 07:48:48	59.99515	471		0		0			-653	29800.18	0	0	0	-0.001	0.001	
05/16/11 07:48:50	59.99646	471		0		0			-653	29800.18	0	0	0	0.001	0.001	
05/16/11 07:48:52	59.99872	471		0		0			-653	29800.18	0	,	0	0.002	0.002	
05/16/11 07:48:54	60.00128	471		0		0			-653	29799.82	0	0	0	0.003	0.003	
05/16/11 07:48:56	60.00323	471		0		0			-653	29799.82	0	0	0	0.002	0.002	
05/16/11 07:48:58	60.00421	471		0		0			-653	29799.82	0	0	0	0.001	0.001	
05/16/11 07:49:00	60.00485	471		0		0			-653	29799.82	0	0	0	0.001	0.001	
05/16/11 07:49:02	60.00549	471		0		0			-653	29799.82	0	0	0	0.001	0.001	
05/16/11 07:49:04	60.00583	471		0		0			-653	29799.79	0	0	0	0.000	0.000	
05/16/11 07:49:06	60.00583	471		0		0			-653	29799.79	0		0	0.000	0.000	
05/16/11 07:49:08	60.00549	471		0		0			-653	29799.79	0	0	0	0.000	0.000	
05/16/11 07:49:10	60.00388	471		0		0			-653	29799.79	0	0	0	-0.002	0.002	
05/16/11 07:49:12	60.00226	471		0		0			-653	29799.79	0	0	0	-0.002	0.002	
05/16/11 07:49:14	60.00226	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:16	60	471		0		0			-653	29795.67	0	0	0	-0.002	0.002	
05/16/11 07:49:18	60	471		0		0			-653	29795.67	0		0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW		Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:49:20	60	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:22	60	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:24	60.00452	471		0		0			-653	29795.55	0	0	0	0.005	0.005	
05/16/11 07:49:26	60.00583	471		0		0			-653	29795.55	0	0	0	0.001	0.001	
05/16/11 07:49:28	60.00613	471		0		0			-653	29795.55	0	0	0	0.000	0.000	
05/16/11 07:49:30	60.00583	471		0		0			-653	29795.55	0	0	0	0.000	0.000	
05/16/11 07:49:32	60.00516	471		0		0			-653	29795.55	0	0	0	-0.001	0.001	
05/16/11 07:49:34	60.00388	471		0		0			-653	29783.53	0	0	0	-0.001	0.001	
05/16/11 07:49:36	60.00195	471		0		0			-653	29783.53	0	0	0	-0.002	0.002	
05/16/11 07:49:38	60.00128	471		0		0			-653	29783.53	0	0	,	-0.001	0.001	
05/16/11 07:49:40	60.00098	471		0		0			-653	29783.53	0	0	0	0.000	0.000	
05/16/11 07:49:42	60.00034	471		0		0			-653	29783.53	0	0	0	-0.001	0.001	
05/16/11 07:49:44	60	471		0		0			-653	29783.47	0	0	0	0.000	0.000	
05/16/11 07:49:46	59.99902	471		0		0			-653	29783.47	0	0	0	-0.001	0.001	
05/16/11 07:49:48	59.99872	471		0		0			-653	29783.47	0	0	0	0.000	0.000	
05/16/11 07:49:50	59.99838	471		0		0			-653	29783.47	0	0		0.000	0.000	
05/16/11 07:49:52	59.99612	471		0		0			-653	29783.47	0	0	0	-0.002	0.002	
05/16/11 07:49:54	59.99579	471		0		0			-653	29788.38	0	0	0	0.000	0.000	
05/16/11 07:49:56	59.99515	471		0		0			-653	29788.38	0	0	0	-0.001	0.001	
05/16/11 07:49:58	59.99387	471		0		0			-653	29788.38	0	0		-0.001	0.001	
05/16/11 07:50:00	59.99225	471		0		0			-653	29788.38	0	0	0	-0.002	0.002	
05/16/11 07:50:02	59.99225	471		0		0			-653	29788.38	0	0	0	0.000	0.000	
05/16/11 07:50:04	59.99484	471		0		0			-653	29788.38	0	0	0	0.003	0.003	
05/16/11 07:50:06	59.99646	471		0		0			-653	29788.38	0	0	0	0.002	0.002	
05/16/11 07:50:08	59.9971	471		0		0			-653	29788.38	0	0	0	0.001	0.001	
05/16/11 07:50:10	59.99548	471		0		0			-653	29788.38	0	0	0	-0.002	0.002	
05/16/11 07:50:12	59.99289	471		0		0			-653	29788.38	0	0	0	-0.003	0.003	
05/16/11 07:50:14	59.98999	471		0		0			-653	29790.16	0	0	0	-0.003	0.003	
05/16/11 07:50:16	59.98773	471		0		0			-653	29790.16	0	0	0	-0.002	0.002	
05/16/11 07:50:18	59.98642	471		0		0			-653	29790.16	0	0	0	-0.001	0.001	
05/16/11 07:50:20	59.98547	471		0		0			-653	29790.16	0	0	0	-0.001	0.001	
05/16/11 07:50:22	59.98547	471		0		0			-653	29790.16	0	0	0	0.000	0.000	
05/16/11 07:50:24	59.98611	471		0		0			-653	29790.07	0	0	0	0.001	0.001	
05/16/11 07:50:26	59.98611	471		0		0			-653	29790.07	0		0	0.000	0.000	
05/16/11 07:50:28	59.98676	471		0		0			-653	29790.07	0	0	0	0.001	0.001	
05/16/11 07:50:30	59.98709	471		0		0			-653	29790.07	0	0	0	0.000	0.000	
05/16/11 07:50:32	59.9874	471		0		0			-653	29790.07	0	0	0	0.000	0.000	
05/16/11 07:50:34	59.98676	471		0		0			-653	29777.49	0		0	-0.001	0.001	
05/16/11 07:50:36	59.98611	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:38	59.98642	471		0		0			-653	29777.49	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	\qquad	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:50:40	59.9874	471		0		0			-653	29777.49	0	0	0	0.001	0.001	
05/16/11 07:50:42	59.98804	471		0		0			-653	29777.49	0	0	0	0.001	0.001	
05/16/11 07:50:44	59.9874	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:46	59.98676	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:48	59.9848	471		0		0			-653	29777.49	0	0	0	-0.002	0.002	
05/16/11 07:50:50	59.98288	471		0		0			-653	29777.49	0	0	0	-0.002	0.002	
05/16/11 07:50:52	59.98062	471		0		0			-653	29777.49	0	0	0	-0.002	0.002	
05/16/11 07:50:54	59.97998	471		0		0			-653	29782.49	0	0	0	-0.001	0.001	
05/16/11 07:50:56	59.97931	471		0		0			-653	29782.49	0	0	0	-0.001	0.001	
05/16/11 07:50:58	59.979	471		0		0			-653	29782.49	0	0	0	0.000	0.000	
05/16/11 07:51:00	59.97931	471		0		0			-653	29782.49	0	0	0	0.000	0.000	
05/16/11 07:51:02	59.98093	471		0		0			-653	29782.49	0	0	0	0.002	0.002	
05/16/11 07:51:04	59.98126	471		0		0			-653	29782.46	0	0	0	0.000	0.000	
05/16/11 07:51:06	59.98126	471		0		0			-653	29782.46	0	0	0	0.000	0.000	
05/16/11 07:51:08	59.9819	471		0		0			-653	29782.46	0	0	0	0.001	0.001	
05/16/11 07:51:10	59.98126	471		0		0			-653	29782.46	0	0	0	-0.001	0.001	
05/16/11 07:51:12	59.97964	471		0		0			-653	29782.46	0	0	0	-0.002	0.002	
05/16/11 07:51:14	59.97705	471		0		0			-653	29756.13	0	0	0	-0.003	0.003	
05/16/11 07:51:16	59.97479	471		0		0			-653	29756.13	0	0	0	-0.002	0.002	
05/16/11 07:51:18	59.97351	471		0		0			-653	29756.13	0	0	0	-0.001	0.001	
05/16/11 07:51:20	59.97287	471		0		0			-653	29756.13	0	0	0	-0.001	0.001	
05/16/11 07:51:22	59.97223	471		0		0			-653	29756.13	0	0	0	-0.001	0.001	
05/16/11 07:51:24	59.97189	471		0		0			-653	29756.18	0	0	0	0.000	0.000	
05/16/11 07:51:26	59.97125	471		0		0			-653	29756.18	0	0	0	-0.001	0.001	
05/16/11 07:51:28	59.97156	471		0		0			-653	29756.18	0	0	0	0.000	0.000	
05/16/11 07:51:30	59.97318	471		0		0			-653	29756.18	0	0	0	0.002	0.002	
05/16/11 07:51:32	59.97415	471		0		0			-653	29756.18	0	0	0	0.001	0.001	
05/16/11 07:51:34	59.97479	471		0		0			-653	29777.58	0	0	0	0.001	0.001	
05/16/11 07:51:36	59.97382	471		0		0			-653	29777.58	0	0	0	-0.001	0.001	
05/16/11 07:51:38	59.97287	471		0		0			-653	29777.58	0	0	0	-0.001	0.001	
05/16/11 07:51:40	59.97318	471		0		0			-653	29777.58	0	0	0	0.000	0.000	
05/16/11 07:51:42	59.97449	471		0		0			-653	29777.58	0	0	0	0.001	0.001	
05/16/11 07:51:44	59.97675	471		0		0			-653	29777.4	0	0	0	0.002	0.002	
05/16/11 07:51:46	59.97803	471		0		0			-653	29777.4	0	0	0	0.001	0.001	
05/16/11 07:51:48	59.97998	471		0		0			-653	29777.4	0	0	0	0.002	0.002	
05/16/11 07:51:50	59.98093	471		0		0			-653	29777.4	0	0	0	0.001	0.001	
05/16/11 07:51:52	59.98093	471		0		0			-653	29777.4	0	0	0	0.000	0.000	
05/16/11 07:51:54	59.97964	471		0		0			-653	29802.24	0	0	0	-0.001	0.001	
05/16/11 07:51:56	59.97803	471		0		0			-653	29802.24	0	0	0	-0.002	0.002	
05/16/11 07:51:58	59.97705	471		0		0			-653	29802.24	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW		Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:52:00	59.97739	471		0		0			-653	29802.24	0	0	0	0.000	0.000	
05/16/11 07:52:02	59.97836	471		0		0			-653	29802.24	0	0	0	0.001	0.001	
05/16/11 07:52:04	59.97931	471		0		0			-653	29802.18	0	0	0	0.001	0.001	
05/16/11 07:52:06	59.98126	471		0		0			-653	29802.18	0	0	0	0.002	0.002	
05/16/11 07:52:08	59.98416	471		0		0			-653	29802.18	0	0	0	0.003	0.003	
05/16/11 07:52:10	59.98611	471		0		0			-653	29802.18	0	0	0	0.002	0.002	
05/16/11 07:52:12	59.98709	471		0		0			-653	29802.18	0	0	0	0.001	0.001	
05/16/11 07:52:14	59.9874	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:16	59.98804	471		0		0			-653	29802.29	0	0	0	0.001	0.001	
05/16/11 07:52:18	59.98804	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:20	59.98773	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:22	59.9874	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:24	59.9874	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:26	59.9874	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:28	59.9874	471		0		0			-653	29802.32	0	0		0.000	0.000	
05/16/11 07:52:30	59.98773	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:32	59.98901	471		0		0			-653	29802.32	0	0	0	0.001	0.001	
05/16/11 07:52:34	59.98965	471		0		0			-653	29795.02	0	0	0	0.001	0.001	
05/16/11 07:52:36	59.98935	471		0		0			-653	29795.02	0	0	0	0.000	0.000	
05/16/11 07:52:38	59.98837	471		0		0			-653	29795.02	0	0	0	-0.001	0.001	
05/16/11 07:52:40	59.98868	471		0		0			-653	29795.02	0	0	0	0.000	0.000	
05/16/11 07:52:42	59.98868	471		0		0			-653	29795.02	0	0	0	0.000	0.000	
05/16/11 07:52:44	59.9874	471		0		0			-653	29795.05	0	0	0	-0.001	0.001	
05/16/11 07:52:46	59.98611	471		0		0			-653	29795.05	0	0	0	-0.001	0.001	
05/16/11 07:52:48	59.98611	471		0		0			-653	29795.05	0	0	0	0.000	0.000	
05/16/11 07:52:50	59.98709	471		0		0			-653	29795.05	0	0	0	0.001	0.001	
05/16/11 07:52:52	59.98837	471		0		0			-653	29795.05	0	0		0.001	0.001	
05/16/11 07:52:54	59.98935	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:52:56	59.98999	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:52:58	59.99127	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:53:00	59.99255	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:53:02	59.99387	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:53:04	59.99387	471		0		0			-653	29781.45	0	0	0	0.000	0.000	
05/16/11 07:53:06	59.99289	471		0		0			-653	29781.45	0		0	-0.001	0.001	
05/16/11 07:53:08	59.99097	471		0		0			-653	29781.45	0	0	0	-0.002	0.002	
05/16/11 07:53:10	59.98868	471		0		0			-653	29781.45	0	0	0	-0.002	0.002	
05/16/11 07:53:12	59.98642	471		0		0			-653	29781.45	0	0	0	-0.002	0.002	
05/16/11 07:53:14	59.98386	471		0		0			-653	29802.43	0		0	-0.003	0.003	
05/16/11 07:53:16	59.9816	471		0		0			-653	29802.43	0	0	0	-0.002	0.002	
05/16/11 07:53:18	59.97931	471		0		0			-653	29802.43	0	0	0	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:53:20	59.97675	471		0		0			-653	29802.43	0	0	0	-0.003	0.003	
05/16/11 07:53:22	59.97415	471		0		0			-653	29802.43	0	0	0	-0.003	0.003	
05/16/11 07:53:24	59.97287	471		0		0			-653	29802.4	0	0	0	-0.001	0.001	
05/16/11 07:53:26	59.97223	471		0		0			-653	29802.4	0	0	0	-0.001	0.001	
05/16/11 07:53:28	59.97318	471		0		0			-653	29802.4	0	0	0	0.001	0.001	
05/16/11 07:53:30	59.97449	471		0		0			-653	29802.4	0	0	0	0.001	0.001	
05/16/11 07:53:32	59.97351	471		0		0			-653	29802.4	0	0		-0.001	0.001	
05/16/11 07:53:34	59.97253	471		0		0			-653	29804.4	0	0	0	-0.001	0.001	
05/16/11 07:53:36	59.97253	471		0		0			-653	29804.4	0	0	0	0.000	0.000	
05/16/11 07:53:38	59.97223	471		0		0			-653	29804.4	0	0	0	0.000	0.000	
05/16/11 07:53:40	59.97156	471		0		0			-653	29804.4	0	0	0	-0.001	0.001	
05/16/11 07:53:42	59.97189	471		0		0			-653	29804.4	0	0	0	0.000	0.000	
05/16/11 07:53:44	59.97318	471		0		0			-653	29804.4	0	0	0	0.001	0.001	
05/16/11 07:53:46	59.97479	471		0		0			-653	29804.4	0	0	0	0.002	0.002	
05/16/11 07:53:48	59.9761	471		0		0			-653	29804.4	0	0	0	0.001	0.001	
05/16/11 07:53:50	59.97803	471		0		0			-653	29804.4	0	0	0	0.002	0.002	
05/16/11 07:53:52	59.98062	471		0		0			-653	29804.4	0	0	0	0.003	0.003	
05/16/11 07:53:54	59.98254	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:53:56	59.98416	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:53:58	59.98611	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:54:00	59.98804	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:54:02	59.9903	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:54:04	59.99161	471		0		0			-653	29797.29	0	0	0	0.001	0.001	
05/16/11 07:54:06	59.99323	471		0		0			-653	29797.29	0	0	0	0.002	0.002	
05/16/11 07:54:08	59.99484	471		0		0			-653	29797.29	0		0	0.002	0.002	
05/16/11 07:54:10	59.99579	471		0		0			-653	29797.29	0	0	0	0.001	0.001	
05/16/11 07:54:12	59.99515	471		0		0			-653	29797.29	0	0	0	-0.001	0.001	
05/16/11 07:54:14	59.99612	471		0		0			-653	29823.76	0	0	0	0.001	0.001	
05/16/11 07:54:16	59.99805	471		0		0			-653	29823.76	0	0	0	0.002	0.002	
05/16/11 07:54:18	59.99936	471		0		0			-653	29823.76	0		0	0.001	0.001	
05/16/11 07:54:20	60.00064	471		0		0			-653	29823.76	0		0	0.001	0.001	
05/16/11 07:54:22	60.00098	471		0		0			-653	29823.76	0	0	0	0.000	0.000	
05/16/11 07:54:24	60.00064	471		0		0			-653	29818.41		0	0	0.000	0.000	
05/16/11 07:54:26	60	471		0		0			-653	29818.41	0	0	0	-0.001	0.001	
05/16/11 07:54:28	59.99902	471		0		0			-653	29818.41	0	0	0	-0.001	0.001	
05/16/11 07:54:30	59.99872	471		0		0			-653	29818.41	0	0	0	0.000	0.000	
05/16/11 07:54:32	59.99936	471		0		0			-653	29818.41	0	0	0	0.001	0.001	
05/16/11 07:54:34	60.00034	471		0		0			-653	29808.89	0	0	0	0.001	0.001	
05/16/11 07:54:36	60.00162	471		0		0			-653	29808.89	0	0	0	0.001	0.001	
05/16/11 07:54:38	60.00354	471		0		0			-653	29808.89	0	0	0	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$		Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:54:40	60.00485	471		0		0			-653	29808.89	0	0	0	0.001	0.001	
05/16/11 07:54:42	60.00421	471		0		0			-653	29808.89	0	0	0	-0.001	0.001	
05/16/11 07:54:44	60.00195	471		0		0			-653	29814.89	0	0	0	-0.002	0.002	
05/16/11 07:54:46	59.99902	471		0		0			-653	29814.89	0	0	0	-0.003	0.003	
05/16/11 07:54:48	59.99646	471		0		0			-653	29814.89	0	0	0	-0.003	0.003	
05/16/11 07:54:50	59.99417	471		0		0			-653	29814.89	0	0	0	-0.002	0.002	
05/16/11 07:54:52	59.99323	471		0		0			-653	29814.89	0	0	0	-0.001	0.001	
05/16/11 07:54:54	59.99127	471		0		0			-653	29826.47	0	0	0	-0.002	0.002	
05/16/11 07:54:56	59.98935	471		0		0			-653	29826.47	0	0	0	-0.002	0.002	
05/16/11 07:54:58	59.98709	471		0		0			-653	29826.47	0	0	0	-0.002	0.002	
05/16/11 07:55:00	59.98578	471		0		0			-653	29826.47	0	0	0	-0.001	0.001	
05/16/11 07:55:02	59.98547	471		0		0			-653	29826.47	0	0	0	0.000	0.000	
05/16/11 07:55:04	59.98547	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:06	59.98514	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:08	59.9845	471		0		0			-653	29826.41	0	0	0	-0.001	0.001	
05/16/11 07:55:10	59.9845	471		0		0			-653	29826.41	0	0		0.000	0.000	
05/16/11 07:55:12	59.9848	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:14	59.9848	471		0		0			-653	29834.18	0	0	0	0.000	0.000	
05/16/11 07:55:16	59.98611	471		0		0			-653	29834.18	0	0	0	0.001	0.001	
05/16/11 07:55:18	59.9874	471		0		0			-653	29834.18	0	0	0	0.001	0.001	
05/16/11 07:55:20	59.98868	471		0		0			-653	29834.18	0	0	0	0.001	0.001	
05/16/11 07:55:22	59.98837	471		0		0			-653	29834.18	0	0	0	0.000	0.000	
05/16/11 07:55:24	59.98837	471		0		0			-653	29836.13	0	0	0	0.000	0.000	
05/16/11 07:55:26	59.98578	471		0		0			-653	29836.13	0	0	0	-0.003	0.003	
05/16/11 07:55:28	59.9845	471		0		0			-653	29836.13	0	0	0	-0.001	0.001	
05/16/11 07:55:30	59.9848	471		0		0			-653	29836.13	0	0	0	0.000	0.000	
05/16/11 07:55:32	59.98547	471		0		0			-653	29836.13	0	0	-	0.001	0.001	
05/16/11 07:55:34	59.98642	471		0		0			-653	29821.84	0	0	0	0.001	0.001	
05/16/11 07:55:36	59.98773	471		0		0			-653	29821.84	0	0	0	0.001	0.001	
05/16/11 07:55:38	59.98965	471		0		0			-653	29821.84	0	0	0	0.002	0.002	
05/16/11 07:55:40	59.99063	471		0		0			-653	29821.84	0	0	0	0.001	0.001	
05/16/11 07:55:42	59.99063	471		0		0			-653	29821.84	0	0	0	0.000	0.000	
05/16/11 07:55:44	59.99063	471		0		0			-653	29821.87	0	0	0	0.000	0.000	
05/16/11 07:55:46	59.99063	471		0		0			-653	29821.87	0		0	0.000	0.000	
05/16/11 07:55:48	59.98642	471		0		0			-653	29821.87	0	0	0	-0.004	0.004	
05/16/11 07:55:50	59.9845	471		0		0			-653	29821.87	0	0	0	-0.002	0.002	
05/16/11 07:55:52	59.98224	471		0		0			-653	29821.87	0	0	0	-0.002	0.002	
05/16/11 07:55:54	59.98062	471		0		0			-653	29831.33	0		0	-0.002	0.002	
05/16/11 07:55:56	59.97739	471		0		0			-653	29831.33	0	0	0	-0.003	0.003	
05/16/11 07:55:58	59.97641	471		0		0			-653	29831.33	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:56:00	59.97641	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:02	59.9761	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:04	59.97543	471		0		0			-653	29831.33	0	0	0	-0.001	0.001	
05/16/11 07:56:06	59.97577	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:08	59.97675	471		0		0			-653	29831.33	0	0	0	0.001	0.001	
05/16/11 07:56:10	59.97705	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:12	59.97705	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:14	59.97705	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:16	59.97675	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:18	59.97705	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:20	59.97739	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:22	59.97803	471		0		0			-653	29835.51	0	0	0	0.001	0.001	
05/16/11 07:56:24	59.97803	471		0		0			-653	29856.55	0	0	0	0.000	0.000	
05/16/11 07:56:26	59.97867	471		0		0			-653	29856.55	0	0	0	0.001	0.001	
05/16/11 07:56:28	59.97964	471		0		0			-653	29856.55	0	0	0	0.001	0.001	
05/16/11 07:56:30	59.9816	471		0		0			-653	29856.55	0	0	0	0.002	0.002	
05/16/11 07:56:32	59.98352	471		0		0			-653	29856.55	0	0	0	0.002	0.002	
05/16/11 07:56:34	59.98642	471		0		0			-653	29846.76	0	0	0	0.003	0.003	
05/16/11 07:56:36	59.9903	471		0		0			-653	29846.76	0	0	0	0.004	0.004	
05/16/11 07:56:38	59.99451	471		0		0			-653	29846.76	0	0	0	0.004	0.004	
05/16/11 07:56:40	59.99741	471		0		0			-653	29846.76	0	0	0	0.003	0.003	
05/16/11 07:56:42	59.99838	471		0		0			-653	29846.76	0	0	0	0.001	0.001	
05/16/11 07:56:44	59.99805	471		0		0			-653	29860.05	0	0	0	0.000	0.000	
05/16/11 07:56:46	59.99677	471		0		0			-653	29860.05	0	0	0	-0.001	0.001	
05/16/11 07:56:48	59.99612	471		0		0			-653	29860.05	0	0	0	-0.001	0.001	
05/16/11 07:56:50	59.99548	471		0		0			-653	29860.05	0	0	0	-0.001	0.001	
05/16/11 07:56:52	59.99612	471		0		0			-653	29860.05	0	0	0	0.001	0.001	
05/16/11 07:56:54	59.99936	471		0		0			-653	29873.15	0	0	0	0.003	0.003	
05/16/11 07:56:56	60.00323	471		0		0			-653	29873.15	0	0	0	0.004	0.004	
05/16/11 07:56:58	60.00745	471		0		0			-653	29873.15	0		0	0.004	0.004	
05/16/11 07:57:00	60.01163	471		0		0			-653	29873.15	0		0	0.004	0.004	
05/16/11 07:57:02	60.01453	471		0		0			-653	29873.15	0	0	0	0.003	0.003	
05/16/11 07:57:04	60.01746	471		0		0			-653	29873.15		0	0	0.003	0.003	
05/16/11 07:57:06	60.01907	471		0		0			-653	29873.15	0	0	0	0.002	0.002	
05/16/11 07:57:08	60.01938	471		0		0			-653	29873.15	0	0	0	0.000	0.000	
05/16/11 07:57:10	60.01938	471		0		0			-653	29873.15	0	0	0	0.000	0.000	
05/16/11 07:57:12	60.01938	471		0		0			-653	29873.15	0	0	0	0.000	0.000	
05/16/11 07:57:14	60.02036	471		0		0			-653	29889.67	0	0	0	0.001	0.001	
05/16/11 07:57:16	60.02197	471		0		0			-653	29889.67	0	0	0	0.002	0.002	
05/16/11 07:57:18	60.02423	471		0		0			-653	29889.67	0	0	0	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:57:20	60.02682	471		0		0			-653	29889.67	0	0	0	0.003	0.003	
05/16/11 07:57:22	60.02811	471		0		0			-653	29889.67	0	0	0	0.001	0.001	
05/16/11 07:57:24	60.02939	471		0		0			-653	29886.6	0	0	0	0.001	0.001	
05/16/11 07:57:26	60.03036	471		0		0			-653	29886.6	0	0	0	0.001	0.001	
05/16/11 07:57:28	60.02875	471		0		0			-653	29886.6	0	0	0	-0.002	0.002	
05/16/11 07:57:30	60.02682	471		0		0			-653	29886.6	0	0	0	-0.002	0.002	
05/16/11 07:57:32	60.02457	471		0		0			-653	29886.6	0	0	0	-0.002	0.002	
05/16/11 07:57:34	60.02261	471		0		0			-653	29891.67	0	0	0	-0.002	0.002	
05/16/11 07:57:36	60.02231	471		0		0			-653	29891.67	0	0	0	0.000	0.000	
05/16/11 07:57:38	60.02295	471		0		0			-653	29891.67	0	0	0	0.001	0.001	
05/16/11 07:57:40	60.02359	471		0		0			-653	29891.67	0	0	0	0.001	0.001	
05/16/11 07:57:42	60.02261	471		0		0			-653	29891.67	0	0	0	-0.001	0.001	
05/16/11 07:57:44	60.02164	471		0		0			-653	29891.64	0	0	0	-0.001	0.001	
05/16/11 07:57:46	60.01971	471		0		0			-653	29891.64	0	0	0	-0.002	0.002	
05/16/11 07:57:48	60.01776	471		0		0			-653	29891.64	0	0	0	-0.002	0.002	
05/16/11 07:57:50	60.01746	471		0		0			-653	29891.64	0	0	0	0.000	0.000	
05/16/11 07:57:52	60.01682	471		0		0			-653	29891.64	0	0	0	-0.001	0.001	
05/16/11 07:57:54	60.01712	471		0		0			-653	29891.51	0	0	0	0.000	0.000	
05/16/11 07:57:56	60.0184	471		0		0			-653	29891.51	0	0	0	0.001	0.001	
05/16/11 07:57:58	60.01874	471		0		0			-653	29891.51	0	0	0	0.000	0.000	
05/16/11 07:58:00	60.0181	471		0		0			-653	29891.51	0	0	0	-0.001	0.001	
05/16/11 07:58:02	60.01682	471		0		0			-653	29891.51	0	0	0	-0.001	0.001	
05/16/11 07:58:04	60.0152	471		0		0			-653	29891.6	0	0	0	-0.002	0.002	
05/16/11 07:58:06	60.0152	471		0		0			-653	29891.6	0	0	-	0.000	0.000	
05/16/11 07:58:08	60.0155	471		0		0			-653	29891.6	0	0	0	0.000	0.000	
05/16/11 07:58:10	60.0155	471		0		0			-653	29891.6	0	0	0	0.000	0.000	
05/16/11 07:58:12	60.01453	471		0		0			-653	29891.6	0	0	0	-0.001	0.001	
05/16/11 07:58:14	60.01453	471		0		0			-653	29884.5	0	0	0	0.000	0.000	
05/16/11 07:58:16	60.0152	471		0		0			-653	29884.5	0	0	0	0.001	0.001	
05/16/11 07:58:18	60.01584	471		0		0			-653	29884.5	0	0	0	0.001	0.001	
05/16/11 07:58:20	60.01614	471		0		0			-653	29884.5	0	0	0	0.000	0.000	
05/16/11 07:58:22	60.01584	471		0		0			-653	29884.5	0	0	0	0.000	0.000	
05/16/11 07:58:24	60.0152	471		0		0			-653	29881.79		0	0	-0.001	0.001	
05/16/11 07:58:26	60.0155	471		0		0			-653	29881.79	0	0	0	0.000	0.000	
05/16/11 07:58:28	60.01614	471		0		0			-653	29881.79	0	0	0	0.001	0.001	
05/16/11 07:58:30	60.01776	471		0		0			-653	29881.79	0	0	0	0.002	0.002	
05/16/11 07:58:32	60.01907	471		0		0			-653	29881.79	0	0	0	0.001	0.001	
05/16/11 07:58:34	60.02069	471		0		0			-653	29887.14	0	0	0	0.002	0.002	
05/16/11 07:58:36	60.02133	471		0		0			-653	29887.14	0	0	0	0.001	0.001	
05/16/11 07:58:38	60.02069	471		0		0			-653	29887.14	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz $\begin{aligned} & \mathrm{t}(0) \\ & \mathrm{t}(\text { Recovery }) \end{aligned}$ Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:58:40	60.01907	471		0		0			-653	29887.14	0	0	0	-0.002	0.002	
05/16/11 07:58:42	60.01746	471		0		0			-653	29887.14	0	0	0	-0.002	0.002	
05/16/11 07:58:44	60.01614	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:46	60.0152	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:48	60.01453	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:50	60.01389	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:52	60.01358	471		0		0			-653	29873.08	0	0	0	0.000	0.000	
05/16/11 07:58:54	60.01099	471		0		0			-653	29862.1	0	0	0	-0.003	0.003	
05/16/11 07:58:56	60.00549	471		0		0			-653	29862.1	0	0	0	-0.005	0.005	
05/16/11 07:58:58	59.99966	471		0		0			-653	29862.1	0	0	0	-0.006	0.006	
05/16/11 07:59:00	59.99451	471		0		0			-653	29862.1	0	0	0	-0.005	0.005	
05/16/11 07:59:02	59.99127	471		0		0			-653	29862.1	0	0	0	-0.003	0.003	
05/16/11 07:59:04	59.98965	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:06	59.98868	471		0		0			-653	29861.95	0	0	0	-0.001	0.001	
05/16/11 07:59:08	59.98676	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:10	59.9848	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:12	59.98288	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:14	59.98062	471		0		0			-653	29906.21	0	0	0	-0.002	0.002	
05/16/11 07:59:16	59.97803	471		0		0			-653	29906.21	0	0	0	-0.003	0.003	
05/16/11 07:59:18	59.9761	471		0		0			-653	29906.21	0	0	0	-0.002	0.002	
05/16/11 07:59:20	59.97577	471		0		0			-653	29906.21	0	0	0	0.000	0.000	
05/16/11 07:59:22	59.9761	471		0		0			-653	29906.21	0	0	0	0.000	0.000	
05/16/11 07:59:24	59.9761	471		0		0			-653	29878.69	0	0	0	0.000	0.000	
05/16/11 07:59:26	59.97641	471		0		0			-653	29878.69	0	0	0	0.000	0.000	
05/16/11 07:59:28	59.97543	471		0		0			-653	29878.69	0	0	0	-0.001	0.001	
05/16/11 07:59:30	59.97479	471		0		0			-653	29878.69	0	0	0	-0.001	0.001	
05/16/11 07:59:32	59.97382	471		0		0			-653	29878.69	0	0	0	-0.001	0.001	
05/16/11 07:59:34	59.97253	471		0		0			-653	29900.56	0	0	0	-0.001	0.001	
05/16/11 07:59:36	59.97223	471		0		0			-653	29900.56	0	0	0	0.000	0.000	
05/16/11 07:59:38	59.97253	471		0		0			-653	29900.56	0	0	0	0.000	0.000	
05/16/11 07:59:40	59.97351	471		0		0			-653	29900.56	0	0	0	0.001	0.001	
05/16/11 07:59:42	59.97351	471		0		0			-653	29900.56	0	0	0	0.000	0.000	
05/16/11 07:59:44	59.97318	471		0		0			-653	29896.99	0	0	0	0.000	0.000	
05/16/11 07:59:46	59.97189	471		0		0			-653	29896.99	0	0	0	-0.001	0.001	
05/16/11 07:59:48	59.97092	471		0		0			-653	29896.99	0	0	0	-0.001	0.001	
05/16/11 07:59:50	59.97028	471		0		0			-653	29896.99	0	0	0	-0.001	0.001	
05/16/11 07:59:52	59.97028	471		0		0			-653	29896.99	0	0	0	0.000	0.000	
05/16/11 07:59:54	59.97028	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 07:59:56	59.97028	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 07:59:58	59.97061	471		0		0			-653	29905.8	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW		Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:00:00	59.97287	471		0		0			-653	29905.8	0	0	0	0.002	0.002	
05/16/11 08:00:02	59.97287	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 08:00:04	59.97479	471		0		0			-653	29905.77	0	0	0	0.002	0.002	
05/16/11 08:00:06	59.97479	471		0		0			-653	29905.77	0	0	0	0.000	0.000	
05/16/11 08:00:08	59.97382	471		0		0			-653	29905.77	0	0	0	-0.001	0.001	
05/16/11 08:00:10	59.96832	471		0		0			-653	29905.77	0	0	0	-0.005	0.005	
05/16/11 08:00:12	59.96802	471		0		0			-653	29905.77	0	0	0	0.000	0.000	
05/16/11 08:00:14	59.96899	471		0		0			-653	29914.9	0	0	0	0.001	0.001	
05/16/11 08:00:16	59.96994	471		0		0			-653	29914.9	0	0	0	0.001	0.001	
05/16/11 08:00:18	59.97382	471		0		0			-653	29914.9	0	0	,	0.004	0.004	
05/16/11 08:00:20	59.97382	471		0		0			-653	29914.9	0	0	0	0.000	0.000	
05/16/11 08:00:22	59.97382	471		0		0			-653	29914.9	0	0	0	0.000	0.000	
05/16/11 08:00:24	59.97769	471		0		0			-653	29925.58	0	0	0	0.004	0.004	
05/16/11 08:00:26	59.97739	471		0		0			-653	29925.58	0	0	0	0.000	0.000	
05/16/11 08:00:28	59.9761	471		0		0			-653	29925.58	0	0		-0.001	0.001	
05/16/11 08:00:30	59.9761	471		0		0			-653	29925.58	0	0	0	0.000	0.000	
05/16/11 08:00:32	59.97705	471		0		0			-653	29925.58	0	0	0	0.001	0.001	
05/16/11 08:00:34	59.97769	471		0		0			-653	29938.87	0	0	0	0.001	0.001	
05/16/11 08:00:36	59.97803	471		0		0			-653	29938.87	0	0	0	0.000	0.000	
05/16/11 08:00:38	59.97803	471		0		0			-653	29938.87	0	0		0.000	0.000	
05/16/11 08:00:40	59.97739	471		0		0			-653	29938.87	0	0	0	-0.001	0.001	
05/16/11 08:00:42	59.97675	471		0		0			-653	29938.87	0	0	0	-0.001	0.001	
05/16/11 08:00:44	59.97641	471		0		0			-653	29952.51	0	0	0	0.000	0.000	
05/16/11 08:00:46	59.97479	471		0		0			-653	29952.51	0	0	0	-0.002	0.002	
05/16/11 08:00:48	59.97449	471		0		0			-653	29952.51	0	0	0	0.000	0.000	
05/16/11 08:00:50	59.97543	471		0		0			-653	29952.51	0	0	0	0.001	0.001	
05/16/11 08:00:52	59.97705	471		0		0			-653	29952.51	0	0	0	0.002	0.002	
05/16/11 08:00:54	59.97931	471		0		0			-653	29952.51	0	0	0	0.002	0.002	
05/16/11 08:00:56	59.97964	471		0		0			-653	29948.95	0	0	0	0.000	0.000	
05/16/11 08:00:58	59.979	471		0		0			-653	29948.95	0	0	0	-0.001	0.001	
05/16/11 08:01:00	59.97803	471		0		0			-653	29948.95	0	0	0	-0.001	0.001	
05/16/11 08:01:02	59.97803	471		0		0			-653	29948.95	0	0	0	0.000	0.000	
05/16/11 08:01:04	59.979	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:06	59.98029	471		0		0			-653	29948.95	0		0	0.001	0.001	
05/16/11 08:01:08	59.9819	471		0		0			-653	29948.95	0	0	0	0.002	0.002	
05/16/11 08:01:10	59.98318	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:12	59.9845	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:14	59.98578	471		0		0			-653	29951.05	0		0	0.001	0.001	
05/16/11 08:01:16	59.98642	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:18	59.98642	471		0		0			-653	29951.05	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW		Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:01:20	59.98709	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:22	59.98773	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:24	59.98965	471		0		0			-653	29955.09	0	0	0	0.002	0.002	
05/16/11 08:01:26	59.99161	471		0		0			-653	29955.09	0	0	0	0.002	0.002	
05/16/11 08:01:28	59.99255	471		0		0			-653	29955.09	0	0	0	0.001	0.001	
05/16/11 08:01:30	59.99323	471		0		0			-653	29955.09	0	0	0	0.001	0.001	
05/16/11 08:01:32	59.99289	471		0		0			-653	29955.09	0	0	0	0.000	0.000	
05/16/11 08:01:34	59.99097	471		0		0			-653	29967.69	0	0	0	-0.002	0.002	
05/16/11 08:01:36	59.98804	471		0		0			-653	29967.69	0	0	0	-0.003	0.003	
05/16/11 08:01:38	59.98578	471		0		0			-653	29967.69	0	0	,	-0.002	0.002	
05/16/11 08:01:40	59.98386	471		0		0			-653	29967.69	0	0	0	-0.002	0.002	
05/16/11 08:01:42	59.98318	471		0		0			-653	29967.69	0	0	0	-0.001	0.001	
05/16/11 08:01:44	59.98318	471		0		0			-653	29983.13	0	0	0	0.000	0.000	
05/16/11 08:01:46	59.98288	471		0		0			-653	29983.13	0	0	0	0.000	0.000	
05/16/11 08:01:48	59.98126	471		0		0			-653	29983.13	0	0	0	-0.002	0.002	
05/16/11 08:01:50	59.97998	471		0		0			-653	29983.13	0	0	0	-0.001	0.001	
05/16/11 08:01:52	59.97964	471		0		0			-653	29983.13	0	0	0	0.000	0.000	
05/16/11 08:01:54	59.98029	471		0		0			-653	29976.75	0	0	0	0.001	0.001	
05/16/11 08:01:56	59.98126	471		0		0			-653	29976.75	0	0	0	0.001	0.001	
05/16/11 08:01:58	59.98352	471		0		0			-653	29976.75	0	0	0	0.002	0.002	
05/16/11 08:02:00	59.98386	471		0		0			-653	29976.75	0	0	0	0.000	0.000	
05/16/11 08:02:02	59.98126	471		0		0			-653	29976.75	0	0	0	-0.003	0.003	
05/16/11 08:02:04	59.97543	471		0		0			-653	29976.78	0	0	0	-0.006	0.006	
05/16/11 08:02:06	59.96832	471		0		0			-653	29976.78	0	0	0	-0.007	0.007	
05/16/11 08:02:08	59.9635	471		0		0			-653	29976.78	0	0	0	-0.005	0.005	
05/16/11 08:02:10	59.96155	471		0		0			-653	29976.78	0	0	0	-0.002	0.002	
05/16/11 08:02:12	59.96091	471		0		0			-653	29976.78	0	0		-0.001	0.001	
05/16/11 08:02:14	59.96155	471		0		0			-653	30008.51	0	0	0	0.001	0.001	
05/16/11 08:02:16	59.96057	471		0		0			-653	30008.51	0	0	0	-0.001	0.001	
05/16/11 08:02:18	59.95801	471		0		0			-653	30008.51	0	0	0	-0.003	0.003	
05/16/11 08:02:20	59.95575	471		0		0			-653	30008.51	0	0	0	-0.002	0.002	
05/16/11 08:02:22	59.95575	471		0		0			-653	30008.51	0	0	0	0.000	0.000	
05/16/11 08:02:24	59.95703	471		0		0			-653	30037.25	0	0	0	0.001	0.001	
05/16/11 08:02:26	59.95895	471		0		0			-653	30037.25	0		0	0.002	0.002	
05/16/11 08:02:28	59.96057	471		0		0			-653	30037.25	0	0	0	0.002	0.002	
05/16/11 08:02:30	59.96155	471		0		0			-653	30037.25	0	0	0	0.001	0.001	
05/16/11 08:02:32	59.96252	471		0		0			-653	30037.25	0	0	0	0.001	0.001	
05/16/11 08:02:34	59.96414	471		0		0			-653	30055.73	0		0	0.002	0.002	
05/16/11 08:02:36	59.96512	471		0		0			-653	30055.73	0	0	0	0.001	0.001	
05/16/11 08:02:38	59.96512	471		0		0			-653	30055.73	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:02:40	59.96576	471		0		0			-653	30055.73	0	0	0	0.001	0.001	
05/16/11 08:02:42	59.96704	471		0		0			-653	30055.73	0	0	0	0.001	0.001	
05/16/11 08:02:44	59.96994	471		0		0			-653	30068.76	0	0	0	0.003	0.003	
05/16/11 08:02:46	59.97253	471		0		0			-653	30068.76	0	0	0	0.003	0.003	
05/16/11 08:02:48	59.97415	471		0		0			-653	30068.76	0	0	0	0.002	0.002	
05/16/11 08:02:50	59.9761	471		0		0			-653	30068.76	0	0	0	0.002	0.002	
05/16/11 08:02:52	59.97739	471		0		0			-653	30068.76	,	0	0	0.001	0.001	
05/16/11 08:02:54	59.97931	471		0		0			-653	30068.21	0	0	0	0.002	0.002	
05/16/11 08:02:56	59.98029	471		0		0			-653	30068.21	0	0	0	0.001	0.001	
05/16/11 08:02:58	59.98062	471		0		0			-653	30068.21	0	0	0	0.000	0.000	
05/16/11 08:03:00	59.98029	471		0		0			-653	30068.21		0	0	0.000	0.000	
05/16/11 08:03:02	59.98029	471		0		0			-653	30068.21		0	0	0.000	0.000	
05/16/11 08:03:04	59.97836	471		0		0			-653	30068.24		0	0	-0.002	0.002	
05/16/11 08:03:06	59.97836	471		0		0			-653	30068.24	,	0	0	0.000	0.000	
05/16/11 08:03:08	59.979	471		0		0			-653	30068.24	0	0	0	0.001	0.001	
05/16/11 08:03:10	59.97998	471		0		0			-653	30068.24	0	0	0	0.001	0.001	
05/16/11 08:03:12	59.98029	471		0		0			-653	30068.24	0	0	0	0.000	0.000	
05/16/11 08:03:14	59.98093	471		0		0			-653	30076.2	0	0	0	0.001	0.001	
05/16/11 08:03:16	59.98093	471		0		0			-653	30076.2	,	0	0	0.000	0.000	
05/16/11 08:03:18	59.97998	471		0		0			-653	30076.2	0	0	0	-0.001	0.001	
05/16/11 08:03:20	59.98062	471		0		0			-653	30076.2	-	0	0	0.001	0.001	
05/16/11 08:03:22	59.98029	471		0		0			-653	30076.2	0	0	0	0.000	0.000	
05/16/11 08:03:24	59.97998	471		0		0			-653	30093.95	0	0	0	0.000	0.000	
05/16/11 08:03:26	59.979	471		0		0			-653	30093.95	0	0	0	-0.001	0.001	
05/16/11 08:03:28	59.97931	471		0		0			-653	30093.95	0	0	0	0.000	0.000	
05/16/11 08:03:30	59.97998	471		0		0			-653	30093.95	,	0	0	0.001	0.001	
05/16/11 08:03:32	59.98029	471		0		0			-653	30093.95	0	0	0	0.000	0.000	
05/16/11 08:03:34	59.98029	471		0		0			-653	30100.97	0	0	0	0.000	0.000	
05/16/11 08:03:36	59.98029	471		0		0			-653	30100.97	0	0	0	0.000	0.000	
05/16/11 08:03:38	59.97964	471		0		0			-653	30100.97	0	0	0	-0.001	0.001	
05/16/11 08:03:40	59.979	471		0		0			-653	30100.97		0	0	-0.001	0.001	
05/16/11 08:03:42	59.97803	471		0		0			-653	30100.97		0	0	-0.001	0.001	
05/16/11 08:03:44	59.97803	471		0		0			-653	30118.87	,	0	0	0.000	0.000	
05/16/11 08:03:46	59.97867	471		0		0			-653	30118.87	0	0	0	0.001	0.001	
05/16/11 08:03:48	59.97964	471		0		0			-653	30118.87	0	0	0	0.001	0.001	
05/16/11 08:03:50	59.98224	471		0		0			-653	30118.87	0	0	0	0.003	0.003	
05/16/11 08:03:52	59.9848	471		0		0			-653	30118.87		0	0	0.003	0.003	
05/16/11 08:03:54	59.98514	471		0		0			-653	30118.77	0	0	0	0.000	0.000	
05/16/11 08:03:56	59.98416	471		0		0			-653	30118.77	0	0	0	-0.001	0.001	
05/16/11 08:03:58	59.98224	471		0		0			-653	30118.77	0	0	0	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:04:00	59.98029	471		0		0			-653	30118.77	0	0	0	-0.002	0.002	
05/16/11 08:04:02	59.979	471		0		0			-653	30118.77	0	0	0	-0.001	0.001	
05/16/11 08:04:04	59.97867	471		0		0			-653	30118.74	0	0	0	0.000	0.000	
05/16/11 08:04:06	59.97931	471		0		0			-653	30118.74	0	0	0	0.001	0.001	
05/16/11 08:04:08	59.97998	471		0		0			-653	30118.74	0	0	0	0.001	0.001	
05/16/11 08:04:10	59.97931	471		0		0			-653	30118.74	0	0	0	-0.001	0.001	
05/16/11 08:04:12	59.979	471		0		0			-653	30118.74	0	0		0.000	0.000	
05/16/11 08:04:14	59.97803	471		0		0			-653	30106.93	0	0	0	-0.001	0.001	
05/16/11 08:04:16	59.97675	471		0		0			-653	30106.93	0	0	0	-0.001	0.001	
05/16/11 08:04:18	59.97739	471		0		0			-653	30106.93	0	0	0	0.001	0.001	
05/16/11 08:04:20	59.979	471		0		0			-653	30106.93	0	0	0	0.002	0.002	
05/16/11 08:04:22	59.97964	471		0		0			-653	30106.93	0	0	0	0.001	0.001	
05/16/11 08:04:24	59.98093	471		0		0			-653	30106.61	0	0	0	0.001	0.001	
05/16/11 08:04:26	59.98224	471		0		0			-653	30106.61	0	0	0	0.001	0.001	
05/16/11 08:04:28	59.98318	471		0		0			-653	30106.61	0	0	0	0.001	0.001	
05/16/11 08:04:30	59.98318	471		0		0			-653	30106.61	0	0	0	0.000	0.000	
05/16/11 08:04:32	59.98224	471		0		0			-653	30106.61	0	0	0	-0.001	0.001	
05/16/11 08:04:34	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:36	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:38	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:40	59.9816	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:42	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:44	59.9816	471		0		0			-653	30141.59	0	0	0	0.000	0.000	
05/16/11 08:04:46	59.98126	471		0		0			-653	30141.59	0	0	0	0.000	0.000	
05/16/11 08:04:48	59.9816	471		0		0			-653	30141.59	0	0	0	0.000	0.000	
05/16/11 08:04:50	59.98254	471		0		0			-653	30141.59	0	0	0	0.001	0.001	
05/16/11 08:04:52	59.98352	471		0		0			-653	30141.59	0	0	0	0.001	0.001	
05/16/11 08:04:54	59.98416	471		0		0			-653	30144.23	0	0	0	0.001	0.001	
05/16/11 08:04:56	59.98416	471		0		0			-653	30144.23	0	0	0	0.000	0.000	
05/16/11 08:04:58	59.98416	471		0		0			-653	30144.23	0	0	0	0.000	0.000	
05/16/11 08:05:00	59.98514	471		0		0			-653	30144.23	0	0	0	0.001	0.001	
05/16/11 08:05:02	59.9874	471		0		0			-653	30144.23	0	0	0	0.002	0.002	
05/16/11 08:05:04	59.98901	471		0		0			-653	30144.23		0	0	0.002	0.002	
05/16/11 08:05:06	59.98804	471		0		0			-653	30144.23	0	0	0	-0.001	0.001	
05/16/11 08:05:08	59.98642	471		0		0			-653	30144.23	0	0	0	-0.002	0.002	
05/16/11 08:05:10	59.98288	471		0		0			-653	30144.23	0	0	0	-0.004	0.004	
05/16/11 08:05:12	59.98254	471		0		0			-653	30144.23	0	0	0	0.000	0.000	
05/16/11 08:05:14	59.98318	471		0		0			-653	30148.67	0	0	0	0.001	0.001	
05/16/11 08:05:16	59.9819	471		0		0			-653	30148.67	0	0	0	-0.001	0.001	
05/16/11 08:05:18	59.98062	471		0		0			-653	30148.67	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz $\begin{aligned} & \mathrm{t}(0) \\ & \mathrm{t}(\text { Recovery }) \end{aligned}$ Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:05:20	59.97964	471		0		0			-653	30148.67	0	0	0	-0.001	0.001	
05/16/11 08:05:22	59.97964	471		0		0			-653	30148.67	0	0	0	0.000	0.000	
05/16/11 08:05:24	59.97964	471		0		0			-653	30155.67	0	0	0	0.000	0.000	
05/16/11 08:05:26	59.98029	471		0		0			-653	30155.67	0	0	0	0.001	0.001	
05/16/11 08:05:28	59.98224	471		0		0			-653	30155.67	0	0	0	0.002	0.002	
05/16/11 08:05:30	59.98352	471		0		0			-653	30155.67	0	0	0	0.001	0.001	
05/16/11 08:05:32	59.98578	471		0		0			-653	30155.67	0	0	0	0.002	0.002	
05/16/11 08:05:34	59.9874	471		0		0			-653	30142.79	0	0	0	0.002	0.002	
05/16/11 08:05:36	59.98804	471		0		0			-653	30142.79	0	0	0	0.001	0.001	
05/16/11 08:05:38	59.9874	471		0		0			-653	30142.79	0	0	0	-0.001	0.001	
05/16/11 08:05:40	59.98611	471		0		0			-653	30142.79	0	0	0	-0.001	0.001	
05/16/11 08:05:42	59.9848	471		0		0			-653	30142.79	0	0	0	-0.001	0.001	
05/16/11 08:05:44	59.98352	471		0		0			-653	30154.67	0	0	0	-0.001	0.001	
05/16/11 08:05:46	59.98318	471		0		0			-653	30154.67	0	0	0	0.000	0.000	
05/16/11 08:05:48	59.98352	471		0		0			-653	30154.67	0	0	0	0.000	0.000	
05/16/11 08:05:50	59.98416	471.3000183		0		0			-653	30150.35	0	0	0	0.001	0.001	
05/16/11 08:05:52	59.98514	471.3000183		0		0			-653	30150.35	0	0	0	0.001	0.001	
05/16/11 08:05:54	59.98547	471.3000183		0		0			-653	30159.63	0	0	0	0.000	0.000	
05/16/11 08:05:56	59.98642	471.3000183		0		0			-653	30159.63	0	0	0	0.001	0.001	
05/16/11 08:05:58	59.98676	471.8999939		0		0			-653	30159.63	0	0	0	0.000	0.000	
05/16/11 08:06:00	59.9874	471.8999939		0		0			-653	30159.63	0	0	0	0.001	0.001	
05/16/11 08:06:02	59.98773	471.8999939		0		0			-653	30151.42	0	0	0	0.000	0.000	
05/16/11 08:06:04	59.98901	471.8999939		0		0			-653	30151.42	0	0	0	0.001	0.001	
05/16/11 08:06:06	59.98901	471.8999939		0		0			-653	30156.16	0	0	0	0.000	0.000	
05/16/11 08:06:08	59.98804	471.3999939		0		0			-653	30156.16	0	0	0	-0.001	0.001	
05/16/11 08:06:10	59.98642	471.3999939		0		0			-653	30156.16	0	0	0	-0.002	0.002	
05/16/11 08:06:12	59.98547	471.3999939		0		0			-653	30156.16	0	0	0	-0.001	0.001	
05/16/11 08:06:14	59.98642	471.3999939		0		0			-653	30164.15	0	0	0	0.001	0.001	
05/16/11 08:06:16	59.98935	471.3999939		0		0			-653	30164.15	0	0	0	0.003	0.003	
05/16/11 08:06:18	59.99225	471.3999939		0		0			-653	30164.15	0	0	0	0.003	0.003	
05/16/11 08:06:20	59.99515	471.3999939		0		0			-653	30164.15	0		0	0.003	0.003	
05/16/11 08:06:22	59.99579	471.3999939		0		0			-653	30203.91	0	0	0	0.001	0.001	
05/16/11 08:06:24	59.99515	471.3999939		0		0			-653	30203.91	0	0	0	-0.001	0.001	
05/16/11 08:06:26	59.99548	471.3999939		0		0			-653	30203.73	0	0	0	0.000	0.000	
05/16/11 08:06:28	59.99741	470.8999939		0		0			-653	30203.73	0	0	0	0.002	0.002	
05/16/11 08:06:30	60	470.8999939		0		0			-653	30203.73	0	0	0	0.003	0.003	
05/16/11 08:06:32	60.00162	470.8999939		0		0			-653	30203.73	0	0	0	0.002	0.002	
05/16/11 08:06:34	60.00162	470.8999939		0		0			-653	30199.61	0	0	0	0.000	0.000	
05/16/11 08:06:36	60.00195	470.8999939		0		0			-653	30199.61	0	0	0	0.000	0.000	
05/16/11 08:06:38	59.95963	0		0		0			-653	30199.61	0	0	1	-0.042	0.042	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:06:40	59.88144	0		0		0			-653	30199.61	1	0	1	-0.078	0.078	
05/16/11 08:06:42	59.87237	0		0		0			-653	30086.11	1	0	1	-0.009	0.009	
05/16/11 08:06:44	59.87011	0		0		0			-653	30086.11	1	0	1	-0.002	0.002	
05/16/11 08:06:46	59.87432	0		0		0			-653	30086.14	1	0	1	0.004	0.004	
05/16/11 08:06:48	59.88076	0		0		0			-653	30086.14	1	0	1	0.006	0.006	
05/16/11 08:06:50	59.88531	0		0		0			-653	30086.14	1	0	1	0.005	0.005	
05/16/11 08:06:52	59.88787	0		0		0			-653	30086.14	1	0	1	0.003	0.003	
05/16/11 08:06:54	59.88949	0		0		0			-653	30094.43	1	0	1	0.002	0.002	
05/16/11 08:06:56	59.8908	0		0		0			-653	30094.43	1	0	1	0.001	0.001	
05/16/11 08:06:58	59.89175	0		0		0			-653	30094.43	1	0	1	0.001	0.001	
05/16/11 08:07:00	59.89242	0		0		0			-653	30094.43	1	0	1	0.001	0.001	
05/16/11 08:07:02	59.89306	0		0		0			-653	30139.49	1	0	1	0.001	0.001	
05/16/11 08:07:04	59.89306	0		0		0			-653	30139.49	1	0	1	0.000	0.000	
05/16/11 08:07:06	59.89306	0		0		0			-653	30133.38	1	0	1	0.000	0.000	
05/16/11 08:07:08	59.89532	0		0		0			-653	30133.38	1	0	1	0.002	0.002	
05/16/11 08:07:10	59.89788	0		0		0			-653	30133.38	1	0	1	0.003	0.003	
05/16/11 08:07:12	59.8995	0		0		0			-653	30133.38	1	0	1	0.002	0.002	
05/16/11 08:07:14	59.90081	0		0		0			-653	30137.26	1	0	1	0.001	0.001	
05/16/11 08:07:16	59.9021	0		0		0			-653	30137.26	1	0	1	0.001	0.001	
05/16/11 08:07:18	59.90179	0		0		0			-653	30137.26	1	0	1	0.000	0.000	
05/16/11 08:07:20	59.90081	0		0		0			-653	30137.26	1	0	1	-0.001	0.001	
05/16/11 08:07:22	59.90081	0		0		0			-653	30171.38	1	0	1	0.000	0.000	
05/16/11 08:07:24	59.90048	0		0		0			-653	30171.38	1	0	1	0.000	0.000	
05/16/11 08:07:26	59.8992	0		0		0			-653	30168.76	1	0	1	-0.001	0.001	
05/16/11 08:07:28	59.89886	0		0		0			-653	30168.76	1	0	1	0.000	0.000	
05/16/11 08:07:30	59.89856	0		0		0			-653	30168.76	1	0	1	0.000	0.000	
05/16/11 08:07:32	59.90017	0		0		0			-653	30168.76	1	0	1	0.002	0.002	
05/16/11 08:07:34	59.90243	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:36	59.90469	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:38	59.90695	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:40	59.90887			0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:42	59.90921	0		0		0			-653	30205.66	1	0	1	0.000	0.000	
05/16/11 08:07:44	59.90857			0		0			-653	30205.66	1	0	1	-0.001	0.001	
05/16/11 08:07:46	59.90887	0		0		0			-653	30205.66	1	0	1	0.000	0.000	
05/16/11 08:07:48	59.91018	0		0		0			-653	30205.66	1	0	1	0.001	0.001	
05/16/11 08:07:50	59.91244	0		0		0			-653	30205.66	1	0	1	0.002	0.002	
05/16/11 08:07:52	59.9147	0		0		0			-653	30205.66	,	0	1	0.002	0.002	
05/16/11 08:07:54	59.9176	0		0		0			-653	30211.75	1	0	1	0.003	0.003	
05/16/11 08:07:56	59.91922	0		0		0			-653	30211.75	1	0	1	0.002	0.002	
05/16/11 08:07:58	59.92083	0		0		0			-653	30211.75	1	0	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW		Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:08:00	59.92215	0		0		0			-653	30211.75	1	0	1	0.001	0.001	
05/16/11 08:08:02	59.92309	0		0		0			-653	30217.55	1	0	1	0.001	0.001	
05/16/11 08:08:04	59.92505	0		0		0			-653	30217.55	1	0	1	0.002	0.002	
05/16/11 08:08:06	59.92505	0		0		0			-653	30217.57	1	0	1	0.000	0.000	
05/16/11 08:08:08	59.9273	0		0		0			-653	30217.57	1	0	1	0.002	0.002	
05/16/11 08:08:10	59.93246	0		0		0			-653	30217.57	1	0	1	0.005	0.005	
05/16/11 08:08:12	59.93505	0		0		0			-653	30217.57	1	0	1	0.003	0.003	
05/16/11 08:08:14	59.93701	0		0		0			-653	30217.59	1	0	1	0.002	0.002	
05/16/11 08:08:16	59.93765	0		0		0			-653	30217.59	1	0	1	0.001	0.001	
05/16/11 08:08:18	59.93927	0		0		0			-653	30217.59	1	0	,	0.002	0.002	
05/16/11 08:08:20	59.94183	0		0		0			-653	30217.59	1	0	1	0.003	0.003	
05/16/11 08:08:22	59.94409	0		0		0			-653	30210.49	1	0	1	0.002	0.002	
05/16/11 08:08:24	59.94571	0		0		0			-653	30210.49	1	0	1	0.002	0.002	
05/16/11 08:08:26	59.94797	0		0		0			-653	30210.26	1	0	1	0.002	0.002	
05/16/11 08:08:28	59.94766	0		0		0			-653	30210.26	1	0	1	0.000	0.000	
05/16/11 08:08:30	59.9454	0		0		0			-653	30210.26	1	0	1	-0.002	0.002	
05/16/11 08:08:32	59.94443	0		0		0			-653	30210.26	1	0	1	-0.001	0.001	
05/16/11 08:08:34	59.94409	0		0		0			-653	30234.59	1	0	1	0.000	0.000	
05/16/11 08:08:36	59.94507	0		0		0			-653	30234.59	1	0	1	0.001	0.001	
05/16/11 08:08:38	59.94604	0		0		0			-653	30234.59	1	0	1	0.001	0.001	
05/16/11 08:08:40	59.94638	0		0		0			-653	30234.59	1	0	1	0.000	0.000	
05/16/11 08:08:42	59.94733	0		0		0			-653	30223.6	1	0	1	0.001	0.001	
05/16/11 08:08:44	59.9483	0		0		0			-653	30223.6	1	0	1	0.001	0.001	
05/16/11 08:08:46	59.94894	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:48	59.94992	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:50	59.9509	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:52	59.95154	0		0		0			-653	30223.73	1		,	0.001	0.001	
05/16/11 08:08:54	59.95187	0		0		0			-653	30224.39	1	0	1	0.000	0.000	
05/16/11 08:08:56	59.95346	0		0		0			-653	30224.39	1	0	1	0.002	0.002	
05/16/11 08:08:58	59.95508	0		0		0			-653	30224.39	1	0	1	0.002	0.002	
05/16/11 08:09:00	59.95575	0		0		0			-653	30224.39	1	0	1	0.001	0.001	
05/16/11 08:09:02	59.95639	0		0		0			-653	30255.53	1	0	1	0.001	0.001	
05/16/11 08:09:04	59.95801	0		0		0			-653	30255.53	1	0	1	0.002	0.002	
05/16/11 08:09:06	59.96124	0		0		0			-653	30252.87	1		1	0.003	0.003	
05/16/11 08:09:08	59.96252	0		0		0			-653	30252.87	1	0	1	0.001	0.001	
05/16/11 08:09:10	59.96188	0		0		0			-653	30252.87	1	0	1	-0.001	0.001	
05/16/11 08:09:12	59.96124	0		0		0			-653	30252.87	1	0	1	-0.001	0.001	
05/16/11 08:09:14	59.96027	0		0		0			-653	30232.45	,	,	1	-0.001	0.001	
05/16/11 08:09:16	59.96057	0		0		0			-653	30232.45	1	0	1	0.000	0.000	
05/16/11 08:09:18	59.96219	0		0		0			-653	30232.45	1	0	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	\qquad	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:09:20	59.96512	0		0		0			-653	30232.45	1	0	1	0.003	0.003	
05/16/11 08:09:22	59.96738	0		0		0			-653	30263.99	1	0	1	0.002	0.002	
05/16/11 08:09:24	59.96899	0		0		0			-653	30263.99	1	0	1	0.002	0.002	
05/16/11 08:09:26	59.97061	0		0		0			-653	30263.68	1	0	1	0.002	0.002	
05/16/11 08:09:28	59.97318	0		0		0			-653	30263.68	1	0	1	0.003	0.003	
05/16/11 08:09:30	59.97351	0		0		0			-653	30263.68	1	0	1	0.000	0.000	
05/16/11 08:09:32	59.97287	0		0		0			-653	30263.68	1	0	1	-0.001	0.001	
05/16/11 08:09:34	59.97253	0		0		0			-653	30264.96	1	0	1	0.000	0.000	
05/16/11 08:09:36	59.97318	0		0		0			-653	30264.96	1	0	1	0.001	0.001	
05/16/11 08:09:38	59.97415	0		0		0			-653	30264.96	1	0	1	0.001	0.001	
05/16/11 08:09:40	59.97543	0		0		0			-653	30264.96	1	0	1	0.001	0.001	
05/16/11 08:09:42	59.97577	0		0		0			-653	30263.63	1	0	1	0.000	0.000	
05/16/11 08:09:44	59.9761	0		0		0			-653	30263.63	1	0	1	0.000	0.000	
05/16/11 08:09:46	59.97675	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:48	59.97803	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:50	59.97931	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:52	59.97998	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:54	59.97964	0		0		0			-653	30255.32	1	0	1	0.000	0.000	
05/16/11 08:09:56	59.979	0		0		0			-653	30255.32	1	0	1	-0.001	0.001	
05/16/11 08:09:58	59.97964	0		0		0			-653	30255.32	1	0	1	0.001	0.001	
05/16/11 08:10:00	59.98093	0		0		0			-653	30255.32	1	0	1	0.001	0.001	
05/16/11 08:10:02	59.98224	0		0		0			-653	30260.67	1	0	1	0.001	0.001	
05/16/11 08:10:04	59.98386	0		0		0			-653	30260.67	1	0	1	0.002	0.002	
05/16/11 08:10:06	59.98514	0		0		0			-653	30259.99	1	0	1	0.001	0.001	
05/16/11 08:10:08	59.98773	0		0		0			-653	30259.99	1	0	1	0.003	0.003	
05/16/11 08:10:10	59.9903	0		0		0			-653	30259.99	1	0	1	0.003	0.003	
05/16/11 08:10:12	59.99289	0		0		0			-653	30259.99	1	0	1	0.003	0.003	
05/16/11 08:10:14	59.99579	0		0		0			-653	30274.08	1	0	1	0.003	0.003	
05/16/11 08:10:16	59.99646	0		0		0			-653	30274.08	1	0	1	0.001	0.001	
05/16/11 08:10:18	59.99579	0		0		0			-653	30274.08	1	0	1	-0.001	0.001	
05/16/11 08:10:20	59.99612	0		0		0			-653	30274.08	1	0	1	0.000	0.000	
05/16/11 08:10:22	59.99579	0		0		0			-653	30297.68	1	0	1	0.000	0.000	
05/16/11 08:10:24	59.99484	0		0		0			-653	30297.68	1	0	1	-0.001	0.001	
05/16/11 08:10:26	59.99484	0		0		0			-653	30297.65	1	0	1	0.000	0.000	
05/16/11 08:10:28	59.99805	0		0		0			-653	30297.65	1	0	1	0.003	0.003	
05/16/11 08:10:30	59.99872	0		0		0			-653	30297.65	1	1	1	0.001	0.001	
05/16/11 08:10:32	60.00034	0		0		0			-653	30297.65	1	1	1	0.002	0.002	
05/16/11 08:10:34	60.00195	0		0		0			-653	30300.1	1	1	1	0.002	0.002	
05/16/11 08:10:36	60.00259	0		0		0			-653	30300.1	1	1	1	0.001	0.001	
05/16/11 08:10:38	60.00226	0		0		0			-653	30300.1	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:10:40	60.00195	0		0		0			-653	30300.1	1	1	1	0.000	0.000	
05/16/11 08:10:42	60.00064	0		0		0			-653	30314.84	1	1	1	-0.001	0.001	
05/16/11 08:10:44	59.99646	0		0		0			-653	30314.84	1	0	1	-0.004	0.004	
05/16/11 08:10:46	59.99191	0		0		0			-653	30309.71	1	0	1	-0.005	0.005	
05/16/11 08:10:48	59.98901	0		0		0			-653	30309.71	1	0	1	-0.003	0.003	
05/16/11 08:10:50	59.98773	0		0		0			-653	30309.71	1	0	1	-0.001	0.001	
05/16/11 08:10:52	59.98901	0		0		0			-653	30309.71	1	0	1	0.001	0.001	
05/16/11 08:10:54	59.99255	0		0		0			-653	30319.5	1	0	1	0.004	0.004	
05/16/11 08:10:56	59.99579	0		0		0			-653	30319.5	1	0	1	0.003	0.003	
05/16/11 08:10:58	59.99902	0		0		0			-653	30319.5	1	1	1	0.003	0.003	
05/16/11 08:11:00	60.00195	0		0		0			-653	30319.5	1	1	1	0.003	0.003	
05/16/11 08:11:02	60.00485	0		0		0			-653	30357.21	1	1	1	0.003	0.003	
05/16/11 08:11:04	60.00809	0		0		0			-653	30357.21	1	1	1	0.003	0.003	
05/16/11 08:11:06	60.01163	0		0		0			-653	30357.18	1	1	1	0.004	0.004	
05/16/11 08:11:08	60.01422	0		0		0			-653	30357.18	1	1	1	0.003	0.003	
05/16/11 08:11:10	60.0152	0		0		0			-653	30357.18	1	1	1	0.001	0.001	
05/16/11 08:11:12	60.0155	0		0		0			-653	30357.18	1	1	1	0.000	0.000	
05/16/11 08:11:14	60.0155	0		0		0			-653	30354.26	1	1	1	0.000	0.000	
05/16/11 08:11:16	60.01682	0		0		0			-653	30354.26	1	1	1	0.001	0.001	
05/16/11 08:11:18	60.01907	0		0		0			-653	30354.26	1	1	1	0.002	0.002	
05/16/11 08:11:20	60.02295	0		0		0			-653	30354.26	1	1	1	0.004	0.004	
05/16/11 08:11:22	60.02618	0		0		0			-653	30354.48	1	1	1	0.003	0.003	
05/16/11 08:11:24	60.02972	0		0		0			-653	30354.48	1	1	1	0.004	0.004	
05/16/11 08:11:26	60.03262	0		0		0			-653	30353.83	1	1	1	0.003	0.003	
05/16/11 08:11:28	60.03458	0		0		0			-653	30353.83	1	1	1	0.002	0.002	
05/16/11 08:11:30	60.03522	0		0		0			-653	30353.83	1	1	1	0.001	0.001	
05/16/11 08:11:32	60.03424	0		0		0			-653	30353.83	1	1	1	-0.001	0.001	
05/16/11 08:11:34	60.0336	-		0		0			-653	30370.41	1	1	1	-0.001	0.001	
05/16/11 08:11:36	60.03522	0		0		0			-653	30370.41	1	1	1	0.002	0.002	
05/16/11 08:11:38	60.03812	0		0		0			-653	30370.41	1	1	1	0.003	0.003	
05/16/11 08:11:40	60.04037			0		0			-653	30370.41	1	1	1	0.002	0.002	
05/16/11 08:11:42	60.04105	0		0		0			-653	30374.79	1	1	1	0.001	0.001	
05/16/11 08:11:44	60.04199			0		0			-653	30374.79	1	1	1	0.001	0.001	
05/16/11 08:11:46	60.04233	0		0		0			-653	30366.14	1	1	1	0.000	0.000	
05/16/11 08:11:48	60.0433	0		0		0			-653	30366.14	1	1	1	0.001	0.001	
05/16/11 08:11:50	60.04425	0		0		0			-653	30366.14	1	1	1	0.001	0.001	
05/16/11 08:11:52	60.04492	0		0		0			-653	30366.14	,	1	1	0.001	0.001	
05/16/11 08:11:54	60.04556	0		0		0			-653	30373.53	1	1	1	0.001	0.001	
05/16/11 08:11:56	60.04587	0		0		0			-653	30373.53	1	1	1	0.000	0.000	
05/16/11 08:11:58	60.04654	0		0		0			-653	30373.53	1	1	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:12:00	60.0488	0		0		0			-653	30373.53	1	1	1	0.002	0.002	
05/16/11 08:12:02	60.04974	0		0		0			-653	30343.46	1	1	1	0.001	0.001	
05/16/11 08:12:04	60.0491	0		0		0			-653	30343.46	1	1	1	-0.001	0.001	
05/16/11 08:12:06	60.0491	0		0		0			-653	30335.12	1	1	1	0.000	0.000	
05/16/11 08:12:08	60.05042	0		0		0			-653	30335.12	1	1	1	0.001	0.001	
05/16/11 08:12:10	60.04974	0		0		0			-653	30335.12	1	1	1	-0.001	0.001	
05/16/11 08:12:12	60.04846	0		0		0			-653	30335.12	1	1	1	-0.001	0.001	
05/16/11 08:12:14	60.04718	0		0		0			-653	30337.29	1	1	1	-0.001	0.001	
05/16/11 08:12:16	60.04587	0		0		0			-653	30337.29	1	1	1	-0.001	0.001	
05/16/11 08:12:18	60.04587	0		0		0			-653	30337.29	1	1	1	0.000	0.000	
05/16/11 08:12:20	60.04556	0		0		0			-653	30337.29	1	1	1	0.000	0.000	
05/16/11 08:12:22	60.04425	0		0		0			-653	30350.2	1	1	1	-0.001	0.001	
05/16/11 08:12:24	60.04297	0		0		0			-653	30350.2	1	1	1	-0.001	0.001	
05/16/11 08:12:26	60.04169	0		0		0			-653	30350.07	1	1	1	-0.001	0.001	
05/16/11 08:12:28	60.04233	0		0		0			-653	30350.07	1	1	1	0.001	0.001	
05/16/11 08:12:30	60.04459	0		0		0			-653	30350.07	1	1	1	0.002	0.002	
05/16/11 08:12:32	60.04654	0		0		0			-653	30350.07	1	1	1	0.002	0.002	
05/16/11 08:12:34	60.04718	0		0		0			-653	30354.77	1	1	1	0.001	0.001	
05/16/11 08:12:36	60.0462	0		0		0			-653	30354.77	1	1	1	-0.001	0.001	
05/16/11 08:12:38	60.04425	0		0		0			-653	30354.77	1	1	1	-0.002	0.002	
05/16/11 08:12:40	60.04492	0		0		0			-653	30354.77	1	1	1	0.001	0.001	
05/16/11 08:12:42	60.04523	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:44	60.04523	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:46	60.04556	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:48	60.0462	0		0		0			-653	30372.38	1	1	1	0.001	0.001	
05/16/11 08:12:50	60.04654			0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:52	60.04654	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:54	60.04523	-		0		0			-653	30349.1	1	1	1	-0.001	0.001	
05/16/11 08:12:56	60.04361	0		0		0			-653	30349.1	1	1	1	-0.002	0.002	
05/16/11 08:12:58	60.04199	0		0		0			-653	30349.1	1	1	1	-0.002	0.002	
05/16/11 08:13:00	60.04071			0		0			-653	30349.1	1	1	1	-0.001	0.001	
05/16/11 08:13:02	60.03876	0		0		0			-653	30363.65	1	1	1	-0.002	0.002	
05/16/11 08:13:04	60.03586			0		0			-653	30363.65	1	1	1	-0.003	0.003	
05/16/11 08:13:06	60.03394	0		0		0			-653	30363.88	1	1	1	-0.002	0.002	
05/16/11 08:13:08	60.0336			0		0			-653	30363.88	1	1	1	0.000	0.000	
05/16/11 08:13:10	60.03262	0		0		0			-653	30363.88	1	1	1	-0.001	0.001	
05/16/11 08:13:12	60.03006	0		0		0			-653	30363.88	,	1	1	-0.003	0.003	
05/16/11 08:13:14	60.02747	0		0		0			-653	30364.77	1	1	1	-0.003	0.003	
05/16/11 08:13:16	60.02682	0		0		0			-653	30364.77	1	1	1	-0.001	0.001	
05/16/11 08:13:18	60.02585	0		0		0			-653	30364.77	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz $\begin{aligned} & \mathrm{t}(0) \\ & \mathrm{t}(\text { Recovery }) \end{aligned}$ Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:13:20	60.02359	0		0		0			-653	30364.77	1	1	1	-0.002	0.002	
05/16/11 08:13:22	60.02197	0		0		0			-653	30374.33	1	1	1	-0.002	0.002	
05/16/11 08:13:24	60.02164	0		0		0			-653	30374.33	1	1	1	0.000	0.000	
05/16/11 08:13:26	60.02231	0		0		0			-653	30364.67	1	1	1	0.001	0.001	
05/16/11 08:13:28	60.02133	0		0		0			-653	30364.67	1	1	1	-0.001	0.001	
05/16/11 08:13:30	60.02133	0		0		0			-653	30364.67	1	1	1	0.000	0.000	
05/16/11 08:13:32	60.02002	0		0		0			-653	30364.67	1	1	1	-0.001	0.001	
05/16/11 08:13:34	60.01776	0		0		0			-653	30361.56	1	1	1	-0.002	0.002	
05/16/11 08:13:36	60.01584	0		0		0			-653	30361.56	1	1	1	-0.002	0.002	
05/16/11 08:13:38	60.01291	0		0		0			-653	30361.56	1	1	1	-0.003	0.003	
05/16/11 08:13:40	60.01132	0		0		0			-653	30361.56	1	1	1	-0.002	0.002	
05/16/11 08:13:42	60.01001	0		0		0			-653	30350.69	1	1	1	-0.001	0.001	
05/16/11 08:13:44	60.00937	0		0		0			-653	30350.69	1	1	1	-0.001	0.001	
05/16/11 08:13:46	60.00775	0		0		0			-653	30344.52	1	1	1	-0.002	0.002	
05/16/11 08:13:48	60.00516	0		0		0			-653	30344.52	1	1	1	-0.003	0.003	
05/16/11 08:13:50	60.00452	0		0		0			-653	30344.52	1	1	1	-0.001	0.001	
05/16/11 08:13:52	60.00613	0		0		0			-653	30344.52	1	1	1	0.002	0.002	
05/16/11 08:13:54	60.00613	0		0		0			-653	30354.37	1	1	1	0.000	0.000	
05/16/11 08:13:56	60.00549	0		0		0			-653	30354.37	1	1	1	-0.001	0.001	
05/16/11 08:13:58	60.00516	0		0		0			-653	30354.37	1	1	1	0.000	0.000	
05/16/11 08:14:00	60.00388	0		0		0			-653	30354.37	1	1	1	-0.001	0.001	
05/16/11 08:14:02	60.00259	0		0		0			-653	30373.31	1	1	1	-0.001	0.001	
05/16/11 08:14:04	60.00128	0		0		0			-653	30373.31	1	1	1	-0.001	0.001	
05/16/11 08:14:06	60.00128	0		0		0			-653	30373.78	1	1	1	0.000	0.000	
05/16/11 08:14:08	60.00064	0		0		0			-653	30373.78	1	1	1	-0.001	0.001	
05/16/11 08:14:10	60.00034	0		0		0			-653	30373.78	1	1	1	0.000	0.000	
05/16/11 08:14:12	60.00226	0		0		0			-653	30373.78	1	1	1	0.002	0.002	
05/16/11 08:14:14	60.00421	0		0		0			-653	30366.33	1	1	1	0.002	0.002	
05/16/11 08:14:16	60.00677	0		0		0			-653	30366.33	1	1	1	0.003	0.003	
05/16/11 08:14:18	60.00903	0		0		0			-653	30366.33	1	1	1	0.002	0.002	
05/16/11 08:14:20	60.01291	0		0		0			-653	30366.33	1	1	1	0.004	0.004	
05/16/11 08:14:22	60.01486	0		0		0			-653	30373.85	1	1	1	0.002	0.002	
05/16/11 08:14:24	60.01453	0		0		0			-653	30373.85	1	1	1	0.000	0.000	
05/16/11 08:14:26	60.01422	0		0		0			-653	30373.05	1	1	1	0.000	0.000	
05/16/11 08:14:28	60.0152	0		0		0			-653	30373.05	1	1	1	0.001	0.001	
05/16/11 08:14:30	60.01614	0		0		0			-653	30373.05	1	1	1	0.001	0.001	
05/16/11 08:14:32	60.01682	0		0		0			-653	30373.05	1	1	1	0.001	0.001	
05/16/11 08:14:34	60.01746	0		0		0			-653	30369.77	1	1	1	0.001	0.001	
05/16/11 08:14:36	60.01712	0		0		0			-653	30369.77	1	1	1	0.000	0.000	
05/16/11 08:14:38	60.01682	0		0		0			-653	30369.77	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW } / 0.1 \mathrm{~Hz} \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:14:40	60.01648	0		0		0			-653	30369.77	1	1	1	0.000	0.000	
05/16/11 08:14:42	60.01614	0		0		0			-653	30388.99	1	1	1	0.000	0.000	
05/16/11 08:14:44	60.01746	0				0			-653	30388.99	1	1	1	0.001	0.001	
05/16/11 08:14:46	60.01776	0		0		0			-653	30388.16	1	1	1	0.000	0.000	
05/16/11 08:14:48	60.01776	0		0		0			-653	30388.16	1	1	1	0.000	0.000	
05/16/11 08:14:50	60.01648	0		0		0			-653	30388.16	1	1	1	-0.001	0.001	
05/16/11 08:14:52	60.01584	0		0		0			-653	30388.16	1	1	1	-0.001	0.001	
05/16/11 08:14:54	60.01648	0		0		0			-653	30376.94	1	1	1	0.001	0.001	
05/16/11 08:14:56	60.01584	0		0		0			-653	30376.94	1	1	1	-0.001	0.001	
05/16/11 08:14:58	60.01358	0		0		0			-653	30376.94	1	1	1	-0.002	0.002	
05/16/11 08:15:00	60.01163	0		0		0			-653	30376.94	1	1	1	-0.002	0.002	
05/16/11 08:15:02	60.01132	0		0		0			-653	30371.85	1	1	1	0.000	0.000	
05/16/11 08:15:04	60.01132	0		0		0			-653	30371.85	1	1	,	0.000	0.000	
05/16/11 08:15:06	60.01099	0		0		0			-653	30362.65	1	1	1	0.000	0.000	
05/16/11 08:15:08	60.01099	0		0		0			-653	30362.65	1	1	1	0.000	0.000	
05/16/11 08:15:10	60.01291	0		0		0			-653	30362.65	1	1	1	0.002	0.002	
05/16/11 08:15:12	60.01486	0		0		0			-653	30362.65	1	1	1	0.002	0.002	
05/16/11 08:15:14	60.01776	0		0		0			-653	30395.46	1	1	1	0.003	0.003	
05/16/11 08:15:16	60.01776	0		0		0			-653	30395.46	1	1	,	0.000	0.000	
05/16/11 08:15:18	60.0184	0		0		0			-653	30395.46	1	1	1	0.001	0.001	
05/16/11 08:15:20	60.0181	0		0		0			-653	30395.46	1	1	1	0.000	0.000	
05/16/11 08:15:22	60.01746	0		0		0			-653	30397.03	1	1	1	-0.001	0.001	
05/16/11 08:15:24	60.0152	0		0		0			-653	30397.03	1	1	1	-0.002	0.002	
05/16/11 08:15:26	60.0152	-		0		0			-653	30396.67	1	1	,	0.000	0.000	
05/16/11 08:15:28	60.01389	0		0		0			-653	30396.67	1	1	,	-0.001	0.001	
05/16/11 08:15:30	60.01746	0		0		0			-653	30396.67	1	1	1	0.004	0.004	
05/16/11 08:15:32	60.01907	0		0		0			-653	30396.67	1	1	1	0.002	0.002	
05/16/11 08:15:34	60.01907	0		0		0			-653	30388.62	1	1	1	0.000	0.000	
05/16/11 08:15:36	60.02036	0		0		0			-653	30388.62	1	1	1	0.001	0.001	
05/16/11 08:15:38	60.01874			0		0			-653	30388.62	1	1	1	-0.002	0.002	
05/16/11 08:15:40	60.01874	0		0		0			-653	30388.62	1	1	,	0.000	0.000	
05/16/11 08:15:42	60.01971	0		0		0			-653	30381.78	1	1	1	0.001	0.001	
05/16/11 08:15:44	60.01971	0		0		0			-653	30381.78	1	1	1	0.000	0.000	
05/16/11 08:15:46	60.01971	0		0		0			-653	30382.96	1	1	1	0.000	0.000	
05/16/11 08:15:48	60.0184	0		0		0			-653	30382.96	1	1	1	-0.001	0.001	
05/16/11 08:15:50	60.01486	0		0		0			-653	30382.96	1	1	1	-0.004	0.004	
05/16/11 08:15:52	60.01358	0		0		0			-653	30382.96	1	1	1	-0.001	0.001	
05/16/11 08:15:54	60.01389	0		0		0			-653	30381.48	1	1	1	0.000	0.000	
05/16/11 08:15:56	60.01227	0		0		0			-653	30381.48	1	1	1	-0.002	0.002	
05/16/11 08:15:58	60.01001	0		0		0			-653	30381.48	1	1	1	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:16:00	60.00583	0		0		0			-653	30381.48	1	1	1	-0.004	0.004	
05/16/11 08:16:02	60.00162	0		0		0			-653	30394.03	1	1	1	-0.004	0.004	
05/16/11 08:16:04	60.00162	0		0		0			-653	30394.03	1	1	1	0.000	0.000	
05/16/11 08:16:06	59.99805	0		0		0			-653	30394.07	1	0	1	-0.004	0.004	
05/16/11 08:16:08	59.99353	0		0		0			-653	30394.07	1	0	1	-0.005	0.005	
05/16/11 08:16:10	59.99255	0		0		0			-653	30394.07	1	0	1	-0.001	0.001	
05/16/11 08:16:12	59.99225	0		0		0			-653	30394.07	1	0	1	0.000	0.000	
05/16/11 08:16:14	59.98999	0		0		0			-653	30376.91	1	0	1	-0.002	0.002	
05/16/11 08:16:16	59.98837	0		0		0			-653	30376.91	1	0	1	-0.002	0.002	
05/16/11 08:16:18	59.98416	0		0		0			-653	30376.91	1	0	1	-0.004	0.004	
05/16/11 08:16:20	59.9816	0		0		0			-653	30376.91	1	0	1	-0.003	0.003	
05/16/11 08:16:22	59.98093	0		0		0			-653	30367.96	1	0	1	-0.001	0.001	
05/16/11 08:16:24	59.98029	0		0		0			-653	30367.96	1	0	1	-0.001	0.001	
05/16/11 08:16:26	59.97998	0		0		0			-653	30367.46	1	0	1	0.000	0.000	
05/16/11 08:16:28	59.97836	0		0		0			-653	30367.46	1	0	1	-0.002	0.002	
05/16/11 08:16:30	59.97513	0		0		0			-653	30367.46	1	0	1	-0.003	0.003	
05/16/11 08:16:32	59.97287	0		0		0			-653	30367.46	1	0	1	-0.002	0.002	
05/16/11 08:16:34	59.97189	0		0		0			-653	30361.18	1	0	1	-0.001	0.001	
05/16/11 08:16:36	59.97156	0		0		0			-653	30361.18	1	0	1	0.000	0.000	
05/16/11 08:16:38	59.97382	0		0		0			-653	30361.18	1	0	1	0.002	0.002	
05/16/11 08:16:40	59.97641	0		0		0			-653	30361.18	1	0	1	0.003	0.003	
05/16/11 08:16:42	59.97836	0		0		0			-653	30365.59	1	0	1	0.002	0.002	
05/16/11 08:16:44	59.97705	0		0		0			-653	30365.59	1	0	1	-0.001	0.001	
05/16/11 08:16:46	59.97449	0		0		0			-653	30365.19	1	0	1	-0.003	0.003	
05/16/11 08:16:48	59.97125	0		0		0			-653	30365.19	1	0	1	-0.003	0.003	
05/16/11 08:16:50	59.97092			0		0			-653	30365.19	1	0	1	0.000	0.000	
05/16/11 08:16:52	59.97287	0		0		0			-653	30365.19	1	0	1	0.002	0.002	
05/16/11 08:16:54	59.97449	-		0		0			-653	30375.91	1	0	1	0.002	0.002	
05/16/11 08:16:56	59.97382	0		0		0			-653	30375.91	1	0	1	-0.001	0.001	
05/16/11 08:16:58	59.97318	0		0		0			-653	30375.91	1	0	1	-0.001	0.001	
05/16/11 08:17:00	59.97449			0		0			-653	30375.91	1	0	1	0.001	0.001	
05/16/11 08:17:02	59.9761	0		0		0			-653	30367.4	1	0	1	0.002	0.002	
05/16/11 08:17:04	59.97739			0		0			-653	30367.4	1	0	1	0.001	0.001	
05/16/11 08:17:06	59.97836	0		0		0			-653	30367.72	1	0	1	0.001	0.001	
05/16/11 08:17:08	59.97769	0		0		0			-653	30367.72	1	0	1	-0.001	0.001	
05/16/11 08:17:10	59.97705	0		0		0			-653	30367.72	1	0	1	-0.001	0.001	
05/16/11 08:17:12	59.97641	0		0		0			-653	30367.72	,	0	1	-0.001	0.001	
05/16/11 08:17:14	59.97543	0		0		0			-653	30416.87	1	0	1	-0.001	0.001	
05/16/11 08:17:16	59.97382	0		0		0			-653	30416.87	1	0	1	-0.002	0.002	
05/16/11 08:17:18	59.97318	0		0		0			-653	30416.87	1	0	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW		Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:17:20	59.97223	0		0		0			-653	30416.87	1		1	-0.001	0.001	
05/16/11 08:17:22	59.97189	0		0		0			-653	30413.65	1	0	1	0.000	0.000	
05/16/11 08:17:24	59.97092	0		0		0			-653	30413.65	1	0	1	-0.001	0.001	
05/16/11 08:17:26	59.96994	0		0		0			-653	30406.3	1	0	1	-0.001	0.001	
05/16/11 08:17:28	59.96832	0		0		0			-653	30406.3	1	0	1	-0.002	0.002	
05/16/11 08:17:30	59.96606	0		0		0			-653	30406.3	1	0	1	-0.002	0.002	
05/16/11 08:17:32	59.96542	0		0		0			-653	30406.3	1	0	1	-0.001	0.001	
05/16/11 08:17:34	59.96606	0		0		0			-653	30418.59	1	0	1	0.001	0.001	
05/16/11 08:17:36	59.9693	0		0		0			-653	30418.59	1	0	1	0.003	0.003	
05/16/11 08:17:38	59.97253	0		0		0			-653	30418.59	1	0	,	0.003	0.003	
05/16/11 08:17:40	59.97351	0		0		0			-653	30418.59	1	0	1	0.001	0.001	
05/16/11 08:17:42	59.97382	0		0		0			-653	30433.31	1	0	1	0.000	0.000	
05/16/11 08:17:44	59.97253	0		0		0			-653	30433.31	1	0	1	-0.001	0.001	
05/16/11 08:17:46	59.97253	0		0		0			-653	30433.31	1	0	1	0.000	0.000	
05/16/11 08:17:48	59.97253	0		0		0			-653	30433.31	1	0	1	0.000	0.000	
05/16/11 08:17:50	59.96768	0		0		0			-653	30433.31	1	0	1	-0.005	0.005	
05/16/11 08:17:52	59.97125	0		0		0			-653	30433.31	1	0	1	0.004	0.004	
05/16/11 08:17:54	59.97577	0		0		0			-653	30451.3	1	0	1	0.005	0.005	
05/16/11 08:17:56	59.97577	0		0		0			-653	30451.3	1	0	1	0.000	0.000	
05/16/11 08:17:58	59.97577	0		0		0			-653	30451.3	1	0	1	0.000	0.000	
05/16/11 08:18:00	59.98416	0		0		0			-653	30451.3	1	0	1	0.008	0.008	
05/16/11 08:18:02	59.9819	0		0		0			-653	30425.74	1	0	1	-0.002	0.002	
05/16/11 08:18:04	59.979	0		0		0			-653	30425.74	1	0	1	-0.003	0.003	
05/16/11 08:18:06	59.97769	0		0		0			-653	30419.18	1	0	1	-0.001	0.001	
05/16/11 08:18:08	59.97769	0		0		0			-653	30419.18	1	0	1	0.000	0.000	
05/16/11 08:18:10	59.98126	0		0		0			-653	30419.18	1	0	1	0.004	0.004	
05/16/11 08:18:12	59.9848	0		0		0			-653	30419.18	1		,	0.004	0.004	
05/16/11 08:18:14	59.98868	0		0		0			-653	30424.29	1	0	1	0.004	0.004	
05/16/11 08:18:16	59.99161	0		0		0			-653	30424.29	1	0	1	0.003	0.003	
05/16/11 08:18:18	59.99353	0		0		0			-653	30424.29	1	0	1	0.002	0.002	
05/16/11 08:18:20	59.99579	0		0		0			-653	30424.29	1	0	1	0.002	0.002	
05/16/11 08:18:22	59.99677	0		0		0			-653	30440.82	1	0	1	0.001	0.001	
05/16/11 08:18:24	59.99774	0		0		0			-653	30440.82	1	0	1	0.001	0.001	
05/16/11 08:18:26	59.99838	0		0		0			-653	30431.58	1		1	0.001	0.001	
05/16/11 08:18:28	59.99774	0		0		0			-653	30431.58	1		1	-0.001	0.001	
05/16/11 08:18:30	59.9971	0		0		0			-653	30431.58	1	0	1	-0.001	0.001	
05/16/11 08:18:32	59.99741	0		0		0			-653	30431.58	1	0	1	0.000	0.000	
05/16/11 08:18:34	59.99741	0		0		0			-653	30444.25	1	,	1	0.000	0.000	
05/16/11 08:18:36	59.99741	0		0		0			-653	30444.25	1	0	1	0.000	0.000	
05/16/11 08:18:38	60.00064	0		0		0			-653	30444.25	1	1	1	0.003	0.003	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz $\begin{aligned} & \mathrm{t}(0) \\ & \mathrm{t}(\text { Recovery }) \end{aligned}$ Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:18:40	60.00323	0		0		0			-653	30444.25	1	1	1	0.003	0.003	
05/16/11 08:18:42	60.00354	0		0		0			-653	30465.11	1	1	1	0.000	0.000	
05/16/11 08:18:44	60.00259	0		0		0			-653	30465.11	1	1	1	-0.001	0.001	
05/16/11 08:18:46	60.00098	0		0		0			-653	30465.3	1	1	1	-0.002	0.002	
05/16/11 08:18:48	59.99936	0		0		0			-653	30465.3	1	1	1	-0.002	0.002	
05/16/11 08:18:50	59.99741	0		0		0			-653	30465.3	1	0	1	-0.002	0.002	
05/16/11 08:18:52	59.99677	0		0		0			-653	30465.3	1	0	1	-0.001	0.001	
05/16/11 08:18:54	59.99677	0		0		0			-653	30478.25	1	0	1	0.000	0.000	
05/16/11 08:18:56	59.9971	0		0		0			-653	30478.25	1	0	1	0.000	0.000	
05/16/11 08:18:58	59.99774	0		0		0			-653	30478.25	1	0	1	0.001	0.001	
05/16/11 08:19:00	59.99872	0		0		0			-653	30478.25	1	1	1	0.001	0.001	
05/16/11 08:19:02	59.99966	0		0		0			-653	30473.86	1	1	1	0.001	0.001	
05/16/11 08:19:04	60	0		0		0			-653	30473.86	1	1	1	0.000	0.000	
05/16/11 08:19:06	60.00034	0		0		0			-653	30468.84	1	1	1	0.000	0.000	
05/16/11 08:19:08	60.00098	0		0		0			-653	30468.84	1	1	1	0.001	0.001	
05/16/11 08:19:10	60.00226	0		0		0			-653	30468.84	1	1	1	0.001	0.001	
05/16/11 08:19:12	60.0029	0		0		0			-653	30468.84	1	1	1	0.001	0.001	
05/16/11 08:19:14	60.00259	0		0		0			-653	30469.63	1	1	1	0.000	0.000	
05/16/11 08:19:16	60.00226	0		0		0			-653	30469.63	1	1	1	0.000	0.000	
05/16/11 08:19:18	60.00226	0		0		0			-653	30469.63	1	1	1	0.000	0.000	
05/16/11 08:19:20	60.00323	0		0		0			-653	30469.63	1	1	1	0.001	0.001	
05/16/11 08:19:22	60.00421	0		0		0			-653	30488.41	1	1	1	0.001	0.001	
05/16/11 08:19:24	60.00485	0		0		0			-653	30488.41	1	1	1	0.001	0.001	
05/16/11 08:19:26	60.00452	0		0		0			-653	30480.29	1	1	1	0.000	0.000	
05/16/11 08:19:28	60.00354	0		0		0			-653	30480.29	1	1	1	-0.001	0.001	
05/16/11 08:19:30	60.00354	0		0		0			-653	30480.29	1	1	1	0.000	0.000	
05/16/11 08:19:32	60.00354	0		0		0			-653	30480.29	1	1	1	0.000	0.000	
05/16/11 08:19:34	60.00354	0		0		0			-653	30477.13	1	1	1	0.000	0.000	
05/16/11 08:19:36	60.00354	0		0		0			-653	30477.13	1	1	1	0.000	0.000	
05/16/11 08:19:38	60.00354	0		0		0			-653	30477.13	1	1	1	0.000	0.000	
05/16/11 08:19:40	60.00354	0		0		0			-653	30477.13	1	1	1	0.000	0.000	
05/16/11 08:19:42	60.00613	0		0		0			-653	30487.82	1	1	1	0.003	0.003	
05/16/11 08:19:44	60.00485	0		0		0			-653	30487.82	1	1	1	-0.001	0.001	
05/16/11 08:19:46	60.00452	0		0		0			-653	30489.73	1	1	1	0.000	0.000	
05/16/11 08:19:48	60.00452	0		0		0			-653	30489.73	1	1	1	0.000	0.000	
05/16/11 08:19:50	60.00354	0		0		0			-653	30489.73	1	1	1	-0.001	0.001	
05/16/11 08:19:52	60.0029	0		0		0			-653	30489.73	1	1	1	-0.001	0.001	
05/16/11 08:19:54	60.00162	0		0		0			-653	30480.09	1	1	1	-0.001	0.001	
05/16/11 08:19:56	60.00162	0		0		0			-653	30480.09	1	1	1	0.000	0.000	
05/16/11 08:19:58	60.00421	0		0		0			-653	30480.09	1	1	1	0.003	0.003	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:20:00	60.00421	0		0		0			-653	30480.09	1	1	1	0.000	0.000	
05/16/11 08:20:02	60.0029	0		0		0			-653	30480.91	1	1	1	-0.001	0.001	
05/16/11 08:20:04	60.00034	0		0		0			-653	30480.91	1	1	1	-0.003	0.003	
05/16/11 08:20:06	59.99805	0		0		0			-653	30480.84	1	0	1	-0.002	0.002	
05/16/11 08:20:08	59.99646	0		0		0			-653	30480.84	1	0	1	-0.002	0.002	
05/16/11 08:20:10	59.99515	0		0		0			-653	30480.84	1	0	1	-0.001	0.001	
05/16/11 08:20:12	59.99387	0		0		0			-653	30480.84	1	0	1	-0.001	0.001	
05/16/11 08:20:14	59.99289	0		0		0			-653	30476.09	1	0	1	-0.001	0.001	
05/16/11 08:20:16	59.99255	0		0		0			-653	30476.09	1	0	1	0.000	0.000	
05/16/11 08:20:18	59.99225	0		0		0			-653	30476.09	1	0	,	0.000	0.000	
05/16/11 08:20:20	59.98965	0		0		0			-653	30476.09	1	0	1	-0.003	0.003	
05/16/11 08:20:22	59.98514	0		0		0			-653	30456.76	1	0	1	-0.005	0.005	
05/16/11 08:20:24	59.98254	0		0		0			-653	30456.76	1	0	1	-0.003	0.003	
05/16/11 08:20:26	59.97836	0		0		0			-653	30457.12	1	0	1	-0.004	0.004	
05/16/11 08:20:28	59.97641	0		0		0			-653	30457.12	1	0	1	-0.002	0.002	
05/16/11 08:20:30	59.97705	0		0		0			-653	30457.12		0	1	0.001	0.001	
05/16/11 08:20:32	59.97705	0		0		0			-653	30457.12	1	0	1	0.000	0.000	
05/16/11 08:20:34	59.97705	0		0		0			-653	30446.98	1	0	1	0.000	0.000	
05/16/11 08:20:36	59.97803	0		0		0			-653	30446.98	1	0	1	0.001	0.001	
05/16/11 08:20:38	59.97964	0		0		0			-653	30446.98	1	0	1	0.002	0.002	
05/16/11 08:20:40	59.9816	0		0		0			-653	30446.98	1	0	1	0.002	0.002	
05/16/11 08:20:42	59.98126	0		0		0			-653	30461.02	1	0	1	0.000	0.000	
05/16/11 08:20:44	59.97931	0		0		0			-653	30461.02	1	0	1	-0.002	0.002	
05/16/11 08:20:46	59.9761	0		0		0			-653	30460.94	1	0	1	-0.003	0.003	
05/16/11 08:20:48	59.97543	0		0		0			-653	30460.94	1	0	1	-0.001	0.001	
05/16/11 08:20:50	59.97577	0		0		0			-653	30460.94	1	0	1	0.000	0.000	
05/16/11 08:20:52	59.97675	0		0		0			-653	30460.94	1		1	0.001	0.001	
05/16/11 08:20:54	59.97803	0		0		0			-653	30469.23	1	0	1	0.001	0.001	
05/16/11 08:20:56	59.979	0		0		0			-653	30469.23	1	0	1	0.001	0.001	
05/16/11 08:20:58	59.97964	0		0		0			-653	30469.23	1	0	1	0.001	0.001	
05/16/11 08:21:00	59.98062	0		0		0			-653	30469.23	1	0	1	0.001	0.001	
05/16/11 08:21:02	59.9819	0		0		0			-653	30481.49	1	0	1	0.001	0.001	
05/16/11 08:21:04	59.98224	0		0		0			-653	30481.49	1	0	1	0.000	0.000	
05/16/11 08:21:06	59.98254	0		0		0			-653	30480.29	1		1	0.000	0.000	
05/16/11 08:21:08	59.98288	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:10	59.98254	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:12	59.98254	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:14	59.98288	0		0		0			-653	30473.15	1	,	1	0.000	0.000	
05/16/11 08:21:16	59.98611	0		0		0			-653	30473.15	1	0	1	0.003	0.003	
05/16/11 08:21:18	59.99387	0		0		0			-653	30473.15	1	0	1	0.008	0.008	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW } / 0.1 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$		Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:21:20	60.00226	0		0		0			-653	30473.15	1	1	1	0.008	0.008	
05/16/11 08:21:22	60.01099	0		0		0			-653	30470.66	1	1	1	0.009	0.009	
05/16/11 08:21:24	60.01712	0		0		0			-653	30470.66	1	1	1	0.006	0.006	
05/16/11 08:21:26	60.02069	0		0		0			-653	30470.6	1	1	1	0.004	0.004	
05/16/11 08:21:28	60.02133	0		0		0			-653	30470.6	1	1	1	0.001	0.001	
05/16/11 08:21:30	60.02133	0		0		0			-653	30470.6	1	1	1	0.000	0.000	
05/16/11 08:21:32	60.02133	0		0		0			-653	30470.6	1	1	1	0.000	0.000	
05/16/11 08:21:34	60.02325	0		0		0			-653	30461.28	1	1	1	0.002	0.002	
05/16/11 08:21:36	60.02551	0		0		0			-653	30461.28	1	1	1	0.002	0.002	
05/16/11 08:21:38	60.02682	0		0		0			-653	30461.28	1	1	,	0.001	0.001	
05/16/11 08:21:40	60.02844	0		0		0			-653	30461.28	1	1	1	0.002	0.002	
05/16/11 08:21:42	60.02972	0		0		0			-653	30450.44	1	1	1	0.001	0.001	
05/16/11 08:21:44	60.03101	0		0		0			-653	30450.44	1	1	1	0.001	0.001	
05/16/11 08:21:46	60.03198	0		0		0			-653	30451.91	1	1	1	0.001	0.001	
05/16/11 08:21:48	60.03296	0		0		0			-653	30451.91	1	1	1	0.001	0.001	
05/16/11 08:21:50	60.03458	0		0		0			-653	30451.91	1	1	1	0.002	0.002	
05/16/11 08:21:52	60.03488	0		0		0			-653	30451.91	1	1	1	0.000	0.000	
05/16/11 08:21:54	60.03488	0		0		0			-653	30446.52	1	1	1	0.000	0.000	
05/16/11 08:21:56	60.03424	0		0		0			-653	30446.52	1	1	,	-0.001	0.001	
05/16/11 08:21:58	60.03458	0		0		0			-653	30446.52	1	1	1	0.000	0.000	
05/16/11 08:22:00	60.03458	0		0		0			-653	30446.52	1	1	1	0.000	0.000	
05/16/11 08:22:02	60.03555	0		0		0			-653	30452.43	1	1	1	0.001	0.001	
05/16/11 08:22:04	60.03586	0		0		0			-653	30452.43	1	1	1	0.000	0.000	
05/16/11 08:22:06	60.03683	0		0		0			-653	30452.43	1	1	1	0.001	0.001	
05/16/11 08:22:08	60.03748	0		0		0			-653	30452.43	1	1	1	0.001	0.001	
05/16/11 08:22:10	60.03748	0		0		0			-653	30452.43	1	1	1	0.000	0.000	
05/16/11 08:22:12	60.03717	0		0		0			-653	30452.43	1	1	,	0.000	0.000	
05/16/11 08:22:14	60.03781	0		0		0			-653	30473.21	1	1	1	0.001	0.001	
05/16/11 08:22:16	60.03781	0		0		0			-653	30473.21	1	1	1	0.000	0.000	
05/16/11 08:22:18	60.03748	0		0		0			-653	30473.21	1	1	1	0.000	0.000	
05/16/11 08:22:20	60.0365	0		0		0			-653	30473.21	1	1	1	-0.001	0.001	
05/16/11 08:22:22	60.03683	0		0		0			-653	30476.61	1	1	1	0.000	0.000	
05/16/11 08:22:24	60.03748	0		0		0			-653	30476.61	1	1	1	0.001	0.001	
05/16/11 08:22:26	60.03748	0		0		0			-653	30476.55	1	1	1	0.000	0.000	
05/16/11 08:22:28	60.03812	0		0		0			-653	30476.55	1	1	1	0.001	0.001	
05/16/11 08:22:30	60.03876	0		0		0			-653	30476.55	1	1	1	0.001	0.001	
05/16/11 08:22:32	60.04007	0		0		0			-653	30476.55	1	1	1	0.001	0.001	
05/16/11 08:22:34	60.04169	0		0		0			-653	30473.8	1	,	1	0.002	0.002	
05/16/11 08:22:36	60.04361	0		0		0			-653	30473.8	1	1	1	0.002	0.002	
05/16/11 08:22:38	60.04523	0		0		0			-653	30473.8	1	1	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:22:40	60.04492	0		0		0			-653	30473.8	1	1	1	0.000	0.000	
05/16/11 08:22:42	60.04459	0		0		0			-653	30471	1	1	1	0.000	0.000	
05/16/11 08:22:44	60.04395	0		0		0			-653	30471	1	1	1	-0.001	0.001	
05/16/11 08:22:46	60.04199	0		0		0			-653	30471.97	1	1	1	-0.002	0.002	
05/16/11 08:22:48	60.03717	0		0		0			-653	30471.97	1	1	1	-0.005	0.005	
05/16/11 08:22:50	60.03296	0		0		0			-653	30471.97	1	1	1	-0.004	0.004	
05/16/11 08:22:52	60.03101	0		0		0			-653	30471.97	1	1	1	-0.002	0.002	
05/16/11 08:22:54	60.03134	0		0		0			-653	30485.47	1	1	1	0.000	0.000	
05/16/11 08:22:56	60.03168	0		0		0			-653	30485.47	1	1	1	0.000	0.000	
05/16/11 08:22:58	60.03101	0		0		0			-653	30485.47	1	1	1	-0.001	0.001	
05/16/11 08:23:00	60.03101	0		0		0			-653	30485.47	1	1	1	0.000	0.000	
05/16/11 08:23:02	60.03232	0		0		0			-653	30505.49	1	1	1	0.001	0.001	
05/16/11 08:23:04	60.03326	0		0		0			-653	30505.49	1	1	1	0.001	0.001	
05/16/11 08:23:06	60.03326	0		0		0			-653	30505.26	1	1	1	0.000	0.000	
05/16/11 08:23:08	60.03394	0		0		0			-653	30505.26	1	1	1	0.001	0.001	
05/16/11 08:23:10	60.03296	0		0		0			-653	30505.26	1	1	1	-0.001	0.001	
05/16/11 08:23:12	60.03232	0		0		0			-653	30505.26	1	1	1	-0.001	0.001	
05/16/11 08:23:14	60.03168	0		0		0			-653	30515.6	1	1	1	-0.001	0.001	
05/16/11 08:23:16	60.03168	0		0		0			-653	30515.6	1	1	1	0.000	0.000	
05/16/11 08:23:18	60.03232	0		0		0			-653	30515.6	1	1	1	0.001	0.001	
05/16/11 08:23:20	60.03232	0		0		0			-653	30515.6	1	1	1	0.000	0.000	
05/16/11 08:23:22	60.03168	0		0		0			-653	30505.28	1	1	1	-0.001	0.001	
05/16/11 08:23:24	60.03168	0		0		0			-653	30505.28	1	1	1	0.000	0.000	
05/16/11 08:23:26	60.03134	0		0		0			-653	30506.12	1	1	1	0.000	0.000	
05/16/11 08:23:28	60.03101	0		0		0			-653	30506.12	1	1	1	0.000	0.000	
05/16/11 08:23:30	60.03036	0		0		0			-653	30506.12	1	1	1	-0.001	0.001	
05/16/11 08:23:32	60.03036	0		0		0			-653	30506.12	1	1	1	0.000	0.000	
05/16/11 08:23:34	60.02972	0		0		0			-653	30493.68	1	1	1	-0.001	0.001	
05/16/11 08:23:36	60.02875	0		0		0			-653	30493.68	1	1	1	-0.001	0.001	
05/16/11 08:23:38	60.03006	0		0		0			-653	30493.68	1	1	1	0.001	0.001	
05/16/11 08:23:40	60.03198			0		0			-653	30493.68	1	1	1	0.002	0.002	
05/16/11 08:23:42	60.03326	0		0		0			-653	30529.28	1	1	1	0.001	0.001	
05/16/11 08:23:44	60.03458			0		0			-653	30529.28	1	1	1	0.001	0.001	
05/16/11 08:23:46	60.03488	0		0		0			-653	30529.08	1	1	1	0.000	0.000	
05/16/11 08:23:48	60.0336			0		0			-653	30529.08	1	1	1	-0.001	0.001	
05/16/11 08:23:50	60.03326	0		0		0			-653	30529.08	1	1	1	0.000	0.000	
05/16/11 08:23:52	60.03232	0		0		0			-653	30529.08	,	1	1	-0.001	0.001	
05/16/11 08:23:54	60.03134	0		0		0			-653	30529.52	1	1	1	-0.001	0.001	
05/16/11 08:23:56	60.03168	0		0		0			-653	30529.52	1	1	1	0.000	0.000	
05/16/11 08:23:58	60.03326	0		0		0			-653	30529.52	1	1	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:24:00	60.03458	0		0		0			-653	30529.52	1		1	0.001	0.001	
05/16/11 08:24:02	60.03586	0		0		0			-653	30535.57	1	1	1	0.001	0.001	
05/16/11 08:24:04	60.0365	0		0		0			-653	30535.57	1	1	1	0.001	0.001	
05/16/11 08:24:06	60.03748	0		0		0			-653	30533.89	1	1	1	0.001	0.001	
05/16/11 08:24:08	60.03683	0		0		0			-653	30533.89	1	1	1	-0.001	0.001	
05/16/11 08:24:10	60.03619	0		0		0			-653	30533.89	1	1	1	-0.001	0.001	
05/16/11 08:24:12	60.03522	0		0		0			-653	30533.89	1	1	1	-0.001	0.001	
05/16/11 08:24:14	60.03424	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:16	60.03296	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:18	60.03198	0		0		0			-653	30521.82	1	1	,	-0.001	0.001	
05/16/11 08:24:20	60.03134	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:22	60.03168	0		0		0			-653	30533.64	1	1	1	0.000	0.000	
05/16/11 08:24:24	60.03134	0		0		0			-653	30533.64	1	1	1	0.000	0.000	
05/16/11 08:24:26	60.03101	0		0		0			-653	30532.32	1	1	1	0.000	0.000	
05/16/11 08:24:28	60.03036	0		0		0			-653	30532.32	1	1	1	-0.001	0.001	
05/16/11 08:24:30	60.02972	0		0		0			-653	30532.32	1	1	1	-0.001	0.001	
05/16/11 08:24:32	60.03006	0		0		0			-653	30532.32	1	1	1	0.000	0.000	
05/16/11 08:24:34	60.0307	0		0		0			-653	30551.2	1	1	1	0.001	0.001	
05/16/11 08:24:36	60.03168	0		0		0			-653	30551.2	1	1	1	0.001	0.001	
05/16/11 08:24:38	60.0336	0		0		0			-653	30551.2	1	1	1	0.002	0.002	
05/16/11 08:24:40	60.03488	0		0		0			-653	30551.2	1	1	1	0.001	0.001	
05/16/11 08:24:42	60.03522	0		0		0			-653	30548.06	1	1	1	0.000	0.000	
05/16/11 08:24:44	60.03586	0		0		0			-653	30548.06	1	1	1	0.001	0.001	
05/16/11 08:24:46	60.03717	0		0		0			-653	30543.69	1	1	1	0.001	0.001	
05/16/11 08:24:48	60.03812	0		0		0			-653	30543.69	1	1	1	0.001	0.001	
05/16/11 08:24:50	60.03717	0		0		0			-653	30543.69	1	1	1	-0.001	0.001	
05/16/11 08:24:52	60.03748	0		0		0			-653	30543.69	1	1	1	0.000	0.000	
05/16/11 08:24:54	60.03845	0		0		0			-653	30546.32	1	1	1	0.001	0.001	
05/16/11 08:24:56	60.03876	0		0		0			-653	30546.32	1	1	1	0.000	0.000	
05/16/11 08:24:58	60.03781	0		0		0			-653	30546.32	1	1	1	-0.001	0.001	
05/16/11 08:25:00	60.03619	0		0		0			-653	30546.32	1	1	1	-0.002	0.002	
05/16/11 08:25:02	60.03488	0		0		0			-653	30546.28	1	1	1	-0.001	0.001	
05/16/11 08:25:04	60.03394	0		0		0			-653	30546.28	1	1	1	-0.001	0.001	
05/16/11 08:25:06	60.0336	0		0		0			-653	30546.38	1	1	1	0.000	0.000	
05/16/11 08:25:08	60.0336	0		0		0			-653	30546.38	1	1	1	0.000	0.000	
05/16/11 08:25:10	60.03458	0		0		0			-653	30546.38	1	1	1	0.001	0.001	
05/16/11 08:25:12	60.0365	0		0		0			-653	30546.38	1	1	1	0.002	0.002	
05/16/11 08:25:14	60.03748	0		0		0			-653	30556.84	1	,	1	0.001	0.001	
05/16/11 08:25:16	60.03781	0		0		0			-653	30556.84	1	1	1	0.000	0.000	
05/16/11 08:25:18	60.03748	0		0		0			-653	30556.84	1	1	1	0.000	0.000	

Time (T)	Hz	\qquad	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:25:20	60.0365	0		0		0			-653	30556.84	1	1	1	-0.001	0.001	
05/16/11 08:25:22	60.03488	0		0		0			-653	30557.42	1	1	1	-0.002	0.002	
05/16/11 08:25:24	60.0336	0		0		0			-653	30557.42	1	1	1	-0.001	0.001	
05/16/11 08:25:26	60.03232	0		0		0			-653	30557.43	1	1	1	-0.001	0.001	
05/16/11 08:25:28	60.03134	0		0		0			-653	30557.43	1	1	1	-0.001	0.001	
05/16/11 08:25:30	60.03101	0		0		0			-653	30557.43	1	1	1	0.000	0.000	
05/16/11 08:25:32	60.03101	0		0		0			-653	30557.43	1	1	1	0.000	0.000	
05/16/11 08:25:34	60.0307	0		0		0			-653	30566.39	1	1	1	0.000	0.000	
05/16/11 08:25:36	60.02972	0		0		0			-653	30566.39	1	1	1	-0.001	0.001	
05/16/11 08:25:38	60.02908	0		0		0			-653	30566.39	1	1	1	-0.001	0.001	
05/16/11 08:25:40	60.02811	0		0		0			-653	30566.39	1	1	1	-0.001	0.001	
05/16/11 08:25:42	60.02649	0		0		0			-653	30567.26	1	1	1	-0.002	0.002	
05/16/11 08:25:44	60.02521	0		0		0			-653	30567.26	1	1	1	-0.001	0.001	
05/16/11 08:25:46	60.02359	0		0		0			-653	30562.43	1	1	1	-0.002	0.002	
05/16/11 08:25:48	60.02133	0		0		0			-653	30562.43	1	1	1	-0.002	0.002	
05/16/11 08:25:50	60.02002	0		0		0			-653	30562.43	1	1	1	-0.001	0.001	
05/16/11 08:25:52	60.02002	0		0		0			-653	30562.43	1	1	1	0.000	0.000	
05/16/11 08:25:54	60.02069	0		0		0			-653	30573.32	1	1	1	0.001	0.001	
05/16/11 08:25:56	60.02133	0		0		0			-653	30573.32	1	1	1	0.001	0.001	
05/16/11 08:25:58	60.021	0		0		0			-653	30573.32	1	1	1	0.000	0.000	
05/16/11 08:26:00	60.02036	0		0		0			-653	30573.32	1	1	1	-0.001	0.001	
05/16/11 08:26:02	60.01938	0		0		0			-653	30567	1	1	1	-0.001	0.001	
05/16/11 08:26:04	60.01938	0		0		0			-653	30567	1	1	1	0.000	0.000	
05/16/11 08:26:06	60.01938	0		0		0			-653	30567.04	1	1	1	0.000	0.000	
05/16/11 08:26:08	60.01971	0		0		0			-653	30567.04	1	1	1	0.000	0.000	
05/16/11 08:26:10	60.01971	0		0		0			-653	30567.04	1	1	1	0.000	0.000	
05/16/11 08:26:12	60.01907	0		0		0			-653	30567.04	1	1	1	-0.001	0.001	
05/16/11 08:26:14	60.01938	0		0		0			-653	30556.49	1	1	1	0.000	0.000	
05/16/11 08:26:16	60.02036	0		0		0			-653	30556.49	1	1	1	0.001	0.001	
05/16/11 08:26:18	60.02036	0		0		0			-653	30556.49	1	1	1	0.000	0.000	
05/16/11 08:26:20	60.01907	0		0		0			-653	30556.49	1	1	1	-0.001	0.001	
05/16/11 08:26:22	60.01712	0		0		0			-653	30530.19	1	1	1	-0.002	0.002	
05/16/11 08:26:24	60.01584	0		0		0			-653	30530.19	1	1	1	-0.001	0.001	
05/16/11 08:26:26	60.0152	0		0		0			-653	30530.04	1	1	1	-0.001	0.001	
05/16/11 08:26:28	60.0155	0		0		0			-653	30530.04	1	1	1	0.000	0.000	
05/16/11 08:26:30	60.01614	0		0		0			-653	30530.04	1	1	1	0.001	0.001	
05/16/11 08:26:32	60.01746	0		0		0			-653	30530.04	1	1	1	0.001	0.001	
05/16/11 08:26:34	60.0181	0		0		0			-653	30542.27	1	1	1	0.001	0.001	
05/16/11 08:26:36	60.01746	0		0		0			-653	30542.27	1	1	1	-0.001	0.001	
05/16/11 08:26:38	60.01712	0		0		0			-653	30542.27	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:26:40	60.01648	0		0		0			-653	30542.27	1	1	1	-0.001	0.001	
05/16/11 08:26:42	60.01486	0		0		0			-653	30559.64	1	1	1	-0.002	0.002	
05/16/11 08:26:44	60.01227	0		0		0			-653	30559.64	1	1	1	-0.003	0.003	
05/16/11 08:26:46	60.01035	0		0		0			-653	30559.67	1	1	1	-0.002	0.002	
05/16/11 08:26:48	60.00937	0		0		0			-653	30559.67	1	1	1	-0.001	0.001	
05/16/11 08:26:50	60.00903	0		0		0			-653	30559.67	1	1	1	0.000	0.000	
05/16/11 08:26:52	60.00937	0		0		0			-653	30559.67	1	1	1	0.000	0.000	
05/16/11 08:26:54	60.01065	0		0		0			-653	30552.02	1	1	1	0.001	0.001	
05/16/11 08:26:56	60.01163	0		0		0			-653	30552.02	1	1	1	0.001	0.001	
05/16/11 08:26:58	60.01227	0		0		0			-653	30552.02	1	1	1	0.001	0.001	
05/16/11 08:27:00	60.01163	0		0		0			-653	30552.02	1	1	1	-0.001	0.001	
05/16/11 08:27:02	60.00873	0		0		0			-653	30556.78	1	1	1	-0.003	0.003	
05/16/11 08:27:04	60.00647	0		0		0			-653	30556.78	1	1	1	-0.002	0.002	
05/16/11 08:27:06	60.00583	0		0		0			-653	30550.7	1	1	1	-0.001	0.001	
05/16/11 08:27:08	60.00613	0		0		0			-653	30550.7	1	1	1	0.000	0.000	
05/16/11 08:27:10	60.00613	0		0		0			-653	30550.7	1	1	1	0.000	0.000	
05/16/11 08:27:12	60.00711	0		0		0			-653	30550.7	1	1	1	0.001	0.001	
05/16/11 08:27:14	60.00903	0		0		0			-653	30559.76	1	1	1	0.002	0.002	
05/16/11 08:27:16	60.01099	0		0		0			-653	30559.76	1	1	1	0.002	0.002	
05/16/11 08:27:18	60.01099	0		0		0			-653	30559.76	1	1	1	0.000	0.000	
05/16/11 08:27:20	60.01035	0		0		0			-653	30559.76	1	1	1	-0.001	0.001	
05/16/11 08:27:22	60.0097	0		0		0			-653	30563.61	1	1	1	-0.001	0.001	
05/16/11 08:27:24	60.00873			0		0			-653	30563.61	1	1	1	-0.001	0.001	
05/16/11 08:27:26	60.00711	0		0		0			-653	30556.57	1	1	1	-0.002	0.002	
05/16/11 08:27:28	60.00613	0		0		0			-653	30556.57	1	1	1	-0.001	0.001	
05/16/11 08:27:30	60.00583	0		0		0			-653	30556.57	1	1	1	0.000	0.000	
05/16/11 08:27:32	60.00711	0		0		0			-653	30556.57	1	1	1	0.001	0.001	
05/16/11 08:27:34	60.00809	-		0		0			-653	30556.7	1	1	1	0.001	0.001	
05/16/11 08:27:36	60.00839	0		0		0			-653	30556.7	1	1	1	0.000	0.000	
05/16/11 08:27:38	60.00809	0		0		0			-653	30556.7	1	1	1	0.000	0.000	
05/16/11 08:27:40	60.00711			0		0			-653	30556.7	1	1	1	-0.001	0.001	
05/16/11 08:27:42	60.00677	0		0		0			-653	30544.52	1	1	1	0.000	0.000	
05/16/11 08:27:44	60.00775			0		0			-653	30544.52	1	1	1	0.001	0.001	
05/16/11 08:27:46	60.00711	0		0		0			-653	30543.34	1	1	1	-0.001	0.001	
05/16/11 08:27:48	60.00647	0		0		0			-653	30543.34	1	1	1	-0.001	0.001	
05/16/11 08:27:50	60.00388	0		0		0			-653	30543.34	1	1	1	-0.003	0.003	
05/16/11 08:27:52	60.00128	0		0		0			-653	30543.34	,	1	1	-0.003	0.003	
05/16/11 08:27:54	59.99936	0		0		0			-653	30554.42	1	1	1	-0.002	0.002	
05/16/11 08:27:56	59.99805	0		0		0			-653	30554.42	1	0	1	-0.001	0.001	
05/16/11 08:27:58	59.99741	0		0		0			-653	30554.42	1	0	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:28:00	59.9971	0		0		0			-653	30554.42	1	-	1	0.000	0.000	
05/16/11 08:28:02	59.99677	0		0		0			-653	30534.33	1	0	1	0.000	0.000	
05/16/11 08:28:04	59.9971	0		0		0			-653	30534.33	1	0	1	0.000	0.000	
05/16/11 08:28:06	59.99646	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:08	59.99579	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:10	59.99451	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:12	59.99353	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:14	59.99289	0		0		0			-653	30557.2	1	0	1	-0.001	0.001	
05/16/11 08:28:16	59.99191	0		0		0			-653	30557.2	1	0	1	-0.001	0.001	
05/16/11 08:28:18	59.98901	0		0		0			-653	30557.2	1	0	,	-0.003	0.003	
05/16/11 08:28:20	59.98611	0		0		0			-653	30557.2	1	0	1	-0.003	0.003	
05/16/11 08:28:22	59.9845	0		0		0			-653	30560.91	1	0	1	-0.002	0.002	
05/16/11 08:28:24	59.98318	0		0		0			-653	30560.91	1	0	1	-0.001	0.001	
05/16/11 08:28:26	59.9819	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:28	59.98093	0		0		0			-653	30560.56	1	0	,	-0.001	0.001	
05/16/11 08:28:30	59.97964	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:32	59.97867	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:34	59.97964	0		0		0			-653	30560.08	1	0	1	0.001	0.001	
05/16/11 08:28:36	59.97998	0		0		0			-653	30560.08	1	0	1	0.000	0.000	
05/16/11 08:28:38	59.98062	0		0		0			-653	30560.08	1	0	1	0.001	0.001	
05/16/11 08:28:40	59.98029	0		0		0			-653	30560.08	1	0	1	0.000	0.000	
05/16/11 08:28:42	59.979	0		0		0			-653	30558.72	1	0	1	-0.001	0.001	
05/16/11 08:28:44	59.97739	0		0		0			-653	30558.72	1	0	1	-0.002	0.002	
05/16/11 08:28:46	59.97513	0		0		0			-653	30553.46	1	0	1	-0.002	0.002	
05/16/11 08:28:48	59.97351	0		0		0			-653	30553.46	1	0	1	-0.002	0.002	
05/16/11 08:28:50	59.97253	0		0		0			-653	30553.46	1	0	1	-0.001	0.001	
05/16/11 08:28:52	59.97189	0		0		0			-653	30553.46	1	0	1	-0.001	0.001	
05/16/11 08:28:54	59.97318	0		0		0			-653	30562.63	1	0	1	0.001	0.001	
05/16/11 08:28:56	59.97415	0		0		0			-653	30562.63	1	0	1	0.001	0.001	
05/16/11 08:28:58	59.97449	0		0		0			-653	30562.63	1	0	1	0.000	0.000	
05/16/11 08:29:00	59.97513	0		0		0			-653	30562.63	1	0	1	0.001	0.001	
05/16/11 08:29:02	59.97577	0		0		0			-653	30578.05	1	0	1	0.001	0.001	
05/16/11 08:29:04	59.97641	0		0		0			-653	30578.05	1	0	1	0.001	0.001	
05/16/11 08:29:06	59.97705	0		0		0			-653	30570.97	1		1	0.001	0.001	
05/16/11 08:29:08	59.97675	0		0		0			-653	30570.97	1	0	1	0.000	0.000	
05/16/11 08:29:10	59.97675	0		0		0			-653	30570.97	1	0	1	0.000	0.000	
05/16/11 08:29:12	59.97675	0		0		0			-653	30570.97	1	0	1	0.000	0.000	
05/16/11 08:29:14	59.9761	0		0		0			-653	30593.17	1	0	1	-0.001	0.001	
05/16/11 08:29:16	59.9761	0		0		0			-653	30593.17	1	0	1	0.000	0.000	
05/16/11 08:29:18	59.97641	0		0		0			-653	30593.17	1		1	0.000	0.000	

Time (${ }^{\text {(}}$)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW		Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:29:20	59.97705	0		0		0			-653	30593.17	1	0	1	0.001	0.001	
05/16/11 08:29:22	59.97803	0		0		0			-653	30575.07	1	0	1	0.001	0.001	
05/16/11 08:29:24	59.98029	0		0		0			-653	30575.07	1	0	1	0.002	0.002	
05/16/11 08:29:26	59.98318	0		0		0			-653	30575.07	1	0	1	0.003	0.003	
05/16/11 08:29:28	59.98547	0		0		0			-653	30575.07	1	0	1	0.002	0.002	
05/16/11 08:29:30	59.98709	0		0		0			-653	30575.07	1	0	1	0.002	0.002	
05/16/11 08:29:32	59.98965	0		0		0			-653	30575.07	1	0	1	0.003	0.003	
05/16/11 08:29:34	59.99225	0		0		0			-653	30575.72	1	0	1	0.003	0.003	
05/16/11 08:29:36	59.99484	0		0		0			-653	30575.72	1	0	1	0.003	0.003	
05/16/11 08:29:38	59.99646	0		0		0			-653	30575.72	1	0	1	0.002	0.002	
05/16/11 08:29:40	59.99774	0		0		0			-653	30575.72	1	0	1	0.001	0.001	
05/16/11 08:29:42	59.99966	0		0		0			-653	30583.84	1	1	1	0.002	0.002	
05/16/11 08:29:44	60.00034	0		0		0			-653	30583.84	1	1	1	0.001	0.001	
05/16/11 08:29:46	60.00128	0		0		0			-653	30586.4	1	1	1	0.001	0.001	
05/16/11 08:29:48	60.00195	0		0		0			-653	30586.4	1	1	1	0.001	0.001	
05/16/11 08:29:50	60.00226	0		0		0			-653	30586.4	1	1	1	0.000	0.000	
05/16/11 08:29:52	60.0029	0		0		0			-653	30586.4	1	1	1	0.001	0.001	
05/16/11 08:29:54	60.00354	0		0		0			-653	30589.72	1	1	1	0.001	0.001	
05/16/11 08:29:56	60.00421	0		0		0			-653	30589.72	1	1	1	0.001	0.001	
05/16/11 08:29:58	60.00452	0		0		0			-653	30589.72	1	1	1	0.000	0.000	
05/16/11 08:30:00	60.00388	0		0		0			-653	30589.72	1	1	1	-0.001	0.001	
05/16/11 08:30:02	60.00388	0		0		0			-653	30590.3	1	1	1	0.000	0.000	
05/16/11 08:30:04	60.00421	0		0		0			-653	30590.3	1	1	1	0.000	0.000	
05/16/11 08:30:06	60.00421	0		0		0			-653	30590.22	1	1	1	0.000	0.000	
05/16/11 08:30:08	60.00388	0		0		0			-653	30590.22	1	1	1	0.000	0.000	
05/16/11 08:30:10	60.00195	0		0		0			-653	30590.22	1	1	1	-0.002	0.002	
05/16/11 08:30:12	59.99966	0		0		0			-653	30590.22	1	1	1	-0.002	0.002	
05/16/11 08:30:14	59.99387	0		0		0			-653	30600.12	1	0	1	-0.006	0.006	
05/16/11 08:30:16	59.99387	0		0		0			-653	30600.12	1	0	1	0.000	0.000	
05/16/11 08:30:18	59.98999	0		0		0			-653	30600.12	1	0	1	-0.004	0.004	
05/16/11 08:30:20	59.98868	0		0		0			-653	30600.12	1	0	1	-0.001	0.001	
05/16/11 08:30:22	59.98709	0		0		0			-653	30603.38	1	0	1	-0.002	0.002	
05/16/11 08:30:24	59.98578	0		0		0			-653	30603.38	1	0	1	-0.001	0.001	
05/16/11 08:30:26	59.98578	0		0		0			-653	30597.09	1	0	1	0.000	0.000	
05/16/11 08:30:28	59.98288	0		0		0			-653	30597.09	1	0	1	-0.003	0.003	
05/16/11 08:30:30	59.97964	0		0		0			-653	30597.09	1	0	1	-0.003	0.003	
05/16/11 08:30:32	59.97675	0		0		0			-653	30597.09	1	0	1	-0.003	0.003	
05/16/11 08:30:34	59.97479	0		0		0			-653	30603.96	1	0	1	-0.002	0.002	
05/16/11 08:30:36	59.97479	0		0		0			-653	30603.96	1	0	- 1	0.000	0.000	
05/16/11 08:30:38	59.97641	0		0		0			-653	30603.96	1	0	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:30:40	59.97641	0		0		0			-653	30603.96	1	0	1	0.000	0.000	
05/16/11 08:30:42	59.97543	0		0		0			-653	30607.96	1	0	1	-0.001	0.001	
05/16/11 08:30:44	59.97351	0		0		0			-653	30607.96	1	0	1	-0.002	0.002	
05/16/11 08:30:46	59.97318	0		0		0			-653	30601.98	1	0	1	0.000	0.000	
05/16/11 08:30:48	59.97513	0		0		0			-653	30601.98	1	0	1	0.002	0.002	
05/16/11 08:30:50	59.97641	0		0		0			-653	30597.09	1	0	1	0.001	0.001	
05/16/11 08:30:52	59.97705	0		0		0			-653	30597.09	1	0	1	0.001	0.001	
05/16/11 08:30:54	59.97867	0		0		0			-653	30607.96	1	0	1	0.002	0.002	
05/16/11 08:30:56	59.97836	0		0		0			-653	30607.96	1	0	1	0.000	0.000	
05/16/11 08:30:58	59.97803	0		0		0			-653	30607.96	1	0	1	0.000	0.000	
05/16/11 08:31:00	59.97543	0		0		0			-653	30607.96	1	0	1	-0.003	0.003	
05/16/11 08:31:02	59.97415	0		0		0			-653	30607.96	1	0	1	-0.001	0.001	
05/16/11 08:31:04	59.97415	0		0		0			-653	30601.98	1	0	1	0.000	0.000	
05/16/11 08:31:06	59.97479	0		0		0			-653	30601.98	1	0	1	0.001	0.001	
05/16/11 08:31:08	59.97415	0		0		0			-653	30601.98	1	0	1	-0.001	0.001	
05/16/11 08:31:10	59.97351	0		0		0			-653	30601.98	1	0	1	-0.001	0.001	
05/16/11 08:31:12	59.97351	0		0		0			-653	30601.98	1	0	1	0.000	0.000	
05/16/11 08:31:14	59.97543			0		0			-653	30632.79	1	0	1	0.002	0.002	
05/16/11 08:31:16	59.97769	0		0		0			-653	30632.79	1	0	1	0.002	0.002	
05/16/11 08:31:18	59.98062	0		0		0			-653	30632.79	1	0	1	0.003	0.003	
05/16/11 08:31:20	59.98514	0		0		0			-653	30632.79	1	0	1	0.005	0.005	
05/16/11 08:31:22	59.98773	,		0		0			-653	30632.79	1	0	1	0.003	0.003	
05/16/11 08:31:24	59.98965	0		0		0			-653	30633.18	1	0	1	0.002	0.002	
05/16/11 08:31:26	59.99097	0		0		0			-653	30633.18	1	0	1	0.001	0.001	
05/16/11 08:31:28	59.99225	0		0		0			-653	30633.18	1	0	1	0.001	0.001	
05/16/11 08:31:30	59.99323	0		0		0			-653	30633.18	1	0	1	0.001	0.001	
05/16/11 08:31:32	59.99612			0		0			-653	30633.18	1	0	1	0.003	0.003	
05/16/11 08:31:34	60.00034	0		0		0			-653	30620.6	1	1	1	0.004	0.004	
05/16/11 08:31:36	60.00452			0		0			-653	30620.6	1	1	1	0.004	0.004	
05/16/11 08:31:38	60.00809	0		0		0			-653	30620.6	1	1	1	0.004	0.004	
05/16/11 08:31:40	60.01099	,		0		0			-653	30620.6	1	1	1	0.003	0.003	
05/16/11 08:31:42	60.01389	0		0		0			-653	30620.6	1	1	1	0.003	0.003	
05/16/11 08:31:44	60.01776	0		0		0			-653	30620.91	1	1	1	0.004	0.004	
05/16/11 08:31:46	60.02069	0		0		0			-653	30620.91	1	1	1	0.003	0.003	
05/16/11 08:31:48	60.02164	0		0		0			-653	30620.91	1	1	1	0.001	0.001	
05/16/11 08:31:50	60.021	0		0		0			-653	30620.91	1	1	1	-0.001	0.001	
05/16/11 08:31:52	60.01907	0		0		0			-653	30620.91	1	1	1	-0.002	0.002	
05/16/11 08:31:54	60.0181	0		0		0			-653	30661.87	1	1	1	-0.001	0.001	
05/16/11 08:31:56	60.0184	0		0		0			-653	30661.87	1	1	1	0.000	0.000	
05/16/11 08:31:58	60.02069	0		0		0			-653	30661.87	1	1	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:32:00	60.0239	0		0		0			-653	30661.87	1	1	1	0.003	0.003	
05/16/11 08:32:02	60.02618	0		0		0			-653	30661.87	1	1	1	0.002	0.002	
05/16/11 08:32:04	60.02682	0		0		0			-653	30663.73	1	1	1	0.001	0.001	
05/16/11 08:32:06	60.02649	0		0		0			-653	30663.73	1	1	1	0.000	0.000	
05/16/11 08:32:08	60.02585	0		0		0			-653	30663.73	1	1	1	-0.001	0.001	
05/16/11 08:32:10	60.02359	0		0		0			-653	30663.73	1	1	1	-0.002	0.002	
05/16/11 08:32:12	60.02359	0		0		0			-653	30663.73	1	1	1	0.000	0.000	
05/16/11 08:32:14	60.02164	0		0		0			-653	30659.84	1	1	1	-0.002	0.002	
05/16/11 08:32:16	60.02231	0		0		0			-653	30659.84	1	1	1	0.001	0.001	
05/16/11 08:32:18	60.02325	0		0		0			-653	30659.84	1	1	1	0.001	0.001	
05/16/11 08:32:20	60.02359	0		0		0			-653	30659.84	1	1	1	0.000	0.000	
05/16/11 08:32:22	60.02295	0		0		0			-653	30659.84	1	1	1	-0.001	0.001	
05/16/11 08:32:24	60.02133	0		0		0			-653	30653.46	1	1	1	-0.002	0.002	
05/16/11 08:32:26	60.021	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:28	60.021	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:30	60.02133	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:32	60.021	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:34	60.02036			0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:36	60.02002	0		0		0			-653	30661.6	1	1	1	0.000	0.000	
05/16/11 08:32:38	60.01938	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:40	60.0184	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:42	60.01712	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:44	60.01584	0		0		0			-653	30655.51	1	1	1	-0.001	0.001	
05/16/11 08:32:46	60.01486	-		0		0			-653	30655.51	1	1	1	-0.001	0.001	
05/16/11 08:32:48	60.01453	0		0		0			-653	30655.51	1	1	1	0.000	0.000	
05/16/11 08:32:50	60.01486	0		0		0			-653	30655.51	1	1	1	0.000	0.000	
05/16/11 08:32:52	60.01453	0		0		0			-653	30655.51	1	1	1	0.000	0.000	
05/16/11 08:32:54	60.01486	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:32:56	60.0152	,		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:32:58	60.01486	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:33:00	60.0152	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:33:02	60.0152	-		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:33:04	60.01648	0		0		0			-653	30648.29	1	1	1	0.001	0.001	
05/16/11 08:33:06	60.01614	0		0		0			-653	30648.29	1	1	1	0.000	0.000	
05/16/11 08:33:08	60.0152	0		0		0			-653	30648.29	1	1	1	-0.001	0.001	
05/16/11 08:33:10	60.01486	0		0		0			-653	30648.29	1	1	1	0.000	0.000	
05/16/11 08:33:12	60.01453	0		0		0			-653	30648.29	1	1	1	0.000	0.000	
05/16/11 08:33:14	60.01291	0		0		0			-653	30652.04	1	1	1	-0.002	0.002	
05/16/11 08:33:16	60.01099	0		0		0			-653	30652.04	1	1	1	-0.002	0.002	
05/16/11 08:33:18	60.00775	0		0		0			-653	30652.04	1	1	1	-0.003	0.003	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW } / 0.1 \mathrm{~Hz} \end{gathered}$	BA Load MW		Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:33:20	60.00421	0		0		0			-653	30652.04	1		1	-0.004	0.004	
05/16/11 08:33:22	60.00162	0		0		0			-653	30652.04	1	1	1	-0.003	0.003	
05/16/11 08:33:24	60	0		0		0			-653	30651.84	1	1	1	-0.002	0.002	
05/16/11 08:33:26	59.99774	0		0		0			-653	30651.84	1	0	1	-0.002	0.002	
05/16/11 08:33:28	59.99515	0		0		0			-653	30651.84	1	0	1	-0.003	0.003	
05/16/11 08:33:30	59.99255	0		0		0			-653	30651.84	1	0	1	-0.003	0.003	
05/16/11 08:33:32	59.9903	0		0		0			-653	30651.84	1	0	1	-0.002	0.002	
05/16/11 08:33:34	59.98676	0		0		0			-653	30633.8	1	0	1	-0.004	0.004	
05/16/11 08:33:36	59.98352	0		0		0			-653	30633.8	1	0	1	-0.003	0.003	
05/16/11 08:33:38	59.98062	0		0		0			-653	30633.8	1	0	,	-0.003	0.003	
05/16/11 08:33:40	59.97964	0		0		0			-653	30633.8	1	0	1	-0.001	0.001	
05/16/11 08:33:42	59.97867	0		0		0			-653	30633.8	1	0	1	-0.001	0.001	
05/16/11 08:33:44	59.97705	0		0		0			-653	30627.71	1	0	1	-0.002	0.002	
05/16/11 08:33:46	59.97641	0		0		0			-653	30627.71	1	0	1	-0.001	0.001	
05/16/11 08:33:48	59.97675	0		0		0			-653	30627.71	1	0	1	0.000	0.000	
05/16/11 08:33:50	59.97641	0		0		0			-653	30627.71	1	0	1	0.000	0.000	
05/16/11 08:33:52	59.97577	0		0		0			-653	30627.71	1	0	1	-0.001	0.001	
05/16/11 08:33:54	59.97479	0		0		0			-653	30634.13	1	0	1	-0.001	0.001	
05/16/11 08:33:56	59.97415	0		0		0			-653	30634.13	1	0	,	-0.001	0.001	
05/16/11 08:33:58	59.97287	0		0		0			-653	30634.13	1	0	1	-0.001	0.001	
05/16/11 08:34:00	59.97125	0		0		0			-653	30634.13	1	0	1	-0.002	0.002	
05/16/11 08:34:02	59.97092	0		0		0			-653	30634.13	1	0	1	0.000	0.000	
05/16/11 08:34:04	59.97125	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:06	59.97061	0		0		0			-653	30627.05	1	0	1	-0.001	0.001	
05/16/11 08:34:08	59.97092	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:10	59.97125	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:12	59.97156	0		0		0			-653	30627.05	1		,	0.000	0.000	
05/16/11 08:34:14	59.97253	0		0		0			-653	30662.72	1	0	1	0.001	0.001	
05/16/11 08:34:16	59.97449	0		0		0			-653	30662.72	1	0	1	0.002	0.002	
05/16/11 08:34:18	59.97577	0		0		0			-653	30662.72	1	0	1	0.001	0.001	
05/16/11 08:34:20	59.97641	0		0		0			-653	30662.72	1	0	1	0.001	0.001	
05/16/11 08:34:22	59.97641	0		0		0			-653	30662.72	1	0	1	0.000	0.000	
05/16/11 08:34:24	59.97513	0		0		0			-653	30656.52	1	0	1	-0.001	0.001	
05/16/11 08:34:26	59.9761	0		0		0			-653	30656.52	1		1	0.001	0.001	
05/16/11 08:34:28	59.979	,		0		0			-653	30656.52	1	0	1	0.003	0.003	
05/16/11 08:34:30	59.98126	0		0		0			-653	30656.52	1	0	1	0.002	0.002	
05/16/11 08:34:32	59.98224	0		0		0			-653	30656.52	1	0	1	0.001	0.001	
05/16/11 08:34:34	59.98254	0		0		0			-653	30642.25	1	,	1	0.000	0.000	
05/16/11 08:34:36	59.98254	0		0		0			-653	30642.25	1	0	1	0.000	0.000	
05/16/11 08:34:38	59.9816	0		0		0			-653	30642.25	1	0	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:34:40	59.98029	0		0		0			-653	30642.25	1	0	1	-0.001	0.001	
05/16/11 08:34:42	59.97964	0		0		0			-653	30642.25	1	0	1	-0.001	0.001	
05/16/11 08:34:44	59.98062	0		0		0			-653	30642.49	1	0	1	0.001	0.001	
05/16/11 08:34:46	59.98093	0		0		0			-653	30642.49	1	0	1	0.000	0.000	
05/16/11 08:34:48	59.98029	0		0		0			-653	30642.49	1	0	1	-0.001	0.001	
05/16/11 08:34:50	59.97931	0		0		0			-653	30642.49	1	0	1	-0.001	0.001	
05/16/11 08:34:52	59.97836	0		0		0			-653	30642.49	1	0	1	-0.001	0.001	
05/16/11 08:34:54	59.97803	0		0		0			-653	30645.72	1	0	1	0.000	0.000	
05/16/11 08:34:56	59.97803	0		0		0			-653	30645.72	1	0	1	0.000	0.000	
05/16/11 08:34:58	59.97867	0		0		0			-653	30645.72	1	0	1	0.001	0.001	
05/16/11 08:35:00	59.97964	0		0		0			-653	30645.72	1	0	1	0.001	0.001	
05/16/11 08:35:02	59.98062	0		0		0			-653	30645.72	1	0	,	0.001	0.001	
05/16/11 08:35:04	59.98126	0		0		0			-653	30648.55	1	0	1	0.001	0.001	
05/16/11 08:35:06	59.98224	0		0		0			-653	30648.55	1	0	1	0.001	0.001	
05/16/11 08:35:08	59.98416	0		0		0			-653	30648.55	1	0	1	0.002	0.002	
05/16/11 08:35:10	59.98547	0		0		0			-653	30648.55	1	0	1	0.001	0.001	
05/16/11 08:35:12	59.98578	0		0		0			-653	30648.55	1	0	1	0.000	0.000	
05/16/11 08:35:14	59.98578	0		0		0			-653	30661.06	1	0	1	0.000	0.000	
05/16/11 08:35:16	59.98676	0		0		0			-653	30661.06	1	0	,	0.001	0.001	
05/16/11 08:35:18	59.99063	0		0		0			-653	30661.06	1	0	1	0.004	0.004	
05/16/11 08:35:20	59.99417	0		0		0			-653	30661.06	1	0	1	0.004	0.004	
05/16/11 08:35:22	59.99805	0		0		0			-653	30661.06	1	0	1	0.004	0.004	
05/16/11 08:35:24	59.99966	0		0		0			-653	30661.06	1	1	1	0.002	0.002	
05/16/11 08:35:26	60.00226	0		0		0			-653	30661.06	1	1	,	0.003	0.003	
05/16/11 08:35:28	60.00195	0		0		0			-653	30661.06	1	1	1	0.000	0.000	
05/16/11 08:35:30	60.00098	0		0		0			-653	30661.06	1	1	1	-0.001	0.001	
05/16/11 08:35:32	59.99936	0		0		0			-653	30661.06	1	1	1	-0.002	0.002	
05/16/11 08:35:34	59.99872	0		0		0			-653	30684.31	1	1	1	-0.001	0.001	
05/16/11 08:35:36	59.99774	0		0		0			-653	30684.31	1	0	1	-0.001	0.001	
05/16/11 08:35:38	59.99741	0		0		0			-653	30684.31	1	0	1	0.000	0.000	
05/16/11 08:35:40	59.99741	0		0		0			-653	30684.31	1	0	,	0.000	0.000	
05/16/11 08:35:42	59.99838	0		0		0			-653	30684.31	1	0	1	0.001	0.001	
05/16/11 08:35:44	59.99966	0		0		0			-653	30686.83	1	1	1	0.001	0.001	
05/16/11 08:35:46	60.00064	0		0		0			-653	30686.83	1	1	1	0.001	0.001	
05/16/11 08:35:48	60.00098	0		0		0			-653	30686.83	1	1	1	0.000	0.000	
05/16/11 08:35:50	60.00064	0		0		0			-653	30686.83	1	1	1	0.000	0.000	
05/16/11 08:35:52	60	0		0		0			-653	30686.83	1	1	1	-0.001	0.001	
05/16/11 08:35:54	59.99936	0		0		0			-653	30678.05	1	1	1	-0.001	0.001	
05/16/11 08:35:56	59.99741	0		0		0			-653	30678.05	1	0	1	-0.002	0.002	
05/16/11 08:35:58	59.99484	0		0		0				30678.05	1	0	1	-0.003	0.003	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:36:00	59.99289	0		0		0				30678.05	1	0	1	-0.002	0.002	
05/16/11 08:36:02	59.99097	0		0		0				30678.05	1	0	1	-0.002	0.002	
05/16/11 08:36:04	59.98965	0		0		0				30679.19	1	0	1	-0.001	0.001	
05/16/11 08:36:06	59.98804	0		0		0				30679.19	1	0	1	-0.002	0.002	
05/16/11 08:36:08	59.98773	0		0		0				30679.19	1	0	1	0.000	0.000	
05/16/11 08:36:10	59.98804	0		0		0				30679.19	1	0	1	0.000	0.000	
05/16/11 08:36:12	59.98901	0		0		0				30679.19	1	0	1	0.001	0.001	
05/16/11 08:36:14	59.99063	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:16	59.99255	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:18	59.99484	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:20	59.99677	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:22	59.99838	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:24	59.99872	0		0		0				30684.99	1	1	1	0.000	0.000	
05/16/11 08:36:26	59.99872	0		0		0				30684.99	1	1	1	0.000	0.000	
05/16/11 08:36:28	59.99936	0		0		0				30684.99	1	1	1	0.001	0.001	
05/16/11 08:36:30	60.00195	0		0		0				30684.99	1	1	1	0.003	0.003	
05/16/11 08:36:32	60.00485	0		0		0				30684.99	1	1	1	0.003	0.003	
05/16/11 08:36:34	60.00809	0		0		0				30687.29	1	1	1	0.003	0.003	
05/16/11 08:36:36	60.01099	0		0		0				30687.29	1	1	1	0.003	0.003	
05/16/11 08:36:38	60.01324	0		0		0				30687.29	1	1	1	0.002	0.002	
05/16/11 08:36:40	60.01422	0		0		0				30687.29	1	1	1	0.001	0.001	
05/16/11 08:36:42	60.01486	0		0		0				30687.29	1	1	1	0.001	0.001	
05/16/11 08:36:44	60.01453	0		0		0				30687.59	1	1	1	0.000	0.000	
05/16/11 08:36:46	60.01227	0		0		0				30687.59	1	1	1	-0.002	0.002	
05/16/11 08:36:48	60.01099	0		0		0				30687.59	1	1	1	-0.001	0.001	
05/16/11 08:36:50	60.01099	0		0		0				30687.59	1	1	1	0.000	0.000	
05/16/11 08:36:52	60.01227			0		0				30687.59	1	1	1	0.001	0.001	
05/16/11 08:36:54	60.01227	-		0		0				30726.76	1	1	1	0.000	0.000	
05/16/11 08:36:56	60.01163	0		0		0				30726.76	1	1	1	-0.001	0.001	
05/16/11 08:36:58	60.01132	0		0		0				30726.76	1	1	1	0.000	0.000	
05/16/11 08:37:00	60.01132			0		0				30726.76	1	1	1	0.000	0.000	
05/16/11 08:37:02	60.01065	0		0		0				30726.76	1	1	1	-0.001	0.001	
05/16/11 08:37:04	60.00903	0		0		0				30726.82	1	1	1	-0.002	0.002	
05/16/11 08:37:06	60.00839	0		0		0				30726.82	1	1	1	-0.001	0.001	
05/16/11 08:37:08	60.00809	0		0		0				30726.82	1	1	1	0.000	0.000	
05/16/11 08:37:10	60.00809	0		0		0				30726.82	1	1	1	0.000	0.000	
05/16/11 08:37:12	60.00937	0		0		0				30726.82	,	1	1	0.001	0.001	
05/16/11 08:37:14	60.01099	0		0		0				30720.93	1	1	1	0.002	0.002	
05/16/11 08:37:16	60.01227	0		0		0				30720.93	1	1	1	0.001	0.001	
05/16/11 08:37:18	60.01291	0		0		0				30720.93	1	1	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:37:20	60.0126	0		0		0				30720.93	1	1	1	0.000	0.000	
05/16/11 08:37:22	60.01132	0		0		0				30720.93	1	1	1	-0.001	0.001	
05/16/11 08:37:24	60.0097	0		0		0				30720.53	1	1	1	-0.002	0.002	
05/16/11 08:37:26	60.00613	0		0		0				30720.53	1	1	1	-0.004	0.004	
05/16/11 08:37:28	60.00259	0		0		0				30720.53	1	1	1	-0.004	0.004	
05/16/11 08:37:30	59.99936	0		0		0				30720.53	1	1	1	-0.003	0.003	
05/16/11 08:37:32	59.99902	0		0		0				30720.53	1	1	1	0.000	0.000	
05/16/11 08:37:34	60.00034	0		0		0				30720.62	1	1	1	0.001	0.001	
05/16/11 08:37:36	60.00064	0		0		0				30720.62	1	1	1	0.000	0.000	
05/16/11 08:37:38	59.99936	0		0		0				30720.62	1	1	1	-0.001	0.001	
05/16/11 08:37:40	59.99741	0		0		0				30720.62	1	0	1	-0.002	0.002	
05/16/11 08:37:42	59.99579	0		0		0				30720.62	1	0	1	-0.002	0.002	
05/16/11 08:37:44	59.99387	0		0		0				30721.15	1	0	1	-0.002	0.002	
05/16/11 08:37:46	59.99255	0		0		0				30721.15	1	0	1	-0.001	0.001	
05/16/11 08:37:48	59.99191	0		0		0				30721.15	1	0	1	-0.001	0.001	
05/16/11 08:37:50	59.99255	0		0		0				30721.15	1	0	1	0.001	0.001	
05/16/11 08:37:52	59.99548	0		0		0				30721.15	1	0	1	0.003	0.003	
05/16/11 08:37:54	60	0		0		0				30726.87	1	1	1	0.005	0.005	
05/16/11 08:37:56	60.00323	0		0		0				30726.87	1	1	1	0.003	0.003	
05/16/11 08:37:58	60.00516	0		0		0				30726.87	1	1	1	0.002	0.002	
05/16/11 08:38:00	60.00485	0		0		0				30726.87	1	1	1	0.000	0.000	
05/16/11 08:38:02	60.00354	0		0		0				30726.87	1	1	1	-0.001	0.001	
05/16/11 08:38:04	60.00226	0		0		0				30734.84	1	1	1	-0.001	0.001	
05/16/11 08:38:06	60.00098	0		0		0				30734.84	1	1	1	-0.001	0.001	
05/16/11 08:38:08	60	0		0		0				30734.84	1	1	1	-0.001	0.001	
05/16/11 08:38:10	59.99966	0		0		0				30734.84	1	1	1	0.000	0.000	
05/16/11 08:38:12	59.99966			0		0				30734.84	1	1	1	0.000	0.000	
05/16/11 08:38:14	59.99774	-		0		0				30757.45	1	0	1	-0.002	0.002	
05/16/11 08:38:16	59.9971	0		0		0				30757.45	1	0	1	-0.001	0.001	
05/16/11 08:38:18	59.99741	0		0		0				30757.45	1	0	1	0.000	0.000	
05/16/11 08:38:20	59.99805			0		0				30757.45	1	0	1	0.001	0.001	
05/16/11 08:38:22	59.99872	0		0		0				30757.45	1	1	1	0.001	0.001	
05/16/11 08:38:24	59.99936	,		0		0				30757.92	1	1	1	0.001	0.001	
05/16/11 08:38:26	60	0		0		0				30757.92	1	1	1	0.001	0.001	
05/16/11 08:38:28	60.00162	0		0		0				30757.92	1	1	1	0.002	0.002	
05/16/11 08:38:30	60.00323	0		0		0				30757.92	1	1	1	0.002	0.002	
05/16/11 08:38:32	60.00388	0		0		0				30757.92	,	1	1	0.001	0.001	
05/16/11 08:38:34	60.00485	0		0		0				30752.27	1	1	1	0.001	0.001	
05/16/11 08:38:36	60.00549	0		0		0				30752.27	1	1	1	0.001	0.001	
05/16/11 08:38:38	60.00613	0		0		0				30752.27	1	1	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:38:40	60.00647	0		0		0				30752.27	1	1	1	0.000	0.000	
05/16/11 08:38:42	60.00677	0		0		0				30752.27	1	1	1	0.000	0.000	
05/16/11 08:38:44	60.00677	0		0		0				30752.33	1	1	1	0.000	0.000	
05/16/11 08:38:46	60.00613	0		0		0				30752.33	1	1	1	-0.001	0.001	
05/16/11 08:38:48	60.00549	0		0		0				30752.33	1	1	1	-0.001	0.001	
05/16/11 08:38:50	60.00485	0		0		0				30752.33	1	1	1	-0.001	0.001	
05/16/11 08:38:52	60.00485	0		0		0				30752.33	1	1	1	0.000	0.000	
05/16/11 08:38:54	60.00613	0		0		0				30755.63	1	1	1	0.001	0.001	
05/16/11 08:38:56	60.01001	0		0		0				30755.63	1	1	1	0.004	0.004	
05/16/11 08:38:58	60.01324	0		0		0				30755.63	1	1	1	0.003	0.003	
05/16/11 08:39:00	60.01614	0		0		0				30755.63	1	1	1	0.003	0.003	
05/16/11 08:39:02	60.0184	0		0		0				30755.63	1	1	1	0.002	0.002	
05/16/11 08:39:04	60.01971	0		0		0				30755.66	1	1	1	0.001	0.001	
05/16/11 08:39:06	60.021	0		0		0				30755.66	1	1	1	0.001	0.001	
05/16/11 08:39:08	60.02133	0		0		0				30755.66	1	1	1	0.000	0.000	
05/16/11 08:39:10	60.02197	0		0		0				30755.66	1	1	1	0.001	0.001	
05/16/11 08:39:12	60.02359	0		0		0				30755.66	1	1	1	0.002	0.002	
05/16/11 08:39:14	60.02682			0		0				30784.89	1	1	1	0.003	0.003	
05/16/11 08:39:16	60.0307	0		0		0				30784.89	1	1	1	0.004	0.004	
05/16/11 08:39:18	60.0336	0		0		0				30784.89	1	1	1	0.003	0.003	
05/16/11 08:39:20	60.03424	0		0		0				30784.89	1	1	1	0.001	0.001	
05/16/11 08:39:22	60.03326	,		0		0				30784.89	1	1	1	-0.001	0.001	
05/16/11 08:39:24	60.0307	0		0		0				30786.98	1	1	1	-0.003	0.003	
05/16/11 08:39:26	60.02875	0		0		0				30786.98	1	1	1	-0.002	0.002	
05/16/11 08:39:28	60.02875	0		0		0				30786.98	1	1	1	0.000	0.000	
05/16/11 08:39:30	60.02939	0		0		0				30786.98	1	1	1	0.001	0.001	
05/16/11 08:39:32	60.02908			0		0				30786.98	1	1	1	0.000	0.000	
05/16/11 08:39:34	60.02844	0		0		0				30796.28	1	1	1	-0.001	0.001	
05/16/11 08:39:36	60.02777			0		0				30796.28	1	1	1	-0.001	0.001	
05/16/11 08:39:38	60.02811	0		0		0				30796.28	1	1	1	0.000	0.000	
05/16/11 08:39:40	60.02777	,		0		0				30796.28	1	1	1	0.000	0.000	
05/16/11 08:39:42	60.02777	0		0		0				30796.28	1	1	1	0.000	0.000	
05/16/11 08:39:44	60.02777	0		0		0				30792.94	1	1	1	0.000	0.000	
05/16/11 08:39:46	60.02747	0		0		0				30792.94	1	1	1	0.000	0.000	
05/16/11 08:39:48	60.02713	0		0		0				30792.94	1	1	1	0.000	0.000	
05/16/11 08:39:50	60.02618	0		0		0				30792.94	1	1	1	-0.001	0.001	
05/16/11 08:39:52	60.02521	0		0		0				30792.94	1	1	1	-0.001	0.001	
05/16/11 08:39:54	60.02457	0		0		0				30803.58	1	1	1	-0.001	0.001	
05/16/11 08:39:56	60.02487	0		0		0				30803.58	1	1	1	0.000	0.000	
05/16/11 08:39:58	60.02551	0		0		0				30803.58	1	1	1	0.001	0.001	

组
 공ำ

 Hix

 38885

$T(0)$

First change in frequency of the event should occur here on the vertical grid line. It is important that the pre-event frequency average to NOT contain frequency data of the event, "Average Frequency" trend to the left of center of the graph. To shift the data on the graph left or right, adjust the value in cell Q3 highlighted in yellow above.

Auto" Event Detection adjustment of $\mathrm{T}(0)$.
\# of rows to shift T(0)
A zero value aligns the data to the hightest Frequency change value. Usually the event begins one or two data scans earlier than this scan.

Increasing this value shifts graph data to the right
Decreasing this value shifts graph data to the left.

Note: The P.U. Performance values indicate performance as a P.U. value of BA Bias setting For BAs that utilize a variable Bias, the Bias average during $T(+20)$ to $T(+52)$ is used.
P.U. values above 1.0 indicate that the Bias setting was below measured Frequency Response. P.U. values below 1.0 indicate that the Bias setting was above measured Frequency Response

To be completed for each event evaluated.

Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Column A: Date and Time in this format, mm/dd/yy HH:MM:SS
Column B: Frequency Hz
Column C: Contingent Resouce Lost MW or Lost Load
Column D: Load Resources tripped during the event.
Column E: Non Conforming Load
Column F: Spare
Column G: Not Used
Column H: Spare
Column I: Spare
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D \& E are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign ($+/-$) convention defined in FRS Form 1
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must start a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event with up to 60 minutes of data.
Be sure the "Data" worksheet is clear of any old data. Collect the same total minutes of data for each event evaluated to minimize your effort and time.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data.
5 Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on the graph on the "Copy Results" worksheet
If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process.
6 Once data is in place in the "Data" worksheet, confirm the Auto selection of the beginning of the event by observing the "Graph 20 to 52 s " worksheet. Adjust the selection if necessary. To make an adjustment, change the value in cell "Q3" on the "Graph 20 to 52 s " worksheet. Usually a 0,1 or 2 will achive the correct alignment of $\mathrm{T}(0)$.

If the correct row is selected, the "Graph 20 to 52s" worksheet will indicate the first change in frequency (red trend) of the event on the center vertical grid line of the graph.
The end of the event will be Auto selected based on the frequency value in cell " N 2 " on the Data worksheet. This will be the frequency at the beginning of the event or 60 Hz , whichever is lower. (for low Hz events) This value controls the end of the "Sustained Frequency Response" evaluation period.
Primary Frequency Response should be sustained during the event recovery period. This evaluation determines how well you achieved this goal
 in the correct order on worksheet "Form 1 Summary Data"
10 Use PasteSpecial/Values and paste the copied data into FRS Form 1 on the appropriate event row. Be sure to use the latest version of Form 1, currently Form 1.9.
11 Save this Form 2 using the file name convention on the "Copy Results" worksheet. The complete file name is in bold in cell B38. Return all completed Form $2 s$ with your Form 1 to NERC

Steps To be completed the first time you use form 2 for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Copy Results" worksheet. For example: "ERCOT".

Time (T)	Hz	$\begin{aligned} & \text { Contingent } \\ & \text { Resource } \\ & \text { Lost } \\ & \text { MW } \\ & \hline \end{aligned}$	Load Resources Tripped MW	NonConforming Load Load (-) MW	$\begin{gathered} \text { Not } \\ \text { Used } \end{gathered}$	$\begin{aligned} & \text { Not } \\ & \text { Used } \end{aligned}$	$\begin{gathered} \text { Not } \\ \text { Used } \end{gathered}$	$\begin{gathered} \text { Not } \\ \text { Used } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 8021 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 $\mathrm{t}(0)$ t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:40:00	60.0097	471		0		0			-653	29756.85		0				
05/16/11 07:40:02	60.00745	471		0		0			-653	29756.85	0	0	0	-0.002	0.002	
05/16/11 07:40:04	60.00452	471		0		0			-653	29756.82	0	0	0	-0.003	0.003	
05/16/11 07:40:06	60.00259	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:08	60.00034	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:10	59.99872	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:12	59.9971	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:14	59.99548	471		0		0			-653	29766.46	0	0	0	-0.002	0.002	
05/16/11 07:40:16	59.99353	471		0		0			-653	29766.46	0	0	0	-0.002	0.002	
05/16/11 07:40:18	59.99063	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:20	59.9874	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:22	59.98416	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:24	59.98093	471		0		0			-653	29766.37	0	0	0	-0.003	0.003	
05/16/11 07:40:26	59.97867	471		0		0			-653	29766.37	0	0	0	-0.002	0.002	
05/16/11 07:40:28	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:30	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:32	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:34	59.97577	471		0		0			-653	29780.98	0	0	0	-0.003	0.003	
05/16/11 07:40:36	59.97382	471		0		0			-653	29780.98	0	0	0	-0.002	0.002	
05/16/11 07:40:38	59.97223	471		0		0			-653	29780.98	0	0	0	-0.002	0.002	
05/16/11 07:40:40	59.97223	471		0		0			-653	29780.98	0	0	0	0.000	0.000	
05/16/11 07:40:42	59.97318	471		0		0			-653	29780.98	0	0	0	0.001	0.001	
05/16/11 07:40:44	59.97351	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:46	59.97415	471		0		0			-653	29780.95	0	0	0	0.001	0.001	
05/16/11 07:40:48	59.97287	471		0		0			-653	29780.95	0	0	0	-0.001	0.001	
05/16/11 07:40:50	59.97287	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:52	59.97287	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:54	59.96832	471		0		0			-653	29770.34	0	0	0	-0.005	0.005	
05/16/11 07:40:56	59.96768	471		0		0			-653	29770.34	0	0	0	-0.001	0.001	
05/16/11 07:40:58	59.96899	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:00	59.97028	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:02	59.97223	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:04	59.97382	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:06	59.97479	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:08	59.9761	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:10	59.97769	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:12	59.97998	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:14	59.98318	471		0		0			-653	29782.73	0	0	0	0.003	0.003	
05/16/11 07:41:16	59.98578	471		0		0			-653	29782.73	0	0	0	0.003	0.003	
05/16/11 07:41:18	59.9874	471		0		0			-653	29782.73	0	0	0	0.002	0.002	
05/16/11 07:41:20	59.98868	471		0		0			-653	29782.73	0	0	0	0.001	0.001	

05/16/11 07:41:22	59.98999	471	0	0	-653	29782.73	0	0	0	0.001	0.001
05/16/11 07:41:24	59.99191	471	0	0	-653	29782.82	0	0	0	0.002	0.002
05/16/11 07:41:26	59.99353	471	0	0	-653	29782.82	0	0	0	0.002	0.002
05/16/11 07:41:28	59.99612	471	0	0	-653	29782.82	0	0	0	0.003	0.003
05/16/11 07:41:30	59.99805	471	0	0	-653	29782.82	0	0	0	0.002	0.002
05/16/11 07:41:32	59.99902	471	0	0	-653	29782.82	0	0	0	0.001	0.001
05/16/11 07:41:34	59.99902	471	0	0	-653	29786.15	0	0	0	0.000	0.000
05/16/11 07:41:36	59.99774	471	0	0	-653	29786.15	0	0	0	-0.001	0.001
05/16/11 07:41:38	59.99646	471	0	0	-653	29786.15	0	0	0	-0.001	0.001
05/16/11 07:41:40	59.99579	471	0	0	-653	29786.15	0	0	0	-0.001	0.001
05/16/11 07:41:42	59.99612	471	0	0	-653	29786.15	0	0	0	0.000	0.000
05/16/11 07:41:44	59.9971	471	0	0	-653	29786.21	0	0	0	0.001	0.001
05/16/11 07:41:46	59.99774	471	0	0	-653	29786.21	0	0	0	0.001	0.001
05/16/111 07:41:48	59.99838	471	0	0	-653	29786.21	0	0	0	0.001	0.001
05/16/11 07:41:50	59.99936	471	0	0	-653	29786.21	0	0	0	0.001	0.001
05/16/11 07:41:52	60	471	0	0	-653	29786.21	0	0	0	0.001	0.001
05/16/11 07:41:54	60.00064	471	0	0	-653	29778.98	0	0	0	0.001	0.001
05/16/11 07:41:56	60.00128	471	0	0	-653	29778.98	0	0	0	0.001	0.001
05/16/11 07:41:58	60.00226	471	0	0	-653	29778.98	0	0	0	0.001	0.001
05/16/111 07:42:00	60.00388	471	0	0	-653	29778.98	0	0	0	0.002	0.002
05/16/11 07:42:02	60.00647	471	0	0	-653	29778.98	0	0	0	0.003	0.003
05/16/11 07:42:04	60.0097	471	0	0	-653	29778.92	0	0	0	0.003	0.003
05/16/111 07:42:06	60.01358	471	0	0	-653	29778.92	0	0	0	0.004	0.004
05/16/11 07:42:08	60.01614	471	0	0	-653	29778.92	0	0	0	0.003	0.003
05/16/11 07:42:10	60.01776	471	0	0	-653	29778.92	0	0	0	0.002	0.002
05/16/11 07:42:12	60.01776	471	0	0	-653	29778.92	0	0	0	0.000	0.000
05/16/11 07:42:14	60.01486	471	0	0	-653	29787.9	0	0	0	-0.003	0.003
05/16/11 07:42:16	60.01163	471	0	0	-653	29787.9	0	0	0	-0.003	0.003
05/16/11 07:42:18	60.00903	471	0	0	-653	29787.9	0	0	0	-0.003	0.003
05/16/11 07:42:20	60.00775	471	0	0	-653	29787.9	0	0	0	-0.001	0.001
05/16/111 07:42:22	60.00775	471	0	0	-653	29787.9	0	0	0	0.000	0.000
05/16/11 07:42:24	60.00903	471	0	0	-653	29787.84	0	0	0	0.001	0.001
05/16/11 07:42:26	60.00903	471	0	0	-653	29787.84	0	0	0	0.000	0.000
05/16/11 07:42:28	60.01324	471	0	0	-653	29787.84	0	0	0	0.004	0.004
05/16/111 07:42:30	60.01486	471	0	0	-653	29787.84	0	0	0	0.002	0.002
05/16/111 07:42:32	60.0152	471	0	0	-653	29787.84	0	0	0	0.000	0.000
05/16/111 07:42:34	60.0152	471	0	0	-653	29813.39	0	0	0	0.000	0.000
05/16/11 07:42:36	60.01486	471	0	0	-653	29813.39	0	0	0	0.000	0.000
05/16/11 07:42:38	60.01422	471	0	0	-653	29813.39	0	0	0	-0.001	0.001
05/16/11 07:42:40	60.01358	471	0	0	-653	29813.39	0	0	0	-0.001	0.001
05/16/11 07:42:42	60.01227	471	0	0	-653	29813.39	0	0	0	-0.001	0.001
05/16/11 07:42:44	60.01099	471	0	0	-653	29813.33	0	0	0	-0.001	0.001
05/16/111 07:42:46	60.00873	471	0	0	-653	29813.33	0	0	0	-0.002	0.002
05/16/11 07:42:48	60.00647	471	0	0	-653	29813.33	0	0	0	-0.002	0.002
05/16/11 07:42:50	60.00485	471	0	0	-653	29813.33	0	0	0	-0.002	0.002
05/16/111 07:42:52	60.00354	471	0	0	-653	29813.33	0	0	0	-0.001	0.001
05/16/11 07:42:54	60.00195	471	0	0	-653	29797.46	0	0	0	-0.002	0.002
05/16/11 07:42:56	60	471	0	0	-653	29797.46	0	0	0	-0.002	0.002
05/16/11 07:42:58	59.99774	471	0	0	-653	29797.46	0	O	0	-0.002	0.002

05/16/11 07:43:00	59.99612	471	0	0	-653	29797.46	0	0	0	-0.002	0.002
05/16/111 07:43:02	59.99646	471	0	0	-653	29797.46	0	0	0	0.000	. 000
05/16/111 07:43:04	59.99741	471	0	0	-653	29797.52	0	0	0	0.001	0.001
05/16/11 07:43:06	59.99838	471	0	0	-653	29797.52	0	0	0	0.001	0.001
05/16/11 07:43:08	59.99936	471	0	0	-653	29797.52	0	0	0	0.001	0.001
05/16/11 07:43:10	59.99902	471	0	0	-653	29797.52	0	0	0	0.000	0.000
05/16/11 07:43:12	59.99872	471	0	0	-653	29797.52	0	0	0	0.000	0.000
05/16/111 07:43:14	59.99774	471	0	0	-653	29780.33	0	0	0	-0.001	0.001
05/16/111 07:43:16	59.99646	471	0	0	-653	29780.33	0	0	0	-0.001	0.001
05/16/111 07:43:18	59.99677	471	0	0	-653	29780.33	0	0	0	0.000	0.000
05/16/111 07:43:20	59.99677	471	0	0	-653	29780.33	0	0	0	0.000	0.000
05/16/111 07:43:22	59.99774	471	0	0	-653	29780.33	0	0	0	0.001	0.001
05/16/11 07:43:24	59.99805	471	0	0	-653	29780.27	0	0	0	0.000	0.000
05/16/111 07:43:26	59.99774	471	0	0	-653	29780.27	0	0	0	0.000	0.000
05/16/111 07:43:28	59.99579	471	0	0	-653	29780.27	0	0	0	-0.002	0.002
05/16/11 07:43:30	59.99387	471	0	0	-653	29780.27	0	0	0	-0.002	0.002
05/16/11 07:43:32	59.99255	471	0	0	-653	29780.27	0	0	0	-0.001	0.001
05/16/111 07:43:34	59.99127	471	0	0	-653	29785.63	0	0	0	-0.001	0.001
05/16/11 07:43:36	59.98999	471	0	0	-653	29785.63	0	0	0	-0.001	0.001
05/16/111 07:43:38	59.98965	471	0	0	-653	29785.63	0	0	0	0.000	0.000
05/16/111 07:43:40	59.98837	471	0	0	-653	29785.63	0	0	0	-0.001	0.001
05/16/111 07:43:42	59.98709	471	0	0	-653	29785.63	0	0	0	-0.001	0.001
05/16/111 07:43:44	59.98642	471	0	0	-653	29785.63	0	0	0	-0.001	0.001
05/16/11 07:43:46	59.98642	471	0	0	-653	29785.63	0	0	0	0.000	0.000
05/16/11 07:43:48	59.98642	471	0	0	-653	29785.63	0	0	0	0.000	0.000
05/16/111 07:43:50	59.98676	471	0	0	-653	29785.63	0	0	0	0.000	0.000
05/16/11 07:43:52	59.98676	471	0	0	-653	29785.63	0	0	0	0.000	0.000
05/16/111 07:43:54	59.98642	471	0	0	-653	29787.12	0	0	0	0.000	0.000
05/16/11 07:43:56	59.98611	471	0	0	-653	29787.12	0	0	0	0.000	0.000
05/16/111 07:43:58	59.98611	471	0	0	-653	29787.12	0	0	0	0.000	0.000
05/16/111 07:44:00	59.98514	471	0	0	-653	29787.12	0	0	0	-0.001	0.001
05/16/11 07:44:02	59.98416	471	0	0	-653	29787.12	0	0	0	-0.001	0.001
05/16/11 07:44:04	59.98352	471	0	0	-653	29787.12	0	0	0	-0.001	0.001
05/16/11 07:44:06	59.98224	471	0	0	-653	29787.12	0	0	0	-0.001	0.0
05/16/11 07:44:08	59.98029	471	0	0	-653	29787.12	0	0	0	-0.002	0.002
05/16/11 07:44:10	59.979	471	0	0	-653	29787.12	0	0	0	-0.001	0.001
05/16/11 07:44:12	59.97769	471	0	0	-653	29787.12	0	0	0	-0.001	0.001
05/16/11 07:44:14	59.97675	471	0	0	-653	29780.67	0	0	0	-0.001	0.001
05/16/11 07:44:16	59.97641	471	0	0	-653	29780.67	0	0	0	0.000	0.000
05/16/11 07:44:18	59.97739	471	0	0	-653	29780.67	0	0	0	0.001	0.001
05/16/111 07:44:20	59.97998	471	0	0	-653	29780.67	0	0	0	0.003	0.00
05/16/11 07:44:22	59.98318	471	0	0	-653	29780.67	0	0	0	0.003	0.003
05/16/11 07:44:24	59.98611	471	0	0	-653	29780.76	0	0	0	0.003	0.003
05/16/111 07:44:26	59.98837	471	0	0	-653	29780.76	0	0	0	0.002	0.002
05/16/11 07:44:28	59.9903	471	0	0	-653	29780.76	0	0	0	0.002	0.002
05/16/11 07:44:30	59.99191	471	0	0	-653	29780.76	0	0	0	0.002	0.002
05/16/11 07:44:32	59.99353	471	0	0	-653	29780.76	0	0	0	0.002	0.002
05/16/11 07:44:34	59.99579	471	0	0	-653	29777.7	0	0	0	0.002	0.002
05/16/11 07:44:36	60	471	0	0	-653	29777.7	0	0	0	0.004	0.004

05/16/11 07:44:38	60.00354	471	0	0	-653	29777.7	0	0	0	0.004	0.004
05/16/11 07:44:40	60.00647	471	0	0	-653	29777.7	0	0	0	0.003	0.003
05/16/11 07:44:42	60.00839	471	0	0	-653	29777.7	0	0	0	0.002	0.002
05/16/11 07:44:44	60.00903	471	0	0	-653	29777.7	0	0	0	0.001	0.001
05/16/11 07:44:46	60.00873	471	0	0	-653	29777.7	0	0	0	0.000	0.000
05/16/11 07:44:48	60.00873	471	0	0	-653	29777.7	0	0	0	0.000	0.000
05/16/11 07:44:50	60.00937	471	0	0	-653	29777.7	0	0	0	0.001	0.001
05/16/11 07:44:52	60.01099	471	0	0	-653	29777.7	0	0	0	0.002	0.002
05/16/11 07:44:54	60.01453	471	0	0	-653	29788.63	0	0	0	0.004	0.004
05/16/11 07:44:56	60.0181	471	0	0	-653	29788.63	0	0	0	0.004	0.004
05/16/11 07:44:58	60.02002	471	0	0	-653	29788.63	0	0	0	0.002	0.002
05/16/11 07:45:00	60.02036	471	0	0	-653	29788.63	0	0	0	0.000	0.000
05/16/111 07:45:02	60.02002	471	0	0	-653	29788.63	0	0	0	0.000	0.000
05/16/11 07:45:04	60.02002	471	0	0	-653	29788.63	0	0	0	0.000	0.000
05/16/111 07:45:06	60.01907	471	0	0	-653	29788.63	0	0	0	-0.001	0.001
05/16/11 07:45:08	60.0181	471	0	0	-653	29788.63	0	0	0	-0.001	0.001
05/16/11 07:45:10	60.01712	471	0	0	-653	29788.63	0	0	0	-0.001	0.001
05/16/11 07:45:12	60.01712	471	0	0	-653	29788.63	0	0	0	0.000	0.000
05/16/11 07:45:14	60.01712	471	0	0	-653	29788.51	0	0	0	0.000	0.000
05/16/11 07:45:16	60.01453	471	0	0	-653	29788.51	0	0	0	-0.003	0.003
05/16/11 07:45:18	60.01358	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/11 07:45:20	60.01227	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/11 07:45:22	60.01163	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/111 07:45:24	60.01065	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/111 07:45:26	60.0097	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/11 07:45:28	60.00839	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/11 07:45:30	60.00745	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/11 07:45:32	60.00775	471	0	0	-653	29788.51	0	0	0	0.000	0.000
05/16/111 07:45:34	60.00839	471	0	0	-653	29780.62	0	0	0	0.001	0.001
05/16/11 07:45:36	60.00839	471	0	0	-653	29780.62	0	0	0	0.000	0.000
05/16/11 07:45:38	60.00809	471	0	0	-653	29780.62	0	0	0	0.000	0.000
05/16/11 07:45:40	60.00745	471	0	0	-653	29780.62	0	0	0	-0.001	0.001
05/16/11 07:45:42	60.00711	471	0	0	-653	29780.62	0	0	0	0.000	0.000
05/16/11 07:45:44	60.00839	471	0	0	-653	29780.56	0	0	0	0.001	0.001
05/16/111 07:45:46	60.00937	471	0	0	-653	29780.56	0	0	0	0.001	0.001
05/16/11 07:45:48	60.0097	471	0	0	-653	29780.56	0	0	0	0.000	0.000
05/16/11 07:45:50	60.01001	471	0	0	-653	29780.56	0	0	0	0.000	0.000
05/16/11 07:45:52	60.01065	471	0	0	-653	29780.56	0	0	0	0.001	0.001
05/16/111 07:45:54	60.01196	471	0	0	-653	29784.96	0	0	0	0.001	0.001
05/16/11 07:45:56	60.01324	471	0	0	-653	29784.96	0	0	0	0.001	0.001
05/16/11 07:45:58	60.01453	471	0	0	-653	29784.96	0	0	0	0.001	0.001
05/16/11 07:46:00	60.01614	471	0	0	-653	29784.96	0	0	0	0.002	0.002
05/16/11 07:46:02	60.01712	471	0	0	-653	29784.96	0	0	0	0.001	0.001
05/16/111 07:46:04	60.01712	471	0	0	-653	29784.93	0	0	0	0.000	0.000
05/16/111 07:46:06	60.01614	471	0	0	-653	29784.93	0	0	0	-0.001	0.001
05/16/11 07:46:08	60.01584	471	0	0	-653	29784.93	0	0	0	0.000	0.000
05/16/11 07:46:10	60.01614	471	0	0	-653	29784.93	0	0	0	0.000	0.000
05/16/11 07:46:12	60.01584	471	0	0	-653	29784.93	0	0	0	0.000	0.000
05/16/11 07:46:14	60.01486	471	0	0	-653	29760.42	0	O	0	-0.001	0.001

05/16/11 07:46:16	60.01422	471	0	0	-653	29760.42	0	0	0	-0.001	0.001
05/16/11 07:46:18	60.01227	471	0	0	-653	29760.42	0	0	0	-0.002	0.002
05/16/11 07:46:20	60.0097	471	0	0	-653	29760.42	0	0	0	-0.003	0.003
05/16/11 07:46:22	60.00711	471	0	0	-653	29760.42	0	0	0	-0.003	0.003
05/16/11 07:46:24	60.00583	471	0	0	-653	29760.42	0	0	0	-0.001	0.001
05/16/11 07:46:26	60.00516	471	0	0	-653	29760.42	0	0	0	-0.001	0.001
05/16/11 07:46:28	60.00516	471	0	0	-653	29760.42	0	0	0	0.000	0.000
05/16/11 07:46:30	60.00485	471	0	0	-653	29760.42	0	0	0	0.000	0.000
05/16/11 07:46:32	60.00388	471	0	0	-653	29760.42	0	0	0	-0.001	0.001
05/16/11 07:46:34	60.00259	471	0	0	-653	29782.35	0	0	0	-0.001	0.001
05/16/11 07:46:36	59.99902	471	0	0	-653	29782.35		0	0	-0.004	0.004
05/16/11 07:46:38	59.9971	471	0	0	-653	29782.35	0	0	0	-0.002	0.002
05/16/11 07:46:40	59.99646	471	0	0	-653	29782.35	0	0	0	-0.001	0.001
05/16/11 07:46:42	59.99579	471	0	0	-653	29782.35	0	0	0	-0.001	0.001
05/16/11 07:46:44	59.99417	471	0	0	-653	29782.44	0	0	0	-0.002	0.002
05/16/11 07:46:46	59.99225	471	0	0	-653	29782.44	0	0	0	-0.002	0.002
05/16/11 07:46:48	59.9903	471	0	0	-653	29782.44	0	0	0	-0.002	0.002
05/16/11 07:46:50	59.98804	471	0	0	-653	29782.44	0	0	0	-0.002	0.002
05/16/11 07:46:52	59.98709	471	0	0	-653	29782.44	0	0	0	-0.001	0.001
05/16/11 07:46:54	59.98676	471	0	0	-653	29785.52	0	0	0	0.000	0.000
05/16/11 07:46:56	59.98578	471	0	0	-653	29785.52	0	0	0	-0.001	0.001
05/16/11 07:46:58	59.9845	471	0	0	-653	29785.52	0	0	0	-0.001	0.001
05/16/11 07:47:00	59.98288	471	0	0	-653	29785.52	0	0	0	-0.002	0.002
05/16/111 07:47:02	59.98224	471	0	0	-653	29785.52	0	0	0	-0.001	0.001
05/16/11 07:47:04	59.98224	471	0	0	-653	29785.55	0	0	0	0.000	0.000
05/16/11 07:47:06	59.98224	471	0	0	-653	29785.55	0	0	0	0.000	0.000
05/16/11 07:47:08	59.98254	471	0	0	-653	29785.55	0	0	0	0.000	0.000
05/16/11 07:47:10	59.98386	471	0	0	-653	29785.55	0	0	0	0.001	0.001
05/16/11 07:47:12	59.9848	471	0	0	-653	29785.55	0	0	0	0.001	0.001
05/16/11 07:47:14	59.98578	471	0	0	-653	29788.21	0	0	0	0.001	0.001
05/16/11 07:47:16	59.98642	471	0	0	-653	29788.21	0	0	0	0.001	0.001
05/16/11 07:47:18	59.98999	471	0	0	-653	29788.21	0	0	0	0.004	0.004
05/16/11 07:47:20	59.99225	471	0	0	-653	29788.21	0	0	0	0.002	0.002
05/16/11 07:47:22	59.99323	471	0	0	-653	29788.21	0	0	0	0.001	0.001
05/16/11 07:47:24	59.99646	471	0	0	-653	29788.06	0	0	0	0.003	0.003
05/16/11 07:47:26	59.99902	471	0	0	-653	29788.06	0	0	0	0.003	0.003
05/16/11 07:47:28	60.00064	471	0	0	-653	29788.06	0	0	0	0.002	0.002
05/16/11 07:47:30	60.00647	471	0	0	-653	29788.06	0	0	0	0.006	0.006
05/16/111 07:47:32	60.00903	471	0	0	-653	29788.06	0	0	0	0.003	0.003
05/16/11 07:47:34	60.01099	471	0	0	-653	29776.11	0	0	0	0.002	0.002
05/16/11 07:47:36	60.01132	471	0	0	-653	29776.11	0	0	0	0.000	0.000
05/16/11 07:47:38	60.01291	471	0	0	-653	29776.11	0	0	0	0.002	0.002
05/16/11 07:47:40	60.01324	471	0	0	-653	29776.11	0	0	0	0.000	0.000
05/16/11 07:47:42	60.01324	471	0	0	-653	29776.11	0	0	0	0.000	0.000
05/16/11 07:47:44	60.01422	471	0	0	-653	29776.17	0	0	0	0.001	0.001
05/16/11 07:47:46	60.0181	471	0	0	-653	29776.17	0	0	0	0.004	0.004
05/16/11 07:47:48	60.01907	471	0	0	-653	29776.17	0	0	0	0.001	0.001
05/16/11 07:47:50	60.02133	471	0	0	-653	29776.17	0	0	0	0.002	0.002
05/16/11 07:47:52	60.02197	471	0	0	-653	29776.17	0	0	0	0.001	0.001

05/16/11 07:47:54	60.02164	471	0	0	-653	29794.69	0	0	0	0.000	0.000
05/16/11 07:47:56	60.01971	471	0	0	-653	29794.69	0	0	0	-0.002	0.002
05/16/11 07:47:58	60.01907	471	0	0	-653	29794.69	0	0	0	-0.001	0.001
05/16/11 07:48:00	60.01746	471	0	0	-653	29794.69	0	0	0	-0.002	0.002
05/16/11 07:48:02	60.01776	471	0	0	-653	29794.69	0	0	0	0.000	0.000
05/16/11 07:48:04	60.0184	471	0	0	-653	29794.66	0	0	0	0.001	0.001
05/16/11 07:48:06	60.01776	471	0	0	-653	29794.66	0	0	0	-0.001	0.001
05/16/11 07:48:08	60.0152	471	0	0	-653	29794.66	0	0	0	-0.003	0.003
05/16/11 07:48:10	60.01389	471	0	0	-653	29794.66	0	0	0	-0.001	0.001
05/16/11 07:48:12	60.01422	471	0	0	-653	29794.66	0	0	0	0.000	0.000
05/16/11 07:48:14	60.0152	471	0	0	-653	29804.78	0	0	0	0.001	0.001
05/16/11 07:48:16	60.01614	471	0	0	-653	29804.78	0	0	0	0.001	0.001
05/16/11 07:48:18	60.01614	471	0	0	-653	29804.78	0	0	0	0.000	0.000
05/16/11 07:48:20	60.01422	471	0	0	-653	29804.78	0	0	0	-0.002	0.002
05/16/11 07:48:22	60.01196	471	0	0	-653	29804.78	0	0	0	-0.002	0.002
05/16/11 07:48:24	60.01035	471	0	0	-653	29804.86	0	0	0	-0.002	0.002
05/16/11 07:48:26	60.00809	471	0	0	-653	29804.86	0	0	0	-0.002	0.002
05/16/11 07:48:28	60.00613	471	0	0	-653	29804.86	0	0	0	-0.002	0.002
05/16/11 07:48:30	60.00516	471	0	0	-653	29804.86	0	0	0	-0.001	0.001
05/16/11 07:48:32	60.00452	471	0	0	-653	29804.86	0	0	0	-0.001	0.001
05/16/11 07:48:34	60.00354	471	0	0	-653	29800.12	0	0	0	-0.001	0.001
05/16/11 07:48:36	60.00128	471	0	0	-653	29800.12	0	0	0	-0.002	0.002
05/16/11 07:48:38	60	471	0	0	-653	29800.12	0	0	0	-0.001	0.001
05/16/11 07:48:40	59.99936	471	0	0	-653	29800.12	0	0	0	-0.001	0.001
05/16/11 07:48:42	59.99838	471	0	0	-653	29800.12	0	0	0	-0.001	0.001
05/16/11 07:48:44	59.99741	471	0	0	-653	29800.18	0	0	0	-0.001	0.001
05/16/11 07:48:46	59.99579	471	0	0	-653	29800.18	0	0	0	-0.002	0.002
05/16/11 07:48:48	59.99515	471	0	0	-653	29800.18	0	0	0	-0.001	0.001
05/16/11 07:48:50	59.99646	471	0	0	-653	29800.18	0	0	0	0.001	0.001
05/16/11 07:48:52	59.99872	471	0	0	-653	29800.18	0	0	0	0.002	0.002
05/16/11 07:48:54	60.00128	471	0	0	-653	29799.82	0	0	0	0.003	0.003
05/16/11 07:48:56	60.00323	471	0	0	-653	29799.82	0	0	0	0.002	0.002
05/16/11 07:48:58	60.00421	471	0	0	-653	29799.82	0	0	0	0.001	0.001
05/16/11 07:49:00	60.00485	471	0	0	-653	29799.82	0	0	0	0.001	0.001
05/16/11 07:49:02	60.00549	471	0	0	-653	29799.82	0	0	0	0.001	0.001
05/16/11 07:49:04	60.00583	471	0	0	-653	29799.79	0	0	0	0.000	0.000
05/16/11 07:49:06	60.00583	471	0	0	-653	29799.79	0	0	0	0.000	0.000
05/16/11 07:49:08	60.00549	471	0	0	-653	29799.79	0	0	0	0.000	0.000
05/16/11 07:49:10	60.00388	471	0	0	-653	29799.79	0	0	0	-0.002	0.002
05/16/11 07:49:12	60.00226	471	0	0	-653	29799.79	0	0	0	-0.002	0.002
05/16/11 07:49:14	60.00226	471	0	0	-653	29795.67	0	0	0	0.000	0.000
05/16/11 07:49:16	60	471	0	0	-653	29795.67	0	0	0	-0.002	0.002
05/16/11 07:49:18	60	471	0	0	-653	29795.67	0	0	0	0.000	0.000
05/16/11 07:49:20	60	471	0	0	-653	29795.67	0	0	0	0.000	0.000
05/16/11 07:49:22	60	471	0	0	-653	29795.67	0	0	0	0.000	0.000
05/16/11 07:49:24	60.00452	471	0	0	-653	29795.55	0	0	0	0.005	0.005
05/16/11 07:49:26	60.00583	471	0	0	-653	29795.55	0	0	0	0.001	0.001
05/16/11 07:49:28	60.00613	471	0	0	-653	29795.55	0	0	0	0.000	0.000
05/16/11 07:49:30	60.00583	471	0	0	-653	29795.55	0	0	0	0.000	0.000

05/16/11 07:49:32	60.00516	471	0	0	-653	29795.55	0	0	0	-0.001	0.001
05/16/11 07:49:34	60.00388	471	0	0	-653	29783.53	0	0	0	-0.001	0.001
05/16/11 07:49:36	60.00195	471	0	0	-653	29783.53	0	0	0	-0.002	0.002
05/16/11 07:49:38	60.00128	471	0	0	-653	29783.53	0	0	0	-0.001	0.001
05/16/11 07:49:40	60.00098	471	0	0	-653	29783.53	0	0	0	0.000	0.000
05/16/11 07:49:42	60.00034	471	0	0	-653	29783.53	0	0	0	-0.001	0.001
05/16/11 07:49:44	60	471	0	0	-653	29783.47	0	0	0	0.000	0.000
05/16/11 07:49:46	59.99902	471	0	0	-653	29783.47	0	0	0	-0.001	0.001
05/16/11 07:49:48	59.99872	471	0	0	-653	29783.47	0	0	0	0.000	0.000
05/16/11 07:49:50	59.99838	471	0	0	-653	29783.47	0	0	0	0.000	0.000
05/16/11 07:49:52	59.99612	471	0	0	-653	29783.47	0	0	0	-0.002	0.002
05/16/11 07:49:54	59.99579	471	0	0	-653	29788.38	0	0	0	0.000	0.000
05/16/11 07:49:56	59.99515	471	0	0	-653	29788.38	0	0	0	-0.001	0.001
05/16/11 07:49:58	59.99387	471	0	0	-653	29788.38	0	0	0	-0.001	0.001
05/16/11 07:50:00	59.99225	471	0	0	-653	29788.38	0	0	0	-0.002	0.002
05/16/11 07:50:02	59.99225	471	0	0	-653	29788.38	0	0	0	0.000	0.000
05/16/11 07:50:04	59.99484	471	0	0	-653	29788.38	0	0	0	0.003	0.003
05/16/11 07:50:06	59.99646	471	0	0	-653	29788.38	0	0	0	0.002	0.002
05/16/11 07:50:08	59.9971	471	0	0	-653	29788.38	0	0	0	0.001	0.001
05/16/11 07:50:10	59.99548	471	0	0	-653	29788.38	0	0	0	-0.002	0.002
05/16/11 07:50:12	59.99289	471	0	0	-653	29788.38	0	0	0	-0.003	0.003
05/16/11 07:50:14	59.98999	471	0	0	-653	29790.16	0	0	0	-0.003	0.003
05/16/11 07:50:16	59.98773	471	0	0	-653	29790.16	0	0	0	-0.002	0.002
05/16/11 07:50:18	59.98642	471	0	0	-653	29790.16	0	0	0	-0.001	0.001
05/16/11 07:50:20	59.98547	471	0	0	-653	29790.16	0	0	0	-0.001	0.001
05/16/11 07:50:22	59.98547	471	0	0	-653	29790.16	0	0	0	0.000	0.000
05/16/11 07:50:24	59.98611	471	0	0	-653	29790.07	0	0	0	0.001	0.001
05/16/11 07:50:26	59.98611	471	0	0	-653	29790.07	0	0	0	0.000	0.000
05/16/11 07:50:28	59.98676	471	0	0	-653	29790.07	0	0	0	0.001	0.001
05/16/11 07:50:30	59.98709	471	0	0	-653	29790.07	0	0	0	0.000	0.000
05/16/11 07:50:32	59.9874	471	0	0	-653	29790.07	0	0	0	0.000	0.000
05/16/11 07:50:34	59.98676	471	0	0	-653	29777.49	0	0	0	-0.001	0.001
05/16/11 07:50:36	59.98611	471	0	0	-653	29777.49	0	0	0	-0.001	0.001
05/16/11 07:50:38	59.98642	471	0	0	-653	29777.49	0	0	0	0.000	0.000
05/16/11 07:50:40	59.9874	471	0	0	-653	29777.49	0	0	0	0.001	0.001
05/16/11 07:50:42	59.98804	471	0	0	-653	29777.49	0	0	0	0.001	0.001
05/16/11 07:50:44	59.9874	471	0	0	-653	29777.49	0	0	0	-0.001	0.001
05/16/11 07:50:46	59.98676	471	0	0	-653	29777.49	0	0	0	-0.001	0.001
05/16/11 07:50:48	59.9848	471	0	0	-653	29777.49	0	0	0	-0.002	0.002
05/16/11 07:50:50	59.98288	471	0	0	-653	29777.49	0	0	0	-0.002	0.002
05/16/11 07:50:52	59.98062	471	0	0	-653	29777.49	0	0	0	-0.002	0.002
05/16/11 07:50:54	59.97998	471	0	0	-653	29782.49	0	0	0	-0.001	0.001
05/16/11 07:50:56	59.97931	471	0	0	-653	29782.49	0	0	0	-0.001	0.001
05/16/11 07:50:58	59.979	471	0	0	-653	29782.49	0	0	0	0.000	0.000
05/16/11 07:51:00	59.97931	471	0	0	-653	29782.49	0	0	0	0.000	0.000
05/16/11 07:51:02	59.98093	471	0	0	-653	29782.49	0	0	0	0.002	0.002
05/16/11 07:51:04	59.98126	471	0	0	-653	29782.46	0	0	0	0.000	0.000
05/16/11 07:51:06	59.98126	471	0	0	-653	29782.46	0	0	0	0.000	0.000
05/16/11 07:51:08	59.9819	471	0	0	-653	29782.46	0	O	0	0.001	0.001

05/16/11 07:51:10	59.98126	471	0	0	-653	29782.46	0	0	0	-0.001	0.001
05/16/11 07:51:12	59.97964	471	0	0	-653	29782.46	0	0	0	-0.002	0.002
05/16/11 07:51:14	59.97705	471	0	0	-653	29756.13	0	0	0	-0.003	0.003
05/16/11 07:51:16	59.97479	471	0	0	-653	29756.13	0	0	0	-0.002	0.002
05/16/11 07:51:18	59.97351	471	0	0	-653	29756.13	0	0	0	-0.001	0.001
05/16/11 07:51:20	59.97287	471	0	0	-653	29756.13	0	0	0	-0.001	0.001
05/16/11 07:51:22	59.97223	471	0	0	-653	29756.13	0	0	0	-0.001	0.001
05/16/11 07:51:24	59.97189	471	0	0	-653	29756.18	0	0	0	0.000	0.000
05/16/11 07:51:26	59.97125	471	0	0	-653	29756.18	0	0	0	-0.001	0.001
05/16/11 07:51:28	59.97156	471	0	0	-653	29756.18	0	0	0	0.000	0.000
05/16/11 07:51:30	59.97318	471	0	0	-653	29756.18	0	0	0	0.002	0.002
05/16/11 07:51:32	59.97415	471	0	0	-653	29756.18	0	0	0	0.001	0.001
05/16/11 07:51:34	59.97479	471	0	0	-653	29777.58	0	0	0	0.001	0.001
05/16/11 07:51:36	59.97382	471	0	0	-653	29777.58	0	0	0	-0.001	0.001
05/16/11 07:51:38	59.97287	471	0	0	-653	29777.58	0	0	0	-0.001	0.001
05/16/11 07:51:40	59.97318	471	0	0	-653	29777.58	0	0	0	0.000	0.000
05/16/11 07:51:42	59.97449	471	0	0	-653	29777.58	0	0	0	0.001	0.001
05/16/11 07:51:44	59.97675	471	0	0	-653	29777.4	0	0	0	0.002	0.002
05/16/11 07:51:46	59.97803	471	0	0	-653	29777.4	0	0	0	0.001	0.001
05/16/11 07:51:48	59.97998	471	0	0	-653	29777.4	0	0	0	0.002	0.002
05/16/11 07:51:50	59.98093	471	0	0	-653	29777.4	0	0	0	0.001	0.001
05/16/11 07:51:52	59.98093	471	0	0	-653	29777.4	0	0	0	0.000	0.000
05/16/11 07:51:54	59.97964	471	0	0	-653	29802.24	0	0	0	-0.001	0.001
05/16/11 07:51:56	59.97803	471	0	0	-653	29802.24	0	0	0	-0.002	0.002
05/16/11 07:51:58	59.97705	471	0	0	-653	29802.24	0	0	0	-0.001	0.001
05/16/11 07:52:00	59.97739	471	0	0	-653	29802.24	0	0	0	0.000	0.000
05/16/11 07:52:02	59.97836	471	0	0	-653	29802.24	0	0	0	0.001	0.001
05/16/11 07:52:04	59.97931	471	0	0	-653	29802.18	0	0	0	0.001	0.001
05/16/11 07:52:06	59.98126	471	0	0	-653	29802.18	0	0	0	0.002	0.002
05/16/11 07:52:08	59.98416	471	0	0	-653	29802.18	0	0	0	0.003	0.003
05/16/11 07:52:10	59.98611	471	0	0	-653	29802.18	0	0	0	0.002	0.002
05/16/11 07:52:12	59.98709	471	0	0	-653	29802.18	0	0	0	0.001	0.001
05/16/11 07:52:14	59.9874	471	0	0	-653	29802.29	0	0	0	0.000	0.000
05/16/11 07:52:16	59.98804	471	0	0	-653	29802.29	0	0	0	0.001	0.001
05/16/11 07:52:18	59.98804	471	0	0	-653	29802.29	0	0	0	0.000	0.000
05/16/11 07:52:20	59.98773	471	0	0	-653	29802.29	0	0	0	0.000	0.000
05/16/11 07:52:22	59.9874	471	0	0	-653	29802.29	0	0	0	0.000	0.000
05/16/11 07:52:24	59.9874	471	0	0	-653	29802.32	0	0	0	0.000	0.000
05/16/11 07:52:26	59.9874	471	0	0	-653	29802.32	0	0	0	0.000	0.000
05/16/11 07:52:28	59.9874	471	0	0	-653	29802.32	0	0	0	0.000	0.000
05/16/11 07:52:30	59.98773	471	0	0	-653	29802.32	0	0	0	0.000	0.000
05/16/11 07:52:32	59.98901	471	0	0	-653	29802.32	0	0	0	0.001	0.001
05/16/11 07:52:34	59.98965	471	0	0	-653	29795.02	0	0	0	0.001	0.001
05/16/11 07:52:36	59.98935	471	0	0	-653	29795.02	0	0	0	0.000	0.000
05/16/11 07:52:38	59.98837	471	0	0	-653	29795.02	0	0	0	-0.001	0.001
05/16/11 07:52:40	59.98868	471	0	0	-653	29795.02	0	0	0	0.000	0.000
05/16/11 07:52:42	59.98868	471	0	0	-653	29795.02	0	0	0	0.000	0.000
05/16/11 07:52:44	59.9874	471	0	0	-653	29795.05	0	0	0	-0.001	0.001
05/16/11 07:52:46	59.98611	471	0	0	-653	29795.05	0	0	0	-0.001	0.001

05/16/11 07:52:48	59.98611	471	0	0	-653	29795.05	0	0	0	0.000	0.000
05/16/11 07:52:50	59.98709	471	0	0	-653	29795.05	0	0	0	0.001	0.001
05/16/11 07:52:52	59.98837	471	0	0	-653	29795.05	0	0	0	0.001	0.001
05/16/11 07:52:54	59.98935	471	0	0	-653	29781.42	0	0	0	0.001	0.001
05/16/11 07:52:56	59.98999	471	0	0	-653	29781.42	0	0	0	0.001	0.001
05/16/11 07:52:58	59.99127	471	0	0	-653	29781.42	0	0	0	0.001	0.001
05/16/11 07:53:00	59.99255	471	0	0	-653	29781.42	0	0	0	0.001	0.001
05/16/11 07:53:02	59.99387	471	0	0	-653	29781.42	0	0	0	0.001	0.001
05/16/11 07:53:04	59.99387	471	0	0	-653	29781.45	0	0	0	0.000	0.000
05/16/11 07:53:06	59.99289	471	0	0	-653	29781.45	0	0	0	-0.001	0.001
05/16/11 07:53:08	59.99097	471	0	0	-653	29781.45	0	0	0	-0.002	0.002
05/16/11 07:53:10	59.98868	471	0	0	-653	29781.45	0	0	0	-0.002	0.002
05/16/11 07:53:12	59.98642	471	0	0	-653	29781.45	0	0	0	-0.002	0.002
05/16/11 07:53:14	59.98386	471	0	0	-653	29802.43	0	0	0	-0.003	0.003
05/16/11 07:53:16	59.9816	471	0	0	-653	29802.43	0	0	0	-0.002	0.002
05/16/11 07:53:18	59.97931	471	0	0	-653	29802.43	0	0	0	-0.002	0.002
05/16/11 07:53:20	59.97675	471	0	0	-653	29802.43	0	0	0	-0.003	0.003
05/16/11 07:53:22	59.97415	471	0	0	-653	29802.43	0	0	0	-0.003	0.003
05/16/11 07:53:24	59.97287	471	0	0	-653	29802.4	0	0	0	-0.001	0.001
05/16/11 07:53:26	59.97223	471	0	0	-653	29802.4	0	0	0	-0.001	0.001
05/16/11 07:53:28	59.97318	471	0	0	-653	29802.4	0	0	0	0.001	0.001
05/16/11 07:53:30	59.97449	471	0	0	-653	29802.4	0	0	0	0.001	0.001
05/16/11 07:53:32	59.97351	471	0	0	-653	29802.4	0	0	0	-0.001	0.001
05/16/11 07:53:34	59.97253	471	0	0	-653	29804.4	0	0	0	-0.001	0.001
05/16/11 07:53:36	59.97253	471	0	0	-653	29804.4	0	0	0	0.000	0.000
05/16/11 07:53:38	59.97223	471	0	0	-653	29804.4	0	0	0	0.000	0.000
05/16/11 07:53:40	59.97156	471	0	0	-653	29804.4	0	0	0	-0.001	0.001
05/16/11 07:53:42	59.97189	471	0	0	-653	29804.4	0	0	0	0.000	0.000
05/16/11 07:53:44	59.97318	471	0	0	-653	29804.4	0	0	0	0.001	0.001
05/16/11 07:53:46	59.97479	471	0	0	-653	29804.4	0	0	0	0.002	0.002
05/16/11 07:53:48	59.9761	471	0	0	-653	29804.4	0	0	0	0.001	0.001
05/16/11 07:53:50	59.97803	471	0	0	-653	29804.4	0	0	0	0.002	0.002
05/16/11 07:53:52	59.98062	471	0	0	-653	29804.4	0	0	0	0.003	0.003
05/16/11 07:53:54	59.98254	471	0	0	-653	29797.32	0	0	0	0.002	0.002
05/16/11 07:53:56	59.98416	471	0	0	-653	29797.32	0	0	0	0.002	0.002
05/16/11 07:53:58	59.98611	471	0	0	-653	29797.32	0	0	0	0.002	0.002
05/16/11 07:54:00	59.98804	471	0	0	-653	29797.32	0	0	0	0.002	0.002
05/16/11 07:54:02	59.9903	471	0	0	-653	29797.32	0	0	0	0.002	0.002
05/16/11 07:54:04	59.99161	471	0	0	-653	29797.29	0	0	0	0.001	0.001
05/16/11 07:54:06	59.99323	471	0	0	-653	29797.29	0	0	0	0.002	0.002
05/16/11 07:54:08	59.99484	471	0	0	-653	29797.29	0	0	0	0.002	0.002
05/16/11 07:54:10	59.99579	471	0	0	-653	29797.29	0	0	0	0.001	0.001
05/16/11 07:54:12	59.99515	471	0	0	-653	29797.29	0	0		-0.001	0.001
05/16/11 07:54:14	59.99612	471	0	0	-653	29823.76	0	0		0.001	0.001
05/16/11 07:54:16	59.99805	471	0	0	-653	29823.76	0	0	0	0.002	0.002
05/16/11 07:54:18	59.99936	471	0	0	-653	29823.76	0	0	0	0.001	0.001
05/16/11 07:54:20	60.00064	471	0	0	-653	29823.76	0	0	0	0.001	0.001
05/16/11 07:54:22	60.00098	471	0	0	-653	29823.76	0	0	0	0.000	0.000
05/16/11 07:54:24	60.00064	471	0	0	-653	29818.41	0	0	-	0.000	0.000

05/16/11 07:54:26	60	471	0	0	-653	29818.41	0	0	0	-0.001	0.001
05/16/11 07:54:28	59.99902	471	0	0	-653	29818.41	0	0	0	-0.001	0.001
05/16/11 07:54:30	59.99872	471	0	0	-653	29818.41	0	0	0	0.000	0.000
05/16/11 07:54:32	59.99936	471	0	0	-653	29818.41	0	0	0	0.001	0.001
05/16/11 07:54:34	60.00034	471	0	0	-653	29808.89	0	0	0	0.001	0.001
05/16/11 07:54:36	60.00162	471	0	0	-653	29808.89	0	0	0	0.001	0.001
05/16/11 07:54:38	60.00354	471	0	0	-653	29808.89	0	0	0	0.002	0.002
05/16/11 07:54:40	60.00485	471	0	0	-653	29808.89	0	0	0	0.001	0.001
05/16/11 07:54:42	60.00421	471	0	0	-653	29808.89	0	0	0	-0.001	0.001
05/16/11 07:54:44	60.00195	471	0	0	-653	29814.89	0	0	0	-0.002	0.002
05/16/11 07:54:46	59.99902	471	0	0	-653	29814.89	0	0	0	-0.003	0.003
05/16/11 07:54:48	59.99646	471	0	0	-653	29814.89	0	0	0	-0.003	0.003
05/16/11 07:54:50	59.99417	471	0	0	-653	29814.89	0	0	0	-0.002	0.002
05/16/11 07:54:52	59.99323	471	0	0	-653	29814.89	0	0	0	-0.001	0.001
05/16/11 07:54:54	59.99127	471	0	0	-653	29826.47	0	0	0	-0.002	0.002
05/16/11 07:54:56	59.98935	471	0	0	-653	29826.47	0	0	0	-0.002	0.002
05/16/11 07:54:58	59.98709	471	0	0	-653	29826.47	0	0	0	-0.002	0.002
05/16/11 07:55:00	59.98578	471	0	0	-653	29826.47	0	0	0	-0.001	0.001
05/16/11 07:55:02	59.98547	471	0	0	-653	29826.47	0	0	0	0.000	0.000
05/16/11 07:55:04	59.98547	471	0	0	-653	29826.41	0	0	0	0.000	0.000
05/16/11 07:55:06	59.98514	471	0	0	-653	29826.41	0	0	0	0.000	0.000
05/16/11 07:55:08	59.9845	471	0	0	-653	29826.41	0	0	0	-0.001	0.001
05/16/11 07:55:10	59.9845	471	0	0	-653	29826.41	0	0	0	0.000	0.000
05/16/11 07:55:12	59.9848	471	0	0	-653	29826.41	0	0	0	0.000	0.000
05/16/11 07:55:14	59.9848	471	0	0	-653	29834.18	0	0	0	0.000	0.000
05/16/11 07:55:16	59.98611	471	0	0	-653	29834.18	0	0	0	0.001	0.001
05/16/11 07:55:18	59.9874	471	0	0	-653	29834.18	0	0	0	0.001	0.001
05/16/11 07:55:20	59.98868	471	0	0	-653	29834.18	0	0	0	0.001	0.001
05/16/11 07:55:22	59.98837	471	0	0	-653	29834.18	0	0	0	0.000	0.000
05/16/11 07:55:24	59.98837	471	0	0	-653	29836.13	0	0	0	0.000	0.000
05/16/11 07:55:26	59.98578	471	0	0	-653	29836.13	0	0	0	-0.003	0.003
05/16/11 07:55:28	59.9845	471	0	0	-653	29836.13	0	0	0	-0.001	0.001
05/16/11 07:55:30	59.9848	471	0	0	-653	29836.13	0	0	0	0.000	0.000
05/16/11 07:55:32	59.98547	471	0	0	-653	29836.13	0	0	0	0.001	0.001
05/16/11 07:55:34	59.98642	471	0	0	-653	29821.84	0	0	0	0.001	0.001
05/16/11 07:55:36	59.98773	471	0	0	-653	29821.84	0	0	0	0.001	0.001
05/16/11 07:55:38	59.98965	471	0	0	-653	29821.84	0	0	0	0.002	0.002
05/16/11 07:55:40	59.99063	471	0	0	-653	29821.84	0	0	0	0.001	0.001
05/16/11 07:55:42	59.99063	471	0	0	-653	29821.84	0	0	0	0.000	0.000
05/16/11 07:55:44	59.99063	471	0	0	-653	29821.87	0	0	0	0.000	0.000
05/16/11 07:55:46	59.99063	471	0	0	-653	29821.87	0	0	0	0.000	0.000
05/16/11 07:55:48	59.98642	471	0	0	-653	29821.87	0	0	0	-0.004	0.004
05/16/11 07:55:50	59.9845	471	0	0	-653	29821.87	0	0	0	-0.002	0.002
05/16/11 07:55:52	59.98224	471	0	0	-653	29821.87	0	0		-0.002	0.002
05/16/11 07:55:54	59.98062	471	0	0	-653	29831.33	0	0		-0.002	0.002
05/16/11 07:55:56	59.97739	471	0	0	-653	29831.33	0	0	0	-0.003	0.003
05/16/11 07:55:58	59.97641	471	0	0	-653	29831.33	0	0	0	-0.001	0.001
05/16/11 07:56:00	59.97641	471	0	0	-653	29831.33	0	0	0	0.000	0.000
05/16/11 07:56:02	59.9761	471	0	0	-653	29831.33	0	0	0	0.000	0.000

05/16/11 07:56:04	59.97543	471	0	0	-653	29831.33	0	0	0	-0.001	0.001
05/16/11 07:56:06	59.97577	471	0	0	-653	29831.33	0	0	0	0.000	0.000
05/16/11 07:56:08	59.97675	471	0	0	-653	29831.33	0	0	0	0.001	0.001
05/16/11 07:56:10	59.97705	471	0	0	-653	29831.33	0	0	0	0.000	0.000
05/16/11 07:56:12	59.97705	471	0	0	-653	29831.33	0	0	0	0.000	0.000
05/16/11 07:56:14	59.97705	471	0	0	-653	29835.51	0	0	0	0.000	0.000
05/16/11 07:56:16	59.97675	471	0	0	-653	29835.51	0	0	0	0.000	0.000
05/16/11 07:56:18	59.97705	471	0	0	-653	29835.51	0	0	0	0.000	0.000
05/16/11 07:56:20	59.97739	471	0	0	-653	29835.51	0	0	0	0.000	0.000
05/16/11 07:56:22	59.97803	471	0	0	-653	29835.51	0	0	0	0.001	0.001
05/16/11 07:56:24	59.97803	471	0	0	-653	29856.55	0	0	0	0.000	0.000
05/16/11 07:56:26	59.97867	471	0	0	-653	29856.55	0	0	0	0.001	0.001
05/16/11 07:56:28	59.97964	471	0	0	-653	29856.55	0	0	0	0.001	0.001
05/16/11 07:56:30	59.9816	471	0	0	-653	29856.55	0	0	0	0.002	0.002
05/16/11 07:56:32	59.98352	471	0	0	-653	29856.55	0	0	0	0.002	0.002
05/16/11 07:56:34	59.98642	471	0	0	-653	29846.76	0	0	0	0.003	0.003
05/16/11 07:56:36	59.9903	471	0	0	-653	29846.76	0	0	0	0.004	0.004
05/16/11 07:56:38	59.99451	471	0	0	-653	29846.76	0	0	0	0.004	0.004
05/16/11 07:56:40	59.99741	471	0	0	-653	29846.76	0	0	0	0.003	0.003
05/16/11 07:56:42	59.99838	471	0	0	-653	29846.76	0	0	0	0.001	0.001
05/16/11 07:56:44	59.99805	471	0	0	-653	29860.05	0	0	0	0.000	0.000
05/16/11 07:56:46	59.99677	471	0	0	-653	29860.05	0	0	0	-0.001	0.001
05/16/11 07:56:48	59.99612	471	0	0	-653	29860.05	0	0	0	-0.001	0.001
05/16/11 07:56:50	59.99548	471	0	0	-653	29860.05	0	0	0	-0.001	0.001
05/16/11 07:56:52	59.99612	471	0	0	-653	29860.05	0	0	0	0.001	0.001
05/16/11 07:56:54	59.99936	471	0	0	-653	29873.15	0	0	0	0.003	0.003
05/16/11 07:56:56	60.00323	471	0	0	-653	29873.15	0	0	0	0.004	0.004
05/16/11 07:56:58	60.00745	471	0	0	-653	29873.15	0	0	0	0.004	0.004
05/16/11 07:57:00	60.01163	471	0	0	-653	29873.15	0	0	0	0.004	0.004
05/16/11 07:57:02	60.01453	471	0	0	-653	29873.15	0	0	0	0.003	0.003
05/16/11 07:57:04	60.01746	471	0	0	-653	29873.15	0	0	0	0.003	0.003
05/16/11 07:57:06	60.01907	471	0	0	-653	29873.15	0	0	0	0.002	0.002
05/16/11 07:57:08	60.01938	471	0	0	-653	29873.15	0	0	0	0.000	0.000
05/16/11 07:57:10	60.01938	471	0	0	-653	29873.15	0	0	0	0.000	0.000
05/16/11 07:57:12	60.01938	471	0	0	-653	29873.15	0	0	0	0.000	0.000
05/16/11 07:57:14	60.02036	471	0	0	-653	29889.67	0	0	0	0.001	0.001
05/16/11 07:57:16	60.02197	471	0	0	-653	29889.67	0	0	0	0.002	0.002
05/16/11 07:57:18	60.02423	471	0	0	-653	29889.67	0	0	0	0.002	0.002
05/16/11 07:57:20	60.02682	471	0	0	-653	29889.67	0	0	0	0.003	0.003
05/16/11 07:57:22	60.02811	471	0	0	-653	29889.67	0	0	0	0.001	0.001
05/16/11 07:57:24	60.02939	471	0	0	-653	29886.6	0	0	0	0.001	0.001
05/16/11 07:57:26	60.03036	471	0	0	-653	29886.6	0	0	0	0.001	0.001
05/16/11 07:57:28	60.02875	471	0	0	-653	29886.6	0	0	0	-0.002	0.002
05/16/11 07:57:30	60.02682	471	0	0	-653	29886.6	0	0	0	-0.002	0.002
05/16/11 07:57:32	60.02457	471	0	0	-653	29886.6	0	0	0	-0.002	0.002
05/16/11 07:57:34	60.02261	471	0	0	-653	29891.67	0	0	0	-0.002	0.002
05/16/11 07:57:36	60.02231	471	0	0	-653	29891.67	0	0	0	0.000	0.000
05/16/11 07:57:38	60.02295	471	0	0	-653	29891.67	0	0	0	0.001	0.001
05/16/11 07:57:40	60.02359	471	0	0	-653	29891.67	0	0	0	0.001	0.001

05/16/11 07:57:42	60.02261	471	0	0	-653	29891.67	0	0	0	-0.001	0.001
05/16/11 07:57:44	60.02164	471	0	0	-653	29891.64	0	0	0	-0.001	0.001
05/16/11 07:57:46	60.01971	471	0	0	-653	29891.64	0	0	0	-0.002	0.002
05/16/11 07:57:48	60.01776	471	0	0	-653	29891.64	0	0	0	-0.002	0.002
05/16/11 07:57:50	60.01746	471	0	0	-653	29891.64	0	0	0	0.000	0.000
05/16/11 07:57:52	60.01682	471	0	0	-653	29891.64	0	0	0	-0.001	0.001
05/16/11 07:57:54	60.01712	471	0	0	-653	29891.51	0	0	0	0.000	0.000
05/16/11 07:57:56	60.0184	471	0	0	-653	29891.51	0	0	0	0.001	0.001
05/16/11 07:57:58	60.01874	471	0	0	-653	29891.51	0	0	0	0.000	0.000
05/16/11 07:58:00	60.0181	471	0	0	-653	29891.51	0	0	0	-0.001	0.001
05/16/11 07:58:02	60.01682	471	0	0	-653	29891.51	0	0	0	-0.001	0.001
05/16/11 07:58:04	60.0152	471	0	0	-653	29891.6	0	0	0	-0.002	0.002
05/16/11 07:58:06	60.0152	471	0	0	-653	29891.6	0	0	0	0.000	0.000
05/16/11 07:58:08	60.0155	471	0	0	-653	29891.6	0	0	0	0.000	0.000
05/16/11 07:58:10	60.0155	471	0	0	-653	29891.6	0	0	0	0.000	0.000
05/16/11 07:58:12	60.01453	471	0	0	-653	29891.6	0	0	0	-0.001	0.001
05/16/11 07:58:14	60.01453	471	0	0	-653	29884.5	0	0	0	0.000	0.000
05/16/11 07:58:16	60.0152	471	0	0	-653	29884.5	0	0	0	0.001	0.001
05/16/11 07:58:18	60.01584	471	0	0	-653	29884.5	0	0	0	0.001	0.001
05/16/11 07:58:20	60.01614	471	0	0	-653	29884.5	0	0	0	0.000	0.000
05/16/11 07:58:22	60.01584	471	0	0	-653	29884.5	0	0	0	0.000	0.000
05/16/11 07:58:24	60.0152	471	0	0	-653	29881.79	0	0	0	-0.001	0.001
05/16/11 07:58:26	60.0155	471	0	0	-653	29881.79	0	0	0	0.000	0.000
05/16/11 07:58:28	60.01614	471	0	0	-653	29881.79	0	0	0	0.001	0.001
05/16/11 07:58:30	60.01776	471	0	0	-653	29881.79	0	0	0	0.002	0.002
05/16/11 07:58:32	60.01907	471	0	0	-653	29881.79	0	0	0	0.001	0.001
05/16/11 07:58:34	60.02069	471	0	0	-653	29887.14	0	0	0	0.002	0.002
05/16/11 07:58:36	60.02133	471	0	0	-653	29887.14	0	0	0	0.001	0.001
05/16/11 07:58:38	60.02069	471	0	0	-653	29887.14	0	0	0	-0.001	0.001
05/16/11 07:58:40	60.01907	471	0	0	-653	29887.14	0	0	0	-0.002	0.002
05/16/11 07:58:42	60.01746	471	0	0	-653	29887.14	0	0	0	-0.002	0.002
05/16/11 07:58:44	60.01614	471	0	0	-653	29873.08	0	0	0	-0.001	0.001
05/16/11 07:58:46	60.0152	471	0	0	-653	29873.08	0	0	0	-0.001	0.001
05/16/11 07:58:48	60.01453	471	0	0	-653	29873.08	0	0	0	-0.001	0.001
05/16/11 07:58:50	60.01389	471	0	0	-653	29873.08	0	0	0	-0.001	0.001
05/16/11 07:58:52	60.01358	471	0	0	-653	29873.08	0	0	0	0.000	0.000
05/16/11 07:58:54	60.01099	471	0	0	-653	29862.1	0	0	0	-0.003	0.003
05/16/11 07:58:56	60.00549	471	0	0	-653	29862.1	0	0	0	-0.005	0.005
05/16/11 07:58:58	59.99966	471	0	0	-653	29862.1	0	0	0	-0.006	0.006
05/16/11 07:59:00	59.99451	471	0	0	-653	29862.1	0	0	0	-0.005	0.005
05/16/11 07:59:02	59.99127	471	0	0	-653	29862.1	0	0	0	-0.003	0.003
05/16/11 07:59:04	59.98965	471	0	0	-653	29861.95	0	0	0	-0.002	0.002
05/16/11 07:59:06	59.98868	471	0	0	-653	29861.95	0	0	0	-0.001	0.001
05/16/11 07:59:08	59.98676	471	0	0	-653	29861.95	0	0	0	-0.002	0.002
05/16/11 07:59:10	59.9848	471	0	0	-653	29861.95	0	0	0	-0.002	0.002
05/16/11 07:59:12	59.98288	471	0	0	-653	29861.95	0	0	0	-0.002	0.002
05/16/11 07:59:14	59.98062	471	0	0	-653	29906.21	0	0	0	-0.002	0.002
05/16/11 07:59:16	59.97803	471	0	0	-653	29906.21	0	0	0	-0.003	0.003
05/16/11 07:59:18	59.9761	471	0	0	-653	29906.21	0	O	0	-0.002	0.002

05/16/11 07:59:20	59.97577	471	0	0	-653	29906.21	0	0	0	0.000	0.000
05/16/11 07:59:22	59.9761	471	0	0	-653	29906.21	0	0	0	0.000	0.000
05/16/11 07:59:24	59.9761	471	0	0	-653	29878.69	0	0	0	0.000	0.000
05/16/11 07:59:26	59.97641	471	0	0	-653	29878.69	0	0	0	0.000	0.000
05/16/11 07:59:28	59.97543	471	-	0	-653	29878.69	0	0	0	-0.001	0.001
05/16/11 07:59:30	59.97479	471	0	0	-653	29878.69	0	0	0	-0.001	0.001
05/16/11 07:59:32	59.97382	471	0	0	-653	29878.69	0	0	0	-0.001	0.001
05/16/11 07:59:34	59.97253	471	0	0	-653	29900.56	0	0	0	-0.001	0.001
05/16/11 07:59:36	59.97223	471	0	0	-653	29900.56	0	0	0	0.000	0.000
05/16/11 07:59:38	59.97253	471	0	0	-653	29900.56	0	0	0	0.000	0.000
05/16/11 07:59:40	59.97351	471	0	0	-653	29900.56	0	0	0	0.001	0.001
05/16/11 07:59:42	59.97351	471	0	0	-653	29900.56	0	0	0	0.000	0.000
05/16/11 07:59:44	59.97318	471	0	0	-653	29896.99	0	0	0	0.000	0.000
05/16/11 07:59:46	59.97189	471	0	0	-653	29896.99	0	0	0	-0.001	0.001
05/16/11 07:59:48	59.97092	471	0	0	-653	29896.99	0	0	0	-0.001	0.001
05/16/11 07:59:50	59.97028	471	0	0	-653	29896.99	0	0	0	-0.001	0.001
05/16/11 07:59:52	59.97028	471	0	0	-653	29896.99	0	0	0	0.000	0.000
05/16/11 07:59:54	59.97028	471	0	0	-653	29905.8	0	0	0	0.000	0.000
05/16/11 07:59:56	59.97028	471	0	0	-653	29905.8	0	0	0	0.000	0.000
05/16/11 07:59:58	59.97061	471	0	0	-653	29905.8	0	0	0	0.000	0.000
05/16/11 08:00:00	59.97287	471	0	0	-653	29905.8	0	0	0	0.002	0.002
05/16/11 08:00:02	59.97287	471	0	0	-653	29905.8	0	0	0	0.000	0.000
05/16/11 08:00:04	59.97479	471	0	0	-653	29905.77	0	0	0	0.002	0.002
05/16/11 08:00:06	59.97479	471	0	0	-653	29905.77	0	0	0	0.000	0.000
05/16/11 08:00:08	59.97382	471	0	0	-653	29905.77	0	0	0	-0.001	0.001
05/16/11 08:00:10	59.96832	471	0	0	-653	29905.77	0	0	0	-0.005	0.005
05/16/11 08:00:12	59.96802	471	0	0	-653	29905.77	0	0	0	0.000	0.000
05/16/11 08:00:14	59.96899	471	0	0	-653	29914.9	0	0	0	0.001	0.001
05/16/11 08:00:16	59.96994	471	0	0	-653	29914.9	0	0	0	0.001	0.001
05/16/11 08:00:18	59.97382	471	0	0	-653	29914.9	0	0	0	0.004	0.004
05/16/11 08:00:20	59.97382	471	0	0	-653	29914.9	0	0	0	0.000	0.000
05/16/11 08:00:22	59.97382	471	0	0	-653	29914.9	0	0	0	0.000	0.000
05/16/11 08:00:24	59.97769	471	0	0	-653	29925.58	0	0	0	0.004	0.004
05/16/11 08:00:26	59.97739	471	0	0	-653	29925.58	0	0	0	0.000	0.000
05/16/11 08:00:28	59.9761	471	0	0	-653	29925.58	0	0	0	-0.001	0.001
05/16/11 08:00:30	59.9761	471	0	0	-653	29925.58	0	0	0	0.000	0.000
05/16/11 08:00:32	59.97705	471	0	0	-653	29925.58	0	0	0	0.001	0.001
05/16/11 08:00:34	59.97769	471	0	0	-653	29938.87	0	0	0	0.001	0.001
05/16/11 08:00:36	59.97803	471	0	0	-653	29938.87	0	0	0	0.000	0.000
05/16/11 08:00:38	59.97803	471	0	0	-653	29938.87	0	0	0	0.000	0.000
05/16/11 08:00:40	59.97739	471	0	0	-653	29938.87	0	0	0	-0.001	0.001
05/16/11 08:00:42	59.97675	471	0	0	-653	29938.87	0	0	0	-0.001	0.001
05/16/11 08:00:44	59.97641	471	0	0	-653	29952.51	0	0	0	0.000	0.000
05/16/11 08:00:46	59.97479	471	0	0	-653	29952.51	0	0	0	-0.002	0.002
05/16/11 08:00:48	59.97449	471	0	0	-653	29952.51	0	0	0	0.000	0.000
05/16/11 08:00:50	59.97543	471	0	0	-653	29952.51	0	0	0	0.001	0.001
05/16/11 08:00:52	59.97705	471	0	0	-653	29952.51	0	0	0	0.002	0.002
05/16/11 08:00:54	59.97931	471	0	0	-653	29952.51	0	0	0	0.002	0.002
05/16/11 08:00:56	59.97964	471	0	0	-653	29948.95	0	0	0	0.000	0.000

05/16/11 08:00:58	59.979	471	0	0	-653	29948.95	0	0	0	-0.001	0.001
05/16/11 08:01:00	59.97803	471	0	0	-653	29948.95	0	0	0	-0.001	0.001
05/16/11 08:01:02	59.97803	471	0	0	-653	29948.95	0	0	0	0.000	0.000
05/16/11 08:01:04	59.979	471	0	0	-653	29948.95	0	0	0	0.001	0.001
05/16/11 08:01:06	59.98029	471	0	0	-653	29948.95	0	0	0	0.001	0.001
05/16/11 08:01:08	59.9819	471	0	0	-653	29948.95	0	0	0	0.002	0.002
05/16/11 08:01:10	59.98318	471	0	0	-653	29948.95	0	0	0	0.001	0.001
05/16/11 08:01:12	59.9845	471	0	0	-653	29948.95	0	0	0	0.001	0.001
05/16/11 08:01:14	59.98578	471	0	0	-653	29951.05	0	0	0	0.001	0.001
05/16/11 08:01:16	59.98642	471	0	0	-653	29951.05	0	0	0	0.001	0.001
05/16/11 08:01:18	59.98642	471	0	0	-653	29951.05	0	0	0	0.000	0.000
05/16/11 08:01:20	59.98709	471	0	0	-653	29951.05	0	0	0	0.001	0.001
05/16/11 08:01:22	59.98773	471	0	0	-653	29951.05	0	0	0	0.001	0.001
05/16/11 08:01:24	59.98965	471	0	0	-653	29955.09	0	0	0	0.002	0.002
05/16/11 08:01:26	59.99161	471	0	0	-653	29955.09	0	0	0	0.002	0.002
05/16/11 08:01:28	59.99255	471	0	0	-653	29955.09	0	0	0	0.001	0.001
05/16/11 08:01:30	59.99323	471	0	0	-653	29955.09	0	0	0	0.001	0.001
05/16/11 08:01:32	59.99289	471	0	0	-653	29955.09	0	0	0	0.000	0.000
05/16/11 08:01:34	59.99097	471	0	0	-653	29967.69	0	0	0	-0.002	0.002
05/16/11 08:01:36	59.98804	471	0	0	-653	29967.69	0	0	0	-0.003	0.003
05/16/11 08:01:38	59.98578	471	0	0	-653	29967.69	0	0	0	-0.002	0.002
05/16/11 08:01:40	59.98386	471	0	0	-653	29967.69	0	0	0	-0.002	0.002
05/16/11 08:01:42	59.98318	471	0	0	-653	29967.69	0	0	0	-0.001	0.001
05/16/11 08:01:44	59.98318	471	0	0	-653	29983.13	0	0	0	0.000	0.000
05/16/11 08:01:46	59.98288	471	0	0	-653	29983.13	0	0	0	0.000	0.000
05/16/11 08:01:48	59.98126	471	0	0	-653	29983.13	0	0	0	-0.002	0.002
05/16/11 08:01:50	59.97998	471	0	0	-653	29983.13	0	0	0	-0.001	0.001
05/16/11 08:01:52	59.97964	471	0	0	-653	29983.13	0	0	0	0.000	0.000
05/16/11 08:01:54	59.98029	471	0	0	-653	29976.75	0	0	0	0.001	0.001
05/16/11 08:01:56	59.98126	471	0	0	-653	29976.75	0	0	0	0.001	0.001
05/16/11 08:01:58	59.98352	471	0	0	-653	29976.75	0	0	0	0.002	0.002
05/16/11 08:02:00	59.98386	471	0	0	-653	29976.75	0	0	0	0.000	0.000
05/16/11 08:02:02	59.98126	471	0	0	-653	29976.75	0	0	0	-0.003	0.003
05/16/11 08:02:04	59.97543	471	0	0	-653	29976.78	0	0	0	-0.006	0.006
05/16/11 08:02:06	59.96832	471	0	0	-653	29976.78	0	0	0	-0.007	0.007
05/16/11 08:02:08	59.9635	471	0	0	-653	29976.78	0	0	0	-0.005	0.005
05/16/11 08:02:10	59.96155	471	0	0	-653	29976.78	0	0	0	-0.002	0.002
05/16/11 08:02:12	59.96091	471	0	0	-653	29976.78	0	0	0	-0.001	0.001
05/16/11 08:02:14	59.96155	471	0	0	-653	30008.51	0	0	0	0.001	0.001
05/16/11 08:02:16	59.96057	471	0	0	-653	30008.51		0	0	-0.001	0.001
05/16/11 08:02:18	59.95801	471	0	0	-653	30008.51	0	0	0	-0.003	0.003
05/16/11 08:02:20	59.95575	471	0	0	-653	30008.51	0	0	0	-0.002	0.002
05/16/11 08:02:22	59.95575	471	0	0	-653	30008.51	0	0	0	0.000	0.000
05/16/11 08:02:24	59.95703	471	0	0	-653	30037.25	0	0	0	0.001	0.001
05/16/11 08:02:26	59.95895	471	0	0	-653	30037.25	0	0	0	0.002	0.002
05/16/11 08:02:28	59.96057	471	0	0	-653	30037.25	0	0	0	0.002	0.002
05/16/11 08:02:30	59.96155	471	0	0	-653	30037.25	0	0	0	0.001	0.001
05/16/11 08:02:32	59.96252	471	0	0	-653	30037.25	0	0	0	0.001	0.001
05/16/11 08:02:34	59.96414	471	0	0	-653	30055.73	0	O		0.002	0.002

05/16/11 08:02:36	59.96512	471	0	0	-653	30055.73	0	0	0	0.001	0.001
05/16/11 08:02:38	59.96512	471	0	0	-653	30055.73	0	0	0	0.000	0.000
05/16/11 08:02:40	59.96576	471	0	0	-653	30055.73	0	0	0	0.001	0.001
05/16/11 08:02:42	59.96704	471	0	0	-653	30055.73	0	0	0	0.001	0.001
05/16/11 08:02:44	59.96994	471	0	0	-653	30068.76	0	0	0	0.003	0.003
05/16/11 08:02:46	59.97253	471	0	0	-653	30068.76	0	0	0	0.003	0.003
05/16/11 08:02:48	59.97415	471	0	0	-653	30068.76	0	0	0	0.002	0.002
05/16/11 08:02:50	59.9761	471	0	0	-653	30068.76	0	0	0	0.002	0.002
05/16/11 08:02:52	59.97739	471	0	0	-653	30068.76	0	0	0	0.001	0.001
05/16/11 08:02:54	59.97931	471	0	0	-653	30068.21	0	0	0	0.002	0.002
05/16/11 08:02:56	59.98029	471	0	0	-653	30068.21	0	0	0	0.001	0.001
05/16/11 08:02:58	59.98062	471	0	0	-653	30068.21	0	0	0	0.000	0.000
05/16/11 08:03:00	59.98029	471	0	0	-653	30068.21	0	0	0	0.000	0.000
05/16/11 08:03:02	59.98029	471	0	0	-653	30068.21	0	0	0	0.000	0.000
05/16/11 08:03:04	59.97836	471	0	0	-653	30068.24	0	0	0	-0.002	0.002
05/16/11 08:03:06	59.97836	471	0	0	-653	30068.24	0	0	0	0.000	0.000
05/16/11 08:03:08	59.979	471	0	0	-653	30068.24	0	0	0	0.001	0.001
05/16/11 08:03:10	59.97998	471	0	0	-653	30068.24	0		0	0.001	0.001
05/16/11 08:03:12	59.98029	471	0	0	-653	30068.24	0	0	0	0.000	0.000
05/16/11 08:03:14	59.98093	471	0	0	-653	30076.2	0	0	0	0.001	0.001
05/16/11 08:03:16	59.98093	471	0	0	-653	30076.2	0	0	0	0.000	0.000
05/16/11 08:03:18	59.97998	471	0	0	-653	30076.2	0	0	0	-0.001	0.001
05/16/11 08:03:20	59.98062	471	0	0	-653	30076.2	0	0	0	0.001	0.001
05/16/11 08:03:22	59.98029	471	0	0	-653	30076.2	0	0	0	0.000	0.000
05/16/11 08:03:24	59.97998	471	0	0	-653	30093.95	0	0	0	0.000	0.000
05/16/11 08:03:26	59.979	471	0	0	-653	30093.95	0	0	0	-0.001	0.001
05/16/11 08:03:28	59.97931	471	0	0	-653	30093.95	0	0	0	0.000	0.000
05/16/11 08:03:30	59.97998	471	0	0	-653	30093.95	0	0	0	0.001	0.001
05/16/11 08:03:32	59.98029	471	0	0	-653	30093.95	0	0	0	0.000	0.000
05/16/11 08:03:34	59.98029	471	0	0	-653	30100.97	0	0	0	0.000	0.000
05/16/11 08:03:36	59.98029	471	0	0	-653	30100.97	0		0	0.000	0.000
05/16/11 08:03:38	59.97964	471	0	0	-653	30100.97	0	0	0	-0.001	0.001
05/16/11 08:03:40	59.979	471	0	0	-653	30100.97	0	0	0	-0.001	0.001
05/16/11 08:03:42	59.97803	471	0	0	-653	30100.97	0	0	0	-0.001	0.001
05/16/11 08:03:44	59.97803	471	0	0	-653	30118.87	0	0	0	0.000	0.000
05/16/11 08:03:46	59.97867	471	0	0	-653	30118.87	0	0	0	0.001	0.001
05/16/11 08:03:48	59.97964	471	0	0	-653	30118.87	0	0	0	0.001	0.001
05/16/11 08:03:50	59.98224	471	0	0	-653	30118.87	0	0	0	0.003	0.003
05/16/11 08:03:52	59.9848	471	0	0	-653	30118.87	0	0	0	0.003	0.003
05/16/11 08:03:54	59.98514	471	0	0	-653	30118.77	0	0	0	0.000	0.000
05/16/11 08:03:56	59.98416	471	0	0	-653	30118.77	0			-0.001	0.001
05/16/11 08:03:58	59.98224	471	0	0	-653	30118.77	0	0	0	-0.002	0.002
05/16/11 08:04:00	59.98029	471	0	0	-653	30118.77	0	0	0	-0.002	0.002
05/16/11 08:04:02	59.979	471	0	0	-653	30118.77	0	0	0	-0.001	0.001
05/16/11 08:04:04	59.97867	471	0	0	-653	30118.74	0	0	0	0.000	0.000
05/16/11 08:04:06	59.97931	471	0	0	-653	30118.74	0	0	0	0.001	0.001
05/16/11 08:04:08	59.97998	471	0	0	-653	30118.74	0	0	O	0.001	0.001
05/16/11 08:04:10	59.97931	471	0	0	-653	30118.74	0	0	0	-0.001	0.001
05/16/11 08:04:12	59.979	471	0	0	-653	30118.74	0	0	0	0.000	0.000

05/16/11 08:04:14	59.97803	471	0	0	-653	30106.93	0	0	0	-0.001	0.001
05/16/11 08:04:16	59.97675	471	0	0	-653	30106.93	0	0	0	-0.001	0.001
05/16/11 08:04:18	59.97739	471	0	0	-653	30106.93	0	0	0	0.001	0.001
05/16/11 08:04:20	59.979	471	0	0	-653	30106.93	0	0	0	0.002	0.002
05/16/11 08:04:22	59.97964	471	0	0	-653	30106.93	0	0	0	0.001	0.001
05/16/11 08:04:24	59.98093	471	0	0	-653	30106.61	0	0	0	0.001	0.001
05/16/11 08:04:26	59.98224	471	0	0	-653	30106.61	0	0	0	0.001	0.001
05/16/11 08:04:28	59.98318	471	0	0	-653	30106.61	0	0	0	0.001	0.001
05/16/11 08:04:30	59.98318	471	0	0	-653	30106.61	0	0	0	0.000	0.000
05/16/11 08:04:32	59.98224	471	0	0	-653	30106.61	0	0	0	-0.001	0.001
05/16/11 08:04:34	59.9819	471	0	0	-653	30116.02	0	0	0	0.000	0.000
05/16/11 08:04:36	59.9819	471	0	0	-653	30116.02	0	0	0	0.000	0.000
05/16/11 08:04:38	59.9819	471	0	0	-653	30116.02	0	0	0	0.000	0.000
05/16/11 08:04:40	59.9816	471	0	0	-653	30116.02	0	0	0	0.000	0.000
05/16/11 08:04:42	59.9819	471	0	0	-653	30116.02	0	0	0	0.000	0.000
05/16/11 08:04:44	59.9816	471	0	0	-653	30141.59	0	0	0	0.000	0.000
05/16/11 08:04:46	59.98126	471	0	0	-653	30141.59	0	0	0	0.000	0.000
05/16/11 08:04:48	59.9816	471	0	0	-653	30141.59	0	0	0	0.000	0.000
05/16/11 08:04:50	59.98254	471	0	0	-653	30141.59	0	0	0	0.001	0.001
05/16/11 08:04:52	59.98352	471	0	0	-653	30141.59	0	0	0	0.001	0.001
05/16/11 08:04:54	59.98416	471	0	0	-653	30144.23	0	0	0	0.001	0.001
05/16/11 08:04:56	59.98416	471	0	0	-653	30144.23	0	0	0	0.000	0.000
05/16/11 08:04:58	59.98416	471	0	0	-653	30144.23	0	0	0	0.000	0.000
05/16/11 08:05:00	59.98514	471	0	0	-653	30144.23	0	0	0	0.001	0.001
05/16/11 08:05:02	59.9874	471	0	0	-653	30144.23	0	0	0	0.002	0.002
05/16/11 08:05:04	59.98901	471	0	0	-653	30144.23	0	0	0	0.002	0.002
05/16/11 08:05:06	59.98804	471	0	0	-653	30144.23	0	0	0	-0.001	0.001
05/16/11 08:05:08	59.98642	471	0	0	-653	30144.23	0	0	0	-0.002	0.002
05/16/11 08:05:10	59.98288	471	0	0	-653	30144.23	0	0	0	-0.004	0.004
05/16/11 08:05:12	59.98254	471	0	0	-653	30144.23	0	0	0	0.000	0.000
05/16/11 08:05:14	59.98318	471	0	0	-653	30148.67	0	0	0	0.001	0.001
05/16/11 08:05:16	59.9819	471	0	0	-653	30148.67	0	0	0	-0.001	0.001
05/16/11 08:05:18	59.98062	471	0	0	-653	30148.67	0	0	0	-0.001	0.001
05/16/11 08:05:20	59.97964	471	0	0	-653	30148.67	0	0	0	-0.001	0.001
05/16/11 08:05:22	59.97964	471	0	0	-653	30148.67	0	0	0	0.000	0.000
05/16/11 08:05:24	59.97964	471	0	0	-653	30155.67	0	0	0	0.000	0.000
05/16/11 08:05:26	59.98029	471	0	0	-653	30155.67	0	0	0	0.001	0.001
05/16/11 08:05:28	59.98224	471	0	0	-653	30155.67	0	0	0	0.002	0.002
05/16/11 08:05:30	59.98352	471	0	0	-653	30155.67	0	0	0	0.001	0.001
05/16/11 08:05:32	59.98578	471	0	0	-653	30155.67	0	0	0	0.002	0.002
05/16/11 08:05:34	59.9874	471	0	0	-653	30142.79	0	0	0	0.002	0.002
05/16/11 08:05:36	59.98804	471	0	0	-653	30142.79	0	0	0	0.001	0.001
05/16/11 08:05:38	59.9874	471	0	0	-653	30142.79	0	0	0	-0.001	0.001
05/16/11 08:05:40	59.98611	471	0	0	-653	30142.79	0	0	0	-0.001	0.001
05/16/11 08:05:42	59.9848	471	0	0	-653	30142.79	0	0	0	-0.001	0.001
05/16/11 08:05:44	59.98352	471	0	0	-653	30154.67	0	0	0	-0.001	0.001
05/16/11 08:05:46	59.98318	471	0	0	-653	30154.67	0	0	0	0.000	0.000
05/16/11 08:05:48	59.98352	471	0	0	-653	30154.67	0	0	0	0.000	0.000
05/16/11 08:05:50	59.98416	471.3000183	0	0	-653	30150.35	0	O	0	0.001	0.001

$\begin{array}{llll}05 / 16 / 11 & 08: 05: 52 & 59.98514 & 471.3000183\end{array}$ $\begin{array}{lll}\text { 05/16/11 08:05:54 } & 59.98547 & 471.3000183\end{array}$ $\begin{array}{lll}\text { 05/16/11 08:05:56 } & 59.98642 & 471.3000183\end{array}$ 5/16/11 08.05.58 59.9867641 .8999939 5/16/11 08:06:00 59.9874 471.8999939 55/16/11 08.06.04 59.98801 | | $5 / 16 / 11$ | 08.06.04 | 59.98901 |
| :--- | :--- | :--- | :--- | 551611 08.06.08 59.989804 471.3999939 5/16/11 08.06.10 551611 08:00:12 59.98547 55/16/11 08:00:14 59.98642 471.3999939 55/16/11 08:06:16 $59.98935 \quad 471.3999939$ 5/16/11 08.06.18 $59.99225 \quad 471.3999939$ $5 / 16111$ 08:06.20 $59.99515 \quad 4713999939$ 55/16/11 08:06.22 $59.99579 \quad 471$ 3999939 $5 / 1611$ 08:06.24 59.09515 471.399939 $5 / 1611108 \cdot 00 \cdot 26 \quad 59.99548 \quad 471.3999939$ 5/16/11 08.06.28 $59.99741 \quad 470.8999939$ 5/16/11 08:06.30 $60 \quad 470.8999939$ 5/16/11 08:06.32 60.00162 470.8999939 5/16/11 08:06.34 $60.00162 \quad 470.8999939$ 5/16/11 08:06.36 $60.00195 \quad 470.8999939$ $\begin{array}{lll}5 / 16 / 11 & 08: 06: 36 & 60.00195 \\ 470.8999939\end{array}$ 5/16/11 08:06:38 $\quad 59.95963$ | $05 / 16 / 11$ | $08: 06: 42$ | 59.88144 |
| :--- | :--- | :--- | $\begin{array}{lll}55 / 16 / 11 & 08: 06: 44 & 59.87237011\end{array}$ 5/16/11 08:06:46 59.877432 5/16/11 08:06:46 $\quad 59.87432$ 05/16/11 08:06:50 59.88531 5/16/11 08:06:50 59.88531 $\begin{array}{lll}05 / 16 / 11 & 08: 06: 52 & 59.88787 \\ 05 / 16 / 11 & 08: 06: 54 & 59.88949\end{array}$ 5/16/11 08:06:54 59.88949 | $55 / 16 / 111$ | $08: 06: 56$ |
| :--- | ---: |
| 59.8908 | |
| $5 / 16 / 11$ | $08: 06658$ |
| 59.89175 | | 05/16/11 08:06:58 59.89175 $\begin{array}{ll}\text { 05/16/11 08:07:00 } & 59.89242 \\ 05 / 16 / 11 \text { 08:07:02 } & 59.89306\end{array}$ 55/16/11108:07:02 59.89306 $\begin{array}{lll}55 / 16 / 11 & \text { 08:07:04 } & 59.89306 \\ 05 / 16 / 11 & 08: 07.06 & 59.89306\end{array}$ $\begin{array}{ll}55 / 16 / 111 & 08: 07: 06 \\ 59.89306 \\ 5 / 12 / 11 & 08: 07.08 \\ 59.89532\end{array}$ $\begin{array}{lll}5 / 16 / 111 & 08: 07: 08 & 59.89532 \\ 55 / 16 / 11 & 08: 07 \cdot 10 & 59.89788\end{array}$ | $55 / 16 / 11108: 07: 10$ | 59.89788 |
| :--- | ---: |
| $5 / 16 / 11$ | $08: 07 \cdot 12$ |
| 59.8995 | | $\begin{array}{ll}55 / 16 / 11 & 08: 07: 12 \\ 59.8995 \\ 05 / 16 / 11 & 08: 07 \cdot 14 \\ 59.90081\end{array}$ | $55 / 16 / 111$ | $08: 07: 14$ |
| :--- | ---: |
| 59.90081 | |
| $5 / 16 / 1108.07 .16$ | 59.9021 | $\begin{array}{lr}55 / 16 / 11108: 07: 16 & 59.9021 \\ 05 / 16 / 11 & 08: 07 \cdot 18 \\ 59.90179\end{array}$ $\begin{array}{ll}55 / 16 / 111 & 08: 07: 18 \\ 59.90179 \\ 05 / 16 / 11 & 08: 07.20 \\ 59.90081\end{array}$ $\begin{array}{lll}55 / 16 / 111 & 08: 07: 20 & 59.90081 \\ 05 / 16 / 11 & 08: 07: 22 & 59.90081\end{array}$ $\begin{array}{ll}5 / 16 / 11 & 08: 07: 22 \\ 59.90081 \\ 05 / 16 / 11 & 08: 07: 24 \\ 59.90048\end{array}$ 5/16/11 08:07:26 $\quad 59.8992$ 05/16/11 08:07:28 59.89886

-653	30150.35
-653	30159.63
-653	30159.63
-653	30159.63
-653	30159.63
-653	30151.42
-653	30151.42
-653	30156.16
-653	30156.16
-653	30156.16
-653	30156.16
-653	30164.15
-653	30064.15
-653	30164.15
-653	30164.15
-653	30203.91
-653	30203.91
-653	30203.73
-653	30203.73
-653	30203.73
-653	30203.73
-653	30099.61
-653	30199.61
-653	30199.61
-653	30199.61
-653	30086.11
-653	30086.11
-653	30086.14
-653	30086.14
-653	30086.14
-653	30086.14
-653	30094.43
-653	30094.43
-653	30094.43
-653	30094.43
-653	30139.49
-653	30139.49
-653	30133.38
-653	30033.38
-653	30133.38
-653	30133.38
-653	30137.26
-653	30137.26
-653	30137.26
-653	30137.26
-653	30171.38
-653	30171.38
-653	30168.76
-653	30168.76

0.001
0.000
0.001
0.000
0.001
0.000
0.001
0.000
-0.001
-0.002
-0.001
0.001
0.003
0.003
0.003
0.001
-0.001
0.000
0.002
0.003
0.002
0.000
0.000
-0.042
0.078
0.009
-0.002
0.004
0.006
0.005
0.003
0.002
0.001
0.001
0.001
0.001
0.000
0.000
0.002
0.003
0.002
0.001
0.001
0.000
-0.001
0.000
0.000
-0.001
0.000

0.001 0.000 0.001 0.000 0.001 0.000 0.001
0.000 0.000 0.001
0.002 0.001 0.001 0.003 0.003
0.003 0.003
0.001 0.001
0.001 0.001
0.000 0.000 0.002 0.003

0	0	0	-653	30168.76
0	0	0	-653	30168.76
	0	0	-653	30208.99
0	0	0	-653	30208.99
0	0	0	-653	30208.99
0	0	0	-653	30208.99
-	0	0	-653	30205.66
0	0	0	-653	30205.66
	0	0	-653	30205.66
-	0	0	-653	30205.66
0	0	0	-653	30205.66
-	0	0	-653	30205.66
-	0	0	-653	30211.75
0	0	0	-653	30211.75
0	0	0	-653	30211.75
-	0	0	-653	30211.75
	0	0	-653	30217.55
0	0	0	-653	30217.55
0	0	0	-653	30217.57
0	0	0	-653	30217.57
	0	0	-653	30217.57
	0	0	-653	30217.57
0	0	0	-653	30217.59
0	0	0	-653	30217.59
	0	0	-653	30217.59
0	0	0	-653	30217.59
	0	0	-653	30210.49
0	0	0	-653	30210.49
0	0	0	-653	30210.26
0	0	0	-653	30210.26
0	0	0	-653	30210.26
0	0	0	-653	30210.26
	0	0	-653	30234.59
0	0	0	-653	30234.59
0	0	0	-653	30234.59
0	0	0	-653	30234.59
	0	0	-653	30223.6
0	0	0	-653	30223.6
0	0	0	-653	30223.73
0	0	0	-653	30223.73
0	0	0	-653	30223.73
0	0	0	-653	30223.73
	0	0	-653	30224.39
0	0	0	-653	30224.39
0	0	0	-653	30224.39
0	0	0	-653	30224.39
0	0	0	-653	30255.53
0	0	0	-653	30255.53
0	0	0	-653	30252.87

05/16/11 08:09:08	59.96252	0	0	0	-653	30252.87
05/16/11 08:09:10	59.96188	0	0	0	-653	30252.87
05/16/11 08:09:12	59.96124	0		0	-653	30252.87
05/16/11 08:09:14	59.96027	0	0	0	-653	30232.45
05/16/11 08:09:16	59.96057	0	0	0	-653	30232.45
05/16/11 08:09:18	59.96219	0	0	0	-653	30232.45
05/16/11 08:09:20	59.96512	0	0	0	-653	30232.45
05/16/11 08:09:22	59.96738	0	0	0	-653	30263.99
05/16/11 08:09:24	59.96899	0	0	0	-653	30263.99
05/16/11 08:09:26	59.97061	0	0	0	-653	30263.68
05/16/11 08:09:28	59.97318	0	0	0	-653	30263.68
05/16/11 08:09:30	59.97351	0	0	0	-653	30263.68
05/16/11 08:09:32	59.97287	0	0	0	-653	30263.68
05/16/11 08:09:34	59.97253	0	0	0	-653	30264.96
05/16/11 08:09:36	59.97318	0	0	0	-653	30264.96
05/16/11 08:09:38	59.97415	0	0	0	-653	30264.96
05/16/11 08:09:40	59.97543	0	0	0	-653	30264.96
05/16/11 08:09:42	59.97577	0	0	0	-653	30263.63
05/16/11 08:09:44	59.9761	0	0	0	-653	30263.63
05/16/11 08:09:46	59.97675	0	0	0	-653	30279.39
05/16/11 08:09:48	59.97803	0	0	0	-653	30279.39
05/16/11 08:09:50	59.97931	0	0	0	-653	30279.39
05/16/11 08:09:52	59.97998	0	0	0	-653	30279.39
05/16/11 08:09:54	59.97964	0	0	0	-653	30255.32
05/16/11 08:09:56	59.979	0	0	0	-653	30255.32
05/16/11 08:09:58	59.97964	0	0	0	-653	30255.32
05/16/11 08:10:00	59.98093	0	0	0	-653	30255.32
05/16/11 08:10:02	59.98224	0	0	0	-653	30260.67
05/16/11 08:10:04	59.98386	0	0	0	-653	30260.67
05/16/11 08:10:06	59.98514	0	0	0	-653	30259.99
05/16/11 08:10:08	59.98773	0	0	0	-653	30259.99
05/16/11 08:10:10	59.9903	0	0	0	-653	30259.99
05/16/11 08:10:12	59.99289	0	0	0	-653	30259.99
05/16/11 08:10:14	59.99579	0	0	0	-653	30274.08
05/16/11 08:10:16	59.99646	0	0	0	-653	30274.08
05/16/11 08:10:18	59.99579	0	0	0	-653	30274.08
05/16/11 08:10:20	59.99612	0	0	0	-653	30274.08
05/16/11 08:10:22	59.99579	0	0	0	-653	30297.68
05/16/11 08:10:24	59.99484	0	0	0	-653	30297.68
05/16/11 08:10:26	59.99484	0	0	0	-653	30297.65
05/16/11 08:10:28	59.99805	0	0	0	-653	30297.65
05/16/11 08:10:30	59.99872	0	0	0	-653	30297.65
05/16/11 08:10:32	60.00034	0	0	0	-653	30297.65
05/16/11 08:10:34	60.00195	0	0	0	-653	30300.1
05/16/11 08:10:36	60.00259	0	0	0	-653	30300.1
05/16/11 08:10:38	60.00226	0	0	0	-653	30300.1
05/16/11 08:10:40	60.00195	0	0	0	-653	30300.1
05/16/11 08:10:42	60.00064	0	0	0	-653	30314.84
05/16/11 08:10:44	59.99646	0	0	0	-653	30314.84

0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
	0
0	0
0	0
0	0
0	0

-653	30309.71
-653	30309.71
-653	30309.71
-653	30309.71
-653	30319.5
-653	303919.5
-653	30399.5
-653	30319.5
-653	30357.21
-653	30357.21
-653	30357.18
-653	30357.18
-653	30357.18
-653	30357.18
-653	30354.46
-653	30354.26
-653	30354.26
-653	30354.26
-653	30354.48
-653	30354.48
-653	30353.83
-653	30353.83
-653	30353.83
-653	30353.83
-653	30370.41
-653	30370.41
-653	30370.41
-653	30370.41
-653	30374.79
-653	30374.79
-653	30366.14
-653	30366.14
-653	30366.14
-653	30366.14
-653	30373.53
-653	30373.53
-653	30373.53
-653	30373.53
-653	30343.46
-653	30343.46
-653	30335.12
-653	30335.12
-653	30335.12
-653	30335.12
-653	30337.29
-653	30337.29
-653	30337.29
-653	30337.29
-653	30350.2

\qquad

-653	30350.2
-653	30350.07
-653	30350.07
-653	30350.07
-653	30350.07
-653	30354.77
-653	30354.77
-653	30354.77
-653	30354.77
-653	30372.38
-653	30372.38
-653	30372.38
-653	30372.38
-653	30372.38
-653	30372.38
-653	30349.1
-653	30349.1
-653	30349.1
-653	30349.1
-653	30363.65
-653	30363.65
-653	30363.88
-653	30363.88
-653	30363.88
-653	30363.88
-653	30364.77
-653	30364.77
-653	30364.77
-653	30364.77
-653	30374.43
-653	30374.33
-653	30364.67
-653	30364.67
-653	30364.67
-653	30364.67
-653	30361.56
-653	30361.56
-653	30361.56
-653	30361.56
-653	30350.69
-653	30350.69
-653	30344.52
-653	30344.52
-653	30344.52
-653	30344.52
-653	30354.37
-653	30354.37
-653	30354.37
-653	30354.37

0	0	0	-653	30373.31
0	0	0	-653	30373.31
	0	0	-653	30373.78
0	0	0	-653	30373.78
0	0	0	-653	30373.78
-	0	0	-653	30373.78
-	0	0	-653	30366.33
0	0	0	-653	30366.33
	0	0	-653	30366.33
0	0	0	-653	30366.33
0	0	0	-653	30373.85
-	0	0	-653	30373.85
0	0	0	-653	30373.05
0	0	0	-653	30373.05
0	0	0	-653	30373.05
-	0	0	-653	30373.05
	0	0	-653	30369.77
0	0	0	-653	30369.77
0	0	0	-653	30369.77
0	0	0	-653	30369.77
	0	0	-653	30388.99
	0	0	-653	30388.99
0	0	0	-653	30388.16
0	0	0	-653	30388.16
0	0	0	-653	30388.16
0	0	0	-653	30388.16
	0	0	-653	30376.94
0	0	0	-653	30376.94
0	0	0	-653	30376.94
0	0	0	-653	30376.94
0	0	0	-653	30371.85
0	0	0	-653	30371.85
	0	0	-653	30362.65
0	0	0	-653	30362.65
0	0	0	-653	30362.65
0	0	0	-653	30362.65
0	0	0	-653	30395.46
0	0	0	-653	30395.46
0	0	0	-653	30395.46
0	0	0	-653	30395.46
0	0	0	-653	30397.03
0	0	0	-653	30397.03
0	0	0	-653	30396.67
-	0	0	-653	30396.67
0	0	0	-653	30396.67
0	0	0	-653	30396.67
0	0	0	-653	30388.62
0	0	0	-653	30388.62
0	0	0	-653	30388.62

$05 / 16 / 11$	$08: 15: 40$	60.01874	0	0	0	-653

0	
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0

-653	30416.87
-653	30416.87
-653	30413.65
-653	30413.65
-653	30406.3
-653	30406.3
-653	30406.3
-653	30406.3
-653	30418.59
-653	30418.59
-653	30418.59
-653	30418.59
-653	30433.31
-653	30433.31
-653	30433.31
-653	3043.31
-653	30433.31
-653	30433.31
-653	30451.3
-653	30451.3
-653	30451.3
-653	30451.3
-653	30425.74
-653	30425.74
-653	30419.18
-653	30419.18
-653	30419.18
-653	30419.18
-653	30424.29
-653	30424.29
-653	30424.29
-653	30424.29
-653	30440.82
-653	3040.82
-653	30431.58
-653	30431.58
-653	30431.58
-653	30431.58
-653	30444.25
-653	30444.25
-653	30444.25
-653	3044.25
-653	30465.11
-653	30465.11
-653	30465.3
-653	30465.3
-653	30465.3
-653	30465.3
-653	30478.25

\qquad
.

$05 / 16 / 11$	$08: 18: 56$	59.9971	0	0	0	-653

0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
	0
0	0
0	0

-653	30446.98
-653	30446.98
-653	30446.98
-653	30446.98
-653	30461.02
-653	30461.02
-653	30460.94
-653	30460.94
-653	30460.94
-653	30460.94
-653	30469.23
-653	30469.23
-653	30469.23
-653	30469.23
-653	30481.49
-653	30481.49
-653	30480.29
-653	30480.29
-653	30480.29
-653	30480.29
-653	30473.15
-653	30473.15
-653	30473.15
-653	30473.15
-653	30470.66
-653	30470.66
-653	30470.6
-653	30470.6
-653	3040.6
-653	3040.6
-653	30461.28
-653	30461.28
-653	30461.28
-653	30461.28
-653	30450.44
-653	30450.44
-653	30451.91
-653	30451.91
-653	30451.91
-653	30451.91
-653	30446.52
-653	30446.52
-653	30446.52
-653	30446.52
-653	30452.43
-653	30452.43
-653	30452.43
-653	30452.43
-653	30452.43

\qquad
\qquad

05/16/11 08:22:12	60.03717	0	0	0	-653	30452.43
05/16/11 08:22:14	60.03781	0	0	0	-653	30473.21
05/16/11 08:22:16	60.03781	0	0	0	-653	30473.21
05/16/11 08:22:18	60.03748	0	0	0	-653	30473.21
05/16/11 08:22:20	60.0365	0	0	0	-653	30473.21
05/16/11 08:22:22	60.03683	0	0	0	-653	30476.61
05/16/11 08:22:24	60.03748	0	0	0	-653	30476.61
05/16/11 08:22:26	60.03748	0	0	0	-653	30476.55
05/16/11 08:22:28	60.03812	0	0	0	-653	30476.55
05/16/11 08:22:30	60.03876	0	0	0	-653	30476.55
05/16/11 08:22:32	60.04007	0	0	0	-653	30476.55
05/16/11 08:22:34	60.04169	0	0	0	-653	30473.8
05/16/11 08:22:36	60.04361	0	0	0	-653	30473.8
05/16/11 08:22:38	60.04523	0	0	0	-653	30473.8
05/16/11 08:22:40	60.04492	0	0	0	-653	30473.8
05/16/11 08:22:42	60.04459	0	0	0	-653	30471
05/16/11 08:22:44	60.04395	0	0	0	-653	30471
05/16/11 08:22:46	60.04199	0	0	0	-653	30471.97
05/16/11 08:22:48	60.03717	0	0	0	-653	30471.97
05/16/11 08:22:50	60.03296	0	0	0	-653	30471.97
05/16/11 08:22:52	60.03101	0	0	0	-653	30471.97
05/16/11 08:22:54	60.03134	0	0	0	-653	30485.47
05/16/11 08:22:56	60.03168	0	0	0	-653	30485.47
05/16/11 08:22:58	60.03101	0	0	0	-653	30485.47
05/16/11 08:23:00	60.03101	0	0	0	-653	30485.47
05/16/11 08:23:02	60.03232	0	0	0	-653	30505.49
05/16/11 08:23:04	60.03326	0	0	0	-653	30505.49
05/16/11 08:23:06	60.03326	0	0	0	-653	30505.26
05/16/11 08:23:08	60.03394	0	0	0	-653	30505.26
05/16/11 08:23:10	60.03296	0	0	0	-653	30505.26
05/16/11 08:23:12	60.03232	0	0	0	-653	30505.26
05/16/11 08:23:14	60.03168	0	0	0	-653	30515.6
05/16/11 08:23:16	60.03168	0	0	0	-653	30515.6
05/16/11 08:23:18	60.03232	0	0	0	-653	30515.6
05/16/11 08:23:20	60.03232	0	0	0	-653	30515.6
05/16/11 08:23:22	60.03168	0	0	0	-653	30505.28
05/16/11 08:23:24	60.03168	0	0	0	-653	30505.28
05/16/11 08:23:26	60.03134	0	0	0	-653	30506.12
05/16/11 08:23:28	60.03101	0	0	0	-653	30506.12
05/16/11 08:23:30	60.03036	0	0	0	-653	30506.12
05/16/11 08:23:32	60.03036	0	0	0	-653	30506.12
05/16/11 08:23:34	60.02972	0	0	0	-653	30493.68
05/16/11 08:23:36	60.02875	0	0	0	-653	30493.68
05/16/11 08:23:38	60.03006	0	0	0	-653	30493.68
05/16/11 08:23:40	60.03198	0	0	0	-653	30493.68
05/16/11 08:23:42	60.03326	0	0	0	-653	30529.28
05/16/11 08:23:44	60.03458	0	0	0	-653	30529.28
05/16/11 08:23:46	60.03488	0	0	0	-653	30529.08
05/16/11 0	60.0336	0	0	0	-653	30529.08

-653	30529.08
-653	30529.08
-653	30529.52
-653	30529.52
-653	30529.52
-653	30529.52
-653	30535.57
-653	30535.57
-653	30533.89
-653	30533.89
-653	30533.89
-653	30533.89
-653	30521.82
-653	30521.82
-653	30521.82
-653	30521.82
-653	30533.64
-653	30533.64
-653	30532.32
-653	30532.32
-653	30532.32
-653	30532.32
-653	30519.2
-653	30551.2
-653	30551.2
-653	30551.2
-653	30548.06
-653	30548.06
-653	30543.69
-653	30543.69
-653	30543.69
-653	30543.69
-653	30546.32
-653	30546.32
-653	30546.32
-653	30546.32
-653	30546.28
-653	30546.28
-653	30546.38
-653	30546.38
-653	30546.38
-653	30546.38
-653	30556.84
-653	30556.84
-653	30556.84
-653	30556.84
-653	30557.42
-653	30557.42
-653	30557.43

\square
\square
\square
\square
0
0
0
0

0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0

-653	30557.43
-653	30557.43
-653	30557.43
-653	30566.39
-653	30566.39
-653	30566.39
-653	3056.39
-653	30567.26
-653	30567.26
-653	30562.43
-653	30562.43
-653	30562.43
-653	30562.43
-653	30573.32
-653	30573.32
-653	30573.32
-653	30573.32
-653	30567
-653	30567
-653	30567.04
-653	30567.04
-653	30567.04
-653	30567.04
-653	30556.49
-653	30565.49
-653	30556.49
-653	30556.49
-653	30530.19
-653	30530.19
-653	30530.04
-653	30530.04
-653	30530.04
-653	30530.04
-653	30542.27
-653	30542.27
-653	30542.27
-653	30542.27
-653	30559.64
-653	30559.64
-653	30559.67
-653	30559.67
-653	30559.67
-653	30559.67
-653	30552.02
-653	30552.02
-653	30552.02
-653	30552.02
-653	30556.78
-653	30556678

\qquad
$0 \quad 0$

0	
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	

-653	30550.7
-653	30550.7
-653	3050.7
-653	30500.7
-653	30559.76
-653	30559.76
-653	30559.76
-653	30559.76
-653	30563.61
-653	30563.61
-653	30556.57
-653	30556.57
-653	30556.57
-653	30556.57
-653	30556.7
-653	30556.7
-653	30556.7
-653	30556.7
-653	30544.52
-653	30544.52
-653	30543.34
-653	30543.34
-653	30543.34
-653	30543.34
-653	30554.42
-653	30554.42
-653	30554.42
-653	30554.42
-653	30534.33
-653	30534.33
-653	30533.84
-653	30533.84
-653	30533.84
-653	30533.84
-653	30557.2
-653	30557.2
-653	30557.2
-653	30557.2
-653	30560.91
-653	30560.91
-653	30560.56
-653	30560.56
-653	30560.56
-653	30560.56
-653	30560.08
-653	30560.08
-653	30560.08
-653	30560.08
-653	30558.72

\qquad -653 30558.72

$05 / 16 / 11$	$08: 28: 44$	59.97739	0	0	0	-653

-653	30603.38
-653	30603.38
-653	30597.09
-653	30597.99
-653	3059.99
-653	30597.09
-653	30603.96
-653	30603.96
-653	30603.96
-653	30603.96
-653	30607.96
-653	30607.96
-653	30601.98
-653	3060.98
-653	30597.09
-653	30597.09
-653	30607.96
-653	30607.96
-653	30607.96
-653	30607.96
-653	30607.96
-653	30601.98
-653	30601.98
-653	30601.98
-653	30601.98
-653	30601.98
-653	30632.79
-653	30632.79
-653	30632.79
-653	30632.99
-653	3063.79
-653	30633.18
-653	30633.18
-653	30633.18
-653	30633.18
-653	30633.18
-653	30620.6
-653	30620.6
-653	30620.6
-653	30620.6
-653	30620.6
-653	30620.91
-653	30620.91
-653	30620.91
-653	30620.91
-653	30620.91
-653	30661.87
-653	30661.87
-653	30661.87

$\begin{array}{lll}-653 & 30661.87\end{array}$
\qquad

$05 / 16 / 11$	$08: 32: 00$	60.0239	0	0	0	-653

5516/111 08:33:42 59.97867 5511108.33 .44 $55 / 111$ 08.33.46 59.9764 5 5511/11 08.33.50 59.9764 551111 08.33.52 59.97577 05/16/11 08:33:54 $\quad 59.97479$ \begin{tabular}{lll}
$05 / 16 / 11$ \& $08: 33: 56$ \& 59.97415

\hline $5 / 16 / 11$ \& $08: 33: 58$ \& 59.97287

 $\begin{array}{ll}05 / 16 / 11 & 08: 33: 58 \\ 59.97287 \\ \text { 05/16/11 08:34:00 } & 59.97125\end{array}$ 5/16/11 08:34:02 59.97092 $\begin{array}{lll}0516 / 11 & 08 \cdot 34: 04 & 59.97125\end{array}$ $5 / 16611$ 08.34.06 59.97061 $\begin{array}{lll}05 / 1611 & 08: 34.06 & 59.97061 \\ 08: 34: 08 & 59.97092\end{array}$

$05 / 16 / 11$ \& $08: 34: 10$ \& 59.97125

\hline

 55/16/11 08:34.12 59.97156 $\begin{array}{lll}05 / 16 / 11 & 08: 34: 14 & 59.97253\end{array}$ 55/16/11 08.34:16 59.97449 5/16/11 08:34:18 59.97577 55/16/11 08:34:20 59.9764 $5 / 16 / 11$ 08.34:22 59.97641 $5 / 1611100 \cdot 34 \cdot 24 \quad 59.97513$ $5 / 1611108 \cdot 34 \cdot 26 \quad 59.9761$ $511611108 \cdot 34 \cdot 28 \quad 59.976$ 5/16/11 08:34.30 59.98126 $5 / 1611108 \cdot 34 \cdot 32$ 05/16/11 08:34:32 59.98224 5/16/11 08:34:34 59.9825 5/16/11 08:34:36 59.98254 $\begin{array}{ll}5 / 16 / 11 & 08: 34: 38 \\ 59 / 16 / 11 & \text { 08:34:40 } \\ 59.98029\end{array}$ 5/16/11 08:34:40 59.98029 $\begin{array}{ll}05 / 16 / 11 & 08: 34: 42 \\ 59.97964 \\ 05 / 16 / 11 & 08: 34: 44 \\ 59.98062\end{array}$ 5/16/11 08:34:44 59.98062 5/16/11 08:34:46 59.98093 5/16/11 08:34:48 59.98029 5/16/11 08:34:50 59.97931

$55 / 16 / 11$ \& $08: 34: 52$ \& 59.97836

\hline $5 / 16 / 11$ \& $08: 34: 54$ \& 59.97803
\end{tabular} $\begin{array}{lll}55 / 16 / 11 & 08: 34: 54 & 59.97803 \\ 5 / 16 / 11 & 08: 34: 56 & 59.97803\end{array}$ $\begin{array}{lll}05 / 16 / 11 & \text { 08:34:56 } & 59.97803 \\ \text { 5/16/11 08:34:58 } & 59.97867\end{array}$ 5516/11 08:34:58 59.97867 $\begin{array}{ll}\text { 55/16/11 08:35:00 } & 59.97964 \\ \text { 5/16/11 08:35:02 } & 59.98062\end{array}$ $\begin{array}{lll}59 / 16 / 11 & \text { 08:35:02 } & 59.98062 \\ \text { 5/16/11 08:35:04 } & 59.98126\end{array}$ 55/16/111 08:35:04 59.98126 $\begin{array}{lll}\text { 5/16/11 08:35:06 } & 59.98224 \\ \text { 05/16/11 08:35:08 } & 59.98416\end{array}$ 55/16/111 08:35:08 59.98416 55/16/11 08:35:12 $59 . .98578$ 05/16/11 08:35:14 59.98578

0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
	0
0	0
0	0

-653	30633.8
-653	30633.8
-653	30633.8
-653	30627.71
-653	30627.71
-653	30627.71
-653	30627.71
-653	30627.71
-653	30634.13
-653	30634.13
-653	30634.13
-653	30634.13
-653	30634.13
-653	30627.05
-653	30627.05
-653	30627.05
-653	30627.05
-653	30627.05
-653	30662.72
-653	30662.72
-653	30662.72
-653	30662.72
-653	30662.72
-653	30656.52
-653	30656.52
-653	3065.52
-653	30656.52
-653	30656.52
-653	30642.25
-653	30642.25
-653	30642.25
-653	30642.25
-653	30642.25
-653	30642.49
-653	30642.49
-653	30642.49
-653	30642.49
-653	30642.49
-653	30645.72
-653	30645.72
-653	30645.72
-653	30645.72
-653	30645.72
-653	30648.55
-653	30648.55
-653	30648.55
-653	30648.55
-653	30648.55
-653	30661.06

0	0	0	-653	30661.06
0	0	0	-653	30661.06
0	0	0	-653	30661.06
0	0	0	-653	30661.06
0	0	0	-653	30661.06
-	0	0	-653	30661.06
-	0	0	-653	30661.06
0	0	0	-653	30661.06
0	0	0	-653	30661.06
0	0	0	-653	30684.31
0	0	0	-653	30684.31
0	0	0	-653	30684.31
0	0	0	-653	30684.31
0	0	0	-653	30684.31
0	0	0	-653	30686.83
0	0	0	-653	30686.83
0	0	0	-653	30686.83
0	0	0	-653	30686.83
0	0	0	-653	30686.83
0	0	0	-653	30678.05
0	0	0	-653	30678.05
0	0	0		30678.05
-	0	0		30678.05
0	0	0		30678.05
0	0	0		30679.19
0	0	0		30679.19
0	0	0		30679.19
0	0	0		30679.19
-	0	0		30679.19
0	0	0		30684.85
0	0	0		30684.85
0	0	0		30684.85
0	0	0		30684.85
0	0	0		30684.85
0	0	0		30684.99
0	0	0		30684.99
0	0	0		30684.99
0	0	0		30684.99
0	0	0		30684.99
0	0	0		30687.29
0	0	0		30687.29
0	0	0		30687.29
0	0	0		30687.29
0	0	0		30687.29
0	0	0		30687.59
0	0	0		30687.59
0	0	0		30687.59
0	0	0		30687.59
0	0	0		30687.59

0.001	0.001
0.004	0.004
0.004	0.004
0.004	0.004
0.002	0.002
0.003	0.003
0.000	0.000
-0.001	0.001
-0.002	0.002
-0.001	0.001
-0.001	0.001
0.000	0.000
0.000	0.000
0.001	0.001
0.001	0.001
0.001	0.001
0.000	0.000
0.000	0.000
-0.001	0.001
-0.001	0.001
-0.002	0.002
-0.003	0.003
-0.002	0.002
-0.002	0.002
-0.001	0.001
-0.002	0.002
0.000	0.000
0.000	0.000
0.001	0.001
0.002	0.002
0.002	0.002
0.002	0.002
0.002	0.002
0.002	0.002
0.000	0.000
0.000	0.000
0.001	0.001
0.003	0.003
0.003	0.003
0.003	0.003
0.003	0.003
0.002	0.002
0.001	0.001
0.001	0.001
0.000	0.000
-0.002	0.002
-0.001	0.001
0.000	0.000
0.001	0.001

0	
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
	0
0	0

0.000	0.000
-0.001	0.001
0.000	0.000
0.000	0.000
-0.001	0.001
-0.002	0.002
-0.001	0.001
0.000	0.000
0.000	0.000
0.001	0.001
0.002	0.002
0.001	0.001
0.001	0.001
0.000	0.000
-0.001	0.001
-0.002	0.002
-0.004	0.004
-0.004	0.004
-0.003	0.003
0.000	0.000
0.001	0.001
0.000	0.000
-0.001	0.000
-0.002	0.002
-0.002	0.002
-0.002	0.002
-0.001	0.001
-0.001	0.001
0.001	0.001
0.003	0.003
0.005	0.000
0.003	0.003
0.002	0.002
0.000	0.000
-0.001	0.001
-0.001	0.001
-0.001	0.001
-0.001	0.001
0.000	0.000
0.000	0.000
-0.002	0.002
-0.001	0.001
0.000	0.000
0.001	0.001
0.001	0.001
0.001	0.001
0.001	0.001
0.002	0.002
0.002	0.002

05/16/11 08:38:32	60.00388	0	0	0	30757.92
05/16/11 08:38:34	60.00485	0	0	0	30752.27
05/16/11 08:38:36	60.00549	0	0	0	30752.27
05/16/11 08:38:38	60.00613	0	0	0	30752.27
05/16/11 08:38:40	60.00647	0	0	0	30752.27
05/16/11 08:38:42	60.00677	0	0	0	30752.27
05/16/11 08:38:44	60.00677	0	0	0	30752.33
05/16/11 08:38:46	60.00613	0	0	0	30752.33
05/16/11 08:38:48	60.00549	0	0	0	30752.33
05/16/11 08:38:50	60.00485	0	0	0	30752.33
05/16/11 08:38:52	60.00485	0	0	0	30752.33
05/16/11 08:38:54	60.00613	0	0	0	30755.63
05/16/11 08:38:56	60.01001	0	0	0	30755.63
05/16/11 08:38:58	60.01324	0	0	0	30755.63
05/16/11 08:39:00	60.01614	0	0	0	30755.63
05/16/11 08:39:02	60.0184	0	0	0	30755.63
05/16/11 08:39:04	60.01971	0	0	0	30755.66
05/16/11 08:39:06	60.021	0	0	0	30755.66
05/16/11 08:39:08	60.02133	0	0	0	30755.66
05/16/11 08:39:10	60.02197	0	0	0	30755.66
05/16/11 08:39:12	60.02359	0	0	0	30755.66
05/16/11 08:39:14	60.02682	0	0	0	30784.89
05/16/11 08:39:16	60.0307	0	0	0	30784.89
05/16/11 08:39:18	60.0336	0	0	0	30784.89
05/16/11 08:39:20	60.03424	0	0	0	30784.89
05/16/11 08:39:22	60.03326	0	0	0	30784.89
05/16/11 08:39:24	60.0307	0	0	0	30786.98
05/16/11 08:39:26	60.02875	0	0	0	30786.98
05/16/11 08:39:28	60.02875	0	0	0	30786.98
05/16/11 08:39:30	60.02939	0	0	0	30786.98
05/16/11 08:39:32	60.02908	0	0	0	30786.98
05/16/11 08:39:34	60.02844	0	0	0	30796.28
05/16/11 08:39:36	60.02777	0	0	0	30796.28
05/16/11 08:39:38	60.02811	0	0	0	30796.28
05/16/11 08:39:40	60.02777	0	0	0	30796.28
05/16/11 08:39:42	60.02777	0	0	0	30796.28
05/16/11 08:39:44	60.02777	0	0	0	30792.94
05/16/11 08:39:46	60.02747	0	0	0	30792.94
05/16/11 08:39:48	60.02713	0	0	0	30792.94
05/16/11 08:39:50	60.02618	0	0	0	30792.94
05/16/11 08:39:52	60.02521	0	0	0	30792.94
05/16/11 08:39:54	60.02457	0	0	0	30803.58
05/16/11 08:39:56	60.02487	0	0	0	30803.58
05/16/11 08:39:58	60.02551	0	0	0	30803.58
05/16/11 08:40:00	60.02618	0	0	0	30803.58

Balancing Authority Name: MyBA \quad Interconnection Prevailing UFLS First Step Relay trip poin

Interconnection Prevaliing ULL

Note: See "Instruction" tab for more detailed instructions.

MyBA_110516_0806_FRS_Form2.9.xlsm
58.500 Hz
61.500 Hz

8:06.38 Auto Event Detection

8:06:30

Event Frequency Data

11/05/16 Date yymmdd
8:06 Time hh:ss of T(0)
Where "МуВA" = your BA mnemonic

$$
=
$$

Time of Frequency Recovery to 60 Hz or Pre-Perturbation Hz Value A Pre-Perturbation Average Frequency [$\mathrm{T}(-2)$ to $\mathrm{T}(-16)]$ Value B Post-Perturbation Average Frequency [$T(+20$ to $T(+52)]$
Pre to Post Perturbation Delta Frequency Actual

Value A Pre-Perturbation Average Contingent MW [T(-2) to $\mathrm{T}(-16)]$ Value B Post-Perturbation Average Contingent $\mathrm{MW}[\mathrm{T}(+20$ to $\mathrm{T}(+52)]$ Pre to Post Perturbation Contingent Delta MW Actual Initial Performance Ramp Magnitude Adjustment

EPFR Pre-Perturbation Average
EPFR Post-Perturbation Average
EPFR Delta

EPFR = Expected Primary Frequency Response

Monday, May 16, 2011
8:06:38
0.00 Actual Interchange MW Average during frequency recovery period
617.52 Target Interchange MW Average during frequency recovery period 226.52 Interchange Average Ramp MW during frequency recovery period 470.90 Actual MW @ T(-4)
-494.59 Starting and Ending Difference in Interchange MW during frequency recovery per 0:03:52 Event Duration (h:mm:ss)

No Target MW Average minus MW @ T(-4) less than zero
641.21 Interchange Target Relative Average Change - MW (Low Frequency Event)
23.69 Interchange Actual Relative Average Change - MW (Low Frequency Event)

Yes Interchange Actual Average minus MW @ T(-4) less than zero
No Interchange Average MW minus MW @ $\mathrm{T}(-4)$ greater than zero
Yes Interchange Target MW Average minus MW @ $\mathrm{T}(-4)$ greater than zero
146.62 Interchange Target Relative Average Change - MW (High Frequency Event) -470.90 Interchange Actual Relative Average Change - MW (High Frequency Event) Down Ramp Direction during frequency recovery period

Initial Response P.U. Performance
0.711 P.U.

		Initial											
					Bias		Measure			Average	Average		Average
					(EPFR)	(TC)	Final			Output	Target		Ramp
		Contingent	Value B		Expected	Delayed	Expected		Recovery	During	During	Recovery	During
		Resource	20 to 52 sec		Primary	Delivery	Primary	Average	Period	Recovery	Recovery	Period	Recovery
	Frequency	Lost	Average	Average	Frequency	Frequency	Frequency	Ramp	Target	Period	Period	Ramp	Period
T	Hz	MW	Frequency	MW	Response	Response	Response	MW/scan	MW	MW	MW	MW	MW

T-72 sec	$8: 05: 26$	59.98029	471.000	19590	128.735	45.057
T-70 sec	$8: 05: 28$	59.98224	471.000	19590	115.981	69.880
T-68 sec	$8: 05: 30$	59.98352	471.000	19590	107.611	83.086

T-66 sec	8:05:32	59.98578	471.000			19590	92.864	86.509							
T-64 sec	8:05:34	59.9874	471.000			19590	82.303	85.036							
T-62 sec	8:05:36	59.98804	471.000			19590	78.118	82.615							
T-60 sec	8:05:38	59.9874	471.000			19590	82.303	82.506		2.947	471.000				
T-58 sec	8:05:40	59.98611	471.000			19590	90.672	85.364		2.947	476.805				
T-56 sec	8:05:42	59.9848	471.000			19590	99.241	90.221		2.947	484.609				
T-54 sec	8:05:44	59.98352	471.000			19590	107.611	96.308		2.947	493.643				
T-52 sec	8:05:46	59.98318	471.000			19590	109.803	101.031		2.947	501.313				
T-50 sec	8:05:48	59.98352	471.000			19590	107.611	103.334		2.947	506.563				
T-48 sec	8:05:50	59.98416	471.300			19590	103.426	103.366		2.947	509.542				
T-46 sec	8:05:52	59.98514	471.300			19590	97.049	101.155		2.947	510.278				
T-44 sec	8:05:54	59.98547	471.300			19590	94.857	98.951		2.947	511.020				
T-42 sec	8:05:56	59.98642	471.300			19590	88.680	95.356		2.947	510.372				
T-40 sec	8:05:58	59.98676	471.900			19590	86.487	92.252		2.947	510.215				
T-38 sec	8:06:00	59.9874	471.900			19590	82.303	88.770		2.947	509.680				
T-36 sec	8:06:02	59.98773	471.900			19590	80.110	85.739		2.947	509.596				
T-34 sec	8:06:04	59.98901	471.900			19590	71.741	80.840		2.947	507.643				
T-32 sec	8:06:06	59.98901	471.900			19590	71.741	77.655		2.947	507.406				
T-30 sec	8:06:08	59.98804	471.400			19590	78.118	77.817		2.947	510.515				
T-28 sec	8:06:10	59.98642	471.400			19590	88.680	81.619		2.947	517.263				
T-26 sec	8:06:12	59.98547	471.400			19590	94.857	86.252		2.947	524.844				
T-24 sec	8:06:14	59.98642	471.400			19590	88.680	87.102		2.947	528.640				
T-22 sec	8:06:16	59.98935	471.400			19590	69.549	80.958		2.947	525.443				
T-20 sec	8:06:18	59.99225	471.400			19590	50.617	70.339		2.947	517.771				
T-18 sec	8:06:20	59.99515	471.400			19590	31.685	56.810		2.947	507.189				
T-16 sec	8:06:22	59.99579	471.400	59.999	471.09	19590	27.501	46.552		2.947	499.878				
T-14 sec	8:06:24	59.99515	471.400	59.999	471.09	19590	31.685	41.349		2.947	497.621				
$\mathrm{T}-12 \mathrm{sec}$	8:06:26	59.99548	471.400	59.999	471.09	19590	29.493	37.199		2.947	496.419				
T-10 sec	8:06:28	59.99741	470.900	59.999	471.09	19590	16.939	30.108		2.947	492.275				
T-08 sec	8:06:30	60	470.900	59.999	471.09	19590	0.000	19.570		2.947	484.684				
T-06 sec	8:06:32	60.00162	470.900	59.999	471.09	19590	-10.562	9.024		2.947	477.084				
T-04 sec	8:06:34	60.00162	470.900	59.999	471.09	19590	-10.562	2.169		2.947	473.176				
T-02 sec	8:06:36	60.00195	470.900	59.999	471.09	19590	-12.754	-3.054		2.947	470.900				
T+0 sec	8:06:38	59.95963	0.000			19590	263.647	90.291		0.000	564.245				
T+02 sec	8:06:40	59.88144	0.000			19590	774.227	329.669		-4.264	799.359	0.000	681.802	471.678	471.678
T+04 sec	8:06:42	59.87237	0.000			19590	833.413	505.979		-4.264	971.406	0.000	778.337	467.414	469.546
T+06 sec	8:06:44	59.87011	0.000			19590	848.160	625.742		-4.264	1086.905	0.000	855.479	463.151	467.414
T+08 sec	8:06:46	59.87011	0.000			19590	848.160	703.588		-4.264	1160.488	0.000	916.481	458.887	465.282
T+10 sec	8:06:48	59.87432	0.000			19590	820.659	744.563		-4.264	1197.199	0.000	963.267	454.623	463.151
T+12 sec	8:06:50	59.88076	0.000			19590	778.611	756.480		-4.264	1204.852	0.000	997.779	450.360	461.019
T+14 sec	8:06:52	59.88531	0.000			19590	748.918	753.833		-4.264	1197.942	0.000	1022.800	446.096	458.887
T+16 sec	8:06:54	59.88787	0.000			19590	732.179	746.254		-4.264	1186.099	0.000	1040.944	441.832	456.755
T+18 sec	8:06:56	59.88949	0.000			19590	721.617	737.631		-4.264	1173.212	0.000	1054.171	437.568	454.623
T+20 sec	8:06:58	59.8908	0.000	59.897	0.00	19590	713.048	729.027	653.00	-4.264	1160.344	0.000	1063.823	433.305	452.491
T+22 sec	8:07:00	59.89175	0.000	59.897	0.00	19590	706.870	721.272	653.00	-4.264	1148.326	0.000	1070.865	429.041	450.360
T+24 sec	8:07:02	59.89242	0.000	59.897	0.00	19590	702.486	714.697	653.00	-4.264	1137.487	0.000	1075.990	424.777	448.228

T+26 sec	8:07:04	59.89306	0.000	59.897	0.00	19590	698.301	708.959	653.00	-4.264	1127.485	0.000	1079.668	420.514	446.096
T+28 sec	8:07:06	59.89306	0.000	59.897	0.00	19590	698.301	705.229	653.00	-4.264	1119.491	0.000	1082.323	416.250	443.964
T+30 sec	8:07:08	59.89306	0.000	59.897	0.00	19590	698.301	702.804	653.00	-4.264	1112.803	0.000	1084.228	411.986	441.832
T+32 sec	8:07:10	59.89532	0.000	59.897	0.00	19590	683.555	696.067	653.00	-4.264	1101.802	0.000	1085.261	407.723	439.700
T+34 sec	8:07:12	59.89788	0.000	59.897	0.00	19590	666.815	685.829	653.00	-4.264	1087.300	0.000	1085.375	403.459	437.568
T+36 sec	8:07:14	59.8995	0.000	59.897	0.00	19590	656.253	675.477	653.00	-4.264	1072.685	0.000	1084.707	399.195	435.437
T+38 sec	8:07:16	59.90081	0.000	59.897	0.00	19590	647.684	665.750	653.00	-4.264	1058.694	0.000	1083.406	394.932	433.305
T+40 sec	8:07:18	59.9021	0.000	59.897	0.00	19590	639.314	656.497	653.00	-4.264	1045.178	0.000	1081.586	390.668	431.173
T+42 sec	8:07:20	59.90179	0.000	59.897	0.00	19590	641.307	651.181	653.00	-4.264	1035.598	0.000	1079.495	386.404	429.041
T+44 sec	8:07:22	59.90081	0.000	59.897	0.00	19590	647.684	649.957	653.00	-4.264	1030.110	0.000	1077.348	382.141	426.909
T+46 sec	8:07:24	59.90081	0.000	59.897	0.00	19590	647.684	649.162	653.00	-4.264	1025.051	0.000	1075.169	377.877	424.777
T+48 sec	8:07:26	59.90048	0.000	59.897	0.00	19590	649.876	649.412	653.00	-4.264	1021.037	0.000	1073.004	373.613	422.646
T+50 sec	8:07:28	59.8992	0.000	59.897	0.00	19590	658.246	652.504	653.00	-4.264	1019.866	0.000	1070.960	369.350	420.514
T+52 sec	8:07:30	59.89886	0.000	59.897	0.00	19590	660.438	655.281	653.00	-4.264	1018.379	0.000	1069.013	365.086	418.382
T+54 sec	8:07:32	59.89856	0.000			19590	662.431	657.783		-4.264	1016.618	0.000	1067.141	360.822	416.250
T+56 sec	8:07:34	59.90017	0.000			19590	651.869	655.713		-4.264	1010.284	0.000	1065.181	356.559	414.118
T+58 sec	8:07:36	59.90243	0.000			19590	637.122	649.207		-4.264	999.514	0.000	1062.992	352.295	411.986
T+60 sec	8:07:38	59.90469	0.000			19590	622.376	639.816		-4.264	985.859	0.000	1060.504	348.031	409.855
T+62 sec	8:07:40	59.90695	0.000			19590	607.629	628.550		-4.264	970.330	0.000	1057.686	343.768	407.723
T+64 sec	8:07:42	59.90887	0.000			19590	595.074	616.834		-4.264	954.350	0.000	1054.555	339.504	405.591
T+66 sec	8:07:44	59.90921	0.000			19590	592.882	608.451		-4.264	941.703	0.000	1051.235	335.240	403.459
T+68 sec	8:07:46	59.90857	0.000			19590	597.067	604.466		-4.264	933.456	0.000	1047.870	330.977	401.327
T+70 sec	8:07:48	59.90887	0.000			19590	595.074	601.179		-4.264	925.905	0.000	1044.482	326.713	399.195
T+72 sec	8:07:50	59.91018	0.000			19590	586.505	596.043		-4.264	916.505	0.000	1041.023	322.449	397.064
T+74 sec	8:07:52	59.91244	0.000			19590	571.759	587.544		-4.264	903.742	0.000	1037.411	318.186	394.932
T+76 sec	8:07:54	59.9147	0.000			19590	557.012	576.858		-4.264	888.792	0.000	1033.600	313.922	392.800
T+78 sec	8:07:56	59.9176	0.000			19590	538.080	563.286		-4.264	870.956	0.000	1029.534	309.658	390.668
T+80 sec	8:07:58	59.91922	0.000			19590	527.519	550.767		-4.264	854.174	0.000	1025.257	305.395	388.536
T+82 sec	8:08:00	59.92083	0.000			19590	516.957	538.933		-4.264	838.077	0.000	1020.800	301.131	386.404
T+84 sec	8:08:02	59.92215	0.000			19590	508.388	528.242		-4.264	823.122	0.000	1016.203	296.867	384.273
T+86 sec	8:08:04	59.92309	0.000			19590	502.210	519.131		-4.264	809.747	0.000	1011.511	292.603	382.141
T+88 sec	8:08:06	59.92505	0.000			19590	489.456	508.745		-4.264	795.097	0.000	1006.702	288.340	380.009
T+90 sec	8:08:08	59.92505	0.000			19590	489.456	501.994		-4.264	784.082	0.000	1001.862	284.076	377.877
T+92 sec	8:08:10	59.9273	0.000			19590	474.709	492.444		-4.264	770.269	0.000	996.935	279.812	375.745
T+94 sec	8:08:12	59.93246	0.000			19590	441.031	474.450		-4.264	748.011	0.000	991.749	275.549	373.618
T+96 sec	8:08:14	59.93505	0.000			19590	424.092	456.825		-4.264	726.122	0.000	986.328	271.285	371.481
T+98 sec	8:08:16	59.93701	0.000			19590	411.338	440.904		-4.264	705.938	0.000	980.720	267.021	369.350
T+100 sec	8:08:18	59.93765	0.000			19590	407.129	429.083		-4.264	689.853	0.000	975.017	262.758	367.218
T+102 sec	8:08:20	59.93927	0.000			19590	396.567	417.702		-4.264	674.209	0.000	969.232	258.494	365.086
T+104 sec	8:08:22	59.94183	0.000			19590	379.827	404.446		-4.264	656.689	0.000	963.335	254.230	362.954
T+106 sec	8:08:24	59.94409	0.000			19590	365.081	390.668		-4.264	638.647	0.000	957.322	249.967	360.822
T+108 sec	8:08:26	59.94571	0.000			19590	354.519	378.016		-4.264	621.731	0.000	951.220	245.703	358.690
T+110 sec	8:08:28	59.94797	0.000			19590	339.772	364.630		-4.264	604.082	0.000	945.022	241.439	356.559
T+112 sec	8:08:30	59.94766	0.000			19590	341.765	356.628		-4.264	591.816	0.000	938.825	237.176	354.427
T+114 sec	8:08:32	59.9454	0.000			19590	356.512	356.587		-4.264	587.511	0.000	932.768	232.912	352.295

T+116 sec	8:08:34	59.94443	0.000	19590	362.888	358.792	-4.264	585.453	0.000	926.881	228.648	350.163
T+118 sec	8:08:36	59.94409	0.000	19590	365.081	360.993	-4.264	583.390	0.000	921.156	224.385	348.031
T+120 sec	8:08:38	59.94507	0.000	19590	358.704	360.192	-4.264	578.325	0.000	915.536	220.121	345.899
T+122 sec	8:08:40	59.94604	0.000	19590	352.327	357.439	-4.264	571.309	0.000	909.984	215.857	343.768
T+124 sec	8:08:42	59.94638	0.000	19590	350.135	354.883	-4.264	564.489	0.000	904.500	211.594	341.636
T+126 sec	8:08:44	59.94733	0.000	19590	343.957	351.059	-4.264	556.401	0.000	899.061	207.330	339.504
T+128 sec	8:08:46	59.9483	0.000	19590	337.580	346.341	-4.264	547.420	0.000	893.651	203.066	337.372
T+130 sec	8:08:48	59.94894	0.000	19590	333.395	341.810	-4.264	538.625	0.000	888.272	198.803	335.240
T+132 sec	8:08:50	59.94992	0.000	19590	327.018	336.633	-4.264	529.184	0.000	882.912	194.539	333.108
T+134 sec	8:08:52	59.9509	0.000	19590	320.641	331.036	-4.264	519.323	0.000	877.566	190.275	330.977
T+136 sec	8:08:54	59.95154	0.000	19590	316.456	325.933	-4.264	509.957	0.000	872.238	186.012	328.845
T+138 sec	8:08:56	59.95187	0.000	19590	314.264	321.849	-4.264	501.609	0.000	866.943	181.748	326.713
T+140 sec	8:08:58	59.95346	0.000	19590	303.902	315.567	-4.264	491.064	0.000	861.649	177.484	324.581
T+142 sec	8:09:00	59.95508	0.000	19590	293.340	307.788	-4.264	479.021	0.000	856.335	173.221	322.449
T+144 sec	8:09:02	59.95575	0.000	19590	288.956	301.197	-4.264	468.166	0.000	851.017	168.957	320.317
T+146 sec	8:09:04	59.95639	0.000	19590	284.771	295.448	-4.264	458.153	0.000	845.708	164.693	318.186
T+148 sec	8:09:06	59.95801	0.000	19590	274.209	288.014	-4.264	446.456	0.000	840.385	160.430	316.054
T+150 sec	8:09:08	59.96124	0.000	19590	253.085	275.789	-4.264	429.967	0.000	834.985	156.166	313.922
T+152 sec	8:09:10	59.96252	0.000	19590	244.716	264.913	-4.264	414.828	0.000	829.528	151.902	311.790
T+154 sec	8:09:12	59.96188	0.000	19590	248.900	259.309	-4.264	404.960	0.000	824.085	147.638	309.658
T+156 sec	8:09:14	59.96124	0.000	19590	253.085	257.131	-4.264	398.518	0.000	818.698	143.375	307.526
T+158 sec	8:09:16	59.96027	0.000	19590	259.462	257.947	-4.264	395.070	0.000	813.403	139.111	305.395
T+160 sec	8:09:18	59.96057	0.000	19590	257.469	257.780	-4.264	390.640	0.000	808.184	134.847	303.263
T+162 sec	8:09:20	59.96219	0.000	19590	246.908	253.974	-4.264	382.571	0.000	802.993	130.584	301.131
T+164 sec	8:09:22	59.96512	0.000	19590	227.777	244.805	-4.264	369.138	0.000	797.766	126.320	298.999
T+166 sec	8:09:24	59.96738	0.000	19590	213.030	233.684	-4.264	353.753	0.000	792.480	122.056	296.867
T+168 sec	8:09:26	59.96899	0.000	19590	202.468	222.758	-4.264	338.564	0.000	787.140	117.793	294.735
T+170 sec	8:09:28	59.97061	0.000	19590	191.906	211.960	-4.264	323.502	0.000	781.749	113.529	292.603
T+172 sec	8:09:30	59.97318	0.000	19590	175.167	199.083	-4.264	306.360	0.000	776.284	109.265	290.472
T+174 sec	8:09:32	59.97351	0.000	19590	172.975	189.945	-4.264	292.959	0.000	770.792	105.002	288.340
T+176 sec	8:09:34	59.97287	0.000	19590	177.160	185.470	-4.264	284.221	0.000	765.325	100.738	286.208
T+178 sec	8:09:36	59.97253	0.000	19590	179.352	183.329	-4.264	277.815	0.000	759.908	96.474	284.076
T+180 sec	8:09:38	59.97318	0.000	19590	175.167	180.472	-4.264	270.695	0.000	754.532	92.211	281.944
	8:09:40	59.97415	0.000	19590	168.790	176.383	-4.264	262.343	0.000	749.182	87.947	279.812
	8:09:42	59.97543	0.000	19590	160.420	170.796	-4.264	252.492	0.000	743.842	83.683	277.681
	8:09:44	59.97577	0.000	19590	158.228	166.397	-4.264	243.830	0.000	738.522	79.420	275.549
	8:09:46	59.9761	0.000	19590	156.036	162.771	-4.264	235.939	0.000	733.232	75.156	273.417
	8:09:48	59.97675	0.000	19590	151.851	158.949	-4.264	227.854	0.000	727.968	70.892	271.285
	8:09:50	59.97803	0.000	19590	143.481	153.535	-4.264	218.176	0.000	722.712	66.629	269.153
	8:09:52	59.97931	0.000	19590	135.112	147.087	-4.264	207.464	0.000	717.454	62.365	267.021
	8:09:54	59.97998	0.000	19590	130.728	141.361	-4.264	197.475	0.000	712.202	58.101	264.890
	8:09:56	59.97964	0.000	19590	132.920	138.407	-4.264	190.257	0.000	706.983	53.838	262.758
	8:09:58	59.979	0.000	19590	137.104	137.951	-4.264	185.537	0.000	701.820	49.574	260.626
	8:10:00	59.97964	0.000	19590	132.920	136.190	-4.264	179.513	0.000	696.699	45.310	258.494
	8:10:02	59.98093	0.000	19590	124.550	132.116	-4.264	171.175	0.000	691.597	41.047	256.362
	8:10:04	59.98224	0.000	19590	115.981	126.469	-4.264	161.264	0.000	686.498	36.783	254.230

8:10:06	59.98386	0.000	19590	105.419	119.101	-4.264	149.633	0.000	681.385	32.519	252.099
8:10:08	59.98514	0.000	19590	97.049	111.383	-4.264	137.651	0.000	676.255	28.256	249.967
8:10:10	59.98773	0.000	19590	80.110	100.438	-4.264	122.442	0.000	671.079	23.992	247.835
8:10:12	59.9903	0.000	19590	63.371	87.464	-4.264	105.205	0.000	665.840	19.728	245.703
8:10:14	59.99289	0.000	19590	46.432	73.103	-4.264	86.580	0.000	660.525	15.465	243.571
8:10:16	59.99579	0.000	19590	27.501	57.142	-4.264	66.355	0.000	655.124	11.201	241.439
8:10:18	59.99646	0.000	19590	23.116	45.233	-4.264	50.183	0.000	649.674	6.937	239.308
8:10:20	59.99579	0.000	19590	27.501	39.027	-4.264	39.713	0.000	644.228	2.673	237.176
8:10:22	59.99612	0.000	19590	25.309	34.225	-4.264	30.648	0.000	638.798	-1.590	235.044
8:10:24	59.99579	0.000	19590	27.501	31.872	-4.264	24.030	0.000	633.405	-5.854	232.912
8:10:26	59.99484	0.000	19590	33.678	32.504	-4.264	20.399	0.000	628.075	-10.118	230.780
8:10:28	59.99484	0.000	19590	33.678	32.915	-4.264	16.546	0.000	622.803	-14.381	228.648
8:10:30	59.99805	0.000	19590	12.754	25.859	-4.264	5.226	0.000	617.525	-18.645	226.516
8:10:32	59.99872	0.000	19590	8.370	19.738	0.000	-0.895	0.000	612.284	-18.645	224.421
8:10:34	60.00034	0.000	19590	-2.192	12.062	0.000	-8.570	0.000	607.066	-18.645	222.361
8:10:36	60.00195	0.000	19590	-12.754	3.377	0.000	-17.256	0.000	601.864	-18.645	220.336
8:10:38	60.00259	0.000	19590	-16.939	-3.734	0.000	-24.366	0.000	596.688	-18.645	218.344
8:10:40	60.00226	0.000	19590	-14.747	-7.588	0.000	-28.221	0.000	591.566	-18.645	216.386
8:10:42	60.00195	0.000	19590	-12.754	-9.396	0.000	-30.029	0.000	586.512	-18.645	214.459
8:10:44	60.00064	0.000	19590	-4.185	-7.572	0.000	-28.205	0.000	581.555	-18.645	212.564
8:10:46	59.99646	0.000	19590	23.116	3.169	0.000	-17.464	0.000	576.763	-18.645	210.700
8:10:48	59.99191	0.000	19590	52.809	20.543	0.000	-0.090	0.000	572.185	-18.645	208.865
8:10:50	59.98901	0.000	19590	71.741	38.462	0.000	17.830	0.000	567.820	-18.645	207.059
8:10:52	59.98773	0.000	19590	80.110	53.039	0.000	32.407	0.000	563.637	-18.645	205.282
8:10:54	59.98901	0.000	19590	71.741	59.585	0.000	38.952	0.000	559.570	-18.645	203.533
8:10:56	59.99255	0.000	19590	48.624	55.749	0.000	35.116	0.000	555.535	-18.645	201.810
8:10:58	59.99579	0.000	19590	27.501	45.862	0.000	25.229	0.000	551.487	-18.645	200.114
8:11:00	59.99902	0.000	19590	6.377	32.042	0.000	11.410	0.000	547.396	-18.645	198.445
8:11:02	60.00195	0.000	19590	-12.754	16.363	0.000	-4.269	0.000	543.248	-18.645	196.800
8:11:04	60.00485	0.000	19590	-31.685	-0.454	0.000	-21.086	0.000	539.036	-18.645	195.180
8:11:06	60.00809	0.000	19590	-52.809	-18.778	0.000	-39.411	0.000	534.752	-18.645	193.584
8:11:08	60.01163	0.000	19590	-75.926	-38.780	0.000	-59.412	0.000	530.383	-18.645	192.012
8:11:10	60.01422	0.000	19590	-92.864	-57.709	0.000	-78.342	0.000	525.939	-18.645	190.463
8:11:12	60.0152	0.000	19590	-99.241	-72.246	0.000	-92.878	0.000	521.455	-18.645	188.937
8:11:14	60.0155	0.000	19590	-101.234	-82.392	0.000	-103.024	0.000	516.963	-18.645	187.433
8:11:16	60.0155	0.000	19590	-101.234	-88.986	0.000	-109.619	0.000	512.487	-18.645	185.950
8:11:18	60.01682	0.000	19590	-109.803	-96.272	0.000	-116.905	0.000	508.023	-18.645	184.489
8:11:20	60.01907	0.000	19590	-124.550	-106.169	0.000	-126.802	0.000	503.553	-18.645	183.048
8:11:22	60.02295	0.000	19590	-149.858	-121.461	0.000	-142.093	0.000	499.038	-18.645	181.628
8:11:24	60.02618	0.000	19590	-170.982	-138.793	0.000	-159.426	0.000	494.465	-18.645	180.227
8:11:26	60.02972	0.000	19590	-194.099	-158.150	0.000	-178.782	0.000	489.822	-18.645	178.846
8:11:28	60.03262	0.000	19590	-213.030	-177.358	0.000	-197.990	0.000	485.111	-18.645	177.484
8:11:30	60.03458	0.000	19590	-225.784	-194.307	0.000	-214.940	0.000	480.349	-18.645	176.141
8:11:32	60.03522	0.000	19590	-229.969	-206.789	0.000	-227.421	0.000	475.566	-18.645	174.816
8:11:34	60.03424	0.000	19590	-223.592	-212.670	0.000	-233.302	0.000	470.809	-18.645	173.509
8:11:36	60.0336	0.000	19590	-219.407	-215.028	0.000	-235.660	0.000	466.099	-18.645	172.219

8:11:38	60.03522	0.000
8:11:40	60.03812	0.000
8:11:42	60.04037	0.000
8:11:44	60.04105	0.000
8:11:46	60.04199	0.000
8:11:48	60.04233	0.000
8:11:50	60.0433	0.000
8:11:52	60.04425	0.000
8:11:54	60.04492	0.000
8:11:56	60.04556	0.000
8:11:58	60.04587	0.000
8:12:00	60.04654	0.000
8:12:02	60.0488	0.000
8:12:04	60.04974	0.000
8:12:06	60.0491	0.000
8:12:08	60.0491	0.000
8:12:10	60.05042	0.000
8:12:12	60.04974	0.000
8:12:14	60.04846	0.000
8:12:16	60.04718	0.000
8:12:18	60.04587	0.000
8:12:20	60.04587	0.000
8:12:22	60.04556	0.000
8:12:24	60.04425	0.000
8:12:26	60.04297	0.000
8:12:28	60.04169	0.000
8:12:30	60.04233	0.000
8:12:32	60.04459	0.000
8:12:34	60.04654	0.000
8:12:36	60.04718	0.000
8:12:38	60.0462	0.000
8:12:40	60.04425	0.000
8:12:42	60.04492	0.000
8:12:44	60.04523	0.000
8:12:46	60.04523	0.000
8:12:48	60.04556	0.000
8:12:50	60.0462	0.000
8:12:52	60.04654	0.000
8:12:54	60.04654	0.000
8:12:56	60.04523	0.000
8:12:58	60.04361	0.000
8:13:00	60.04199	0.000
8:13:02	60.04071	0.000
8:13:04	60.03876	0.000
8:13:06	60.03586	0.000
8:13:08	60.03394	0.000

19590	-229.969	-220.257	0.000	-240.890	0.000	461.417	-18.645	170.947
19590	-248.900	-230.282	0.000	-250.915	0.000	456.731	-18.645	169.691
19590	-263.647	-241.960	0.000	-262.592	0.000	452.029	-18.645	168.452
19590	-268.031	-251.085	0.000	-271.717	0.000	447.330	-18.645	167.229
19590	-274.209	-259.178	0.000	-279.811	0.000	442.638	-18.645	166.022
19590	-276.401	-265.206	0.000	-285.839	0.000	437.969	-18.645	164.831
19590	-282.778	-271.356	0.000	-291.989	0.000	433.319	-18.645	163.655
19590	-288.956	-277.516	0.000	-298.149	0.000	428.690	-18.645	162.493
19590	-293.340	-283.054	0.000	-303.687	0.000	424.083	-18.645	161.347
19590	-297.525	-288.119	0.000	-308.751	0.000	419.503	-18.645	160.215
19590	-299.518	-292.109	0.000	-312.741	0.000	414.955	-18.645	159.097
19590	-303.902	-296.236	0.000	-316.869	0.000	410.438	-18.645	157.993
19590	-318.648	-304.080	0.000	-324.713	0.000	405.928	-18.645	156.903
19590	-324.826	-311.341	0.000	-331.974	0.000	401.428	-18.645	155.826
19590	-320.641	-314.596	0.000	-335.229	0.000	396.964	-18.645	154.762
19590	-320.641	-316.712	0.000	-337.344	0.000	392.540	-18.645	153.711
19590	-329.210	-321.086	0.000	-341.719	0.000	388.143	-18.645	152.673
19590	-324.826	-322.395	0.000	-343.028	0.000	383.791	-18.645	151.647
19590	-316.456	-320.317	0.000	-340.949	0.000	379.503	-18.645	150.633
19590	-308.087	-316.036	0.000	-336.669	0.000	375.290	-18.645	149.632
19590	-299.518	-310.255	0.000	-330.887	0.000	371.160	-18.645	148.642
19590	-299.518	-306.497	0.000	-327.129	0.000	367.100	-18.645	147.663
19590	-297.525	-303.356	0.000	-323.989	0.000	363.106	-18.645	146.697
19590	-288.956	-298.316	0.000	-318.949	0.000	359.186	-18.645	145.741
19590	-280.586	-292.111	0.000	-312.743	0.000	355.346	-18.645	144.796
19590	-272.216	-285.148	0.000	-305.780	0.000	351.590	-18.645	143.862
19590	-276.401	-282.086	0.000	-302.719	0.000	347.893	-18.645	142.939
19590	-291.148	-285.258	0.000	-305.890	0.000	344.220	-18.645	142.026
19590	-303.902	-291.783	0.000	-312.416	0.000	340.552	-18.645	141.123
19590	-308.087	-297.489	0.000	-318.122	0.000	336.893	-18.645	140.231
19590	-301.710	-298.966	0.000	-319.599	0.000	333.266	-18.645	139.348
19590	-288.956	-295.463	0.000	-316.095	0.000	329.698	-18.645	138.475
19590	-293.340	-294.720	0.000	-315.352	0.000	326.173	-18.645	137.612
19590	-295.333	-294.934	0.000	-315.567	0.000	322.685	-18.645	136.758
19590	-295.333	-295.074	0.000	-315.706	0.000	319.234	-18.645	135.913
19590	-297.525	-295.932	0.000	-316.564	0.000	315.816	-18.645	135.078
19590	-301.710	-297.954	0.000	-318.586	0.000	312.423	-18.645	134.251
19590	-303.902	-300.036	0.000	-320.668	0.000	309.056	-18.645	133.434
19590	-303.902	-301.389	0.000	-322.021	0.000	305.717	-18.645	132.625
19590	-295.333	-299.269	0.000	-319.902	0.000	302.424	-18.645	131.825
19590	-284.771	-294.195	0.000	-314.827	0.000	299.193	-18.645	131.033
19590	-274.209	-287.200	0.000	-307.832	0.000	296.031	-18.645	130.249
19590	-265.839	-279.724	0.000	-300.356	0.000	292.941	-18.645	129.473
19590	-253.085	-270.400	0.000	-291.033	0.000	289.931	-18.645	128.706
19590	-234.154	-257.714	0.000	-278.346	0.000	287.016	-18.645	127.946
19590	-221.599	-245.074	0.000	-265.706	0.000	284.196	-18.645	127.195

8:13:10	60.0336	0.000	19590	-219.407	-236.090	0.000	-256.723	0.000	281.451	-18.645	126.451
8:13:12	60.03262	0.000	19590	-213.030	-228.019	0.000	-248.652	0.000	278.773	-18.645	125.714
8:13:14	60.03006	0.000	19590	-196.291	-216.914	0.000	-237.547	0.000	276.179	-18.645	124.985
8:13:16	60.02747	0.000	19590	-179.352	-203.767	0.000	-224.400	0.000	273.676	-18.645	124.263
8:13:18	60.02682	0.000	19590	-175.167	-193.757	0.000	-214.390	0.000	271.248	-18.645	123.549
8:13:20	60.02585	0.000	19590	-168.790	-185.019	0.000	-205.651	0.000	268.887	-18.645	122.841
8:13:22	60.02359	0.000	19590	-154.043	-174.177	0.000	-194.810	0.000	266.603	-18.645	122.141
8:13:24	60.02197	0.000	19590	-143.481	-163.434	0.000	-184.066	0.000	264.393	-18.645	121.447
8:13:26	60.02164	0.000	19590	-141.289	-155.683	0.000	-176.316	0.000	262.244	-18.645	120.761
8:13:28	60.02231	0.000	19590	-145.674	-152.180	0.000	-172.812	0.000	260.132	-18.645	120.081
8:13:30	60.02133	0.000	19590	-139.297	-147.671	0.000	-168.303	0.000	258.062	-18.645	119.407
8:13:32	60.02133	0.000	19590	-139.297	-144.740	0.000	-165.372	0.000	256.026	-18.645	118.740
8:13:34	60.02002	0.000	19590	-130.728	-139.835	0.000	-160.468	0.000	254.033	-18.645	118.080
8:13:36	60.01776	0.000	19590	-115.981	-131.486	0.000	-152.119	0.000	252.099	-18.645	117.426
8:13:38	60.01584	0.000	19590	-103.426	-121.665	0.000	-142.298	0.000	250.230	-18.645	116.778
8:13:40	60.01291	0.000	19590	-84.295	-108.586	0.000	-129.218	0.000	248.440	-18.645	116.136
8:13:42	60.01132	0.000	19590	-73.933	-96.457	0.000	-117.090	0.000	246.724	-18.645	115.500
8:13:44	60.01001	0.000	19590	-65.364	-85.575	0.000	-106.207	0.000	245.075	-18.645	114.870
8:13:46	60.00937	0.000	19590	-61.179	-77.036	0.000	-97.669	0.000	243.481	-18.645	114.246
8:13:48	60.00775	0.000	19590	-50.617	-67.789	0.000	-88.422	0.000	241.944	-18.645	113.628
8:13:50	60.00516	0.000	19590	-33.678	-55.851	0.000	-76.483	0.000	240.477	-18.645	113.016
8:13:52	60.00452	0.000	19590	-29.493	-46.626	0.000	-67.258	0.000	239.065	-18.645	112.409
8:13:54	60.00613	0.000	19590	-40.055	-44.326	0.000	-64.958	0.000	237.677	-18.645	111.808
8:13:56	60.00613	0.000	19590	-40.055	-42.831	0.000	-63.464	0.000	236.308	-18.645	111.212
8:13:58	60.00549	0.000	19590	-35.870	-40.395	0.000	-61.027	0.000	234.963	-18.645	110.622
8:14:00	60.00516	0.000	19590	-33.678	-38.044	0.000	-58.677	0.000	233.640	-18.645	110.037
8:14:02	60.00388	0.000	19590	-25.309	-33.587	0.000	-54.219	0.000	232.349	-18.645	109.457
8:14:04	60.00259	0.000	19590	-16.939	-27.760	0.000	-48.392	0.000	231.096	-18.645	108.883
8:14:06	60.00128	0.000	19590	-8.370	-20.973	0.000	-41.606	0.000	229.884	-18.645	108.314
8:14:08	60.00128	0.000	19590	-8.370	-16.562	0.000	-37.195	0.000	228.702	-18.645	107.749
8:14:10	60.00064	0.000	19590	-4.185	-12.230	0.000	-32.863	0.000	227.550	-18.645	107.190
8:14:12	60.00034	0.000	19590	-2.192	-8.717	0.000	-29.349	0.000	226.423	-18.645	106.636
8:14:14	60.00226	0.000	19590	-14.747	-10.827	0.000	-31.460	0.000	225.297	-18.645	106.086
8:14:16	60.00421	0.000	19590	-27.501	-16.663	0.000	-37.295	0.000	224.155	-18.645	105.542
8:14:18	60.00677	0.000	19590	-44.240	-26.315	0.000	-46.947	0.000	222.982	-18.645	105.002
8:14:20	60.00903	0.000	19590	-58.987	-37.750	0.000	-58.383	0.000	221.769	-18.645	104.466
8:14:22	60.01291	0.000	19590	-84.295	-54.041	0.000	-74.673	0.000	220.497	-18.645	103.936
8:14:24	60.01486	0.000	19590	-97.049	-69.094	0.000	-89.726	0.000	219.171	-18.645	103.410
8:14:26	60.01453	0.000	19590	-94.857	-78.111	0.000	-98.743	0.000	217.818	-18.645	102.888
8:14:28	60.01422	0.000	19590	-92.864	-83.275	0.000	-103.907	0.000	216.455	-18.645	102.371
8:14:30	60.0152	0.000	19590	-99.241	-88.863	0.000	-109.495	0.000	215.080	-18.645	101.858
8:14:32	60.01614	0.000	19590	-105.419	-94.658	0.000	-115.290	0.000	213.691	-18.645	101.350
8:14:34	60.01682	0.000	19590	-109.803	-99.959	0.000	-120.591	0.000	212.293	-18.645	100.846
8:14:36	60.01746	0.000	19590	-113.988	-104.869	0.000	-125.501	0.000	210.885	-18.645	100.346
8:14:38	60.01712	0.000	19590	-111.796	-107.293	0.000	-127.926	0.000	209.479	-18.645	99.850
8:14:40	60.01682	0.000	19590	-109.803	-108.172	0.000	-128.804	0.000	208.082	-18.645	99.358

8:14:42	60.01648	0.000	19590	-107.611	-107.976	0.000	-128.608	0.000	206.696	-18.645	98.870
8:14:44	60.01614	0.000	19590	-105.419	-107.081	0.000	-127.713	0.000	205.325	-18.645	98.387
8:14:46	60.01746	0.000	19590	-113.988	-109.498	0.000	-130.131	0.000	203.956	-18.645	97.907
8:14:48	60.01776	0.000	19590	-115.981	-111.767	0.000	-132.400	0.000	202.589	-18.645	97.432
8:14:50	60.01776	0.000	19590	-115.981	-113.242	0.000	-133.874	0.000	201.227	-18.645	96.960
8:14:52	60.01648	0.000	19590	-107.611	-111.271	0.000	-131.904	0.000	199.883	-18.645	96.492
8:14:54	60.01584	0.000	19590	-103.426	-108.525	0.000	-129.158	0.000	198.562	-18.645	96.027
8:14:56	60.01648	0.000	19590	-107.611	-108.205	0.000	-128.838	0.000	197.252	-18.645	95.567
8:14:58	60.01584	0.000	19590	-103.426	-106.533	0.000	-127.165	0.000	195.960	-18.645	95.110
8:15:00	60.01358	0.000	19590	-88.680	-100.284	0.000	-120.917	0.000	194.703	-18.645	94.657
8:15:02	60.01163	0.000	19590	-75.926	-91.759	0.000	-112.391	0.000	193.489	-18.645	94.207
8:15:04	60.01132	0.000	19590	-73.933	-85.520	0.000	-106.152	0.000	192.309	-18.645	93.761
8:15:06	60.01132	0.000	19590	-73.933	-81.464	0.000	-102.097	0.000	191.154	-18.645	93.319
8:15:08	60.01099	0.000	19590	-71.741	-78.061	0.000	-98.693	0.000	190.022	-18.645	92.879
8:15:10	60.01099	0.000	19590	-71.741	-75.849	0.000	-96.481	0.000	188.907	-18.645	92.444
8:15:12	60.01291	0.000	19590	-84.295	-78.805	0.000	-99.438	0.000	187.790	-18.645	92.012
8:15:14	60.01486	0.000	19590	-97.049	-85.191	0.000	-105.823	0.000	186.656	-18.645	91.583
8:15:16	60.01776	0.000	19590	-115.981	-95.967	0.000	-116.600	0.000	185.490	-18.645	91.157
8:15:18	60.01776	0.000	19590	-115.981	-102.972	0.000	-123.604	0.000	184.306	-18.645	90.735
8:15:20	60.0184	0.000	19590	-120.166	-108.990	0.000	-129.622	0.000	183.107	-18.645	90.316
8:15:22	60.0181	0.000	19590	-118.173	-112.204	0.000	-132.836	0.000	181.906	-18.645	89.900
8:15:24	60.01746	0.000	19590	-113.988	-112.828	0.000	-133.461	0.000	180.711	-18.645	89.487
8:15:26	60.0152	0.000	19590	-99.241	-108.073	0.000	-128.705	0.000	179.544	-18.645	89.078
8:15:28	60.0152	0.000	19590	-99.241	-104.982	0.000	-125.614	0.000	178.397	-18.645	88.671
8:15:30	60.01389	0.000	19590	-90.672	-99.974	0.000	-120.606	0.000	177.277	-18.645	88.268
8:15:32	60.01746	0.000	19590	-113.988	-104.879	0.000	-125.511	0.000	176.147	-18.645	87.867
8:15:34	60.01907	0.000	19590	-124.550	-111.764	0.000	-132.396	0.000	175.000	-18.645	87.470
8:15:36	60.01907	0.000	19590	-124.550	-116.239	0.000	-136.871	0.000	173.845	-18.645	87.075
8:15:38	60.02036	0.000	19590	-132.920	-122.077	0.000	-142.710	0.000	172.677	-18.645	86.684
8:15:40	60.01874	0.000	19590	-122.358	-122.175	0.000	-142.808	0.000	171.517	-18.645	86.295
8:15:42	60.01874	0.000	19590	-122.358	-122.239	0.000	-142.872	0.000	170.365	-18.645	85.909
8:15:44	60.01971	0.000	19590	-128.735	-124.513	0.000	-145.145	0.000	169.214	-18.645	85.526
8:15:46	60.01971	0.000	19590	-128.735	-125.990	0.000	-146.623	0.000	168.065	-18.645	85.146
8:15:48	60.01971	0.000	19590	-128.735	-126.951	0.000	-147.583	0.000	166.922	-18.645	84.769
8:15:50	60.0184	0.000	19590	-120.166	-124.576	0.000	-145.209	0.000	165.795	-18.645	84.394
8:15:52	60.01486	0.000	19590	-97.049	-114.942	0.000	-135.574	0.000	164.711	-18.645	84.022
8:15:54	60.01358	0.000	19590	-88.680	-105.750	0.000	-126.382	0.000	163.667	-18.645	83.653
8:15:56	60.01389	0.000	19590	-90.672	-100.473	0.000	-121.105	0.000	162.650	-18.645	83.286
8:15:58	60.01227	0.000	19590	-80.110	-93.346	0.000	-113.978	0.000	161.666	-18.645	82.922
8:16:00	60.01001	0.000	19590	-65.364	-83.552	0.000	-104.185	0.000	160.723	-18.645	82.561
8:16:02	60.00583	0.000	19590	-38.062	-67.631	0.000	-88.263	0.000	159.843	-18.645	82.202
8:16:04	60.00162	0.000	19590	-10.562	-47.657	0.000	-68.289	0.000	159.040	-18.645	81.845
8:16:06	60.00162	0.000	19590	-10.562	-34.673	0.000	-55.306	0.000	158.288	-18.645	81.491
8:16:08	59.99805	0.000	19590	12.754	-18.074	0.000	-38.706	0.000	157.599	-18.645	81.140
8:16:10	59.99353	0.000	19590	42.247	3.039	0.000	-17.594	0.000	156.989	-18.645	80.791
8:16:12	59.99255	0.000	19590	48.624	18.994	0.000	-1.639	0.000	156.438	-18.645	80.445

8:16:14	59.99225	0.000	19590	50.617	30.062	0.000	9.429	0.000	155.929	-18.645	80.101
8:16:16	59.98999	0.000	19590	65.364	42.417	0.000	21.785	0.000	155.467	-18.645	79.759
8:16:18	59.98837	0.000	19590	75.926	54.145	0.000	33.513	0.000	155.048	-18.645	79.420
8:16:20	59.98416	0.000	19590	103.426	71.394	0.000	50.761	0.000	154.691	-18.645	79.083
8:16:22	59.9816	0.000	19590	120.166	88.464	0.000	67.831	0.000	154.394	-18.645	78.748
8:16:24	59.98093	0.000	19590	124.550	101.094	0.000	80.462	0.000	154.143	-18.645	78.416
8:16:26	59.98029	0.000	19590	128.735	110.768	0.000	90.136	0.000	153.926	-18.645	78.085
8:16:28	59.97998	0.000	19590	130.728	117.754	0.000	97.122	0.000	153.734	-18.645	77.758
8:16:30	59.97836	0.000	19590	141.289	125.991	0.000	105.359	0.000	153.571	-18.645	77.432
8:16:32	59.97513	0.000	19590	162.413	138.739	0.000	118.107	0.000	153.452	-18.645	77.108
8:16:34	59.97287	0.000	19590	177.160	152.186	0.000	131.554	0.000	153.379	-18.645	76.787
8:16:36	59.97189	0.000	19590	183.537	163.159	0.000	142.526	0.000	153.342	-18.645	76.468
8:16:38	59.97156	0.000	19590	185.729	171.058	0.000	150.426	0.000	153.333	-18.645	76.151
8:16:40	59.97382	0.000	19590	170.982	171.032	0.000	150.399	0.000	153.323	-18.645	75.836
8:16:42	59.97641	0.000	19590	154.043	165.086	0.000	144.453	0.000	153.294	-18.645	75.523
8:16:44	59.97836	0.000	19590	141.289	156.757	0.000	136.125	0.000	153.237	-18.645	75.212
8:16:46	59.97705	0.000	19590	149.858	154.342	0.000	133.710	0.000	153.173	-18.645	74.904
8:16:48	59.97449	0.000	19590	166.598	158.632	0.000	137.999	0.000	153.124	-18.645	74.597
8:16:50	59.97125	0.000	19590	187.722	168.813	0.000	148.181	0.000	153.108	-18.645	74.292
8:16:52	59.97092	0.000	19590	189.914	176.198	0.000	155.566	0.000	153.116	-18.645	73.989
8:16:54	59.97287	0.000	19590	177.160	176.535	0.000	155.902	0.000	153.125	-18.645	73.689
8:16:56	59.97449	0.000	19590	166.598	173.057	0.000	152.424	0.000	153.122	-18.645	73.390
8:16:58	59.97382	0.000	19590	170.982	172.331	0.000	151.698	0.000	153.118	-18.645	73.093
8:17:00	59.97318	0.000	19590	175.167	173.323	0.000	152.691	0.000	153.116	-18.645	72.798
8:17:02	59.97449	0.000	19590	166.598	170.969	0.000	150.337	0.000	153.108	-18.645	72.505
8:17:04	59.9761	0.000	19590	156.036	165.743	0.000	145.110	0.000	153.082	-18.645	72.214
8:17:06	59.97739	0.000	19590	147.666	159.416	0.000	138.784	0.000	153.037	-18.645	71.924
8:17:08	59.97836	0.000	19590	141.289	153.072	0.000	132.439	0.000	152.971	-18.645	71.637
8:17:10	59.97769	0.000	19590	145.674	150.482	0.000	129.850	0.000	152.899	-18.645	71.351
8:17:12	59.97705	0.000	19590	149.858	150.264	0.000	129.632	0.000	152.825	-18.645	71.067
8:17:14	59.97641	0.000	19590	154.043	151.587	0.000	130.954	0.000	152.757	-18.645	70.785
8:17:16	59.97543	0.000	19590	160.420	154.678	0.000	134.046	0.000	152.698	-18.645	70.505
8:17:18	59.97382	0.000	19590	170.982	160.385	0.000	139.752	0.000	152.658	-18.645	70.226
8:17:20	59.97318	0.000	19590	175.167	165.558	0.000	144.926	0.000	152.634	-18.645	69.949
8:17:22	59.97223	0.000	19590	181.345	171.084	0.000	150.451	0.000	152.627	-18.645	69.674
8:17:24	59.97189	0.000	19590	183.537	175.442	0.000	154.810	0.000	152.634	-18.645	69.401
8:17:26	59.97092	0.000	19590	189.914	180.507	0.000	159.875	0.000	152.656	-18.645	69.129
8:17:28	59.96994	0.000	19590	196.291	186.031	0.000	165.399	0.000	152.695	-18.645	68.859
8:17:30	59.96832	0.000	19590	206.852	193.319	0.000	172.686	0.000	152.756	-18.645	68.590
8:17:32	59.96606	0.000	19590	221.599	203.217	0.000	182.584	0.000	152.847	-18.645	68.324
8:17:34	59.96542	0.000	19590	225.784	211.115	0.000	190.483	0.000	152.962	-18.645	68.059
8:17:36	59.96606	0.000	19590	221.599	214.785	0.000	194.152	0.000	153.087	-18.645	67.795
8:17:38	59.9693	0.000	19590	200.475	209.776	0.000	189.144	0.000	153.196	-18.645	67.533
8:17:40	59.97253	0.000	19590	179.352	199.128	0.000	178.495	0.000	153.272	-18.645	67.273
8:17:42	59.97351	0.000	19590	172.975	189.974	0.000	169.342	0.000	153.320	-18.645	67.014
8:17:44	59.97382	0.000	19590	170.982	183.327	0.000	162.695	0.000	153.348	-18.645	66.757

8:17:46	59.97253	0.000	19590	179.352	181.936	0.000	161.303	0.000	153.372	-18.645	66.501
8:17:48	59.97253	0.000	19590	179.352	181.031	0.000	160.399	0.000	153.393	-18.645	66.247
8:17:50	59.97253	0.000	19590	179.352	180.443	0.000	159.811	0.000	153.412	-18.645	65.994
8:17:52	59.96768	0.000	19590	211.037	191.151	0.000	170.519	0.000	153.462	-18.645	65.743
8:17:54	59.97125	0.000	19590	187.722	189.951	0.000	169.318	0.000	153.509	-18.645	65.493
8:17:56	59.97577	0.000	19590	158.228	178.848	0.000	158.215	0.000	153.523	-18.645	65.245
8:17:58	59.97577	0.000	19590	158.228	171.631	0.000	150.999	0.000	153.516	-18.645	64.998
8:18:00	59.97577	0.000	19590	158.228	166.940	0.000	146.308	0.000	153.495	-18.645	64.753
8:18:02	59.98416	0.000	19590	103.426	144.710	0.000	124.078	0.000	153.409	-18.645	64.509
8:18:04	59.9819	0.000	19590	118.173	135.422	0.000	114.790	0.000	153.297	-18.645	64.267
8:18:06	59.979	0.000	19590	137.104	136.011	0.000	115.379	0.000	153.187	-18.645	64.026
8:18:08	59.97769	0.000	19590	145.674	139.393	0.000	118.760	0.000	153.087	-18.645	63.786
8:18:10	59.97769	0.000	19590	145.674	141.591	0.000	120.959	0.000	152.995	-18.645	63.548
8:18:12	59.98126	0.000	19590	122.358	134.859	0.000	114.227	0.000	152.883	-18.645	63.311
8:18:14	59.9848	0.000	19590	99.241	122.393	0.000	101.761	0.000	152.737	-18.645	63.076
8:18:16	59.98868	0.000	19590	73.933	105.432	0.000	84.800	0.000	152.543	-18.645	62.841
8:18:18	59.99161	0.000	19590	54.802	87.711	0.000	67.079	0.000	152.299	-18.645	62.609
8:18:20	59.99353	0.000	19590	42.247	71.799	0.000	51.167	0.000	152.012	-18.645	62.377
8:18:22	59.99579	0.000	19590	27.501	56.295	0.000	35.662	0.000	151.682	-18.645	62.147
8:18:24	59.99677	0.000	19590	21.124	43.985	0.000	23.352	0.000	151.320	-18.645	61.918
8:18:26	59.99774	0.000	19590	14.747	33.751	0.000	13.119	0.000	150.930	-18.645	61.690
8:18:28	59.99838	0.000	19590	10.562	25.635	0.000	5.003	0.000	150.520	-18.645	61.464
8:18:30	59.99774	0.000	19590	14.747	21.824	0.000	1.192	0.000	150.102	-18.645	61.239
8:18:32	59.9971	0.000	19590	18.932	20.812	0.000	0.179	0.000	149.683	-18.645	61.015
8:18:34	59.99741	0.000	19590	16.939	19.456	0.000	-1.176	0.000	149.263	-18.645	60.793
8:18:36	59.99741	0.000	19590	16.939	18.575	0.000	-2.057	0.000	148.843	-18.645	60.572
8:18:38	59.99741	0.000	19590	16.939	18.002	0.000	-2.630	0.000	148.423	-18.645	60.352
8:18:40	60.00064	0.000	19590	-4.185	10.237	0.000	-10.396	0.000	147.984	-18.645	60.133
8:18:42	60.00323	0.000	19590	-21.124	-0.739	0.000	-21.372	0.000	147.518	-18.645	59.915
8:18:44	60.00354	0.000	19590	-23.116	-8.571	0.000	-29.204	0.000	147.032	-18.645	59.699
8:18:46	60.00259	0.000	19590	-16.939	-11.500	0.000	-32.132	0.000	146.542	-18.645	59.483
8:18:48	60.00098	0.000	19590	-6.377	-9.707	0.000	-30.339	0.000	146.058	-18.645	59.269
8:18:50	59.99936	0.000	19590	4.185	-4.845	0.000	-25.477	0.000	145.591	-18.645	59.057
8:18:52	59.99741	0.000	19590	16.939	2.779	0.000	-17.853	0.000	145.147	-18.645	58.845
8:18:54	59.99677	0.000	19590	21.124	9.200	0.000	-11.433	0.000	144.722	-18.645	58.634
8:18:56	59.99677	0.000	19590	21.124	13.373	0.000	-7.259	0.000	144.312	-18.645	58.425
8:18:58	59.9971	0.000	19590	18.932	15.319	0.000	-5.314	0.000	143.908	-18.645	58.217
8:19:00	59.99774	0.000	19590	14.747	15.118	0.000	-5.514	0.000	143.507	-18.645	58.009
8:19:02	59.99872	0.000	19590	8.370	12.756	0.000	-7.876	0.000	143.101	-18.645	57.803
8:19:04	59.99966	0.000	19590	2.192	9.059	0.000	-11.574	0.000	142.687	-18.645	57.598
8:19:06	60	0.000	19590	0.000	5.888	0.000	-14.744	0.000	142.267	-18.645	57.394
8:19:08	60.00034	0.000	19590	-2.192	3.060	0.000	-17.572	0.000	141.842	-18.645	57.192
8:19:10	60.00098	0.000	19590	-6.377	-0.243	0.000	-20.875	0.000	141.411	-18.645	56.990
8:19:12	60.00226	0.000	19590	-14.747	-5.319	0.000	-25.952	0.000	140.968	-18.645	56.789
8:19:14	60.0029	0.000	19590	-18.932	-10.084	0.000	-30.716	0.000	140.515	-18.645	56.590
8:19:16	60.00259	0.000	19590	-16.939	-12.483	0.000	-33.115	0.000	140.058	-18.645	56.391

8:19:18	60.00226	0.000	19590	-14.747	-13.275	0.000	-33.908	0.000	139.601	-18.645	56.194
8:19:20	60.00226	0.000	19590	-14.747	-13.790	0.000	-34.423	0.000	139.146	-18.645	55.997
8:19:22	60.00323	0.000	19590	-21.124	-16.357	0.000	-36.989	0.000	138.686	-18.645	55.802
8:19:24	60.00421	0.000	19590	-27.501	-20.257	0.000	-40.890	0.000	138.218	-18.645	55.608
8:19:26	60.00485	0.000	19590	-31.685	-24.257	0.000	-44.890	0.000	137.743	-18.645	55.414
8:19:28	60.00452	0.000	19590	-29.493	-26.090	0.000	-46.722	0.000	137.265	-18.645	55.222
8:19:30	60.00354	0.000	19590	-23.116	-25.049	0.000	-45.682	0.000	136.792	-18.645	55.031
8:19:32	60.00354	0.000	19590	-23.116	-24.373	0.000	-45.005	0.000	136.324	-18.645	54.840
8:19:34	60.00354	0.000	19590	-23.116	-23.933	0.000	-44.565	0.000	135.859	-18.645	54.651
8:19:36	60.00354	0.000	19590	-23.116	-23.647	0.000	-44.280	0.000	135.397	-18.645	54.462
8:19:38	60.00354	0.000	19590	-23.116	-23.461	0.000	-44.094	0.000	134.938	-18.645	54.275
8:19:40	60.00354	0.000	19590	-23.116	-23.341	0.000	-43.973	0.000	134.481	-18.645	54.088
8:19:42	60.00354	0.000	19590	-23.116	-23.262	0.000	-43.895	0.000	134.027	-18.645	53.903
8:19:44	60.00613	0.000	19590	-40.055	-29.140	0.000	-49.772	0.000	133.561	-18.645	53.718
8:19:46	60.00485	0.000	19590	-31.685	-30.031	0.000	-50.663	0.000	133.094	-18.645	53.535
8:19:48	60.00452	0.000	19590	-29.493	-29.843	0.000	-50.475	0.000	132.631	-18.645	53.352
8:19:50	60.00452	0.000	19590	-29.493	-29.720	0.000	-50.353	0.000	132.170	-18.645	53.170
8:19:52	60.00354	0.000	19590	-23.116	-27.409	0.000	-48.041	0.000	131.717	-18.645	52.989
8:19:54	60.0029	0.000	19590	-18.932	-24.442	0.000	-45.074	0.000	131.274	-18.645	52.809
8:19:56	60.00162	0.000	19590	-10.562	-19.584	0.000	-40.216	0.000	130.845	-18.645	52.630
8:19:58	60.00162	0.000	19590	-10.562	-16.426	0.000	-37.059	0.000	130.427	-18.645	52.452
8:20:00	60.00421	0.000	19590	-27.501	-20.302	0.000	-40.935	0.000	130.000	-18.645	52.275
8:20:02	60.00421	0.000	19590	-27.501	-22.822	0.000	-43.454	0.000	129.570	-18.645	52.098
8:20:04	60.0029	0.000	19590	-18.932	-21.460	0.000	-42.093	0.000	129.145	-18.645	51.923
8:20:06	60.00034	0.000	19590	-2.192	-14.716	0.000	-35.349	0.000	128.739	-18.645	51.748
8:20:08	59.99805	0.000	19590	12.754	-5.102	0.000	-25.734	0.000	128.358	-18.645	51.574
8:20:10	59.99646	0.000	19590	23.116	4.775	0.000	-15.858	0.000	128.004	-18.645	51.401
8:20:12	59.99515	0.000	19590	31.685	14.193	0.000	-6.439	0.000	127.675	-18.645	51.229
8:20:14	59.99387	0.000	19590	40.055	23.245	0.000	2.613	0.000	127.369	-18.645	51.058
8:20:16	59.99289	0.000	19590	46.432	31.361	0.000	10.728	0.000	127.084	-18.645	50.887
8:20:18	59.99255	0.000	19590	48.624	37.403	0.000	16.770	0.000	126.816	-18.645	50.718
8:20:20	59.99225	0.000	19590	50.617	42.028	0.000	21.395	0.000	126.560	-18.645	50.549
8:20:22	59.98965	0.000	19590	67.556	50.963	0.000	30.330	0.000	126.327	-18.645	50.381
8:20:24	59.98514	0.000	19590	97.049	67.093	0.000	46.461	0.000	126.134	-18.645	50.214
8:20:26	59.98254	0.000	19590	113.988	83.506	0.000	62.874	0.000	125.982	-18.645	50.048
8:20:28	59.97836	0.000	19590	141.289	103.730	0.000	83.098	0.000	125.879	-18.645	49.882
8:20:30	59.97641	0.000	19590	154.043	121.340	0.000	100.707	0.000	125.818	-18.645	49.717
8:20:32	59.97705	0.000	19590	149.858	131.321	0.000	110.689	0.000	125.782	-18.645	49.553
8:20:34	59.97705	0.000	19590	149.858	137.809	0.000	117.177	0.000	125.762	-18.645	49.390
8:20:36	59.97705	0.000	19590	149.858	142.026	0.000	121.394	0.000	125.751	-18.645	49.228
8:20:38	59.97803	0.000	19590	143.481	142.536	0.000	121.903	0.000	125.742	-18.645	49.066
8:20:40	59.97964	0.000	19590	132.920	139.170	0.000	118.538	0.000	125.725	-18.645	48.906
8:20:42	59.9816	0.000	19590	120.166	132.519	0.000	111.886	0.000	125.692	-18.645	48.745
8:20:44	59.98126	0.000	19590	122.358	128.962	0.000	108.330	0.000	125.651	-18.645	48.586
8:20:46	59.97931	0.000	19590	135.112	131.115	0.000	110.482	0.000	125.616	-18.645	48.428
8:20:48	59.9761	0.000	19590	156.036	139.837	0.000	119.205	0.000	125.600	-18.645	48.270

$8: 20: 50$	59.97543	0.000
$8: 20: 52$	59.97577	0.000
$8: 20: 54$	59.97675	0.000
$8: 20: 56$	59.97803	0.000
$8: 20: 58$	59.979	0.000
$8: 21: 00$	59.97964	0.000
$8: 21: 02$	59.98062	0.000
$8: 21: 04$	59.9819	0.000
$8: 21: 06$	59.98224	0.000
$8: 21: 08$	59.98254	0.000
$8: 21: 10$	59.98288	0.000
$8: 21: 12$	59.98254	0.000
$8: 21: 14$	59.98254	0.000
$8: 21: 16$	59.98288	0.000
$8: 21: 18$	59.98611	0.000
$8: 21: 20$	59.99387	0.000
$8: 21: 22$	60.00226	0.000
$8: 21: 24$	60.01099	0.000
$8: 21: 26$	60.01712	0.000
$8: 21: 28$	60.02069	0.000
$8: 21: 30$	60.02133	0.000
$8: 21: 32$	60.02133	0.000
$8: 21: 34$	60.02133	0.000
$8: 21: 36$	60.02325	0.000
$8: 21: 38$	60.02551	0.000

19590	160.420	147.041
19590	158.228	150.957
19590	151.851	151.270
19590	143.481	148.544
19590	137.104	144.540
19590	132.920	140.473
19590	126.543	135.597
19590	118.173	129.499
19590	115.981	124.767
19590	113.988	120.995
19590	111.796	117.775
19590	113.988	116.450
19590	113.988	115.588
19590	111.796	114.261
19590	90.672	106.005
19590	40.055	82.922
19590	-14.747	48.738
19590	-71.741	6.571
19590	-111.796	-34.858
19590	-135.112	-69.947
19590	-139.297	-94.219
19590	-139.297	-109.996
19590	-139.297	-120.251
19590	-151.851	-131.311
19590	-166.598	-143.662

0.000	126.409	0.000	125.602	-18.645	48.113
0.000	130.324	0.000	125.613	-18.645	47.956
0.000	130.637	0.000	125.625	-18.645	47.801
0.000	127.911	0.000	125.630	-18.645	47.646
0.000	123.908	0.000	125.626	-18.645	47.492
0.000	119.840	0.000	125.613	-18.645	47.338
0.000	114.965	0.000	125.588	-18.645	47.185
0.000	108.866	0.000	125.550	-18.645	47.033
0.000	104.135	0.000	125.501	-18.645	46.882
0.000	100.362	0.000	125.443	-18.645	46.731
0.000	97.143	0.000	125.378	-18.645	46.582
0.000	95.817	0.000	125.311	-18.645	46.432
0.000	94.956	0.000	125.242	-18.645	46.284
0.000	93.628	0.000	125.170	-18.645	46.136
0.000	85.372	0.000	125.080	-18.645	45.989
0.000	62.290	0.000	124.937	-18.645	45.842
0.000	28.106	0.000	124.719	-18.645	45.696
0.000	-14.062	0.000	124.406	-18.645	45.551
0.000	-55.490	0.000	124.002	-18.645	45.406
0.000	-90.579	0.000	123.521	-18.645	45.262
0.000	-114.852	0.000	122.988	-18.645	45.119
0.000	-130.629	0.000	122.422	-18.645	44.976
0.000	-140.884	0.000	121.835	-18.645	44.834
0.000	-151.944	0.000	121.227	-18.645	44.693
0.000	-164.294	0.000	120.594	-18.645	44.552

T-66 sec	8:05:32	59.986	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30155.67	92.864	T-66 sec	8:05:32
T-64 sec	8:05:34	59.987	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30142.79	82.303	T-64 sec	8:05:34
T-62 sec	8:05:36	59.988	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30142.79	78.118	T-62 sec	8:05:36
T-60 sec	8:05:38	59.987	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30142.79	82.303	T-60 sec	8:05:38
T-58 sec	8:05:40	59.986	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30142.79	90.672	T-58 sec	8:05:40
T-56 sec	8:05:42	59.985	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30142.79	99.241	T-56 sec	8:05:42
T-54 sec	8:05:44	59.984	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30154.67	107.611	T-54 sec	8:05:44
T-52 sec	8:05:46	59.983	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30154.67	109.803	T-52 sec	8:05:46
T-50 sec	8:05:48	59.984	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30154.67	107.611	T-50 sec	8:05:48
$\mathrm{T}-48 \mathrm{sec}$	8:05:50	59.984	471.30	0.00	0.00	0.00	0.00	0.00	-653.00	30150.35	103.426	T-48 sec	8:05:50
T-46 sec	8:05:52	59.985	471.30	0.00	0.00	0.00	0.00	0.00	-653.00	30150.35	97.049	T-46 sec	8:05:52
T-44 sec	8:05:54	59.985	471.30	0.00	0.00	0.00	0.00	0.00	-653.00	30159.63	94.857	T-44 sec	8:05:54
T-42 sec	8:05:56	59.986	471.30	0.00	0.00	0.00	0.00	0.00	-653.00	30159.63	88.680	T-42 sec	8:05:56
T-40 sec	8:05:58	59.987	471.90	0.00	0.00	0.00	0.00	0.00	-653.00	30159.63	86.487	T-40 sec	8:05:58
T-38 sec	8:06:00	59.987	471.90	0.00	0.00	0.00	0.00	0.00	-653.00	30159.63	82.303	T-38 sec	8:06:00
T-36 sec	8:06:02	59.988	471.90	0.00	0.00	0.00	0.00	0.00	-653.00	30151.42	80.110	T-36 sec	8:06:02
T-34 sec	8:06:04	59.989	471.90	0.00	0.00	0.00	0.00	0.00	-653.00	30151.42	71.741	T-34 sec	8:06:04
T-32 sec	8:06:06	59.989	471.90	0.00	0.00	0.00	0.00	0.00	-653.00	30156.16	71.741	T-32 sec	8:06:06
T-30 sec	8:06:08	59.988	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30156.16	78.118	T-30 sec	8:06:08
T-28 sec	8:06:10	59.986	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30156.16	88.680	T-28 sec	8:06:10
T-26 sec	8:06:12	59.985	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30156.16	94.857	T-26 sec	8:06:12
T-24 sec	8:06:14	59.986	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30164.15	88.680	T-24 sec	8:06:14
T-22 sec	8:06:16	59.989	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30164.15	69.549	T-22 sec	8:06:16
T-20 sec	8:06:18	59.992	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30164.15	50.617	T-20 sec	8:06:18
$\mathrm{T}-18 \mathrm{sec}$	8:06:20	59.995	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30164.15	31.685	T-18 sec	8:06:20
$\mathrm{T}-16 \mathrm{sec}$	8:06:22	59.996	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30203.91	27.501	T-16 sec	8:06:22
$\mathrm{T}-14 \mathrm{sec}$	8:06:24	59.995	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30203.91	31.685	$\mathrm{T}-14 \mathrm{sec}$	8:06:24
$\mathrm{T}-12 \mathrm{sec}$	8:06:26	59.995	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30203.73	29.493	$\mathrm{T}-12 \mathrm{sec}$	8:06:26
T-10 sec	8:06:28	59.997	470.90	0.00	0.00	0.00	0.00	0.00	-653.00	30203.73	16.939	T-10 sec	8:06:28
T-08 sec	8:06:30	60.000	470.90	0.00	0.00	0.00	0.00	0.00	-653.00	30203.73	0.000	T-08 sec	8:06:30
T-06 sec	8:06:32	60.002	470.90	0.00	0.00	0.00	0.00	0.00	-653.00	30203.73	-10.562	T-06 sec	8:06:32
T-04 sec	8:06:34	60.002	470.90	0.00	0.00	0.00	0.00	0.00	-653.00	30199.61	-10.562	T-04 sec	8:06:34
T-02 sec	8:06:36	60.002	470.90	0.00	0.00	0.00	0.00	0.00	-653.00	30199.61	-12.754	T-02 sec	8:06:36
T+0 sec	8:06:38	59.960	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30199.61	263.647	T+0 sec	8:06:38
T+02 sec	8:06:40	59.881	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30199.61	774.227	T+02 sec	8:06:40
T+04 sec	8:06:42	59.872	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.11	833.413	T+04 sec	8:06:42
T+06 sec	8:06:44	59.870	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.11	848.160	T+06 sec	8:06:44
T+08 sec	8:06:46	59.870	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.11	848.160	T+08 sec	8:06:46
T+10 sec	8:06:48	59.874	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.14	820.659	T+10 sec	8:06:48
T+12 sec	8:06:50	59.881	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.14	778.611	$\mathrm{T}+12 \mathrm{sec}$	8:06:50
T+14 sec	8:06:52	59.885	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.14	748.918	T+14 sec	8:06:52
T+16 sec	8:06:54	59.888	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.14	732.179	$\mathrm{T}+16 \mathrm{sec}$	8:06:54
T+18 sec	8:06:56	59.889	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30094.43	721.617	T+18 sec	8:06:56
T+20 sec	8:06:58	59.891	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30094.43	713.048	$\mathrm{T}+20 \mathrm{sec}$	8:06:58
T+22 sec	8:07:00	59.892	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30094.43	706.870	$\mathrm{T}+22 \mathrm{sec}$	8:07:00
T+24 sec	8:07:02	59.892	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30094.43	702.486	T+24 sec	8:07:02

T+26 sec	8:07:04	59.893	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30139.49	698.301	T+26 sec	8:07:04
T+28 sec	8:07:06	59.893	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30139.49	698.301	T+28 sec	8:07:06
T+30 sec	8:07:08	59.893	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30133.38	698.301	T+30 sec	8:07:08
T+32 sec	8:07:10	59.895	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30133.38	683.555	T+32 sec	8:07:10
$\mathrm{T}+34 \mathrm{sec}$	8:07:12	59.898	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30133.38	666.815	T+34 sec	8:07:12
T+36 sec	8:07:14	59.900	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30133.38	656.253	T+36 sec	8:07:14
T+38 sec	8:07:16	59.901	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30137.26	647.684	T+38 sec	8:07:16
$\mathrm{T}+40 \mathrm{sec}$	8:07:18	59.902	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30137.26	639.314	$\mathrm{T}+40 \mathrm{sec}$	8:07:18
$\mathrm{T}+42 \mathrm{sec}$	8:07:20	59.902	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30137.26	641.307	T+42 sec	8:07:20
$\mathrm{T}+44 \mathrm{sec}$	8:07:22	59.901	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30137.26	647.684	T+44 sec	8:07:22
T+46 sec	8:07:24	59.901	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30171.38	647.684	T+46 sec	8:07:24
T+48 sec	8:07:26	59.900	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30171.38	649.876	T+48 sec	8:07:26
T+50 sec	8:07:28	59.899	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30168.76	658.246	T+50 sec	8:07:28
T+52 sec	8:07:30	59.899	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30168.76	660.438	T+52 sec	8:07:30
T+54 sec	8:07:32	59.899	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30168.76	662.431	T+54 sec	8:07:32
T+56 sec	8:07:34	59.900	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30168.76	651.869	T+56 sec	8:07:34
T+58 sec	8:07:36	59.902	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30208.99	637.122	T+58 sec	8:07:36
T+60 sec	8:07:38	59.905	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30208.99	622.376	T+60 sec	8:07:38
T+62 sec	8:07:40	59.907	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30208.99	607.629	T+62 sec	8:07:40
T+64 sec	8:07:42	59.909	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30208.99	595.074	T+64 sec	8:07:42
T+66 sec	8:07:44	59.909	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30205.66	592.882	T+66 sec	8:07:44
T+68 sec	8:07:46	59.909	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30205.66	597.067	T+68 sec	8:07:46
T+70 sec	8:07:48	59.909	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30205.66	595.074	T+70 sec	8:07:48
T+72 sec	8:07:50	59.910	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30205.66	586.505	T+72 sec	8:07:50
T+74 sec	8:07:52	59.912	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30205.66	571.759	T+74 sec	8:07:52
T+76 sec	8:07:54	59.915	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30205.66	557.012	T+76 sec	8:07:54
T+78 sec	8:07:56	59.918	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30211.75	538.080	T+78 sec	8:07:56
T+80 sec	8:07:58	59.919	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30211.75	527.519	T+80 sec	8:07:58
T+82 sec	8:08:00	59.921	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30211.75	516.957	T+82 sec	8:08:00
T+84 sec	8:08:02	59.922	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30211.75	508.388	T+84 sec	8:08:02
T+86 sec	8:08:04	59.923	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.55	502.210	T+86 sec	8:08:04
T+88 sec	8:08:06	59.925	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.55	489.456	T+88 sec	8:08:06
T+90 sec	8:08:08	59.925	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.57	489.456	T+90 sec	8:08:08
T+92 sec	8:08:10	59.927	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.57	474.709	T+92 sec	8:08:10
T+94 sec	8:08:12	59.932	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.57	441.031	T+94 sec	8:08:12
T+96 sec	8:08:14	59.935	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.57	424.092	T+96 sec	8:08:14
T+98 sec	8:08:16	59.937	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.59	411.338	T+98 sec	8:08:16
T+100 sec	8:08:18	59.938	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.59	407.129	T+100 sec	8:08:18
T+102 sec	8:08:20	59.939	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.59	396.567	T+102 sec	8:08:20
T+104 sec	8:08:22	59.942	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.59	379.827	T+104 sec	8:08:22
T+106 sec	8:08:24	59.944	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30210.49	365.081	T+106 sec	8:08:24
T+108 sec	8:08:26	59.946	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30210.49	354.519	T+108 sec	8:08:26
T+110 sec	8:08:28	59.948	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30210.26	339.772	T+110 sec	8:08:28
T+112 sec	8:08:30	59.948	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30210.26	341.765	T+112 sec	8:08:30
T+114 sec	8:08:32	59.945	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30210.26	356.512	T+114 sec	8:08:32

T+116 sec	8:08:34	59.944	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30210.26	362.888	T+116 sec	8:08:34
T+118 sec	8:08:36	59.944	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30234.59	365.081	T+118 sec	8:08:36
$\mathrm{T}+120 \mathrm{sec}$	8:08:38	59.945	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30234.59	358.704	T+120 sec	8:08:38
T+122 sec	8:08:40	59.946	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30234.59	352.327	T+122 sec	8:08:40
$\mathrm{T}+124 \mathrm{sec}$	8:08:42	59.946	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30234.59	350.135	T+124 sec	8:08:42
T+126 sec	8:08:44	59.947	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30223.60	343.957	T+126 sec	8:08:44
$\mathrm{T}+128 \mathrm{sec}$	8:08:46	59.948	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30223.60	337.580	T+128 sec	8:08:46
T+130 sec	8:08:48	59.949	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30223.73	333.395	T+130 sec	8:08:48
T+132 sec	8:08:50	59.950	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30223.73	327.018	T+132 sec	8:08:50
T+134 sec	8:08:52	59.951	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30223.73	320.641	T+134 sec	8:08:52
T+136 sec	8:08:54	59.952	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30223.73	316.456	T+136 sec	8:08:54
T+138 sec	8:08:56	59.952	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30224.39	314.264	T+138 sec	8:08:56
T+140 sec	8:08:58	59.953	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30224.39	303.902	T+140 sec	8:08:58
T+142 sec	8:09:00	59.955	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30224.39	293.340	T+142 sec	8:09:00
T+144 sec	8:09:02	59.956	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30224.39	288.956	T+144 sec	8:09:02
T+146 sec	8:09:04	59.956	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30255.53	284.771	T+146 sec	8:09:04
T+148 sec	8:09:06	59.958	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30255.53	274.209	T+148 sec	8:09:06
T+150 sec	8:09:08	59.961	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30252.87	253.085	T+150 sec	8:09:08
T+152 sec	8:09:10	59.963	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30252.87	244.716	T+152 sec	8:09:10
T+154 sec	8:09:12	59.962	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30252.87	248.900	T+154 sec	8:09:12
T+156 sec	8:09:14	59.961	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30252.87	253.085	T+156 sec	8:09:14
T+158 sec	8:09:16	59.960	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30232.45	259.462	$\mathrm{T}+158 \mathrm{sec}$	8:09:16
T+160 sec	8:09:18	59.961	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30232.45	257.469	T+160 sec	8:09:18
T+162 sec	8:09:20	59.962	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30232.45	246.908	T+162 sec	8:09:20
T+164 sec	8:09:22	59.965	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30232.45	227.777	T+164 sec	8:09:22
T+166 sec	8:09:24	59.967	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.99	213.030	T+166 sec	8:09:24
$\mathrm{T}+168 \mathrm{sec}$	8:09:26	59.969	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.99	202.468	T+168 sec	8:09:26
T+170 sec	8:09:28	59.971	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.68	191.906	T+170 sec	8:09:28
T+172 sec	8:09:30	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.68	175.167	T+172 sec	8:09:30
T+174 sec	8:09:32	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.68	172.975	T+174 sec	8:09:32
T+176 sec	8:09:34	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.68	177.160	T+176 sec	8:09:34
T+178 sec	8:09:36	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30264.96	179.352	T+178 sec	8:09:36
T+180 sec	8:09:38	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30264.96	175.167	T+180 sec	8:09:38
	8:09:40	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30264.96	168.790		
	8:09:42	59.975	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30264.96	160.420		
	8:09:44	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.63	158.228		
	8:09:46	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.63	156.036		
	8:09:48	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30279.39	151.851		
	8:09:50	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30279.39	143.481		
	8:09:52	59.979	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30279.39	135.112		
	8:09:54	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30279.39	130.728		
	8:09:56	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30255.32	132.920		
	8:09:58	59.979	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30255.32	137.104		
	8:10:00	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30255.32	132.920		
	8:10:02	59.981	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30255.32	124.550		
	8:10:04	59.982	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30260.67	115.981		

8:10:06	59.984	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30260.67	105.419
8:10:08	59.985	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30259.99	97.049
8:10:10	59.988	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30259.99	80.110
8:10:12	59.990	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30259.99	63.371
8:10:14	59.993	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30259.99	46.432
8:10:16	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30274.08	27.501
8:10:18	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30274.08	23.116
8:10:20	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30274.08	27.501
8:10:22	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30274.08	25.309
8:10:24	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30297.68	27.501
8:10:26	59.995	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30297.68	33.678
8:10:28	59.995	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30297.65	33.678
8:10:30	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30297.65	12.754
8:10:32	59.999	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30297.65	8.370
8:10:34	60.000	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30297.65	-2.192
8:10:36	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30300.10	-12.754
8:10:38	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30300.10	-16.939
8:10:40	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30300.10	-14.747
8:10:42	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30300.10	-12.754
8:10:44	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30314.84	-4.185
8:10:46	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30314.84	23.116
8:10:48	59.992	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30309.71	52.809
8:10:50	59.989	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30309.71	71.741
8:10:52	59.988	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30309.71	80.110
8:10:54	59.989	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30309.71	71.741
8:10:56	59.993	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30319.50	48.624
8:10:58	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30319.50	27.501
8:11:00	59.999	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30319.50	6.377
8:11:02	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30319.50	-12.754
8:11:04	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30357.21	-31.685
8:11:06	60.008	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30357.21	-52.809
8:11:08	60.012	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30357.18	-75.926
8:11:10	60.014	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30357.18	-92.864
8:11:12	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30357.18	-99.241
8:11:14	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30357.18	-101.234
8:11:16	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.26	-101.234
8:11:18	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.26	-109.803
8:11:20	60.019	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.26	-124.550
8:11:22	60.023	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.26	-149.858
8:11:24	60.026	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.48	-170.982
8:11:26	60.030	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.48	-194.099
8:11:28	60.033	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30353.83	-213.030
8:11:30	60.035	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30353.83	-225.784
8:11:32	60.035	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30353.83	-229.969
8:11:34	60.034	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30353.83	-223.592
8:11:36	60.034	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30370.41	-219.407

8:11:38	60.035	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30370.41	-229.969
8:11:40	60.038	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30370.41	-248.900
8:11:42	60.040	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30370.41	-263.647
8:11:44	60.041	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30374.79	-268.031
8:11:46	60.042	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30374.79	-274.209
8:11:48	60.042	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.14	-276.401
8:11:50	60.043	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.14	-282.778
8:11:52	60.044	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.14	-288.956
8:11:54	60.045	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.14	-293.340
8:11:56	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.53	-297.525
8:11:58	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.53	-299.518
8:12:00	60.047	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.53	-303.902
8:12:02	60.049	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.53	-318.648
8:12:04	60.050	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30343.46	-324.826
8:12:06	60.049	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30343.46	-320.641
8:12:08	60.049	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30335.12	-320.641
8:12:10	60.050	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30335.12	-329.210
8:12:12	60.050	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30335.12	-324.826
8:12:14	60.048	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30335.12	-316.456
8:12:16	60.047	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30337.29	-308.087
8:12:18	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30337.29	-299.518
8:12:20	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30337.29	-299.518
8:12:22	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30337.29	-297.525
8:12:24	60.044	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.20	-288.956
8:12:26	60.043	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.20	-280.586
8:12:28	60.042	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.07	-272.216
8:12:30	60.042	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.07	-276.401
8:12:32	60.045	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.07	-291.148
8:12:34	60.047	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.07	-303.902
8:12:36	60.047	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.77	-308.087
8:12:38	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.77	-301.710
8:12:40	60.044	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.77	-288.956
8:12:42	60.045	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.77	-293.340
8:12:44	60.045	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30372.38	-295.333
8:12:46	60.045	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30372.38	-295.333
8:12:48	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30372.38	-297.525
8:12:50	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30372.38	-301.710
8:12:52	60.047	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30372.38	-303.902
8:12:54	60.047	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30372.38	-303.902
8:12:56	60.045	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30349.10	-295.333
8:12:58	60.044	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30349.10	-284.771
8:13:00	60.042	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30349.10	-274.209
8:13:02	60.041	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30349.10	-265.839
8:13:04	60.039	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30363.65	-253.085
8:13:06	60.036	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30363.65	-234.154
8:13:08	60.034	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30363.88	-221.599

8:13:10	60.034	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30363.88	-219.407
8:13:12	60.033	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30363.88	-213.030
8:13:14	60.030	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30363.88	-196.291
8:13:16	60.027	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.77	-179.352
8:13:18	60.027	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.77	-175.167
8:13:20	60.026	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.77	-168.790
8:13:22	60.024	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.77	-154.043
8:13:24	60.022	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30374.33	-143.481
8:13:26	60.022	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30374.33	-141.289
8:13:28	60.022	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.67	-145.674
8:13:30	60.021	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.67	-139.297
8:13:32	60.021	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.67	-139.297
8:13:34	60.020	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.67	-130.728
8:13:36	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.56	-115.981
8:13:38	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.56	-103.426
8:13:40	60.013	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.56	-84.295
8:13:42	60.011	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.56	-73.933
8:13:44	60.010	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.69	-65.364
8:13:46	60.009	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.69	-61.179
8:13:48	60.008	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30344.52	-50.617
8:13:50	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30344.52	-33.678
8:13:52	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30344.52	-29.493
8:13:54	60.006	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30344.52	-40.055
8:13:56	60.006	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.37	-40.055
8:13:58	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.37	-35.870
8:14:00	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.37	-33.678
8:14:02	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.37	-25.309
8:14:04	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.31	-16.939
8:14:06	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.31	-8.370
8:14:08	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.78	-8.370
8:14:10	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.78	-4.185
8:14:12	60.000	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.78	-2.192
8:14:14	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.78	-14.747
8:14:16	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.33	-27.501
8:14:18	60.007	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.33	-44.240
8:14:20	60.009	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.33	-58.987
8:14:22	60.013	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.33	-84.295
8:14:24	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.85	-97.049
8:14:26	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.85	-94.857
8:14:28	60.014	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.05	-92.864
8:14:30	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.05	-99.241
8:14:32	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.05	-105.419
8:14:34	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.05	-109.803
8:14:36	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30369.77	-113.988
8:14:38	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30369.77	-111.796
8:14:40	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30369.77	-109.803

8:14:42	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30369.77	-107.611
8:14:44	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.99	-105.419
8:14:46	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.99	-113.988
8:14:48	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.16	-115.981
8:14:50	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.16	-115.981
8:14:52	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.16	-107.611
8:14:54	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.16	-103.426
8:14:56	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.94	-107.611
8:14:58	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.94	-103.426
8:15:00	60.014	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.94	-88.680
8:15:02	60.012	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.94	-75.926
8:15:04	60.011	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30371.85	-73.933
8:15:06	60.011	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30371.85	-73.933
8:15:08	60.011	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30362.65	-71.741
8:15:10	60.011	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30362.65	-71.741
8:15:12	60.013	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30362.65	-84.295
8:15:14	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30362.65	-97.049
8:15:16	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30395.46	-115.981
8:15:18	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30395.46	-115.981
8:15:20	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30395.46	-120.166
8:15:22	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30395.46	-118.173
8:15:24	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30397.03	-113.988
8:15:26	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30397.03	-99.241
8:15:28	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30396.67	-99.241
8:15:30	60.014	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30396.67	-90.672
8:15:32	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30396.67	-113.988
8:15:34	60.019	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30396.67	-124.550
8:15:36	60.019	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.62	-124.550
8:15:38	60.020	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.62	-132.920
8:15:40	60.019	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.62	-122.358
8:15:42	60.019	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.62	-122.358
8:15:44	60.020	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30381.78	-128.735
8:15:46	60.020	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30381.78	-128.735
8:15:48	60.020	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30382.96	-128.735
8:15:50	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30382.96	-120.166
8:15:52	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30382.96	-97.049
8:15:54	60.014	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30382.96	-88.680
8:15:56	60.014	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30381.48	-90.672
8:15:58	60.012	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30381.48	-80.110
8:16:00	60.010	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30381.48	-65.364
8:16:02	60.006	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30381.48	-38.062
8:16:04	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30394.03	-10.562
8:16:06	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30394.03	-10.562
8:16:08	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30394.07	12.754
8:16:10	59.994	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30394.07	42.247
8:16:12	59.993	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30394.07	48.624

8:16:14	59.992	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30394.07	50.617
8:16:16	59.990	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.91	65.364
8:16:18	59.988	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.91	75.926
8:16:20	59.984	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.91	103.426
8:16:22	59.982	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.91	120.166
8:16:24	59.981	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.96	124.550
8:16:26	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.96	128.735
8:16:28	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.46	130.728
8:16:30	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.46	141.289
8:16:32	59.975	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.46	162.413
8:16:34	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.46	177.160
8:16:36	59.972	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.18	183.537
8:16:38	59.972	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.18	185.729
8:16:40	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.18	170.982
8:16:42	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.18	154.043
8:16:44	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30365.59	141.289
8:16:46	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30365.59	149.858
8:16:48	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30365.19	166.598
8:16:50	59.971	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30365.19	187.722
8:16:52	59.971	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30365.19	189.914
8:16:54	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30365.19	177.160
8:16:56	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30375.91	166.598
8:16:58	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30375.91	170.982
8:17:00	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30375.91	175.167
8:17:02	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30375.91	166.598
8:17:04	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.40	156.036
8:17:06	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.40	147.666
8:17:08	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.72	141.289
8:17:10	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.72	145.674
8:17:12	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.72	149.858
8:17:14	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.72	154.043
8:17:16	59.975	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30416.87	160.420
8:17:18	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30416.87	170.982
8:17:20	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30416.87	175.167
8:17:22	59.972	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30416.87	181.345
8:17:24	59.972	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30413.65	183.537
8:17:26	59.971	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30413.65	189.914
8:17:28	59.970	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30406.30	196.291
8:17:30	59.968	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30406.30	206.852
8:17:32	59.966	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30406.30	221.599
8:17:34	59.965	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30406.30	225.784
8:17:36	59.966	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30418.59	221.599
8:17:38	59.969	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30418.59	200.475
8:17:40	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30418.59	179.352
8:17:42	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30418.59	172.975
8:17:44	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30433.31	170.982

8:17:46	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30433.31	179.352
8:17:48	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30433.31	179.352
8:17:50	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30433.31	179.352
8:17:52	59.968	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30433.31	211.037
8:17:54	59.971	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30433.31	187.722
8:17:56	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30451.30	158.228
8:17:58	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30451.30	158.228
8:18:00	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30451.30	158.228
8:18:02	59.984	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30451.30	103.426
8:18:04	59.982	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30425.74	118.173
8:18:06	59.979	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30425.74	137.104
8:18:08	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30419.18	145.674
8:18:10	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30419.18	145.674
8:18:12	59.981	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30419.18	122.358
8:18:14	59.985	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30419.18	99.241
8:18:16	59.989	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30424.29	73.933
8:18:18	59.992	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30424.29	54.802
8:18:20	59.994	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30424.29	42.247
8:18:22	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30424.29	27.501
8:18:24	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30440.82	21.124
8:18:26	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30440.82	14.747
8:18:28	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30431.58	10.562
8:18:30	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30431.58	14.747
8:18:32	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30431.58	18.932
8:18:34	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30431.58	16.939
8:18:36	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30444.25	16.939
8:18:38	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30444.25	16.939
8:18:40	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30444.25	-4.185
8:18:42	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30444.25	-21.124
8:18:44	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30465.11	-23.116
8:18:46	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30465.11	-16.939
8:18:48	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30465.30	-6.377
8:18:50	59.999	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30465.30	4.185
8:18:52	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30465.30	16.939
8:18:54	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30465.30	21.124
8:18:56	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30478.25	21.124
8:18:58	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30478.25	18.932
8:19:00	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30478.25	14.747
8:19:02	59.999	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30478.25	8.370
8:19:04	60.000	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30473.86	2.192
8:19:06	60.000	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30473.86	0.000
8:19:08	60.000	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30468.84	-2.192
8:19:10	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30468.84	-6.377
8:19:12	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30468.84	-14.747
8:19:14	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30468.84	-18.932
8:19:16	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.63	-16.939

8:19:18	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.63	-14.747
8:19:20	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.63	-14.747
8:19:22	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.63	-21.124
8:19:24	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30488.41	-27.501
8:19:26	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30488.41	-31.685
8:19:28	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	-29.493
8:19:30	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	-23.116
8:19:32	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	-23.116
8:19:34	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	-23.116
8:19:36	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30477.13	-23.116
8:19:38	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30477.13	-23.116
8:19:40	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30477.13	-23.116
8:19:42	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30477.13	-23.116
8:19:44	60.006	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30487.82	-40.055
8:19:46	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30487.82	-31.685
8:19:48	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30489.73	-29.493
8:19:50	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30489.73	-29.493
8:19:52	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30489.73	-23.116
8:19:54	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30489.73	-18.932
8:19:56	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.09	-10.562
8:19:58	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.09	-10.562
8:20:00	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.09	-27.501
8:20:02	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.09	-27.501
8:20:04	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.91	-18.932
8:20:06	60.000	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.91	-2.192
8:20:08	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.84	12.754
8:20:10	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.84	23.116
8:20:12	59.995	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.84	31.685
8:20:14	59.994	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.84	40.055
8:20:16	59.993	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30476.09	46.432
8:20:18	59.993	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30476.09	48.624
8:20:20	59.992	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30476.09	50.617
8:20:22	59.990	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30476.09	67.556
8:20:24	59.985	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30456.76	97.049
8:20:26	59.983	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30456.76	113.988
8:20:28	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30457.12	141.289
8:20:30	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30457.12	154.043
8:20:32	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30457.12	149.858
8:20:34	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30457.12	149.858
8:20:36	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30446.98	149.858
8:20:38	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30446.98	143.481
8:20:40	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30446.98	132.920
8:20:42	59.982	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30446.98	120.166
8:20:44	59.981	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30461.02	122.358
8:20:46	59.979	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30461.02	135.112
8:20:48	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30460.94	156.036

8:20:50	59.975	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30460.94	160.420
8:20:52	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30460.94	158.228
8:20:54	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30460.94	151.851
8:20:56	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.23	143.481
8:20:58	59.979	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.23	137.104
8:21:00	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.23	132.920
8:21:02	59.981	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.23	126.543
8:21:04	59.982	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30481.49	118.173
8:21:06	59.982	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30481.49	115.981
8:21:08	59.983	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	113.988
8:21:10	59.983	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	111.796
8:21:12	59.983	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	113.988
8:21:14	59.983	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	113.988
8:21:16	59.983	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30473.15	111.796
8:21:18	59.986	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30473.15	90.672
8:21:20	59.994	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30473.15	40.055
8:21:22	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30473.15	-14.747
8:21:24	60.011	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30470.66	-71.741
8:21:26	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30470.66	-111.796
8:21:28	60.021	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30470.60	-135.112
8:21:30	60.021	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30470.60	-139.297
8:21:32	60.021	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30470.60	-139.297
8:21:34	60.021	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30470.60	-139.297
8:21:36	60.023	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30461.28	-151.851
8:21:38	60.026	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30461.28	-166.598

59.999	471.09	0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968			
59.999	471.09	0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968			
59.999	471.09	0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968			
59.999	471.09	0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968			
59.999	471.09	0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968			
59.999	471.09	0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968			
59.999	471.09	0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968			
59.999	471.09	0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968			
												401.98
												373.12
												366.57
												366.57
												378.99
												399.69
												415.73
												425.35
												431.66
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	436.91
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	440.78
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	443.56

59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	446.26	0.1069
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	446.26	0.1069
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	446.26	0.1069
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	456.01	0.1047
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	467.62	0.1021
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	475.25	0.1005
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	481.62	0.0992
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	488.02	0.0979
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	486.48	0.0982
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	481.62	0.0992
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	481.62	0.0992
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	479.97	0.0995
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	473.79	0.1008
59.897	0.00	0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	472.19	0.1011
												470.75	0.1014
												478.49	0.0998
												489.72	0.0976
												501.49	0.0953
												513.85	0.0931
												524.85	0.0911
												526.82	0.0908
												523.07	0.0914
												524.85	0.0911
												532.64	0.0898
												546.60	0.0876
												561.31	0.0853
												581.39	0.0824
												593.23	0.0808
												605.56	0.0792
												615.95	0.0779
												623.67	0.0769
												640.22	0.0750
												640.22	0.0750
												660.50	0.0727
												711.98	0.0675
												741.03	0.0649
												764.52	0.0630
												772.60	0.0623
												793.66	0.0607
												829.48	0.0582
												863.83	0.0559
												890.23	0.0543
												929.92	0.0520
												924.35	0.0523
												885.13	0.0546

869.18	0.0556
863.83	0.0559
879.58	0.0549
895.91	0.0540
901.67	0.0536
918.30	0.0527
936.12	0.0517
948.19	0.0511
967.21	0.0501
986.99	0.0491
1000.43	0.0485
1007.61	0.0481
1043.01	0.0465
1081.75	0.0449
1098.69	0.0443
1115.36	0.0436
1159.77	0.0420
1260.13	0.0388
1304.87	0.0375
1282.11	0.0381
1260.13	0.0388
1228.05	0.0397
1237.90	0.0394
1292.85	0.0378
1405.88	0.0349
1507.48	0.0326
1589.76	0.0310
1681.55	0.0294
1850.91	0.0268
1875.65	0.0265
1828.98	0.0271
1805.45	0.0275
1850.91	0.0268
1924.76	0.0258
2031.13	0.0246
2060.96	0.0242
2091.68	0.0239
2152.94	0.0233
2286.90	0.0220
2438.64	0.0207
2526.45	0.0200
2481.77	0.0204
2400.71	0.0210
2481.77	0.0204
2661.48	0.0191
2874.60	0.0178

3189.38	0.0161
3492.44	0.0149
4323.98	0.0123
5654.43	0.0097
8210.95	0.0071
16598.49	0.0042
21741.68	0.0035
16598.49	0.0042
18825.12	0.0039
16598.49	0.0042
12448.87	0.0052
12448.87	0.0052
81245.24	0.0020
	0.0013
	0.0003
	0.0020
	0.0026
	0.0023
	0.0020
	0.0006
21741.68	0.0035
7016.63	0.0081
4900.51	0.0110
4323.98	0.0123
4900.51	0.0110
7757.08	0.0074
16598.49	0.0042
	0.0010
	0.0020
	0.0049
	0.0081
	0.0116
	0.0142
	0.0152
	0.0155
	0.0155
	0.0168
	0.0191
	0.0229
	0.0262
	0.0297
	0.0326
	0.0346
	0.0352
	0.0342
	0.0336

0.0165
0.0161
0.0175
0.0178
0.0178 0.0165 0.0158 0.0165 0.0158 0.0136 0.0116
0.016 0.0116
0.0113 0.0113
0.0113 0.0113 0.0110 0.0110 0.0129
0.0149 0.0149
0.0178 0.0178
0.0178 0.0178
0.0184 0.0184
0.0181 0.0175 0.0152 0.0152 0.0139 0.0175 0.0175
0.0191 0.0191
0.0191 0.0191
0.0204 0.0204 0.0187 0.0187
0.0197 0.0197 0.0197 0.0197 0.0184 0.0149 0.0136 0.0139 0.0123 0.0100 0.0058

7385.93	0.0078
5454.63	0.0100
4594.22	0.0116
3256.67	0.0158
2766.41	0.0184
2661.48	0.0191
2568.49	0.0197
2526.45	0.0200
2324.79	0.0216
2004.75	0.0249
1828.98	0.0271
1762.17	0.0281
1740.32	0.0284
1898.72	0.0262
2120.41	0.0236
2324.79	0.0216
2183.39	0.0229
1951.53	0.0255
1720.91	0.0287
1700.07	0.0291
1828.98	0.0271
1951.53	0.0255
1898.72	0.0262
1850.91	0.0268
1951.53	0.0255
2091.68	0.0239
2217.90	0.0226
2324.79	0.0216
2250.23	0.0223
2183.39	0.0229
2120.41	0.0236
2031.13	0.0246
1898.72	0.0262
1850.91	0.0268
1784.58	0.0278
1762.17	0.0281
1700.07	0.0291
1642.19	0.0301
1554.54	0.0317
1446.73	0.0339
1418.80	0.0346
1446.73	0.0339
1606.31	0.0307
1805.45	0.0275
1875.65	0.0265
1898.72	0.0262

1805.45	0.0275
1805.45	0.0275
1805.45	0.0275
1522.35	0.0323
1720.91	0.0287
2060.96	0.0242
2060.96	0.0242
2060.96	0.0242
3256.67	0.0158
2816.90	0.0181
2400.71	0.0210
2250.23	0.0223
2250.23	0.0223
2712.93	0.0187
3407.64	0.0152
4735.15	0.0113
6711.56	0.0084
9243.47	0.0065
16598.49	0.0042
25305.89	0.0032
53229.64	0.0023
192957.44	0.0016
53229.64	0.0023
30873.19	0.0029
38591.49	0.0026
38591.49	0.0026
38591.49	0.0026
	0.0006
	0.0032
	0.0035
	0.0026
	0.0010
	0.0006
38591.49	0.0026
25305.89	0.0032
25305.89	0.0032
30873.19	0.0029
53229.64	0.0023
	0.0013
	0.0003
	0.0000
	0.0003
	0.0010
	0.0023
	0.0029
	0.0026

0.0023
0.0023
0.0032
0.0042 0.0049 0.00045 0.0035 0.0035

2031.13	0.0246
2060.96	0.0242
2152.94	0.0233
2286.90	0.0220
2400.71	0.0210
2481.77	0.0204
2616.37	0.0194
2816.90	0.0181
2874.60	0.0178
2929.15	0.0175
2991.59	0.0171
2929.15	0.0175
2929.15	0.0175
2991.59	0.0171
3765.02	0.0139
9895.25	0.0061
	0.0023
	0.0110
	0.0171
	0.0207
	0.0213
	0.0213
	0.0213
	0.0233
	0.0255

ie Evaluation Points			
Spare	Spare	Spare	Adjusted
Adjustment	Adjustment	Adjustment	Performance
0.00	0.00	0.00	0.738
0.00	0.00	0.00	0.860
0.00	0.00	0.00	1.323
0.00	0.00	0.00	1.532
0.00	0.00	0.00	2.309

"Auto" Event Detection adjustment of $\mathrm{T}(0)$.
\# of rows to shift $T(0)$
1
A zero value aligns the data to the hightest Frequency change value. Usually the event begins one or two data scans earlier than this scan

Increasing this value shifts graph data to the right.
Decreasing this value shifts graph data to the left.

Note: The P.U. Performance values indicate performance as a P.U. value of BA Bias setting. For BAs that utilize a variable Bias, the Bias average during $T(+20)$ to $T(+52)$ is used.
P.U. values above 1.0 indicate that the Bias setting was below measured Frequency Response. P.U. values below 1.0 indicate that the Bias setting was above measured Frequency Response.

First change in frequency of the event should occur here on the vertical grid line.
It is important that the pre-event frequency average to NOT contain frequency data of the event, "Average Frequency" trend to the left of center of the graph
To shift the data on the graph left or right, adjust the value in cell Q3 highlighted in yellow above.

				Frequency Response Initiative - Additional Primary Frequency Response Evaluation Points									
			Average	Unadjusted	Unadjusted	Unadjusted	Unadjusted	Unadjusted	Adjusted	Adjusted	Adjusted	Adjusted	Adjusted
BA	BA	Bias	Bias While	PFR									
Bias	Load	Setting	$\mathrm{Hz}>+/-0.036$	Performance									
Setting		EPFR	Hz	@ T(+46)	@ T(+76)	@ T(+106)	@ T(+136)	@ T(+166)	@ T(+46)	@ T(+76)	@ T(+106)	@ T(+136)	@ T(+166)
MW/0.1 Hz	MW	MW	MW/0.1 Hz	P.U.									
-653.00	30136.77	671.54	-653.00	0.738	0.860	1.323	1.532	2.309	0.738	0.860	1.323	1.532	2.309

teps To be completed for each event evaluated.

1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order
Set-up Data collection in exact same order as the "Data" sheet
Column B: Frequency Hz
Column C: Contingent Resouce Lost MW or Lost Load
Column D : Load Resources tripped during the event.
Column E: Non Conforming Load
lumn F: Spare
olumn G: Not Used
Column H: Spare
Column l: Spare
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D \& E are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign (+/-) convention defined in FRS Form 1. Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
and Be sure the "Data" worksheet is clear of any old data. Collect the same total minutes of data for each event evaluated to minimize your effort and time.
fusing PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data
5 Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on the graph on the "Copy Results" worksheet. If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process.
6 Once data is in place in the "Data" worksheet, confirm the Auto selection of the beginning of the event by observing the "Graph 20 to 52 s " worksheet. Adjust the selection if necessary To make an adjustment, change the value in cell "Q3" on the "Graph 20 to 52 s " worksheet. Usually a 0,1 or 2 will achive the correct alignment of $\mathrm{T}(0)$.

7 If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency (red trend) of the event on the center vertical grid line of the graph.
8 The end of the event will be Auto selected based on the frequency value in cell " N 2 " on the Data worksheet. This will be the frequency at the beginning of the event or 60 Hz , whichever is lower. (for low Hz events) This value controls the end of the "Sustained Frequency Response" evaluation period.
Primary Frequency Response should be sustained during the event recovery period. This evaluation determines how well you achieved this goal.
9 Use the "Copy Form 2 data for Pasting into Form 1" button provided on the "Copy Results" worksheet (Cells B21 through B28) to copy the evaluation and event specific data for the "FRS Form 1" of this field trial. This data is summarized in the correct order on worksheet "Form 1 Summary Data",
10 Use PasteSpecial/Values and paste the copied data into FRS Form 1 on the appropriate event row. Be sure to use the latest version of Form 1, currently Form 1.9 .
11 Save this Form 2 using the file name convention on the "Copy Results" worksheet. The complete file name is in bold in cell B38. Return all completed Form 2 s with your Form 1 to NERC.

Steps To be completed the first time you use Form 2 for your BA.
A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Copy Results" worksheet. For example: "ERCOT".

Time (T)	Hz	Net Actual Interchange MW	jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	$\begin{gathered} \text { Not } \\ \text { Used } \end{gathered}$	Transferred Frequency Response $\operatorname{Rec}(-) \operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	$\begin{gathered} \hline \text { Rows of } \\ \text { data to } \\ \text { shift to } \\ \text { align } \mathrm{T}(0) \\ 1 \end{gathered}$
10/12/09 02:17:26	60.007	3679.946	350	-331.852966	0	81.5	10	15	-103	7553.79		0				
10/12/09 02:17:28	60.009	3679.44	350	-331.852966	0	82	10	15	-103	7554.12	0	0	0	0.002	0.002	
10/12/09 02:17:30	60.009	3679.912	350	-331.852966	0	82.5	10	15	-103	7554.45	0	0	0	0.000	0.000	
10/12/09 02:17:32	60.006	3679.517	350	-331.852966	0	83	10	15	-103	7554.78	0	0	0	-0.003	0.003	
10/12/09 02:17:34	60.006	3679.888	350	-331.852966	0	83.5	10	15	-103	7555.11	0	0	0	0.000	0.000	
10/12/09 02:17:36	60.009	3679.608	350	-329.98822	0	84	10	15	-103	7555.44	0	0	0	0.003	0.003	
10/12/09 02:17:38	60.009	3679.06	350	-329.98822	0	84.5	10	15	-103	7555.77	0	0	0	0.000	0.000	
10/12/09 02:17:40	60.008	3679.261	350	-329.98822	0	85	10	15	-103	7556.1	0	0	0	-0.001	0.001	
10/12/09 02:17:42	60.009	3679.164	350	-329.98822	0	85.5	10	15	-103	7556.43	0	0	0	0.001	0.001	
10/12/09 02:17:44	60.009	3679.025	350	-329.98822	0	86	10	15	-103	7556.76	0	0	0	0.000	0.000	
10/12/09 02:17:46	60.005	3679.152	350	-255.444168	0	86.5	10	15	-103	7557.09	0	0	0	-0.004	0.004	
10/12/09 02:17:48	60.004	3678.572	350	-255.444168	0	87	10	15	-103	7557.42	0	0	0	-0.001	0.001	
10/12/09 02:17:50	60.001	3678.295	350	-255.444168	0	87.5	10	15	-103	7557.75	0	0	0	-0.003	0.003	
10/12/09 02:17:52	59.999	3678.249	350	-255.444168	0	88	10	15	-103	7558.08	0	0	0	-0.002	0.002	
10/12/09 02:17:54	59.993	3678.236	350	-255.444168	0	88.5	10	15	-103	7558.41	0	0	0	-0.006	0.006	
10/12/09 02:17:56	59.991	3677.83	350	-254.838303	0	89	10	15	-103	7558.74	0	0	0	-0.002	0.002	
10/12/09 02:17:58	59.994	3677.955	350	-254.838303	0	89.5	10	15	-103	7559.07	0	0	0	0.003	0.003	
10/12/09 02:18:00	59.992	3677.772	350	-254.838303	0	90	10	15	-103	7559.4	0	0	0	-0.002	0.002	
10/12/09 02:18:02	59.994	3676.666	350	-254.838303	0	90.5	10	15	-103	7559.73	0	0	0	0.002	0.002	
10/12/09 02:18:04	59.992	3677.093	350	-254.838303	0	91	10	15	-103	7560.06	0	0	0	-0.002	0.002	
10/12/09 02:18:06	59.994	3677.141	350	-257.146973	0	91.5	10	15	-103	7560.39	0	0	0	0.002	0.002	
10/12/09 02:18:08	59.995	3676.401	350	-257.146973	0	92	10	15	-103	7560.72	0	0	0	0.001	0.001	
10/12/09 02:18:10	59.993	3678.516	350	-257.146973	0	92.5	10	15	-103	7561.05	0	0	0	-0.002	0.002	
10/12/09 02:18:12	59.99	3679.872	350	-257.146973	0	93	10	15	-103	7561.38	0	0	0	-0.003	0.003	
10/12/09 02:18:14	59.99	3680.197	350	-257.146973	0	93.5	10	15	-103	7561.71	0	0	0	0.000	0.000	
10/12/09 02:18:16	59.987	3678.743	350	-262.289368	0	94	10	15	-103	7562.04	0	0	0	-0.003	0.003	
10/12/09 02:18:18	59.983	3678.428	350	-262.289368	0	94.5	10	15	-103	7562.37	0	0	0	-0.004	0.004	
10/12/09 02:18:20	59.977	3677.921	350	-262.289368	0	95	10	15	-103	7562.7	0	0	0	-0.006	0.006	
10/12/09 02:18:22	59.977	3680.254	350	-262.289368	0	95.5	10	15	-103	7563.03	0	0	0	0.000	0.000	
10/12/09 02:18:24	59.989	3682.07	350	-262.289368	0	96	10	15	-103	7563.36	0	0	0	0.012	0.012	
10/12/09 02:18:26	59.995	3681.329	350	-256.647949	0	96.5	10	15	-103	7563.69	0	0	0	0.006	0.006	
10/12/09 02:18:28	59.999	3678.656	350	-256.647949	0	97	10	15	-103	7564.02	0	0	0	0.004	0.004	
10/12/09 02:18:30	59.994	3678.077	350	-256.647949	0	97.5	10	15	-103	7564.35	0	0	0	-0.005	0.005	
10/12/09 02:18:32	59.989	3677.78	350	-256.647949	0	98	10	15	-103	7564.68	0	0	0	-0.005	0.005	
10/12/09 02:18:34	59.987	3678.427	350	-256.647949	0	98.5	10	15	-103	7565.01	0	0	0	-0.002	0.002	
10/12/09 02:18:36	59.986	3678.473	350	-256.307251	0	99	10	15	-103	7565.34	0	0	0	-0.001	0.001	
10/12/09 02:18:38	59.984	3678.278	350	-256.307251	0	99.5	10	15	-103	7565.67	0	0	0	-0.002	0.002	
10/12/09 02:18:40	59.983	3677.822	350	-256.307251	0	100	10	15	-103	7566	0	0	0	-0.001	0.001	
10/12/09 02:18:42	59.985	3676.615	350	-256.307251	0	100.5	10	15	-103	7566.33	0	0	0	0.002	0.002	
10/12/09 02:18:44	59.986	3677.397	350	-256.307251	0	101	10	15	-103	7566.66	0	0	0	0.001	0.001	
10/12/09 02:18:46	59.985	3677.917	350	-249.086395	0	101.5	10	15	-103	7566.99	0	0	0	-0.001	0.001	

10/12/09 02:18:48	59.986	3677.95	350	-249.086395	0	102	10	15	-103	7567.32	0	0	0	0.001	0.001
10/12/09 02:18:50	59.98	3678.617	350	-249.086395	0	102.5	10	15	-103	7567.65	0	0	0	-0.006	0.006
10/12/09 02:18:52	59.981	3678.963	350	-249.086395	0	103	10	15	-103	7567.98	0	0	0	0.001	0.001
10/12/09 02:18:54	59.981	3681.252	350	-249.086395	0	103.5	10	15	-103	7568.31	0	0	0	0.000	0.000
10/12/09 02:18:56	59.989	3680.737	350	-253.742477	0	104	10	15	-103	7568.64	0	0	0	0.008	0.008
10/12/09 02:18:58	59.998	3680.045	350	-253.742477	0	104.5	10	15	-103	7568.97	0	0	0	0.009	0.009
10/12/09 02:19:00	60.007	3678.161	350	-253.742477	0	105	10	15	-103	7569.3	0	0	0	0.009	0.009
10/12/09 02:19:02	60.007	3674.076	350	-253.742477	0	105.5	10	15	-103	7569.63	0	0	0	0.000	0.000
10/12/09 02:19:04	59.997	3676.222	350	-253.742477	0	106	10	15	-103	7569.96	0	0	0	-0.010	0.010
10/12/09 02:19:06	59.986	3676.669	350	-257.421204	0	106.5	10	15	-103	7570.29	0	0	0	-0.011	0.011
10/12/09 02:19:08	59.981	3677.497	350	-257.421204	0	107	10	15	-103	7570.62	0	0	0	-0.005	0.005
10/12/09 02:19:10	59.977	3677.49	350	-257.421204	0	107.5	10	15	-103	7570.95	0	0	0	-0.004	0.004
10/12/09 02:19:12	59.974	3675.186	350	-257.421204	0	108	10	15	-103	7571.28	0	0	0	-0.003	0.003
10/12/09 02:19:14	59.976	3675.437	350	-257.421204	0	108.5	10	15	-103	7571.61	0	0	0	0.002	0.002
10/12/09 02:19:16	59.974	3680.451	350	-261.73822	0	109	10	15	-103	7571.94	0	0	0	-0.002	0.002
10/12/09 02:19:18	59.974	3682.032	350	-261.73822	0	109.5	10	15	-103	7572.27	0	0	0	0.000	0.000
10/12/09 02:19:20	59.977	3683.829	350	-261.73822	0	110	10	15	-103	7572.6	0	0	0	0.003	0.003
10/12/09 02:19:22	59.979	3682.843	350	-261.73822	0	110.5	10	15	-103	7572.93	0	0	0	0.002	0.002
10/12/09 02:19:24	59.979	3681.108	350	-261.73822	0	111	10	15	-103	7573.26	0	0	0	0.000	0.000
10/12/09 02:19:26	59.982	3680.566	350	-271.875977	0	111.5	10	15	-103	7573.59	0	0	0	0.003	0.003
10/12/09 02:19:28	59.984	3678.229	350	-271.875977	0	112	10	15	-103	7573.92	0	0	0	0.002	0.002
10/12/09 02:19:30	59.987	3676.752	350	-271.875977	0	112.5	10	15	-103	7574.25	0	0	0	0.003	0.003
10/12/09 02:19:32	59.988	3675.759	350	-271.875977	0	113	10	15	-103	7574.58	0	0	0	0.001	0.001
10/12/09 02:19:34	59.988	3671.942	350	-271.875977	0	113.5	10	15	-103	7574.91	0	0	0	0.000	0.000
10/12/09 02:19:36	59.987	3671.166	350	-262.073486	0	114	10	15	-103	7575.24	0	0	0	-0.001	0.001
10/12/09 02:19:38	59.987	3670.476	350	-262.073486	0	114.5	10	15	-103	7575.57	0	0	0	0.000	0.000
10/12/09 02:19:40	59.987	3670.129	350	-262.073486	0	115	10	15	-103	7575.9	0	0	0	0.000	0.000
10/12/09 02:19:42	59.985	3671.542	350	-262.073486	0	115.5	10	15	-103	7576.23	0	0	0	-0.002	0.002
10/12/09 02:19:44	59.984	3672.048	350	-262.073486	0	116	10	15	-103	7576.56	0	0	0	-0.001	0.001
10/12/09 02:19:46	59.982	3671.576	350	-260.36441	0	116.5	10	15	-103	7576.89	0	0	0	-0.002	0.002
10/12/09 02:19:48	59.983	3672.104	350	-260.36441	0	117	10	15	-103	7577.22	0	0	0	0.001	0.001
10/12/09 02:19:50	59.989	3672.414	350	-260.36441	0	117.5	10	15	-103	7577.55	0	0	0	0.006	0.006
10/12/09 02:19:52	59.989	3671.882	350	-260.36441	0	118	10	15	-103	7577.88	0	0	0	0.000	0.000
10/12/09 02:19:54	59.988	3671.837	350	-260.36441	0	118.5	10	15	-103	7578.21	0	0	0	-0.001	0.001
10/12/09 02:19:56	59.984	3671.336	350	-352.644379	0	119	10	15	-103	7578.54	0	0	0	-0.004	0.004
10/12/09 02:19:58	59.982	3670.726	350	-352.644379	0	119.5	10	15	-103	7578.87	0	0	0	-0.002	0.002
10/12/09 02:20:00	59.983	3670.372	350	-352.644379	0	120	10	15	-103	7579.2	0	0	0	0.001	0.001
10/12/09 02:20:02	59.981	3671.364	350	-352.644379	0	120.5	10	15	-103	7579.53	0	0	0	-0.002	0.002
10/12/09 02:20:04	59.982	3671.401	350	-352.644379	0	121	10	15	-103	7579.86	0	0	0	0.001	0.001
10/12/09 02:20:06	59.983	3672.156	350	-354.89566	0	121.5	10	15	-103	7580.19	0	0	0	0.001	0.001
10/12/09 02:20:08	59.986	3672.181	350	-354.89566	0	122	10	15	-103	7580.52	0	0	0	0.003	0.003
10/12/09 02:20:10	59.989	3670.296	350	-354.89566	0	122.5	10	15	-103	7580.85	0	0	0	0.003	0.003
10/12/09 02:20:12	59.987	3668.071	350	-354.89566	0	123	10	15	-103	7581.18	0	0	0	-0.002	0.002
10/12/09 02:20:14	59.985	3668.59	350	-354.89566	0	123.5	10	15	-103	7581.51	0	0	0	-0.002	0.002
10/12/09 02:20:16	59.98	3669.908	350	-340.46936	0	124	10	15	-103	7581.84	0	0	0	-0.005	0.005
10/12/09 02:20:18	59.98	3670.399	350	-340.46936	0	124.5	10	15	-103	7582.17	0	0	0	0.000	0.000
10/12/09 02:20:20	59.983	3670.263	350	-340.46936	0	125	10	15	-103	7582.5	0	0	0	0.003	0.003
10/12/09 02:20:22	59.98	3669.382	350	-340.46936	0	125.5	10	15	-103	7582.83	0	0	0	-0.003	0.003
10/12/09 02:20:24	59.979	3670.102	350	-340.46936	0	126	10	15	-103	7583.16	0	0	0	-0.001	0.001

10/12/09 02:20:26	59.979	3670.438	350	-337.642914	0	126.5	10	15	-103	7583.49	0	0	0	0.000	0.000
10/12/09 02:20:28	59.981	3671.403	350	-337.642914	0	127	10	15	-103	7583.82	0	0	0	0.002	0.002
10/12/09 02:20:30	59.981	3672.442	350	-337.642914	0	127.5	10	15	-103	7584.15	0	0	0	0.000	0.000
10/12/09 02:20:32	59.98	3672.372	350	-337.642914	0	128	10	15	-103	7584.48	0	0	0	-0.001	0.001
10/12/09 02:20:34	59.98	3671.947	350	-337.642914	0	128.5	10	15	-103	7584.81	0	0	0	0.000	0.000
10/12/09 02:20:36	59.981	3670.938	350	-284.36084	0	129	10	15	-103	7585.14	0	0	0	0.001	0.001
10/12/09 02:20:38	59.98	3670.705	350	-284.36084	0	129.5	10	15	-103	7585.47	0	0	0	-0.001	0.001
10/12/09 02:20:40	59.98	3670.137	350	-284.36084	0	130	10	15	-103	7585.8	0	0	0	0.000	0.000
10/12/09 02:20:42	59.977	3669.279	350	-284.36084	0	130.5	10	15	-103	7586.13	0	0	0	-0.003	0.003
10/12/09 02:20:44	59.979	3672.391	350	-284.36084	0	131	10	15	-103	7586.46	0	0	0	0.002	0.002
10/12/09 02:20:46	59.981	3672.558	350	-260.467987	0	131.5	10	15	-103	7586.79	0	0	0	0.002	0.002
10/12/09 02:20:48	59.979	3674.052	350	-260.467987	0	132	10	15	-103	7587.12	0	0	0	-0.002	0.002
10/12/09 02:20:50	59.976	3672.626	350	-260.467987	0	132.5	10	15	-103	7587.45	0	0	0	-0.003	0.003
10/12/09 02:20:52	59.977	3671.8	350	-260.467987	0	133	10	15	-103	7587.78	0	0	0	0.001	0.001
10/12/09 02:20:54	59.972	3673.183	350	-260.467987	0	133.5	10	15	-103	7588.11	0	0	0	-0.005	0.005
10/12/09 02:20:56	59.971	3673.874	350	-253.141541	0	134	10	15	-103	7588.44	0	0	0	-0.001	0.001
10/12/09 02:20:58	59.973	3676.263	350	-253.141541	0	134.5	10	15	-103	7588.77	0	0	0	0.002	0.002
10/12/09 02:21:00	59.973	3676.623	350	-253.141541	0	135	10	15	-103	7589.1	0	0	0	0.000	0.000
10/12/09 02:21:02	59.973	3676.87	350	-253.141541	0	135.5	10	15	-103	7589.43	0	0	0	0.000	0.000
10/12/09 02:21:04	59.974	3676.543	350	-253.141541	0	136	10	15	-103	7589.76	0	0	0	0.001	0.001
10/12/09 02:21:06	59.971	3675.464	350	-251.929871	0	136.5	10	15	-103	7590.09	0	0	0	-0.003	0.003
10/12/09 02:21:08	59.975	3675.752	350	-251.929871	0	137	10	15	-103	7590.42	0	0	0	0.004	0.004
10/12/09 02:21:10	59.977	3675.256	350	-251.929871	0	137.5	10	15	-103	7590.75	0	0	0	0.002	0.002
10/12/09 02:21:12	59.977	3674.87	350	-251.929871	0	138	10	15	-103	7591.08	0	0	0	0.000	0.000
10/12/09 02:21:14	59.975	3671.277	350	-251.929871	0	138.5	10	15	-103	7591.41	0	0	0	-0.002	0.002
10/12/09 02:21:16	59.976	3671.593	350	-250.674194	0	139	10	15	-103	7591.74	0	0	0	0.001	0.001
10/12/09 02:21:18	59.98	3670.587	350	-250.674194	0	139.5	10	15	-103	7592.07	0	0	0	0.004	0.004
10/12/09 02:21:20	59.979	3669.963	350	-250.674194	0	140	10	15	-103	7592.4	0	0	0	-0.001	0.001
10/12/09 02:21:22	59.981	3669.54	350	-250.674194	0	140.5	10	15	-103	7592.73	0	0	0	0.002	0.002
10/12/09 02:21:24	59.982	3669.497	350	-250.674194	0	141	10	15	-103	7593.06	0	0	0	0.001	0.001
10/12/09 02:21:26	59.982	3668.706	350	-253.631866	0	141.5	10	15	-103	7593.39	0	0	0	0.000	0.000
10/12/09 02:21:28	59.982	3667.677	350	-253.631866	0	142	10	15	-103	7593.72	0	0	0	0.000	0.000
10/12/09 02:21:30	59.982	3666.482	350	-253.631866	0	142.5	10	15	-103	7594.05	0	0	0	0.000	0.000
10/12/09 02:21:32	59.981	3666.599	350	-253.631866	0	143	10	15	-103	7594.38	0	0	0	-0.001	0.001
10/12/09 02:21:34	59.982	3666.911	350	-253.631866	0	143.5	10	15	-103	7594.71	0	0	0	0.001	0.001
10/12/09 02:21:36	59.984	3666.442	350	-246.957306	0	144	10	15	-103	7595.04	0	0	0	0.002	0.002
10/12/09 02:21:38	59.985	3666.405	350	-246.957306	0	144.5	10	15	-103	7595.37	0	0	0	0.001	0.001
10/12/09 02:21:40	59.987	3667.456	350	-246.957306	0	145	10	15	-103	7595.7	0	0	0	0.002	0.002
10/12/09 02:21:42	59.989	3666.38	350	-246.957306	0	145.5	10	15	-103	7596.03	0	0	0	0.002	0.002
10/12/09 02:21:44	59.993	3665.262	350	-246.957306	0	146	10	15	-103	7596.36	0	0	0	0.004	0.004
10/12/09 02:21:46	59.996	3664.031	350	-254.541779	0	146.5	10	15	-103	7596.69	0	0	0	0.003	0.003
10/12/09 02:21:48	59.998	3663.825	350	-254.541779	0	147	10	15	-103	7597.02	0	0	0	0.002	0.002
10/12/09 02:21:50	59.998	3663.229	350	-254.541779	0	147.5	10	15	-103	7597.35	0	0	0	0.000	0.000
10/12/09 02:21:52	60.004	3662.055	350	-254.541779	0	148	10	15	-103	7597.68	0	0	0	0.006	0.006
10/12/09 02:21:54	60.007	3661.695	350	-254.541779	0	148.5	10	15	-103	7598.01	0	0	0	0.003	0.003
10/12/09 02:21:56	60.01	3662.076	350	-256.571594	0	149	10	15	-103	7598.34	0	0	0	0.003	0.003
10/12/09 02:21:58	60.013	3662.224	350	-256.571594	0	149.5	10	15	-103	7598.67	0	0	0	0.003	0.003
10/12/09 02:22:00	60.014	3662.959	350	-256.571594	0	150	10	15	-103	7599	0	0	0	0.001	0.001
10/12/09 02:22:02	60.013	3663.794	350	-256.571594	0	150.5	10	15	-103	7599.33	0	0	0	-0.001	0.001

10/12/09 02:22:04	60.008	3664.139	350	-256.571594	0	151	10	15	-103	7599.66	0	0	0	-0.005	0.005
10/12/09 02:22:06	60.008	3665.278	350	-258.37262	0	151.5	10	15	-103	7599.99	0	0	0	0.000	0.000
10/12/09 02:22:08	60.01	3664.159	350	-258.37262	0	152	10	15	-103	7600.32	0	0	0	0.002	0.002
10/12/09 02:22:10	60.019	3663.265	350	-258.37262	0	152.5	10	15	-103	7600.65	0	0	0	0.009	0.009
10/12/09 02:22:12	60.019	3663.184	350	-258.37262	0	153	10	15	-103	7600.98	0	0	0	0.000	0.000
10/12/09 02:22:14	60.023	3661.929	350	-258.37262	0	153.5	10	15	-103	7601.31	0	0	0	0.004	0.004
10/12/09 02:22:16	60.021	3661.512	350	-263.047363	0	154	10	15	-103	7601.64	0	0	0	-0.002	0.002
10/12/09 02:22:18	60.02	3659.172	350	-263.047363	0	154.5	10	15	-103	7601.97	0	0	0	-0.001	0.001
10/12/09 02:22:20	60.021	3658.661	350	-263.047363	0	155	10	15	-103	7602.3	0	0	0	0.001	0.001
10/12/09 02:22:22	60.021	3656.785	350	-263.047363	0	155.5	10	15	-103	7602.63	0	0	0	0.000	0.000
10/12/09 02:22:24	60.02	3657.571	350	-263.047363	0	156	10	15	-103	7602.96	0	0	0	-0.001	0.001
10/12/09 02:22:26	60.019	3658.126	350	-260.984375	0	156.5	10	15	-103	7603.29	0	0	0	-0.001	0.001
10/12/09 02:22:28	60.019	3657.71	350	-260.984375	0	157	10	15	-103	7603.62	0	0	0	0.000	0.000
10/12/09 02:22:30	60.022	3658.015	350	-260.984375	0	157.5	10	15	-103	7603.95	0	0	0	0.003	0.003
10/12/09 02:22:32	60.025	3660.228	350	-260.984375	0	158	10	15	-103	7604.28	0	0	0	0.003	0.003
10/12/09 02:22:34	60.025	3659.224	350	-260.984375	0	158.5	10	15	-103	7604.61	0	0	0	0.000	0.000
10/12/09 02:22:36	60.026	3658.698	350	-261.318329	0	159	10	15	-103	7604.94	0	0	0	0.001	0.001
10/12/09 02:22:38	60.02	3658.669	350	-261.318329	0	159.5	10	15	-103	7605.27	0	0	0	-0.006	0.006
10/12/09 02:22:40	60.02	3658.155	350	-261.318329	0	160	10	15	-103	7605.6	0	0	0	0.000	0.000
10/12/09 02:22:42	60.018	3659.13	350	-261.318329	0	160.5	10	15	-103	7605.93	0	0	0	-0.002	0.002
10/12/09 02:22:44	60.018	3659.778	350	-261.318329	0	161	10	15	-103	7606.26	0	0	0	0.000	0.000
10/12/09 02:22:46	60.02	3660.82	350	-262.1026	0	161.5	10	15	-103	7606.59	0	0	0	0.002	0.002
10/12/09 02:22:48	60.019	3662.531	350	-262.1026	0	162	10	15	-103	7606.92	0	0	0	-0.001	0.001
10/12/09 02:22:50	60.019	3662.387	350	-262.1026	0	162.5	10	15	-103	7607.25	0	0	0	0.000	0.000
10/12/09 02:22:52	60.023	3662.079	350	-262.1026	0	163	10	15	-103	7607.58	0	0	0	0.004	0.004
10/12/09 02:22:54	60.022	3662.39	350	-262.1026	0	163.5	10	15	-103	7607.91	0	0	0	-0.001	0.001
10/12/09 02:22:56	60.022	3662.678	350	-262.71701	0	164	10	15	-103	7608.24	0	0	0	0.000	0.000
10/12/09 02:22:58	60.025	3663.577	350	-262.71701	0	164.5	10	15	-103	7608.57	0	0	0	0.003	0.003
10/12/09 02:23:00	60.02	3663.539	350	-262.71701	0	165	10	15	-103	7608.9	0	0	0	-0.005	0.005
10/12/09 02:23:02	60.02	3662.959	350	-262.71701	0	165.5	10	15	-103	7609.23	0	0	0	0.000	0.000
10/12/09 02:23:04	60.02	3662.552	350	-262.71701	0	166	10	15	-103	7609.56	0	0	0	0.000	0.000
10/12/09 02:23:06	60.02	3662.543	350	-260.016479	0	166.5	10	15	-103	7609.89	0	0	0	0.000	0.000
10/12/09 02:23:08	60.02	3663.601	350	-260.016479	0	167	10	15	-103	7610.22	0	0	0	0.000	0.000
10/12/09 02:23:10	60.021	3663.91	350	-260.016479	0	167.5	10	15	-103	7610.55	0	0	0	0.001	0.001
10/12/09 02:23:12	60.021	3663.69	350	-260.016479	0	168	10	15	-103	7610.88	0	0	0	0.000	0.000
10/12/09 02:23:14	60.018	3662.791	350	-260.016479	0	168.5	10	15	-103	7611.21	0	0	0	-0.003	0.003
10/12/09 02:23:16	60.014	3663.396	350	-263.87323	0	169	10	15	-103	7611.54	0	0	0	-0.004	0.004
10/12/09 02:23:18	60.014	3663.698	350	-263.87323	0	169.5	10	15	-103	7611.87	0	0	0	0.000	0.000
10/12/09 02:23:20	60.014	3664.315	350	-263.87323	0	170	10	15	-103	7612.2	0	0	0	0.000	0.000
10/12/09 02:23:22	60.013	3665.313	350	-263.87323	0	170.5	10	15	-103	7612.53	0	0	0	-0.001	0.001
10/12/09 02:23:24	60.013	3665.798	350	-263.87323	0	171	10	15	-103	7612.86	0	0	0	0.000	0.000
10/12/09 02:23:26	60.01	3666.141	350	-264.5979	0	171.5	10	15	-103	7613.19	0	0	0	-0.003	0.003
10/12/09 02:23:28	60.008	3666.726	350	-264.5979	0	172	10	15	-103	7613.52	0	0	0	-0.002	0.002
10/12/09 02:23:30	60.011	3667.677	350	-264.5979	0	172.5	10	15	-103	7613.85	0	0	0	0.003	0.003
10/12/09 02:23:32	60.011	3667.545	350	-264.5979	0	173	10	15	-103	7614.18	0	0	0	0.000	0.000
10/12/09 02:23:34	60.012	3666.688	350	-264.5979	0	173.5	10	15	-103	7614.51	0	0	0	0.001	0.001
10/12/09 02:23:36	60.012	3666.449	350	-262.415924	0	174	10	15	-103	7614.84		0	0	0.000	0.000
10/12/09 02:23:38	60.009	3666.71	350	-262.415924	0	174.5	10	15	-103	7615.17	0	0	0	-0.003	0.003
10/12/09 02:23:40	60.009	3667.696	350	-262.415924	O	175	10	15	-103	7615.5	0	0	0	0.000	0.000

10/12/09 02:23:42	60.009	3667.398	350	-262.415924	0	175.5	10	15	-103	7615.83	0	0	0	0.000	0.000
10/12/09 02:23:44	60.009	3667.043	350	-262.415924	0	176	10	15	-103	7616.16	0	0	0	0.000	0.000
10/12/09 02:23:46	60.005	3666.624	350	-259.685242	0	176.5	10	15	-103	7616.49	0	0	0	-0.004	0.004
10/12/09 02:23:48	60.002	3666.223	350	-259.685242	0	177	10	15	-103	7616.82	0	0	0	-0.003	0.003
10/12/09 02:23:50	59.999	3665.88	350	-259.685242	0	177.5	10	15	-103	7617.15	0	0	0	-0.003	0.003
10/12/09 02:23:52	59.996	3665.403	350	-259.685242	0	178	10	15	-103	7617.48	0	0	0	-0.003	0.003
10/12/09 02:23:54	59.995	3665.802	350	-259.685242	0	178.5	10	15	-103	7617.81	0	0		-0.001	0.001
10/12/09 02:23:56	59.997	3665.68	350	-255.911011	0	179	10	15	-103	7618.14	0	0	0	0.002	0.002
10/12/09 02:23:58	59.998	3665.352	350	-255.911011	0	179.5	10	15	-103	7618.47	0	0	0	0.001	0.001
10/12/09 02:24:00	59.998	3664.948	350	-255.911011	0	180	10	15	-103	7618.8	0	0	0	0.000	0.000
10/12/09 02:24:02	59.998	3665.065	350	-255.911011	0	180.5	10	15	-103	7619.13	0	0	0	0.000	0.000
10/12/09 02:24:04	59.998	3666.133	350	-255.911011	0	181	10	15	-103	7619.46	0	0	0	0.000	0.000
10/12/09 02:24:06	59.995	3666.64	350	-258.148193	0	181.5	10	15	-103	7619.79	0	0	0	-0.003	0.003
10/12/09 02:24:08	59.995	3666.735	350	-258.148193	0	182	10	15	-103	7620.12	0	0	0	0.000	0.000
10/12/09 02:24:10	59.992	3667.084	350	-258.148193	0	182.5	10	15	-103	7620.45	0	0	0	-0.003	0.003
10/12/09 02:24:12	59.993	3667.557	350	-258.148193	0	183	10	15	-103	7620.78	0	0	0	0.001	0.001
10/12/09 02:24:14	59.988	3667.337	350	-258.148193	0	183.5	10	15	-103	7621.11	0	0	0	-0.005	0.005
10/12/09 02:24:16	59.988	3667.853	350	-258.873596	0	184	10	15	-103	7621.44	0	0	0	0.000	0.000
10/12/09 02:24:18	59.982	3668.116	350	-258.873596	0	184.5	10	15	-103	7621.77	0	0	0	-0.006	0.006
10/12/09 02:24:20	59.982	3668.691	350	-258.873596	0	185	10	15	-103	7622.1	0	0	0	0.000	0.000
10/12/09 02:24:22	59.982	3669.399	350	-258.873596	0	185.5	10	15	-103	7622.43	0	0	0	0.000	0.000
10/12/09 02:24:24	59.982	3669.606	350	-258.873596	0	186	10	15	-103	7622.76	0	0	0	0.000	0.000
10/12/09 02:24:26	59.984	3671.228	350	-249.33757	0	186.5	10	15	-103	7623.09	0	0	0	0.002	0.002
10/12/09 02:24:28	59.982	3670.25	350	-249.33757	0	187	10	15	-103	7623.42	0	0	0	-0.002	0.002
10/12/09 02:24:30	59.978	3670.265	350	-249.33757	0	187.5	10	15	-103	7623.75	0	0	0	-0.004	0.004
10/12/09 02:24:32	59.978	3671.549	350	-249.33757	0	188	10	15	-103	7624.08	0	0	0	0.000	0.000
10/12/09 02:24:34	59.976	3673.243	350	-249.33757	0	188.5	10	15	-103	7624.41	0	0	0	-0.002	0.002
10/12/09 02:24:36	59.975	3674.263	350	-258.278168	0	189	10	15	-103	7624.74	0	0	0	-0.001	0.001
10/12/09 02:24:38	59.974	3675.824	350	-258.278168	0	189.5	10	15	-103	7625.07	0	0	0	-0.001	0.001
10/12/09 02:24:40	59.974	3676.418	350	-258.278168	0	190	10	15	-103	7625.4	0	0	0	0.000	0.000
10/12/09 02:24:42	59.979	3676.306	350	-258.278168	0	190.5	10	15	-103	7625.73	0	0	0	0.005	0.005
10/12/09 02:24:44	59.98	3674.637	350	-258.278168	0	191	10	15	-103	7626.06	0	0	0	0.001	0.001
10/12/09 02:24:46	59.981	3675.329	350	-258.406372	0	191.5	10	15	-103	7626.39	0	0	0	0.001	0.001
10/12/09 02:24:48	59.98	3675.226	350	-258.406372	0	192	10	15	-103	7626.72	0	0	0	-0.001	0.001
10/12/09 02:24:50	59.984	3674.768	350	-258.406372	0	192.5	10	15	-103	7627.05	0	0	0	0.004	0.004
10/12/09 02:24:52	59.987	3674.399	350	-258.406372	0	193	10	15	-103	7627.38	0	0	0	0.003	0.003
10/12/09 02:24:54	59.988	3673.514	350	-258.406372	0	193.5	10	15	-103	7627.71	0	0	0	0.001	0.001
10/12/09 02:24:56	59.988	3673.04	350	-260.538879	0	194	10	15	-103	7628.04	0	0	0	0.000	0.000
10/12/09 02:24:58	59.99	3672.442	350	-260.538879	0	194.5	10	15	-103	7628.37	0	0	0	0.002	0.002
10/12/09 02:25:00	59.992	3673.056	350	-260.538879	0	195	10	15	-103	7628.7	0	0	0	0.002	0.002
10/12/09 02:25:02	59.991	3671.68	350	-260.538879	0	195.5	10	15	-103	7629.03	0	0	0	-0.001	0.001
10/12/09 02:25:04	59.991	3671.493	350	-260.538879	0	196	10	15	-103	7629.36	0	0	0	0.000	0.000
10/12/09 02:25:06	59.991	3669.53	350	-257.88208	0	196.5	10	15	-103	7629.69	0	0	0	0.000	0.000
10/12/09 02:25:08	59.993	3670.066	350	-257.88208	0	197	10	15	-103	7630.02	0	0	0	0.002	0.002
10/12/09 02:25:10	59.993	3670.028	350	-257.88208	0	197.5	10	15	-103	7630.35	0	0	0	0.000	0.000
10/12/09 02:25:12	59.996	3671.744	350	-257.88208	0	198	10	15	-103	7630.68	0	0	0	0.003	0.003
10/12/09 02:25:14	60.002	3671.578	350	-257.88208	0	198.5	10	15	-103	7631.01	0	0	0	0.006	0.006
10/12/09 02:25:16	60.002	3672.625	350	-258.588654	0	199	10	15	-103	7631.34	0	0	0	0.000	0.000
10/12/09 02:25:18	60.003	3672.674	350	-258.588654	0	199.5	10	15	-103	7631.67	0	0	0	0.001	0.001

10/12/09 02:25:20	60.004	3673.819	350	-258.588654	0	200	10	15	-103	7632	0	0	0	0.001	0.001
10/12/09 02:25:22	60.005	3673.25	350	-258.588654	0	200.5	10	15	-103	7632.33	0	0	0	0.001	0.001
10/12/09 02:25:24	60.004	3673.182	350	-258.588654	0	201	10	15	-103	7632.66	0	0	0	-0.001	0.001
10/12/09 02:25:26	60.002	3673.496	350	-261.906158		201.5	10	15	-103	7632.99	0	0	0	-0.002	0.002
10/12/09 02:25:28	60.004	3672.418	350	-261.906158	0	202	10	15	-103	7633.32	0	0	0	0.002	0.002
10/12/09 02:25:30	60.008	3672.363	350	-261.906158	0	202.5	10	15	-103	7633.65	0	0	0	0.004	0.004
10/12/09 02:25:32	60.01	3672.217	350	-261.906158	0	203	10	15	-103	7633.98	0	0	0	0.002	0.002
10/12/09 02:25:34	60.01	3672.261	350	-261.906158	0	203.5	10	15	-103	7634.31	0	0	0	0.000	0.000
10/12/09 02:25:36	60.01	3673.182	350	-256.747803	0	204	10	15	-103	7634.64	0	0	0	0.000	0.000
10/12/09 02:25:38	60.011	3673.603	350	-256.747803	0	204.5	10	15	-103	7634.97	0	0	0	0.001	0.001
10/12/09 02:25:40	60.013	3673.553	350	-256.747803	0	205	10	15	-103	7635.3	0	0	0	0.002	0.002
10/12/09 02:25:42	60.014	3674.312	350	-256.747803	0	205.5	10	15	-103	7635.63	0	0	0	0.001	0.001
10/12/09 02:25:44	60.013	3674.537	350	-256.747803	0	206	10	15	-103	7635.96	0	0	0	-0.001	0.001
10/12/09 02:25:46	60.012	3673.813	350	-167.431976	0	206.5	10	15	-103	7636.29	0	0	0	-0.001	0.001
10/12/09 02:25:48	60.011	3673.204	350	-167.431976	0	207	10	15	-103	7636.62	0	0	0	-0.001	0.001
10/12/09 02:25:50	60.011	3672.563	350	-167.431976	0	207.5	10	15	-103	7636.95	0	0	0	0.000	0.000
10/12/09 02:25:52	60.017	3673.068	350	-167.431976	0	208	10	15	-103	7637.28	0	0	0	0.006	0.006
10/12/09 02:25:54	60.022	3672.388	350	-167.431976	0	208.5	10	15	-103	7637.61	0	0	0	0.005	0.005
10/12/09 02:25:56	60.017	3672.52	350	-164.973404	0	209	10	15	-103	7637.94	0	0	0	-0.005	0.005
10/12/09 02:25:58	60.014	3671.25	350	-164.973404	0	209.5	10	15	-103	7638.27	0	0	0	-0.003	0.003
10/12/09 02:26:00	60.013	3671.288	350	-164.973404	0	210	10	15	-103	7638.6	0	0	0	-0.001	0.001
10/12/09 02:26:02	60.014	3672.989	350	-164.973404	0	210.5	10	15	-103	7638.93	0	0	0	0.001	0.001
10/12/09 02:26:04	60.017	3672.982	350	-164.973404	0	211	10	15	-103	7639.26	0	0	0	0.003	0.003
10/12/09 02:26:06	60.017	3672.915	350	-157.628082	0	211.5	10	15	-103	7639.59	0	0	0	0.000	0.000
10/12/09 02:26:08	60.019	3671.952	350	-157.628082	0	212	10	15	-103	7639.92	0	0	0	0.002	0.002
10/12/09 02:26:10	60.019	3671.193	350	-157.628082	0	212.5	10	15	-103	7640.25	0	0	0	0.000	0.000
10/12/09 02:26:12	60.019	3671.627	350	-157.628082	0	213	10	15	-103	7640.58	0	0	0	0.000	0.000
10/12/09 02:26:14	60.027	3671.189	350	-157.628082	0	213.5	10	15	-103	7640.91	0	0	0	0.008	0.008
10/12/09 02:26:16	60.026	3668.611	350	-155.531708	0	214	10	15	-103	7641.24	0	0	0	-0.001	0.001
10/12/09 02:26:18	60.026	3665.232	350	-155.531708	0	214.5	10	15	-103	7641.57	0	0	0	0.000	0.000
10/12/09 02:26:20	60.022	3664.495	350	-155.531708	0	215	10	15	-103	7641.9	0	0	0	-0.004	0.004
10/12/09 02:26:22	60.019	3666.062	350	-155.531708	0	215.5	10	15	-103	7642.23	0	0	0	-0.003	0.003
10/12/09 02:26:24	60.017	3666.821	350	-155.531708	0	216	10	15	-103	7642.56	0	0	0	-0.002	0.002
10/12/09 02:26:26	60.019	3666.787	350	-160.447235	0	216.5	10	15	-103	7642.89	0	0	0	0.002	0.002
10/12/09 02:26:28	60.02	3670.454	350	-160.447235	0	217	10	15	-103	7643.22	0	0	0	0.001	0.001
10/12/09 02:26:30	60.019	3670.267	350	-160.447235	0	217.5	10	15	-103	7643.55	0	0	0	-0.001	0.001
10/12/09 02:26:32	60.021	3671.668	350	-160.447235	0	218	10	15	-103	7643.88	0	0	0	0.002	0.002
10/12/09 02:26:34	60.021	3672.493	350	-160.447235	0	218.5	10	15	-103	7644.21	0	0	0	0.000	0.000
10/12/09 02:26:36	60.021	3672.685	350	-163.958603	0	219	10	15	-103	7644.54	0	0	0	0.000	0.000
10/12/09 02:26:38	60.019	3672.857	350	-163.958603	0	219.5	10	15	-103	7644.87	0	0	0	-0.002	0.002
10/12/09 02:26:40	60.018	3672.164	350	-163.958603	0	220	10	15	-103	7645.2	0	0	0	-0.001	0.001
10/12/09 02:26:42	60.022	3671.413	350	-163.958603	0	220.5	10	15	-103	7645.53	0	0	0	0.004	0.004
10/12/09 02:26:44	60.031	3669.983	350	-163.958603	0	221	10	15	-103	7645.86	0	0	0	0.009	0.009
10/12/09 02:26:46	60.037	3666.467	350	-166.072449	0	221.5	10	15	-103	7646.19	0	0	0	0.006	0.006
10/12/09 02:26:48	60.037	3663.758	350	-166.072449	0	222	10	15	-103	7646.52	0	0	0	0.000	0.000
10/12/09 02:26:50	60.036	3661.599	350	-166.072449	0	222.5	10	15	-103	7646.85	0	0	0	-0.001	0.001
10/12/09 02:26:52	60.037	3660.672	350	-166.072449	0	223	10	15	-103	7647.18	0	0	0	0.001	0.001
10/12/09 02:26:54	60.046	3651.492	350	-166.072449	0	223.5	10	15	-103	7647.51	0	0	0	0.009	0.009
10/12/09 02:26:56	60.048	3649.19	350	-163.766586	0	224	10	15	-103	7647.84	0	0	0	0.002	0.002

10/12/09 02:26:58	60.048	3650.025	350	-163.766586	0	224.5	10	15	-103	7648.17	0	0	0	0.000	0.000
10/12/09 02:27:00	60.043	3648.246	350	-163.766586	0	225	10	15	-103	7648.5	0	0	0	-0.005	0.005
10/12/09 02:27:02	60.041	3649.512	350	-163.766586	0	225.5	10	15	-103	7648.83	0	0	0	-0.002	0.002
10/12/09 02:27:04	60.041	3654.294	350	-163.766586	-	226	10	15	-103	7649.16	0	0	0	0.000	0.000
10/12/09 02:27:06	60.041	3655.007	350	-165.101685	0	226.5	10	15	-103	7649.49	0	0	0	0.000	0.000
10/12/09 02:27:08	60.039	3651.874	350	-165.101685	0	227	10	15	-103	7649.82	0	0	0	-0.002	0.002
10/12/09 02:27:10	60.041	3651.059	350	-165.101685	0	227.5	10	15	-103	7650.15	0	0	0	0.002	0.002
10/12/09 02:27:12	60.043	3649.187	350	-165.101685	0	228	10	15	-103	7650.48	0	0	0	0.002	0.002
10/12/09 02:27:14	60.045	3648.236	350	-165.101685	0	228.5	10	15	-103	7650.81	0	0	0	0.002	0.002
10/12/09 02:27:16	60.046	3645.387	350	-165.476395	0	229	10	15	-103	7651.14	0	0	0	0.001	0.001
10/12/09 02:27:18	60.041	3644.628	350	-165.476395	0	229.5	10	15	-103	7651.47	0	0	0	-0.005	0.005
10/12/09 02:27:20	60.041	3645.446	350	-165.476395	0	230	10	15	-103	7651.8	0	0	0	0.000	0.000
10/12/09 02:27:22	60.041	3640.682	350	-165.476395	0	230.5	10	15	-103	7652.13	0	0	0	0.000	0.000
10/12/09 02:27:24	60.039	3641.191	350	-165.476395	0	231	10	15	-103	7652.46	0	0	0	-0.002	0.002
10/12/09 02:27:26	59.978	3659.465	350	-206.459106	0	231.5	10	15	-103	7652.79	0	0	1	-0.061	0.061
10/12/09 02:27:28	59.852	3696.362	350	-206.459106	0	232	10	0	-103	7616	1	0	1	-0.126	0.126
10/12/09 02:27:30	59.836	3734.904	335	-206.459106	0	232.5	10	0	-103	7626	1	0	1	-0.016	0.016
10/12/09 02:27:32	59.869	3734.673	335	-206.459106	0	233	10	0	-103	7632	1	0	1	0.033	0.033
10/12/09 02:27:34	59.892	3737.157	335	-206.459106	0	233.5	10	0	-103	7632	1	0	1	0.023	0.023
10/12/09 02:27:36	59.891	3761.25	335	-211.256042	0	234	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:27:38	59.88	3766.113	335	-211.256042	1	234.5	10	0	-103	7632	1	0	1	-0.011	0.011
10/12/09 02:27:40	59.876	3766.194	335	-211.256042	1	235	10	0	-103	7632	1	0	1	-0.004	0.004
10/12/09 02:27:42	59.875	3768.877	335	-211.256042	1	235.5	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:27:44	59.883	3769.925	335	-211.256042	1	236	10	0	-103	7632	1	0	1	0.008	0.008
10/12/09 02:27:46	59.887	3780.621	335	-214.346695	1	236.5	10	0	-103	7632	1	0	1	0.004	0.004
10/12/09 02:27:48	59.886	3781.592	335	-214.346695	1	237	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:27:50	59.885	3782.5	335	-214.346695	1	237.5	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:27:52	59.887	3784.962	335	-214.346695	2	238	10	0	-103	7632	1	0	1	0.002	0.002
10/12/09 02:27:54	59.888	3784.73	335	-214.346695	3	238.5	10	0	-103	7632	1	0	1	0.001	0.001
10/12/09 02:27:56	59.89	3784.419	335	-212.172699	4	239	10	0	-103	7632	1	0	1	0.002	0.002
10/12/09 02:27:58	59.895	3788.072	335	-212.172699	5	239.5	10	0	-103	7632	1	0	1	0.005	0.005
10/12/09 02:28:00	59.894	3788.328	335	-212.172699	6	240	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:28:02	59.893	3788.868	335	-212.172699	7	240.5	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:28:04	59.894	3788.472	335	-212.172699	8	241	10	0	-103	7632	1	0	1	0.001	0.001
10/12/09 02:28:06	59.894	3792.276	335	-215.598175	9	241.5	10	0	-103	7632	1	0	1	0.000	0.000
10/12/09 02:28:08	59.891	3793.074	335	-215.598175	10	242	10	0	-103	7632	1	0	1	-0.003	0.003
10/12/09 02:28:10	59.89	3794.374	335	-215.598175	11	242.5	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:28:12	59.885	3799.428	335	-215.598175	12	243	10	0	-103	7632	1	0	1	-0.005	0.005
10/12/09 02:28:14	59.885	3800.427	335	-215.598175	13	243.5	10	0	-103	7632	1	0	1	0.000	0.000
10/12/09 02:28:16	59.888	3799.959	335	-218.327255	14	244	10	0	-103	7632	1	0	1	0.003	0.003
10/12/09 02:28:18	59.887	3803.625	335	-218.327255	15	244.5	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:28:20	59.888	3802.925	335	-218.327255	16	245	10	0	-103	7632	1	0	1	0.001	0.001
10/12/09 02:28:22	59.888	3802.951	335	-218.327255	16	245.5	10	0	-103	7632	1	0	1	0.000	0.000
10/12/09 02:28:24	59.89	3804.388	335	-218.327255	16	246	10	0	-103	7632	1	0	1	0.002	0.002
10/12/09 02:28:26	59.889	3805.496	335	-217.379425	16	246.5	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:28:28	59.882	3805.617	335	-217.379425	16	247	10	0	-103	7632	1	0	1	-0.007	0.007
10/12/09 02:28:30	59.873	3809.237	335	-217.379425	16	247.5	10	0	-103	7631	1	0	1	-0.009	0.009
10/12/09 02:28:32	59.857	3811.503	335	-217.379425	16	248	10	0	-103	7625	1	0	1	-0.016	0.016
10/12/09 02:28:34	59.849	3814.862	335	-217.379425	16	248.5	10	0	-103	7623	1	0	1	-0.008	0.008

10/12/09 02:28:36	59.852	3815.889	335	-214.830353	16	249	10	0	-103	7621	1	0	1	0.003	0.003
10/12/09 02:28:38	59.858	3825.643	335	-214.830353	16	249.5	10	0	-103	7623	1	0	1	0.006	0.006
10/12/09 02:28:40	59.863	3826.053	335	-214.830353	16	250	10	0	-103	7625	1	0	1	0.005	0.005
10/12/09 02:28:42	59.866	3826.002	335	-214.830353	16	250.5	10	0	-103	7627	1	0	1	0.003	0.003
10/12/09 02:28:44	59.865	3827.524	335	-214.830353	16	251	10	0	-103	7628	1	0	1	-0.001	0.001
10/12/09 02:28:46	59.867	3826.753	335	-227.655914	16	251.5	10	0	-103	7628	1	0	1	0.002	0.002
10/12/09 02:28:48	59.866	3826.783	335	-227.655914	16	252	10	0	-103	7629	1	0	1	-0.001	0.001
10/12/09 02:28:50	59.871	3826.454	335	-227.655914	16	252.5	10	0	-103	7630	1	0	1	0.005	0.005
10/12/09 02:28:52	59.874	3825.713	335	-227.655914	16	253	10	0	-103	7631	1	0	1	0.003	0.003
10/12/09 02:28:54	59.879	3823.826	335	-227.655914	16	253.5	10	0	-103	7635	1	0	1	0.005	0.005
10/12/09 02:28:56	59.88	3822.505	335	-225.018082	16	254	10	0	-103	7638	1	0	1	0.001	0.001
10/12/09 02:28:58	59.883	3819.081	335	-225.018082	16	254.5	10	0	-103	7639	1	0	1	0.003	0.003
10/12/09 02:29:00	59.886	3818.055	335	-225.018082	16	255	10	0	-103	7642	1	0	1	0.003	0.003
10/12/09 02:29:02	59.89	3816.815	335	-225.018082	16	255.5	10	0	-103	7644	1	0	1	0.004	0.004
10/12/09 02:29:04	59.892	3815.01	335	-225.018082	16	256	10	0	-103	7645	1	0	1	0.002	0.002
10/12/09 02:29:06	59.889	3813.783	335	-228.365158	16	256.5	10	0	-103	7647	1	0	1	-0.003	0.003
10/12/09 02:29:08	59.893	3811.838	335	-228.365158	16	257	10	0	-103	7648	1	0	1	0.004	0.004
10/12/09 02:29:10	59.899	3809.652	335	-228.365158	16	257.5	10	0	-103	7649	1	0	1	0.006	0.006
10/12/09 02:29:12	59.903	3806.972	335	-228.365158	16	258	10	0	-103	7650	1	0	1	0.004	0.004
10/12/09 02:29:14	59.902	3805.593	335	-228.365158	16	258.5	10	0	-103	7651	1	0	1	-0.001	0.001
10/12/09 02:29:16	59.902	3804.188	335	-284.075333	16	259	10	0	-103	7652	1	0	1	0.000	0.000
10/12/09 02:29:18	59.904	3796.078	335	-234.075333	16	259.5	10	0	-103	7653	1	0	1	0.002	0.002
10/12/09 02:29:20	59.907	3793.975	335	-234.075333	16	260	10	0	-103	7654	1	0	1	0.003	0.003
10/12/09 02:29:22	59.911	3792.169	335	-234.075333	16	260.5	10	0	-103	7655	1	0	1	0.004	0.004
10/12/09 02:29:24	59.916	3791.502	335	-234.075333	16	261	10	0	-103	7655	1	0	1	0.005	0.005
10/12/09 02:29:26	59.916	3789.534	335	-228.798157	16	261.5	10	0	-103	7656	1	0	1	0.000	0.000
10/12/09 02:29:28	59.917	3788.132	335	-228.798157	16	262	10	0	-103	7656	1	0	1	0.001	0.001
10/12/09 02:29:30	59.918	3784.563	335	-228.798157	16	262.5	10	0	-103	7657	1	0	1	0.001	0.001
10/12/09 02:29:32	59.92	3783.028	335	-228.798157	16	263	10	0	-103	7657	1	0	1	0.002	0.002
10/12/09 02:29:34	59.921	3781.701	335	-228.798157	16	263.5	10	0	-103	7658	1	0	1	0.001	0.001
10/12/09 02:29:36	59.92	3776.358	335	-229.466965	16	264	10	0	-103	7658	1	0	1	-0.001	0.001
10/12/09 02:29:38	59.917	3775.635	335	-229.466965	16	264.5	10	0	-103	7659	1	0	1	-0.003	0.003
10/12/09 02:29:40	59.92	3774.604	335	-229.466965	16	265	10	0	-103	7659	1	0	1	0.003	0.003
10/12/09 02:29:42	59.921	3773.334	335	-229.466965	16	265.5	10	0	-103	7659	1	0	1	0.001	0.001
10/12/09 02:29:44	59.923	3773.958	335	-229.466965	16	266	10	0	-103	7660	1	0	1	0.002	0.002
10/12/09 02:29:46	59.926	3772.722	335	-228.980164	16	266.5	10	0	-103	7660	1	0	1	0.003	0.003
10/12/09 02:29:48	59.925	3771.67	335	-228.980164	16	267	10	0	-103	7661	1	0	1	-0.001	0.001
10/12/09 02:29:50	59.928	3769.63	335	-228.980164	16	267.5	10	0	-103	7661	1	0	1	0.003	0.003
10/12/09 02:29:52	59.927	3768.707	335	-228.980164	16	268	10	0	-103	7662	1	0	1	-0.001	0.001
10/12/09 02:29:54	59.932	3767.643	335	-228.980164	16	268.5	10	0	-103	7662	1	0	1	0.005	0.005
10/12/09 02:29:56	59.927	3767.021	335	-219.975555	16	269	10	0	-103	7663	1	0	1	-0.005	0.005
10/12/09 02:29:58	59.928	3767.408	335	-219.975555	16	269.5	10	0	-103	7663	1	0	1	0.001	0.001
10/12/09 02:30:00	59.931	3766.788	335	-219.975555	16	270	10	0	-103	7664	1	0	1	0.003	0.003
10/12/09 02:30:02	59.929	3766.259	335	-219.975555	16	270.5	10	0	-103	7664	1	0	1	-0.002	0.002
10/12/09 02:30:04	59.931	3765.672	335	-219.975555	16	271	10	0	-103	7665	1	0	1	0.002	0.002
10/12/09 02:30:06	59.933	3766.123	335	-229.089249	16	271.5	10	0	-103	7666	1	0	1	0.002	0.002
10/12/09 02:30:08	59.937	3764.243	335	-229.089249	16	272	10	0	-103	7666	1	0	1	0.004	0.004
10/12/09 02:30:10	59.937	3765.105	335	-229.089249	16	272.5	10	0	-103	7667	1	0	1	0.000	0.000
10/12/09 02:30:12	59.945	3762.935	335	-229.089249	16	273	10	0	-103	7668	1	0	1	0.008	0.008

10/12/09 02:30:14	59.949	3758.387	335	-229.089249	16	273.5	10	0	-103	7668	1	0	1	0.004	0.004
10/12/09 02:30:16	59.947	3753.922	335	-229.663269	16	274	10	0	-103	7669	1	0	1	-0.002	0.002
10/12/09 02:30:18	59.942	3749.867	335	-229.663269	16	274.5	10	0	-103	7669	1	0	1	-0.005	0.005
10/12/09 02:30:20	59.941	3746.889	335	-229.663269	16	275	10	0	-103	7670	1	0	1	-0.001	0.001
10/12/09 02:30:22	59.942	3747.875	335	-229.663269	16	275.5	10	0	-103	7670	1	0	1	0.001	0.001
10/12/09 02:30:24	59.945	3749.593	335	-229.663269	16	276	10	0	-103	7671	1	0	1	0.003	0.003
10/12/09 02:30:26	59.948	3748.661	335	-229.233856	16	276.5	10	0	-103	7671	1	0	1	0.003	0.003
10/12/09 02:30:28	59.947	3746.706	335	-229.233856	16	277	10	0	-103	7672	1	0	1	-0.001	0.001
10/12/09 02:30:30	59.949	3749.077	335	-229.233856	16	277.5	10	0	-103	7673	1	0	1	0.002	0.002
10/12/09 02:30:32	59.951	3742.741	335	-229.233856	16	278	10	0	-103	7673	1	0	1	0.002	0.002
10/12/09 02:30:34	59.952	3740.259	350	-229.233856	16	278.5	10	0	-103	7673	1	0	1	0.001	0.001
10/12/09 02:30:36	59.953	3736.139	350	-231.409882	16	279	10	0	-103	7673	1	0	1	0.001	0.001
10/12/09 02:30:38	59.951	3731.382	350	-231.409882	16	279.5	10	0	-103	7673	1	0	1	-0.002	0.002
10/12/09 02:30:40	59.952	3727.838	350	-231.409882	16	280	10	0	-103	7673	1	0	1	0.001	0.001
10/12/09 02:30:42	59.952	3725.952	350	-231.409882	16	280.5	10	0	-103	7673	1	0	1	0.000	0.000
10/12/09 02:30:44	59.952	3722.649	350	-231.409882	16	281	10	0	-103	7673	1	0	1	0.000	0.000
10/12/09 02:30:46	59.955	3720.578	350	-218.622284	16	281.5	10	0	-103	7673	1	0	1	0.003	0.003
10/12/09 02:30:48	59.952	3717.996	350	-218.622284	16	282	10	0	-103	7673	1	0	1	-0.003	0.003
10/12/09 02:30:50	59.954	3718.142	350	-218.622284	16	282.5	10	0	-103	7673	1	0	1	0.002	0.002
10/12/09 02:30:52	59.952	3715.753	350	-218.622284	16	283	10	0	-103	7673	1	0	1	-0.002	0.002
10/12/09 02:30:54	59.953	3713.694	350	-218.622284	16	283.5	10	0	-103	7673	1	0	1	0.001	0.001
10/12/09 02:30:56	59.953	3713.484	350	-213.535858	16	284	10	0	-103	7673	1	0	1	0.000	0.000
10/12/09 02:30:58	59.952	3710.848	350	-213.535858	16	284.5	10	0	-103	7673	1	0	1	-0.001	0.001
10/12/09 02:31:00	59.954	3712.81	350	-213.535858	16	285	10	0	-103	7673	1	0	1	0.002	0.002
10/12/09 02:31:02	59.954	3712.092	350	-213.535858	16	285.5	10	0	-103	7674	1	0	1	0.000	0.000
10/12/09 02:31:04	59.959	3714.623	350	-213.535858	16	286	10	0	-103	7675	1	0	1	0.005	0.005
10/12/09 02:31:06	59.957	3715.13	350	-225.651855	16	286.5	10	0	-103	7676	1	0	1	-0.002	0.002
10/12/09 02:31:08	59.956	3716.168	350	-225.651855	16	287	10	0	-103	7677	1	0	1	-0.001	0.001
10/12/09 02:31:10	59.954	3716.461	350	-225.651855	16	287.5	10	0	-103	7678	1	0	1	-0.002	0.002
10/12/09 02:31:12	59.956	3716.98	350	-225.651855	16	288	10	0	-103	7679	1	0	1	0.002	0.002
10/12/09 02:31:14	59.955	3717.759	350	-225.651855	16	288.5	10	0	-103	7680	1	0	1	-0.001	0.001
10/12/09 02:31:16	59.958	3722.361	350	-212.573639	16	289	10	0	-103	7681	1	0	1	0.003	0.003
10/12/09 02:31:18	59.961	3721.973	350	-212.573639	16	289.5	10	0	-103	7682	1	0	1	0.003	0.003
10/12/09 02:31:20	59.962	3722.658	350	-212.573639	16	290	10	0	-103	7684	1	0	1	0.001	0.001
10/12/09 02:31:22	59.962	3722.267	350	-212.573639	16	290.5	10	0	-103	7685	1	0	1	0.000	0.000
10/12/09 02:31:24	59.968	3722.278	350	-212.573639	16	291	10	0	-103	7687	1	0	1	0.006	0.006
10/12/09 02:31:26	59.966	3721.787	350	-219.897293	16	291.5	10	0	-103	7689	1	0	1	-0.002	0.002
10/12/09 02:31:28	59.966	3723.091	350	-219.897293	16	292	10	0	-103	7690	1	-	1	0.000	0.000
10/12/09 02:31:30	59.968	3723.984	350	-219.897293	16	292.5	10	0	-103	7692	1	0	1	0.002	0.002
10/12/09 02:31:32	59.97	3723.435	350	-219.897293	16	293	10	0	-103	7692	1	0	1	0.002	0.002
10/12/09 02:31:34	59.974	3723.893	350	-219.897293	16	293.5	10	0	-103	7693	1	0	1	0.004	0.004
10/12/09 02:31:36	59.97	3725.403	350	-231.1754	16	294	10	0	-103	7693	1	0	1	-0.004	0.004
10/12/09 02:31:38	59.969	3727.121	350	-231.1754	16	294.5	10	0	-103	7694	1		1	-0.001	0.001
10/12/09 02:31:40	59.969	3728.053	350	-231.1754	16	295	10	0	-103	7694	1	0	1	0.000	0.000
10/12/09 02:31:42	59.97	3731.13	350	-231.1754	16	295.5	10	0	-103	7695	1	0	1	0.001	0.001
10/12/09 02:31:44	59.971	3732.53	350	-231.1754	16	296	10	0	-103	7695	1	0	1	0.001	0.001
10/12/09 02:31:46	59.973	3733.327	350	-226.634125	16	296.5	10	0	-103	7695	1	0	1	0.002	0.002
10/12/09 02:31:48	59.973	3736.535	350	-226.634125	16	297	10	0	-103	7696	1	0	1	0.000	0.000
10/12/09 02:31:50	59.976	3736.907	350	-226.634125	16	297.5	10	0	-103	7696	1	0	1	0.003	0.003

10/12/09 02:31:52	59.978	3736.822	350	-226.634125	16	298	10	0	-103	7697	1	0	1	0.002	0.002
10/12/09 02:31:54	59.978	3738.699	350	-226.634125	16	298.5	10	0	-103	7697	1	0	1	0.000	0.000
10/12/09 02:31:56	59.976	3739.944	350	-227.255066	16	299	10	0	-103	7697	1	0	1	-0.002	0.002
10/12/09 02:31:58	59.978	3740.877	350	-227.255066	16	299.5	10	0	-103	7698	1	0	1	0.002	0.002
10/12/09 02:32:00	59.976	3741.794	350	-227.255066	16	300	10	0	-103	7698	1	0	1	-0.002	0.002
10/12/09 02:32:02	59.978	3745.234	350	-227.255066	16	300.5	10	0	-103	7698.33	1	0	1	0.002	0.002
10/12/09 02:32:04	59.977	3746.608	350	-227.255066	16	301	10	0	-103	7698.66	1	0	1	-0.001	0.001
10/12/09 02:32:06	59.98	3748.3	350	-229.290222	16	301.5	10	0	-103	7698.99	1	0	1	0.003	0.003
10/12/09 02:32:08	59.982	3750.716	350	-229.290222	16	302	10	0	-103	7699.32	1	0	1	0.002	0.002
10/12/09 02:32:10	59.981	3751.558	350	-229.290222	16	302.5	10	0	-103	7699.65	1	0	1	-0.001	0.001
10/12/09 02:32:12	59.98	3752.748	350	-229.290222	16	303	10	0	-103	7699.98	1	0	1	-0.001	0.001
10/12/09 02:32:14	59.979	3755.599	350	-229.290222	16	303.5	10	0	-103	7700.31	1	0	1	-0.001	0.001
10/12/09 02:32:16	59.98	3756.407	350	-221.461365	16	304	10	0	-103	7700.64	1	0	1	0.001	0.001
10/12/09 02:32:18	59.979	3756.975	350	-221.461365	16	304.5	10	0	-103	7700.97	1	0	1	-0.001	0.001
10/12/09 02:32:20	59.983	3760.405	350	-221.461365	16	305	10	0	-103	7701.3	1	0	1	0.004	0.004
10/12/09 02:32:22	59.983	3760.982	350	-221.461365	16	305.5	10	0	-103	7701.63	1	0	1	0.000	0.000
10/12/09 02:32:24	59.984	3761.407	350	-221.461365	16	306	10	0	-103	7701.96	1	0	1	0.001	0.001
10/12/09 02:32:26	59.988	3762.737	350	-241.274368	16	306.5	10	0	-103	7702.29	1	0	1	0.004	0.004
10/12/09 02:32:28	59.989	3763.212	350	-241.274368	16	307	10	0	-103	7702.62	1	0	1	0.001	0.001
10/12/09 02:32:30	59.987	3764.958	350	-241.274368	16	307.5	10	0	-103	7702.95	1	0	1	-0.002	0.002
10/12/09 02:32:32	59.987	3766.085	350	-241.274368	16	308	10	0	-103	7703.28	1	0	1	0.000	0.000
10/12/09 02:32:34	59.991	3766.433	350	-241.274368	16	308.5	10	0	-103	7703.61	1	0	1	0.004	0.004
10/12/09 02:32:36	59.993	3767.251	350	-243.071854	16	309	10	0	-103	7703.94	1	0	1	0.002	0.002
10/12/09 02:32:38	59.992	3767.792	350	-243.071854	16	309.5	10	0	-103	7704.27	1	0	1	-0.001	0.001
10/12/09 02:32:40	59.991	3768.634	350	-243.071854	16	310	10	0	-103	7704.6	1	0	1	-0.001	0.001
10/12/09 02:32:42	59.989	3771.146	350	-243.071854	16	310.5	10	0	-103	7704.93	1	0	1	-0.002	0.002
10/12/09 02:32:44	59.986	3772.445	350	-243.071854	16	311	10	0	-103	7705.26	1	0	1	-0.003	0.003
10/12/09 02:32:46	59.983	3773.695	350	-241.670212	16	311.5	10	0	-103	7705.59	1	0	1	-0.003	0.003
10/12/09 02:32:48	59.983	3774.668	350	-241.670212	16	312	10	0	-103	7705.92	1		1	0.000	0.000
10/12/09 02:32:50	59.988	3775.841	350	-241.670212	16	312.5	10	0	-103	7706.25	1	0	1	0.005	0.005
10/12/09 02:32:52	59.993	3775.363	350	-241.670212	16	313	10	0	-103	7706.58	1	0	1	0.005	0.005
10/12/09 02:32:54	59.996	3774.866	350	-241.670212	16	313.5	10	0	-103	7706.91	1	0	1	0.003	0.003
10/12/09 02:32:56	59.998	3775.492	350	-228.149307	16	314	10	0	-103	7707.24	1	0	1	0.002	0.002
10/12/09 02:32:58	59.999	3776.42	350	-228.149307	16	314.5	10	0	-103	7707.57	1	-	1	0.001	0.001
10/12/09 02:33:00	60.001	3778.554	350	-228.149307	16	315	10	0	-103	7707.9	1	1	1	0.002	0.002
10/12/09 02:33:02	59.999	3779.692	350	-228.149307	16	315.5	10	0	-103	7708.23	1	0	1	-0.002	0.002
10/12/09 02:33:04	59.999	3781.256	350	-228.149307	16	316	10	0	-103	7708.56	1	0	1	0.000	0.000
10/12/09 02:33:06	59.999	3780.595	350	-235.128983	16	316.5	10	0	-103	7708.89	1	0	1	0.000	0.000
10/12/09 02:33:08	60.002	3783.092	350	-235.128983	16	317	10	0	-103	7709.22	1	1	1	0.003	0.003
10/12/09 02:33:10	60.005	3783.896	350	-235.128983	16	317.5	10	0	-103	7709.55	1	1	1	0.003	0.003
10/12/09 02:33:12	60.007	3784.421	350	-235.128983	16	318	10	0	-103	7709.88	1	1	1	0.002	0.002
10/12/09 02:33:14	60.008	3785.768	350	-235.128983	16	318.5	10	0	-103	7710.21	1	1	1	0.001	0.001
10/12/09 02:33:16	60.011	3785.463	350	-246.433136	16	319	10	0	-103	7710.54	1	1	1	0.003	0.003
10/12/09 02:33:18	60.014	3786.85	350	-246.433136	16	319.5	10	0	-103	7710.87	1	1	1	0.003	0.003
10/12/09 02:33:20	60.017	3786.304	350	-246.433136	16	320	10	0	-103	7711.2	1	1	1	0.003	0.003
10/12/09 02:33:22	60.019	3787.259	350	-246.433136	16	320.5	10	0	-103	7711.53	1	1	1	0.002	0.002
10/12/09 02:33:24	60.021	3787.516	350	-246.433136	16	321	10	0	-103	7711.86	1	1	1	0.002	0.002
10/12/09 02:33:26	60.017	3787.955	350	-236.553543	16	321.5	10	0	-103	7712.19	1	1	1	-0.004	0.004
10/12/09 02:33:28	60.017	3788.03	350	-236.553543	16	322	10	0	-103	7712.52	1	1	1	0.000	0.000

10/12/09 02:33:30	60.019	3788.607	350	-236.553543	16	322.5	10	0	-103	7712.85	1	1	1	0.002	0.002
10/12/09 02:33:32	60.023	3789.216	350	-236.553543	16	323	10	0	-103	7713.18	1	1	1	0.004	0.004
10/12/09 02:33:34	60.024	3787.537	350	-236.553543	16	323.5	10	0	-103	7713.51	1	1	1	0.001	0.001
10/12/09 02:33:36	60.025	3785.842	350	-230.297562	16	324	10	0	-103	7713.84	1	1	1	0.001	0.001
10/12/09 02:33:38	60.021	3786.077	350	-230.297562	16	324.5	10	0	-103	7714.17	1	1	1	-0.004	0.004
10/12/09 02:33:40	60.019	3787.93	350	-230.297562	16	325	10	0	-103	7714.5	1	1	1	-0.002	0.002
10/12/09 02:33:42	60.024	3788.76	350	-230.297562	16	325.5	10	0	-103	7714.83	1	1	1	0.005	0.005
10/12/09 02:33:44	60.024	3786.875	350	-230.297562	16	326	10	0	-103	7715.16	1	1	1	0.000	0.000
10/12/09 02:33:46	60.021	3786.55	350	-231.175537	16	326.5	10	0	-103	7715.49	1	1	1	-0.003	0.003
10/12/09 02:33:48	60.02	3787.358	350	-231.175537	16	327	10	0	-103	7715.82	1	1	1	-0.001	0.001
10/12/09 02:33:50	60.025	3785.018	350	-231.175537	16	327.5	10	0	-103	7716.15	1	1	1	0.005	0.005
10/12/09 02:33:52	60.024	3785.614	350	-231.175537	16	328	10	0	-103	7716.48	1	1	1	-0.001	0.001
10/12/09 02:33:54	60.02	3785.949	350	-231.175537	16	328.5	10	0	-103	7716.81	1	1	1	-0.004	0.004
10/12/09 02:33:56	60.02	3785.804	350	-225.61763	16	329	10	0	-103	7717.14	1	1	1	0.000	0.000
10/12/09 02:33:58	60.022	3786.864	350	-225.61763	16	329.5	10	0	-103	7717.47	1	1	1	0.002	0.002
10/12/09 02:34:00	60.022	3786.877	350	-225.61763	16	330	10	0	-103	7717.8	1	1	1	0.000	0.000
10/12/09 02:34:02	60.022	3785.254	350	-225.61763	16	330.5	10	0	-103	7718.13	1	1	1	0.000	0.000
10/12/09 02:34:04	60.021	3785.726	350	-235.61763	16	331	10	0	-103	7718.46	1	1	1	-0.001	0.001
10/12/09 02:34:06	60.021	3786.347	350	-230.734421	16	331.5	10	0	-103	7718.79	1	1	1	0.000	0.000
10/12/09 02:34:08	60.023	3785.821	350	-230.734421	16	332	10	0	-103	7719.12	1	1	1	0.002	0.002
10/12/09 02:34:10	60.023	3785.798	350	-230.734421	16	332.5	10	0	-103	7719.45	1	1	1	0.000	0.000
10/12/09 02:34:12	60.022	3786.284	350	-230.734421	16	333	10	0	-103	7719.78	1	1	1	-0.001	0.001
10/12/09 02:34:14	60.019	3786.939	350	-230.734421	16	333.5	10	0	-103	7720.11	1	1	1	-0.003	0.003
10/12/09 02:34:16	60.016	3787.627	350	-234.847107	16	334	10	0	-103	7720.44	1	1	1	-0.003	0.003
10/12/09 02:34:18	60.018	3789.444	350	-234.847107	16	334.5	10	0	-103	7720.77	1	1	1	0.002	0.002
10/12/09 02:34:20	60.018	3789.673	350	-234.847107	16	335	10	0	-103	7721.1	1	1	1	0.000	0.000
10/12/09 02:34:22	60.018	3789.404	350	-234.847107	16	335.5	10	0	-103	7721.43	1	1	1	0.000	0.000
10/12/09 02:34:24	60.019	3788.479	350	-234.847107	16	336	10	0	-103	7721.76	1	1	1	0.001	0.001
10/12/09 02:34:26	60.019	3789.183	350	-228.960922	16	336.5	10	0	-103	7722.09	1	1	1	0.000	0.000
10/12/09 02:34:28	60.016	3789.369	350	-228.960922	16	337	10	0	-103	7722.42	1	1	1	-0.003	0.003
10/12/09 02:34:30	60.015	3789.005	350	-228.960922	16	337.5	10	0	-103	7722.75	1	1	1	-0.001	0.001
10/12/09 02:34:32	60.016	3788.665	350	-228.960922	16	338	10	0	-103	7723.08	1	1	1	0.001	0.001
10/12/09 02:34:34	60.014	3788.933	350	-228.960922	16	338.5	10	0	-103	7723.41	1	1	1	-0.002	0.002
10/12/09 02:34:36	60.013	3790.667	350	-231.177917	16	339	10	0	-103	7723.74	1	1	1	-0.001	0.001
10/12/09 02:34:38	60.012	3790.805	350	-231.177917	16	339.5	10	0	-103	7724.07	1	1	1	-0.001	0.001
10/12/09 02:34:40	60.012	3790.411	350	-231.177917	16	340	10	0	-103	7724.4	1	1	1	0.000	0.000
10/12/09 02:34:42	60.01	3789.769	350	-231.177917	16	340.5	10	0	-103	7724.73	1	1	1	-0.002	0.002
10/12/09 02:34:44	60.007	3791.54	350	-231.177917	16	341	10	0	-103	7725.06	1	1	1	-0.003	0.003
10/12/09 02:34:46	60.007	3792.945	350	-236.489288	16	341.5	10	0	-103	7725.39	1	1	1	0.000	0.000
10/12/09 02:34:48	60.009	3791.027	350	-236.489288	16	342	10	0	-103	7725.72	1	1	1	0.002	0.002
10/12/09 02:34:50	60.009	3791.443	350	-236.489288	16	342.5	10	0	-103	7726.05	1		1	0.000	0.000
10/12/09 02:34:52	60.01	3791.426	350	-236.489288	16	343	10	0	-103	7726.38	1	1	1	0.001	0.001
10/12/09 02:34:54	60.003	3790.603	350	-236.489288	16	343.5	10	0	-103	7726.71	1	1	1	-0.007	0.007
10/12/09 02:34:56	59.999	3790.457	350	-245.038925	16	344	10	0	-103	7727.04	1	0	1	-0.004	0.004
10/12/09 02:34:58	59.995	3790.216	350	-245.038925	16	344.5	10	0	-103	7727.37	1	0	1	-0.004	0.004
10/12/09 02:35:00	59.992	3789.585	350	-245.038925	16	345	10	0	-103	7727.7	1	0	1	-0.003	0.003
10/12/09 02:35:02	59.991	3788.457	350	-245.038925	16	345.5	10	0	-103	7728.03	1	0	1	-0.001	0.001
10/12/09 02:35:04	59.992	3788.105	350	-245.038925	16	346	10	0	-103	7728.36	1	0	1	0.001	0.001
10/12/09 02:35:06	59.992	3788.057	350	-223.605682	16	346.5	10	0	-103	7728.69	1	0	1	0.000	0.000

10/12/09 02:35:08	59.988	3788.189	350	-223.605682	16	347	10	0	-103	7729.02	1	0	1	-0.004	0.004
10/12/09 02:35:10	59.986	3788.497	350	-223.605682	16	347.5	10	0	-103	7729.35	1	0	1	-0.002	0.002
10/12/09 02:35:12	59.985	3788.54	350	-223.605682	16	348	10	0	-103	7729.68	1	0	1	-0.001	0.001
10/12/09 02:35:14	59.984	3788.571	350	-223.605682	16	348.5	10	0	-103	7730.01	1	0	1	-0.001	0.001
10/12/09 02:35:16	59.985	3788.101	350	-231.119354	16	349	10	0	-103	7730.34	1	0	1	0.001	0.001
10/12/09 02:35:18	59.984	3787.133	350	-231.119354	16	349.5	10	0	-103	7730.67	1	0	1	-0.001	0.001
10/12/09 02:35:20	59.982	3786.453	350	-231.119354	16	350	10	0	-103	7731	1	0	1	-0.002	0.002
10/12/09 02:35:22	59.981	3787.732	350	-231.119354	16	350.5	10	0	-103	7731.33	1	0	1	-0.001	0.001
10/12/09 02:35:24	59.982	3788.813	350	-231.119354	16	351	10	0	-103	7731.66	1	0	1	0.001	0.001
10/12/09 02:35:26	59.979	3789.285	350	-237.20665	16	351.5	10	0	-103	7731.99	1	0	1	-0.003	0.003
10/12/09 02:35:28	59.977	3788.256	350	-237.20665	16	352	10	0	-103	7732.32	1	0	1	-0.002	0.002
10/12/09 02:35:30	59.976	3788.41	350	-237.20665	16	352.5	10	0	-103	7732.65	1	0	1	-0.001	0.001
10/12/09 02:35:32	59.976	3790.467	350	-237.20665	16	353	10	0	-103	7732.98	1	0	1	0.000	0.000
10/12/09 02:35:34	59.979	3790.665	350	-237.20665	16	353.5	10	0	-103	7733.31	1	0	1	0.003	0.003
10/12/09 02:35:36	59.982	3790.42	350	-240.516373	16	354	10	0	-103	7733.64	1	0	1	0.003	0.003
10/12/09 02:35:38	59.978	3789.674	350	-240.516373	16	354.5	10	0	-103	7733.97	1	0	1	-0.004	0.004
10/12/09 02:35:40	59.976	3789.267	350	-240.516373	16	355	10	0	-103	7734.3	1	0	1	-0.002	0.002
10/12/09 02:35:42	59.974	3789.148	350	-240.516373	16	355.5	10	0	-103	7734.63	1	0	1	-0.002	0.002
10/12/09 02:35:44	59.976	3790.43	350	-240.516373	16	356	10	0	-103	7734.96	1	0	1	0.002	0.002
10/12/09 02:35:46	59.977	3789.914	350	-237.566055	16	356.5	10	0	-103	7735.29	1	0	1	0.001	0.001
10/12/09 02:35:48	59.977	3786.243	350	-237.566055	16	357	10	0	-103	7735.62	1	0	1	0.000	0.000
10/12/09 02:35:50	59.975	3787.442	350	-237.566055	16	357.5	10	0	-103	7735.95	1	0	1	-0.002	0.002
10/12/09 02:35:52	59.973	3788.963	350	-237.566055	16	358	10	0	-103	7736.28	1	0	1	-0.002	0.002
10/12/09 02:35:54	59.969	3790.602	350	-237.566055	16	358.5	10	0	-103	7736.61	1	0	1	-0.004	0.004
10/12/09 02:35:56	59.97	3791.877	350	-231.581421	16	359	10	0	-103	7736.94	1	0	1	0.001	0.001
10/12/09 02:35:58	59.971	3792.911	350	-231.581421	16	359.5	10	0	-103	7737.27	1	0	1	0.001	0.001
10/12/09 02:36:00	59.973	3792.311	350	-231.581421	16	360	10	0	-103	7737.6	1	0	1	0.002	0.002
10/12/09 02:36:02	59.978	3789.125	350	-231.581421	16	360.5	10	0	-103	7737.93	1	0	1	0.005	0.005
10/12/09 02:36:04	59.981	3788.08	350	-231.581421	16	361	10	0	-103	7738.26	1	0	1	0.003	0.003
10/12/09 02:36:06	59.978	3787.844	350	-235.850845	16	361.5	10	0	-103	7738.59	1	0	1	-0.003	0.003
10/12/09 02:36:08	59.975	3787.135	350	-235.850845	16	362	10	0	-103	7738.92	1	0	1	-0.003	0.003
10/12/09 02:36:10	59.972	3787.164	350	-235.850845	16	362.5	10	0	-103	7739.25	1	0	1	-0.003	0.003
10/12/09 02:36:12	59.976	3786.996	350	-235.850845	16	363	10	0	-103	7739.58	1	0	1	0.004	0.004
10/12/09 02:36:14	59.975	3787.405	350	-235.850845	16	363.5	10	0	-103	7739.91	1	0	1	-0.001	0.001
10/12/09 02:36:16	59.973	3786.487	350	-233.559982	16	364	10	0	-103	7740.24	1	0	1	-0.002	0.002
10/12/09 02:36:18	59.969	3787.079	350	-233.559982	16	364.5	10	0	-103	7740.57	1	0	1	-0.004	0.004
10/12/09 02:36:20	59.966	3789.214	350	-233.559982	16	365	10	0	-103	7740.9	1	0	1	-0.003	0.003
10/12/09 02:36:22	59.965	3790.512	350	-233.559982	16	365.5	10	0	-103	7741.23	1	0	1	-0.001	0.001
10/12/09 02:36:24	59.966	3791.221	350	-233.559982	16	366	10	0	-103	7741.56	1	0	1	0.001	0.001
10/12/09 02:36:26	59.969	3792.218	350	-219.009995	16	366.5	10	0	-103	7741.89	1	0	1	0.003	0.003
10/12/09 02:36:28	59.97	3790.959	350	-219.009995	16	367	10	0	-103	7742.22	1	0	1	0.001	0.001
10/12/09 02:36:30	59.968	3788.824	350	-219.009995	16	367.5	10	0	-103	7742.55	1	0	1	-0.002	0.002
10/12/09 02:36:32	59.965	3789.026	350	-219.009995	16	368	10	0	-103	7742.88	1	0	1	-0.003	0.003
10/12/09 02:36:34	59.964	3789.167	350	-219.009995	16	368.5	10	0	-103	7743.21	1	0	1	-0.001	0.001
10/12/09 02:36:36	59.97	3787.394	350	-205.338913	16	369	10	0	-103	7743.54	1	0	1	0.006	0.006
10/12/09 02:36:38	59.972	3785.69	350	-205.338913	16	369.5	10	0	-103	7743.87	1	0	1	0.002	0.002
10/12/09 02:36:40	59.967	3784.831	350	-205.338913	16	370	10	0	-103	7744.2	1	0	1	-0.005	0.005
10/12/09 02:36:42	59.967	3785.01	350	-205.338913	16	370.5	10	0	-103	7744.53	1	0	1	0.000	0.000
10/12/09 02:36:44	59.969	3784.32	350	-205.338913	16	371	10	0	-103	7744.86	1	0	1	0.002	0.002

10/12/09 02:36:46	59.968	3782.809	350	-236.285355	16	371.5	10	0	-103	7745.19	1	0	1	-0.001	0.001
10/12/09 02:36:48	59.969	3782.11	350	-236.285355	16	372	10	0	-103	7745.52	1	0	1	0.001	0.001
10/12/09 02:36:50	59.967	3779.352	350	-236.285355	16	372.5	10	0	-103	7745.85	1	0	1	-0.002	0.002
10/12/09 02:36:52	59.967	3779.056	350	-236.285355	16	373	10	0	-103	7746.18	1	0	1	0.000	0.000
10/12/09 02:36:54	59.966	3778.633	350	-236.285355	16	373.5	10	0	-103	7746.51	1	0	1	-0.001	0.001
10/12/09 02:36:56	59.965	3779.212	350	-223.015732	16	374	10	0	-103	7746.84	1	0	1	-0.001	0.001
10/12/09 02:36:58	59.971	3779.335	350	-223.015732	16	374.5	10	0	-103	7747.17	1	0	1	0.006	0.006
10/12/09 02:37:00	59.967	3776.429	350	-223.015732	16	375	10	0	-103	7747.5	1	0	1	-0.004	0.004
10/12/09 02:37:02	59.965	3775.647	350	-223.015732	16	375.5	10	0	-103	7747.83	1	0	1	-0.002	0.002
10/12/09 02:37:04	59.962	3776.597	350	-223.015732	16	376	10	0	-103	7748.16	1	0	1	-0.003	0.003
10/12/09 02:37:06	59.964	3776.559	350	-223.015732	16	376.5	10	0	-103	7748.49	1	0	1	0.002	0.002
10/12/09 02:37:08	59.97	3776.023	350	-223.015732	16	377	10	0	-103	7748.82	1	0	1	0.006	0.006
10/12/09 02:37:10	59.967	3773.17	350	-223.015732	16	377.5	10	0	-103	7749.15	1	0	1	-0.003	0.003
10/12/09 02:37:12	59.969	3771.73	350	-223.015732	16	378	10	0	-103	7749.48	1	0	1	0.002	0.002
10/12/09 02:37:14	59.968	3768.793	350	-223.015732	16	378.5	10	0	-103	7749.81	1	0	1	-0.001	0.001
10/12/09 02:37:16	59.963	3768.503	350	-223.015732	16	379	10	0	-103	7750.14	1	0	1	-0.005	0.005
10/12/09 02:37:18	59.965	3768.917	350	-223.015732	16	379.5	10	0	-103	7750.47	1	0	1	0.002	0.002
10/12/09 02:37:20	59.97	3767.366	350	-223.015732	16	380	10	0	-103	7750.8	1	0	1	0.005	0.005
10/12/09 02:37:22	59.973	3764.786	350	-223.015732	16	380.5	10	0	-103	7751.13	1	0	1	0.003	0.003
10/12/09 02:37:24	59.968	3760.295	350	-223.015732	16	381	10	0	-103	7751.46	1	0	1	-0.005	0.005
10/12/09 02:37:26	59.965	3759.592	350	-223.015732	16	381.5	10	0	-103	7751.79	1	0	1	-0.003	0.003
10/12/09 02:37:28	59.968	3761.894	350	-223.015732	16	382	10	0	-103	7752.12	1	0	1	0.003	0.003
10/12/09 02:37:30	59.969	3761.777	350	-223.015732	16	382.5	10	0	-103	7752.45	1	0	1	0.001	0.001
10/12/09 02:37:32	59.967	3760.583	350	-223.015732	16	383	10	0	-103	7752.78	1	0	1	-0.002	0.002
10/12/09 02:37:34	59.964	3760.157	350	-223.015732	16	383.5	10	0	-103	7753.11	1	0	1	-0.003	0.003
10/12/09 02:37:36	59.966	3759.781	350	-223.015732	16	384	10	0	-103	7753.44	1	0	1	0.002	0.002
10/12/09 02:37:38	59.979	3759.495	350	-223.015732	16	384.5	10	0	-103	7753.77	1	0	1	0.013	0.013
10/12/09 02:37:40	59.99	3757.773	350	-223.015732	16	385	10	0	-103	7754.1	1	0	1	0.011	0.011
10/12/09 02:37:42	59.983	3753.277	350	-223.015732	16	385.5	10	0	-103	7754.43	1	0	1	-0.007	0.007
10/12/09 02:37:44	59.974	3753.087	350	-223.015732	16	386	10	0	-103	7754.76	1	0	1	-0.009	0.009
10/12/09 02:37:46	59.967	3751.637	350	-223.015732	16	386.5	10	0	-103	7755.09	1	0	1	-0.007	0.007
10/12/09 02:37:48	59.965	3753.751	350	-223.015732	16	387	10	0	-103	7755.42	1	0	1	-0.002	0.002
10/12/09 02:37:50	59.962	3758.225	350	-223.015732	16	387.5	10	0	-103	7755.75	1	0	1	-0.003	0.003
10/12/09 02:37:52	59.962	3759.25	350	-223.015732	16	388	10	0	-103	7756.08	1	0	1	0.000	0.000
10/12/09 02:37:54	59.961	3758.041	350	-223.015732	16	388.5	10	0	-103	7756.41	1	0	1	-0.001	0.001
10/12/09 02:37:56	59.961	3760.965	350	-223.015732	16	389	10	0	-103	7756.74	1	0	1	0.000	0.000
10/12/09 02:37:58	59.96	3762.022	350	-223.015732	16	389.5	10	0	-103	7757.07	1	0	1	-0.001	0.001
10/12/09 02:38:00	59.963	3763.822	350	-223.015732	16	390	10	0	-103	7757.4	1	0	1	0.003	0.003
10/12/09 02:38:02	59.959	3763.1	350	-223.015732	16	390.5	10	0	-103	7757.73	1	0	1	-0.004	0.004
10/12/09 02:38:04	59.956	3763.858	350	-223.015732	16	391	10	0	-103	7758.06	1	0	1	-0.003	0.003
10/12/09 02:38:06	59.951	3764.158	350	-223.015732	16	391.5	10	0	-103	7758.39	1	0	1	-0.005	0.005
10/12/09 02:38:08	59.953	3766.127	350	-223.015732	16	392	10	0	-103	7758.72	1	0	1	0.002	0.002
10/12/09 02:38:10	59.954	3768.339	350	-223.015732	16	392.5	10	0	-103	7759.05	1	0	1	0.001	0.001
10/12/09 02:38:12	59.957	3767.972	350	-223.015732	16	393	10	0	-103	7759.38	1	0	1	0.003	0.003
10/12/09 02:38:14	59.956	3767.438	350	-223.015732	16	393.5	10	0	-103	7759.71	1	0	1	-0.001	0.001
10/12/09 02:38:16	59.961	3765.606	350	-223.015732	16	394	10	0	-103	7760.04	1	0	1	0.005	0.005
10/12/09 02:38:18	59.963	3762.688	350	-223.015732	16	394.5	10	0	-103	7760.37	1	0	1	0.002	0.002
10/12/09 02:38:20	59.961	3761.57	350	-223.015732	16	395	10	0	-103	7760.7	1	0	1	-0.002	0.002
10/12/09 02:38:22	59.959	3761.92	350	-223.015732	16	395.5	10	0	-103	7761.03	1	0	1	-0.002	0.002

10/12/09 02:38:24	59.963	3759.627	350	-223.015732	16	396	10	0	-103	7761.36	1	0	1	0.004	0.004
10/12/09 02:38:26	59.963	3758.522	350	-223.015732	16	396.5	10	0	-103	7761.69	1	0	1	0.000	0.000
10/12/09 02:38:28	59.965	3752.429	350	-223.015732	16	397	10	0	-103	7762.02	1	0	1	0.002	0.002
10/12/09 02:38:30	59.968	3750.102	350	-223.015732	16	397.5	10	0	-103	7762.35	1	0	1	0.003	0.003
10/12/09 02:38:32	59.968	3753.83	350	-223.015732	16	398	10	0	-103	7762.68	1	0	1	0.000	0.000
10/12/09 02:38:34	59.968	3753.51	350	-223.015732	16	398.5	10	0	-103	7763.01	1	0	1	0.000	0.000
10/12/09 02:38:36	59.97	3753.523	350	-223.015732	16	399	10	0	-103	7763.34	1	0	1	0.002	0.002
10/12/09 02:38:38	59.973	3752.741	350	-223.015732	16	399.5	10	0	-103	7763.67	1	0	1	0.003	0.003
10/12/09 02:38:40	59.971	3753.178	350	-223.015732	16	400	10	0	-103	7764	1	0	1	-0.002	0.002
10/12/09 02:38:42	59.965	3752.729	350	-223.015732	16	400.5	10	0	-103	7764.33	1	0	1	-0.006	0.006
10/12/09 02:38:44	59.967	3753.291	350	-223.015732	16	401	10	0	-103	7764.66	1	0	1	0.002	0.002
10/12/09 02:38:46	59.967	3752.872	350	-223.015732	16	401.5	10	0	-103	7764.99	1	0	1	0.000	0.000
10/12/09 02:38:48	59.972	3752.359	350	-223.015732	16	402	10	0	-103	7765.32	1	0	1	0.005	0.005
10/12/09 02:38:50	59.976	3749.398	350	-223.015732	16	402.5	10	0	-103	7765.65	1	0	1	0.004	0.004
10/12/09 02:38:52	59.975	3747.476	350	-223.015732	16	403	10	0	-103	7765.98	1	0	1	-0.001	0.001
10/12/09 02:38:54	59.969	3740.37	350	-223.015732	16	403.5	10	0	-103	7766.31	1	0	1	-0.006	0.006
10/12/09 02:38:56	59.973	3741.285	350	-223.015732	16	404	10	0	-103	7766.64	1	0	1	0.004	0.004
10/12/09 02:38:58	59.974	3746.651	350	-223.015732	16	404.5	10	0	-103	7766.97	1	0	1	0.001	0.001
10/12/09 02:39:00	59.978	3745.738	350	-223.015732	16	405	10	0	-103	7767.3	1	0	1	0.004	0.004
10/12/09 02:39:02	59.981	3743.351	350	-223.015732	16	405.5	10	0	-103	7767.63	1	0	1	0.003	0.003
10/12/09 02:39:04	59.981	3741.618	350	-223.015732	16	406	10	0	-103	7767.96	1	0	1	0.000	0.000
10/12/09 02:39:06	59.981	3740.306	350	-223.015732	16	406.5	10	0	-103	7768.29	1	0	1	0.000	0.000
10/12/09 02:39:08	59.982	3738.484	350	-223.015732	16	407	10	0	-103	7768.62	1	0	1	0.001	0.001
10/12/09 02:39:10	59.982	3738.901	350	-223.015732	16	407.5	10	0	-103	7768.95	1	0	1	0.000	0.000
10/12/09 02:39:12	59.984	3737.404	350	-223.015732	16	408	10	0	-103	7769.28	1	0	1	0.002	0.002
10/12/09 02:39:14	59.982	3737.273	350	-223.015732	16	408.5	10	0	-103	7769.61	1	0	1	-0.002	0.002
10/12/09 02:39:16	59.981	3736.308	350	-223.015732	16	409	10	0	-103	7769.94	1	0	1	-0.001	0.001
10/12/09 02:39:18	59.979	3736.272	350	-223.015732	16	409.5	10	0	-103	7770.27	1	0	1	-0.002	0.002
10/12/09 02:39:20	59.98	3735.448	350	-223.015732	16	410	10	0	-103	7770.6	1	0	1	0.001	0.001
10/12/09 02:39:22	59.978	3735.65	350	-223.015732	16	410.5	10	0	-103	7770.93	1	0	1	-0.002	0.002
10/12/09 02:39:24	59.978	3737.541	350	-223.015732	16	411	10	0	-103	7771.26	1	0	1	0.000	0.000
10/12/09 02:39:26	59.98	3738.012	350	-223.015732	16	411.5	10	0	-103	7771.59	1	0	1	0.002	0.002
10/12/09 02:39:28	59.981	3736.748	350	-223.015732	16	412	10	0	-103	7771.92	1	0	1	0.001	0.001
10/12/09 02:39:30	59.98	3736.693	350	-223.015732	16	412.5	10	0	-103	7772.25	1	0	1	-0.001	0.001
10/12/09 02:39:32	59.978	3736.067	350	-223.015732	16	413	10	0	-103	7772.58	1	0	1	-0.002	0.002
10/12/09 02:39:34	59.976	3736.094	350	-223.015732	16	413.5	10	0	-103	7772.91	1	0	1	-0.002	0.002
10/12/09 02:39:36	59.972	3736.575	350	-223.015732	16	414	10	0	-103	7773.24	1	0	1	-0.004	0.004
10/12/09 02:39:38	59.971	3738.571	350	-223.015732	16	414.5	10	0	-103	7773.57	1	0	1	-0.001	0.001
10/12/09 02:39:40	59.969	3738.875	350	-223.015732	16	415	10	0	-103	7773.9		0	1	-0.002	0.002
10/12/09 02:39:42	59.974	3738.935	350	-223.015732	16	415.5	10	0	-103	7774.23	1	0	1	0.005	0.005
10/12/09 02:39:44	59.975	3738.647	350	-223.015732	16	416	10	0	-103	7774.56	1	0	1	0.001	0.001
10/12/09 02:39:46	59.976	3737.684	350	-223.015732	16	416.5	10	0	-103	7774.89	1	0	1	0.001	0.001
10/12/09 02:39:48	59.972	3737.382	350	-223.015732	16	417	10	0	-103	7775.22		0	1	-0.004	0.004
10/12/09 02:39:50	59.969	3737.892	350	-223.015732	16	417.5	10	0	-103	7775.55	1	0	1	-0.003	0.003
10/12/09 02:39:52	59.971	3740.017	350	-223.015732	16	418	10	0	-103	7775.88	1	0	1	0.002	0.002
10/12/09 02:39:54	59.974	3740.329	350	-223.015732	16	418.5	10	0	-103	7776.21	1	0	1	0.003	0.003
10/12/09 02:39:56	59.972	3742.053	350	-223.015732	16	419	10	0	-103	7776.54	1	0	1	-0.002	0.002
10/12/09 02:39:58	59.972	3742.424	350	-223.015732	16	419.5	10	0	-103	7776.87	1	0	1	0.000	0.000
10/12/09 02:40:00	59.972	3742.524	350	-223.015732	16	420	10	0	-103	7777.2	1	0	1	0.000	0.000

10/12/09 02:40:02	59.977	3742.245	350	-223.015732	16	420.5	10	0	-103	7777.53	1	0	1	0.005	0.005
10/12/09 02:40:04	59.982	3741.723	350	-223.015732	16	421	10	0	-103	7777.86	1	0	1	0.005	0.005
10/12/09 02:40:06	59.978	3740.085	350	-223.015732	16	421.5	10	0	-103	7778.19	1	0	1	-0.004	0.004
10/12/09 02:40:08	59.976	3740.629	350	-223.015732	16	422	10	0	-103	7778.52	1	0	1	-0.002	0.002
10/12/09 02:40:10	59.973	3739.964	350	-223.015732	16	422.5	10	0	-103	7778.85	1	0	1	-0.003	0.003
10/12/09 02:40:12	59.974	3740.775	350	-223.015732	16	423	10	0	-103	7779.18	1	0	1	0.001	0.001
10/12/09 02:40:14	59.977	3742.833	350	-223.015732	16	423.5	10	0	-103	7779.51	1	0	1	0.003	0.003
10/12/09 02:40:16	59.977	3741.268	350	-223.015732	16	424	10	0	-103	7779.84	1	0	1	0.000	0.000
10/12/09 02:40:18	59.978	3739.776	350	-223.015732	16	424.5	10	0	-103	7780.17	1	0	1	0.001	0.001
10/12/09 02:40:20	59.979	3738.966	350	-223.015732	16	425	10	0	-103	7780.5	1	0	1	0.001	0.001
10/12/09 02:40:22	59.981	3738.706	350	-223.015732	16	425.5	10	0	-103	7780.83	1	0	1	0.002	0.002
10/12/09 02:40:24	59.977	3738.879	350	-223.015732	16	426	10	0	-103	7781.16	1	0	1	-0.004	0.004
10/12/09 02:40:26	59.974	3739.86	350	-223.015732	16	426.5	10	0	-103	7781.49	1	0	1	-0.003	0.003
10/12/09 02:40:28	59.971	3738.102	350	-223.015732	16	427	10	0	-103	7781.82	1	0	1	-0.003	0.003
10/12/09 02:40:30	59.971	3738.558	350	-223.015732	16	427.5	10	0	-103	7782.15	1	0	1	0.000	0.000
10/12/09 02:40:32	59.971	3743.507	350	-223.015732	16	428	10	0	-103	7782.48	1	0	1	0.000	0.000
10/12/09 02:40:34	59.972	3743.419	350	-223.015732	16	428.5	10	0	-103	7782.81	1	0	1	0.001	0.001
10/12/09 02:40:36	59.968	3745.251	350	-223.015732	16	429	10	0	-103	7783.14	1	0	1	-0.004	0.004
10/12/09 02:40:38	59.966	3745.744	350	-223.015732	16	429.5	10	0	-103	7783.47	1	0	1	-0.002	0.002
10/12/09 02:40:40	59.966	3747.34	350	-223.015732	16	430	10	0	-103	7783.8	1	0	1	0.000	0.000
10/12/09 02:40:42	59.971	3750.7	350	-223.015732	16	430.5	10	0	-103	7784.13	1	0	1	0.005	0.005
10/12/09 02:40:44	59.973	3749.75	350	-223.015732	16	431	10	0	-103	7784.46	1	0	1	0.002	0.002
10/12/09 02:40:46	59.972	3746.217	350	-223.015732	16	431.5	10	0	-103	7784.79	1	0	1	-0.001	0.001
10/12/09 02:40:48	59.969	3744.683	350	-223.015732	16	432	10	0	-103	7785.12	1	0	1	-0.003	0.003
10/12/09 02:40:50	59.972	3743.745	350	-223.015732	16	432.5	10	0	-103	7785.45	1	0	1	0.003	0.003
10/12/09 02:40:52	59.974	3743.149	350	-223.015732	16	433	10	0	-103	7785.78	1	0	1	0.002	0.002
10/12/09 02:40:54	59.973	3740.299	350	-223.015732	16	433.5	10	0	-103	7786.11	1	0	1	-0.001	0.001
10/12/09 02:40:56	59.97	3739.453	350	-223.015732	16	434	10	0	-103	7786.44	1	0	1	-0.003	0.003
10/12/09 02:40:58	59.971	3733.376	350	-223.015732	16	434.5	10	0	-103	7786.77	1	0	1	0.001	0.001
10/12/09 02:41:00	59.974	3731.83	350	-223.015732	16	435	10	0	-103	7787.1	1	0	1	0.003	0.003
10/12/09 02:41:02	59.982	3737.583	350	-223.015732	16	435.5	10	0	-103	7787.43	1	0	1	0.008	0.008
10/12/09 02:41:04	59.985	3736.229	350	-223.015732	16	436	10	0	-103	7787.76	1	0	1	0.003	0.003
10/12/09 02:41:06	59.985	3734.897	350	-223.015732	16	436.5	10	0	-103	7788.09	1	0	1	0.000	0.000
10/12/09 02:41:08	59.985	3733.434	350	-223.015732	16	437	10	0	-103	7788.42	1	0	1	0.000	0.000
10/12/09 02:41:10	59.987	3733.115	350	-223.015732	16	437.5	10	0	-103	7788.75	1	0	1	0.002	0.002
10/12/09 02:41:12	59.989	3730.51	350	-223.015732	16	438	10	0	-103	7789.08	1	0	1	0.002	0.002
10/12/09 02:41:14	59.989	3729.18	350	-223.015732	16	438.5	10	0	-103	7789.41	1	0	1	0.000	0.000
10/12/09 02:41:16	59.986	3725.459	350	-223.015732	16	439	10	0	-103	7789.74	1	0	1	-0.003	0.003
10/12/09 02:41:18	59.987	3724.785	350	-223.015732	16	439.5	10	0	-103	7790.07	1	0	1	0.001	0.001
10/12/09 02:41:20	59.99	3720.108	350	-223.015732	16	440	10	0	-103	7790.4	1	0	1	0.003	0.003
10/12/09 02:41:22	59.994	3720.938	350	-223.015732	16	440.5	10	0	-103	7790.73	1	0	1	0.004	0.004
10/12/09 02:41:24	59.996	3725.661	350	-223.015732	16	441	10	0	-103	7791.06	1	0	1	0.002	0.002
10/12/09 02:41:26	60.001	3725.677	350	-223.015732	16	441.5	10	0	-103	7791.39	1	1	1	0.005	0.005
10/12/09 02:41:28	60.003	3727.754	350	-223.015732	16	442	10	0	-103	7791.72	1	1	1	0.002	0.002
10/12/09 02:41:30	60.004	3727.825	350	-223.015732	16	442.5	10	0	-103	7792.05	1	1	1	0.001	0.001
10/12/09 02:41:32	60.006	3727.683	350	-223.015732	16	443	10	0	-103	7792.38	1	1	1	0.002	0.002
10/12/09 02:41:34	60.012	3727.231	350	-223.015732	16	443.5	10	0	-103	7792.71	1	1	1	0.006	0.006
10/12/09 02:41:36	60.014	3725.012	350	-223.015732	16	444	10	0	-103	7793.04	1	1	1	0.002	0.002
10/12/09 02:41:38	60.019	3726.446	350	-223.015732	16	444.5	10	0	-103	7793.37	1	1	1	0.005	0.005

10/12/09 02:41:40	60.021	3726.016	350	-223.015732	16	445	10	0	-103	7793.7	1	1	1	0.002	0.002
10/12/09 02:41:42	60.025	3719.123	350	-223.015732	16	445.5	10	0	-103	7794.03	1	1	1	0.004	0.004
10/12/09 02:41:44	60.026	3716.375	350	-223.015732	16	446	10	0	-103	7794.36	1	1	1	0.001	0.001
10/12/09 02:41:46	60.027	3717.333	350	-223.015732	16	446.5	10	0	-103	7794.69	1	1	1	0.001	0.001
10/12/09 02:41:48	60.029	3717.56	350	-223.015732	16	447	10	0	-103	7795.02	1	1	1	0.002	0.002
10/12/09 02:41:50	60.029	3717.142	350	-223.015732	16	447.5	10	0	-103	7795.35	1	1	1	0.000	0.000
10/12/09 02:41:52	60.037	3715.166	350	-223.015732	16	448	10	0	-103	7795.68	1	1	1	0.008	0.008
10/12/09 02:41:54	60.036	3713.632	350	-223.015732	16	448.5	10	0	-103	7796.01	1	1	1	-0.001	0.001
10/12/09 02:41:56	60.037	3710.283	350	-223.015732	16	449	10	0	-103	7796.34	1	1	1	0.001	0.001
10/12/09 02:41:58	60.037	3710.158	350	-223.015732	16	449.5	10	0	-103	7796.67	1	1	1	0.000	0.000
10/12/09 02:42:00	60.036	3699.356	350	-223.015732	16	450	10	0	-103	7797	1	1	1	-0.001	0.001
10/12/09 02:42:02	60.041	3698.591	350	-223.015732	16	450.5	10	0	-103	7797.33	1	1	1	0.005	0.005
10/12/09 02:42:04	60.043	3704.591	350	-223.015732	16	451	10	0	-103	7797.66	1	1	1	0.002	0.002
10/12/09 02:42:06	60.044	3703.275	350	-223.015732	16	451.5	10	0	-103	7797.99	1	1	1	0.001	0.001
10/12/09 02:42:08	60.043	3702.482	350	-223.015732	16	452	10	0	-103	7798.32	1	1	1	-0.001	0.001
10/12/09 02:42:10	60.046	3701.316	350	-223.015732	16	452.5	10	0	-103	7798.65	1	1	1	0.003	0.003
10/12/09 02:42:12	60.048	3700.826	350	-223.015732	16	453	10	0	-103	7798.98	1	1	1	0.002	0.002
10/12/09 02:42:14	60.046	3699.529	350	-223.015732	16	453.5	10	0	-103	7799.31	1	1	1	-0.002	0.002
10/12/09 02:42:16	60.046	3699.726	350	-223.015732	16	454	10	0	-103	7799.64	1	1	1	0.000	0.000
10/12/09 02:42:18	60.043	3690.1	350	-223.015732	16	454.5	10	0	-103	7799.97	1	1	1	-0.003	0.003
10/12/09 02:42:20	60.043	3690.477	350	-223.015732	16	455	10	0	-103	7800.3	1	1	1	0.000	0.000
10/12/09 02:42:22	60.044	3696.865	350	-223.015732	16	455.5	10	0	-103	7800.63	1	1	1	0.001	0.001
10/12/09 02:42:24	60.043	3696.877	350	-223.015732	16	456	10	0	-103	7800.96	1	1	1	-0.001	0.001
10/12/09 02:42:26	60.043	3696.182	350	-223.015732	16	456.5	10	0	-103	7801.29	1	1	1	0.000	0.000
10/12/09 02:42:28	60.045	3696.541	350	-223.015732	16	457	10	0	-103	7801.62	1	1	1	0.002	0.002
10/12/09 02:42:30	60.04	3696.968	350	-223.015732	16	457.5	10	0	-103	7801.95	1	1	1	-0.005	0.005
10/12/09 02:42:32	60.041	3698.686	350	-223.015732	16	458	10	0	-103	7802.28	1	1	1	0.001	0.001
10/12/09 02:42:34	60.039	3699.631	350	-223.015732	16	458.5	10	0	-103	7802.61	1	1	1	-0.002	0.002
10/12/09 02:42:36	60.039	3698.787	350	-223.015732	16	459	10	0	-103	7802.94	1	1	1	0.000	0.000
10/12/09 02:42:38	60.036	3699.712	350	-223.015732	16	459.5	10	0	-103	7803.27	1	1	1	-0.003	0.003
10/12/09 02:42:40	60.038	3700.106	350	-223.015732	16	460	10	0	-103	7803.6	1	1	1	0.002	0.002
10/12/09 02:42:42	60.033	3699.968	350	-223.015732	16	460.5	10	0	-103	7803.93	1	1	1	-0.005	0.005
10/12/09 02:42:44	60.034	3701.122	350	-223.015732	16	461	10	0	-103	7804.26	1	1	1	0.001	0.001
10/12/09 02:42:46	60.037	3701.865	350	-223.015732	16	461.5	10	0	-103	7804.59	1	1	1	0.003	0.003
10/12/09 02:42:48	60.037	3701.614	350	-223.015732	16	462	10	0	-103	7804.92	1	1	1	0.000	0.000
10/12/09 02:42:50	60.035	3701.998	350	-223.015732	16	462.5	10	0	-103	7805.25	1	1	1	-0.002	0.002
10/12/09 02:42:52	60.03	3702.913	350	-223.015732	16	463	10	0	-103	7805.58	1	1	1	-0.005	0.005
10/12/09 02:42:54	60.033	3703.909	350	-223.015732	16	463.5	10	0	-103	7805.91	1	1	1	0.003	0.003
10/12/09 02:42:56	60.036	3705.522	350	-223.015732	16	464	10	0	-103	7806.24	1	1	1	0.003	0.003
10/12/09 02:42:58	60.033	3704.967	350	-223.015732	16	464.5	10	0	-103	7806.57	1	1	1	-0.003	0.003
10/12/09 02:43:00	60.034	3704.087	350	-223.015732	16	465	10	0	-103	7806.9	1	1	1	0.001	0.001
10/12/09 02:43:02	60.032	3702.771	350	-223.015732	16	465.5	10	0	-103	7807.23	1	1	1	-0.002	0.002
10/12/09 02:43:04	60.032	3703.706	350	-223.015732	16	466	10	0	-103	7807.56	1	1	1	0.000	0.000
10/12/09 02:43:06	60.034	3704.905	350	-223.015732	16	466.5	10	0	-103	7807.89	1	1	1	0.002	0.002
10/12/09 02:43:08	60.033	3705.435	350	-223.015732	16	467	10	0	-103	7808.22	1	1	1	-0.001	0.001
10/12/09 02:43:10	60.037	3704.36	350	-223.015732	16	467.5	10	0	-103	7808.55	1	1	1	0.004	0.004
10/12/09 02:43:12	60.035	3702.588	350	-223.015732	16	468	10	0	-103	7808.88	1	1	1	-0.002	0.002
10/12/09 02:43:14	60.035	3702.204	350	-223.015732	16	468.5	10	0	-103	7809.21	1	1	1	0.000	0.000
10/12/09 02:43:16	60.036	3701.942	350	-223.015732	16	469	10	0	-103	7809.54	1	1	1	0.001	0.001

10/12/09 02:43:18	60.039	3702.25	350	-223.015732	16	469.5	10	0	-103	7809.87	1	1	1	0.003	0.003
10/12/09 02:43:20	60.037	3703.318	350	-223.015732	16	470	10	0	-103	7810.2	1	1	1	-0.002	0.002
10/12/09 02:43:22	60.039	3702.457	350	-223.015732	16	470.5	10	0	-103	7810.53	1	1	1	0.002	0.002
10/12/09 02:43:24	60.036	3702.525	350	-223.015732	16	471	10	0	-103	7810.86	1	1	1	-0.003	0.003
10/12/09 02:43:26	60.034	3703.269	350	-223.015732	16	471.5	10	0	-103	7811.19	1	1	1	-0.002	0.002
10/12/09 02:43:28	60.038	3703.844	350	-223.015732	16	472	10	0	-103	7811.52	1	1	1	0.004	0.004
10/12/09 02:43:30	60.037	3702.865	350	-223.015732	16	472.5	10	0	-103	7811.85	1	1	1	-0.001	0.001
10/12/09 02:43:32	60.037	3702.518	350	-223.015732	16	473	10	0	-103	7812.18	1	1	1	0.000	0.000
10/12/09 02:43:34	60.037	3702.28	350	-223.015732	16	473.5	10	0	-103	7812.51	1	1	1	0.000	0.000
10/12/09 02:43:36	60.038	3692.427	350	-223.015732	16	474	10	0	-103	7812.84	1	1	1	0.001	0.001
10/12/09 02:43:38	60.04	3692.178	350	-223.015732	16	474.5	10	0	-103	7813.17	1	1	1	0.002	0.002
10/12/09 02:43:40	60.043	3700.276	350	-223.015732	16	475	10	0	-103	7813.5	1	1	1	0.003	0.003
10/12/09 02:43:42	60.045	3698.755	350	-223.015732	16	475.5	10	0	-103	7813.83	1	1	1	0.002	0.002
10/12/09 02:43:44	60.045	3697.729	350	-223.015732	16	476	10	0	-103	7814.16	1	1	1	0.000	0.000
10/12/09 02:43:46	60.042	3696.916	350	-223.015732	16	476.5	10	0	-103	7814.49	1	1	1	-0.003	0.003
10/12/09 02:43:48	60.043	3697.368	350	-223.015732	16	477	10	0	-103	7814.82	1	1	1	0.001	0.001
10/12/09 02:43:50	60.04	3697.346	350	-223.015732	16	477.5	10	0	-103	7815.15	1	1	1	-0.003	0.003
10/12/09 02:43:52	60.044	3698.429	350	-223.015732	16	478	10	0	-103	7815.48	1	1	1	0.004	0.004
10/12/09 02:43:54	60.046	3694.763	350	-223.015732	16	478.5	10	0	-103	7815.81	1	1	1	0.002	0.002
10/12/09 02:43:56	60.042	3693.584	350	-223.015732	16	479	10	0	-103	7816.14	1	1	1	-0.004	0.004
10/12/09 02:43:58	60.034	3693.241	350	-223.015732	16	479.5	10	0	-103	7816.47	1	1	1	-0.008	0.008
10/12/09 02:44:00	60.039	3696.798	350	-223.015732	16	480	10		-103	7816.8	1	1	1	0.005	0.005
10/12/09 02:44:02	60.039	3699.364	350	-223.015732	16	480.5	10	0	-103	7817.13	1	1	1	0.000	0.000
10/12/09 02:44:04	60.036	3701.791	350	-223.015732	16	481	10	0	-103	7817.46	1	1	1	-0.003	0.003
10/12/09 02:44:06	60.037	3700.708	350	-223.015732	16	481.5	10	0	-103	7817.79	1	1	1	0.001	0.001
10/12/09 02:44:08	60.034	3700.753	350	-223.015732	16	482	10	0	-103	7818.12	1	1	1	-0.003	0.003
10/12/09 02:44:10	60.033	3702.148	350	-223.015732	16	482.5	10	0	-103	7818.45	1	1	1	-0.001	0.001
10/12/09 02:44:12	60.032	3705.213	350	-223.015732	16	483	10	0	-103	7818.78	1	1	1	-0.001	0.001
10/12/09 02:44:14	60.031	3707.521	350	-223.015732	16	483.5	10	0	-103	7819.11	1	1	1	-0.001	0.001
10/12/09 02:44:16	60.033	3707.287	350	-223.015732	16	484	10	0	-103	7819.44	1	1	1	0.002	0.002
10/12/09 02:44:18	60.027	3706.988	350	-223.015732	16	484.5	10	0	-103	7819.77	1	1	1	-0.006	0.006
10/12/09 02:44:20	60.031	3707.34	350	-223.015732	16	485	10	0	-103	7820.1	1	1	1	0.004	0.004
10/12/09 02:44:22	60.032	3707.917	350	-223.015732	16	485.5	10	0	-103	7820.43	1	1	1	0.001	0.001
10/12/09 02:44:24	60.031	3707.384	350	-223.015732	16	486	10	0	-103	7820.76	1	1	1	-0.001	0.001
10/12/09 02:44:26	60.031	3706.857	350	-223.015732	16	486.5	10	0	-103	7821.09	1	1	1	0.000	0.000
10/12/09 02:44:28	60.033	3707.615	350	-223.015732	16	487	10	0	-103	7821.42	1		1	0.002	0.002
10/12/09 02:44:30	60.039	3706.823	350	-223.015732	16	487.5	10	0	-103	7821.75	1	1	1	0.006	0.006
10/12/09 02:44:32	60.039	3703.746	350	-223.015732	16	488	10	0	-103	7822.08	1	1	1	0.000	0.000
10/12/09 02:44:34	60.038	3701.582	350	-223.015732	16	488.5	10	0	-103	7822.41	1	1	1	-0.001	0.001
10/12/09 02:44:36	60.037	3700.847	350	-223.015732	16	489	10	0	-103	7822.74	1	1	1	-0.001	0.001
10/12/09 02:44:38	60.035	3701.208	350	-223.015732	16	489.5	10	0	-103	7823.07	1	1	1	-0.002	0.002
10/12/09 02:44:40	60.037	3702.212	350	-223.015732	16	490	10	0	-103	7823.4	1	1	1	0.002	0.002
10/12/09 02:44:42	60.04	3701.686	350	-223.015732	16	490.5	10	0	-103	7823.73	1	1	1	0.003	0.003
10/12/09 02:44:44	60.042	3700.397	350	-223.015732	16	491	10	0	-103	7824.06	1	1	1	0.002	0.002
10/12/09 02:44:46	60.035	3699.69	350	-223.015732	16	491.5	10	0	-103	7824.39	1	1	1	-0.007	0.007
10/12/09 02:44:48	60.036	3700.366	350	-223.015732	16	492	10	0	-103	7824.72	1	1		0.001	0.001
10/12/09 02:44:50	60.04	3700.827	350	-223.015732	16	492.5	10	0	-103	7825.05	1	1	1	0.004	0.004
10/12/09 02:44:52	60.045	3700.662	350	-223.015732	16	493	10	0	-103	7825.38	1	1	1	0.005	0.005
10/12/09 02:44:54	60.045	3696.935	350	-223.015732	16	493.5	10	0	-103	7825.71	1	1	1	0.000	0.000

10/12/09 02:44:56	60.048	3695.688	350	-223.015732	16	494	10	0	-103	7826.04	1	1	1	0.003	0.003
10/12/09 02:44:58	60.042	3695.819	350	-223.015732	16	494.5	10	0	-103	7826.37	1	1	1	-0.006	0.006
10/12/09 02:45:00	60.044	3693.824	350	-223.015732	16	495	10	0	-103	7826.7	1	1	1	0.002	0.002
10/12/09 02:45:02	60.044	3694.799	350	-223.015732	16	495.5	10	0	-103	7827.03	1	1	1	0.000	0.000
10/12/09 02:45:04	60.044	3696.897	350	-223.015732	16	496	10	0	-103	7827.36	1	1	1	0.000	0.000
10/12/09 02:45:06	60.041	3696.023	350	-223.015732	16	496.5	10	0	-103	7827.69	1	1	1	-0.003	0.003
10/12/09 02:45:08	60.04	3697.502	350	-223.015732	16	497	10	0	-103	7828.02	1	1	1	-0.001	0.001
10/12/09 02:45:10	60.04	3698.424	350	-223.015732	16	497.5	10	0	-103	7828.35	1	1	1	0.000	0.000
10/12/09 02:45:12	60.045	3699.427	350	-223.015732	16	498	10	0	-103	7828.68	1	1	1	0.005	0.005
10/12/09 02:45:14	60.044	3700.177	350	-223.015732	16	498.5	10	0	-103	7829.01	1	1	1	-0.001	0.001
10/12/09 02:45:16	60.042	3699.806	350	-223.015732	16	499	10	0	-103	7829.34	1	1	1	-0.002	0.002
10/12/09 02:45:18	60.039	3697.577	350	-223.015732	16	499.5	10	0	-103	7829.67	1	1	1	-0.003	0.003
10/12/09 02:45:20	60.042	3697.681	350	-223.015732	16	500	10	0	-103	7830	1	1	1	0.003	0.003
10/12/09 02:45:22	60.042	3698.507	350	-223.015732	16	500.5	10	0	-103	7830.33	1	1	1	0.000	0.000
10/12/09 02:45:24	60.041	3698.359	350	-223.015732	16	501	10	0	-103	7830.66	1	1	1	-0.001	0.001
10/12/09 02:45:26	60.038	3698.466	350	-223.015732	16	501.5	10	0	-103	7830.99	1	1	1	-0.003	0.003
10/12/09 02:45:28	60.036	3699.077	350	-223.015732	16	502	10	0	-103	7831.32	1	1	1	-0.002	0.002
10/12/09 02:45:30	60.037	3700.262	350	-223.015732	16	502.5	10	0	-103	7831.65	1	1	1	0.001	0.001
10/12/09 02:45:32	60.039	3701.592	350	-223.015732	16	503	10	0	-103	7831.98	1	1	1	0.002	0.002
10/12/09 02:45:34	60.038	3700.902	350	-223.015732	16	503.5	10	0	-103	7832.31	1	1	1	-0.001	0.001
10/12/09 02:45:36	60.04	3700.143	350	-223.015732	16	504	10	0	-103	7832.64	1	1	1	0.002	0.002
10/12/09 02:45:38	60.039	3700.27	350	-223.015732	16	504.5	10	0	-103	7832.97	1	1	1	-0.001	0.001
10/12/09 02:45:40	60.037	3701.139	350	-223.015732	16	505	10	0	-103	7833.3	1	1	1	-0.002	0.002
10/12/09 02:45:42	60.038	3701.586	350	-223.015732	16	505.5	10	0	-103	7833.63	1	1	1	0.001	0.001
10/12/09 02:45:44	60.039	3700.264	350	-223.015732	16	506	10	0	-103	7833.96	1	1	1	0.001	0.001
10/12/09 02:45:46	60.04	3699.458	350	-223.015732	16	506.5	10	0	-103	7834.29	1	1	1	0.001	0.001
10/12/09 02:45:48	60.037	3699.721	350	-223.015732	16	507	10	0	-103	7834.62	1	1	1	-0.003	0.003
10/12/09 02:45:50	60.037	3700.458	350	-223.015732	16	507.5	10	0	-103	7834.95	1	1	1	0.000	0.000
10/12/09 02:45:52	60.037	3699.505	350	-223.015732	16	508	10	0	-103	7835.28	1	1	1	0.000	0.000
10/12/09 02:45:54	60.039	3698.794	350	-223.015732	16	508.5	10	0	-103	7835.61	1	1	1	0.002	0.002
10/12/09 02:45:56	60.038	3699.216	350	-223.015732	16	509	10	0	-103	7835.94	1	1	1	-0.001	0.001
10/12/09 02:45:58	60.036	3699.4	350	-223.015732	16	509.5	10	0	-103	7836.27	1	1	1	-0.002	0.002
10/12/09 02:46:00	60.035	3700.661	350	-223.015732	16	510	10	0	-103	7836.6	1	1	1	-0.001	0.001
10/12/09 02:46:02	60.033	3702.173	350	-223.015732	16	510.5	10	0	-103	7836.93	1	1	1	-0.002	0.002
10/12/09 02:46:04	60.031	3702.968	350	-223.015732	16	511	10	0	-103	7837.26	1	1	1	-0.002	0.002
10/12/09 02:46:06	60.03	3705.195	350	-223.015732	16	511.5	10	0	-103	7837.59	1	1	1	-0.001	0.001
10/12/09 02:46:08	60.032	3704.952	350	-223.015732	16	512	10	0	-103	7837.92	1	1	1	0.002	0.002
10/12/09 02:46:10	60.032	3705.775	350	-223.015732	16	512.5	10	0	-103	7838.25	1	1	1	0.000	0.000
10/12/09 02:46:12	60.037	3705.621	350	-223.015732	16	513	10	0	-103	7838.58	1	1	1	0.005	0.005
10/12/09 02:46:14	60.042	3703.744	350	-223.015732	16	513.5	10	0	-103	7838.91	1	1	1	0.005	0.005
10/12/09 02:46:16	60.041	3701.981	350	-223.015732	16	514	10	0	-103	7839.24	1	1	1	-0.001	0.001
10/12/09 02:46:18	60.036	3700.756	350	-223.015732	16	514.5	10	0	-103	7839.57	1	1	1	-0.005	0.005
10/12/09 02:46:20	60.031	3700.747	350	-223.015732	16	515	10	0	-103	7839.9	1	1	1	-0.005	0.005
10/12/09 02:46:22	60.032	3702.213	350	-223.015732	16	515.5	10	0	-103	7840.23	1	1	1	0.001	0.001
10/12/09 02:46:24	60.031	3705.059	350	-223.015732	16	516	10	0	-103	7840.56	1	1	1	-0.001	0.001
10/12/09 02:46:26	60.034	3705.514	350	-223.015732	16	516.5	10	0	-103	7840.89	1	1	1	0.003	0.003
10/12/09 02:46:28	60.034	3704.449	350	-223.015732	16	517	10	0	-103	7841.22	1	1	1	0.000	0.000
10/12/09 02:46:30	60.032	3703.831	350	-223.015732	16	517.5	10	0	-103	7841.55	1	1	1	-0.002	0.002
10/12/09 02:46:32	60.038	3703.62	350	-223.015732	16	518	10	0	-103	7841.88	1	1	1	0.006	0.006

10/12/09 02:46:34	60.043	3702.795	350	-223.015732	16	518.5	10	0	-103	7842.21	1	1	1	0.005	0.005
10/12/09 02:46:36	60.044	3701.432	350	-223.015732	16	519	10	0	-103	7842.54	1	1	1	0.001	0.001
10/12/09 02:46:38	60.042	3697.38	350	-223.015732	16	519.5	10	0	-103	7842.87	1	1	1	-0.002	0.002
10/12/09 02:46:40	60.045	3696.25	350	-223.015732	16	520	10	0	-103	7843.2	1	1	1	0.003	0.003
10/12/09 02:46:42	60.04	3696.302	350	-223.015732	16	520.5	10	0	-103	7843.53	1	1	1	-0.005	0.005
10/12/09 02:46:44	60.04	3693.518	350	-223.015732	16	521	10	0	-103	7843.86	1	1	1	0.000	0.000
10/12/09 02:46:46	60.043	3693.577	350	-223.015732	16	521.5	10	0	-103	7844.19	1	1	1	0.003	0.003
10/12/09 02:46:48	60.043	3695.197	350	-223.015732	16	522	10	0	-103	7844.52	1	1	1	0.000	0.000
10/12/09 02:46:50	60.041	3695.186	350	-223.015732	16	522.5	10	0	-103	7844.85	1	1	1	-0.002	0.002
10/12/09 02:46:52	60.04	3693.786	350	-223.015732	16	523	10	0	-103	7845.18	1	1	1	-0.001	0.001
10/12/09 02:46:54	60.038	3694.753	350	-223.015732	16	523.5	10	0	-103	7845.51	1	1	1	-0.002	0.002
10/12/09 02:46:56	60.043	3694.926	350	-223.015732	16	524	10	0	-103	7845.84	1	1	1	0.005	0.005
10/12/09 02:46:58	60.044	3694.938	350	-223.015732	16	524.5	10	0	-103	7846.17	1	1	1	0.001	0.001
10/12/09 02:47:00	60.042	3694.159	350	-223.015732	16	525	10	0	-103	7846.5	1	1	1	-0.002	0.002
10/12/09 02:47:02	60.036	3691.33	350	-223.015732	16	525.5	10	0	-103	7846.83	1	1	1	-0.006	0.006
10/12/09 02:47:04	60.043	3692.686	350	-223.015732	16	526	10	0	-103	7847.16	1	1	1	0.007	0.007
10/12/09 02:47:06	60.041	3693.238	350	-223.015732	16	526.5	10	0	-103	7847.49	1	1	1	-0.002	0.002
10/12/09 02:47:08	60.042	3693.39	350	-223.015732	16	527	10	0	-103	7847.82	1	1	1	0.001	0.001
10/12/09 02:47:10	60.043	3692.357	350	-223.015732	16	527.5	10	0	-103	7848.15	1	1	1	0.001	0.001
10/12/09 02:47:12	60.043	3690.951	350	-223.015732	16	528	10	0	-103	7848.48	1	1	1	0.000	0.000
10/12/09 02:47:14	60.036	3690.836	350	-223.015732	16	528.5	10	0	-103	7848.81	1	1	1	-0.007	0.007
10/12/09 02:47:16	60.039	3692.042	350	-223.015732	16	529	10	0	-103	7849.14	1	1	1	0.003	0.003
10/12/09 02:47:18	60.039	3693.114	350	-223.015732	16	529.5	10	0	-103	7849.47	1	1	1	0.000	0.000
10/12/09 02:47:20	60.037	3694.117	350	-223.015732	16	530	10	0	-103	7849.8	1	1	1	-0.002	0.002
10/12/09 02:47:22	60.034	3695.258	350	-223.015732	16	530.5	10	0	-103	7850.13	1	1	1	-0.003	0.003
10/12/09 02:47:24	60.035	3695.581	350	-223.015732	16	531	10	0	-103	7850.46	1	1	1	0.001	0.001
10/12/09 02:47:26	60.035	3695.949	350	-223.015732	16	531.5	10	0	-103	7850.79	1	1	1	0.000	0.000
10/12/09 02:47:28	60.035	3695.491	350	-223.015732	16	532	10	0	-103	7851.12	1	1	1	0.000	0.000
10/12/09 02:47:30	60.036	3696.305	350	-223.015732	16	532.5	10	0	-103	7851.45	1	1	1	0.001	0.001
10/12/09 02:47:32	60.03	3696.486	350	-223.015732	16	533	10	0	-103	7851.78	1	1	1	-0.006	0.006
10/12/09 02:47:34	60.03	3697.336	350	-223.015732	16	533.5	10	0	-103	7852.11	1	1	1	0.000	0.000
10/12/09 02:47:36	60.03	3699.171	350	-223.015732	16	534	10	0	-103	7852.44	1	1	1	0.000	0.000
10/12/09 02:47:38	60.031	3699.357	350	-223.015732	16	534.5	10	0	-103	7852.77	1	1	1	0.001	0.001
10/12/09 02:47:40	60.031	3699.251	350	-223.015732	16	535	10	0	-103	7853.1	1	1	1	0.000	0.000
10/12/09 02:47:42	60.032	3699.117	350	-223.015732	16	535.5	10	0	-103	7853.43	1	1	1	0.001	0.001
10/12/09 02:47:44	60.031	3699.105	350	-223.015732	16	536	10	0	-103	7853.76	1	1	1	-0.001	0.001
10/12/09 02:47:46	60.032	3699.126	350	-223.015732	16	536.5	10	0	-103	7854.09	1	1	1	0.001	0.001
10/12/09 02:47:48	60.032	3698.954	350	-223.015732	16	537	10	0	-103	7854.42	1	1	1	0.000	0.000
10/12/09 02:47:50	60.032	3698.136	350	-223.015732	16	537.5	10	0	-103	7854.75	1	1	1	0.000	0.000
10/12/09 02:47:52	60.033	3698.277	350	-223.015732	16	538	10	0	-103	7855.08	1	1	1	0.001	0.001
10/12/09 02:47:54	60.037	3697.412	350	-223.015732	16	538.5	10	0	-103	7855.41	1	1	1	0.004	0.004
10/12/09 02:47:56	60.04	3695.94	350	-223.015732	16	539	10	0	-103	7855.74	1	1	1	0.003	0.003
10/12/09 02:47:58	60.039	3693.736	350	-223.015732	16	539.5	10	0	-103	7856.07	1	1	1	-0.001	0.001
10/12/09 02:48:00	60.042	3693.224	350	-223.015732	16	540	10	0	-103	7856.4	1	1	1	0.003	0.003
10/12/09 02:48:02	60.036	3691.759	350	-223.015732	16	540.5	10	0	-103	7856.73	1	1	1	-0.006	0.006
10/12/09 02:48:04	60.039	3691.919	350	-223.015732	16	541	10	0	-103	7857.06	1	1	1	0.003	0.003
10/12/09 02:48:06	60.041	3692.798	350	-223.015732	16	541.5	10	0	-103	7857.39	1	1	1	0.002	0.002
10/12/09 02:48:08	60.04	3691.582	350	-223.015732	16	542	10	0	-103	7857.72	1	1	1	-0.001	0.001
10/12/09 02:48:10	60.035	3692.374	350	-223.015732	16	542.5	10	0	-103	7858.05	1	1	1	-0.005	0.005

10/12/09 02:48:12	60.036	3693.302	350	-223.015732	16	543	10	0	-103	7858.38	1	1	1	0.001	0.001
10/12/09 02:48:14	60.038	3694.71	350	-223.015732	16	543.5	10	0	-103	7858.71	1	1	1	0.002	0.002
10/12/09 02:48:16	60.037	3694.331	350	-223.015732	16	544	10	0	-103	7859.04	1	1	1	-0.001	0.001
10/12/09 02:48:18	60.041	3693.815	350	-223.015732	16	544.5	10	0	-103	7859.37	1	1	1	0.004	0.004
10/12/09 02:48:20	60.04	3693.617	350	-223.015732	16	545	10	0	-103	7859.7	1	1	1	-0.001	0.001
10/12/09 02:48:22	60.036	3694.324	350	-223.015732	16	545.5	10	0	-103	7860.03	1	1	1	-0.004	0.004
10/12/09 02:48:24	60.033	3694.27	350	-223.015732	16	546	10	0	-103	7860.36	1	1	1	-0.003	0.003
10/12/09 02:48:26	60.034	3694.66	350	-223.015732	16	546.5	10	0	-103	7860.69	1	1	1	0.001	0.001
10/12/09 02:48:28	60.038	3693.748	350	-223.015732	16	547	10	0	-103	7861.02	1	1	1	0.004	0.004
10/12/09 02:48:30	60.04	3692.532	350	-223.015732	16	547.5	10	0	-103	7861.35	1	1	1	0.002	0.002
10/12/09 02:48:32	60.041	3691.445	350	-223.015732	16	548	10	0	-103	7861.68	1	1	1	0.001	0.001
10/12/09 02:48:34	60.037	3691.012	350	-223.015732	16	548.5	10	0	-103	7862.01	1	1	1	-0.004	0.004
10/12/09 02:48:36	60.037	3691.799	350	-223.015732	16	549	10	0	-103	7862.34	1	1	1	0.000	0.000
10/12/09 02:48:38	60.036	3693.077	350	-223.015732	16	549.5	10	0	-103	7862.67	1	1	1	-0.001	0.001
10/12/09 02:48:40	60.037	3693.727	350	-223.015732	16	550	10	0	-103	7863	1	1	1	0.001	0.001
10/12/09 02:48:42	60.038	3693.117	350	-223.015732	16	550.5	10	0	-103	7863.33	1	1	1	0.001	0.001
10/12/09 02:48:44	60.039	3692.641	350	-223.015732	16	551	10	0	-103	7863.66	1	1	1	0.001	0.001
10/12/09 02:48:46	60.038	3688.159	350	-223.015732	16	551.5	10	0	-103	7863.99	1	1	1	-0.001	0.001
10/12/09 02:48:48	60.034	3689.02	350	-223.015732	16	552	10	0	-103	7864.32	1	1	1	-0.004	0.004
10/12/09 02:48:50	60.033	3688.208	350	-223.015732	16	552.5	10	0	-103	7864.65	1	1	1	-0.001	0.001
10/12/09 02:48:52	60.031	3690.092	350	-223.015732	16	553	10	0	-103	7864.98	1	1	1	-0.002	0.002
10/12/09 02:48:54	60.034	3693.172	350	-223.015732	16	553.5	10	0	-103	7865.31	1	1	1	0.003	0.003
10/12/09 02:48:56	60.029	3693.321	350	-223.015732	16	554	10	0	-103	7865.64	1	1	1	-0.005	0.005
10/12/09 02:48:58	60.029	3694.593	350	-223.015732	16	554.5	10	0	-103	7865.97	1	1	1	0.000	0.000
10/12/09 02:49:00	60.031	3695.225	350	-223.015732	16	555	10	0	-103	7866.3	1	1	1	0.002	0.002
10/12/09 02:49:02	60.03	3694.609	350	-223.015732	16	555.5	10	0	-103	7866.63	1	1	1	-0.001	0.001
10/12/09 02:49:04	60.03	3693.412	350	-223.015732	16	556	10	0	-103	7866.96	1	1	1	0.000	0.000
10/12/09 02:49:06	60.026	3693.509	350	-223.015732	16	556.5	10	0	-103	7867.29	1	1	1	-0.004	0.004
10/12/09 02:49:08	60.022	3696.026	350	-223.015732	16	557	10	0	-103	7867.62	1	1	1	-0.004	0.004
10/12/09 02:49:10	60.021	3698.012	350	-223.015732	16	557.5	10	0	-103	7867.95	1	1	1	-0.001	0.001
10/12/09 02:49:12	60.024	3699.062	350	-223.015732	16	558	10	0	-103	7868.28	1	1	1	0.003	0.003
10/12/09 02:49:14	60.023	3699.414	350	-223.015732	16	558.5	10	0	-103	7868.61	1	1	1	-0.001	0.001
10/12/09 02:49:16	60.02	3698.935	350	-223.015732	16	559	10	0	-103	7868.94	1	1	1	-0.003	0.003
10/12/09 02:49:18	60.021	3700.084	350	-223.015732	16	559.5	10	0	-103	7869.27	1	1	1	0.001	0.001
10/12/09 02:49:20	60.023	3700.544	350	-223.015732	16	560	10	0	-103	7869.6	1	1	1	0.002	0.002
10/12/09 02:49:22	60.025	3700.486	350	-223.015732	16	560.5	10	0	-103	7869.93	1	1	1	0.002	0.002
10/12/09 02:49:24	60.026	3698.596	350	-223.015732	16	561	10	0	-103	7870.26	1	1	1	0.001	0.001
10/12/09 02:49:26	60.026	3697.961	350	-223.015732	16	561.5	10	0	-103	7870.59	1	1	1	0.000	0.000
10/12/09 02:49:28	60.025	3699.914	350	-223.015732	16	562	10	0	-103	7870.92	1	1	1	-0.001	0.001
10/12/09 02:49:30	60.024	3700.802	350	-223.015732	16	562.5	10	0	-103	7871.25	1	1	1	-0.001	0.001
10/12/09 02:49:32	60.024	3701.301	350	-223.015732	16	563	10	0	-103	7871.58	1	1	1	0.000	0.000
10/12/09 02:49:34	60.025	3701.45	350	-223.015732	16	563.5	10	0	-103	7871.91	1	1	1	0.001	0.001
10/12/09 02:49:36	60.023	3701.349	350	-223.015732	16	564	10	0	-103	7872.24	1	1	1	-0.002	0.002
10/12/09 02:49:38	60.023	3701.094	350	-223.015732	16	564.5	10	0	-103	7872.57	1	1	1	0.000	0.000
10/12/09 02:49:40	60.022	3701.702	350	-223.015732	16	565	10	0	-103	7872.9	1	1	1	-0.001	0.001
10/12/09 02:49:42	60.026	3702.07	350	-223.015732	16	565.5	10	0	-103	7873.23	1	1	1	0.004	0.004
10/12/09 02:49:44	60.029	3701.965	350	-223.015732	16	566	10	0	-103	7873.56	1	1	1	0.003	0.003
10/12/09 02:49:46	60.026	3700.269	350	-223.015732	16	566.5	10	0	-103	7873.89	1	1	1	-0.003	0.003
10/12/09 02:49:48	60.024	3700.241	350	-223.015732	16	567	10	0	-103	7874.22	1	1	1	-0.002	0.002

10/12/09 02:49:50	60.021	3701.09	350	-223.015732	16	567.5	10	0	-103	7874.55	1	1	1	-0.003	0.003
10/12/09 02:49:52	60.025	3701.268	350	-223.015732	16	568	10	0	-103	7874.88	1	1	1	0.004	0.004
10/12/09 02:49:54	60.025	3701.205	350	-223.015732	16	568.5	10	0	-103	7875.21	1	1	1	0.000	0.000
10/12/09 02:49:56	60.025	3700.587	350	-223.015732	16	569	10	0	-103	7875.54	1	1	1	0.000	0.000
10/12/09 02:49:58	60.023	3700.532	350	-223.015732	16	569.5	10	0	-103	7875.87	1	1	1	-0.002	0.002
10/12/09 02:50:00	60.026	3700.177	350	-223.015732	16	570	10	0	-103	7876.2	1	1	1	0.003	0.003
10/12/09 02:50:02	60.024	3700.295	350	-223.015732	16	570.5	10	0	-103	7876.53	1	1	1	-0.002	0.002
10/12/09 02:50:04	60.022	3700.277	350	-223.015732	16	571	10	0	-103	7876.86	1	1	1	-0.002	0.002
10/12/09 02:50:06	60.023	3700.841	350	-223.015732	16	571.5	10	0	-103	7877.19	1	1	1	0.001	0.001
10/12/09 02:50:08	60.026	3700.863	350	-223.015732	16	572	10	0	-103	7877.52	1	1	1	0.003	0.003
10/12/09 02:50:10	60.025	3700.26	350	-223.015732	16	572.5	10	0	-103	7877.85	1	1	1	-0.001	0.001
10/12/09 02:50:12	60.02	3700.052	350	-223.015732	16	573	10	0	-103	7878.18	1	1	1	-0.005	0.005
10/12/09 02:50:14	60.02	3699.926	350	-223.015732	16	573.5	10	0	-103	7878.51	1	1	1	0.000	0.000
10/12/09 02:50:16	60.019	3700.965	350	-223.015732	16	574	10	0	-103	7878.84	1	1	1	-0.001	0.001
10/12/09 02:50:18	60.015	3702.581	350	-223.015732	16	574.5	10	0	-103	7879.17	1	1	1	-0.004	0.004
10/12/09 02:50:20	60.016	3703.516	350	-223.015732	16	575	10	0	-103	7879.5	1	1	1	0.001	0.001
10/12/09 02:50:22	60.017	3703.824	350	-223.015732	16	575.5	10	0	-103	7879.83	1	1	1	0.001	0.001
10/12/09 02:50:24	60.015	3703.672	350	-223.015732	16	576	10	0	-103	7880.16	1	1	1	-0.002	0.002
10/12/09 02:50:26	60.015	3703.689	350	-223.015732	16	576.5	10	0	-103	7880.49	1	1	1	0.000	0.000
10/12/09 02:50:28	60.017	3703.003	350	-223.015732	16	577	10	0	-103	7880.82	1	1	1	0.002	0.002
10/12/09 02:50:30	60.017	3702.921	350	-223.015732	16	577.5	10	0	-103	7881.15	1	1	1	0.000	0.000
10/12/09 02:50:32	60.012	3703	350	-223.015732	16	578	10	0	-103	7881.48	1	1	1	-0.005	0.005
10/12/09 02:50:34	60.01	3703.167	350	-223.015732	16	578.5	10	0	-103	7881.81	1	1	1	-0.002	0.002
10/12/09 02:50:36	60.008	3703.918	350	-223.015732	16	579	10	0	-103	7882.14	1	1	1	-0.002	0.002
10/12/09 02:50:38	60.002	3703.616	350	-223.015732	16	579.5	10	0	-103	7882.47	1	1	1	-0.006	0.006
10/12/09 02:50:40	59.999	3703.775	350	-223.015732	16	580	10	0	-103	7882.8	1	0	1	-0.003	0.003
10/12/09 02:50:42	59.999	3703.751	350	-223.015732	16	580.5	10	0	-103	7883.13	1	0	1	0.000	0.000
10/12/09 02:50:44	60.002	3701.534	350	-223.015732	16	581	10	0	-103	7883.46	1	1	1	0.003	0.003
10/12/09 02:50:46	60.003	3700.617	350	-223.015732	16	581.5	10	0	-103	7883.79	1	1	1	0.001	0.001
10/12/09 02:50:48	60.004	3700.88	350	-223.015732	16	582	10	0	-103	7884.12	1	1	1	0.001	0.001
10/12/09 02:50:50	60.001	3700.625	350	-223.015732	16	582.5	10	0	-103	7884.45	1	1	1	-0.003	0.003
10/12/09 02:50:52	59.996	3701.389	350	-223.015732	16	583	10	0	-103	7884.78	1	0	1	-0.005	0.005
10/12/09 02:50:54	59.993	3701.737	350	-223.015732	16	583.5	10	0	-103	7885.11	1	0	1	-0.003	0.003
10/12/09 02:50:56	59.992	3700.671	350	-223.015732	16	584	10	0	-103	7885.44	1	0	1	-0.001	0.001
10/12/09 02:50:58	59.989	3700.826	350	-223.015732	16	584.5	10	0	-103	7885.77	1	0	1	-0.003	0.003
10/12/09 02:51:00	59.987	3700.977	350	-223.015732	16	585	10	0	-103	7886.1	1	0	1	-0.002	0.002
10/12/09 02:51:02	59.985	3700.7	350	-223.015732	16	585.5	10	0	-103	7886.43	1	0	1	-0.002	0.002
10/12/09 02:51:04	59.985	3699.854	350	-223.015732	16	586	10	0	-103	7888.76	1	0	1	0.000	0.000
10/12/09 02:51:06	59.986	3700.237	350	-223.015732	16	586.5	10	0	-103	7888.09	1	0	1	0.001	0.001
10/12/09 02:51:08	59.984	3700.342	350	-223.015732	16	587	10	0	-103	7887.42	1	0	1	-0.002	0.002
10/12/09 02:51:10	59.981	3700.77	350	-223.015732	16	587.5	10	0	-103	7887.75	1	0	1	-0.003	0.003
10/12/09 02:51:12	59.98	3700.789	350	-223.015732	16	588	10	0	-103	7888.08	1	0	1	-0.001	0.001
10/12/09 02:51:14	59.977	3701.625	350	-223.015732	16	588.5	10	0	-103	7888.41	1	0	1	-0.003	0.003
10/12/09 02:51:16	59.975	3703.166	350	-223.015732	16	589	10	0	-103	7888.74	1	0	1	-0.002	0.002
10/12/09 02:51:18	59.976	3704.187	350	-223.015732	16	589.5	10	0	-103	7889.07	1	0	1	0.001	0.001
10/12/09 02:51:20	59.972	3704.785	350	-223.015732	16	590	10	0	-103	7889.4	1	0	1	-0.004	0.004
10/12/09 02:51:22	59.974	3705.811	350	-223.015732	16	590.5	10	0	-103	7889.73	1	0	1	0.002	0.002
10/12/09 02:51:24	59.977	3706.958	350	-223.015732	16	591	10	0	-103	7890.06	1	0	1	0.003	0.003
10/12/09 02:51:26	59.975	3706.688	350	-223.015732	16	591.5	10	0	-103	7890.39	1	0	1	-0.002	0.002

10/12/09 02:51:28	59.973	3706.543	350	-223.015732	16	592	10	0	-103	7890.72	1	0	1	-0.002	0.002
10/12/09 02:51:30	59.971	3706.257	350	-223.015732	16	592.5	10	0	-103	7891.05	1	0	1	-0.002	0.002
10/12/09 02:51:32	59.971	3707.027	350	-223.015732	16	593	10	0	-103	7891.38	1	0	1	0.000	0.000
10/12/09 02:51:34	59.976	3710.118	350	-223.015732	16	593.5	10	0	-103	7891.71	1	0	1	0.005	0.005
10/12/09 02:51:36	59.979	3710.531	350	-223.015732	16	594	10	0	-103	7892.04	1	0	1	0.003	0.003
10/12/09 02:51:38	59.98	3708.701	350	-223.015732	16	594.5	10	0	-103	7892.37	1	0	1	0.001	0.001
10/12/09 02:51:40	59.979	3708.018	350	-223.015732	16	595	10	0	-103	7892.7	1	0	1	-0.001	0.001
10/12/09 02:51:42	59.982	3706.942	350	-223.015732	16	595.5	10	0	-103	7893.03	1	0	1	0.003	0.003
10/12/09 02:51:44	59.982	3706.343	350	-223.015732	16	596	10	0	-103	7893.36	1	0	1	0.000	0.000
10/12/09 02:51:46	59.983	3706.125	350	-223.015732	16	596.5	10	0	-103	7893.69	1	0	1	0.001	0.001
10/12/09 02:51:48	59.981	3706.311	350	-223.015732	16	597	10	0	-103	7894.02	1	0	1	-0.002	0.002
10/12/09 02:51:50	59.979	3706.119	350	-223.015732	16	597.5	10	0	-103	7894.35	1	0	1	-0.002	0.002
10/12/09 02:51:52	59.978	3706.19	350	-223.015732	16	598	10	0	-103	7894.68	1	0	1	-0.001	0.001
10/12/09 02:51:54	59.976	3707.721	350	-223.015732	16	598.5	10	0	-103	7895.01	1	0	1	-0.002	0.002
10/12/09 02:51:56	59.978	3709.409	350	-223.015732	16	599	10	0	-103	7895.34	1	0	1	0.002	0.002
10/12/09 02:51:58	59.977	3708.971	350	-223.015732	16	599.5	10	0	-103	7895.67	1	0	1	-0.001	0.001
10/12/09 02:52:00	59.976	3708.531	350	-223.015732	16	600	10	0	-103	7896	1	0	1	-0.001	0.001
10/12/09 02:52:02	59.978	3708.071	350	-223.015732	16	600.5	10	0	-103	7896.33	1	0	1	0.002	0.002
10/12/09 02:52:04	59.975	3707.24	350	-223.015732	16	601	10	0	-103	7896.66	1	0	1	-0.003	0.003
10/12/09 02:52:06	59.971	3709.213	350	-223.015732	16	601.5	10	0	-103	7896.99	1	0	1	-0.004	0.004
10/12/09 02:52:08	59.97	3709.961	350	-223.015732	16	602	10	0	-103	7897.32	1	0	1	-0.001	0.001
10/12/09 02:52:10	59.97	3711.75	350	-223.015732	16	602.5	10	0	-103	7897.65	1	0	1	0.000	0.000
10/12/09 02:52:12	59.971	3711.98	350	-223.015732	16	603	10	0	-103	7897.98	1	0	1	0.001	0.001
10/12/09 02:52:14	59.99	3710.695	350	-223.015732	16	603.5	10	0	-103	7898.31	1	0	1	0.019	0.019
10/12/09 02:52:16	59.998	3707.867	350	-223.015732	16	604	10	0	-103	7898.64	1	0	1	0.008	0.008
10/12/09 02:52:18	59.999	3704.912	350	-223.015732	16	604.5	10	0	-103	7898.97	1	0	1	0.001	0.001
10/12/09 02:52:20	59.999	3705.639	350	-223.015732	16	605	10	0	-103	7899.3	1	0	1	0.000	0.000
10/12/09 02:52:22	59.998	3703.787	350	-223.015732	16	605.5	10	0	-103	7899.63	1	0	1	-0.001	0.001
10/12/09 02:52:24	59.999	3703.191	350	-223.015732	16	606	10	0	-103	7899.96	1	0	1	0.001	0.001
10/12/09 02:52:26	60.003	3702.071	350	-223.015732	16	606.5	10	0	-103	7900.29	1	1	1	0.004	0.004
10/12/09 02:52:28	60.005	3699.51	350	-223.015732	16	607	10	0	-103	7900.62	1	1	1	0.002	0.002
10/12/09 02:52:30	60.005	3698.658	350	-223.015732	16	607.5	10	0	-103	7900.95	1	1	1	0.000	0.000
10/12/09 02:52:32	60.01	3698.137	350	-223.015732	16	608	10	0	-103	7901.28	1	1	1	0.005	0.005
10/12/09 02:52:34	60.013	3697.882	350	-223.015732	16	608.5	10	0	-103	7901.61	1	1	1	0.003	0.003
10/12/09 02:52:36	60.02	3698.668	350	-223.015732	16	609	10	0	-103	7901.94	1	1	1	0.007	0.007
10/12/09 02:52:38	60.022	3698.604	350	-223.015732	16	609.5	10	0	-103	7902.27	1	1	1	0.002	0.002
10/12/09 02:52:40	60.024	3697.868	350	-223.015732	16	610	10	0	-103	7902.6	1	1	1	0.002	0.002
10/12/09 02:52:42	60.025	3694.672	350	-223.015732	16	610.5	10	0	-103	7902.93	1	1	1	0.001	0.001
10/12/09 02:52:44	60.025	3693.912	350	-223.015732	16	611	10	0	-103	7903.26	1	1	1	0.000	0.000
10/12/09 02:52:46	60.024	3693.418	350	-223.015732	16	611.5	10	0	-103	7903.59	1	1	1	-0.001	0.001
10/12/09 02:52:48	60.023	3688.301	350	-223.015732	16	612	10	0	-103	7903.92	1	1	1	-0.001	0.001
10/12/09 02:52:50	60.029	3688.021	350	-223.015732	16	612.5	10	0	-103	7904.25	1	1	1	0.006	0.006
10/12/09 02:52:52	60.029	3689.143	350	-223.015732	16	613	10	0	-103	7904.58	1	1	1	0.000	0.000
10/12/09 02:52:54	60.029	3688.237	350	-223.015732	16	613.5	10	0	-103	7904.91	1	1	1	0.000	0.000
10/12/09 02:52:56	60.028	3687.878	350	-223.015732	16	614	10	0	-103	7905.24	1	1	1	-0.001	0.001
10/12/09 02:52:58	60.028	3687.026	350	-223.015732	16	614.5	10	0	-103	7905.57	1	1	1	0.000	0.000
10/12/09 02:53:00	60.031	3686.683	350	-223.015732	16	615	10	0	-103	7905.9	1	1	1	0.003	0.003
10/12/09 02:53:02	60.032	3685.276	350	-223.015732	16	615.5	10	0	-103	7906.23		1	1	0.001	0.001
10/12/09 02:53:04	60.033	3685.576	350	-223.015732	16	616	10	0	-103	7906.56	1	1	1	0.001	0.001

10/12/09 02:53:06	60.031	3685.985	350	-223.015732	16	616.5	10	0	-103	7906.89	1	1	1	-0.002	0.002
10/12/09 02:53:08	60.03	3686.418	350	-223.015732	16	617	10	0	-103	7907.22	1	1	1	-0.001	0.001
10/12/09 02:53:10	60.022	3687.159	350	-223.015732	16	617.5	10	0	-103	7907.55	1	1	1	-0.008	0.008
10/12/09 02:53:12	60.021	3687.873	350	-223.015732	16	618	10	0	-103	7907.88	1	1	1	-0.001	0.001
10/12/09 02:53:14	60.019	3688.997	350	-223.015732	16	618.5	10	0	-103	7908.21	1	1	1	-0.002	0.002
10/12/09 02:53:16	60.017	3690.426	350	-223.015732	16	619	10	0	-103	7908.54	1	1	1	-0.002	0.002
10/12/09 02:53:18	60.017	3690.776	350	-223.015732	16	619.5	10	0	-103	7908.87	1	1	1	0.000	0.000
10/12/09 02:53:20	60.017	3692.715	350	-223.015732	16	620	10	0	-103	7909.2	1	1	1	0.000	0.000
10/12/09 02:53:22	60.016	3692.578	350	-223.015732	16	620.5	10	0	-103	7909.53	1	1	1	-0.001	0.001
10/12/09 02:53:24	60.015	3692.462	350	-223.015732	16	621	10	0	-103	7909.86	1	1	1	-0.001	0.001
10/12/09 02:53:26	60.015	3693.173	350	-223.015732	16	621.5	10	0	-103	7910.19	1	1	1	0.000	0.000
10/12/09 02:53:28	60.012	3693.249	350	-223.015732	16	622	10	0	-103	7910.52	1	1	1	-0.003	0.003
10/12/09 02:53:30	60.009	3693.743	350	-223.015732	16	622.5	10	0	-103	7910.85	1	1	1	-0.003	0.003
10/12/09 02:53:32	60.008	3695.124	350	-223.015732	16	623	10	0	-103	7911.18	1	1	1	-0.001	0.001
10/12/09 02:53:34	60.008	3694.681	350	-223.015732	16	623.5	10	0	-103	7911.51	1	1	1	0.000	0.000
10/12/09 02:53:36	60.005	3694.741	350	-223.015732	16	624	10	0	-103	7911.84	1	1	1	-0.003	0.003
10/12/09 02:53:38	60.005	3694.199	350	-223.015732	16	624.5	10	0	-103	7912.17	1	1	1	0.000	0.000
10/12/09 02:53:40	60.003	3693.75	350	-223.015732	16	625	10	0	-103	7912.5	1	1	1	-0.002	0.002
10/12/09 02:53:42	59.999	3693.624	350	-223.015732	16	625.5	10	0	-103	7912.83	1	0	1	-0.004	0.004
10/12/09 02:53:44	59.997	3692.806	350	-223.015732	16	626	10	0	-103	7913.16	1	0	1	-0.002	0.002
10/12/09 02:53:46	59.999	3691.15	350	-223.015732	16	626.5	10	0	-103	7913.49	1	0	1	0.002	0.002
10/12/09 02:53:48	60	3691.407	350	-223.015732	16	627	10	0	-103	7913.82	1	0	1	0.001	0.001
10/12/09 02:53:50	59.998	3691.077	350	-223.015732	16	627.5	10	0	-103	7914.15	1	0	1	-0.002	0.002
10/12/09 02:53:52	59.995	3690.588	350	-223.015732	16	628	10	0	-103	7914.48	1	0	1	-0.003	0.003
10/12/09 02:53:54	59.994	3689.797	350	-223.015732	16	628.5	10	0	-103	7914.81	1	0	1	-0.001	0.001
10/12/09 02:53:56	59.992	3688.483	350	-223.015732	16	629	10	0	-103	7915.14	1	0	1	-0.002	0.002
10/12/09 02:53:58	59.993	3689.445	350	-223.015732	16	629.5	10	0	-103	7915.47	1	0	1	0.001	0.001
10/12/09 02:54:00	59.988	3689.553	350	-223.015732	16	630	10	0	-103	7915.8	1	0	1	-0.005	0.005
10/12/09 02:54:02	59.985	3689.525	350	-223.015732	16	630.5	10	0	-103	7916.13	1	0	1	-0.003	0.003
10/12/09 02:54:04	59.986	3689.736	350	-223.015732	16	631	10	0	-103	7916.46	1	0	1	0.001	0.001
10/12/09 02:54:06	59.988	3688.853	350	-223.015732	16	631.5	10	0	-103	7916.79	1	0	1	0.002	0.002
10/12/09 02:54:08	59.988	3688.24	350	-223.015732	16	632	10	0	-103	7917.12	1	0	1	0.000	0.000
10/12/09 02:54:10	59.985	3687.494	350	-223.015732	16	632.5	10	0	-103	7917.45	1	0	1	-0.003	0.003
10/12/09 02:54:12	59.983	3687.475	350	-223.015732	16	633	10	0	-103	7917.78	1	0	1	-0.002	0.002
10/12/09 02:54:14	59.983	3686.707	350	-223.015732	16	633.5	10	0	-103	7918.11	1	0	1	0.000	0.000
10/12/09 02:54:16	59.985	3685.66	350	-223.015732	16	634	10	0	-103	7918.44	1	0	1	0.002	0.002
10/12/09 02:54:18	59.986	3684.51	350	-223.015732	16	634.5	10	0	-103	7918.77	1	0	1	0.001	0.001
10/12/09 02:54:20	59.987	3684.333	350	-223.015732	16	635	10	0	-103	7919.1	1	0	1	0.001	0.001
10/12/09 02:54:22	59.99	3683.911	350	-223.015732	16	635.5	10	0	-103	7919.43	1	0	1	0.003	0.003
10/12/09 02:54:24	59.986	3683.735	350	-223.015732	16	636	10	0	-103	7919.76	1	0	1	-0.004	0.004
10/12/09 02:54:26	59.985	3684.208	350	-223.015732	16	636.5	10	0	-103	7920.09	1	0	1	-0.001	0.001
10/12/09 02:54:28	59.984	3683.811	350	-223.015732	16	637	10	0	-103	7920.42	1	0	1	-0.001	0.001
10/12/09 02:54:30	59.983	3683.473	350	-223.015732	16	637.5	10	0	-103	7920.75	1	0	1	-0.001	0.001
10/12/09 02:54:32	59.982	3684.258	350	-223.015732	16	638	10	0	-103	7921.08	1	0	1	-0.001	0.001
10/12/09 02:54:34	59.982	3684.884	350	-223.015732	16	638.5	10	0	-103	7921.41	1		1	0.000	0.000
10/12/09 02:54:36	59.98	3685.092	350	-223.015732	16	639	10	0	-103	7921.74	1	0	1	-0.002	0.002
10/12/09 02:54:38	59.978	3685.654	350	-223.015732	16	639.5	10	0	-103	7922.07	1	0	1	-0.002	0.002
10/12/09 02:54:40	59.977	3685.087	350	-223.015732	16	640	10	0	-103	7922.4	1	0	1	-0.001	0.001
10/12/09 02:54:42	59.975	3685.491	350	-223.015732	16	640.5	10	0	-103	7922.73	1	0	1	-0.002	0.002

10/12/09 02:54:44	59.973	3685.196	350	-223.015732	16	641	10	0	-103	7923.06	1	0	1	-0.002	0.002
10/12/09 02:54:46	59.975	3687.412	350	-223.015732	16	641.5	10	0	-103	7923.39	1	0	1	0.002	0.002
10/12/09 02:54:48	59.976	3688.417	350	-223.015732	16	642	10	0	-103	7923.72	1	0	1	0.001	0.001
10/12/09 02:54:50	59.976	3688.599	350	-223.015732	16	642.5	10	0	-103	7924.05	1	0	1	0.000	0.000
10/12/09 02:54:52	59.979	3687.848	350	-223.015732	16	643	10	0	-103	7924.38	1	0	1	0.003	0.003
10/12/09 02:54:54	59.982	3686.678	350	-223.015732	16	643.5	10	0	-103	7924.71	1	0	1	0.003	0.003
10/12/09 02:54:56	59.979	3685.782	350	-223.015732	16	644	10	0	-103	7925.04	1	0	1	-0.003	0.003
10/12/09 02:54:58	59.979	3684.89	350	-223.015732	16	644.5	10	0	-103	7925.37	1	0	1	0.000	0.000
10/12/09 02:55:00	59.977	3685.143	350	-223.015732	16	645	10	0	-103	7925.7	1	0	1	-0.002	0.002
10/12/09 02:55:02	59.977	3684.549	350	-223.015732	16	645.5	10	0	-103	7926.03	1	0	1	0.000	0.000
10/12/09 02:55:04	59.978	3684.093	350	-223.015732	16	646	10	0	-103	7926.36	1	0	1	0.001	0.001
10/12/09 02:55:06	59.978	3684.555	350	-223.015732	16	646.5	10	0	-103	7926.69	1	0	1	0.000	0.000
10/12/09 02:55:08	59.978	3682.814	350	-223.015732	16	647	10	0	-103	7927.02	1	0	1	0.000	0.000
10/12/09 02:55:10	59.979	3682.318	350	-223.015732	16	647.5	10	0	-103	7927.35	1	0	1	0.001	0.001
10/12/09 02:55:12	59.983	3682.366	350	-223.015732	16	648	10	0	-103	7927.68	1	0	1	0.004	0.004
10/12/09 02:55:14	59.981	3682.647	350	-223.015732	16	648.5	10	0	-103	7928.01	1	0	1	-0.002	0.002
10/12/09 02:55:16	59.98	3682.855	350	-223.015732	16	649	10	0	-103	7928.34	1	0	1	-0.001	0.001
10/12/09 02:55:18	59.978	3683.557	350	-223.015732	16	649.5	10	0	-103	7928.67	1	0	1	-0.002	0.002
10/12/09 02:55:20	59.979	3684.052	350	-223.015732	16	650	10	0	-103	7929	1	0	1	0.001	0.001
10/12/09 02:55:22	59.978	3684.318	350	-223.015732	16	650.5	10	0	-103	7929.33	1	0	1	-0.001	0.001
10/12/09 02:55:24	59.979	3686.049	350	-223.015732	16	651	10	0	-103	7929.66	1	0	1	0.001	0.001
10/12/09 02:55:26	59.983	3686.629	350	-223.015732	16	651.5	10	0	-103	7929.99	1	0	1	0.004	0.004
10/12/09 02:55:28	59.987	3685.286	350	-223.015732	16	652	10	0	-103	7930.32	1	0	1	0.004	0.004
10/12/09 02:55:30	59.99	3683.415	350	-223.015732	16	652.5	10	0	-103	7930.65	1	0	1	0.003	0.003
10/12/09 02:55:32	59.992	3682.416	350	-223.015732	16	653	10	0	-103	7930.98	1	0	1	0.002	0.002
10/12/09 02:55:34	59.993	3681.403	350	-223.015732	16	653.5	10	0	-103	7931.31	1	0	1	0.001	0.001
10/12/09 02:55:36	59.99	3679.012	350	-223.015732	16	654	10	0	-103	7931.64	1	0	1	-0.003	0.003
10/12/09 02:55:38	59.988	3679.436	350	-223.015732	16	654.5	10	0	-103	7931.97	1	0	1	-0.002	0.002
10/12/09 02:55:40	59.988	3671.761	350	-223.015732	16	655	10	0	-103	7932.3	1	0	1	0.000	0.000
10/12/09 02:55:42	59.99	3670.717	350	-223.015732	16	655.5	10	0	-103	7932.63	1	0	1	0.002	0.002
10/12/09 02:55:44	59.993	3670.159	350	-223.015732	16	656	10	0	-103	7932.96	1	0	1	0.003	0.003
10/12/09 02:55:46	59.994	3679	350	-223.015732	16	656.5	10	0	-103	7933.29	1	0	1	0.001	0.001
10/12/09 02:55:48	59.993	3680.176	350	-223.015732	16	657	10	0	-103	7933.62	1	0	1	-0.001	0.001
10/12/09 02:55:50	59.994	3681.799	350	-223.015732	16	657.5	10	0	-103	7933.95	1	0	1	0.001	0.001
10/12/09 02:55:52	59.994	3682.7	350	-223.015732	16	658	10	0	-103	7934.28	1	0	1	0.000	0.000
10/12/09 02:55:54	59.993	3684.116	350	-223.015732	16	658.5	10	0	-103	7934.61	1	0	1	-0.001	0.001
10/12/09 02:55:56	59.989	3685.03	350	-223.015732	16	659	10	0	-103	7934.94	1	0	1	-0.004	0.004
10/12/09 02:55:58	59.984	3684.878	350	-223.015732	16	659.5	10	0	-103	7935.27	1	0	1	-0.005	0.005
10/12/09 02:56:00	59.986	3684.165	350	-223.015732	16	660	10	0	-103	7935.6	1	0	1	0.002	0.002
10/12/09 02:56:02	59.985	3684.478	350	-223.015732	16	660.5	10	0	-103	7935.93	1	0	1	-0.001	0.001
10/12/09 02:56:04	59.988	3685.584	350	-223.015732	16	661	10	0	-103	7936.26	1	0	1	0.003	0.003
10/12/09 02:56:06	59.987	3685.148	350	-223.015732	16	661.5	10	0	-103	7936.59	1	0	1	-0.001	0.001
10/12/09 02:56:08	59.986	3684.587	350	-223.015732	16	662	10	0	-103	7936.92	1	0	1	-0.001	0.001
10/12/09 02:56:10	59.987	3684.976	350	-223.015732	16	662.5	10	0	-103	7937.25	1	0	1	0.001	0.001
10/12/09 02:56:12	59.985	3683.674	350	-223.015732	16	663	10	0	-103	7937.58	1	0	1	-0.002	0.002
10/12/09 02:56:14	59.982	3684.872	350	-223.015732	16	663.5	10	0	-103	7937.91	1	0	1	-0.003	0.003
10/12/09 02:56:16	59.981	3684.245	350	-223.015732	16	664	10	0	-103	7938.24	1	0	1	-0.001	0.001
10/12/09 02:56:18	59.982	3684.711	350	-223.015732	16	664.5	10	0	-103	7938.57	1	0	1	0.001	0.001
10/12/09 02:56:20	59.987	3685.589	350	-223.015732	16	665	10	0	-103	7938.9	1	0	1	0.005	0.005

10/12/09 02:56:22	59.992	3683.736	350	-223.015732	16	665.5	10	0	-103	7939.23	1	0	1	0.005	0.005
10/12/09 02:56:24	59.997	3682.579	350	-223.015732	16	666	10	0	-103	7939.56	1	0	1	0.005	0.005
10/12/09 02:56:26	60	3682.234	350	-223.015732	16	666.5	10	0	-103	7939.89	1	0	1	0.003	0.003
10/12/09 02:56:28	60.003	3682.138	350	-223.015732	16	667	10	0	-103	7940.22	1	1	1	0.003	0.003
10/12/09 02:56:30	60.003	3682.224	350	-223.015732	16	667.5	10	0	-103	7940.55	1	1	1	0.000	0.000
10/12/09 02:56:32	60.003	3681.689	350	-223.015732	16	668	10	0	-103	7940.88	1	1	1	0.000	0.000
10/12/09 02:56:34	60.002	3681.458	350	-223.015732	16	668.5	10	0	-103	7941.21	1	1	1	-0.001	0.001
10/12/09 02:56:36	60.003	3681.65	350	-223.015732	16	669	10	0	-103	7941.54	1	1	1	0.001	0.001
10/12/09 02:56:38	60.002	3681.013	350	-223.015732	16	669.5	10	0	-103	7941.87	1	1	1	-0.001	0.001
10/12/09 02:56:40	60.003	3680.167	350	-223.015732	16	670	10	0	-103	7942.2	1	1	1	0.001	0.001
10/12/09 02:56:42	60.004	3679.943	350	-223.015732	16	670.5	10	0	-103	7942.53	1	1	1	0.001	0.001
10/12/09 02:56:44	60.005	3679.429	350	-223.015732	16	671	10	0	-103	7942.86	1	1	1	0.001	0.001
10/12/09 02:56:46	60.006	3679.669	350	-223.015732	16	671.5	10	0	-103	7943.19	1	1	1	0.001	0.001
10/12/09 02:56:48	60.009	3678.981	350	-223.015732	16	672	10	0	-103	7943.52	1	1	1	0.003	0.003
10/12/09 02:56:50	60.012	3678.267	350	-223.015732	16	672.5	10	0	-103	7943.85	1	1	1	0.003	0.003
10/12/09 02:56:52	60.017	3676.796	350	-223.015732	16	673	10	0	-103	7944.18	1	1	1	0.005	0.005
10/12/09 02:56:54	60.021	3676.81	350	-223.015732	16	673.5	10	0	-103	7944.51	1	1	1	0.004	0.004
10/12/09 02:56:56	60.022	3674.798	350	-223.015732	16	674	10	0	-103	7944.84	1	1	1	0.001	0.001
10/12/09 02:56:58	60.021	3673.906	350	-223.015732	16	674.5	10	0	-103	7945.17	1	1	1	-0.001	0.001
10/12/09 02:57:00	60.02	3671.145	350	-223.015732	16	675	10	0	-103	7945.5	1	1	1	-0.001	0.001
10/12/09 02:57:02	60.018	3670.51	350	-223.015732	16	675.5	10	0	-103	7945.83	1	1	1	-0.002	0.002
10/12/09 02:57:04	60.021	3673.648	350	-223.015732	16	676	10	0	-103	7946.16	1	1	1	0.003	0.003
10/12/09 02:57:06	60.02	3673.684	350	-223.015732	16	676.5	10	0	-103	7946.49	1	1	1	-0.001	0.001
10/12/09 02:57:08	60.02	3675.865	350	-223.015732	16	677	10	0	-103	7946.82	1	1	1	0.000	0.000
10/12/09 02:57:10	60.018	3676.676	350	-223.015732	16	677.5	10	0	-103	7947.15	1	1	1	-0.002	0.002
10/12/09 02:57:12	60.018	3676.404	350	-223.015732	16	678	10	0	-103	7947.48	1	1	1	0.000	0.000
10/12/09 02:57:14	60.019	3676.437	350	-223.015732	16	678.5	10	0	-103	7947.81	1	1	1	0.001	0.001
10/12/09 02:57:16	60.019	3677.185	350	-223.015732	16	679	10	0	-103	7948.14	1	1	1	0.000	0.000
10/12/09 02:57:18	60.018	3677.659	350	-223.015732	16	679.5	10	0	-103	7948.47	1	1	1	-0.001	0.001
10/12/09 02:57:20	60.017	3678.828	350	-223.015732	16	680	10	0	-103	7948.8	1	1	1	-0.001	0.001
10/12/09 02:57:22	60.016	3679.289	350	-223.015732	16	680.5	10	0	-103	7949.13	1	1	1	-0.001	0.001
10/12/09 02:57:24	60.016	3678.915	350	-223.015732	16	681	10	0	-103	7949.46	1	1	1	0.000	0.000
10/12/09 02:57:26	60.016	3679.276	350	-223.015732	16	681.5	10	0	-103	7949.79	1	1	1	0.000	0.000
10/12/09 02:57:28	60.015	3678.599	350	-223.015732	16	682	10	0	-103	7950.12	1	1	1	-0.001	0.001
10/12/09 02:57:30	60.014	3678.367	350	-223.015732	16	682.5	10	0	-103	7950.45	1	1	1	-0.001	0.001
10/12/09 02:57:32	60.014	3678.25	350	-223.015732	16	683	10	0	-103	7950.78	1	1	1	0.000	0.000
10/12/09 02:57:34	60.013	3678.589	350	-223.015732	16	683.5	10	0	-103	7951.11	1	1	1	-0.001	0.001
10/12/09 02:57:36	60.013	3677.251	350	-223.015732	16	684	10	0	-103	7951.44	1	1	1	0.000	0.000
10/12/09 02:57:38	60.015	3675.698	350	-223.015732	16	684.5	10	0	-103	7951.77	1	1	1	0.002	0.002
10/12/09 02:57:40	60.017	3674.669	350	-223.015732	16	685	10	0	-103	7952.1	1	1	1	0.002	0.002
10/12/09 02:57:42	60.016	3674.87	350	-223.015732	16	685.5	10	0	-103	7952.43	1	1	1	-0.001	0.001
10/12/09 02:57:44	60.019	3674.402	350	-223.015732	16	686	10	0	-103	7952.76	1	1	1	0.003	0.003
10/12/09 02:57:46	60.021	3674.546	350	-223.015732	16	686.5	10	0	-103	7953.09	1	1	1	0.002	0.002
10/12/09 02:57:48	60.021	3672.969	350	-223.015732	16	687	10	0	-103	7953.42	1	1	1	0.000	0.000
10/12/09 02:57:50	60.02	3671.914	350	-223.015732	16	687.5	10	0	-103	7953.75	1	1	1	-0.001	0.001
10/12/09 02:57:52	60.022	3671.982	350	-223.015732	16	688	10	0	-103	7954.08	1	1	1	0.002	0.002
10/12/09 02:57:54	60.024	3670.946	350	-223.015732	16	688.5	10	0	-103	7954.41	1	1	1	0.002	0.002
10/12/09 02:57:56	60.026	3670.821	350	-223.015732	16	689	10	0	-103	7954.74	1	1	1	0.002	0.002
10/12/09 02:57:58	60.025	3671.06	350	-223.015732	16	689.5	10	0	-103	7955.07	1	1	1	-0.001	0.001

10/12/09 02:58:00	60.026	3671.539	350	-223.015732	16	690	10	0	-103	7955.4	1	1	1	0.001	0.001
10/12/09 02:58:02	60.022	3673.794	350	-223.015732	16	690.5	10	0	-103	7955.73	1	1	1	-0.004	0.004
10/12/09 02:58:04	60.021	3674.01	350	-223.015732	16	691	10	0	-103	7956.06	1	1	1	-0.001	0.001
10/12/09 02:58:06	60.022	3675.102	350	-223.015732	16	691.5	10	0	-103	7956.39	1	1	1	0.001	0.001
10/12/09 02:58:08	60.024	3675.284	350	-223.015732	16	692	10	0	-103	7956.72	1	1	1	0.002	0.002
10/12/09 02:58:10	60.027	3676.051	350	-223.015732	16	692.5	10	0	-103	7957.05	1	1	1	0.003	0.003
10/12/09 02:58:12	60.029	3675.704	350	-223.015732	16	693	10	0	-103	7957.38	1	1	1	0.002	0.002
10/12/09 02:58:14	60.028	3672.583	350	-223.015732	16	693.5	10	0	-103	7957.71	1	1	1	-0.001	0.001
10/12/09 02:58:16	60.028	3671.343	350	-223.015732	16	694	10	0	-103	7958.04	1	1	1	0.000	0.000
10/12/09 02:58:18	60.032	3670.232	350	-223.015732	16	694.5	10	0	-103	7958.37	1	1	1	0.004	0.004
10/12/09 02:58:20	60.035	3668.654	350	-223.015732	16	695	10	0	-103	7958.7	1	1	1	0.003	0.003
10/12/09 02:58:22	60.03	3668.767	350	-223.015732	16	695.5	10	0	-103	7959.03	1	1	1	-0.005	0.005
10/12/09 02:58:24	60.028	3666.312	350	-223.015732	16	696	10	0	-103	7959.36	1	1	1	-0.002	0.002
10/12/09 02:58:26	60.021	3667.322	350	-223.015732	16	696.5	10	0	-103	7959.69	1	1	1	-0.007	0.007
10/12/09 02:58:28	60.021	3657.164	350	-223.015732	16	697	10	0	-103	7960.02	1	1	1	0.000	0.000
10/12/09 02:58:30	60.024	3657.714	350	-223.015732	16	697.5	10	0	-103	7960.35	1	1	1	0.003	0.003
10/12/09 02:58:32	60.025	3668.637	350	-223.015732	16	698	10	0	-103	7960.68	1	1	1	0.001	0.001
10/12/09 02:58:34	60.024	3669.309	350	-223.015732	16	698.5	10	0	-103	7961.01	1	1	1	-0.001	0.001
10/12/09 02:58:36	60.022	3670.112	350	-223.015732	16	699	10	0	-103	7961.34	1	1	1	-0.002	0.002
10/12/09 02:58:38	60.023	3670.735	350	-223.015732	16	699.5	10	0	-103	7961.67	1	1	1	0.001	0.001
10/12/09 02:58:40	60.021	3671.332	350	-223.015732	16	700	10	0	-103	7962	1	1	1	-0.002	0.002
10/12/09 02:58:42	60.02	3672.095	350	-223.015732	16	700.5	10	0	-103	7962.33	1	1	1	-0.001	0.001
10/12/09 02:58:44	60.02	3672.683	350	-223.015732	16	701	10	0	-103	7962.66	1	1	1	0.000	0.000
10/12/09 02:58:46	60.02	3673.833	350	-223.015732	16	701.5	10	0	-103	7962.99	1	1	1	0.000	0.000
10/12/09 02:58:48	60.02	3674.645	350	-223.015732	16	702	10	0	-103	7963.32	1	1	1	0.000	0.000
10/12/09 02:58:50	60.017	3675.641	350	-223.015732	16	702.5	10	0	-103	7963.65	1	1	1	-0.003	0.003
10/12/09 02:58:52	60.014	3675.971	350	-223.015732	16	703	10	0	-103	7963.98	1	1	1	-0.003	0.003
10/12/09 02:58:54	60.012	3677.009	350	-223.015732	16	703.5	10	0	-103	7964.31	1	1	1	-0.002	0.002
10/12/09 02:58:56	60.01	3678.314	350	-223.015732	16	704	10	0	-103	7964.64	1	1	1	-0.002	0.002
10/12/09 02:58:58	60.011	3679.393	350	-223.015732	16	704.5	10	0	-103	7964.97	1	1	1	0.001	0.001
10/12/09 02:59:00	60.01	3680.02	350	-223.015732	16	705	10	0	-103	7965.3	1	1	1	-0.001	0.001
10/12/09 02:59:02	60.01	3679.792	350	-223.015732	16	705.5	10	0	-103	7965.63	1	1	1	0.000	0.000
10/12/09 02:59:04	60.01	3679.597	350	-223.015732	16	706	10	0	-103	7965.96	1	1	1	0.000	0.000
10/12/09 02:59:06	60.012	3680.315	350	-223.015732	16	706.5	10	0	-103	7966.29	1	1	1	0.002	0.002
10/12/09 02:59:08	60.012	3680.11	350	-223.015732	16	707	10	0	-103	7966.62	1	1	1	0.000	0.000
10/12/09 02:59:10	60.013	3679.062	350	-223.015732	16	707.5	10	0	-103	7966.95	1	1	1	0.001	0.001
10/12/09 02:59:12	60.014	3679.127	350	-223.015732	16	708	10	0	-103	7967.28	1	1	1	0.001	0.001
10/12/09 02:59:14	60.013	3679.587	350	-223.015732	16	708.5	10	0	-103	7967.61	1	1	1	-0.001	0.001
10/12/09 02:59:16	60.012	3679.637	350	-223.015732	16	709	10	0	-103	7967.94	1	1	1	-0.001	0.001
10/12/09 02:59:18	60.011	3679.02	350	-223.015732	16	709.5	10	0	-103	7968.27	1	1	1	-0.001	0.001
10/12/09 02:59:20	60.01	3678.418	350	-223.015732	16	710	10	0	-103	7968.6	1	1	1	-0.001	0.001
10/12/09 02:59:22	60.008	3679.383	350	-223.015732	16	710.5	10	0	-103	7968.93	1	1	1	-0.002	0.002
10/12/09 02:59:24	60.01	3679.681	350	-223.015732	16	711	10	0	-103	7969.26	1	1	1	0.002	0.002
10/12/09 02:59:26	60.011	3679.932	350	-223.015732	16	711.5	10	0	-103	7969.59	1	1	1	0.001	0.001
10/12/09 02:59:28	60.013	3679.138	350	-223.015732	16	712	10	0	-103	7969.92	1	1	1	0.002	0.002
10/12/09 02:59:30	60.016	3678.469	350	-223.015732	16	712.5	10	0	-103	7970.25	1	1	1	0.003	0.003
10/12/09 02:59:32	60.018	3678.499	350	-223.015732	16	713	10	0	-103	7970.58	1	1	1	0.002	0.002
10/12/09 02:59:34	60.019	3678.456	350	-223.015732	16	713.5	10	0	-103	7970.91	1	1	1	0.001	0.001
10/12/09 02:59:36	60.019	3677.615	350	-223.015732	16	714	10	0	-103	7971.24	1	1	1	0.000	0.000

10/12/09 02:59:38	60.019	3677.446	350	-223.015732	16	714.5	10	0	-103	7971.57	1	1	1	0.000	0.000
10/12/09 02:59:40	60.02	3677.431	350	-223.015732	16	715	10	0	-103	7971.9	1	1	1	0.001	0.001
10/12/09 02:59:42	60.02	3677.451	350	-223.015732	16	715.5	10	0	-103	7972.23	1	1	1	0.000	0.000
10/12/09 02:59:44	60.018	3677.315	350	-223.015732	16	716	10	0	-103	7972.56	1	1	1	-0.002	0.002
10/12/09 02:59:46	60.018	3678.151	350	-223.015732	16	716.5	10	0	-103	7972.89	1	1	1	0.000	0.000
10/12/09 02:59:48	60.016	3678.362	350	-223.015732	16	717	10	0	-103	7973.22	1	1	1	-0.002	0.002
10/12/09 02:59:50	60.016	3678.874	350	-223.015732	16	717.5	10	0	-103	7973.55	1	1	1	0.000	0.000
10/12/09 02:59:52	60.019	3680.771	350	-223.015732	16	718	10	0	-103	7973.88	1	1	1	0.003	0.003
10/12/09 02:59:54	60.023	3681.058	350	-223.015732	16	718.5	10	0	-103	7974.21	1	1	1	0.004	0.004
10/12/09 02:59:56	60.022	3680.353	350	-223.015732	16	719	10	0	-103	7974.54	1	1	1	-0.001	0.001
10/12/09 02:59:58	60.018	3679.167	350	-223.015732	16	719.5	10	0	-103	7974.87	1	1	1	-0.004	0.004
10/12/09 03:00:00	60.015	3679.553	350	-223.015732	16	720	10	0	-103	7975.2	1	1	1	-0.003	0.003
10/12/09 03:00:02	60.016	3680.672	350	-223.015732	16	720.5	10	0	-103	7975.53	1	1	1	0.001	0.001
10/12/09 03:00:04	60.017	3682.73	350	-223.015732	16	721	10	0	-103	7975.86	1	1	1	0.001	0.001
10/12/09 03:00:06	60.015	3682.714	350	-223.015732	16	721.5	10	0	-103	7976.19	1	1	1	-0.002	0.002
10/12/09 03:00:08	60.01	3681.915	350	-223.015732	16	722	10	0	-103	7976.52	1	1	1	-0.005	0.005
10/12/09 03:00:10	60.004	3682.01	350	-223.015732	16	722.5	10	0	-103	7976.85	1	1	1	-0.006	0.006
10/12/09 03:00:12	59.999	3682.483	350	-223.015732	16	723	10	0	-103	7977.18	1	0	1	-0.005	0.005
10/12/09 03:00:14	59.995	3683.813	350	-223.015732	16	723.5	10	0	-103	7977.51	1	0	1	-0.004	0.004
10/12/09 03:00:16	59.99	3685.306	350	-223.015732	16	724	10	0	-103	7977.84	1	0	1	-0.005	0.005
10/12/09 03:00:18	59.982	3684.846	350	-223.015732	16	724.5	10	0	-103	7978.17	1	0	1	-0.008	0.008
10/12/09 03:00:20	59.974	3684.643	350	-223.015732	16	725	10	0	-103	7978.5	1	0	1	-0.008	0.008
10/12/09 03:00:22	59.97	3687.527	350	-223.015732	16	725.5	10	0	-103	7978.83	1	0	1	-0.004	0.004
10/12/09 03:00:24	59.97	3689.404	350	-223.015732	16	726	10	0	-103	7979.16	1	0	1	0.000	0.000
10/12/09 03:00:26	59.968	3692.287	350	-223.015732	16	726.5	10	0	-103	7979.49	1	0	1	-0.002	0.002
10/12/09 03:00:28	59.968	3692.966	350	-223.015732	16	727	10	0	-103	7979.82	1	0	1	0.000	0.000
10/12/09 03:00:30	59.968	3693.793	350	-223.015732	16	727.5	10	0	-103	7980.15	1	0	1	0.000	0.000
10/12/09 03:00:32	59.972	3694.397	350	-223.015732	16	728	10	0	-103	7980.48	1	0	1	0.004	0.004
10/12/09 03:00:34	59.967	3694.974	350	-223.015732	16	728.5	10	0	-103	7980.81	1	0	1	-0.005	0.005
10/12/09 03:00:36	59.966	3697.407	350	-223.015732	16	729	10	0	-103	7981.14	1	0	1	-0.001	0.001
10/12/09 03:00:38	59.964	3698.502	350	-223.015732	16	729.5	10	0	-103	7981.47	1	0	1	-0.002	0.002
10/12/09 03:00:40	59.965	3698.617	350	-223.015732	16	730	10	0	-103	7981.8	1	0	1	0.001	0.001
10/12/09 03:00:42	59.966	3698.992	350	-223.015732	16	730.5	10	0	-103	7982.13	1	0	1	0.001	0.001
10/12/09 03:00:44	59.963	3699.85	350	-223.015732	16	731	10	0	-103	7982.46	1	0	1	-0.003	0.003
10/12/09 03:00:46	59.963	3702.645	350	-223.015732	16	731.5	10	0	-103	7982.79	1	0	1	0.000	0.000
10/12/09 03:00:48	59.965	3701.989	350	-223.015732	16	732	10	0	-103	7983.12	1	0	1	0.002	0.002
10/12/09 03:00:50	59.968	3702.218	350	-223.015732	16	732.5	10	0	-103	7983.45	1	0	1	0.003	0.003
10/12/09 03:00:52	59.97	3704.023	350	-223.015732	16	733	10	0	-103	7983.78	1	0	1	0.002	0.002
10/12/09 03:00:54	59.97	3703.365	350	-223.015732	16	733.5	10	0	-103	7984.11	1	0	1	0.000	0.000
10/12/09 03:00:56	59.97	3702.988	350	-223.015732	16	734	10	0	-103	7984.44	1	0	1	0.000	0.000
10/12/09 03:00:58	59.973	3703.814	350	-223.015732	16	734.5	10	0	-103	7984.77	1	0	1	0.003	0.003
10/12/09 03:01:00	59.972	3704.899	350	-223.015732	16	735	10	0	-103	7985.1	1	0	1	-0.001	0.001
10/12/09 03:01:02	59.976	3705.625	350	-223.015732	16	735.5	10	0	-103	7985.43	1	0	1	0.004	0.004
10/12/09 03:01:04	59.975	3704.293	350	-223.015732	16	736	10	0	-103	7985.76	1	0	1	-0.001	0.001
10/12/09 03:01:06	59.975	3702.094	350	-223.015732	16	736.5	10	0	-103	7986.09	1	0	1	0.000	0.000
10/12/09 03:01:08	59.977	3701.944	350	-223.015732	16	737	10	0	-103	7986.42	1	0	1	0.002	0.002
10/12/09 03:01:10	59.976	3703.142	350	-223.015732	16	737.5	10	0	-103	7986.75	1	0	1	-0.001	0.001
10/12/09 03:01:12	59.976	3704.669	350	-223.015732	16	738	10	0	-103	7987.08	1	0	1	0.000	0.000
10/12/09 03:01:14	59.974	3705.376	350	-223.015732	16	738.5	10	0	-103	7987.41	1	0	1	-0.002	0.002

10/12/09 03:01:16	59.975	3705.662	350	-223.015732	16	739	10	0	-103	7987.74	1	0	1	0.001	0.001
10/12/09 03:01:18	59.974	3705.855	350	-223.015732	16	739.5	10	0	-103	7988.07	1	0	1	-0.001	0.001
10/12/09 03:01:20	59.974	3706.776	350	-223.015732	16	740	10	0	-103	7988.4	1	0	1	0.000	0.000
10/12/09 03:01:22	59.976	3707.514	350	-223.015732	16	740.5	10	0	-103	7988.73	1	0	1	0.002	0.002
10/12/09 03:01:24	59.977	3706.928	350	-223.015732	16	741	10	0	-103	7989.06	1	0	1	0.001	0.001
10/12/09 03:01:26	59.979	3706.446	350	-223.015732	16	741.5	10	0	-103	7989.39	1	0	1	0.002	0.002
10/12/09 03:01:28	59.981	3706.335	350	-223.015732	16	742	10	0	-103	7989.72	1	0	1	0.002	0.002
10/12/09 03:01:30	59.983	3706.771	350	-223.015732	16	742.5	10	0	-103	7990.05	1	0	1	0.002	0.002
10/12/09 03:01:32	59.985	3705.943	350	-223.015732	16	743	10	0	-103	7990.38	1	0	1	0.002	0.002
10/12/09 03:01:34	59.983	3704.127	350	-223.015732	16	743.5	10	0	-103	7990.71	1	0	1	-0.002	0.002
10/12/09 03:01:36	59.98	3704.777	350	-223.015732	16	744	10	0	-103	7991.04	1	0	1	-0.003	0.003
10/12/09 03:01:38	59.979	3705.974	350	-223.015732	16	744.5	10	0	-103	7991.37	1	0	1	-0.001	0.001
10/12/09 03:01:40	59.983	3705.968	350	-223.015732	16	745	10	0	-103	7991.7	1	0	1	0.004	0.004
10/12/09 03:01:42	59.987	3705.356	350	-223.015732	16	745.5	10	0	-103	7992.03	1	0	1	0.004	0.004
10/12/09 03:01:44	59.986	3704.683	350	-223.015732	16	746	10	0	-103	7992.36	1	0	1	-0.001	0.001
10/12/09 03:01:46	59.984	3703.913	350	-223.015732	16	746.5	10	0	-103	7992.69	1	0	1	-0.002	0.002
10/12/09 03:01:48	59.98	3704.361	350	-223.015732	16	747	10	0	-103	7993.02	1	0	1	-0.004	0.004
10/12/09 03:01:50	59.982	3704.988	350	-223.015732	16	747.5	10	0	-103	7993.35	1	0	1	0.002	0.002
10/12/09 03:01:52	59.984	3705.05	350	-223.015732	16	748	10	0	-103	7993.68	1	0	1	0.002	0.002
10/12/09 03:01:54	59.985	3704.893	350	-223.015732	16	748.5	10	0	-103	7994.01	1	0	1	0.001	0.001
10/12/09 03:01:56	59.987	3703.741	350	-223.015732	16	749	10	0	-103	7994.34	1	0	1	0.002	0.002
10/12/09 03:01:58	59.989	3701.831	350	-223.015732	16	749.5	10	0	-103	7994.67	1	0	1	0.002	0.002
10/12/09 03:02:00	59.992	3701.795	350	-223.015732	16	750	10	0	-103	7995	1	0	1	0.003	0.003
10/12/09 03:02:02	59.996	3700.07	350	-223.015732	16	750.5	10	0	-103	7995.33	1	0	1	0.004	0.004
10/12/09 03:02:04	59.999	3701.308	350	-223.015732	16	751	10	0	-103	7995.66	1	0	1	0.003	0.003
10/12/09 03:02:06	59.997	3700.429	350	-223.015732	16	751.5	10	0	-103	7995.99	1	0	1	-0.002	0.002
10/12/09 03:02:08	59.997	3700.913	350	-223.015732	16	752	10	0	-103	7996.32	1	0	1	0.000	0.000
10/12/09 03:02:10	59.997	3700.541	350	-223.015732	16	752.5	10	0	-103	7996.65	1	0	1	0.000	0.000
10/12/09 03:02:12	59.997	3699.927	350	-223.015732	16	753	10	0	-103	7996.98	1	0	1	0.000	0.000
10/12/09 03:02:14	59.996	3700.858	350	-223.015732	16	753.5	10	0	-103	7997.31	1	0	1	-0.001	0.001
10/12/09 03:02:16	59.997	3700.549	350	-223.015732	16	754	10	0	-103	7997.64	1	0	1	0.001	0.001
10/12/09 03:02:18	59.996	3700.614	350	-223.015732	16	754.5	10	0	-103	7997.97	1	0	1	-0.001	0.001
10/12/09 03:02:20	59.998	3700.224	350	-223.015732	16	755	10	0	-103	7998.3	1	0	1	0.002	0.002
10/12/09 03:02:22	60.003	3699.5	350	-223.015732	16	755.5	10	0	-103	7998.63	1	1	1	0.005	0.005
10/12/09 03:02:24	60.009	3698.032	350	-223.015732	16	756	10	0	-103	7998.96	1	1	1	0.006	0.006
10/12/09 03:02:26	60.01	3697.96	350	-223.015732	16	756.5	10	0	-103	7999.29	1	1	1	0.001	0.001
10/12/09 03:02:28	60.008	3699.409	350	-223.015732	16	757	10	0	-103	7999.62	1	1	1	-0.002	0.002
10/12/09 03:02:30	60.005	3699.241	350	-223.015732	16	757.5	10	0	-103	7999.95	1	1	1	-0.003	0.003
10/12/09 03:02:32	60.004	3700.738	350	-223.015732	16	758	10	0	-103	8000.28	1	1	1	-0.001	0.001
10/12/09 03:02:34	60.006	3701.11	350	-223.015732	16	758.5	10	0	-103	8000.61	1	1	1	0.002	0.002
10/12/09 03:02:36	60.003	3701.238	350	-223.015732	16	759	10	0	-103	8000.94	1	1	1	-0.003	0.003
10/12/09 03:02:38	60.001	3699.998	350	-223.015732	16	759.5	10	0	-103	8001.27	1	1	1	-0.002	0.002
10/12/09 03:02:40	60.002	3700.22	350	-223.015732	16	760	10	0	-103	8001.6	1	1	1	0.001	0.001
10/12/09 03:02:42	60.004	3701.823	350	-223.015732	16	760.5	10	0	-103	8001.93	1	1	1	0.002	0.002
10/12/09 03:02:44	60.007	3702.554	350	-223.015732	16	761	10	0	-103	8002.26	1	1	1	0.003	0.003
10/12/09 03:02:46	60.007	3702.276	350	-223.015732	16	761.5	10	0	-103	8002.59	1	1	1	0.000	0.000
10/12/09 03:02:48	60.008	3701.026	350	-223.015732	16	762	10	0	-103	8002.92	1	1	1	0.001	0.001
10/12/09 03:02:50	60.008	3701.923	350	-223.015732	16	762.5	10	0	-103	8003.25	1	1	1	0.000	0.000
10/12/09 03:02:52	60.006	3702.943	350	-223.015732	16	763	10	0	-103	8003.58	1	1	1	-0.002	0.002

10/12/09 03:02:54	60.006	3704.093	350	-223.015732	16	763.5	10	0	-103	8003.91	1	1	1	0.000	0.000
10/12/09 03:02:56	60.006	3703.96	350	-223.015732	16	764	10	0	-103	8004.24	1	1	1	0.000	0.000
10/12/09 03:02:58	60.005	3703.819	350	-223.015732	16	764.5	10	0	-103	8004.57	1	1	1	-0.001	0.001
10/12/09 03:03:00	60	3704.455	350	-223.015732	16	765	10	0	-103	8004.9	1	0	1	-0.005	0.005
10/12/09 03:03:02	59.999	3704.346	350	-223.015732	16	765.5	10	0	-103	8005.23	1	0	1	-0.001	0.001
10/12/09 03:03:04	60	3705.329	350	-223.015732	16	766	10	0	-103	8005.56	1	0	1	0.001	0.001
10/12/09 03:03:06	60	3704.93	350	-223.015732	16	766.5	10	0	-103	8005.89	1	0	1	0.000	0.000
10/12/09 03:03:08	60.004	3704.405	350	-223.015732	16	767	10	0	-103	8006.22	1	1	1	0.004	0.004
10/12/09 03:03:10	60.008	3703.675	350	-223.015732	16	767.5	10	0	-103	8006.55	1	1	1	0.004	0.004
10/12/09 03:03:12	60.013	3702.748	350	-223.015732	16	768	10	0	-103	8006.88	1	1	1	0.005	0.005
10/12/09 03:03:14	60.015	3702.669	350	-223.015732	16	768.5	10	0	-103	8007.21	1	1	1	0.002	0.002
10/12/09 03:03:16	60.015	3703.017	350	-223.015732	16	769	10	0	-103	8007.54	1	1	1	0.000	0.000
10/12/09 03:03:18	60.012	3703.416	350	-223.015732	16	769.5	10	0	-103	8007.87	1	1	1	-0.003	0.003
10/12/09 03:03:20	60.009	3703.297	350	-223.015732	16	770	10	0	-103	8008.2	1	1	1	-0.003	0.003
10/12/09 03:03:22	60.005	3705.189	350	-223.015732	16	770.5	10	0	-103	8008.53	1	1	1	-0.004	0.004
10/12/09 03:03:24	60.008	3705.279	350	-223.015732	16	771	10	0	-103	8008.86	1	1	1	0.003	0.003
10/12/09 03:03:26	60.011	3704.646	350	-223.015732	16	771.5	10	0	-103	8009.19	1	1	1	0.003	0.003
10/12/09 03:03:28	60.011	3704.051	350	-223.015732	16	772	10	0	-103	8009.52	1	1	1	0.000	0.000
10/12/09 03:03:30	60.013	3703.438	350	-223.015732	16	772.5	10	0	-103	8009.85	1	1	1	0.002	0.002
10/12/09 03:03:32	60.016	3704.255	350	-223.015732	16	773	10	0	-103	8010.18	1	1	1	0.003	0.003
10/12/09 03:03:34	60.018	3703.708	350	-223.015732	16	773.5	10	0	-103	8010.51	1	1	1	0.002	0.002
10/12/09 03:03:36	60.018	3703.83	350	-223.015732	16	774	10	0	-103	8010.84	1	1	1	0.000	0.000
10/12/09 03:03:38	60.019	3704.524	350	-223.015732	16	774.5	10	0	-103	8011.17	1	1	1	0.001	0.001
10/12/09 03:03:40	60.018	3704.139	350	-223.015732	16	775	10	0	-103	8011.5	1	1	1	-0.001	0.001
10/12/09 03:03:42	60.013	3704.27	350	-223.015732	16	775.5	10	0	-103	8011.83	1	1	1	-0.005	0.005
10/12/09 03:03:44	60.011	3705.429	350	-223.015732	16	776	10	0	-103	8012.16	1	1	1	-0.002	0.002
10/12/09 03:03:46	60.009	3705.942	350	-223.015732	16	776.5	10	0	-103	8012.49	1	1	1	-0.002	0.002
10/12/09 03:03:48	60.009	3705.54	350	-223.015732	16	777	10	0	-103	8012.82	1	1	1	0.000	0.000
10/12/09 03:03:50	60.008	3705.634	350	-223.015732	16	777.5	10	0	-103	8013.15	1	1	1	-0.001	0.001
10/12/09 03:03:52	60.009	3705.749	350	-223.015732	16	778	10	0	-103	8013.48	1	1	1	0.001	0.001
10/12/09 03:03:54	60.011	3707.267	350	-223.015732	16	778.5	10	0	-103	8013.81	1	1	1	0.002	0.002
10/12/09 03:03:56	60.015	3706.945	350	-223.015732	16	779	10	0	-103	8014.14	1	1	1	0.004	0.004
10/12/09 03:03:58	60.02	3706.63	350	-223.015732	16	779.5	10	0	-103	8014.47	1	1	1	0.005	0.005
10/12/09 03:04:00	60.021	3705.655	350	-223.015732	16	780	10	0	-103	8014.8	1	1	1	0.001	0.001
10/12/09 03:04:02	60.018	3703.895	350	-223.015732	16	780.5	10	0	-103	8015.13	1	1	1	-0.003	0.003
10/12/09 03:04:04	60.017	3704.224	350	-223.015732	16	781	10	0	-103	8015.46	1	1	1	-0.001	0.001
10/12/09 03:04:06	60.019	3703.887	350	-223.015732	16	781.5	10	0	-103	8015.79	1	1	1	0.002	0.002
10/12/09 03:04:08	60.019	3704.648	350	-223.015732	16	782	10	0	-103	8016.12	1	1	1	0.000	0.000
10/12/09 03:04:10	60.021	3704.795	350	-223.015732	16	782.5	10	0	-103	8016.45	1	1	1	0.002	0.002
10/12/09 03:04:12	60.022	3704.167	350	-223.015732	16	783	10	0	-103	8016.78	1	1	1	0.001	0.001
10/12/09 03:04:14	60.025	3702.764	350	-223.015732	16	783.5	10	0	-103	8017.11	1	1	1	0.003	0.003
10/12/09 03:04:16	60.027	3702.008	350	-223.015732	16	784	10	0	-103	8017.44	1	1	1	0.002	0.002
10/12/09 03:04:18	60.03	3700.36	350	-223.015732	16	784.5	10	0	-103	8017.77	1	1	1	0.003	0.003
10/12/09 03:04:20	60.027	3701.063	350	-223.015732	16	785	10	0	-103	8018.1		1	1	-0.003	0.003
10/12/09 03:04:22	60.023	3700.34	350	-223.015732	16	785.5	10	0	-103	8018.43	1	1	1	-0.004	0.004
10/12/09 03:04:24	60.021	3699.369	350	-223.015732	16	786	10	0	-103	8018.76	1	1	1	-0.002	0.002
10/12/09 03:04:26	60.023	3701.568	350	-223.015732	16	786.5	10	0	-103	8019.09	1	1	1	0.002	0.002
10/12/09 03:04:28	60.023	3702.959	350	-223.015732	16	787	10	0	-103	8019.42	1	1	1	0.000	0.000
10/12/09 03:04:30	60.02	3704.25	350	-223.015732	16	787.5	10	0	-103	8019.75	1	1	1	-0.003	0.003

10/12/09 03:04:32	60.024	3703.621	350	-223.015732	16	788	10	0	-103	8020.08	1	1	1	0.004	0.004
10/12/09 03:04:34	60.024	3703.374	350	-223.015732	16	788.5	10	0	-103	8020.41	1	1	1	0.000	0.000
10/12/09 03:04:36	60.022	3703.036	350	-223.015732	16	789	10	0	-103	8020.74	1	1	1	-0.002	0.002
10/12/09 03:04:38	60.022	3703.931	350	-223.015732	16	789.5	10	0	-103	8021.07	1	1	1	0.000	0.000
10/12/09 03:04:40	60.024	3704.947	350	-223.015732	16	790	10	0	-103	8021.4	1	1	1	0.002	0.002
10/12/09 03:04:42	60.025	3704.208	350	-223.015732	16	790.5	10	0	-103	8021.73	1	1	1	0.001	0.001
10/12/09 03:04:44	60.023	3703.541	350	-223.015732	16	791	10	0	-103	8022.06	1	1	1	-0.002	0.002
10/12/09 03:04:46	60.024	3703.16	350	-223.015732	16	791.5	10	0	-103	8022.39	1	1	1	0.001	0.001
10/12/09 03:04:48	60.02	3703.397	350	-223.015732	16	792	10	0	-103	8022.72	1	1	1	-0.004	0.004
10/12/09 03:04:50	60.018	3704.376	350	-223.015732	16	792.5	10	0	-103	8023.05	1	1	1	-0.002	0.002
10/12/09 03:04:52	60.013	3705.441	350	-223.015732	16	793	10	0	-103	8023.38	1	1	1	-0.005	0.005
10/12/09 03:04:54	60.008	3706.995	350	-223.015732	16	793.5	10	0	-103	8023.71	1	1	1	-0.005	0.005
10/12/09 03:04:56	60.012	3710.072	350	-223.015732	16	794	10	0	-103	8024.04	1	1	1	0.004	0.004
10/12/09 03:04:58	60.017	3707.971	350	-223.015732	16	794.5	10	0	-103	8024.37	1	1	1	0.005	0.005
10/12/09 03:05:00	60.019	3707.767	350	-223.015732	16	795	10	0	-103	8024.7	1	1	1	0.002	0.002
10/12/09 03:05:02	60.019	3707.609	350	-223.015732	16	795.5	10	0	-103	8025.03	1	1	1	0.000	0.000
10/12/09 03:05:04	60.015	3708.831	350	-223.015732	16	796	10	0	-103	8025.36	1	1	1	-0.004	0.004
10/12/09 03:05:06	60.016	3709.465	350	-223.015732	16	796.5	10	0	-103	8025.69	1	1	1	0.001	0.001
10/12/09 03:05:08	60.015	3709.813	350	-223.015732	16	797	10	0	-103	8026.02	1	1	1	-0.001	0.001
10/12/09 03:05:10	60.016	3709.817	350	-223.015732	16	797.5	10	0	-103	8026.35	1	1	1	0.001	0.001
10/12/09 03:05:12	60.014	3709.99	350	-223.015732	16	798	10	0	-103	8026.68	1	1	1	-0.002	0.002
10/12/09 03:05:14	60.016	3709.094	350	-223.015732	16	798.5	10	0	-103	8027.01	1	1	1	0.002	0.002
10/12/09 03:05:16	60.018	3709.642	350	-223.015732	16	799	10	0	-103	8027.34	1	1	1	0.002	0.002
10/12/09 03:05:18	60.019	3709.812	350	-223.015732	16	799.5	10	0	-103	8027.67	1	1	1	0.001	0.001
10/12/09 03:05:20	60.016	3709.933	350	-223.015732	16	800	10	0	-103	8028	1	1	1	-0.003	0.003
10/12/09 03:05:22	60.014	3710.677	350	-223.015732	16	800.5	10	0	-103	8028.33	1	1	1	-0.002	0.002
10/12/09 03:05:24	60.014	3710.591	350	-223.015732	16	801	10	0	-103	8028.66	1	1	1	0.000	0.000
10/12/09 03:05:26	60.018	3709.354	350	-223.015732	16	801.5	10	0	-103	8028.99	1	1	1	0.004	0.004
10/12/09 03:05:28	60.022	3707.696	350	-223.015732	16	802	10	0	-103	8029.32	1	1	1	0.004	0.004
10/12/09 03:05:30	60.023	3707.38	350	-223.015732	16	802.5	10	0	-103	8029.65	1	1	1	0.001	0.001
10/12/09 03:05:32	60.024	3707.12	350	-223.015732	16	803	10	0	-103	8029.98	1	1	1	0.001	0.001
10/12/09 03:05:34	60.026	3706.99	350	-223.015732	16	803.5	10	0	-103	8030.31	1	1	1	0.002	0.002
10/12/09 03:05:36	60.026	3705.848	350	-223.015732	16	804	10	0	-103	8030.64	1	1	1	0.000	0.000
10/12/09 03:05:38	60.024	3704.185	350	-223.015732	16	804.5	10	0	-103	8030.97	1	1	1	-0.002	0.002
10/12/09 03:05:40	60.022	3704.406	350	-223.015732	16	805	10	0	-103	8031.3	1	1	1	-0.002	0.002
10/12/09 03:05:42	60.02	3704.963	350	-223.015732	16	805.5	10	0	-103	8031.63	1	1	1	-0.002	0.002
10/12/09 03:05:44	60.019	3706.567	350	-223.015732	16	806	10	0	-103	8031.96	1	1	1	-0.001	0.001
10/12/09 03:05:46	60.022	3705.516	350	-223.015732	16	806.5	10	0	-103	8032.29	1	1	1	0.003	0.003
10/12/09 03:05:48	60.025	3704.869	350	-223.015732	16	807	10	0	-103	8032.62	1	1	1	0.003	0.003
10/12/09 03:05:50	60.028	3704.428	350	-223.015732	16	807.5	10	0	-103	8032.95	1	1	1	0.003	0.003
10/12/09 03:05:52	60.03	3704.773	350	-223.015732	16	808	10	0	-103	8033.28	1	1	1	0.002	0.002
10/12/09 03:05:54	60.031	3703.532	350	-223.015732	16	808.5	10	0	-103	8033.61	1	1	1	0.001	0.001
10/12/09 03:05:56	60.029	3702.686	350	-223.015732	16	809	10	0	-103	8033.94	1	1	1	-0.002	0.002
10/12/09 03:05:58	60.026	3702.093	350	-223.015732	16	809.5	10	0	-103	8034.27	1	1	1	-0.003	0.003
10/12/09 03:06:00	60.026	3703.169	350	-223.015732	16	810	10	0	-103	8034.6	1	1	1	0.000	0.000
10/12/09 03:06:02	60.029	3703.676	350	-223.015732	16	810.5	10	0	-103	8034.93	1	1	1	0.003	0.003
10/12/09 03:06:04	60.03	3701.52	350	-223.015732	16	811	10	0	-103	8035.26	1	1	1	0.001	0.001
10/12/09 03:06:06	60.033	3700.106	350	-223.015732	16	811.5	10	0	-103	8035.59	1	1	1	0.003	0.003
10/12/09 03:06:08	60.03	3698.222	350	-223.015732	16	812	10	0	-103	8035.92	1	1	1	-0.003	0.003

10/12/09 03:06:10	60.022	3698.009	350	-223.015732	16	812.5	10	0	-103	8036.25	1	1	1	-0.008	0.008
10/12/09 03:06:12	60.016	3700.28	350	-223.015732	16	813	10	0	-103	8036.58	1	1	1	-0.006	0.006
10/12/09 03:06:14	60.019	3703.192	350	-223.015732	16	813.5	10	0	-103	8036.91	1	1	1	0.003	0.003
10/12/09 03:06:16	60.03	3703.815	350	-223.015732	16	814	10	0	-103	8037.24	1	1	1	0.011	0.011
10/12/09 03:06:18	60.028	3701.863	350	-223.015732	16	814.5	10	0	-103	8037.57	1	1	1	-0.002	0.002
10/12/09 03:06:20	60.021	3699.956	350	-223.015732	16	815	10	0	-103	8037.9	1	1	1	-0.007	0.007
10/12/09 03:06:22	60.015	3700.816	350	-223.015732	16	815.5	10	0	-103	8038.23	1	1	1	-0.006	0.006
10/12/09 03:06:24	60.015	3703.802	350	-223.015732	16	816	10	0	-103	8038.56	1	1	1	0.000	0.000
10/12/09 03:06:26	60.012	3706.943	350	-223.015732	16	816.5	10	0	-103	8038.89	1	1	1	-0.003	0.003
10/12/09 03:06:28	60.011	3708.527	350	-223.015732	16	817	10	0	-103	8039.22	1	1	1	-0.001	0.001
10/12/09 03:06:30	60.014	3707.49	350	-223.015732	16	817.5	10	0	-103	8039.55	1	1	1	0.003	0.003
10/12/09 03:06:32	60.013	3707.647	350	-223.015732	16	818	10	0	-103	8039.88	1	1	1	-0.001	0.001
10/12/09 03:06:34	60.014	3706.991	350	-223.015732	16	818.5	10	0	-103	8040.21	1	1	1	0.001	0.001
10/12/09 03:06:36	60.016	3707.495	350	-223.015732	16	819	10	0	-103	8040.54	1	1	1	0.002	0.002
10/12/09 03:06:38	60.016	3705.584	350	-223.015732	16	819.5	10	0	-103	8040.87	1	1	1	0.000	0.000
10/12/09 03:06:40	60.015	3705.398	350	-223.015732	16	820	10	0	-103	8041.2	1	1	1	-0.001	0.001
10/12/09 03:06:42	60.013	3707.12	350	-223.015732	16	820.5	10	0	-103	8041.53	1	1	1	-0.002	0.002
10/12/09 03:06:44	60.007	3709.144	350	-223.015732	16	821	10	0	-103	8041.86	1	1	1	-0.006	0.006
10/12/09 03:06:46	59.997	3708.99	350	-223.015732	16	821.5	10	0	-103	8042.19	1	0	1	-0.010	0.010
10/12/09 03:06:48	59.994	3708.291	350	-223.015732	16	822	10	0	-103	8042.52	1	0	1	-0.003	0.003
10/12/09 03:06:50	59.993	3706.193	350	-223.015732	16	822.5	10	0	-103	8042.85	1	0	1	-0.001	0.001
10/12/09 03:06:52	59.99	3707.304	350	-223.015732	16	823	10	0	-103	8043.18	1	0	1	-0.003	0.003
10/12/09 03:06:54	59.993	3707.903	350	-223.015732	16	823.5	10	0	-103	8043.51	1	0	1	0.003	0.003
10/12/09 03:06:56	59.994	3706.76	350	-223.015732	16	824	10	0	-103	8043.84	1	0	1	0.001	0.001
10/12/09 03:06:58	59.993	3706.921	350	-223.015732	16	824.5	10	0	-103	8044.17	1	0	1	-0.001	0.001
10/12/09 03:07:00	59.994	3706.683	350	-223.015732	16	825	10	0	-103	8044.5	1	0	1	0.001	0.001
10/12/09 03:07:02	59.993	3706.888	350	-223.015732	16	825.5	10	0	-103	8044.83	1	0	1	-0.001	0.001
10/12/09 03:07:04	59.996	3704.934	350	-223.015732	16	826	10	0	-103	8045.16	1	0	1	0.003	0.003
10/12/09 03:07:06	59.988	3705.678	350	-223.015732	16	826.5	10	0	-103	8045.49	1	0	1	-0.008	0.008
10/12/09 03:07:08	59.985	3706.481	350	-223.015732	16	827	10		-103	8045.82	1	0	1	-0.003	0.003
10/12/09 03:07:10	59.983	3707.071	350	-223.015732	16	827.5	10	0	-103	8046.15	1	0	1	-0.002	0.002
10/12/09 03:07:12	59.982	3706.696	350	-223.015732	16	828	10	0	-103	8046.48	1	0	1	-0.001	0.001
10/12/09 03:07:14	59.98	3707.479	350	-223.015732	16	828.5	10	0	-103	8046.81	1	0	1	-0.002	0.002
10/12/09 03:07:16	59.977	3708.246	350	-223.015732	16	829	10	0	-103	8047.14	1	0	1	-0.003	0.003
10/12/09 03:07:18	59.981	3709.436	350	-223.015732	16	829.5	10	0	-103	8047.47	1	0	1	0.004	0.004
10/12/09 03:07:20	59.982	3710.419	350	-223.015732	16	830	10	0	-103	8047.8	1	0	1	0.001	0.001
10/12/09 03:07:22	59.978	3710.134	350	-223.015732	16	830.5	10	0	-103	8048.13	1	0	1	-0.004	0.004
10/12/09 03:07:24	59.98	3708.708	350	-223.015732	16	831	10	0	-103	8048.46	1	0	1	0.002	0.002
10/12/09 03:07:26	59.98	3710.024	350	-223.015732	16	831.5	10	0	-103	8048.79	1	0	1	0.000	0.000
10/12/09 03:07:28	59.977	3709.192	350	-223.015732	16	832	10	0	-103	8049.12	1	0	1	-0.003	0.003
10/12/09 03:07:30	59.98	3708.335	350	-223.015732	16	832.5	10	0	-103	8049.45	1	0	1	0.003	0.003
10/12/09 03:07:32	59.983	3709.399	350	-223.015732	16	833	10	0	-103	8049.78	1	0	1	0.003	0.003
10/12/09 03:07:34	59.984	3707.911	350	-223.015732	16	833.5	10	0	-103	8050.11	1	0	1	0.001	0.001
10/12/09 03:07:36	59.981	3709.004	350	-223.015732	16	834	10	0	-103	8050.44	1	0	1	-0.003	0.003
10/12/09 03:07:38	59.981	3707.638	350	-223.015732	16	834.5	10	0	-103	8050.77	1	0	1	0.000	0.000
10/12/09 03:07:40	59.98	3709.689	350	-223.015732	16	835	10	0	-103	8051.1	1	0	1	-0.001	0.001
10/12/09 03:07:42	59.981	3708.945	350	-223.015732	16	835.5	10	0	-103	8051.43	1	0	1	0.001	0.001
10/12/09 03:07:44	59.981	3706.541	350	-223.015732	16	836	10	0	-103	8051.76	1	0	1	0.000	0.000
10/12/09 03:07:46	59.981	3711.256	350	-223.015732	16	836.5	10	0	-103	8052.09	1	0	1	0.000	0.000

10/12/09 03:07:48	59.98	3711.362	350	-223.015732	16	837	10	0	-103	8052.42	1	0	1	-0.001	0.001
10/12/09 03:07:50	59.978	3712.303	350	-223.015732	16	837.5	10	0	-103	8052.75	1	0	1	-0.002	0.002
10/12/09 03:07:52	59.978	3712.012	350	-223.015732	16	838	10	0	-103	8053.08	1	0	1	0.000	0.000
10/12/09 03:07:54	59.979	3711.703	350	-223.015732	16	838.5	10	0	-103	8053.41	1	0	1	0.001	0.001
10/12/09 03:07:56	59.978	3712.093	350	-223.015732	16	839	10	0	-103	8053.74	1	0	1	-0.001	0.001
10/12/09 03:07:58	59.976	3713.992	350	-223.015732	16				-103	8054.07	1	0	1	-0.002	0.002
10/12/09 03:08:00	59.976	3714.612	350	-223.015732	16				-103	8054.4	1	0	1	0.000	0.000
10/12/09 03:08:02	59.975	3715.083	350	-223.015732	16				-103	8054.73	1	0	1	-0.001	0.001
10/12/09 03:08:04	59.976	3715.323	350	-223.015732	16				-103	8055.06	1	0	1	0.001	0.001
10/12/09 03:08:06	59.975	3714.794	350	-223.015732	16				-103	8055.39	1	0	1	-0.001	0.001
10/12/09 03:08:08	59.979	3714.717	350	-223.015732	16				-103	8055.72	1	0	1	0.004	0.004
10/12/09 03:08:10	59.978	3715.161	350	-223.015732	16				-103	8056.05	1	0	1	-0.001	0.001
10/12/09 03:08:12	59.975	3715.001	350	-223.015732	16				-103	8056.38	1	0	1	-0.003	0.003
10/12/09 03:08:14	59.976	3713.996	350	-223.015732	16				-103	8056.71	1	0	1	0.001	0.001
10/12/09 03:08:16	59.981	3714.063	350	-223.015732	16				-103	8057.04	1	0	1	0.005	0.005
10/12/09 03:08:18	59.977	3714.335	350	-223.015732	16				-103	8057.37	1	0	1	-0.004	0.004
10/12/09 03:08:20	59.975	3715.631	350	-223.015732	16				-103	8057.7	1	0	1	-0.002	0.002
10/12/09 03:08:22	59.976	3715.688	350	-223.015732	16				-103	8058.03	1	0	1	0.001	0.001
10/12/09 03:08:24	59.979	3715.567	350	-223.015732	16				-103	8058.36	1	0	1	0.003	0.003
10/12/09 03:08:26	59.98	3715.725	350	-223.015732	16				-103	8058.69	1	0	1	0.001	0.001
10/12/09 03:08:28	59.979	3714.848	350	-223.015732	16				-103	8059.02	1	0	1	-0.001	0.001
10/12/09 03:08:30	59.978	3713.142	350	-223.015732	16				-103	8059.35	1	0	1	-0.001	0.001
10/12/09 03:08:32	59.979	3713.358	350	-223.015732	16				-103	8059.68	1	0	1	0.001	0.001
10/12/09 03:08:34	59.982	3712.275	350	-223.015732	16				-103	8060.01	1	0	1	0.003	0.003
10/12/09 03:08:36	59.983	3712.619	350	-223.015732	16				-103	8060.34	1	0	1	0.001	0.001
10/12/09 03:08:38	59.987	3712.153	350	-223.015732	16				-103	8060.67	1	0	1	0.004	0.004
10/12/09 03:08:40	59.988	3710.05	350	-223.015732	16				-103	8061	1	0	1	0.001	0.001
10/12/09 03:08:42	59.984	3709.082	350	-223.015732	16				-103	8061.33	1	0	1	-0.004	0.004
10/12/09 03:08:44	59.98	3710.472	350	-223.015732	16				-103	8061.66	1	0	1	-0.004	0.004
10/12/09 03:08:46	59.979	3710.624	350	-223.015732	16				-103	8061.99	1	0	1	-0.001	0.001
10/12/09 03:08:48	59.98	3710.946	350	-223.015732	16				-103	8062.32	1	0	1	0.001	0.001
10/12/09 03:08:50	59.979	3710.2	350	-223.015732	16				-103	8062.65	1	0	1	-0.001	0.001
10/12/09 03:08:52	59.978	3710.475	350	-223.015732	16				-103	8062.98	1	0	1	-0.001	0.001
10/12/09 03:08:54	59.975	3709.462	350	-223.015732	16				-103	8063.31	1	0	1	-0.003	0.003
10/12/09 03:08:56	59.979	3710.803	350	-223.015732	16				-103	8063.64	1	0	1	0.004	0.004
10/12/09 03:08:58	59.982	3709.286	350	-223.015732	16				-103	8063.97	1	0	1	0.003	0.003
10/12/09 03:09:00	59.983	3710.573	350	-223.015732	16				-103	8064.3	1	0	1	0.001	0.001
10/12/09 03:09:02	59.983	3709.525	350	-223.015732	16				-103	8064.63	1	0	1	0.000	0.000
10/12/09 03:09:04	59.985	3708.371	350	-223.015732	16				-103	8064.96	1	0	1	0.002	0.002
10/12/09 03:09:06	59.99	3708.527	350	-223.015732	16				-103	8065.29	1	0	1	0.005	0.005
10/12/09 03:09:08	59.987	3706.512	350	-223.015732	16				-103	8065.62	1	0	1	-0.003	0.003
10/12/09 03:09:10	59.984	3707.49	350	-223.015732	16				-103	8065.95	1	0	1	-0.003	0.003
10/12/09 03:09:12	59.976	3708.962	350	-223.015732	16				-103	8066.28	1	0	1	-0.008	0.008
10/12/09 03:09:14	59.979	3709.894	350	-223.015732	16				-103	8066.61	1	0	1	0.003	0.003
10/12/09 03:09:16	59.985	3712.303	350	-223.015732	16				-103	8066.94	1	0	1	0.006	0.006
10/12/09 03:09:18	59.983	3711.35	350	-223.015732	16				-103	8067.27	1	0	1	-0.002	0.002
10/12/09 03:09:20	59.979	3711.627	350	-223.015732	16				-103	8067.6	1	0	1	-0.004	0.004
10/12/09 03:09:22	59.981	3712.076	350	-223.015732	16				-103	8067.93	1	0	1	0.002	0.002
10/12/09 03:09:24	59.978	3712.393	350	-223.015732	16				-103	8068.26	1	0	1	-0.003	0.003

10/12/09 03:09:26	59.975	3712.999	350	-223.015732	16	-103	8068.59	1	0	1	-0.003	0.003
10/12/09 03:09:28	59.978	3713.51	350	-223.015732	16	-103	8068.92	1	0	1	0.003	0.003
10/12/09 03:09:30	59.989	3716.626	350	-223.015732	16	-103	8069.25	1	0	1	0.011	0.011
10/12/09 03:09:32	59.999	3715.443	350	-223.015732	16	-103	8069.58	1	0	1	0.010	0.010
10/12/09 03:09:34	59.994	3712.092	350	-223.015732	16	-103	8069.91	1	0	1	-0.005	0.005
10/12/09 03:09:36	59.989	3713.906	350	-223.015732	16	-103	8070.24	1	0	1	-0.005	0.005
10/12/09 03:09:38	59.986	3714.894	350	-223.015732	16	-103	8070.57	1	0	1	-0.003	0.003
10/12/09 03:09:40	59.984	3714.953	350	-223.015732	16	-103	8070.9	1	0	1	-0.002	0.002
10/12/09 03:09:42	59.983	3716.122	350	-223.015732	16	-103	8071.23	1	0	1	-0.001	0.001
10/12/09 03:09:44	59.982	3716.308	350	-223.015732	16	-103	8071.56	1	0	1	-0.001	0.001
10/12/09 03:09:46	59.98	3715.438	350	-223.015732	16	-103	8071.89	1	0	1	-0.002	0.002
10/12/09 03:09:48	59.99	3714.764	350	-223.015732	16	-103	8072.22	1	0	1	0.010	0.010
10/12/09 03:09:50	59.995	3714.714	350	-223.015732	16	-103	8072.55	1	0	1	0.005	0.005
10/12/09 03:09:52	59.995	3715.068	350	-223.015732	16	-103	8072.88	1	0	1	0.000	0.000
10/12/09 03:09:54	59.99	3715.927	350	-223.015732	16	-103	8073.21	1	0	1	-0.005	0.005
10/12/09 03:09:56	59.989	3715.791	350	-223.015732	16	-103	8073.54	1	0	1	-0.001	0.001
10/12/09 03:09:58	59.991	3716.285	350	-223.015732	16	-103	8073.87	1	0	1	0.002	0.002
10/12/09 03:10:00	59.996	3715.324	350	-223.015732	16	-103	8074.2	1	0	1	0.005	0.005
10/12/09 03:10:02	60	3714.46	350	-223.015732	16	-103	8074.53	1	0	1	0.004	0.004
10/12/09 03:10:04	60.002	3711.708	350	-223.015732	16	-103	8074.86	1	1	1	0.002	0.002
10/12/09 03:10:06	60.004	3712.698	350	-223.015732	16	-103	8075.19	1	1	1	0.002	0.002
10/12/09 03:10:08	60.004	3712.851	350	-223.015732	16	-103	8075.52	1	1	1	0.000	0.000
10/12/09 03:10:10	60.002	3713.362	350	-223.015732	16	-103	8075.85	1	1	1	-0.002	0.002
10/12/09 03:10:12	59.999	3716.641	350	-223.015732	16	-103	8076.18	1	0	1	-0.003	0.003
10/12/09 03:10:14	59.998	3718.292	350	-223.015732	16	-103	8076.51	1	0	1	-0.001	0.001
10/12/09 03:10:16	59.995	3719.079	350	-223.015732	16	-103	8076.84	1	0	1	-0.003	0.003
10/12/09 03:10:18	59.996	3718.233	350	-223.015732	16	-103	8077.17	1	0	1	0.001	0.001
10/12/09 03:10:20	60.001	3717.815	350	-223.015732	16	-103	8077.5	1	1	1	0.005	0.005
10/12/09 03:10:22	60.002	3717.889	350	-223.015732	16	-103	8077.83	1	1	1	0.001	0.001
10/12/09 03:10:24	60.001	3718.56	350	-223.015732	16	-103	8078.16	1	1	1	-0.001	0.001
10/12/09 03:10:26	60.003	3718.195	350	-223.015732	16	-103	8078.49	1	1	1	0.002	0.002
10/12/09 03:10:28	60.005	3719.021	350	-223.015732	16	-103	8078.82	1	1	1	0.002	0.002
10/12/09 03:10:30	60.004	3718.821	350	-223.015732	16	-103	8079.15	1	1	1	-0.001	0.001
10/12/09 03:10:32	60.004	3719.897	350	-223.015732	16	-103	8079.48	1	1	1	0.000	0.000
10/12/09 03:10:34	60.004	3719.299	350	-223.015732	16	-103	8079.81	1	1	1	0.000	0.000
10/12/09 03:10:36	60.006	3719.643	350	-223.015732	16	-103	8080.14	1	1	1	0.002	0.002
10/12/09 03:10:38	60.003	3719.527	350	-223.015732	16	-103	8080.47	1	1	1	-0.003	0.003
10/12/09 03:10:40	60.005	3719.731	350	-223.015732	16	-103	8080.8	1	1	1	0.002	0.002
10/12/09 03:10:42	60.006	3720.279	350	-223.015732	16	-103	8081.13	1	1	1	0.001	0.001
10/12/09 03:10:44	60.009	3718.58	350	-223.015732	16	-103	8081.46	1	1	1	0.003	0.003
10/12/09 03:10:46	60.009	3718.976	350	-223.015732	16	-103	8081.79	1	1	1	0.000	0.000
10/12/09 03:10:48	60.01	3718.982	350	-223.015732	16	-103	8082.12	1	1	1	0.001	0.001
10/12/09 03:10:50	60.009	3720.034	350	-223.015732	16	-103	8082.45	1	1	1	-0.001	0.001
10/12/09 03:10:52	60.013	3720.609	350	-223.015732	16	-103	8082.78	1	1	1	0.004	0.004
10/12/09 03:10:54	60.015	3720.811	350	-223.015732	16	-103	8083.11	1	1	1	0.002	0.002
10/12/09 03:10:56	60.014	3721.239	350	-223.015732	16	-103	8083.44	1	1	1	-0.001	0.001
10/12/09 03:10:58	60.009	3720.38	350	-223.015732	16	-103	8083.77	1	1	1	-0.005	0.005
10/12/09 03:11:00	60.009	3719.447	350	-223.015732	16	-103	8084.1	1	1	1	0.000	0.000
10/12/09 03:11:02	60.008	3720.807	350	-223.015732	16	-103	8084.43	1	1	1	-0.001	0.001

10/12/09 03:11:04	60.011	3721.272	350	-223.015732	16	-103	8084.76	1	1	1	0.003	0.003
10/12/09 03:11:06	60.01	3720.592	350	-223.015732	16	-103	8085.09	1	1	1	-0.001	0.001
10/12/09 03:11:08	60.009	3721.245	350	-223.015732	16	-103	8085.42	1	1	1	-0.001	0.001
10/12/09 03:11:10	60.013	3721.594	350	-223.015732	16	-103	8085.75	1	1	1	0.004	0.004
10/12/09 03:11:12	60.013	3722.176	350	-223.015732	16	-103	8086.08	1	1	1	0.000	0.000
10/12/09 03:11:14	60.014	3721.999	350	-223.015732	16	-103	8086.41	1	1	1	0.001	0.001
10/12/09 03:11:16	60.014	3721.646	350	-223.015732	16	-103	8086.74	1	1	1	0.000	0.000
10/12/09 03:11:18	60.012	3721.678	350	-223.015732	16	-103	8087.07	1	1	1	-0.002	0.002
10/12/09 03:11:20	60.01	3720.86	350	-223.015732	16	-103	8087.4	1	1	1	-0.002	0.002
10/12/09 03:11:22	60.011	3721.645	350	-223.015732	16	-103	8087.73	1	1	1	0.001	0.001
10/12/09 03:11:24	60.007	3723.816	350	-223.015732	16	-103	8088.06	1	1	1	-0.004	0.004
10/12/09 03:11:26	60.003	3725.07	350	-223.015732	16	-103	8088.39	1	1	1	-0.004	0.004
10/12/09 03:11:28	60.001	3724.656	350	-223.015732	16	-103	8088.72	1	1	1	-0.002	0.002
10/12/09 03:11:30	60	3724.869	350	-223.015732	16	-103	8089.05	1	0	1	-0.001	0.001
10/12/09 03:11:32	59.998	3724.661	350	-223.015732	16	-103	8089.38	1	0	1	-0.002	0.002
10/12/09 03:11:34	59.998	3723.696	350	-223.015732	16	-103	8089.71	1	0	1	0.000	0.000
10/12/09 03:11:36	59.999	3723.58	350	-223.015732	16	-103	8090.04	1	0	1	0.001	0.001
10/12/09 03:11:38	60.002	3723.405	350	-223.015732	16	-103	8090.37	1	1	1	0.003	0.003
10/12/09 03:11:40	60.003	3721.879	350	-223.015732	16	-103	8090.7	1	1	1	0.001	0.001
10/12/09 03:11:42	60.003	3722.401	350	-223.015732	16	-103	8091.03	1	1	1	0.000	0.000
10/12/09 03:11:44	59.999	3722.906	350	-223.015732	16	-103	8091.36	1	0	1	-0.004	0.004
10/12/09 03:11:46	59.998	3724.142	350	-223.015732	16	-103	8091.69	1	0	1	-0.001	0.001
10/12/09 03:11:48	60.001	3723.65	350	-223.015732	16	-103	8092.02	1	1	1	0.003	0.003
10/12/09 03:11:50	59.995	3723.201	350	-223.015732	16	-103	8092.35	1	0	1	-0.006	0.006
10/12/09 03:11:52	59.989	3723.639	350	-223.015732	16	-103	8092.68	1	0	1	-0.006	0.006
10/12/09 03:11:54	59.987	3723.881	350	-223.015732	16	-103	8093.01	1	0	1	-0.002	0.002
10/12/09 03:11:56	59.988	3724.654	350	-223.015732	16	-103	8093.34	1	0	1	0.001	0.001
10/12/09 03:11:58	59.988	3725.361	350	-223.015732	16	-103	8093.67	1	0	1	0.000	0.000
10/12/09 03:12:00	59.99	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.002	0.002
10/12/09 03:12:02	59.999	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.009	0.009
10/12/09 03:12:04	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:12:06	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:12:08	60.0005	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:12:10	59.998	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:12:12	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:14	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:16	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:18	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:20	59.995	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:22	59.994	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:24	59.993	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:26	59.992	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:28	59.991	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:30	59.99	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:32	59.991	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:12:34	59.992	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:12:36	59.993	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:12:38	59.994	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:12:40	59.995	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001

10/12/09 03:12:42	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:12:44	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:46	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:48	59.9965	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:50	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:12:52	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:54	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:56	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:58	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:13:00	59.999	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.002	0.002
10/12/09 03:13:02	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:13:04	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:06	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:08	60.004	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.003	0.003
10/12/09 03:13:10	60.007	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.003	0.003
10/12/09 03:13:12	60.009	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:13:14	60.011	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:13:16	60.0085	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.003	0.003
10/12/09 03:13:18	60.006	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:13:20	60.007	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:13:22	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:13:24	60.01	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:13:26	60.012	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:13:28	60.012	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:30	60.012	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:32	60.01	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:13:34	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:13:36	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:38	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:40	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:42	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:44	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:46	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:48	60.007	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:13:50	60.006	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:13:52	60.005	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:13:54	60.004	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:13:56	60.004	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:58	60.004	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:14:00	60.0025	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:14:02	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:14:04	59.9995	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:14:06	59.998	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:14:08	59.9965	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:14:10	59.995	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:14:12	59.995	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:14	59.995	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:16	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:14:18	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001

10/12/09 03:14:20	59.995	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:14:22	59.993	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:14:24	59.9925	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:26	59.992	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:28	59.9905	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:14:30	59.989	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:14:32	59.99	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:14:34	59.991	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:14:36	59.989	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:14:38	59.987	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:14:40	59.9875	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:42	59.988	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:44	59.988	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:46	59.988	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:48	59.987	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:14:50	59.986	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:14:52	59.9855	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:54	59.985	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:56	59.9845	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:58	59.984	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:15:00	59.984	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:15:02	59.984	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:15:04	59.985	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:15:06	59.986	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:15:08	59.987	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:15:10	59.988	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:15:12	59.992	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.004	0.004
10/12/09 03:15:14	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.004	0.004
10/12/09 03:15:16	59.9975	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:15:18	59.999	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.002	0.002
10/12/09 03:15:20	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:15:22	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:15:24	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:15:26	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:15:28	60.0055	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.003	0.003
10/12/09 03:15:30	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:15:32	60.01	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:15:34	60.012	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:15:36	60.0105	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:15:38	60.009	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:15:40	60.01	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:15:42	60.011	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:15:44	60.012	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:15:46	60.013	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:15:48	60.013	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:15:50	60.013	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:15:52	60.0145	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:15:54	60.016	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:15:56	60.0155	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000

10/12/09 03:15:58	60.015	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:15:59	60.014	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:01	60.013	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:03	60.012	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:05	60.011	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:07	60.0105	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:09	60.01	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:16:11	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:16:13	60.006	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:16:15	60.006	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:16:17	60.006	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:16:19	60.0045	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:21	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:16:23	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:16:25	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:16:27	60.0035	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:16:29	60.004	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:16:31	60.0025	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:33	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:16:35	59.999	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:16:37	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:16:39	59.9965	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:16:41	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:16:43	59.9965	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:16:45	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:16:47	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:16:49	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:16:51	59.998	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:16:53	59.999	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:16:55	59.9985	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:16:57	59.998	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:16:59	59.9985	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:17:01	59.999	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:17:03	59.998	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:17:05	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:17:07	59.9985	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:17:09	60	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:17:11	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:17:13	60.002	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:17:15	60.0015	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:17:17	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:17:19	60.0035	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.003	0.003
10/12/09 03:17:21	60.006	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:17:23	60.0055	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:17:25	60.005	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000

Balancing Authority Name: MyBA
Interconnection Prevailing UFLS First Step Relay trip poin
terconnection High Relay trip point
Note: See "Instruction" tab for more detailed instructions.

Step 1.	Copy and Paste Event Data into the appropriate cells of the "Data" worksheet. Maintain date and time format of mm/dd/yy hh:mm:ss.
Step 2.	Data must start at least $\mathbf{2}$ full minutes before the beginning of the event. Collect the same amount of data for each event. Suggest 2 to 3 minutes before to 15 minutes after (up to 60 minutes total). Delete unused rows of data in the Data worksheet below your data, columns A through R. You must also delete any un-used event detection formulas in columns N through R as well.
Step 3. Step 4.	Enter your BA name in cell B1 of this worksheet. Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on graph to the right to that on Form 1 for this event. If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process.
Step 5.	Verify that the "Auto" selection of $\mathrm{T}(0)$ is correct by observing "Graph 20 to 52 s ". The very first frequency data point of the event on the graph must not be included in the "A Value" average. This is accomplished when the first frequency data point of the event is dead center of the graph on the center vertical grid line. The Auto event detection will select the single largest event in the data provided. An adjustment for $\mathrm{T}(0)$ alignment is provided in Cell Q 3 on the Graph 20 to 52 s .
Step 6.	When $\mathrm{T}(0)$ is properly aligned. Hit the big blue button to copy your data for pasting into FRS Form 1 "BA Event Data" worksheet. Copy Form 2 data for Pasting into Form 1
Step 7.	Paste data into "FRS Form 1" in the appropriate row on the "BA Event Data" worksheet. Be sure to use the latest version of Form 1. This is Form 2.9 so use Form 1.9.
Step 8.	Save this workbook using the following file name in bold below:

[^73]Event Frequency Data

09/10/12 Date yymmdd
2:27 Time hh:ss of T(0)
Where "MyBA" = your BA mnemonic
E

T-60 sec	2:26:26	60.019	3666.787			3090	-19.571	-19.400		-0.102	3666.787				
T-58 sec	2:26:28	60.02	3670.454			3090	-20.600	-19.820		-0.102	3666.265				
T-56 sec	2:26:30	60.019	3670.267			3090	-19.571	-19.733		-0.102	3666.251				
T-54 sec	2:26:32	60.021	3671.668			3090	-21.630	-20.397		-0.102	3665.485				
T-52 sec	2:26:34	60.021	3672.493			3090	-21.630	-20.828		-0.102	3664.952				
T-50 sec	2:26:36	60.021	3672.685			3090	-21.630	-21.109		-0.102	3664.570				
T-48 sec	2:26:38	60.019	3672.857			3090	-19.571	-20.571		-0.102	3665.006				
T-46 sec	2:26:40	60.018	3672.164			3090	-18.542	-19.861		-0.102	3665.615				
T-44 sec	2:26:42	60.022	3671.413			3090	-22.659	-20.840		-0.102	3664.533				
T-42 sec	2:26:44	60.031	3669.983			3090	-31.928	-24.721		-0.102	3660.551				
T-40 sec	2:26:46	60.037	3666.467			3090	-38.109	-29.407		-0.102	3655.763				
T-38 sec	2:26:48	60.037	3663.758			3090	-38.109	-32.452		-0.102	3652.616				
T-36 sec	2:26:50	60.036	3661.599			3090	-37.079	-34.072		-0.102	3650.895				
T-34 sec	2:26:52	60.037	3660.672			3090	-38.109	-35.485		-0.102	3649.380				
T-32 sec	2:26:54	60.046	3651.492			3090	-47.381	-39.649		-0.102	3645.114				
T-30 sec	2:26:56	60.048	3649.190			3090	-49.440	-43.076		-0.102	3641.585				
T-28 sec	2:26:58	60.048	3650.025			3090	-49.440	-45.303		-0.102	3639.256				
T-26 sec	2:27:00	60.043	3648.246			3090	-44.289	-44.948		-0.102	3639.509				
T-24 sec	2:27:02	60.041	3649.512			3090	-42.230	-43.997		-0.102	3640.359				
T-22 sec	2:27:04	60.041	3654.294			3090	-42.230	-43.379		-0.102	3640.875				
T-20 sec	2:27:06	60.041	3655.007			3090	-42.230	-42.977		-0.102	3641.176				
T-18 sec	2:27:08	60.039	3651.874			3090	-40.172	-41.995		-0.102	3642.056				
$\mathrm{T}-16 \mathrm{sec}$	2:27:10	60.041	3651.059	60.042	3645.73	3090	-42.230	-42.077		-0.102	3641.872				
T-14 sec	2:27:12	60.043	3649.187	60.042	3645.73	3090	-44.289	-42.852		-0.102	3640.996				
T-12 sec	2:27:14	60.045	3648.236	60.042	3645.73	3090	-46.348	-44.075		-0.102	3639.670				
T-10 sec	2:27:16	60.046	3645.387	60.042	3645.73	3090	-47.381	-45.232		-0.102	3638.411				
T-08 sec	2:27:18	60.041	3644.628	60.042	3645.73	3090	-42.230	-44.182		-0.102	3639.360				
T-06 sec	2:27:20	60.041	3645.446	60.042	3645.73	3090	-42.230	-43.499		-0.102	3639.942				
T-04 sec	2:27:22	60.041	3640.682	60.042	3645.73	3090	-42.230	-43.055		-0.102	3640.284				
T-02 sec	2:27:24	60.039	3641.191	60.042	3645.73	3090	-40.172	-42.046		-0.102	3641.191				
T+0 sec	2:27:26	59.978	3659.465			3090	22.659	-19.399		0.000	3663.838				
T+02 sec	2:27:28	59.852	3696.362			3090	152.439	40.744		0.617	3724.598	3677.914	3694.218	3668.635	3668.635
T+04 sec	2:27:30	59.836	3734.904			3090	168.922	85.606		0.617	3770.077	3696.910	3719.504	3669.252	3668.944
T+06 sec	2:27:32	59.869	3734.673			3090	134.931	102.870		0.617	3787.958	3706.351	3736.618	3699.869	3669.252
T+08 sec	2:27:34	59.869	3734.673			3090	134.931	114.091		0.617	3799.796	3712.015	3749.253	3670.486	3669.561
T+10 sec	2:27:36	59.892	3737.157			3090	111.242	113.094		0.617	3799.415	3716.206	3757.614	3671.103	3669.869
T+12 sec	2:27:38	59.891	3761.250			3090	112.271	112.806		0.617	3799.745	3722.640	3763.632	3671.720	3670.178
T+14 sec	2:27:40	59.88	3766.113			3090	123.599	116.583		0.617	3804.139	3728.074	3768.696	3672.337	3670.486
T+16 sec	2:27:42	59.876	3766.194			3090	127.721	120.481		0.617	3808.654	3732.310	3773.136	3672.954	3670.795
T+18 sec	2:27:44	59.875	3768.877			3090	128.750	123.375		0.617	3812.165	3735.967	3777.038	3673.571	3671.103
$\mathrm{T}+20 \mathrm{sec}$	2:27:46	59.883	3769.925	59.889	3788.35	3090	120.511	122.373	3803.32	0.617	3811.779	3739.054	3780.197	3674.188	3671.412
T+22 sec	2:27:48	59.887	3780.621	59.889	3788.35	3090	116.389	120.278	3803.32	0.617	3810.302	3742.518	3782.705	3674.805	3671.720
T+24 sec	2:27:50	59.886	3781.592	59.889	3788.35	3090	117.418	119.277	3803.32	0.617	3809.918	3745.523	3784.799	3675.422	3672.029
T+26 sec	2:27:52	59.885	3782.500	59.889	3788.35	3090	118.452	118.988	3803.32	0.617	3810.246	3748.165	3786.616	3676.039	3672.337
T+28 sec	2:27:54	59.887	3784.962	59.889	3788.35	3090	116.389	118.079	3803.32	0.617	3809.953	3750.618	3788.172	3676.656	3672.646
T+30 sec	2:27:56	59.888	3784.730	59.889	3788.35	3090	115.359	117.127	3803.32	0.617	3809.618	3752.750	3789.513	3677.273	3672.954
T+32 sec	2:27:58	59.89	3784.419	59.889	3788.35	3090	113.301	115.788	3803.32	0.617	3808.896	3754.613	3790.653	3677.890	3673.263
T+34 sec	2:28:00	59.895	3788.072	59.889	3788.35	3090	108.150	113.114	3803.32	0.617	3806.840	3756.471	3791.552	3678.507	3673.571
T+36 sec	2:28:02	59.894	3788.328	59.889	3788.35	3090	109.179	111.737	3803.32	0.617	3806.079	3758.148	3792.317	3679.124	3673.879

T+38 sec	2:28:04	59.893	3788.868	59.889	3788.35	3090	110.208	111.202	3803.32	0.617	3806.161	3759.684	3793.009	3679.741	3674.188
T+40 sec	2:28:06	59.894	3788.472	59.889	3788.35	3090	109.179	110.494	3803.32	0.617	3806.070	3761.055	3793.631	3680.358	3674.496
T+42 sec	2:28:08	59.894	3792.276	59.889	3788.35	3090	109.179	110.034	3803.32	0.617	3806.227	3762.474	3794.203	3680.975	3674.805
T+44 sec	2:28:10	59.891	3793.074	59.889	3788.35	3090	112.271	110.817	3803.32	0.617	3807.627	3763.805	3794.787	3681.592	3675.113
T+46 sec	2:28:12	59.89	3794.374	59.889	3788.35	3090	113.301	111.686	3803.32	0.617	3809.113	3765.078	3795.384	3682.209	3675.422
T+48 sec	2:28:14	59.885	3799.428	59.889	3788.35	3090	118.452	114.054	3803.32	0.617	3812.098	3766.452	3796.053	3682.826	3675.730
T+50 sec	2:28:16	59.885	3800.427	59.889	3788.35	3090	118.452	115.593	3803.32	0.617	3814.254	3767.759	3796.753	3683.443	3676.039
T+52 sec	2:28:18	59.888	3799.959	59.889	3788.35	3090	115.359	115.511	3803.32	0.617	3814.790	3768.952	3797.421	3684.060	3676.347
T+54 sec	2:28:20	59.887	3803.625			3090	116.389	115.819		0.617	3815.714	3770.190	3798.074	3684.677	3676.656
T+56 sec	2:28:22	59.888	3802.925			3090	115.359	115.658		0.617	3816.170	3771.319	3798.698	3685.293	3676.964
T+58 sec	2:28:24	59.888	3802.951			3090	115.359	115.553		0.617	3816.682	3772.373	3799.297	3685.910	3677.273
T+60 sec	2:28:26	59.89	3804.388			3090	113.301	114.765		0.617	3816.511	3773.406	3799.853	3686.527	3677.581
T+62 sec	2:28:28	59.889	3805.496			3090	114.330	114.613		0.617	3816.976	3774.409	3800.388	3687.144	3677.890
T+64 sec	2:28:30	59.882	3805.617			3090	121.540	117.037		0.617	3820.017	3775.354	3800.983	3687.761	3678.198
T+66 sec	2:28:32	59.873	3809.237			3090	130.809	121.857		0.617	3825.454	3776.351	3801.702	3688.378	3678.507
T+68 sec	2:28:34	59.857	3811.503			3090	147.292	130.759		0.617	3834.973	3777.355	3802.653	3688.995	3678.815
T+70 sec	2:28:36	59.849	3814.862			3090	155.531	139.429		0.617	3844.260	3778.397	3803.809	3689.612	3679.124
T+72 sec	2:28:38	59.852	3815.889			3090	152.439	143.983		0.617	3849.431	3779.410	3805.042	3690.229	3679.432
T+74 sec	2:28:40	59.858	3825.643			3090	146.258	144.779		0.617	3850.844	3780.627	3806.247	3690.846	3679.741
T+76 sec	2:28:42	59.863	3826.053			3090	141.111	143.495		0.617	3850.177	3781.792	3807.373	3691.463	3680.049
T+78 sec	2:28:44	59.866	3826.002			3090	138.019	141.579		0.617	3848.877	3782.897	3808.411	3692.080	3680.358
T+80 sec	2:28:46	59.865	3827.524			3090	139.048	140.693		0.617	3848.609	3783.986	3809.392	3692.697	3680.666
T+82 sec	2:28:48	59.867	3826.753			3090	136.989	139.397		0.617	3847.929	3785.004	3810.309	3693.314	3680.975
T+84 sec	2:28:50	59.866	3826.783			3090	138.019	138.914		0.617	3848.064	3785.975	3811.187	3693.931	3681.283
T+86 sec	2:28:52	59.871	3826.454			3090	132.872	136.799		0.617	3846.566	3786.895	3811.991	3694.548	3681.592
T+88 sec	2:28:54	59.874	3825.713			3090	129.779	134.342		0.617	3844.726	3787.758	3812.719	3695.165	3681.900
T+90 sec	2:28:56	59.879	3823.826			3090	124.628	130.943		0.617	3841.943	3788.542	3813.354	3695.782	3682.209
T+92 sec	2:28:58	59.88	3822.505			3090	123.599	128.372		0.617	3839.990	3789.265	3813.921	3696.399	3682.517
T+94 sec	2:29:00	59.883	3819.081			3090	120.511	125.621		0.617	3837.855	3789.886	3814.419	3697.016	3682.826
T+96 sec	2:29:02	59.886	3818.055			3090	117.418	122.750		0.617	3835.601	3790.461	3814.852	3697.633	3683.134
T+98 sec	2:29:04	59.89	3816.815			3090	113.301	119.443		0.617	3832.911	3790.988	3815.213	3698.250	3683.443
T+100 sec	2:29:06	59.892	3815.010			3090	111.242	116.572		0.617	3830.658	3791.459	3815.516	3698.867	3683.751
T+102 sec	2:29:08	59.889	3813.783			3090	114.330	115.788		0.617	3830.490	3791.888	3815.804	3699.484	3684.060
T+104 sec	2:29:10	59.893	3811.838			3090	110.208	113.835		0.617	3829.154	3792.265	3816.055	3700.101	3684.368
T+106 sec	2:29:12	59.899	3809.652			3090	104.032	110.404		0.617	3826.340	3792.587	3816.246	3700.718	3684.677
T+108 sec	2:29:14	59.903	3806.972			3090	99.910	106.731		0.617	3823.284	3792.848	3816.374	3701.335	3684.985
T+110 sec	2:29:16	59.902	3805.593			3090	100.940	104.704		0.617	3821.874	3793.076	3816.472	3701.952	3685.293
T+112 sec	2:29:18	59.902	3804.188			3090	100.940	103.386		0.617	3821.174	3793.271	3816.555	3702.569	3685.602
T+114 sec	2:29:20	59.904	3796.078			3090	98.881	101.809		0.617	3820.214	3793.319	3816.618	3703.186	3685.910
T+116 sec	2:29:22	59.907	3793.975			3090	95.788	99.702		0.617	3818.723	3793.330	3816.653	3703.803	3686.219
T+118 sec	2:29:24	59.911	3792.169			3090	91.671	96.891		0.617	3816.529	3793.311	3816.651	3704.420	3686.527
T+120 sec	2:29:26	59.916	3791.502			3090	86.520	93.261		0.617	3813.516	3793.281	3816.600	3705.037	3686.836
T+122 sec	2:29:28	59.916	3789.534			3090	86.520	90.902		0.617	3811.774	3793.221	3816.522	3705.654	3687.144
T+124 sec	2:29:30	59.917	3788.132			3090	85.490	89.008		0.617	3810.497	3793.140	3816.426	3706.271	3687.453
T+126 sec	2:29:32	59.918	3784.563			3090	84.461	87.416		0.617	3809.522	3793.006	3816.319	3706.888	3687.761
T+128 sec	2:29:34	59.92	3783.028			3090	82.402	85.661		0.617	3808.384	3792.853	3816.197	3707.504	3688.070
T+130 sec	2:29:36	59.921	3781.701			3090	81.369	84.159		0.617	3807.499	3792.684	3816.065	3708.121	3688.378
T+132 sec	2:29:38	59.92	3776.358			3090	82.402	83.544		0.617	3807.501	3792.440	3815.937	3708.738	3688.687
T+134 sec	2:29:40	59.917	3775.635			3090	85.490	84.225		0.617	3808.799	3792.193	3815.832	3709.355	3688.995

T+136 sec	2:29:42	59.92	3774.604	3090	82.402	83.587	0.617	3808.778	3791.938	3815.730	3709.972	3689.304
T+138 sec	2:29:44	59.921	3773.334	3090	81.369	82.811	0.617	3808.618	3791.672	3815.628	3710.589	3689.612
$\mathrm{T}+140$ sec	2:29:46	59.923	3773.958	3090	79.310	81.585	0.617	3808.010	3791.423	3815.521	3711.206	3689.921
T+142 sec	2:29:48	59.926	3772.722	3090	76.221	79.708	0.617	3806.750	3791.163	3815.399	3711.823	3690.229
T+144 sec	2:29:50	59.925	3771.670	3090	77.251	78.848	0.617	3806.507	3790.896	3815.277	3712.440	3690.538
T+146 sec	2:29:52	59.928	3769.630	3090	74.159	77.207	0.617	3805.482	3790.608	3815.145	3713.057	3690.846
T+148 sec	2:29:54	59.927	3768.707	3090	75.192	76.501	0.617	3805.394	3790.316	3815.015	3713.674	3691.155
T+150 sec	2:29:56	59.932	3767.643	3090	70.041	74.240	0.617	3803.750	3790.018	3814.867	3714.291	3691.463
T+152 sec	2:29:58	59.927	3767.021	3090	75.192	74.573	0.617	3804.700	3789.719	3814.735	3714.908	3691.772
T+154 sec	2:30:00	59.928	3767.408	3090	74.159	74.428	0.617	3805.172	3789.433	3814.612	3715.525	3692.080
T+156 sec	2:30:02	59.931	3766.788	3090	71.070	73.253	0.617	3804.614	3789.147	3814.485	3716.142	3692.389
T+158 sec	2:30:04	59.929	3766.259	3090	73.129	73.210	0.617	3805.187	3788.861	3814.369	3716.759	3692.697
T+160 sec	2:30:06	59.931	3765.672	3090	71.070	72.461	0.617	3805.055	3788.574	3814.254	3717.376	3693.006
T+162 sec	2:30:08	59.933	3766.123	3090	69.011	71.254	0.617	3804.465	3788.301	3814.135	3717.993	3693.314
T+164 sec	2:30:10	59.937	3764.243	3090	64.890	69.026	0.617	3802.855	3788.011	3813.999	3718.610	3693.623
T+166 sec	2:30:12	59.937	3765.105	3090	64.890	67.578	0.617	3802.024	3787.738	3813.856	3719.227	3693.931
T+168 sec	2:30:14	59.945	3762.935	3090	56.650	63.754	0.617	3798.816	3787.446	3813.679	3719.844	3694.240
T+170 sec	2:30:16	59.949	3758.387	3090	52.529	59.825	0.617	3795.504	3787.108	3813.468	3720.461	3694.548
T+172 sec	2:30:18	59.947	3753.922	3090	54.591	57.993	0.617	3794.290	3786.727	3813.248	3721.078	3694.857
T+174 sec	2:30:20	59.942	3749.867	3090	59.739	58.604	0.617	3795.518	3786.308	3813.046	3721.695	3695.165
T+176 sec	2:30:22	59.941	3746.889	3090	60.768	59.361	0.617	3796.892	3785.865	3812.865	3722.312	3695.474
T+178 sec	2:30:24	59.942	3747.875	3090	59.739	59.493	0.617	3797.641	3785.443	3812.695	3722.929	3695.782
T+180 sec	2:30:26	59.945	3749.593	3090	56.650	58.498	0.617	3797.263	3785.049	3812.526	3723.546	3696.090
	2:30:28	59.948	3748.661	3090	53.558	56.769	0.617	3796.151	3784.654	3812.348	3724.163	3696.399
	2:30:30	59.947	3746.706	3090	54.591	56.007	0.617	3796.005	3784.245	3812.172	3724.780	3696.707
	2:30:32	59.949	3749.077	3090	52.529	54.790	0.617	3795.405	3783.871	3811.994	3725.397	3697.016
	2:30:34	59.951	3742.741	3090	50.470	53.278	0.617	3794.510	3783.438	3811.810	3726.014	3697.324
	2:30:36	59.952	3740.259	3090	49.440	51.935	0.617	3793.784	3782.989	3811.622	3726.631	3697.633
	2:30:38	59.953	3736.139	3090	48.411	50.701	0.617	3793.167	3782.506	3811.432	3727.248	3697.941
	2:30:40	59.951	3731.382	3090	50.470	50.620	0.617	3793.703	3781.984	3811.251	3727.865	3698.250
	2:30:42	59.952	3727.838	3090	49.440	50.207	0.617	3793.907	3781.437	3811.076	3728.482	3698.558
	2:30:44	59.952	3725.952	3090	49.440	49.939	0.617	3794.256	3780.882	3810.907	3729.099	3698.867
	2:30:46	59.952	3722.649	3090	49.440	49.764	0.617	3794.698	3780.306	3810.747	3729.715	3699.175
	2:30:48	59.955	3720.578	3090	46.348	48.569	0.617	3794.120	3779.720	3810.584	3730.332	3699.484
	2:30:50	59.952	3717.996	3090	49.440	48.874	0.617	3795.042	3779.121	3810.433	3730.949	3699.792
	2:30:52	59.954	3718.142	3090	47.381	48.351	0.617	3795.136	3778.534	3810.286	3731.566	3700.101
	2:30:54	59.952	3715.753	3090	49.440	48.733	0.617	3796.135	3777.937	3810.151	3732.183	3700.409
	2:30:56	59.953	3713.694	3090	48.411	48.620	0.617	3796.639	3777.330	3810.024	3732.800	3700.718
	2:30:58	59.953	3713.484	3090	48.411	48.547	0.617	3797.183	3776.734	3809.904	3733.417	3701.026
	2:31:00	59.952	3710.848	3090	49.440	48.860	0.617	3798.112	3776.124	3809.795	3734.034	3701.335
	2:31:02	59.954	3710.810	3090	47.381	48.342	0.617	3798.212	3775.525	3809.688	3734.651	3701.643
	2:31:04	59.954	3712.092	3090	47.381	48.006	0.617	3798.493	3774.948	3809.586	3735.268	3701.952
	2:31:06	59.959	3714.623	3090	42.230	45.985	0.617	3797.088	3774.404	3809.474	3735.885	3702.260
	2:31:08	59.957	3715.130	3090	44.289	45.391	0.617	3797.112	3773.875	3809.364	3736.502	3702.569
	2:31:10	59.956	3716.168	3090	45.319	45.366	0.617	3797.704	3773.364	3809.260	3737.119	3702.877
	2:31:12	59.954	3716.461	3090	47.381	46.071	0.617	3799.026	3772.865	3809.171	3737.736	3703.186
	2:31:14	59.956	3716.980	3090	45.319	45.808	0.617	3799.380	3772.379	3809.085	3738.353	3703.494
	2:31:16	59.955	3717.759	3090	46.348	45.997	0.617	3800.186	3771.908	3809.009	3738.970	3703.803
	2:31:18	59.958	3722.361	3090	43.260	45.039	0.617	3799.845	3771.485	3808.930	3739.587	3704.111

2:31:20	59.961	3721.973	3090	40.172	43.335	0.617	3798.758	3771.065	3808.844	3740.204	3704.420
2:31:22	59.962	3722.658	3090	39.138	41.866	0.617	3797.906	3770.659	3808.752	3740.821	3704.728
2:31:24	59.962	3722.267	3090	39.138	40.911	0.617	3797.568	3770.255	3888.659	3741.438	3705.037
2:31:26	59.968	3722.278	3090	32.962	38.129	0.617	3795.403	3769.859	3808.549	3742.055	3705.345
2:31:28	59.966	3721.787	3090	35.020	37.041	0.617	3794.931	3769.465	3808.438	3742.672	3705.654
2:31:30	59.966	3723.091	3090	35.020	36.334	0.617	3794.841	3769.088	3808.327	3743.289	3705.962
2:31:32	59.968	3723.984	3090	32.962	35.153	0.617	3794.278	3768.724	3808.214	3743.906	3706.271
2:31:34	59.97	3723.435	3090	30.899	33.664	0.617	3793.406	3768.362	3888.096	3744.523	3706.579
2:31:36	59.974	3723.893	3090	26.781	31.255	0.617	3791.614	3768.009	3807.965	3745.140	3706.888
2:31:38	59.97	3725.403	3090	30.899	31.130	0.617	3792.106	3767.673	3807.840	3745.757	3707.196
2:31:40	59.969	3727.121	3090	31.928	31.410	0.617	3793.002	3767.357	3807.724	3746.374	3707.504
2:31:42	59.969	3728.053	3090	31.928	31.591	0.617	3793.800	3767.052	3807.616	3746.991	3707.813
2:31:44	59.97	3731.130	3090	30.899	31.349	0.617	3794.175	3766.776	3807.513	3747.608	3708.121
2:31:46	59.971	3732.530	3090	29.869	30.831	0.617	3794.274	3766.514	3807.412	3748.225	3708.430
2:31:48	59.973	3733.327	3090	27.810	29.774	0.617	3793.834	3766.263	3807.309	3748.842	3708.738
2:31:50	59.973	3736.535	3090	27.810	29.087	0.617	3793.764	3766.039	3807.207	3749.459	3709.047
2:31:52	59.976	3736.907	3090	24.718	27.558	0.617	3792.852	3765.822	3807.100	3750.076	3709.355
2:31:54	59.978	3736.822	3090	22.659	25.843	0.617	3791.754	3765.607	3806.986	3750.693	3709.664
2:31:56	59.978	3738.699	3090	22.659	24.729	0.617	3791.257	3765.409	3806.870	3751.310	3709.972
2:31:58	59.976	3739.944	3090	24.718	24.725	0.617	3791.870	3765.223	3806.761	3751.927	3710.281
2:32:00	59.978	3740.877	3090	22.659	24.002	0.617	3791.764	3765.047	3806.652	3752.543	3710.589
2:32:02	59.976	3741.794	3090	24.718	24.253	0.617	3792.632	3764.880	3806.551	3753.160	3710.898
2:32:04	59.978	3745.234	3090	22.659	23.695	0.617	3792.691	3764.739	3806.452	3753.777	3711.206
2:32:06	59.977	3746.608	3090	23.689	23.693	0.617	3793.306	3764.611	3806.359	3754.394	3711.515
2:32:08	59.98	3748.300	3090	20.600	22.611	0.617	3792.840	3764.496	3806.264	3755.011	3711.823
2:32:10	59.982	3750.716	3090	18.542	21.186	0.617	3792.033	3764.399	3806.164	3755.628	3712.132
2:32:12	59.981	3751.558	3090	19.571	20.621	0.617	3792.085	3764.310	3806.067	3756.245	3712.440
2:32:14	59.98	3752.748	3090	20.600	20.614	0.617	3792.695	3764.230	3805.974	3756.862	3712.749
2:32:16	59.979	3755.599	3090	21.630	20.969	0.617	3793.667	3764.171	3805.890	3757.479	3713.057
2:32:18	59.98	3756.407	3090	20.600	20.840	0.617	3794.155	3764.119	3805.810	3758.096	3713.366
2:32:20	59.979	3756.975	3090	21.630	21.117	0.617	3795.048	3764.070	3805.738	3758.713	3713.674
2:32:22	59.983	3760.405	3090	17.508	19.854	0.617	3794.402	3764.046	3805.662	3759.330	3713.983
2:32:24	59.983	3760.982	3090	17.508	19.033	0.617	3794.199	3764.025	3805.585	3759.947	3714.291
2:32:26	59.984	3761.407	3090	16.479	18.139	0.617	3793.922	3764.008	3805.508	3760.564	3714.600
2:32:28	59.988	3762.737	3090	12.361	16.117	0.617	3792.516	3764.000	3805.422	3761.181	3714.908
2:32:30	59.989	3763.212	3090	11.332	14.442	0.617	3791.459	3763.994	3805.331	3761.798	3715.217
2:32:32	59.987	3764.958	3090	13.391	14.074	0.617	3791.708	3764.001	3805.243	3762.415	3715.525
2:32:34	59.987	3766.085	3090	13.391	13.835	0.617	3792.085	3764.014	3805.158	3763.032	3715.834
2:32:36	59.991	3766.433	3090	9.269	12.237	0.617	3791.104	3764.030	3805.068	3763.649	3716.142
2:32:38	59.993	3767.251	3090	7.210	10.477	0.617	3789.962	3764.050	3804.971	3764.266	3716.451
2:32:40	59.992	3767.792	3090	8.239	9.694	0.617	3789.796	3764.074	3884.875	3764.883	3716.759
2:32:42	59.991	3768.634	3090	9.269	9.545	0.617	3790.264	3764.102	3804.784	3765.500	3717.068
2:32:44	59.989	3771.146	3090	11.332	10.170	0.617	3791.506	3764.146	3804.701	3766.117	3717.376
2:32:46	59.986	3772.445	3090	14.420	11.658	0.617	3793.610	3764.198	3804.632	3766.734	3717.685
2:32:48	59.983	3773.695	3090	17.508	13.705	0.617	3796.275	3764.257	3804.580	3767.351	3717.993
2:32:50	59.983	3774.668	3090	17.508	15.036	0.617	3798.223	3764.321	3804.541	3767.968	3718.302
2:32:52	59.988	3775.841	3090	12.361	14.100	0.617	3797.903	3764.391	3804.501	3768.585	3718.610
2:32:54	59.993	3775.363	3090	7.210	11.689	0.617	3796.109	3764.457	3804.450	3769.202	3718.918
2:32:56	59.996	3774.866	3090	4.122	9.040	0.617	3794.077	3764.520	3804.387	3769.819	3719.227

2:32:58	59.998	3775.492	3090	2.059	6.597	0.617	3792.251	3764.586	3804.315	3770.436	3719.535
2:33:00	59.999	3776.420	3090	1.029	4.648	0.617	3790.919	3764.656	3804.235	3771.053	3719.844
2:33:02	60.001	3778.554	3090	-1.029	2.661	0.000	3788.932	3764.738	3804.144	3771.053	3720.149
2:33:04	59.999	3779.692	3090	1.029	2.090	0.000	3788.361	3764.826	3804.051	3771.053	3720.450
2:33:06	59.999	3781.256	3090	1.029	1.719	0.000	3787.990	3764.922	3803.958	3771.053	3720.748
2:33:08	59.999	3780.595	3090	1.029	1.478	0.000	3787.749	3765.014	3803.863	3771.053	3721.042
2:33:10	60.002	3783.092	3090	-2.059	0.240	0.000	3786.511	3765.118	3803.763	3771.053	3721.333
2:33:12	60.005	3783.896	3090	-5.151	-1.647	0.000	3784.624	3765.226	3803.653	3771.053	3721.620
2:33:14	60.007	3784.421	3090	-7.210	-3.594	0.000	3782.677	3765.336	3803.533	3771.053	3721.904
2:33:16	60.008	3785.768	3090	-8.239	-5.220	0.000	3781.051	3765.452	3803.405	3771.053	3722.185
2:33:18	60.011	3785.463	3090	-11.332	-7.359	0.000	3778.912	3765.565	3803.267	3771.053	3722.463
2:33:20	60.014	3786.850	3090	-14.420	-9.830	0.000	3776.441	3765.684	3803.116	3771.053	3722.737
2:33:22	60.017	3786.304	3090	-17.508	-12.518	0.000	3773.754	3765.800	3802.952	3771.053	3723.009
2:33:24	60.019	3787.259	3090	-19.571	-14.986	0.000	3771.285	3765.919	3802.776	3771.053	3723.277
2:33:26	60.021	3787.516	3090	-21.630	-17.312	0.000	3768.960	3766.038	3802.590	3771.053	3723.542
2:33:28	60.017	3787.955	3090	-17.508	-17.380	0.000	3768.891	3766.159	3802.404	3771.053	3723.805
2:33:30	60.017	3788.030	3090	-17.508	-17.425	0.000	3768.846	3766.278	3802.221	3771.053	3724.064
2:33:32	60.019	3788.607	3090	-19.571	-18.176	0.000	3768.095	3766.399	3802.036	3771.053	3724.321
2:33:34	60.023	3789.216	3090	-23.689	-20.106	0.000	3766.166	3766.523	3801.842	3771.053	3724.575
2:33:36	60.024	3787.537	3090	-24.718	-21.720	0.000	3764.551	3766.636	3801.641	3771.053	3724.826
2:33:38	60.025	3785.842	3090	-25.752	-23.131	0.000	3763.140	3766.738	3801.435	3771.053	3725.075
2:33:40	60.021	3786.077	3090	-21.630	-22.606	0.000	3763.666	3766.841	3801.234	3771.053	3725.321
2:33:42	60.019	3787.930	3090	-19.571	-21.544	0.000	3764.728	3766.953	3801.041	3771.053	3725.564
2:33:44	60.024	3788.760	3090	-24.718	-22.655	0.000	3763.617	3767.068	3800.844	3771.053	3725.805
2:33:46	60.024	3786.875	3090	-24.718	-23.377	0.000	3762.894	3767.171	3800.646	3771.053	3726.043
2:33:48	60.021	3786.550	3090	-21.630	-22.765	0.000	3763.506	3767.272	3800.452	3771.053	3726.279
2:33:50	60.02	3787.358	3090	-20.600	-22.008	0.000	3764.264	3767.376	3800.265	3771.053	3726.512
2:33:52	60.025	3785.018	3090	-25.752	-23.318	0.000	3762.953	3767.467	3800.072	3771.053	3726.743
2:33:54	60.024	3785.614	3090	-24.718	-23.808	0.000	3762.463	3767.560	3799.879	3771.053	3726.971
2:33:56	60.02	3785.949	3090	-20.600	-22.685	0.000	3763.586	3767.654	3799.694	3771.053	3727.197
2:33:58	60.02	3785.804	3090	-20.600	-21.956	0.000	3764.316	3767.746	3799.515	3771.053	3727.421
2:34:00	60.022	3786.864	3090	-22.659	-22.202	0.000	3764.069	3767.843	3799.336	3771.053	3727.642
2:34:02	60.022	3786.877	3090	-22.659	-22.362	0.000	3763.909	3767.938	3799.158	3771.053	3727.861
2:34:04	60.022	3785.254	3090	-22.659	-22.466	0.000	3763.805	3768.025	3798.981	3771.053	3728.079
2:34:06	60.021	3785.726	3090	-21.630	-22.173	0.000	3764.098	3768.113	3798.807	3771.053	3728.293
2:34:08	60.021	3786.347	3090	-21.630	-21.983	0.000	3764.288	3768.203	3798.636	3771.053	3728.506
2:34:10	60.023	3785.821	3090	-23.689	-22.580	0.000	3763.691	3768.290	3798.464	3771.053	3728.717
2:34:12	60.023	3785.798	3090	-23.689	-22.968	0.000	3763.303	3768.376	3798.292	3771.053	3728.925
2:34:14	60.022	3786.284	3090	-22.659	-22.860	0.000	3763.411	3768.463	3798.122	3771.053	3729.132
2:34:16	60.019	3786.939	3090	-19.571	-21.709	0.000	3764.562	3768.553	3797.959	3771.053	3729.336
2:34:18	60.016	3787.627	3090	-16.479	-19.878	0.000	3766.393	3768.645	3797.806	3771.053	3729.539
2:34:20	60.018	3789.444	3090	-18.542	-19.411	0.000	3766.861	3768.745	3797.658	3771.053	3729.739
2:34:22	60.018	3789.673	3090	-18.542	-19.106	0.000	3767.165	3768.845	3797.512	3771.053	3729.938
2:34:24	60.018	3789.404	3090	-18.542	-18.909	0.000	3767.363	3768.943	3797.368	3771.053	3730.135
2:34:26	60.019	3788.479	3090	-19.571	-19.141	0.000	3767.131	3769.036	3797.225	3771.053	3730.330
2:34:28	60.019	3789.183	3090	-19.571	-19.291	0.000	3766.980	3769.131	3797.082	3771.053	3730.523
2:34:30	60.016	3789.369	3090	-16.479	-18.307	0.000	3767.964	3769.226	3796.945	3771.053	3730.714
2:34:32	60.015	3789.005	3090	-15.449	-17.307	0.000	3768.964	3769.318	3796.815	3771.053	3730.903
2:34:34	60.016	3788.665	3090	-16.479	-17.017	0.000	3769.254	3769.408	3796.686	3771.053	3731.091

2:34:36	60.014	3788.933	3090	-14.420	-16.108	0.000	3770.163	3769.499	3796.564	3771.053	3731.277
2:34:38	60.013	3790.667	3090	-13.391	-15.157	0.000	3771.114	3769.596	3796.446	3771.053	3731.461
2:34:40	60.012	3790.805	3090	-12.361	-14.178	0.000	3772.093	3769.693	3796.335	3771.053	3731.643
2:34:42	60.012	3790.411	3090	-12.361	-13.542	0.000	3772.729	3769.788	3796.227	3771.053	3731.824
2:34:44	60.01	3789.769	3090	-10.298	-12.407	0.000	3773.864	3769.879	3796.125	3771.053	3732.003
2:34:46	60.007	3791.540	3090	-7.210	-10.588	0.000	3775.683	3769.977	3796.033	3771.053	3732.181
2:34:48	60.007	3792.945	3090	-7.210	-9.406	0.000	3776.866	3770.080	3795.946	3771.053	3732.356
2:34:50	60.009	3791.027	3090	-9.269	-9.358	0.000	3776.913	3770.174	3795.861	3771.053	3732.531
2:34:52	60.009	3791.443	3090	-9.269	-9.327	0.000	3776.945	3770.269	3795.777	3771.053	3732.704
2:34:54	60.01	3791.426	3090	-10.298	-9.667	0.000	3776.605	3770.363	3795.691	3771.053	3732.875
2:34:56	60.003	3790.603	3090	-3.088	-7.364	0.000	3778.907	3770.453	3795.617	3771.053	3733.044
2:34:58	59.999	3790.457	3090	1.029	-4.426	0.000	3781.845	3770.541	3795.556	3771.053	3733.213
2:35:00	59.995	3790.216	3090	5.151	-1.074	0.000	3785.197	3770.627	3795.511	3771.053	3733.379
2:35:02	59.992	3789.585	3090	8.239	2.185	0.000	3788.457	3770.710	3795.480	3771.053	3733.545
2:35:04	59.991	3788.457	3090	9.269	4.665	0.000	3790.936	3770.787	3795.460	3771.053	3733.708
2:35:06	59.992	3788.105	3090	8.239	5.916	0.000	3792.187	3770.862	3795.446	3771.053	3733.871
2:35:08	59.992	3788.057	3090	8.239	6.729	0.000	3793.000	3770.936	3795.436	3771.053	3734.032
2:35:10	59.988	3788.189	3090	12.361	8.700	0.000	3794.972	3771.010	3795.434	3771.053	3734.191
2:35:12	59.986	3788.497	3090	14.420	10.702	0.000	3796.973	3771.085	3795.440	3771.053	3734.349
2:35:14	59.985	3788.540	3090	15.449	12.364	0.000	3798.635	3771.159	3795.454	3771.053	3734.506
2:35:16	59.984	3788.571	3090	16.479	13.804	0.000	3800.075	3771.233	3795.474	3771.053	3734.662
2:35:18	59.985	3788.101	3090	15.449	14.380	0.000	3800.651	3771.304	3795.495	3771.053	3734.816
2:35:20	59.984	3787.133	3090	16.479	15.114	0.000	3801.386	3771.371	3795.520	3771.053	3734.969
2:35:22	59.982	3786.453	3090	18.542	16.314	0.000	3802.585	3771.434	3795.550	3771.053	3735.120
2:35:24	59.981	3787.732	3090	19.571	17.454	0.000	3803.725	3771.502	3795.584	3771.053	3735.271
2:35:26	59.982	3788.813	3090	18.542	17.835	0.000	3804.106	3771.574	3795.619	3771.053	3735.420
2:35:28	59.979	3789.285	3090	21.630	19.163	0.000	3805.434	3771.647	3795.660	3771.053	3735.568
2:35:30	59.977	3788.256	3090	23.689	20.747	0.000	3807.018	3771.715	3795.706	3771.053	3735.714
2:35:32	59.976	3788.410	3090	24.718	22.137	0.000	3808.408	3771.784	3795.758	3771.053	3735.860
2:35:34	59.976	3790.467	3090	24.718	23.040	0.000	3809.312	3771.860	3795.814	3771.053	3736.004
2:35:36	59.979	3790.665	3090	21.630	22.547	0.000	3808.818	3771.936	3795.867	3771.053	3736.147
2:35:38	59.982	3790.420	3090	18.542	21.145	0.000	3807.416	3772.011	3795.913	3771.053	3736.289
2:35:40	59.978	3789.674	3090	22.659	21.675	0.000	3807.946	3772.082	3795.962	3771.053	3736.430
2:35:42	59.976	3789.267	3090	24.718	22.740	0.000	3809.011	3772.151	3796.014	3771.053	3736.569
2:35:44	59.974	3789.148	3090	26.781	24.154	0.000	3810.426	3772.219	3796.072	3771.053	3736.708
2:35:46	59.976	3790.430	3090	24.718	24.352	0.000	3810.623	3772.292	3796.130	3771.053	3736.845
2:35:48	59.977	3789.914	3090	23.689	24.120	0.000	3810.391	3772.362	3796.187	3771.053	3736.982
2:35:50	59.977	3786.243	3090	23.689	23.969	0.000	3810.240	3772.417	3796.242	3771.053	3737.117
2:35:52	59.975	3787.442	3090	25.752	24.593	0.000	3810.864	3772.476	3796.300	3771.053	3777.251
2:35:54	59.973	3788.963	3090	27.810	25.719	0.000	3811.990	3772.541	3796.361	3771.053	3737.384
2:35:56	59.969	3790.602	3090	31.928	27.892	0.000	3814.163	3772.611	3796.431	3771.053	3737.516
2:35:58	59.97	3791.877	3090	30.899	28.944	0.000	3815.216	3772.686	3796.504	3771.053	3777.647
2:36:00	59.971	3792.911	3090	29.869	29.268	0.000	3815.539	3772.764	3796.578	3771.053	3737.777
2:36:02	59.973	3792.311	3090	27.810	28.758	0.000	3815.029	3772.840	3796.649	3771.053	3737.906
2:36:04	59.978	3789.125	3090	22.659	26.623	0.000	3812.895	3772.903	3796.711	3771.053	3738.034
2:36:06	59.981	3788.080	3090	19.571	24.155	0.000	3810.426	3772.961	3796.764	3771.053	3738.161
2:36:08	59.978	3787.844	3090	22.659	23.632	0.000	3809.903	3773.018	3796.814	3771.053	3738.287
2:36:10	59.975	3787.135	3090	25.752	24.374	0.000	3810.645	3773.071	3796.867	3771.053	3738.412
2:36:12	59.972	3787.164	3090	28.840	25.937	0.000	3812.208	3773.125	3796.925	3771.053	3738.536

2:36:14	59.976	3786.996	3090	24.718	25.510	0.000	3811.782	3773.177	3796.981	3771.053	3738.659
2:36:16	59.975	3787.405	3090	25.752	25.595	0.000	3811.866	3773.230	3797.037	3771.053	3738.781
2:36:18	59.973	3786.487	3090	27.810	26.370	0.000	3812.641	3773.280	3797.095	3771.053	3738.903
2:36:20	59.969	3787.079	3090	31.928	28.316	0.000	3814.587	3773.332	3797.160	3771.053	3739.023
2:36:22	59.966	3789.214	3090	35.020	30.662	0.000	3816.933	3773.391	3797.234	3771.053	3739.143
2:36:24	59.965	3790.512	3090	36.050	32.548	0.000	3818.819	3773.454	3797.314	3771.053	3739.261
2:36:26	59.966	3791.221	3090	35.020	33.413	0.000	3819.685	3773.520	3797.396	3771.053	3739.379
2:36:28	59.969	3792.218	3090	31.928	32.893	0.000	3819.165	3773.588	3797.476	3771.053	3739.496
2:36:30	59.97	3790.959	3090	30.899	32.195	0.000	3818.467	3773.652	3797.553	3771.053	3739.612
2:36:32	59.968	3788.824	3090	32.962	32.464	0.000	3818.735	3773.707	3797.631	3771.053	3739.727
2:36:34	59.965	3789.026	3090	36.050	33.719	0.000	3819.990	3773.763	3797.712	3771.053	3739.841
2:36:36	59.964	3789.167	3090	37.079	34.895	0.000	3821.166	3773.819	3797.797	3771.053	3739.955
2:36:38	59.97	3787.394	3090	30.899	33.496	0.000	3819.767	3773.868	3797.876	3771.053	3740.068
2:36:40	59.972	3785.690	3090	28.840	31.867	0.000	3818.138	3773.910	3797.949	3771.053	3740.180
2:36:42	59.967	3784.831	3090	33.991	32.610	0.000	3818.881	3773.950	3798.024	3771.053	3740.291
2:36:44	59.967	3785.010	3090	33.991	33.093	0.000	3819.365	3773.989	3798.100	3771.053	3740.401
2:36:46	59.969	3784.320	3090	31.928	32.686	0.000	3818.957	3774.026	3798.175	3771.053	3740.510
2:36:48	59.968	3782.809	3090	32.962	32.782	0.000	3819.053	3774.057	3798.249	3771.053	3740.619
2:36:50	59.969	3782.110	3090	31.928	32.483	0.000	3818.754	3774.085	3798.321	3771.053	3740.727
2:36:52	59.967	3779.352	3090	33.991	33.011	0.000	3819.282	3774.104	3798.395	3771.053	3740.834
2:36:54	59.967	3779.056	3090	33.991	33.354	0.000	3819.625	3774.121	3798.469	3771.053	3740.940
2:36:56	59.966	3778.633	3090	35.020	33.937	0.000	3820.208	3774.137	3798.545	3771.053	3741.046
2:36:58	59.965	3779.212	3090	36.050	34.677	0.000	3820.948	3774.155	3798.623	3771.053	3741.151
2:37:00	59.971	3779.335	3090	29.869	32.994	0.000	3819.265	3774.173	3798.695	3771.053	3741.255
2:37:02	59.967	3776.429	3090	33.991	33.343	0.000	3819.614	3774.181	3798.768	3771.053	3741.359
2:37:04	59.965	3775.647	3090	36.050	34.290	0.000	3820.562	3774.186	3798.843	3771.053	3741.461
2:37:06	59.962	3776.597	3090	39.138	35.987	0.000	3822.258	3774.194	3798.923	3771.053	3741.563
2:37:08	59.964	3776.559	3090	37.079	36.369	0.000	3822.641	3774.202	3799.004	3771.053	3741.665
2:37:10	59.97	3776.023	3090	30.899	34.455	0.000	3820.726	3774.208	3799.079	3771.053	3741.765
2:37:12	59.967	3773.170	3090	33.991	34.292	0.000	3820.564	3774.205	3799.152	3771.053	3741.865
2:37:14	59.969	3771.730	3090	31.928	33.465	0.000	3819.736	3774.196	3799.221	3771.053	3741.965
2:37:16	59.968	3768.793	3090	32.962	33.289	0.000	3819.560	3774.178	3799.290	3771.053	3742.063
2:37:18	59.963	3768.503	3090	38.109	34.976	0.000	3821.247	3774.159	3799.364	3771.053	3742.161
2:37:20	59.965	3768.917	3090	36.050	35.352	0.000	3821.623	3774.141	3799.439	3771.053	3742.259
2:37:22	59.97	3767.366	3090	30.899	33.793	0.000	3820.064	3774.119	3799.508	3771.053	3742.355
2:37:24	59.973	3764.786	3090	27.810	31.699	0.000	3817.970	3774.088	3799.569	3771.053	3742.451
2:37:26	59.968	3760.295	3090	32.962	32.141	0.000	3818.412	3774.042	3799.632	3771.053	3742.546
2:37:28	59.965	3759.592	3090	36.050	33.509	0.000	3819.780	3773.994	3799.699	3771.053	3742.641
2:37:30	59.968	3761.894	3090	32.962	33.317	0.000	3819.589	3773.954	3799.764	3771.053	3742.735
2:37:32	59.969	3761.777	3090	31.928	32.831	0.000	3819.102	3773.914	3799.828	3771.053	3742.829
2:37:34	59.967	3760.583	3090	33.991	33.237	0.000	3819.508	3773.870	3799.892	3771.053	3742.922
2:37:36	59.964	3760.157	3090	37.079	34.582	0.000	3820.853	3773.825	3799.961	3771.053	3743.014
2:37:38	59.966	3759.781	3090	35.020	34.735	0.000	3821.007	3773.780	3800.029	3771.053	3743.105
2:37:40	59.979	3759.495	3090	21.630	30.148	0.000	3816.420	3773.733	3800.083	3771.053	3743.196
2:37:42	59.99	3757.773	3090	10.298	23.201	0.000	3809.472	3773.682	3800.113	3771.053	3743.287
2:37:44	59.983	3753.277	3090	17.508	21.208	0.000	3807.480	3773.616	3800.137	3771.053	3743.377
2:37:46	59.974	3753.087	3090	26.781	23.159	0.000	3809.430	3773.550	3800.167	3771.053	3743.466
2:37:48	59.967	3751.637	3090	33.991	26.950	0.000	3813.221	3773.480	3800.208	3771.053	3743.555
2:37:50	59.965	3753.751	3090	36.050	30.135	0.000	3816.406	3773.417	3800.260	3771.053	3743.643

2:37:52	59.962	3758.225	3090	39.138	33.286	0.000	3819.557	3773.368	3800.322	3771.053	3743.730
2:37:54	59.962	3759.250	3090	39.138	35.334	0.000	3821.606	3773.323	3800.389	3771.053	3743.817
2:37:56	59.961	3758.041	3090	40.172	37.027	0.000	3823.299	3773.275	3800.462	3771.053	3743.904
2:37:58	59.961	3760.965	3090	40.172	38.128	0.000	3824.399	3773.236	3800.537	3771.053	3743.990
2:38:00	59.96	3762.022	3090	41.201	39.203	0.000	3825.475	3773.201	3800.616	3771.053	3744.075
2:38:02	59.963	3763.822	3090	38.109	38.820	0.000	3825.091	3773.171	3800.692	3771.053	3744.160
2:38:04	59.959	3763.100	3090	42.230	40.014	0.000	3826.285	3773.140	3800.772	3771.053	3744.244
2:38:06	59.956	3763.858	3090	45.319	41.871	0.000	3828.142	3773.111	3800.858	3771.053	3744.328
2:38:08	59.951	3764.158	3090	50.470	44.880	0.000	3831.151	3773.083	3800.952	3771.053	3744.411
2:38:10	59.953	3766.127	3090	48.411	46.116	0.000	3832.387	3773.062	3801.049	3771.053	3744.494
2:38:12	59.954	3768.339	3090	47.381	46.559	0.000	3832.830	3773.047	3801.147	3771.053	3744.576
2:38:14	59.957	3767.972	3090	44.289	45.765	0.000	3832.036	3773.032	3801.242	3771.053	3744.658
2:38:16	59.956	3767.438	3090	45.319	45.608	0.000	3831.880	3773.014	3801.336	3771.053	3744.739
2:38:18	59.961	3765.606	3090	40.172	43.706	0.000	3829.977	3772.992	3801.424	3771.053	3744.820
2:38:20	59.963	3762.688	3090	38.109	41.747	0.000	3828.018	3772.960	3801.505	3771.053	3744.900
2:38:22	59.961	3761.570	3090	40.172	41.195	0.000	3827.467	3772.926	3801.584	3771.053	3744.980
2:38:24	59.959	3761.920	3090	42.230	41.558	0.000	3827.829	3772.892	3801.663	3771.053	3745.059
2:38:26	59.963	3759.627	3090	38.109	40.350	0.000	3826.622	3772.852	3801.739	3771.053	3745.138
2:38:28	59.963	3758.522	3090	38.109	39.566	0.000	3825.837	3772.809	3801.811	3771.053	3745.216
2:38:30	59.965	3752.429	3090	36.050	38.335	0.000	3824.606	3772.748	3801.880	3771.053	3745.294
2:38:32	59.968	3750.102	3090	32.962	36.454	0.000	3822.726	3772.680	3801.942	3771.053	3745.371
2:38:34	59.968	3753.830	3090	32.962	35.232	0.000	3821.503	3772.624	3802.001	3771.053	3745.448
2:38:36	59.968	3753.510	3090	32.962	34.437	0.000	3820.709	3772.567	3802.056	3771.053	3745.525
2:38:38	59.97	3753.523	3090	30.899	33.199	0.000	3819.470	3772.510	3802.108	3771.053	3745.601
2:38:40	59.973	3752.741	3090	27.810	31.313	0.000	3817.584	3772.452	3802.154	3771.053	3745.676
2:38:42	59.971	3753.178	3090	29.869	30.808	0.000	3817.079	3772.395	3802.198	3771.053	3745.751
2:38:44	59.965	3752.729	3090	36.050	32.642	0.000	3818.914	3772.337	3802.247	3771.053	3745.826
2:38:46	59.967	3753.291	3090	33.991	33.114	0.000	3819.386	3772.281	3802.297	3771.053	3745.900
2:38:48	59.967	3752.872	3090	33.991	33.421	0.000	3819.692	3772.225	3802.348	3771.053	3745.974
2:38:50	59.972	3752.359	3090	28.840	31.818	0.000	3818.089	3772.167	3802.394	3771.053	3746.047
2:38:52	59.976	3749.398	3090	24.718	29.333	0.000	3815.604	3772.101	3802.432	3771.053	3746.120
2:38:54	59.975	3747.476	3090	25.752	28.079	0.000	3814.351	3772.029	3802.467	3771.053	3746.193
2:38:56	59.969	3740.370	3090	31.928	29.426	0.000	3815.698	3771.938	3802.505	3771.053	3746.265
2:38:58	59.973	3741.285	3090	27.810	28.861	0.000	3815.132	3771.849	3802.541	3771.053	3746.336
2:39:00	59.974	3746.651	3090	26.781	28.133	0.000	3814.404	3771.777	3802.576	3771.053	3746.408
2:39:02	59.978	3745.738	3090	22.659	26.217	0.000	3812.488	3771.702	3802.604	3771.053	3746.478
2:39:04	59.981	3743.351	3090	19.571	23.891	0.000	3810.162	3771.621	3802.626	3771.053	3746.549
2:39:06	59.981	3741.618	3090	19.571	22.379	0.000	3808.650	3771.536	3802.643	3771.053	3746.619
2:39:08	59.981	3740.306	3090	19.571	21.396	0.000	3807.667	3771.447	3802.657	3771.053	3746.688
2:39:10	59.982	3738.484	3090	18.542	20.397	0.000	3806.668	3771.354	3802.668	3771.053	3746.758
2:39:12	59.982	3738.901	3090	18.542	19.748	0.000	3806.019	3771.262	3802.678	3771.053	3746.826
2:39:14	59.984	3737.404	3090	16.479	18.604	0.000	3804.875	3771.167	3802.684	3771.053	3746.895
2:39:16	59.982	3737.273	3090	18.542	18.582	0.000	3804.853	3771.071	3802.690	3771.053	3746.963
2:39:18	59.981	3736.308	3090	19.571	18.928	0.000	3805.199	3770.974	3802.697	3771.053	3747.031
2:39:20	59.979	3736.272	3090	21.630	19.874	0.000	3806.145	3770.877	3802.707	3771.053	3747.098
2:39:22	59.98	3735.448	3090	20.600	20.128	0.000	3806.399	3770.778	3802.717	3771.053	3747.165
2:39:24	59.978	3735.650	3090	22.659	21.014	0.000	3807.285	3770.681	3802.730	3771.053	3747.231
2:39:26	59.978	3737.541	3090	22.659	21.590	0.000	3807.861	3770.589	3802.744	3771.053	3747.297
2:39:28	59.98	3738.012	3090	20.600	21.244	0.000	3807.515	3770.499	3802.757	3771.053	3747.363

2:39:30	59.981	3736.748
2:39:32	59.98	3736.693
2:39:34	59.978	3736.067
2:39:36	59.976	3736.094
2:39:38	59.972	3736.575
2:39:40	59.971	3738.571
2:39:42	59.969	3738.875
2:39:44	59.974	3738.935
2:39:46	59.975	3738.647
2:39:48	59.976	3737.684
2:39:50	59.972	3737.382
2:39:52	59.969	3737.892
2:39:54	59.971	3740.017
2:39:56	59.974	3740.329
2:39:58	59.972	3742.053
2:40:00	59.972	3742.424
2:40:02	59.972	3742.524
2:40:04	59.977	3742.245
2:40:06	59.982	3741.723
2:40:08	59.978	3740.085
2:40:10	59.976	3740.629
2:40:12	59.973	3739.964
2:40:14	59.974	3740.775
2:40:16	59.977	3742.833
2:40:18	59.977	3741.268
2:40:20	59.978	3739.776
2:40:22	59.979	3738.966
2:40:24	59.981	3738.706
2:40:26	59.977	3738.879
2:40:28	59.974	3739.860
2:40:30	59.971	3738.102
2:40:32	59.971	3738.558
2:40:34	59.971	3743.507
2:40:36	59.972	3743.419
2:40:38	59.968	3745.251
2:40:40	59.966	3745.744
2:40:42	59.966	3747.340
2:40:44	59.971	3750.700
2:40:46	59.973	3749.750
2:40:48	59.972	3746.217
2:40:50	59.969	3744.683
2:40:52	59.972	3743.745
2:40:54	59.974	3743.149
2:40:56	59.973	3740.299
2:40:58	59.97	3739.453
2:41:00	59.971	3733.376
2:41:02	59.974	3731.830
2:41:04	59.982	3737.583
2:41:06	59.985	3736.229

U.	

Abstract

$\begin{array}{lllllll}0.000 & 3806.929 & 3770.406 & 3802.769 & 3771.053 & 3747.429\end{array}$ $\begin{array}{llllll}0.000 & 3806.929 & 3770.406 & 3802.169 & 371.053 & 3747.429 \\ 0.000 & 3806.909 & 3770.313 & 3802.780 & 3771.053 & 3747.494\end{array}$ $\begin{array}{llllll}0.000 & 3806.909 & 3770.313 & 3802.780 & 3771.053 & 3747.494 \\ 0.000 & 3807.617 & 3770.220 & 3802.793 & 3771.053 & 3747.559\end{array}$ $\begin{array}{llllll}0.000 & 3807.617 & 3770.220 & 3802.793 & 3771.053 & 3747.559 \\ 0.000 & 3808.797 & 3770.126 & 3802.810 & 3771.053 & 3747.623\end{array}$ $\begin{array}{llllll}0.000 & 3808.797 & 3770.126 & 3802.810 & 3771.053 & 3747.623 \\ 0.000 & 3811.007 & 3770.035 & 3802.832 & 3771.053 & 3747.687\end{array}$ $\begin{array}{llllll}0.000 & 3811.007 & 3770.035 & 3802.832 & 3771.053 & 3747.687 \\ 0.000 & 3812.804 & 3769.949 & 3802.859 & 3771.053 & 3747.751\end{array}$ $\begin{array}{llllll}0.000 & 3812.804 & 3769.949 & 3802.859 & 3771.053 & 3747.751\end{array}$ $\begin{array}{llllll}0.000 & 3814.692 & 3769.865 & 3802.891 & 3771.053 & 3747.814 \\ 0.000 & 3814.118 & 3769782 & 380.921 & 3771.053 & 3747.877\end{array}$ $\begin{array}{llllll}0.000 & 3814.118 & 3769.782 & 3802.921 & 3771.053 & 3747.877 \\ 0.000 & 3813.385 & 3769.698 & 3802.950 & 3771.053 & 3747.940\end{array}$ $\begin{array}{llllll}0.000 & 3813.385 & 3769.698 & 3802.950 & 3771.053 & 3747.940 \\ 0.000 & 3812.546 & 3769.612 & 380.975 & 3771.053 & 3748\end{array}$ $\begin{array}{llllll}0.000 & 3812.546 & 3769.612 & 3802.975 & 3771.053 & 3748.002\end{array}$ $\begin{array}{llllll}0.000 & 3813.444 & 3769.525 & 3803.004 & 3771.053 & 3748.064\end{array}$ $\begin{array}{llllll}0.000 & 3815.108 & 3769.441 & 3803.036 & 3771.053 & 3748.125 \\ 0.000 & 3815.470 & 3769.362 & 3803.069 & 3771.053 & 3748.187\end{array}$ $\begin{array}{llllll}0.000 & 3815.470 & 3769.362 & 3803.069 & 3771.053 & 3748.187 \\ 0.000 & 3814.624 & 3769.285 & 3803.100 & 3771.053 & 3748.248\end{array}$ $\begin{array}{llllll}0.000 & 3814.624 & 3769.285 & 3803.100 & 3771.053 & 3748.248 \\ 0.000 & 3814.794 & 3769.213 & 3803.131 & 3771.053 & 3748.308\end{array}$ $\begin{array}{llllll}0.000 & 3814.794 & 3769.213 & 3803.131 & 3771.053 & 3748.308 \\ 0.000 & 3814.905 & 3769.142 & 3803.162 & 3771.053 & 3748.369\end{array}$ $\begin{array}{llllll}0.000 & 3814.905 & 3769.142 & 3803.162 & 3771.053 & 3748.369 \\ 0.000 & 3814.977 & 3769.072 & 3803.193 & 3771.053 & 3748.429\end{array}$ $\begin{array}{lllllll}0.000 & 3814.97 & 3769.072 & 3803.193 & 371.053 & 3748.429\end{array}$ $\begin{array}{llllll}0.000 & 3813.221 & 376.001 & 3803.220 & 3771.053 & 3748.488\end{array}$ $\begin{array}{lllllll}0.000 & 3810.278 & 3768.930 & 3803.238 & 3771.053 & 3748.548 \\ 0.000 & 3809.807 & 3768.854 & 3803.255 & 3771.053 & 3748.607\end{array}$ $\begin{array}{lllllll}0.000 & 3809.807 & 3768.854 & 3803.255 & 371.053 & 3748.607\end{array}$ $\begin{array}{llllllll}0.000 & 3810.221 & 3788.880 & 3803.273 & 371.053 & 3748.666\end{array}$ $\begin{array}{lllllll}0.000 & 3811.572 & 3788.633 & 3803.295 & 371.053 & 3748.724\end{array}$ $\begin{array}{llllll}0.000 & 3812.090 & 3768.633 & 3803.318 & 3771.053 & 3748.782 \\ 0.000 & 3811.345 & 3768.566 & 3803.339 & 3771.053 & 3748.840\end{array}$ $\begin{array}{llllll}0.000 & 3811.345 & 3768.566 & 3803.339 & 3771.053 & 3748.840 \\ 0.000 & 3810.860 & 3768.495 & 3803.358 & 3771.053 & 3748.898\end{array}$ $\begin{array}{llllll}0.000 & 3810.860 & 3768.495 & 3803.358 & 3771.053 & 3748.898 \\ 0.000 & 3810.185 & 3768.421 & 3803.376 & 3771.053 & 3748.955\end{array}$ $\begin{array}{llllll}0.000 & 3810.185 & 3768.421 & 3803.376 & 3771.053 & 3748.955 \\ 0.000 & 3809.385 & 3768.346 & 3803.391 & 3771.053 & 3749.012\end{array}$ $\begin{array}{llllll}0.000 & 3809.385 & 3768.346 & 3803.391 & 3771.053 & 3749.012 \\ 0.000 & 3808.145 & 3768.270 & 3803.403 & 3771.053 & 3749.068\end{array}$ $\begin{array}{llllll}0.000 & 3808.145 & 3768.270 & 3803.403 & 3771.053 & 3749.068 \\ 0.000 & 3808.780 & 3768.194 & 3803.417 & 3771.053 & 3749.125\end{array}$ $\begin{array}{llllll}0.000 & 3808.780 & 3768.194 & 3803.417 & 3771.053 & 3749.125 \\ 0.000 & 3810.276 & 3768.122 & 3803.435 & 3771.053 & 3749.181\end{array}$ $\begin{array}{llllll}0.000 & 3810.276 & 3768.122 & 3803.435 & 3771.053 & 3749.181 \\ 0.000 & 3812.328 & 3768.046 & 3803.457 & 3771.053 & 3749.237\end{array}$ $\begin{array}{llllll}0.000 & 3812.328 & 3768.046 & 3803.457 & 3771.053 & 3749.237 \\ 0.000 & 3813.663 & 3767.971 & 3803.483 & 3771.053 & 3749.292\end{array}$ $\begin{array}{llllll}0.000 & 3813.663 & 3767.971 & 3803.483 & 3771.053 & 3749.292 \\ 0.000 & 3814.530 & 3767.909 & 3803.511 & 3771.053 & 3749.347\end{array}$ $\begin{array}{llllll}0.000 & 3814.530 & 3767.909 & 3803.511 & 3771.053 & 3749.347 \\ 0.000 & 3814.733 & 3767.847 & 3803.539 & 3771.053 & 3749.402\end{array}$ $\begin{array}{llllll}0.000 & 3814.733 & 3767.847 & 3803.539 & 3771.053 & 3749.402 \\ 0.000 & 3816.308 & 3767.790 & 3803.572 & 3771.053 & 3749.457\end{array}$ $\begin{array}{llllll}0.000 & 3816.308 & 3767.790 & 3803.572 & 3771.053 & 3749.457 \\ 0.000 & 3818.052 & 3767.735 & 3803.608 & 3771.053 & 3749.511\end{array}$ $\begin{array}{llllll}0.000 & 3818.052 & 3767.735 & 3803.608 & 3771.053 & 3749.511 \\ 0.000 & 3819.186 & 3767.684 & 3803.647 & 3771.053 & 3749.566\end{array}$ $\begin{array}{llllll}0.000 & 3819.186 & 3767.684 & 3803.647 & 371.053 & 3749.566 \\ 0.000 & 3818.120 & 3767.641 & 3803.683 & 3771.053 & 3749.619\end{array}$ $\begin{array}{llllll}0.000 & 3818.120 & 3767.641 & 3803.683 & 371.053 & 3749.619 \\ 0.000 & 3816.707 & 3767.597 & 3803.716 & 3771.053 & 3749.673\end{array}$ $\begin{array}{llllll}0.000 & 3816.707 & 3767.597 & 3803.716 & 3771.053 & 3749.673 \\ 0.000 & 3816.148 & 3767.543 & 3803.747 & 3771.053 & 3749.726\end{array}$ $\begin{array}{llllll}0.000 & 3816.148 & 3767.543 & 3803.747 & 3771.053 & 3749.726 \\ 0.000 & 3816.866 & 3767.487 & 3803.779 & 3771.053 & 3749.779\end{array}$ $\begin{array}{llllll}0.000 & 3816.866 & 3767.487 & 3803.779 & 3771.053 & 3749.779 \\ 0.000 & 3816.252 & 3767.428 & 3803.810 & 3771.053 & 3749.832\end{array}$ $\begin{array}{llllll}0.000 & 3816.252 & 3767.428 & 3803.810 & 3771.053 & 3749.832 \\ 0.000 & 3815.132 & 3767.368 & 3803.838 & 3771.053 & 3749.885\end{array}$ $\begin{array}{llllll}0.000 & 3815.132 & 3767.368 & 3803.838 & 3771.053 & 3749.885 \\ 0.000 & 3814.764 & 3767.301 & 3803.865 & 3771.053 & 3749.937\end{array}$ $\begin{array}{lllllll}0.000 & 3815.606 & 3767.233 & 3803.894 & 3771.053 & 3749.989\end{array}$ $\begin{array}{llllll}0.000 & 3815.793 & 3767.150 & 3803.923 & 3771.053 & 3750.041\end{array}$ $\begin{array}{llllll}0.000 & 3814.834 & 3767.064 & 3803.950 & 3771.053 & 3750.092\end{array}$ $\begin{array}{lllllll}0.000 & 3811.327 & 3766.992 & 3803.968 & 3771.053 & 3750.143\end{array}$ $\begin{array}{lllllll}0.000 & 3807.964 & 3766.917 & 3803.977 & 3771.053 & 3750.194\end{array}$

2:41:08	59.985	3734.897	3090	15.449	19.508	0.000	3805.779	3766.839	3803.982	3771.053	3750.245
2:41:10	59.985	3733.434	3090	15.449	18.087	0.000	3804.359	3766.758	3803.983	3771.053	3750.296
2:41:12	59.987	3733.115	3090	13.391	16.443	0.000	3802.715	3766.677	3803.980	3771.053	3750.346
2:41:14	59.989	3730.510	3090	11.332	14.654	0.000	3800.926	3766.590	3803.972	3771.053	3750.396
2:41:16	59.989	3729.180	3090	11.332	13.491	0.000	3799.763	3766.500	3803.962	3771.053	3750.446
2:41:18	59.986	3725.459	3090	14.420	13.816	0.000	3800.088	3766.401	3803.953	3771.053	3750.495
2:41:20	59.987	3724.785	3090	13.391	13.667	0.000	3799.939	3766.302	3803.943	3771.053	3750.545
2:41:22	59.99	3720.108	3090	10.298	12.488	0.000	3798.759	3766.192	3803.931	3771.053	3750.594
2:41:24	59.994	3720.938	3090	6.181	10.280	0.000	3796.552	3766.084	3803.913	3771.053	3750.642
2:41:26	59.996	3725.661	3090	4.122	8.125	0.000	3794.396	3765.988	3803.891	3771.053	3750.691
2:41:28	60.001	3725.677	3090	-1.029	4.921	0.000	3791.192	3765.892	3803.861	3771.053	3750.739
2:41:30	60.003	3727.754	3090	-3.088	2.118	0.000	3788.389	3765.802	3803.824	3771.053	3750.788
2:41:32	60.004	3727.825	3090	-4.122	-0.066	0.000	3786.205	3765.713	3803.782	3771.053	3750.835
2:41:34	60.006	3727.683	3090	-6.181	-2.206	0.000	3784.065	3765.623	3803.736	3771.053	3750.883
2:41:36	60.012	3727.231	3090	-12.361	-5.760	0.000	3780.511	3765.533	3803.681	3771.053	3750.931
2:41:38	60.014	3725.012	3090	-14.420	-8.791	0.000	3777.480	3765.438	3803.620	3771.053	3750.978
2:41:40	60.019	3726.446	3090	-19.571	-12.564	0.000	3773.707	3765.347	3803.550	3771.053	3751.025
2:41:42	60.021	3726.016	3090	-21.630	-15.737	0.000	3770.534	3765.255	3803.473	3771.053	3751.072
2:41:44	60.025	3719.123	3090	-25.752	-19.242	0.000	3767.029	3765.148	3803.389	3771.053	3751.118
2:41:46	60.026	3716.375	3090	-26.781	-21.881	0.000	3764.390	3765.035	3803.298	3771.053	3751.165
2:41:48	60.027	3717.333	3090	-27.810	-23.956	0.000	3762.315	3764.924	3803.203	3771.053	3751.211
2:41:50	60.029	3717.560	3090	-29.869	-26.026	0.000	3760.245	3764.815	3803.104	3771.053	3751.257
2:41:52	60.029	3717.142	3090	-29.869	-27.371	0.000	3758.900	3764.705	3803.002	3771.053	3751.302
2:41:54	60.037	3715.166	3090	-38.109	-31.129	0.000	3755.142	3764.591	3802.892	3771.053	3751.348
2:41:56	60.036	3713.632	3090	-37.079	-33.212	0.000	3753.060	3764.474	3802.778	3771.053	3751.393
2:41:58	60.037	3710.283	3090	-38.109	-34.926	0.000	3751.346	3764.350	3802.660	3771.053	3751.438
2:42:00	60.037	3710.158	3090	-38.109	-36.040	0.000	3750.231	3764.227	3802.540	3771.053	3751.483
2:42:02	60.036	3699.356	3090	-37.079	-36.404	0.000	3749.868	3764.079	3802.420	3771.053	3751.528
2:42:04	60.041	3698.591	3090	-42.230	-38.443	0.000	3747.828	3763.930	3802.296	3771.053	3751.572
2:42:06	60.043	3704.591	3090	-44.289	-40.489	0.000	3745.782	3763.796	3802.168	3771.053	3751.617
2:42:08	60.044	3703.275	3090	-45.319	-42.179	0.000	3744.092	3763.659	3802.037	3771.053	3751.661
2:42:10	60.043	3702.482	3090	-44.289	-42.918	0.000	3743.353	3763.521	3801.904	3771.053	3751.705
2:42:12	60.046	3701.316	3090	-47.381	-44.480	0.000	3741.791	3763.380	3801.769	3771.053	3751.748
2:42:14	60.048	3700.826	3090	-49.440	-46.216	0.000	3740.055	3763.240	3801.630	3771.053	3751.792
2:42:16	60.046	3699.529	3090	-47.381	-46.624	0.000	3739.647	3763.097	3801.491	3771.053	3751.835
2:42:18	60.046	3699.726	3090	-47.381	-46.889	0.000	3739.382	3762.955	3801.352	3771.053	3751.878
2:42:20	60.043	3690.100	3090	-44.289	-45.979	0.000	3740.292	3762.793	3801.216	3771.053	3751.921
2:42:22	60.043	3690.477	3090	-44.289	-45.388	0.000	3740.884	3762.632	3801.082	3771.053	3751.964
2:42:24	60.044	3696.865	3090	-45.319	-45.364	0.000	3740.908	3762.485	3800.948	3771.053	3752.006
2:42:26	60.043	3696.877	3090	-44.289	-44.988	0.000	3741.284	3762.340	3800.816	3771.053	3752.049

T-60 sec	2:26:26	60.019	3666.79	350.00	160.45	0.00	10.00	15.00	-103.00	7642.89	-19.571	T-60 sec	2:26:26		
T-58 sec	2:26:28	60.020	3670.45	350.00	160.45	0.00	10.00	15.00	-103.00	7643.22	-20.600	T-58 sec	2:26:28		
T-56 sec	2:26:30	60.019	3670.27	350.00	160.45	0.00	10.00	15.00	-103.00	7643.55	-19.571	T-56 sec	2:26:30		
T-54 sec	2:26:32	60.021	3671.67	350.00	160.45	0.00	10.00	15.00	-103.00	7643.88	-21.630	T-54 sec	2:26:32		
T-52 sec	2:26:34	60.021	3672.49	350.00	160.45	0.00	10.00	15.00	-103.00	7644.21	-21.630	T-52 sec	2:26:34		
T-50 sec	2:26:36	60.021	3672.69	350.00	163.96	0.00	10.00	15.00	-103.00	7644.54	-21.630	T-50 sec	2:26:36		
T-48 sec	2:26:38	60.019	3672.86	350.00	163.96	0.00	10.00	15.00	-103.00	7644.87	-19.571	T-48 sec	2:26:38		
T-46 sec	2:26:40	60.018	3672.16	350.00	163.96	0.00	10.00	15.00	-103.00	7645.20	-18.542	T-46 sec	2:26:40		
T-44 sec	2:26:42	60.022	3671.41	350.00	163.96	0.00	10.00	15.00	-103.00	7645.53	-22.659	T-44 sec	2:26:42		
T-42 sec	2:26:44	60.031	3669.98	350.00	163.96	0.00	10.00	15.00	-103.00	7645.86	-31.928	T-42 sec	2:26:44		
T-40 sec	2:26:46	60.037	3666.47	350.00	166.07	0.00	10.00	15.00	-103.00	7646.19	-38.109	T-40 sec	2:26:46		
T-38 sec	2:26:48	60.037	3663.76	350.00	166.07	0.00	10.00	15.00	-103.00	7646.52	-38.109	T-38 sec	2:26:48		
T-36 sec	2:26:50	60.036	3661.60	350.00	166.07	0.00	10.00	15.00	-103.00	7646.85	-37.079	T-36 sec	2:26:50		
T-34 sec	2:26:52	60.037	3660.67	350.00	166.07	0.00	10.00	15.00	-103.00	7647.18	-38.109	T-34 sec	2:26:52		
T-32 sec	2:26:54	60.046	3651.49	350.00	166.07	0.00	10.00	15.00	-103.00	7647.51	-47.381	T-32 sec	2:26:54		
T-30 sec	2:26:56	60.048	3649.19	350.00	163.77	0.00	10.00	15.00	-103.00	7647.84	-49.440	T-30 sec	2:26:56		
T-28 sec	2:26:58	60.048	3650.03	350.00	163.77	0.00	10.00	15.00	-103.00	7648.17	-49.440	T-28 sec	2:26:58		
T-26 sec	2:27:00	60.043	3648.25	350.00	163.77	0.00	10.00	15.00	-103.00	7648.50	-44.289	T-26 sec	2:27:00		
T-24 sec	2:27:02	60.041	3649.51	350.00	163.77	0.00	10.00	15.00	-103.00	7648.83	-42.230	T-24 sec	2:27:02		
T-22 sec	2:27:04	60.041	3654.29	350.00	163.77	0.00	10.00	15.00	-103.00	7649.16	-42.230	T-22 sec	2:27:04		
T-20 sec	2:27:06	60.041	3655.01	350.00	165.10	0.00	10.00	15.00	-103.00	7649.49	-42.230	T-20 sec	2:27:06		
T-18 sec	2:27:08	60.039	3651.87	350.00	165.10	0.00	10.00	15.00	-103.00	7649.82	-40.172	T-18 sec	2:27:08		
T-16 sec	2:27:10	60.041	3651.06	350.00	165.10	0.00	10.00	15.00	-103.00	7650.15	-42.230	$\mathrm{T}-16 \mathrm{sec}$	2:27:10	60.042	3645.73
T-14 sec	2:27:12	60.043	3649.19	350.00	165.10	0.00	10.00	15.00	-103.00	7650.48	-44.289	T-14 sec	2:27:12	60.042	3645.73
T-12 sec	2:27:14	60.045	3648.24	350.00	165.10	0.00	10.00	15.00	-103.00	7650.81	-46.348	$\mathrm{T}-12 \mathrm{sec}$	2:27:14	60.042	3645.73
T-10 sec	2:27:16	60.046	3645.39	350.00	165.48	0.00	10.00	15.00	-103.00	7651.14	-47.381	T-10 sec	2:27:16	60.042	3645.73
T-08 sec	2:27:18	60.041	3644.63	350.00	165.48	0.00	10.00	15.00	-103.00	7651.47	-42.230	T-08 sec	2:27:18	60.042	3645.73
T-06 sec	2:27:20	60.041	3645.45	350.00	165.48	0.00	10.00	15.00	-103.00	7651.80	-42.230	T-06 sec	2:27:20	60.042	3645.73
T-04 sec	2:27:22	60.041	3640.68	350.00	165.48	0.00	10.00	15.00	-103.00	7652.13	-42.230	T-04 sec	2:27:22	60.042	3645.73
T-02 sec	2:27:24	60.039	3641.19	350.00	165.48	0.00	10.00	15.00	-103.00	7652.46	-40.172	T-02 sec	2:27:24	60.042	3645.73
T+0 sec	2:27:26	59.978	3659.46	350.00	206.46	0.00	10.00	15.00	-103.00	7652.79	22.659	T+0 sec	2:27:26		
T+02 sec	2:27:28	59.852	3696.36	350.00	206.46	0.00	10.00	0.00	-103.00	7616.00	152.439	T+02 sec	2:27:28		
T+04 sec	2:27:30	59.836	3734.90	335.00	206.46	0.00	10.00	0.00	-103.00	7626.00	168.922	T+04 sec	2:27:30		
T+06 sec	2:27:32	59.869	3734.67	335.00	206.46	0.00	10.00	0.00	-103.00	7632.00	134.931	T+06 sec	2:27:32		
T+08 sec	2:27:34	59.869	3734.67	335.00	206.46	0.00	10.00	0.00	-103.00	7632.00	134.931	T+08 sec	2:27:34		
T+10 sec	2:27:36	59.892	3737.16	335.00	206.46	0.00	10.00	0.00	-103.00	7632.00	111.242	T+10 sec	2:27:36		
T+12 sec	2:27:38	59.891	3761.25	335.00	211.26	0.00	10.00	0.00	-103.00	7632.00	112.271	T+12 sec	2:27:38		
T+14 sec	2:27:40	59.880	3766.11	335.00	211.26	1.00	10.00	0.00	-103.00	7632.00	123.599	T+14 sec	2:27:40		
T+16 sec	2:27:42	59.876	3766.19	335.00	211.26	1.00	10.00	0.00	-103.00	7632.00	127.721	T+16 sec	2:27:42		
T+18 sec	2:27:44	59.875	3768.88	335.00	211.26	1.00	10.00	0.00	-103.00	7632.00	128.750	T+18 sec	2:27:44		
T+20 sec	2:27:46	59.883	3769.93	335.00	211.26	1.00	10.00	0.00	-103.00	7632.00	120.511	$\mathrm{T}+20 \mathrm{sec}$	2:27:46	59.889	3788.35
T+22 sec	2:27:48	59.887	3780.62	335.00	214.35	1.00	10.00	0.00	-103.00	7633.00	116.389	T+22 sec	2:27:48	59.889	3788.35
T+24 sec	2:27:50	59.886	3781.59	335.00	214.35	1.00	10.00	0.00	-103.00	7632.00	117.418	T+24 sec	2:27:50	59.889	3788.35
T+26 sec	2:27:52	59.885	3782.50	335.00	214.35	1.00	10.00	0.00	-103.00	7632.00	118.452	$\mathrm{T}+26 \mathrm{sec}$	2:27:52	59.889	3788.35
T+28 sec	2:27:54	59.887	3784.96	335.00	214.35	2.00	10.00	0.00	-103.00	7632.00	116.389	T+28 sec	2:27:54	59.889	3788.35
T+30 sec	2:27:56	59.888	3784.73	335.00	214.35	3.00	10.00	0.00	-103.00	7632.00	115.359	T+30 sec	2:27:56	59.889	3788.35
T+32 sec	2:27:58	59.890	3784.42	335.00	212.17	4.00	10.00	0.00	-103.00	7632.00	113.301	T+32 sec	2:27:58	59.889	3788.35
T+34 sec	2:28:00	59.895	3788.07	335.00	212.17	5.00	10.00	0.00	-103.00	7633.00	108.150	T+34 sec	2:28:00	59.889	3788.35
T+36 sec	2:28:02	59.894	3788.33	335.00	212.17	6.00	10.00	0.00	-103.00	7632.00	109.179	T+36 sec	2:28:02	59.889	3788.35

T+38 sec	2:28:04	59.893	3788.87	335.00	212.17	7.00	10.00	0.00	-103.00	7632.00	110.208	T+38 sec	2:28:04	59.889	3788.35
T+40 sec	2:28:06	59.894	3788.47	335.00	212.17	8.00	10.00	0.00	-103.00	7632.00	109.179	$\mathrm{T}+40 \mathrm{sec}$	2:28:06	59.889	3788.35
T+42 sec	2:28:08	59.894	3792.28	335.00	215.60	9.00	10.00	0.00	-103.00	7632.00	109.179	$\mathrm{T}+42 \mathrm{sec}$	2:28:08	59.889	3788.35
T+44 sec	2:28:10	59.891	3793.07	335.00	215.60	10.00	10.00	0.00	-103.00	7632.00	112.271	$\mathrm{T}+44 \mathrm{sec}$	2:28:10	59.889	3788.35
T+46 sec	2:28:12	59.890	3794.37	335.00	215.60	11.00	10.00	0.00	-103.00	7632.00	113.301	$\mathrm{T}+46 \mathrm{sec}$	2:28:12	59.889	3788.35
T+48 sec	2:28:14	59.885	3799.43	335.00	215.60	12.00	10.00	0.00	-103.00	7632.00	118.452	T+48 sec	2:28:14	59.889	3788.35
T+50 sec	2:28:16	59.885	3800.43	335.00	215.60	13.00	10.00	0.00	-103.00	7632.00	118.452	$\mathrm{T}+50 \mathrm{sec}$	2:28:16	59.889	3788.35
T+52 sec	2:28:18	59.888	3799.96	335.00	218.33	14.00	10.00	0.00	-103.00	7632.00	115.359	T+52 sec	2:28:18	59.889	3788.35
T+54 sec	2:28:20	59.887	3803.63	335.00	218.33	15.00	10.00	0.00	-103.00	7632.00	116.389	T+54 sec	2:28:20		
T+56 sec	2:28:22	59.888	3802.93	335.00	218.33	16.00	10.00	0.00	-103.00	7632.00	115.359	T+56 sec	2:28:22		
T+58 sec	2:28:24	59.888	3802.95	335.00	218.33	16.00	10.00	0.00	-103.00	7632.00	115.359	T+58 sec	2:28:24		
T+60 sec	2:28:26	59.890	3804.39	335.00	218.33	16.00	10.00	0.00	-103.00	7632.00	113.301	T+60 sec	2:28:26		
T+62 sec	2:28:28	59.889	3805.50	335.00	217.38	16.00	10.00	0.00	-103.00	7632.00	114.330	T+62 sec	2:28:28		
T+64 sec	2:28:30	59.882	3805.62	335.00	217.38	16.00	10.00	0.00	-103.00	7632.00	121.540	T+64 sec	2:28:30		
T+66 sec	2:28:32	59.873	3809.24	335.00	217.38	16.00	10.00	0.00	-103.00	7631.00	130.809	T+66 sec	2:28:32		
T+68 sec	2:28:34	59.857	3811.50	335.00	217.38	16.00	10.00	0.00	-103.00	7625.00	147.292	T+68 sec	2:28:34		
T+70 sec	2:28:36	59.849	3814.86	335.00	217.38	16.00	10.00	0.00	-103.00	7623.00	155.531	T+70 sec	2:28:36		
T+72 sec	2:28:38	59.852	3815.89	335.00	214.83	16.00	10.00	0.00	-103.00	7621.00	152.439	T+72 sec	2:28:38		
T+74 sec	2:28:40	59.858	3825.64	335.00	214.83	16.00	10.00	0.00	-103.00	7623.00	146.258	T+74 sec	2:28:40		
T+76 sec	2:28:42	59.863	3826.05	335.00	214.83	16.00	10.00	0.00	-103.00	7625.00	141.111	T+76 sec	2:28:42		
T+78 sec	2:28:44	59.866	3826.00	335.00	214.83	16.00	10.00	0.00	-103.00	7627.00	138.019	T+78 sec	2:28:44		
T+80 sec	2:28:46	59.865	3827.52	335.00	214.83	16.00	10.00	0.00	-103.00	7628.00	139.048	$\mathrm{T}+80 \mathrm{sec}$	2:28:46		
T+82 sec	2:28:48	59.867	3826.75	335.00	227.66	16.00	10.00	0.00	-103.00	7628.00	136.989	T+82 sec	2:28:48		
T+84 sec	2:28:50	59.866	3826.78	335.00	227.66	16.00	10.00	0.00	-103.00	7629.00	138.019	T+84 sec	2:28:50		
T+86 sec	2:28:52	59.871	3826.45	335.00	227.66	16.00	10.00	0.00	-103.00	7630.00	132.872	T+86 sec	2:28:52		
T+88 sec	2:28:54	59.874	3825.71	335.00	227.66	16.00	10.00	0.00	-103.00	7631.00	129.779	T+88 sec	2:28:54		
T+90 sec	2:28:56	59.879	3823.83	335.00	227.66	16.00	10.00	0.00	-103.00	7635.00	124.628	T+90 sec	2:28:56		
T+92 sec	2:28:58	59.880	3822.51	335.00	225.02	16.00	10.00	0.00	-103.00	7638.00	123.599	T+92 sec	2:28:58		
T+94 sec	2:29:00	59.883	3819.08	335.00	225.02	16.00	10.00	0.00	-103.00	7639.00	120.511	T+94 sec	2:29:00		
T+96 sec	2:29:02	59.886	3818.06	335.00	225.02	16.00	10.00	0.00	-103.00	7642.00	117.418	T+96 sec	2:29:02		
T+98 sec	2:29:04	59.890	3816.81	335.00	225.02	16.00	10.00	0.00	-103.00	7644.00	113.301	T+98 sec	2:29:04		
T+100 sec	2:29:06	59.892	3815.01	335.00	225.02	16.00	10.00	0.00	-103.00	7645.00	111.242	T+100 sec	2:29:06		
T+102 sec	2:29:08	59.889	3813.78	335.00	228.37	16.00	10.00	0.00	-103.00	7647.00	114.330	T+102 sec	2:29:08		
T+104 sec	2:29:10	59.893	3811.84	335.00	228.37	16.00	10.00	0.00	-103.00	7648.00	110.208	T+104 sec	2:29:10		
T+106 sec	2:29:12	59.899	3809.65	335.00	228.37	16.00	10.00	0.00	-103.00	7649.00	104.032	T+106 sec	2:29:12		
T+108 sec	2:29:14	59.903	3806.97	335.00	228.37	16.00	10.00	0.00	-103.00	7650.00	99.910	T+108 sec	2:29:14		
T+110 sec	2:29:16	59.902	3805.59	335.00	228.37	16.00	10.00	0.00	-103.00	7651.00	100.940	T+110 sec	2:29:16		
T+112 sec	2:29:18	59.902	3804.19	335.00	234.08	16.00	10.00	0.00	-103.00	7652.00	100.940	T+112 sec	2:29:18		
T+114 sec	2:29:20	59.904	3796.08	335.00	234.08	16.00	10.00	0.00	-103.00	7653.00	98.881	T+114 sec	2:29:20		
T+116 sec	2:29:22	59.907	3793.98	335.00	234.08	16.00	10.00	0.00	-103.00	7654.00	95.788	T+116 sec	2:29:22		
T+118 sec	2:29:24	59.911	3792.17	335.00	234.08	16.00	10.00	0.00	-103.00	7655.00	91.671	T+118 sec	2:29:24		
T+120 sec	2:29:26	59.916	3791.50	335.00	234.08	16.00	10.00	0.00	-103.00	7655.00	86.520	$\mathrm{T}+120 \mathrm{sec}$	2:29:26		
T+122 sec	2:29:28	59.916	3789.53	335.00	228.80	16.00	10.00	0.00	-103.00	7656.00	86.520	$\mathrm{T}+122 \mathrm{sec}$	2:29:28		
T+124 sec	2:29:30	59.917	3788.13	335.00	228.80	16.00	10.00	0.00	-103.00	7656.00	85.490	$\mathrm{T}+124 \mathrm{sec}$	2:29:30		
T+126 sec	2:29:32	59.918	3784.56	335.00	228.80	16.00	10.00	0.00	-103.00	7657.00	84.461	T+126 sec	2:29:32		
$\mathrm{T}+128$ sec	2:29:34	59.920	3783.03	335.00	228.80	16.00	10.00	0.00	-103.00	7657.00	82.402	$\mathrm{T}+128 \mathrm{sec}$	2:29:34		
T+130 sec	2:29:36	59.921	3781.70	335.00	228.80	16.00	10.00	0.00	-103.00	7658.00	81.369	T+130 sec	2:29:36		
T+132 sec	2:29:38	59.920	3776.36	335.00	229.47	16.00	10.00	0.00	-103.00	7658.00	82.402	$\mathrm{T}+132 \mathrm{sec}$	2:29:38		
T+134 sec	2:29:40	59.917	3775.64	335.00	229.47	16.00	10.00	0.00	-103.00	7659.00	85.490	T+134 sec	2:29:40		

T+136 sec	2:29:42	59.920	3774.60	335.00	229.47	16.00	10.00	0.00	-103.00	7659.00	82.402	T+136 sec	2:29:42
T+138 sec	2:29:44	59.921	3773.33	335.00	229.47	16.00	10.00	0.00	-103.00	7659.00	81.369	T+138 sec	2:29:44
T+140 sec	2:29:46	59.923	3773.96	335.00	229.47	16.00	10.00	0.00	-103.00	7660.00	79.310	T+140 sec	2:29:46
T+142 sec	2:29:48	59.926	3772.72	335.00	228.98	16.00	10.00	0.00	-103.00	7660.00	76.221	T+142 sec	2:29:48
T+144 sec	2:29:50	59.925	3771.67	335.00	228.98	16.00	10.00	0.00	-103.00	7661.00	77.251	$\mathrm{T}+144 \mathrm{sec}$	2:29:50
T+146 sec	2:29:52	59.928	3769.63	335.00	228.98	16.00	10.00	0.00	-103.00	7661.00	74.159	$\mathrm{T}+146 \mathrm{sec}$	2:29:52
T+148 sec	2:29:54	59.927	3768.71	335.00	228.98	16.00	10.00	0.00	-103.00	7662.00	75.192	T+148 sec	2:29:54
T+150 sec	2:29:56	59.932	3767.64	335.00	228.98	16.00	10.00	0.00	-103.00	7662.00	70.041	$\mathrm{T}+150 \mathrm{sec}$	2:29:56
T+152 sec	2:29:58	59.927	3767.02	335.00	219.98	16.00	10.00	0.00	-103.00	7663.00	75.192	T+152 sec	2:29:58
T+154 sec	2:30:00	59.928	3767.41	335.00	219.98	16.00	10.00	0.00	-103.00	7663.00	74.159	T+154 sec	2:30:00
T+156 sec	2:30:02	59.931	3766.79	335.00	219.98	16.00	10.00	0.00	-103.00	7664.00	71.070	T+156 sec	2:30:02
T+158 sec	2:30:04	59.929	3766.26	335.00	219.98	16.00	10.00	0.00	-103.00	7664.00	73.129	T+158 sec	2:30:04
T+160 sec	2:30:06	59.931	3765.67	335.00	219.98	16.00	10.00	0.00	-103.00	7665.00	71.070	T+160 sec	2:30:06
T+162 sec	2:30:08	59.933	3766.12	335.00	229.09	16.00	10.00	0.00	-103.00	7666.00	69.011	T+162 sec	2:30:08
T+164 sec	2:30:10	59.937	3764.24	335.00	229.09	16.00	10.00	0.00	-103.00	7666.00	64.890	$\mathrm{T}+164 \mathrm{sec}$	2:30:10
T+166 sec	2:30:12	59.937	3765.10	335.00	229.09	16.00	10.00	0.00	-103.00	7667.00	64.890	T+166 sec	2:30:12
T+168 sec	2:30:14	59.945	3762.94	335.00	229.09	16.00	10.00	0.00	-103.00	7668.00	56.650	T+168 sec	2:30:14
T+170 sec	2:30:16	59.949	3758.39	335.00	229.09	16.00	10.00	0.00	-103.00	7668.00	52.529	T+170 sec	2:30:16
T+172 sec	2:30:18	59.947	3753.92	335.00	229.66	16.00	10.00	0.00	-103.00	7669.00	54.591	T+172 sec	2:30:18
T+174 sec	2:30:20	59.942	3749.87	335.00	229.66	16.00	10.00	0.00	-103.00	7669.00	59.739	T+174 sec	2:30:20
T+176 sec	2:30:22	59.941	3746.89	335.00	229.66	16.00	10.00	0.00	-103.00	7670.00	60.768	T+176 sec	2:30:22
T+178 sec	2:30:24	59.942	3747.88	335.00	229.66	16.00	10.00	0.00	-103.00	7670.00	59.739	T+178 sec	2:30:24
T+180 sec	2:30:26	59.945	3749.59	335.00	229.66	16.00	10.00	0.00	-103.00	7671.00	56.650	T+180 sec	2:30:26
	2:30:28	59.948	3748.66	335.00	229.23	16.00	10.00	0.00	-103.00	7671.00	53.558		
	2:30:30	59.947	3746.71	335.00	229.23	16.00	10.00	0.00	-103.00	7672.00	54.591		
	2:30:32	59.949	3749.08	335.00	229.23	16.00	10.00	0.00	-103.00	7673.00	52.529		
	2:30:34	59.951	3742.74	335.00	229.23	16.00	10.00	0.00	-103.00	7673.00	50.470		
	2:30:36	59.952	3740.26	350.00	229.23	16.00	10.00	0.00	-103.00	7673.00	49.440		
	2:30:38	59.953	3736.14	350.00	231.41	16.00	10.00	0.00	-103.00	7673.00	48.411		
	2:30:40	59.951	3731.38	350.00	231.41	16.00	10.00	0.00	-103.00	7673.00	50.470		
	2:30:42	59.952	3727.84	350.00	231.41	16.00	10.00	0.00	-103.00	7673.00	49.440		
	2:30:44	59.952	3725.95	350.00	231.41	16.00	10.00	0.00	-103.00	7673.00	49.440		
	2:30:46	59.952	3722.65	350.00	231.41	16.00	10.00	0.00	-103.00	7673.00	49.440		
	2:30:48	59.955	3720.58	350.00	218.62	16.00	10.00	0.00	-103.00	7673.00	46.348		
	2:30:50	59.952	3718.00	350.00	218.62	16.00	10.00	0.00	-103.00	7673.00	49.440		
	2:30:52	59.954	3718.14	350.00	218.62	16.00	10.00	0.00	-103.00	7673.00	47.381		
	2:30:54	59.952	3715.75	350.00	218.62	16.00	10.00	0.00	-103.00	7673.00	49.440		
	2:30:56	59.953	3713.69	350.00	218.62	16.00	10.00	0.00	-103.00	7673.00	48.411		
	2:30:58	59.953	3713.48	350.00	213.54	16.00	10.00	0.00	-103.00	7673.00	48.411		
	2:31:00	59.952	3710.85	350.00	213.54	16.00	10.00	0.00	-103.00	7673.00	49.440		
	2:31:02	59.954	3710.81	350.00	213.54	16.00	10.00	0.00	-103.00	7673.00	47.381		
	2:31:04	59.954	3712.09	350.00	213.54	16.00	10.00	0.00	-103.00	7674.00	47.381		
	2:31:06	59.959	3714.62	350.00	213.54	16.00	10.00	0.00	-103.00	7675.00	42.230		
	2:31:08	59.957	3715.13	350.00	225.65	16.00	10.00	0.00	-103.00	7676.00	44.289		
	2:31:10	59.956	3716.17	350.00	225.65	16.00	10.00	0.00	-103.00	7677.00	45.319		
	2:31:12	59.954	3716.46	350.00	225.65	16.00	10.00	0.00	-103.00	7678.00	47.381		
	2:31:14	59.956	3716.98	350.00	225.65	16.00	10.00	0.00	-103.00	7679.00	45.319		
	2:31:16	59.955	3717.76	350.00	225.65	16.00	10.00	0.00	-103.00	7680.00	46.348		
	2:31:18	59.958	3722.36	350.00	212.57	16.00	10.00	0.00	-103.00	7681.00	43.260		

2:31:20	59.961	3721.97	350.00	212.57	16.00	10.00	0.00	-103.00	7682.00	40.172
2:31:22	59.962	3722.66	350.00	212.57	16.00	10.00	0.00	-103.00	7684.00	39.138
2:31:24	59.962	3722.27	350.00	212.57	16.00	10.00	0.00	-103.00	7685.00	39.138
2:31:26	59.968	3722.28	350.00	212.57	16.00	10.00	0.00	-103.00	7687.00	32.962
2:31:28	59.966	3721.79	350.00	219.90	16.00	10.00	0.00	-103.00	7689.00	35.020
2:31:30	59.966	3723.09	350.00	219.90	16.00	10.00	0.00	-103.00	7690.00	35.020
2:31:32	59.968	3723.98	350.00	219.90	16.00	10.00	0.00	-103.00	7692.00	32.962
2:31:34	59.970	3723.43	350.00	219.90	16.00	10.00	0.00	-103.00	7692.00	30.899
2:31:36	59.974	3723.89	350.00	219.90	16.00	10.00	0.00	-103.00	7693.00	26.781
2:31:38	59.970	3725.40	350.00	231.18	16.00	10.00	0.00	-103.00	7693.00	30.899
2:31:40	59.969	3727.12	350.00	231.18	16.00	10.00	0.00	-103.00	7694.00	31.928
2:31:42	59.969	3728.05	350.00	231.18	16.00	10.00	0.00	-103.00	7694.00	31.928
2:31:44	59.970	3731.13	350.00	231.18	16.00	10.00	0.00	-103.00	7695.00	30.899
2:31:46	59.971	3732.53	350.00	231.18	16.00	10.00	0.00	-103.00	7695.00	29.869
2:31:48	59.973	3733.33	350.00	226.63	16.00	10.00	0.00	-103.00	7695.00	27.810
2:31:50	59.973	3736.54	350.00	226.63	16.00	10.00	0.00	-103.00	7696.00	27.810
2:31:52	59.976	3736.91	350.00	226.63	16.00	10.00	0.00	-103.00	7696.00	24.718
2:31:54	59.978	3736.82	350.00	226.63	16.00	10.00	0.00	-103.00	7697.00	22.659
2:31:56	59.978	3738.70	350.00	226.63	16.00	10.00	0.00	-103.00	7697.00	22.659
2:31:58	59.976	3739.94	350.00	227.26	16.00	10.00	0.00	-103.00	7697.00	24.718
2:32:00	59.978	3740.88	350.00	227.26	16.00	10.00	0.00	-103.00	7698.00	22.659
2:32:02	59.976	3741.79	350.00	227.26	16.00	10.00	0.00	-103.00	7698.00	24.718
2:32:04	59.978	3745.23	350.00	227.26	16.00	10.00	0.00	-103.00	7698.33	22.659
2:32:06	59.977	3746.61	350.00	227.26	16.00	10.00	0.00	-103.00	7698.66	23.689
2:32:08	59.980	3748.30	350.00	229.29	16.00	10.00	0.00	-103.00	7698.99	20.600
2:32:10	59.982	3750.72	350.00	229.29	16.00	10.00	0.00	-103.00	7699.32	18.542
2:32:12	59.981	3751.56	350.00	229.29	16.00	10.00	0.00	-103.00	7699.65	19.571
2:32:14	59.980	3752.75	350.00	229.29	16.00	10.00	0.00	-103.00	7699.98	20.600
2:32:16	59.979	3755.60	350.00	229.29	16.00	10.00	0.00	-103.00	7700.31	21.630
2:32:18	59.980	3756.41	350.00	221.46	16.00	10.00	0.00	-103.00	7700.64	20.600
2:32:20	59.979	3756.98	350.00	221.46	16.00	10.00	0.00	-103.00	7700.97	21.630
2:32:22	59.983	3760.41	350.00	221.46	16.00	10.00	0.00	-103.00	7701.30	17.508
2:32:24	59.983	3760.98	350.00	221.46	16.00	10.00	0.00	-103.00	7701.63	17.508
2:32:26	59.984	3761.41	350.00	221.46	16.00	10.00	0.00	-103.00	7701.96	16.479
2:32:28	59.988	3762.74	350.00	241.27	16.00	10.00	0.00	-103.00	7702.29	12.361
2:32:30	59.989	3763.21	350.00	241.27	16.00	10.00	0.00	-103.00	7702.62	11.332
2:32:32	59.987	3764.96	350.00	241.27	16.00	10.00	0.00	-103.00	7702.95	13.391
2:32:34	59.987	3766.09	350.00	241.27	16.00	10.00	0.00	-103.00	7703.28	13.391
2:32:36	59.991	3766.43	350.00	241.27	16.00	10.00	0.00	-103.00	7703.61	9.269
2:32:38	59.993	3767.25	350.00	243.07	16.00	10.00	0.00	-103.00	7703.94	7.210
2:32:40	59.992	3767.79	350.00	243.07	16.00	10.00	0.00	-103.00	7704.27	8.239
2:32:42	59.991	3768.63	350.00	243.07	16.00	10.00	0.00	-103.00	7704.60	9.269
2:32:44	59.989	3771.15	350.00	243.07	16.00	10.00	0.00	-103.00	7704.93	11.332
2:32:46	59.986	3772.44	350.00	243.07	16.00	10.00	0.00	-103.00	7705.26	14.420
2:32:48	59.983	3773.69	350.00	241.67	16.00	10.00	0.00	-103.00	7705.59	17.508
2:32:50	59.983	3774.67	350.00	241.67	16.00	10.00	0.00	-103.00	7705.92	17.508
2:32:52	59.988	3775.84	350.00	241.67	16.00	10.00	0.00	-103.00	7706.25	12.361
2:32:54	59.993	3775.36	350.00	241.67	16.00	10.00	0.00	-103.00	7706.58	7.210
2:32:56	59.996	3774.87	350.00	241.67	16.00	10.00	0.00	-103.00	7706.91	4.122

2:32:58	59.998	3775.49	350.00	228.15	16.00	10.00	0.00	-103.00	7707.24	2.059
2:33:00	59.999	3776.42	350.00	228.15	16.00	10.00	0.00	-103.00	7707.57	1.029
2:33:02	60.001	3778.55	350.00	228.15	16.00	10.00	0.00	-103.00	7707.90	-1.029
2:33:04	59.999	3779.69	350.00	228.15	16.00	10.00	0.00	-103.00	7708.23	1.029
2:33:06	59.999	3781.26	350.00	228.15	16.00	10.00	0.00	-103.00	7708.56	1.029
2:33:08	59.999	3780.59	350.00	235.13	16.00	10.00	0.00	-103.00	7708.89	1.029
2:33:10	60.002	3783.09	350.00	235.13	16.00	10.00	0.00	-103.00	7709.22	-2.059
2:33:12	60.005	3783.90	350.00	235.13	16.00	10.00	0.00	-103.00	7709.55	-5.151
2:33:14	60.007	3784.42	350.00	235.13	16.00	10.00	0.00	-103.00	7709.88	-7.210
2:33:16	60.008	3785.77	350.00	235.13	16.00	10.00	0.00	-103.00	7710.21	-8.239
2:33:18	60.011	3785.46	350.00	246.43	16.00	10.00	0.00	-103.00	7710.54	-11.332
2:33:20	60.014	3786.85	350.00	246.43	16.00	10.00	0.00	-103.00	7710.87	-14.420
2:33:22	60.017	3786.30	350.00	246.43	16.00	10.00	0.00	-103.00	7711.20	-17.508
2:33:24	60.019	3787.26	350.00	246.43	16.00	10.00	0.00	-103.00	7711.53	-19.571
2:33:26	60.021	3787.52	350.00	246.43	16.00	10.00	0.00	-103.00	7711.86	-21.630
2:33:28	60.017	3787.96	350.00	236.55	16.00	10.00	0.00	-103.00	7712.19	-17.508
2:33:30	60.017	3788.03	350.00	236.55	16.00	10.00	0.00	-103.00	7712.52	-17.508
2:33:32	60.019	3788.61	350.00	236.55	16.00	10.00	0.00	-103.00	7712.85	-19.571
2:33:34	60.023	3789.22	350.00	236.55	16.00	10.00	0.00	-103.00	7713.18	-23.689
2:33:36	60.024	3787.54	350.00	236.55	16.00	10.00	0.00	-103.00	7713.51	-24.718
2:33:38	60.025	3785.84	350.00	230.30	16.00	10.00	0.00	-103.00	7713.84	-25.752
2:33:40	60.021	3786.08	350.00	230.30	16.00	10.00	0.00	-103.00	7714.17	-21.630
2:33:42	60.019	3787.93	350.00	230.30	16.00	10.00	0.00	-103.00	7714.50	-19.571
2:33:44	60.024	3788.76	350.00	230.30	16.00	10.00	0.00	-103.00	7714.83	-24.718
2:33:46	60.024	3786.87	350.00	230.30	16.00	10.00	0.00	-103.00	7715.16	-24.718
2:33:48	60.021	3786.55	350.00	231.18	16.00	10.00	0.00	-103.00	7715.49	-21.630
2:33:50	60.020	3787.36	350.00	231.18	16.00	10.00	0.00	-103.00	7715.82	-20.600
2:33:52	60.025	3785.02	350.00	231.18	16.00	10.00	0.00	-103.00	7716.15	-25.752
2:33:54	60.024	3785.61	350.00	231.18	16.00	10.00	0.00	-103.00	7716.48	-24.718
2:33:56	60.020	3785.95	350.00	231.18	16.00	10.00	0.00	-103.00	7716.81	-20.600
2:33:58	60.020	3785.80	350.00	225.62	16.00	10.00	0.00	-103.00	7717.14	-20.600
2:34:00	60.022	3786.86	350.00	225.62	16.00	10.00	0.00	-103.00	7717.47	-22.659
2:34:02	60.022	3786.88	350.00	225.62	16.00	10.00	0.00	-103.00	7717.80	-22.659
2:34:04	60.022	3785.25	350.00	225.62	16.00	10.00	0.00	-103.00	7718.13	-22.659
2:34:06	60.021	3785.73	350.00	225.62	16.00	10.00	0.00	-103.00	7718.46	-21.630
2:34:08	60.021	3786.35	350.00	230.73	16.00	10.00	0.00	-103.00	7718.79	-21.630
2:34:10	60.023	3785.82	350.00	230.73	16.00	10.00	0.00	-103.00	7719.12	-23.689
2:34:12	60.023	3785.80	350.00	230.73	16.00	10.00	0.00	-103.00	7719.45	-23.689
2:34:14	60.022	3786.28	350.00	230.73	16.00	10.00	0.00	-103.00	7719.78	-22.659
2:34:16	60.019	3786.94	350.00	230.73	16.00	10.00	0.00	-103.00	7720.11	-19.571
2:34:18	60.016	3787.63	350.00	234.85	16.00	10.00	0.00	-103.00	7720.44	-16.479
2:34:20	60.018	3789.44	350.00	234.85	16.00	10.00	0.00	-103.00	7720.77	-18.542
2:34:22	60.018	3789.67	350.00	234.85	16.00	10.00	0.00	-103.00	7721.10	-18.542
2:34:24	60.018	3789.40	350.00	234.85	16.00	10.00	0.00	-103.00	7721.43	-18.542
2:34:26	60.019	3788.48	350.00	234.85	16.00	10.00	0.00	-103.00	7721.76	-19.571
2:34:28	60.019	3789.18	350.00	228.96	16.00	10.00	0.00	-103.00	7722.09	-19.571
2:34:30	60.016	3789.37	350.00	228.96	16.00	10.00	0.00	-103.00	7722.42	-16.479
2:34:32	60.015	3789.00	350.00	228.96	16.00	10.00	0.00	-103.00	7722.75	-15.449
2:34:34	60.016	3788.66	350.00	228.96	16.00	10.00	0.00	-103.00	7723.08	-16.479

2:34:36	60.014	3788.93	350.00	228.96	16.00	10.00	0.00	-103.00	7723.41	-14.420
2:34:38	60.013	3790.67	350.00	231.18	16.00	10.00	0.00	-103.00	7723.74	-13.391
2:34:40	60.012	3790.81	350.00	231.18	16.00	10.00	0.00	-103.00	7724.07	-12.361
2:34:42	60.012	3790.41	350.00	231.18	16.00	10.00	0.00	-103.00	7724.40	-12.361
2:34:44	60.010	3789.77	350.00	231.18	16.00	10.00	0.00	-103.00	7724.73	-10.298
2:34:46	60.007	3791.54	350.00	231.18	16.00	10.00	0.00	-103.00	7725.06	-7.210
2:34:48	60.007	3792.95	350.00	236.49	16.00	10.00	0.00	-103.00	7725.39	-7.210
2:34:50	60.009	3791.03	350.00	236.49	16.00	10.00	0.00	-103.00	7725.72	-9.269
2:34:52	60.009	3791.44	350.00	236.49	16.00	10.00	0.00	-103.00	7726.05	-9.269
2:34:54	60.010	3791.43	350.00	236.49	16.00	10.00	0.00	-103.00	7726.38	-10.298
2:34:56	60.003	3790.60	350.00	236.49	16.00	10.00	0.00	-103.00	7726.71	-3.088
2:34:58	59.999	3790.46	350.00	245.04	16.00	10.00	0.00	-103.00	7727.04	1.029
2:35:00	59.995	3790.22	350.00	245.04	16.00	10.00	0.00	-103.00	7727.37	5.151
2:35:02	59.992	3789.58	350.00	245.04	16.00	10.00	0.00	-103.00	7727.70	8.239
2:35:04	59.991	3788.46	350.00	245.04	16.00	10.00	0.00	-103.00	7728.03	9.269
2:35:06	59.992	3788.10	350.00	245.04	16.00	10.00	0.00	-103.00	7728.36	8.239
2:35:08	59.992	3788.06	350.00	223.61	16.00	10.00	0.00	-103.00	7728.69	8.239
2:35:10	59.988	3788.19	350.00	223.61	16.00	10.00	0.00	-103.00	7729.02	12.361
2:35:12	59.986	3788.50	350.00	223.61	16.00	10.00	0.00	-103.00	7729.35	14.420
2:35:14	59.985	3788.54	350.00	223.61	16.00	10.00	0.00	-103.00	7729.68	15.449
2:35:16	59.984	3788.57	350.00	223.61	16.00	10.00	0.00	-103.00	7730.01	16.479
2:35:18	59.985	3788.10	350.00	231.12	16.00	10.00	0.00	-103.00	7730.34	15.449
2:35:20	59.984	3787.13	350.00	231.12	16.00	10.00	0.00	-103.00	7730.67	16.479
2:35:22	59.982	3786.45	350.00	231.12	16.00	10.00	0.00	-103.00	7731.00	18.542
2:35:24	59.981	3787.73	350.00	231.12	16.00	10.00	0.00	-103.00	7731.33	19.571
2:35:26	59.982	3788.81	350.00	231.12	16.00	10.00	0.00	-103.00	7731.66	18.542
2:35:28	59.979	3789.29	350.00	237.21	16.00	10.00	0.00	-103.00	7731.99	21.630
2:35:30	59.977	3788.26	350.00	237.21	16.00	10.00	0.00	-103.00	7732.32	23.689
2:35:32	59.976	3788.41	350.00	237.21	16.00	10.00	0.00	-103.00	7732.65	24.718
2:35:34	59.976	3790.47	350.00	237.21	16.00	10.00	0.00	-103.00	7732.98	24.718
2:35:36	59.979	3790.66	350.00	237.21	16.00	10.00	0.00	-103.00	7733.31	21.630
2:35:38	59.982	3790.42	350.00	240.52	16.00	10.00	0.00	-103.00	7733.64	18.542
2:35:40	59.978	3789.67	350.00	240.52	16.00	10.00	0.00	-103.00	7733.97	22.659
2:35:42	59.976	3789.27	350.00	240.52	16.00	10.00	0.00	-103.00	7734.30	24.718
2:35:44	59.974	3789.15	350.00	240.52	16.00	10.00	0.00	-103.00	7734.63	26.781
2:35:46	59.976	3790.43	350.00	240.52	16.00	10.00	0.00	-103.00	7734.96	24.718
2:35:48	59.977	3789.91	350.00	237.57	16.00	10.00	0.00	-103.00	7735.29	23.689
2:35:50	59.977	3786.24	350.00	237.57	16.00	10.00	0.00	-103.00	7735.62	23.689
2:35:52	59.975	3787.44	350.00	237.57	16.00	10.00	0.00	-103.00	7735.95	25.752
2:35:54	59.973	3788.96	350.00	237.57	16.00	10.00	0.00	-103.00	7736.28	27.810
2:35:56	59.969	3790.60	350.00	237.57	16.00	10.00	0.00	-103.00	7736.61	31.928
2:35:58	59.970	3791.88	350.00	231.58	16.00	10.00	0.00	-103.00	7736.94	30.899
2:36:00	59.971	3792.91	350.00	231.58	16.00	10.00	0.00	-103.00	7737.27	29.869
2:36:02	59.973	3792.31	350.00	231.58	16.00	10.00	0.00	-103.00	7737.60	27.810
2:36:04	59.978	3789.13	350.00	231.58	16.00	10.00	0.00	-103.00	7737.93	22.659
2:36:06	59.981	3788.08	350.00	231.58	16.00	10.00	0.00	-103.00	7738.26	19.571
2:36:08	59.978	3787.84	350.00	235.85	16.00	10.00	0.00	-103.00	7738.59	22.659
2:36:10	59.975	3787.14	350.00	235.85	16.00	10.00	0.00	-103.00	7738.92	25.752
2:36:12	59.972	3787.16	350.00	235.85	16.00	10.00	0.00	-103.00	7739.25	28.840

2:36:14	59.976	3787.00	350.00	235.85	16.00	10.00	0.00	-103.00	7739.58	24.718
2:36:16	59.975	3787.40	350.00	235.85	16.00	10.00	0.00	-103.00	7739.91	25.752
2:36:18	59.973	3786.49	350.00	233.56	16.00	10.00	0.00	-103.00	7740.24	27.810
2:36:20	59.969	3787.08	350.00	233.56	16.00	10.00	0.00	-103.00	7740.57	31.928
2:36:22	59.966	3789.21	350.00	233.56	16.00	10.00	0.00	-103.00	7740.90	35.020
2:36:24	59.965	3790.51	350.00	233.56	16.00	10.00	0.00	-103.00	7741.23	36.050
2:36:26	59.966	3791.22	350.00	233.56	16.00	10.00	0.00	-103.00	7741.56	35.020
2:36:28	59.969	3792.22	350.00	219.01	16.00	10.00	0.00	-103.00	7741.89	31.928
2:36:30	59.970	3790.96	350.00	219.01	16.00	10.00	0.00	-103.00	7742.22	30.899
2:36:32	59.968	3788.82	350.00	219.01	16.00	10.00	0.00	-103.00	7742.55	32.962
2:36:34	59.965	3789.03	350.00	219.01	16.00	10.00	0.00	-103.00	7742.88	36.050
2:36:36	59.964	3789.17	350.00	219.01	16.00	10.00	0.00	-103.00	7743.21	37.079
2:36:38	59.970	3787.39	350.00	205.34	16.00	10.00	0.00	-103.00	7743.54	30.899
2:36:40	59.972	3785.69	350.00	205.34	16.00	10.00	0.00	-103.00	7743.87	28.840
2:36:42	59.967	3784.83	350.00	205.34	16.00	10.00	0.00	-103.00	7744.20	33.991
2:36:44	59.967	3785.01	350.00	205.34	16.00	10.00	0.00	-103.00	7744.53	33.991
2:36:46	59.969	3784.32	350.00	205.34	16.00	10.00	0.00	-103.00	7744.86	31.928
2:36:48	59.968	3782.81	350.00	236.29	16.00	10.00	0.00	-103.00	7745.19	32.962
2:36:50	59.969	3782.11	350.00	236.29	16.00	10.00	0.00	-103.00	7745.52	31.928
2:36:52	59.967	3779.35	350.00	236.29	16.00	10.00	0.00	-103.00	7745.85	33.991
2:36:54	59.967	3779.06	350.00	236.29	16.00	10.00	0.00	-103.00	7746.18	33.991
2:36:56	59.966	3778.63	350.00	236.29	16.00	10.00	0.00	-103.00	7746.51	35.020
2:36:58	59.965	3779.21	350.00	223.02	16.00	10.00	0.00	-103.00	7746.84	36.050
2:37:00	59.971	3779.33	350.00	223.02	16.00	10.00	0.00	-103.00	7747.17	29.869
2:37:02	59.967	3776.43	350.00	223.02	16.00	10.00	0.00	-103.00	7747.50	33.991
2:37:04	59.965	3775.65	350.00	223.02	16.00	10.00	0.00	-103.00	7747.83	36.050
2:37:06	59.962	3776.60	350.00	223.02	16.00	10.00	0.00	-103.00	7748.16	39.138
2:37:08	59.964	3776.56	350.00	223.02	16.00	10.00	0.00	-103.00	7748.49	37.079
2:37:10	59.970	3776.02	350.00	223.02	16.00	10.00	0.00	-103.00	7748.82	30.899
2:37:12	59.967	3773.17	350.00	223.02	16.00	10.00	0.00	-103.00	7749.15	33.991
2:37:14	59.969	3771.73	350.00	223.02	16.00	10.00	0.00	-103.00	7749.48	31.928
2:37:16	59.968	3768.79	350.00	223.02	16.00	10.00	0.00	-103.00	7749.81	32.962
2:37:18	59.963	3768.50	350.00	223.02	16.00	10.00	0.00	-103.00	7750.14	38.109
2:37:20	59.965	3768.92	350.00	223.02	16.00	10.00	0.00	-103.00	7750.47	36.050
2:37:22	59.970	3767.37	350.00	223.02	16.00	10.00	0.00	-103.00	7750.80	30.899
2:37:24	59.973	3764.79	350.00	223.02	16.00	10.00	0.00	-103.00	7751.13	27.810
2:37:26	59.968	3760.30	350.00	223.02	16.00	10.00	0.00	-103.00	7751.46	32.962
2:37:28	59.965	3759.59	350.00	223.02	16.00	10.00	0.00	-103.00	7751.79	36.050
2:37:30	59.968	3761.89	350.00	223.02	16.00	10.00	0.00	-103.00	7752.12	32.962
2:37:32	59.969	3761.78	350.00	223.02	16.00	10.00	0.00	-103.00	7752.45	31.928
2:37:34	59.967	3760.58	350.00	223.02	16.00	10.00	0.00	-103.00	7752.78	33.991
2:37:36	59.964	3760.16	350.00	223.02	16.00	10.00	0.00	-103.00	7753.11	37.079
2:37:38	59.966	3759.78	350.00	223.02	16.00	10.00	0.00	-103.00	7753.44	35.020
2:37:40	59.979	3759.49	350.00	223.02	16.00	10.00	0.00	-103.00	7753.77	21.630
2:37:42	59.990	3757.77	350.00	223.02	16.00	10.00	0.00	-103.00	7754.10	10.298
2:37:44	59.983	3753.28	350.00	223.02	16.00	10.00	0.00	-103.00	7754.43	17.508
2:37:46	59.974	3753.09	350.00	223.02	16.00	10.00	0.00	-103.00	7754.76	26.781
2:37:48	59.967	3751.64	350.00	223.02	16.00	10.00	0.00	-103.00	7755.09	33.991
2:37:50	59.965	3753.75	350.00	223.02	16.00	10.00	0.00	-103.00	7755.42	36.050

2:37:52	59.962	3758.22	350.00	223.02	16.00	10.00	0.00	-103.00	7755.75	39.138
2:37:54	59.962	3759.25	350.00	223.02	16.00	10.00	0.00	-103.00	7756.08	39.138
2:37:56	59.961	3758.04	350.00	223.02	16.00	10.00	0.00	-103.00	7756.41	40.172
2:37:58	59.961	3760.96	350.00	223.02	16.00	10.00	0.00	-103.00	7756.74	40.172
2:38:00	59.960	3762.02	350.00	223.02	16.00	10.00	0.00	-103.00	7757.07	41.201
2:38:02	59.963	3763.82	350.00	223.02	16.00	10.00	0.00	-103.00	7757.40	38.109
2:38:04	59.959	3763.10	350.00	223.02	16.00	10.00	0.00	-103.00	7757.73	42.230
2:38:06	59.956	3763.86	350.00	223.02	16.00	10.00	0.00	-103.00	7758.06	45.319
2:38:08	59.951	3764.16	350.00	223.02	16.00	10.00	0.00	-103.00	7758.39	50.470
2:38:10	59.953	3766.13	350.00	223.02	16.00	10.00	0.00	-103.00	7758.72	48.411
2:38:12	59.954	3768.34	350.00	223.02	16.00	10.00	0.00	-103.00	7759.05	47.381
2:38:14	59.957	3767.97	350.00	223.02	16.00	10.00	0.00	-103.00	7759.38	44.289
2:38:16	59.956	3767.44	350.00	223.02	16.00	10.00	0.00	-103.00	7759.71	45.319
2:38:18	59.961	3765.61	350.00	223.02	16.00	10.00	0.00	-103.00	7760.04	40.172
2:38:20	59.963	3762.69	350.00	223.02	16.00	10.00	0.00	-103.00	7760.37	38.109
2:38:22	59.961	3761.57	350.00	223.02	16.00	10.00	0.00	-103.00	7760.70	40.172
2:38:24	59.959	3761.92	350.00	223.02	16.00	10.00	0.00	-103.00	7761.03	42.230
2:38:26	59.963	3759.63	350.00	223.02	16.00	10.00	0.00	-103.00	7761.36	38.109
2:38:28	59.963	3758.52	350.00	223.02	16.00	10.00	0.00	-103.00	7761.69	38.109
2:38:30	59.965	3752.43	350.00	223.02	16.00	10.00	0.00	-103.00	7762.02	36.050
2:38:32	59.968	3750.10	350.00	223.02	16.00	10.00	0.00	-103.00	7762.35	32.962
2:38:34	59.968	3753.83	350.00	223.02	16.00	10.00	0.00	-103.00	7762.68	32.962
2:38:36	59.968	3753.51	350.00	223.02	16.00	10.00	0.00	-103.00	7763.01	32.962
2:38:38	59.970	3753.52	350.00	223.02	16.00	10.00	0.00	-103.00	7763.34	30.899
2:38:40	59.973	3752.74	350.00	223.02	16.00	10.00	0.00	-103.00	7763.67	27.810
2:38:42	59.971	3753.18	350.00	223.02	16.00	10.00	0.00	-103.00	7764.00	29.869
2:38:44	59.965	3752.73	350.00	223.02	16.00	10.00	0.00	-103.00	7764.33	36.050
2:38:46	59.967	3753.29	350.00	223.02	16.00	10.00	0.00	-103.00	7764.66	33.991
2:38:48	59.967	3752.87	350.00	223.02	16.00	10.00	0.00	-103.00	7764.99	33.991
2:38:50	59.972	3752.36	350.00	223.02	16.00	10.00	0.00	-103.00	7765.32	28.840
2:38:52	59.976	3749.40	350.00	223.02	16.00	10.00	0.00	-103.00	7765.65	24.718
2:38:54	59.975	3747.48	350.00	223.02	16.00	10.00	0.00	-103.00	7765.98	25.752
2:38:56	59.969	3740.37	350.00	223.02	16.00	10.00	0.00	-103.00	7766.31	31.928
2:38:58	59.973	3741.29	350.00	223.02	16.00	10.00	0.00	-103.00	7766.64	27.810
2:39:00	59.974	3746.65	350.00	223.02	16.00	10.00	0.00	-103.00	7766.97	26.781
2:39:02	59.978	3745.74	350.00	223.02	16.00	10.00	0.00	-103.00	7767.30	22.659
2:39:04	59.981	3743.35	350.00	223.02	16.00	10.00	0.00	-103.00	7767.63	19.571
2:39:06	59.981	3741.62	350.00	223.02	16.00	10.00	0.00	-103.00	7767.96	19.571
2:39:08	59.981	3740.31	350.00	223.02	16.00	10.00	0.00	-103.00	7768.29	19.571
2:39:10	59.982	3738.48	350.00	223.02	16.00	10.00	0.00	-103.00	7768.62	18.542
2:39:12	59.982	3738.90	350.00	223.02	16.00	10.00	0.00	-103.00	7768.95	18.542
2:39:14	59.984	3737.40	350.00	223.02	16.00	10.00	0.00	-103.00	7769.28	16.479
2:39:16	59.982	3737.27	350.00	223.02	16.00	10.00	0.00	-103.00	7769.61	18.542
2:39:18	59.981	3736.31	350.00	223.02	16.00	10.00	0.00	-103.00	7769.94	19.571
2:39:20	59.979	3736.27	350.00	223.02	16.00	10.00	0.00	-103.00	7770.27	21.630
2:39:22	59.980	3735.45	350.00	223.02	16.00	10.00	0.00	-103.00	7770.60	20.600
2:39:24	59.978	3735.65	350.00	223.02	16.00	10.00	0.00	-103.00	7770.93	22.659
2:39:26	59.978	3737.54	350.00	223.02	16.00	10.00	0.00	-103.00	7771.26	22.659
2:39:28	59.980	3738.01	350.00	223.02	16.00	10.00	0.00	-103.00	7771.59	20.600

2:39:30	59.981	3736.75	350.00	223.02	16.00	10.00	0.00	-103.00	7771.92	19.571
2:39:32	59.980	3736.69	350.00	223.02	16.00	10.00	0.00	-103.00	7772.25	20.600
2:39:34	59.978	3736.07	350.00	223.02	16.00	10.00	0.00	-103.00	7772.58	22.659
2:39:36	59.976	3736.09	350.00	223.02	16.00	10.00	0.00	-103.00	7772.91	24.718
2:39:38	59.972	3736.57	350.00	223.02	16.00	10.00	0.00	-103.00	7773.24	28.840
2:39:40	59.971	3738.57	350.00	223.02	16.00	10.00	0.00	-103.00	7773.57	29.869
2:39:42	59.969	3738.87	350.00	223.02	16.00	10.00	0.00	-103.00	7773.90	31.928
2:39:44	59.974	3738.93	350.00	223.02	16.00	10.00	0.00	-103.00	7774.23	26.781
2:39:46	59.975	3738.65	350.00	223.02	16.00	10.00	0.00	-103.00	7774.56	25.752
2:39:48	59.976	3737.68	350.00	223.02	16.00	10.00	0.00	-103.00	7774.89	24.718
2:39:50	59.972	3737.38	350.00	223.02	16.00	10.00	0.00	-103.00	7775.22	28.840
2:39:52	59.969	3737.89	350.00	223.02	16.00	10.00	0.00	-103.00	7775.55	31.928
2:39:54	59.971	3740.02	350.00	223.02	16.00	10.00	0.00	-103.00	7775.88	29.869
2:39:56	59.974	3740.33	350.00	223.02	16.00	10.00	0.00	-103.00	7776.21	26.781
2:39:58	59.972	3742.05	350.00	223.02	16.00	10.00	0.00	-103.00	7776.54	28.840
2:40:00	59.972	3742.42	350.00	223.02	16.00	10.00	0.00	-103.00	7776.87	28.840
2:40:02	59.972	3742.52	350.00	223.02	16.00	10.00	0.00	-103.00	7777.20	28.840
2:40:04	59.977	3742.25	350.00	223.02	16.00	10.00	0.00	-103.00	7777.53	23.689
2:40:06	59.982	3741.72	350.00	223.02	16.00	10.00	0.00	-103.00	7777.86	18.542
2:40:08	59.978	3740.09	350.00	223.02	16.00	10.00	0.00	-103.00	7778.19	22.659
2:40:10	59.976	3740.63	350.00	223.02	16.00	10.00	0.00	-103.00	7778.52	24.718
2:40:12	59.973	3739.96	350.00	223.02	16.00	10.00	0.00	-103.00	7778.85	27.810
2:40:14	59.974	3740.78	350.00	223.02	16.00	10.00	0.00	-103.00	7779.18	26.781
2:40:16	59.977	3742.83	350.00	223.02	16.00	10.00	0.00	-103.00	7779.51	23.689
2:40:18	59.977	3741.27	350.00	223.02	16.00	10.00	0.00	-103.00	7779.84	23.689
2:40:20	59.978	3739.78	350.00	223.02	16.00	10.00	0.00	-103.00	7780.17	22.659
2:40:22	59.979	3738.97	350.00	223.02	16.00	10.00	0.00	-103.00	7780.50	21.630
2:40:24	59.981	3738.71	350.00	223.02	16.00	10.00	0.00	-103.00	7780.83	19.571
2:40:26	59.977	3738.88	350.00	223.02	16.00	10.00	0.00	-103.00	7781.16	23.689
2:40:28	59.974	3739.86	350.00	223.02	16.00	10.00	0.00	-103.00	7781.49	26.781
2:40:30	59.971	3738.10	350.00	223.02	16.00	10.00	0.00	-103.00	7781.82	29.869
2:40:32	59.971	3738.56	350.00	223.02	16.00	10.00	0.00	-103.00	7782.15	29.869
2:40:34	59.971	3743.51	350.00	223.02	16.00	10.00	0.00	-103.00	7782.48	29.869
2:40:36	59.972	3743.42	350.00	223.02	16.00	10.00	0.00	-103.00	7782.81	28.840
2:40:38	59.968	3745.25	350.00	223.02	16.00	10.00	0.00	-103.00	7783.14	32.962
2:40:40	59.966	3745.74	350.00	223.02	16.00	10.00	0.00	-103.00	7783.47	35.020
2:40:42	59.966	3747.34	350.00	223.02	16.00	10.00	0.00	-103.00	7783.80	35.020
2:40:44	59.971	3750.70	350.00	223.02	16.00	10.00	0.00	-103.00	7784.13	29.869
2:40:46	59.973	3749.75	350.00	223.02	16.00	10.00	0.00	-103.00	7784.46	27.810
2:40:48	59.972	3746.22	350.00	223.02	16.00	10.00	0.00	-103.00	7784.79	28.840
2:40:50	59.969	3744.68	350.00	223.02	16.00	10.00	0.00	-103.00	7785.12	31.928
2:40:52	59.972	3743.75	350.00	223.02	16.00	10.00	0.00	-103.00	7785.45	28.840
2:40:54	59.974	3743.15	350.00	223.02	16.00	10.00	0.00	-103.00	7785.78	26.781
2:40:56	59.973	3740.30	350.00	223.02	16.00	10.00	0.00	-103.00	7786.11	27.810
2:40:58	59.970	3739.45	350.00	223.02	16.00	10.00	0.00	-103.00	7786.44	30.899
2:41:00	59.971	3733.38	350.00	223.02	16.00	10.00	0.00	-103.00	7786.77	29.869
2:41:02	59.974	3731.83	350.00	223.02	16.00	10.00	0.00	-103.00	7787.10	26.781
2:41:04	59.982	3737.58	350.00	223.02	16.00	10.00	0.00	-103.00	7787.43	18.542
2:41:06	59.985	3736.23	350.00	223.02	16.00	10.00	0.00	-103.00	7787.76	15.449

2:41:08	59.985	3734.90	350.00	223.02	16.00	10.00	0.00	-103.00	7788.09	15.449
2:41:10	59.985	3733.43	350.00	223.02	16.00	10.00	0.00	-103.00	7788.42	15.449
2:41:12	59.987	3733.12	350.00	223.02	16.00	10.00	0.00	-103.00	7788.75	13.391
2:41:14	59.989	3730.51	350.00	223.02	16.00	10.00	0.00	-103.00	7789.08	11.332
2:41:16	59.989	3729.18	350.00	223.02	16.00	10.00	0.00	-103.00	7789.41	11.332
2:41:18	59.986	3725.46	350.00	223.02	16.00	10.00	0.00	-103.00	7789.74	14.420
2:41:20	59.987	3724.78	350.00	223.02	16.00	10.00	0.00	-103.00	7790.07	13.391
2:41:22	59.990	3720.11	350.00	223.02	16.00	10.00	0.00	-103.00	7790.40	10.298
2:41:24	59.994	3720.94	350.00	223.02	16.00	10.00	0.00	-103.00	7790.73	6.181
2:41:26	59.996	3725.66	350.00	223.02	16.00	10.00	0.00	-103.00	7791.06	4.122
2:41:28	60.001	3725.68	350.00	223.02	16.00	10.00	0.00	-103.00	7791.39	-1.029
2:41:30	60.003	3727.75	350.00	223.02	16.00	10.00	0.00	-103.00	7791.72	-3.088
2:41:32	60.004	3727.82	350.00	223.02	16.00	10.00	0.00	-103.00	7792.05	-4.122
2:41:34	60.006	3727.68	350.00	223.02	16.00	10.00	0.00	-103.00	7792.38	-6.181
2:41:36	60.012	3727.23	350.00	223.02	16.00	10.00	0.00	-103.00	7792.71	-12.361
2:41:38	60.014	3725.01	350.00	223.02	16.00	10.00	0.00	-103.00	7793.04	-14.420
2:41:40	60.019	3726.45	350.00	223.02	16.00	10.00	0.00	-103.00	7793.37	-19.571
2:41:42	60.021	3726.02	350.00	223.02	16.00	10.00	0.00	-103.00	7793.70	-21.630
2:41:44	60.025	3719.12	350.00	223.02	16.00	10.00	0.00	-103.00	7794.03	-25.752
2:41:46	60.026	3716.37	350.00	223.02	16.00	10.00	0.00	-103.00	7794.36	-26.781
2:41:48	60.027	3717.33	350.00	223.02	16.00	10.00	0.00	-103.00	7794.69	-27.810
2:41:50	60.029	3717.56	350.00	223.02	16.00	10.00	0.00	-103.00	7795.02	-29.869
2:41:52	60.029	3717.14	350.00	223.02	16.00	10.00	0.00	-103.00	7795.35	-29.869
2:41:54	60.037	3715.17	350.00	223.02	16.00	10.00	0.00	-103.00	7795.68	-38.109
2:41:56	60.036	3713.63	350.00	223.02	16.00	10.00	0.00	-103.00	7796.01	-37.079
2:41:58	60.037	3710.28	350.00	223.02	16.00	10.00	0.00	-103.00	7796.34	-38.109
2:42:00	60.037	3710.16	350.00	223.02	16.00	10.00	0.00	-103.00	7796.67	-38.109
2:42:02	60.036	3699.36	350.00	223.02	16.00	10.00	0.00	-103.00	7797.00	-37.079
2:42:04	60.041	3698.59	350.00	223.02	16.00	10.00	0.00	-103.00	7797.33	-42.230
2:42:06	60.043	3704.59	350.00	223.02	16.00	10.00	0.00	-103.00	7797.66	-44.289
2:42:08	60.044	3703.28	350.00	223.02	16.00	10.00	0.00	-103.00	7797.99	-45.319
2:42:10	60.043	3702.48	350.00	223.02	16.00	10.00	0.00	-103.00	7798.32	-44.289
2:42:12	60.046	3701.32	350.00	223.02	16.00	10.00	0.00	-103.00	7798.65	-47.381
2:42:14	60.048	3700.83	350.00	223.02	16.00	10.00	0.00	-103.00	7798.98	-49.440
2:42:16	60.046	3699.53	350.00	223.02	16.00	10.00	0.00	-103.00	7799.31	-47.381
2:42:18	60.046	3699.73	350.00	223.02	16.00	10.00	0.00	-103.00	7799.64	-47.381
2:42:20	60.043	3690.10	350.00	223.02	16.00	10.00	0.00	-103.00	7799.97	-44.289
2:42:22	60.043	3690.48	350.00	223.02	16.00	10.00	0.00	-103.00	7800.30	-44.289
2:42:24	60.044	3696.86	350.00	223.02	16.00	10.00	0.00	-103.00	7800.63	-45.319
2:42:26	60.043	3696.88	350.00	223.02	16.00	10.00	0.00	-103.00	7800.96	-44.289

											0.0390	-103
350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389				0.0410	-103
350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389				0.0430	-103
350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389				0.0450	-103
350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389				0.0460	-103
350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389				0.0410	-103
350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389				0.0410	-103
350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389				0.0410	-103
350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389				0.0390	-103
											0.0220	
									51.252	-26.96	0.1480	-103
									89.794	-43.56	0.1640	-103
									89.563	-51.73	0.1310	-103
									89.563	-51.73	0.1310	-103
									92.047	-61.31	0.1080	-103
									116.139	-76.85	0.1090	-103
									121.003	-74.64	0.1200	-103
									121.084	-72.89	0.1240	-103
									123.767	-74.06	0.1250	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	124.815	-78.44	0.1170	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	135.511	-87.36	0.1130	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	136.482	-87.42	0.1140	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7633.00	114.209	3843.77	137.389	-87.44	0.1150	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	139.852	-90.15	0.1130	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	139.620	-90.59	0.1120	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	139.309	-91.57	0.1100	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	142.962	-97.17	0.1050	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	143.218	-96.69	0.1060	-103

335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	143.758	-96.40	0.1070	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	143.362	-96.78	0.1060	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	147.166	-99.35	0.1060	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	147.964	-97.91	0.1090	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	149.264	-98.12	0.1100	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	154.318	-98.21	0.1150	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	155.317	-98.85	0.1150	-103
335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	154.849	-100.47	0.1120	-103
									158.515	-102.19	0.1130	-103
									157.815	-102.39	0.1120	-103
									157.841	-102.41	0.1120	-103
									159.278	-104.70	0.1100	-103
									160.386	-104.74	0.1110	-103
									160.507	-100.24	0.1180	-103
									164.127	-97.05	0.1270	-103
									166.393	-89.88	0.1430	-103
									169.752	-87.90	0.1510	-103
									170.779	-89.82	0.1480	-103
									180.532	-98.05	0.1420	-103
									180.943	-101.01	0.1370	-103
									180.892	-102.71	0.1340	-103
									182.414	-102.99	0.1350	-103
									181.643	-103.72	0.1330	-103
									181.673	-103.15	0.1340	-103
									181.344	-105.97	0.1290	-103
									180.603	-107.42	0.1260	-103
									178.716	-109.56	0.1210	-103
									177.395	-109.42	0.1200	-103
									173.971	-109.33	0.1170	-103
									172.945	-110.77	0.1140	-103
									171.705	-112.87	0.1100	-103
									169.900	-113.17	0.1080	-103
									168.673	-110.15	0.1110	-103
									166.728	-111.81	0.1070	-103
									164.542	-114.96	0.1010	-103
									161.862	-116.34	0.0970	-103
									160.483	-114.53	0.0980	-103
									159.078	-113.53	0.0980	-103
									150.968	-109.30	0.0960	-103
									148.865	-110.17	0.0930	-103
									147.059	-112.15	0.0890	-103
									146.392	-116.07	0.0840	-103
									144.424	-114.51	0.0840	-103
									143.022	-114.30	0.0830	-103
									139.453	-112.35	0.0820	-103
									137.918	-112.93	0.0800	-103
									136.591	-112.77	0.0790	-103
									131.248	-107.47	0.0800	-103
									130.525	-104.32	0.0830	-103

129.494	-106.03	0.0800	-103
128.224	-105.86	0.0790	-103
128.848	-108.16	0.0770	-103
127.612	-109.89	0.0740	-103
126.560	-108.05	0.0750	-103
124.520	-109.11	0.0720	-103
123.597	-107.36	0.0730	-103
122.533	-111.27	0.0680	-103
121.911	-105.89	0.0730	-103
122.298	-107.16	0.0720	-103
121.678	-109.50	0.0690	-103
121.149	-107.09	0.0710	-103
120.562	-108.49	0.0690	-103
121.012	-110.89	0.0670	-103
119.133	-113.32	0.0630	-103
119.995	-114.15	0.0630	-103
117.825	-121.31	0.0550	-103
113.277	-121.64	0.0510	-103
108.812	-114.39	0.0530	-103
104.757	-104.63	0.0580	-103
101.779	-100.65	0.0590	-103
102.765	-102.64	0.0580	-103
104.483	-107.58	0.0550	-103
103.551	-110.02	0.0520	-103
101.596	-106.80	0.0530	-103
103.967	-111.64	0.0510	-103
97.631	-107.14	0.0490	-103
95.149	-105.57	0.0480	-103
91.029	-102.14	0.0470	-103
86.272	-94.67	0.0490	-103
82.728	-91.79	0.0480	-103
80.842	-89.70	0.0480	-103
77.539	-86.03	0.0480	-103
75.468	-86.62	0.0450	-103
72.886	-80.87	0.0480	-103
73.032	-82.87	0.0460	-103
70.643	-78.38	0.0480	-103
68.584	-76.95	0.0470	-103
68.374	-76.72	0.0470	-103
65.738	-72.94	0.0480	-103
65.700	-74.55	0.0460	-103
66.982	-76.01	0.0460	-103
69.512	-83.62	0.0410	-103
70.020	-82.26	0.0430	-103
71.058	-82.51	0.0440	-103
71.351	-80.96	0.0460	-103
71.870	-83.45	0.0440	-103
72.649	-83.39	0.0450	-103
77.251	-91.83	0.0420	-103

76.863	-94.74	0.0390	-103
77.548	-96.79	0.0380	-103
77.157	-96.30	0.0380	-103
77.168	-104.10	0.0320	
76.677	-100.72	0.0340	
77.981	-102.44	0.0340	
78.874	-106.40	0.0320	
78.324	-108.60	0.0300	
78.783	-115.64	0.0260	
80.293	-111.33	0.0300	
82.011	-112.15	0.0310	
82.943	-113.43	0.0310	
86.020	-119.27	0.0300	
87.420	-122.91	0.0290	
88.217	-127.62	0.0270	
91.425	-132.26	0.0270	
91.797	-138.83	0.0240	
91.712	-143.02	0.0220	
93.589	-145.95	0.0220	
94.834	-143.42	0.0240	
95.767	-149.35	0.0220	
96.684	-146.22	0.0240	
100.124	-156.14	0.0220	
101.498	-155.85	0.0230	
103.190	-166.10	0.0200	
105.606	-175.64	0.0180	
106.448	-174.14	0.0190	
107.637	-173.26	0.0200	
110.489	-175.03	0.0210	
111.297	-179.15	0.0200	
111.865	-177.21	0.0210	
115.295	-195.01	0.0170	
115.872	-195.98	0.0170	
116.297	-200.08	0.0160	
117.627	-217.32	0.0120	
118.102	-222.30	0.0110	
119.847	-217.41	0.0130	
120.975	-219.45	0.0130	
121.323	-237.31	0.0090	
122.141	-248.63	0.0070	
122.682	-244.75	0.0080	
123.523	-241.61	0.0090	
126.036	-237.24	0.0110	
127.335	-226.88	0.0140	
128.585	-217.48	0.0170	
129.558	-219.13	0.0170	
130.731	-241.53	0.0120	
130.253	-265.15	0.0070	
129.756	-281.30	0.0040	

130.382	-295.49	0.0020
131.310	-304.49	0.0010
132.827		0.0010
133.965	0.0010	
135.529	0.0010	
134.868		0.0010
137.365	0.0020	
138.168	0.0050	
138.694	0.0070	
140.041	0.0080	
139.736	0.0110	
141.123	0.0140	
140.577	0.0170	
141.532	0.0190	
141.789	0.0210	
142.228	0.0170	
142.303	0.0170	
142.880	0.0190	
143.489	0.0230	
141.810	0.0240	
140.115	0.0250	
140.350	0.0210	
142.203	0.0190	
143.033	0.0240	
141.148	0.0240	
140.823	0.0210	
141.631	0.0200	
139.291	0.0250	
139.887	0.0240	
140.222	0.0200	
140.077	0.0200	
141.137	0.0220	
141.150	0.0220	
139.527	0.0220	
139.999	0.0210	
140.620	0.0210	
140.094	0.0230	
140.071	0.0230	
140.557	0.0220	
141.212	0.0190	
141.900	0.0160	
143.717	0.0180	
143.946	0.0180	
143.677	0.0180	
142.752	0.0190	
143.456	0.0190	
143.642	0.0160	
143.278	0.0150	
142.938	0.0160	

143.206	
144.940	0.0140
145.078	0.0130
144.684	0.0120
144.042	0.0120
145.813	0.0100
147.218	0.0070
145.300	0.0070
145.716	0.0090
145.699	0.0090
144.876	0.0100
144.730	0.0030
144.489	0.0010
143.858	0.0050
142.730	0.0080
142.378	0.0090
142.330	0.0080
142.462	0.0080
142.770	0.0120
142.813	0.0140
142.844	0.0150
142.374	0.0160
141.406	0.0150
140.726	0.0160
142.005	0.0180
143.086	0.0190
143.558	0.0180
142.529	0.0210
142.683	0.0230
144.740	0.0240
1449.938	0.0240
144.693	0.0210
143.947	0.0180
143.540	0.0220
143.421	0.0240
144.703	0.0260
144.187	0.0240
140.516	0.0230
141.715	0.0230
143.236	0.0250
144.875	0.0270
146.150	0.0310
147.184	0.0300
146.584	0.0290
143.398	0.0270
142.353	0.0220
142.117	0.0190
141.408	0.0220
141.437	0.0250
	0.0280

141.269	
141.678	0.0240
140.760	0.0250
141.352	0.0270
143.487	0.0310
144.785	0.0340
145.494	0.0350
146.491	0.0340
145.232	0.0310
143.097	0.0300
143.299	0.0320
143.440	0.0350
141.667	0.0360
139.963	0.0300
139.104	0.0280
139.282	0.0330
138.593	0.0330
137.082	0.0310
136.383	0.0320
133.625	0.0310
133.329	0.0330
132.906	0.0330
133.485	0.0340
133.608	0.0350
130.702	0.0290
129.920	0.0330
130.870	0.0350
130.832	0.0380
130.296	0.0360
127.443	0.0300
126.003	0.0330
123.066	0.0310
122.776	0.0320
123.190	0.0370
121.639	0.0350
119.059	0.0300
114.568	0.0270
113.865	0.0320
116.167	0.0350
116.050	0.0320
114.855	0.0310
114.430	0.0330
114.054	0.0360
113.768	0.0340
112.046	0.0210
107.550	0.0100
107.360	0.0170
1059010	0.0260
108.024	0.0330
	0.0350

112.498		
113.523	0.0380	-103
112.314	0.0380	-103
115.238	0.0390	-103
116.295	0.0390	-103
118.095	0.0400	-103
117.373	0.0370	-103
118.131	0.0410	-103
118.431	0.0440	-103
120.400	0.0490	-103
122.612	0.0470	-103
122.245	0.0460	-103
121.710	0.0430	-103
19.879	0.0430	-103
116.961	0.0390	-103
115.843	0.0370	-103
116.193	0.0390	-103
113.900	0.0410	-103
112.795	0.0370	-103
106.702	0.0370	-103
104.375	0.0350	
108.103	0.0320	
107.783	0.0320	
107.796	0.0320	
107.014	0.0300	
107.451	0.0270	
107.002	0.0290	
107.563	0.0350	
107.145	0.0330	
106.632	0.0330	
103.671	0.0280	
101.749	0.0240	
94.643	0.0250	
95.558	0.0310	
100.924	0.0270	
100.011	0.0260	
97.624	0.0220	
95.891	0.0190	
94.579	0.0190	
92.757	0.0919	
93.174	0.0180	
91.677	0.0180	
91.546	0.0160	
90.581	0.0180	
90.545	0.0190	
89.721	0.0210	
89.923	0.0200	
91.813	0.0220	
92.285	0.0220	
	0.0200	

91.021	
90.966	
90.340	
90.367	0.0190
90.848	0.0200
92.844	0.0220
93.148	0.0240
93.208	0.0280
92.920	0.0290
91.957	0.0310
91.655	0.0260
92.165	0.0250
94.290	0.0240
94.602	0.0280
96.326	0.0310
96.697	0.0290
96.797	0.0260
96.518	0.0280
95.996	0.0280
94.358	0.0280
94.922	0.0230
94.237	0.0180
95.048	0.0220
97.105	0.0240
95.541	0.0270
94.049	0.0260
93.239	0.0230
92.979	0.0230
93.152	0.0220
94.133	0.0210
92375	0.0190
92.831	0.0230
97.780	0.0260
97.692	0.0290
99.524	0.0290
100.017	0.0290
101.613	0.0280
104.973	0.0320
104.023	0.0340
100.490	0.0340
98.956	0.0290
98.018	0.0270
97.422	0.0280
94.572	0.0310
93.726	0.0280
87.649	0.0260
86.103	0.0270
91.835	0.0300
90.502	0.0290
	0.0260
	0.0180
0.0150	

89.170		
87.707	0.0150	
87.388	0.0150	
84.783	0.0130	
83.453	0.0110	
79.732	0.0110	
79.058	0.0140	
74.381	0.0130	
75.211	0.0100	
79.934	0.0060	
79.950	0.0040	
82.027	0.0010	
82.098	0.0030	
81.956	0.0040	
81.504	0.0060	
79.285	0.0120	
80.719	0.0140	
80.289	0.0190	
73.396	0.0210	
70.647	0.0250	
71.605	0.0260	
71.833	0.0270	
71.415	0.0290	
69.439	0.0290	
67.905	0.0370	-103
64.556	0.0360	
64.431	0.0370	-103
53.629	0.0370	-103
52.864	0.0360	
58.864	0.0410	-103
57.548	0.0430	-103
565755	0.0040	-103
55.589	0.0430	-103
55.099	0.0460	-103
53.802	0.0480	-103
53.999	0.0460	-103
44.373	0.0460	-103
44.750	0.0430	-103
51.137	0.0430	-103
51.150	0.0440	-103
	0.0430	-103

A zero value aligns the data to the hightest Frequency change value. Usually the event begins one or two data scans earlier than this scan.

Increasing this value shifts graph data to the right.
Decreasing this value shifts graph data to the left.

Note: The P.U. Performance values indicate performance as a P.U. value of BA Bias setting. For BAs that utilize a variable Bias, the Bias average during $T(+20)$ to $T(+52)$ is used.
P.U. values above 1.0 indicate that the Bias setting was below measured Frequency Response, P.U. values below 1.0 indicate that the Bias setting was above measured Frequency Response.

First change in frequency of the event should occur here on the vertical grid line.
It is important that the pre-event frequency average to NOT contain frequency data of the event, "Average Frequency" trend to the left of center of the graph
To shift the data on the graph left or right, adjust the value in cell Q3 highlighted in yellow above.

			Value B 20 to 52 second Average Period Evaluation										
					JOU	Non-			Transferred	Contingent			
BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Not	Frequency	BA	Initial	Initial	Sustained
Bias	Load	Setting		Actual	Schedules	Load	Hydro	Used	Response	Lost Generation	Performance	Performance	Performance
Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)		$\operatorname{Rec}(-) \operatorname{Del}(+)$	Load (-) Gen (+)	Adjusted	Unadjusted	
MW/0.1 Hz	MW	MW	Hz	MW	MW	MW	MW		MW	MW	P.U.	P.U.	P.U.
-103.00	7651.305	-43.39	59.889	3803.35	335.00	165.34	6.35	0.00	11.09	0.00	0.744	1.000	0.758

				Frequency Response Initiative - Additional Primary Frequency Response Evaluation Points									
			Average	Unadjusted	Unadjusted	Unadjusted	Unadjusted	Unadjusted	Adjusted	Adjusted	Adjusted	Adjusted	Adjusted
BA	BA	Bias	Bias While	PFR									
Bias	Load	Setting	$\mathrm{Hz}>+/-0.036$	Performance									
Setting		EPFR	Hz	@ T(+46)	@ T(+76)	@ T(+106)	@ T(+136)	@ T(+166)	@ T(+46)	@ T(+76)	@ T(+106)	@ T(+136)	@ T(+166)
MW/0.1 Hz	MW	MW	MW/0.1 Hz	P.U.									
-103.00	7632.00	114.21	-103.00	1.399	1.293	1.582	1.571	1.849	0.856	0.808	0.829	0.633	0.689

Teps To be completed for each event evaluated

1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Set-up Data collection in exact same order as the "Data" sheet
Column A: Date and Time in this format, $\mathrm{mm} / \mathrm{dd} / \mathrm{yy} \mathrm{HH}: \mathrm{MM}$: SS
Column B: Frequency H
Column C. Net Actual Interchang
Column D: Joint Owned Unit dynamic schedule
Column E: Non Conforming Load
Column f. Pumped Hy
olumn G: Not Used
Column H: Transferred Frequency Response
Column I: Contingent BA Lost load or generation
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D, E, F and H are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign ($+/$-) convention defined in FRS Form 1.
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must start a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event with up to 60 minutes of data Be sure the "Data" worksheet is clear of any old data. Collect the same total minutes of data for each event evaluated to minimize your effort and time.
using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data.
5 Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on the graph on the "Copy Results" worksheet If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process.

6 Once data is in place in the "Data" worksheet, confirm the Auto selection of the beginning of the event by observing the "Graph 20 to 52 s " worksheet. Adjust the selection if necessary. To make an adjustment, change the value in cell "Q3" on the "Graph 20 to 52 s " worksheet. Usually a 0,1 or 2 will achive the correct alignment of $\mathrm{T}(0)$.

7 If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency (red trend) of the event on the center vertical grid line of the graph.
8 The end of the event will be Auto selected based on the frequency value in cell " N 2 " on the Data worksheet. This will be the frequency at the beginning of the event or 60 Hz , whichever is lower. (for low Hz events his value controls the end of the "Sustained Frequency Response" evaluation period.
Primary Frequency Response should be sustained during the event recovery period. This evaluation determines how well you achieved this goal
9 Use the "Copy Form 2 data for Pasting into Form 1" button provided on the "Copy Results" worksheet (Cells B21 through B28) to copy the evaluation and event specific data for the "FRS Form 1" of this field trial. This data is summarized in the correct order on worksheet "Form 1 Summary Data"
10 Use PasteSpecial/Values and paste the copied data into FRS Form 1 on the appropriate event row. Be sure to use the latest version of Form 1, currently Form 1.9.
11 Save this Form 2 using the file name convention on the "Copy Results" worksheet. The complete file name is in bold in cell B38. Return all completed Form $2 s$ with your Form 1 to NERC.

Steps To be completed the first time you use Form 2 for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Copy Results" worksheet. For example: "NYISO"
B For informational and educational purposes, a "Sustained" performance evaluation is provided in the "Evaluation" worksheet and in the "Sustained" Graph. This evaluation uses a Time Constant (TC) to model the frequency response of your BA. The time constant is located in cell "L13" of the "Evaluation" spreadsheet and should be edited for the types of generators in your BA. Presently this time constant is set at 0.35 ,
he higher the value of the time constant, the faster the delivery of frequency response is expected. Setting the TC to 1.0 effectively turns off the delay and instantaneous frequency response will be modeled. Do not set higher than 1.0 his time constant is only used in the "Sustained" evaluation and is not used for the Field Trial evaluation of performance to the FRO.
A typical setting for this time constant is 0.08 to 0.15 for hydro units, 0.10 to 0.20 for large steam turbines and 0.20 to 0.40 for combustion turbines.
By observing the slope of your "Interchange Actual" on the "Sustained" Graph, adjust the time constant until the initial slope of the "Target" is similar to the slope of the NAl data.
When set appropriately, the "Target" trend on the "Sustained" graph will model what the Net Actua Interchange should have done during the event recovery period based on your Bias setting during the event

Time (T)	Hz	$\begin{aligned} & \text { Contingent } \\ & \text { Resource } \\ & \text { Lost } \\ & \text { MW } \\ & \hline \end{aligned}$	Load Resources Tripped MW	NonConforming Load Load (-) MW	$\begin{gathered} \text { Not } \\ \text { Used } \end{gathered}$	$\begin{aligned} & \text { Not } \\ & \text { Used } \end{aligned}$	$\begin{gathered} \text { Not } \\ \text { Used } \end{gathered}$	$\begin{gathered} \text { Not } \\ \text { Used } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 8021 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 $\mathrm{t}(0)$ t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:40:00	60.0097	471		0		0			-653	29756.85		0				
05/16/11 07:40:02	60.00745	471		0		0			-653	29756.85	0	0	0	-0.002	0.002	
05/16/11 07:40:04	60.00452	471		0		0			-653	29756.82	0	0	0	-0.003	0.003	
05/16/11 07:40:06	60.00259	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:08	60.00034	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:10	59.99872	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:12	59.9971	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:14	59.99548	471		0		0			-653	29766.46	0	0	0	-0.002	0.002	
05/16/11 07:40:16	59.99353	471		0		0			-653	29766.46	0	0	0	-0.002	0.002	
05/16/11 07:40:18	59.99063	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:20	59.9874	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:22	59.98416	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:24	59.98093	471		0		0			-653	29766.37	0	0	0	-0.003	0.003	
05/16/11 07:40:26	59.97867	471		0		0			-653	29766.37	0	0	0	-0.002	0.002	
05/16/11 07:40:28	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:30	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:32	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:34	59.97577	471		0		0			-653	29780.98	0	0	0	-0.003	0.003	
05/16/11 07:40:36	59.97382	471		0		0			-653	29780.98	0	0	0	-0.002	0.002	
05/16/11 07:40:38	59.97223	471		0		0			-653	29780.98	0	0	0	-0.002	0.002	
05/16/11 07:40:40	59.97223	471		0		0			-653	29780.98	0	0	0	0.000	0.000	
05/16/11 07:40:42	59.97318	471		0		0			-653	29780.98	0	0	0	0.001	0.001	
05/16/11 07:40:44	59.97351	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:46	59.97415	471		0		0			-653	29780.95	0	0	0	0.001	0.001	
05/16/11 07:40:48	59.97287	471		0		0			-653	29780.95	0	0	0	-0.001	0.001	
05/16/11 07:40:50	59.97287	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:52	59.97287	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:54	59.96832	471		0		0			-653	29770.34	0	0	0	-0.005	0.005	
05/16/11 07:40:56	59.96768	471		0		0			-653	29770.34	0	0	0	-0.001	0.001	
05/16/11 07:40:58	59.96899	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:00	59.97028	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:02	59.97223	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:04	59.97382	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:06	59.97479	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:08	59.9761	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:10	59.97769	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:12	59.97998	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:14	59.98318	471		0		0			-653	29782.73	0	0	0	0.003	0.003	
05/16/11 07:41:16	59.98578	471		0		0			-653	29782.73	0	0	0	0.003	0.003	
05/16/11 07:41:18	59.9874	471		0		0			-653	29782.73	0	0	0	0.002	0.002	
05/16/11 07:41:20	59.98868	471		0		0			-653	29782.73	0	0	0	0.001	0.001	

05/16/11 07:41:22	59.98999	471	0	0	-653	29782.73	0	0	0	0.001	0.001
05/16/11 07:41:24	59.99191	471	0	0	-653	29782.82	0	0	0	0.002	0.002
05/16/11 07:41:26	59.99353	471	0	0	-653	29782.82	0	0	0	0.002	0.002
05/16/11 07:41:28	59.99612	471	0	0	-653	29782.82	0	0	0	0.003	0.003
05/16/11 07:41:30	59.99805	471	0	0	-653	29782.82	0	0	0	0.002	0.002
05/16/11 07:41:32	59.99902	471	0	0	-653	29782.82	0	0	0	0.001	0.001
05/16/11 07:41:34	59.99902	471	0	0	-653	29786.15	0	0	0	0.000	0.000
05/16/11 07:41:36	59.99774	471	0	0	-653	29786.15	0	0	0	-0.001	0.001
05/16/11 07:41:38	59.99646	471	0	0	-653	29786.15	0	0	0	-0.001	0.001
05/16/11 07:41:40	59.99579	471	0	0	-653	29786.15	0	0	0	-0.001	0.001
05/16/11 07:41:42	59.99612	471	0	0	-653	29786.15	0	0	0	0.000	0.000
05/16/11 07:41:44	59.9971	471	0	0	-653	29786.21	0	0	0	0.001	0.001
05/16/11 07:41:46	59.99774	471	0	0	-653	29786.21	0	0	0	0.001	0.001
05/16/111 07:41:48	59.99838	471	0	0	-653	29786.21	0	0	0	0.001	0.001
05/16/11 07:41:50	59.99936	471	0	0	-653	29786.21	0	0	0	0.001	0.001
05/16/11 07:41:52	60	471	0	0	-653	29786.21	0	0	0	0.001	0.001
05/16/11 07:41:54	60.00064	471	0	0	-653	29778.98	0	0	0	0.001	0.001
05/16/11 07:41:56	60.00128	471	0	0	-653	29778.98	0	0	0	0.001	0.001
05/16/11 07:41:58	60.00226	471	0	0	-653	29778.98	0	0	0	0.001	0.001
05/16/111 07:42:00	60.00388	471	0	0	-653	29778.98	0	0	0	0.002	0.002
05/16/11 07:42:02	60.00647	471	0	0	-653	29778.98	0	0	0	0.003	0.003
05/16/11 07:42:04	60.0097	471	0	0	-653	29778.92	0	0	0	0.003	0.003
05/16/111 07:42:06	60.01358	471	0	0	-653	29778.92	0	0	0	0.004	0.004
05/16/11 07:42:08	60.01614	471	0	0	-653	29778.92	0	0	0	0.003	0.003
05/16/11 07:42:10	60.01776	471	0	0	-653	29778.92	0	0	0	0.002	0.002
05/16/11 07:42:12	60.01776	471	0	0	-653	29778.92	0	0	0	0.000	0.000
05/16/11 07:42:14	60.01486	471	0	0	-653	29787.9	0	0	0	-0.003	0.003
05/16/11 07:42:16	60.01163	471	0	0	-653	29787.9	0	0	0	-0.003	0.003
05/16/11 07:42:18	60.00903	471	0	0	-653	29787.9	0	0	0	-0.003	0.003
05/16/11 07:42:20	60.00775	471	0	0	-653	29787.9	0	0	0	-0.001	0.001
05/16/111 07:42:22	60.00775	471	0	0	-653	29787.9	0	0	0	0.000	0.000
05/16/11 07:42:24	60.00903	471	0	0	-653	29787.84	0	0	0	0.001	0.001
05/16/11 07:42:26	60.00903	471	0	0	-653	29787.84	0	0	0	0.000	0.000
05/16/11 07:42:28	60.01324	471	0	0	-653	29787.84	0	0	0	0.004	0.004
05/16/111 07:42:30	60.01486	471	0	0	-653	29787.84	0	0	0	0.002	0.002
05/16/111 07:42:32	60.0152	471	0	0	-653	29787.84	0	0	0	0.000	0.000
05/16/111 07:42:34	60.0152	471	0	0	-653	29813.39	0	0	0	0.000	0.000
05/16/11 07:42:36	60.01486	471	0	0	-653	29813.39	0	0	0	0.000	0.000
05/16/11 07:42:38	60.01422	471	0	0	-653	29813.39	0	0	0	-0.001	0.001
05/16/11 07:42:40	60.01358	471	0	0	-653	29813.39	0	0	0	-0.001	0.001
05/16/11 07:42:42	60.01227	471	0	0	-653	29813.39	0	0	0	-0.001	0.001
05/16/11 07:42:44	60.01099	471	0	0	-653	29813.33	0	0	0	-0.001	0.001
05/16/111 07:42:46	60.00873	471	0	0	-653	29813.33	0	0	0	-0.002	0.002
05/16/11 07:42:48	60.00647	471	0	0	-653	29813.33	0	0	0	-0.002	0.002
05/16/11 07:42:50	60.00485	471	0	0	-653	29813.33	0	0	0	-0.002	0.002
05/16/111 07:42:52	60.00354	471	0	0	-653	29813.33	0	0	0	-0.001	0.001
05/16/11 07:42:54	60.00195	471	0	0	-653	29797.46	0	0	0	-0.002	0.002
05/16/11 07:42:56	60	471	0	0	-653	29797.46	0	0	0	-0.002	0.002
05/16/11 07:42:58	59.99774	471	0	0	-653	29797.46	0	O	0	-0.002	0.002

05/16/11 07:43:00	59.99612	471	0	0	-653	29797.46	0	0	0	-0.002	0.002
05/16/111 07:43:02	59.99646	471	0	0	-653	29797.46	0	0	0	0.000	. 000
05/16/111 07:43:04	59.99741	471	0	0	-653	29797.52	0	0	0	0.001	0.001
05/16/11 07:43:06	59.99838	471	0	0	-653	29797.52	0	0	0	0.001	0.001
05/16/11 07:43:08	59.99936	471	0	0	-653	29797.52	0	0	0	0.001	0.001
05/16/11 07:43:10	59.99902	471	0	0	-653	29797.52	0	0	0	0.000	0.000
05/16/11 07:43:12	59.99872	471	0	0	-653	29797.52	0	0	0	0.000	0.000
05/16/111 07:43:14	59.99774	471	0	0	-653	29780.33	0	0	0	-0.001	0.001
05/16/111 07:43:16	59.99646	471	0	0	-653	29780.33	0	0	0	-0.001	0.001
05/16/111 07:43:18	59.99677	471	0	0	-653	29780.33	0	0	0	0.000	0.000
05/16/111 07:43:20	59.99677	471	0	0	-653	29780.33	0	0	0	0.000	0.000
05/16/111 07:43:22	59.99774	471	0	0	-653	29780.33	0	0	0	0.001	0.001
05/16/11 07:43:24	59.99805	471	0	0	-653	29780.27	0	0	0	0.000	0.000
05/16/111 07:43:26	59.99774	471	0	0	-653	29780.27	0	0	0	0.000	0.000
05/16/111 07:43:28	59.99579	471	0	0	-653	29780.27	0	0	0	-0.002	0.002
05/16/11 07:43:30	59.99387	471	0	0	-653	29780.27	0	0	0	-0.002	0.002
05/16/11 07:43:32	59.99255	471	0	0	-653	29780.27	0	0	0	-0.001	0.001
05/16/111 07:43:34	59.99127	471	0	0	-653	29785.63	0	0	0	-0.001	0.001
05/16/11 07:43:36	59.98999	471	0	0	-653	29785.63	0	0	0	-0.001	0.001
05/16/111 07:43:38	59.98965	471	0	0	-653	29785.63	0	0	0	0.000	0.000
05/16/111 07:43:40	59.98837	471	0	0	-653	29785.63	0	0	0	-0.001	0.001
05/16/111 07:43:42	59.98709	471	0	0	-653	29785.63	0	0	0	-0.001	0.001
05/16/111 07:43:44	59.98642	471	0	0	-653	29785.63	0	0	0	-0.001	0.001
05/16/11 07:43:46	59.98642	471	0	0	-653	29785.63	0	0	0	0.000	0.000
05/16/11 07:43:48	59.98642	471	0	0	-653	29785.63	0	0	0	0.000	0.000
05/16/111 07:43:50	59.98676	471	0	0	-653	29785.63	0	0	0	0.000	0.000
05/16/11 07:43:52	59.98676	471	0	0	-653	29785.63	0	0	0	0.000	0.000
05/16/111 07:43:54	59.98642	471	0	0	-653	29787.12	0	0	0	0.000	0.000
05/16/11 07:43:56	59.98611	471	0	0	-653	29787.12	0	0	0	0.000	0.000
05/16/111 07:43:58	59.98611	471	0	0	-653	29787.12	0	0	0	0.000	0.000
05/16/111 07:44:00	59.98514	471	0	0	-653	29787.12	0	0	0	-0.001	0.001
05/16/11 07:44:02	59.98416	471	0	0	-653	29787.12	0	0	0	-0.001	0.001
05/16/11 07:44:04	59.98352	471	0	0	-653	29787.12	0	0	0	-0.001	0.001
05/16/11 07:44:06	59.98224	471	0	0	-653	29787.12	0	0	0	-0.001	0.0
05/16/11 07:44:08	59.98029	471	0	0	-653	29787.12	0	0	0	-0.002	0.002
05/16/11 07:44:10	59.979	471	0	0	-653	29787.12	0	0	0	-0.001	0.001
05/16/11 07:44:12	59.97769	471	0	0	-653	29787.12	0	0	0	-0.001	0.001
05/16/11 07:44:14	59.97675	471	0	0	-653	29780.67	0	0	0	-0.001	0.001
05/16/11 07:44:16	59.97641	471	0	0	-653	29780.67	0	0	0	0.000	0.000
05/16/11 07:44:18	59.97739	471	0	0	-653	29780.67	0	0	0	0.001	0.001
05/16/111 07:44:20	59.97998	471	0	0	-653	29780.67	0	0	0	0.003	0.00
05/16/11 07:44:22	59.98318	471	0	0	-653	29780.67	0	0	0	0.003	0.003
05/16/11 07:44:24	59.98611	471	0	0	-653	29780.76	0	0	0	0.003	0.003
05/16/111 07:44:26	59.98837	471	0	0	-653	29780.76	0	0	0	0.002	0.002
05/16/11 07:44:28	59.9903	471	0	0	-653	29780.76	0	0	0	0.002	0.002
05/16/11 07:44:30	59.99191	471	0	0	-653	29780.76	0	0	0	0.002	0.002
05/16/11 07:44:32	59.99353	471	0	0	-653	29780.76	0	0	0	0.002	0.002
05/16/11 07:44:34	59.99579	471	0	0	-653	29777.7	0	0	0	0.002	0.002
05/16/11 07:44:36	60	471	0	0	-653	29777.7	0	0	0	0.004	0.004

05/16/11 07:44:38	60.00354	471	0	0	-653	29777.7	0	0	0	0.004	0.004
05/16/11 07:44:40	60.00647	471	0	0	-653	29777.7	0	0	0	0.003	0.003
05/16/11 07:44:42	60.00839	471	0	0	-653	29777.7	0	0	0	0.002	0.002
05/16/11 07:44:44	60.00903	471	0	0	-653	29777.7	0	0	0	0.001	0.001
05/16/11 07:44:46	60.00873	471	0	0	-653	29777.7	0	0	0	0.000	0.000
05/16/11 07:44:48	60.00873	471	0	0	-653	29777.7	0	0	0	0.000	0.000
05/16/11 07:44:50	60.00937	471	0	0	-653	29777.7	0	0	0	0.001	0.001
05/16/11 07:44:52	60.01099	471	0	0	-653	29777.7	0	0	0	0.002	0.002
05/16/11 07:44:54	60.01453	471	0	0	-653	29788.63	0	0	0	0.004	0.004
05/16/11 07:44:56	60.0181	471	0	0	-653	29788.63	0	0	0	0.004	0.004
05/16/11 07:44:58	60.02002	471	0	0	-653	29788.63	0	0	0	0.002	0.002
05/16/11 07:45:00	60.02036	471	0	0	-653	29788.63	0	0	0	0.000	0.000
05/16/111 07:45:02	60.02002	471	0	0	-653	29788.63	0	0	0	0.000	0.000
05/16/11 07:45:04	60.02002	471	0	0	-653	29788.63	0	0	0	0.000	0.000
05/16/111 07:45:06	60.01907	471	0	0	-653	29788.63	0	0	0	-0.001	0.001
05/16/11 07:45:08	60.0181	471	0	0	-653	29788.63	0	0	0	-0.001	0.001
05/16/11 07:45:10	60.01712	471	0	0	-653	29788.63	0	0	0	-0.001	0.001
05/16/11 07:45:12	60.01712	471	0	0	-653	29788.63	0	0	0	0.000	0.000
05/16/11 07:45:14	60.01712	471	0	0	-653	29788.51	0	0	0	0.000	0.000
05/16/11 07:45:16	60.01453	471	0	0	-653	29788.51	0	0	0	-0.003	0.003
05/16/11 07:45:18	60.01358	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/11 07:45:20	60.01227	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/11 07:45:22	60.01163	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/111 07:45:24	60.01065	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/111 07:45:26	60.0097	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/11 07:45:28	60.00839	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/11 07:45:30	60.00745	471	0	0	-653	29788.51	0	0	0	-0.001	0.001
05/16/11 07:45:32	60.00775	471	0	0	-653	29788.51	0	0	0	0.000	0.000
05/16/111 07:45:34	60.00839	471	0	0	-653	29780.62	0	0	0	0.001	0.001
05/16/11 07:45:36	60.00839	471	0	0	-653	29780.62	0	0	0	0.000	0.000
05/16/11 07:45:38	60.00809	471	0	0	-653	29780.62	0	0	0	0.000	0.000
05/16/11 07:45:40	60.00745	471	0	0	-653	29780.62	0	0	0	-0.001	0.001
05/16/11 07:45:42	60.00711	471	0	0	-653	29780.62	0	0	0	0.000	0.000
05/16/11 07:45:44	60.00839	471	0	0	-653	29780.56	0	0	0	0.001	0.001
05/16/111 07:45:46	60.00937	471	0	0	-653	29780.56	0	0	0	0.001	0.001
05/16/11 07:45:48	60.0097	471	0	0	-653	29780.56	0	0	0	0.000	0.000
05/16/11 07:45:50	60.01001	471	0	0	-653	29780.56	0	0	0	0.000	0.000
05/16/11 07:45:52	60.01065	471	0	0	-653	29780.56	0	0	0	0.001	0.001
05/16/111 07:45:54	60.01196	471	0	0	-653	29784.96	0	0	0	0.001	0.001
05/16/11 07:45:56	60.01324	471	0	0	-653	29784.96	0	0	0	0.001	0.001
05/16/11 07:45:58	60.01453	471	0	0	-653	29784.96	0	0	0	0.001	0.001
05/16/11 07:46:00	60.01614	471	0	0	-653	29784.96	0	0	0	0.002	0.002
05/16/11 07:46:02	60.01712	471	0	0	-653	29784.96	0	0	0	0.001	0.001
05/16/111 07:46:04	60.01712	471	0	0	-653	29784.93	0	0	0	0.000	0.000
05/16/111 07:46:06	60.01614	471	0	0	-653	29784.93	0	0	0	-0.001	0.001
05/16/11 07:46:08	60.01584	471	0	0	-653	29784.93	0	0	0	0.000	0.000
05/16/11 07:46:10	60.01614	471	0	0	-653	29784.93	0	0	0	0.000	0.000
05/16/11 07:46:12	60.01584	471	0	0	-653	29784.93	0	0	0	0.000	0.000
05/16/11 07:46:14	60.01486	471	0	0	-653	29760.42	0	O	0	-0.001	0.001

05/16/11 07:46:16	60.01422	471	0	0	-653	29760.42	0	0	0	-0.001	0.001
05/16/11 07:46:18	60.01227	471	0	0	-653	29760.42	0	0	0	-0.002	0.002
05/16/11 07:46:20	60.0097	471	0	0	-653	29760.42	0	0	0	-0.003	0.003
05/16/11 07:46:22	60.00711	471	0	0	-653	29760.42	0	0	0	-0.003	0.003
05/16/11 07:46:24	60.00583	471	0	0	-653	29760.42	0	0	0	-0.001	0.001
05/16/11 07:46:26	60.00516	471	0	0	-653	29760.42	0	0	0	-0.001	0.001
05/16/11 07:46:28	60.00516	471	0	0	-653	29760.42	0	0	0	0.000	0.000
05/16/11 07:46:30	60.00485	471	0	0	-653	29760.42	0	0	0	0.000	0.000
05/16/11 07:46:32	60.00388	471	0	0	-653	29760.42	0	0	0	-0.001	0.001
05/16/11 07:46:34	60.00259	471	0	0	-653	29782.35	0	0	0	-0.001	0.001
05/16/11 07:46:36	59.99902	471	0	0	-653	29782.35		0	0	-0.004	0.004
05/16/11 07:46:38	59.9971	471	0	0	-653	29782.35	0	0	0	-0.002	0.002
05/16/11 07:46:40	59.99646	471	0	0	-653	29782.35	0	0	0	-0.001	0.001
05/16/11 07:46:42	59.99579	471	0	0	-653	29782.35	0	0	0	-0.001	0.001
05/16/11 07:46:44	59.99417	471	0	0	-653	29782.44	0	0	0	-0.002	0.002
05/16/11 07:46:46	59.99225	471	0	0	-653	29782.44	0	0	0	-0.002	0.002
05/16/11 07:46:48	59.9903	471	0	0	-653	29782.44	0	0	0	-0.002	0.002
05/16/11 07:46:50	59.98804	471	0	0	-653	29782.44	0	0	0	-0.002	0.002
05/16/11 07:46:52	59.98709	471	0	0	-653	29782.44	0	0	0	-0.001	0.001
05/16/11 07:46:54	59.98676	471	0	0	-653	29785.52	0	0	0	0.000	0.000
05/16/11 07:46:56	59.98578	471	0	0	-653	29785.52	0	0	0	-0.001	0.001
05/16/11 07:46:58	59.9845	471	0	0	-653	29785.52	0	0	0	-0.001	0.001
05/16/11 07:47:00	59.98288	471	0	0	-653	29785.52	0	0	0	-0.002	0.002
05/16/111 07:47:02	59.98224	471	0	0	-653	29785.52	0	0	0	-0.001	0.001
05/16/11 07:47:04	59.98224	471	0	0	-653	29785.55	0	0	0	0.000	0.000
05/16/11 07:47:06	59.98224	471	0	0	-653	29785.55	0	0	0	0.000	0.000
05/16/11 07:47:08	59.98254	471	0	0	-653	29785.55	0	0	0	0.000	0.000
05/16/11 07:47:10	59.98386	471	0	0	-653	29785.55	0	0	0	0.001	0.001
05/16/11 07:47:12	59.9848	471	0	0	-653	29785.55	0	0	0	0.001	0.001
05/16/11 07:47:14	59.98578	471	0	0	-653	29788.21	0	0	0	0.001	0.001
05/16/11 07:47:16	59.98642	471	0	0	-653	29788.21	0	0	0	0.001	0.001
05/16/11 07:47:18	59.98999	471	0	0	-653	29788.21	0	0	0	0.004	0.004
05/16/11 07:47:20	59.99225	471	0	0	-653	29788.21	0	0	0	0.002	0.002
05/16/11 07:47:22	59.99323	471	0	0	-653	29788.21	0	0	0	0.001	0.001
05/16/11 07:47:24	59.99646	471	0	0	-653	29788.06	0	0	0	0.003	0.003
05/16/11 07:47:26	59.99902	471	0	0	-653	29788.06	0	0	0	0.003	0.003
05/16/11 07:47:28	60.00064	471	0	0	-653	29788.06	0	0	0	0.002	0.002
05/16/11 07:47:30	60.00647	471	0	0	-653	29788.06	0	0	0	0.006	0.006
05/16/111 07:47:32	60.00903	471	0	0	-653	29788.06	0	0	0	0.003	0.003
05/16/11 07:47:34	60.01099	471	0	0	-653	29776.11	0	0	0	0.002	0.002
05/16/11 07:47:36	60.01132	471	0	0	-653	29776.11	0	0	0	0.000	0.000
05/16/11 07:47:38	60.01291	471	0	0	-653	29776.11	0	0	0	0.002	0.002
05/16/11 07:47:40	60.01324	471	0	0	-653	29776.11	0	0	0	0.000	0.000
05/16/11 07:47:42	60.01324	471	0	0	-653	29776.11	0	0	0	0.000	0.000
05/16/11 07:47:44	60.01422	471	0	0	-653	29776.17	0	0	0	0.001	0.001
05/16/11 07:47:46	60.0181	471	0	0	-653	29776.17	0	0	0	0.004	0.004
05/16/11 07:47:48	60.01907	471	0	0	-653	29776.17	0	0	0	0.001	0.001
05/16/11 07:47:50	60.02133	471	0	0	-653	29776.17	0	0	0	0.002	0.002
05/16/11 07:47:52	60.02197	471	0	0	-653	29776.17	0	0	0	0.001	0.001

05/16/11 07:47:54	60.02164	471	0	0	-653	29794.69	0	0	0	0.000	0.000
05/16/11 07:47:56	60.01971	471	0	0	-653	29794.69	0	0	0	-0.002	0.002
05/16/11 07:47:58	60.01907	471	0	0	-653	29794.69	0	0	0	-0.001	0.001
05/16/11 07:48:00	60.01746	471	0	0	-653	29794.69	0	0	0	-0.002	0.002
05/16/11 07:48:02	60.01776	471	0	0	-653	29794.69	0	0	0	0.000	0.000
05/16/11 07:48:04	60.0184	471	0	0	-653	29794.66	0	0	0	0.001	0.001
05/16/11 07:48:06	60.01776	471	0	0	-653	29794.66	0	0	0	-0.001	0.001
05/16/11 07:48:08	60.0152	471	0	0	-653	29794.66	0	0	0	-0.003	0.003
05/16/11 07:48:10	60.01389	471	0	0	-653	29794.66	0	0	0	-0.001	0.001
05/16/11 07:48:12	60.01422	471	0	0	-653	29794.66	0	0	0	0.000	0.000
05/16/11 07:48:14	60.0152	471	0	0	-653	29804.78	0	0	0	0.001	0.001
05/16/11 07:48:16	60.01614	471	0	0	-653	29804.78	0	0	0	0.001	0.001
05/16/11 07:48:18	60.01614	471	0	0	-653	29804.78	0	0	0	0.000	0.000
05/16/11 07:48:20	60.01422	471	0	0	-653	29804.78	0	0	0	-0.002	0.002
05/16/11 07:48:22	60.01196	471	0	0	-653	29804.78	0	0	0	-0.002	0.002
05/16/11 07:48:24	60.01035	471	0	0	-653	29804.86	0	0	0	-0.002	0.002
05/16/11 07:48:26	60.00809	471	0	0	-653	29804.86	0	0	0	-0.002	0.002
05/16/11 07:48:28	60.00613	471	0	0	-653	29804.86	0	0	0	-0.002	0.002
05/16/11 07:48:30	60.00516	471	0	0	-653	29804.86	0	0	0	-0.001	0.001
05/16/11 07:48:32	60.00452	471	0	0	-653	29804.86	0	0	0	-0.001	0.001
05/16/11 07:48:34	60.00354	471	0	0	-653	29800.12	0	0	0	-0.001	0.001
05/16/11 07:48:36	60.00128	471	0	0	-653	29800.12	0	0	0	-0.002	0.002
05/16/11 07:48:38	60	471	0	0	-653	29800.12	0	0	0	-0.001	0.001
05/16/11 07:48:40	59.99936	471	0	0	-653	29800.12	0	0	0	-0.001	0.001
05/16/11 07:48:42	59.99838	471	0	0	-653	29800.12	0	0	0	-0.001	0.001
05/16/11 07:48:44	59.99741	471	0	0	-653	29800.18	0	0	0	-0.001	0.001
05/16/11 07:48:46	59.99579	471	0	0	-653	29800.18	0	0	0	-0.002	0.002
05/16/11 07:48:48	59.99515	471	0	0	-653	29800.18	0	0	0	-0.001	0.001
05/16/11 07:48:50	59.99646	471	0	0	-653	29800.18	0	0	0	0.001	0.001
05/16/11 07:48:52	59.99872	471	0	0	-653	29800.18	0	0	0	0.002	0.002
05/16/11 07:48:54	60.00128	471	0	0	-653	29799.82	0	0	0	0.003	0.003
05/16/11 07:48:56	60.00323	471	0	0	-653	29799.82	0	0	0	0.002	0.002
05/16/11 07:48:58	60.00421	471	0	0	-653	29799.82	0	0	0	0.001	0.001
05/16/11 07:49:00	60.00485	471	0	0	-653	29799.82	0	0	0	0.001	0.001
05/16/11 07:49:02	60.00549	471	0	0	-653	29799.82	0	0	0	0.001	0.001
05/16/11 07:49:04	60.00583	471	0	0	-653	29799.79	0	0	0	0.000	0.000
05/16/11 07:49:06	60.00583	471	0	0	-653	29799.79	0	0	0	0.000	0.000
05/16/11 07:49:08	60.00549	471	0	0	-653	29799.79	0	0	0	0.000	0.000
05/16/11 07:49:10	60.00388	471	0	0	-653	29799.79	0	0	0	-0.002	0.002
05/16/11 07:49:12	60.00226	471	0	0	-653	29799.79	0	0	0	-0.002	0.002
05/16/11 07:49:14	60.00226	471	0	0	-653	29795.67	0	0	0	0.000	0.000
05/16/11 07:49:16	60	471	0	0	-653	29795.67	0	0	0	-0.002	0.002
05/16/11 07:49:18	60	471	0	0	-653	29795.67	0	0	0	0.000	0.000
05/16/11 07:49:20	60	471	0	0	-653	29795.67	0	0	0	0.000	0.000
05/16/11 07:49:22	60	471	0	0	-653	29795.67	0	0	0	0.000	0.000
05/16/11 07:49:24	60.00452	471	0	0	-653	29795.55	0	0	0	0.005	0.005
05/16/11 07:49:26	60.00583	471	0	0	-653	29795.55	0	0	0	0.001	0.001
05/16/11 07:49:28	60.00613	471	0	0	-653	29795.55	0	0	0	0.000	0.000
05/16/11 07:49:30	60.00583	471	0	0	-653	29795.55	0	0	0	0.000	0.000

05/16/11 07:49:32	60.00516	471	0	0	-653	29795.55	0	0	0	-0.001	0.001
05/16/11 07:49:34	60.00388	471	0	0	-653	29783.53	0	0	0	-0.001	0.001
05/16/11 07:49:36	60.00195	471	0	0	-653	29783.53	0	0	0	-0.002	0.002
05/16/11 07:49:38	60.00128	471	0	0	-653	29783.53	0	0	0	-0.001	0.001
05/16/11 07:49:40	60.00098	471	0	0	-653	29783.53	0	0	0	0.000	0.000
05/16/11 07:49:42	60.00034	471	0	0	-653	29783.53	0	0	0	-0.001	0.001
05/16/11 07:49:44	60	471	0	0	-653	29783.47	0	0	0	0.000	0.000
05/16/11 07:49:46	59.99902	471	0	0	-653	29783.47	0	0	0	-0.001	0.001
05/16/11 07:49:48	59.99872	471	0	0	-653	29783.47	0	0	0	0.000	0.000
05/16/11 07:49:50	59.99838	471	0	0	-653	29783.47	0	0	0	0.000	0.000
05/16/11 07:49:52	59.99612	471	0	0	-653	29783.47	0	0	0	-0.002	0.002
05/16/11 07:49:54	59.99579	471	0	0	-653	29788.38	0	0	0	0.000	0.000
05/16/11 07:49:56	59.99515	471	0	0	-653	29788.38	0	0	0	-0.001	0.001
05/16/11 07:49:58	59.99387	471	0	0	-653	29788.38	0	0	0	-0.001	0.001
05/16/11 07:50:00	59.99225	471	0	0	-653	29788.38	0	0	0	-0.002	0.002
05/16/11 07:50:02	59.99225	471	0	0	-653	29788.38	0	0	0	0.000	0.000
05/16/11 07:50:04	59.99484	471	0	0	-653	29788.38	0	0	0	0.003	0.003
05/16/11 07:50:06	59.99646	471	0	0	-653	29788.38	0	0	0	0.002	0.002
05/16/11 07:50:08	59.9971	471	0	0	-653	29788.38	0	0	0	0.001	0.001
05/16/11 07:50:10	59.99548	471	0	0	-653	29788.38	0	0	0	-0.002	0.002
05/16/11 07:50:12	59.99289	471	0	0	-653	29788.38	0	0	0	-0.003	0.003
05/16/11 07:50:14	59.98999	471	0	0	-653	29790.16	0	0	0	-0.003	0.003
05/16/11 07:50:16	59.98773	471	0	0	-653	29790.16	0	0	0	-0.002	0.002
05/16/11 07:50:18	59.98642	471	0	0	-653	29790.16	0	0	0	-0.001	0.001
05/16/11 07:50:20	59.98547	471	0	0	-653	29790.16	0	0	0	-0.001	0.001
05/16/11 07:50:22	59.98547	471	0	0	-653	29790.16	0	0	0	0.000	0.000
05/16/11 07:50:24	59.98611	471	0	0	-653	29790.07	0	0	0	0.001	0.001
05/16/11 07:50:26	59.98611	471	0	0	-653	29790.07	0	0	0	0.000	0.000
05/16/11 07:50:28	59.98676	471	0	0	-653	29790.07	0	0	0	0.001	0.001
05/16/11 07:50:30	59.98709	471	0	0	-653	29790.07	0	0	0	0.000	0.000
05/16/11 07:50:32	59.9874	471	0	0	-653	29790.07	0	0	0	0.000	0.000
05/16/11 07:50:34	59.98676	471	0	0	-653	29777.49	0	0	0	-0.001	0.001
05/16/11 07:50:36	59.98611	471	0	0	-653	29777.49	0	0	0	-0.001	0.001
05/16/11 07:50:38	59.98642	471	0	0	-653	29777.49	0	0	0	0.000	0.000
05/16/11 07:50:40	59.9874	471	0	0	-653	29777.49	0	0	0	0.001	0.001
05/16/11 07:50:42	59.98804	471	0	0	-653	29777.49	0	0	0	0.001	0.001
05/16/11 07:50:44	59.9874	471	0	0	-653	29777.49	0	0	0	-0.001	0.001
05/16/11 07:50:46	59.98676	471	0	0	-653	29777.49	0	0	0	-0.001	0.001
05/16/11 07:50:48	59.9848	471	0	0	-653	29777.49	0	0	0	-0.002	0.002
05/16/11 07:50:50	59.98288	471	0	0	-653	29777.49	0	0	0	-0.002	0.002
05/16/11 07:50:52	59.98062	471	0	0	-653	29777.49	0	0	0	-0.002	0.002
05/16/11 07:50:54	59.97998	471	0	0	-653	29782.49	0	0	0	-0.001	0.001
05/16/11 07:50:56	59.97931	471	0	0	-653	29782.49	0	0	0	-0.001	0.001
05/16/11 07:50:58	59.979	471	0	0	-653	29782.49	0	0	0	0.000	0.000
05/16/11 07:51:00	59.97931	471	0	0	-653	29782.49	0	0	0	0.000	0.000
05/16/11 07:51:02	59.98093	471	0	0	-653	29782.49	0	0	0	0.002	0.002
05/16/11 07:51:04	59.98126	471	0	0	-653	29782.46	0	0	0	0.000	0.000
05/16/11 07:51:06	59.98126	471	0	0	-653	29782.46	0	0	0	0.000	0.000
05/16/11 07:51:08	59.9819	471	0	0	-653	29782.46	0	O	0	0.001	0.001

05/16/11 07:51:10	59.98126	471	0	0	-653	29782.46	0	0	0	-0.001	0.001
05/16/11 07:51:12	59.97964	471	0	0	-653	29782.46	0	0	0	-0.002	0.002
05/16/11 07:51:14	59.97705	471	0	0	-653	29756.13	0	0	0	-0.003	0.003
05/16/11 07:51:16	59.97479	471	0	0	-653	29756.13	0	0	0	-0.002	0.002
05/16/11 07:51:18	59.97351	471	0	0	-653	29756.13	0	0	0	-0.001	0.001
05/16/11 07:51:20	59.97287	471	0	0	-653	29756.13	0	0	0	-0.001	0.001
05/16/11 07:51:22	59.97223	471	0	0	-653	29756.13	0	0	0	-0.001	0.001
05/16/11 07:51:24	59.97189	471	0	0	-653	29756.18	0	0	0	0.000	0.000
05/16/11 07:51:26	59.97125	471	0	0	-653	29756.18	0	0	0	-0.001	0.001
05/16/11 07:51:28	59.97156	471	0	0	-653	29756.18	0	0	0	0.000	0.000
05/16/11 07:51:30	59.97318	471	0	0	-653	29756.18	0	0	0	0.002	0.002
05/16/11 07:51:32	59.97415	471	0	0	-653	29756.18	0	0	0	0.001	0.001
05/16/11 07:51:34	59.97479	471	0	0	-653	29777.58	0	0	0	0.001	0.001
05/16/11 07:51:36	59.97382	471	0	0	-653	29777.58	0	0	0	-0.001	0.001
05/16/11 07:51:38	59.97287	471	0	0	-653	29777.58	0	0	0	-0.001	0.001
05/16/11 07:51:40	59.97318	471	0	0	-653	29777.58	0	0	0	0.000	0.000
05/16/11 07:51:42	59.97449	471	0	0	-653	29777.58	0	0	0	0.001	0.001
05/16/11 07:51:44	59.97675	471	0	0	-653	29777.4	0	0	0	0.002	0.002
05/16/11 07:51:46	59.97803	471	0	0	-653	29777.4	0	0	0	0.001	0.001
05/16/11 07:51:48	59.97998	471	0	0	-653	29777.4	0	0	0	0.002	0.002
05/16/11 07:51:50	59.98093	471	0	0	-653	29777.4	0	0	0	0.001	0.001
05/16/11 07:51:52	59.98093	471	0	0	-653	29777.4	0	0	0	0.000	0.000
05/16/11 07:51:54	59.97964	471	0	0	-653	29802.24	0	0	0	-0.001	0.001
05/16/11 07:51:56	59.97803	471	0	0	-653	29802.24	0	0	0	-0.002	0.002
05/16/11 07:51:58	59.97705	471	0	0	-653	29802.24	0	0	0	-0.001	0.001
05/16/11 07:52:00	59.97739	471	0	0	-653	29802.24	0	0	0	0.000	0.000
05/16/11 07:52:02	59.97836	471	0	0	-653	29802.24	0	0	0	0.001	0.001
05/16/11 07:52:04	59.97931	471	0	0	-653	29802.18	0	0	0	0.001	0.001
05/16/11 07:52:06	59.98126	471	0	0	-653	29802.18	0	0	0	0.002	0.002
05/16/11 07:52:08	59.98416	471	0	0	-653	29802.18	0	0	0	0.003	0.003
05/16/11 07:52:10	59.98611	471	0	0	-653	29802.18	0	0	0	0.002	0.002
05/16/11 07:52:12	59.98709	471	0	0	-653	29802.18	0	0	0	0.001	0.001
05/16/11 07:52:14	59.9874	471	0	0	-653	29802.29	0	0	0	0.000	0.000
05/16/11 07:52:16	59.98804	471	0	0	-653	29802.29	0	0	0	0.001	0.001
05/16/11 07:52:18	59.98804	471	0	0	-653	29802.29	0	0	0	0.000	0.000
05/16/11 07:52:20	59.98773	471	0	0	-653	29802.29	0	0	0	0.000	0.000
05/16/11 07:52:22	59.9874	471	0	0	-653	29802.29	0	0	0	0.000	0.000
05/16/11 07:52:24	59.9874	471	0	0	-653	29802.32	0	0	0	0.000	0.000
05/16/11 07:52:26	59.9874	471	0	0	-653	29802.32	0	0	0	0.000	0.000
05/16/11 07:52:28	59.9874	471	0	0	-653	29802.32	0	0	0	0.000	0.000
05/16/11 07:52:30	59.98773	471	0	0	-653	29802.32	0	0	0	0.000	0.000
05/16/11 07:52:32	59.98901	471	0	0	-653	29802.32	0	0	0	0.001	0.001
05/16/11 07:52:34	59.98965	471	0	0	-653	29795.02	0	0	0	0.001	0.001
05/16/11 07:52:36	59.98935	471	0	0	-653	29795.02	0	0	0	0.000	0.000
05/16/11 07:52:38	59.98837	471	0	0	-653	29795.02	0	0	0	-0.001	0.001
05/16/11 07:52:40	59.98868	471	0	0	-653	29795.02	0	0	0	0.000	0.000
05/16/11 07:52:42	59.98868	471	0	0	-653	29795.02	0	0	0	0.000	0.000
05/16/11 07:52:44	59.9874	471	0	0	-653	29795.05	0	0	0	-0.001	0.001
05/16/11 07:52:46	59.98611	471	0	0	-653	29795.05	0	0	0	-0.001	0.001

05/16/11 07:52:48	59.98611	471	0	0	-653	29795.05	0	0	0	0.000	0.000
05/16/11 07:52:50	59.98709	471	0	0	-653	29795.05	0	0	0	0.001	0.001
05/16/11 07:52:52	59.98837	471	0	0	-653	29795.05	0	0	0	0.001	0.001
05/16/11 07:52:54	59.98935	471	0	0	-653	29781.42	0	0	0	0.001	0.001
05/16/11 07:52:56	59.98999	471	0	0	-653	29781.42	0	0	0	0.001	0.001
05/16/11 07:52:58	59.99127	471	0	0	-653	29781.42	0	0	0	0.001	0.001
05/16/11 07:53:00	59.99255	471	0	0	-653	29781.42	0	0	0	0.001	0.001
05/16/11 07:53:02	59.99387	471	0	0	-653	29781.42	0	0	0	0.001	0.001
05/16/11 07:53:04	59.99387	471	0	0	-653	29781.45	0	0	0	0.000	0.000
05/16/11 07:53:06	59.99289	471	0	0	-653	29781.45	0	0	0	-0.001	0.001
05/16/11 07:53:08	59.99097	471	0	0	-653	29781.45	0	0	0	-0.002	0.002
05/16/11 07:53:10	59.98868	471	0	0	-653	29781.45	0	0	0	-0.002	0.002
05/16/11 07:53:12	59.98642	471	0	0	-653	29781.45	0	0	0	-0.002	0.002
05/16/11 07:53:14	59.98386	471	0	0	-653	29802.43	0	0	0	-0.003	0.003
05/16/11 07:53:16	59.9816	471	0	0	-653	29802.43	0	0	0	-0.002	0.002
05/16/11 07:53:18	59.97931	471	0	0	-653	29802.43	0	0	0	-0.002	0.002
05/16/11 07:53:20	59.97675	471	0	0	-653	29802.43	0	0	0	-0.003	0.003
05/16/11 07:53:22	59.97415	471	0	0	-653	29802.43	0	0	0	-0.003	0.003
05/16/11 07:53:24	59.97287	471	0	0	-653	29802.4	0	0	0	-0.001	0.001
05/16/11 07:53:26	59.97223	471	0	0	-653	29802.4	0	0	0	-0.001	0.001
05/16/11 07:53:28	59.97318	471	0	0	-653	29802.4	0	0	0	0.001	0.001
05/16/11 07:53:30	59.97449	471	0	0	-653	29802.4	0	0	0	0.001	0.001
05/16/11 07:53:32	59.97351	471	0	0	-653	29802.4	0	0	0	-0.001	0.001
05/16/11 07:53:34	59.97253	471	0	0	-653	29804.4	0	0	0	-0.001	0.001
05/16/11 07:53:36	59.97253	471	0	0	-653	29804.4	0	0	0	0.000	0.000
05/16/11 07:53:38	59.97223	471	0	0	-653	29804.4	0	0	0	0.000	0.000
05/16/11 07:53:40	59.97156	471	0	0	-653	29804.4	0	0	0	-0.001	0.001
05/16/11 07:53:42	59.97189	471	0	0	-653	29804.4	0	0	0	0.000	0.000
05/16/11 07:53:44	59.97318	471	0	0	-653	29804.4	0	0	0	0.001	0.001
05/16/11 07:53:46	59.97479	471	0	0	-653	29804.4	0	0	0	0.002	0.002
05/16/11 07:53:48	59.9761	471	0	0	-653	29804.4	0	0	0	0.001	0.001
05/16/11 07:53:50	59.97803	471	0	0	-653	29804.4	0	0	0	0.002	0.002
05/16/11 07:53:52	59.98062	471	0	0	-653	29804.4	0	0	0	0.003	0.003
05/16/11 07:53:54	59.98254	471	0	0	-653	29797.32	0	0	0	0.002	0.002
05/16/11 07:53:56	59.98416	471	0	0	-653	29797.32	0	0	0	0.002	0.002
05/16/11 07:53:58	59.98611	471	0	0	-653	29797.32	0	0	0	0.002	0.002
05/16/11 07:54:00	59.98804	471	0	0	-653	29797.32	0	0	0	0.002	0.002
05/16/11 07:54:02	59.9903	471	0	0	-653	29797.32	0	0	0	0.002	0.002
05/16/11 07:54:04	59.99161	471	0	0	-653	29797.29	0	0	0	0.001	0.001
05/16/11 07:54:06	59.99323	471	0	0	-653	29797.29	0	0	0	0.002	0.002
05/16/11 07:54:08	59.99484	471	0	0	-653	29797.29	0	0	0	0.002	0.002
05/16/11 07:54:10	59.99579	471	0	0	-653	29797.29	0	0	0	0.001	0.001
05/16/11 07:54:12	59.99515	471	0	0	-653	29797.29	0	0		-0.001	0.001
05/16/11 07:54:14	59.99612	471	0	0	-653	29823.76	0	0		0.001	0.001
05/16/11 07:54:16	59.99805	471	0	0	-653	29823.76	0	0	0	0.002	0.002
05/16/11 07:54:18	59.99936	471	0	0	-653	29823.76	0	0	0	0.001	0.001
05/16/11 07:54:20	60.00064	471	0	0	-653	29823.76	0	0	0	0.001	0.001
05/16/11 07:54:22	60.00098	471	0	0	-653	29823.76	0	0	0	0.000	0.000
05/16/11 07:54:24	60.00064	471	0	0	-653	29818.41	0	0	-	0.000	0.000

05/16/11 07:54:26	60	471	0	0	-653	29818.41	0	0	0	-0.001	0.001
05/16/11 07:54:28	59.99902	471	0	0	-653	29818.41	0	0	0	-0.001	0.001
05/16/11 07:54:30	59.99872	471	0	0	-653	29818.41	0	0	0	0.000	0.000
05/16/11 07:54:32	59.99936	471	0	0	-653	29818.41	0	0	0	0.001	0.001
05/16/11 07:54:34	60.00034	471	0	0	-653	29808.89	0	0	0	0.001	0.001
05/16/11 07:54:36	60.00162	471	0	0	-653	29808.89	0	0	0	0.001	0.001
05/16/11 07:54:38	60.00354	471	0	0	-653	29808.89	0	0	0	0.002	0.002
05/16/11 07:54:40	60.00485	471	0	0	-653	29808.89	0	0	0	0.001	0.001
05/16/11 07:54:42	60.00421	471	0	0	-653	29808.89	0	0	0	-0.001	0.001
05/16/11 07:54:44	60.00195	471	0	0	-653	29814.89	0	0	0	-0.002	0.002
05/16/11 07:54:46	59.99902	471	0	0	-653	29814.89	0	0	0	-0.003	0.003
05/16/11 07:54:48	59.99646	471	0	0	-653	29814.89	0	0	0	-0.003	0.003
05/16/11 07:54:50	59.99417	471	0	0	-653	29814.89	0	0	0	-0.002	0.002
05/16/11 07:54:52	59.99323	471	0	0	-653	29814.89	0	0	0	-0.001	0.001
05/16/11 07:54:54	59.99127	471	0	0	-653	29826.47	0	0	0	-0.002	0.002
05/16/11 07:54:56	59.98935	471	0	0	-653	29826.47	0	0	0	-0.002	0.002
05/16/11 07:54:58	59.98709	471	0	0	-653	29826.47	0	0	0	-0.002	0.002
05/16/11 07:55:00	59.98578	471	0	0	-653	29826.47	0	0	0	-0.001	0.001
05/16/11 07:55:02	59.98547	471	0	0	-653	29826.47	0	0	0	0.000	0.000
05/16/11 07:55:04	59.98547	471	0	0	-653	29826.41	0	0	0	0.000	0.000
05/16/11 07:55:06	59.98514	471	0	0	-653	29826.41	0	0	0	0.000	0.000
05/16/11 07:55:08	59.9845	471	0	0	-653	29826.41	0	0	0	-0.001	0.001
05/16/11 07:55:10	59.9845	471	0	0	-653	29826.41	0	0	0	0.000	0.000
05/16/11 07:55:12	59.9848	471	0	0	-653	29826.41	0	0	0	0.000	0.000
05/16/11 07:55:14	59.9848	471	0	0	-653	29834.18	0	0	0	0.000	0.000
05/16/11 07:55:16	59.98611	471	0	0	-653	29834.18	0	0	0	0.001	0.001
05/16/11 07:55:18	59.9874	471	0	0	-653	29834.18	0	0	0	0.001	0.001
05/16/11 07:55:20	59.98868	471	0	0	-653	29834.18	0	0	0	0.001	0.001
05/16/11 07:55:22	59.98837	471	0	0	-653	29834.18	0	0	0	0.000	0.000
05/16/11 07:55:24	59.98837	471	0	0	-653	29836.13	0	0	0	0.000	0.000
05/16/11 07:55:26	59.98578	471	0	0	-653	29836.13	0	0	0	-0.003	0.003
05/16/11 07:55:28	59.9845	471	0	0	-653	29836.13	0	0	0	-0.001	0.001
05/16/11 07:55:30	59.9848	471	0	0	-653	29836.13	0	0	0	0.000	0.000
05/16/11 07:55:32	59.98547	471	0	0	-653	29836.13	0	0	0	0.001	0.001
05/16/11 07:55:34	59.98642	471	0	0	-653	29821.84	0	0	0	0.001	0.001
05/16/11 07:55:36	59.98773	471	0	0	-653	29821.84	0	0	0	0.001	0.001
05/16/11 07:55:38	59.98965	471	0	0	-653	29821.84	0	0	0	0.002	0.002
05/16/11 07:55:40	59.99063	471	0	0	-653	29821.84	0	0	0	0.001	0.001
05/16/11 07:55:42	59.99063	471	0	0	-653	29821.84	0	0	0	0.000	0.000
05/16/11 07:55:44	59.99063	471	0	0	-653	29821.87	0	0	0	0.000	0.000
05/16/11 07:55:46	59.99063	471	0	0	-653	29821.87	0	0	0	0.000	0.000
05/16/11 07:55:48	59.98642	471	0	0	-653	29821.87	0	0	0	-0.004	0.004
05/16/11 07:55:50	59.9845	471	0	0	-653	29821.87	0	0	0	-0.002	0.002
05/16/11 07:55:52	59.98224	471	0	0	-653	29821.87	0	0		-0.002	0.002
05/16/11 07:55:54	59.98062	471	0	0	-653	29831.33	0	0		-0.002	0.002
05/16/11 07:55:56	59.97739	471	0	0	-653	29831.33	0	0	0	-0.003	0.003
05/16/11 07:55:58	59.97641	471	0	0	-653	29831.33	0	0	0	-0.001	0.001
05/16/11 07:56:00	59.97641	471	0	0	-653	29831.33	0	0	0	0.000	0.000
05/16/11 07:56:02	59.9761	471	0	0	-653	29831.33	0	0	0	0.000	0.000

05/16/11 07:56:04	59.97543	471	0	0	-653	29831.33	0	0	0	-0.001	0.001
05/16/11 07:56:06	59.97577	471	0	0	-653	29831.33	0	0	0	0.000	0.000
05/16/11 07:56:08	59.97675	471	0	0	-653	29831.33	0	0	0	0.001	0.001
05/16/11 07:56:10	59.97705	471	0	0	-653	29831.33	0	0	0	0.000	0.000
05/16/11 07:56:12	59.97705	471	0	0	-653	29831.33	0	0	0	0.000	0.000
05/16/11 07:56:14	59.97705	471	0	0	-653	29835.51	0	0	0	0.000	0.000
05/16/11 07:56:16	59.97675	471	0	0	-653	29835.51	0	0	0	0.000	0.000
05/16/11 07:56:18	59.97705	471	0	0	-653	29835.51	0	0	0	0.000	0.000
05/16/11 07:56:20	59.97739	471	0	0	-653	29835.51	0	0	0	0.000	0.000
05/16/11 07:56:22	59.97803	471	0	0	-653	29835.51	0	0	0	0.001	0.001
05/16/11 07:56:24	59.97803	471	0	0	-653	29856.55	0	0	0	0.000	0.000
05/16/11 07:56:26	59.97867	471	0	0	-653	29856.55	0	0	0	0.001	0.001
05/16/11 07:56:28	59.97964	471	0	0	-653	29856.55	0	0	0	0.001	0.001
05/16/11 07:56:30	59.9816	471	0	0	-653	29856.55	0	0	0	0.002	0.002
05/16/11 07:56:32	59.98352	471	0	0	-653	29856.55	0	0	0	0.002	0.002
05/16/11 07:56:34	59.98642	471	0	0	-653	29846.76	0	0	0	0.003	0.003
05/16/11 07:56:36	59.9903	471	0	0	-653	29846.76	0	0	0	0.004	0.004
05/16/11 07:56:38	59.99451	471	0	0	-653	29846.76	0	0	0	0.004	0.004
05/16/11 07:56:40	59.99741	471	0	0	-653	29846.76	0	0	0	0.003	0.003
05/16/11 07:56:42	59.99838	471	0	0	-653	29846.76	0	0	0	0.001	0.001
05/16/11 07:56:44	59.99805	471	0	0	-653	29860.05	0	0	0	0.000	0.000
05/16/11 07:56:46	59.99677	471	0	0	-653	29860.05	0	0	0	-0.001	0.001
05/16/11 07:56:48	59.99612	471	0	0	-653	29860.05	0	0	0	-0.001	0.001
05/16/11 07:56:50	59.99548	471	0	0	-653	29860.05	0	0	0	-0.001	0.001
05/16/11 07:56:52	59.99612	471	0	0	-653	29860.05	0	0	0	0.001	0.001
05/16/11 07:56:54	59.99936	471	0	0	-653	29873.15	0	0	0	0.003	0.003
05/16/11 07:56:56	60.00323	471	0	0	-653	29873.15	0	0	0	0.004	0.004
05/16/11 07:56:58	60.00745	471	0	0	-653	29873.15	0	0	0	0.004	0.004
05/16/11 07:57:00	60.01163	471	0	0	-653	29873.15	0	0	0	0.004	0.004
05/16/11 07:57:02	60.01453	471	0	0	-653	29873.15	0	0	0	0.003	0.003
05/16/11 07:57:04	60.01746	471	0	0	-653	29873.15	0	0	0	0.003	0.003
05/16/11 07:57:06	60.01907	471	0	0	-653	29873.15	0	0	0	0.002	0.002
05/16/11 07:57:08	60.01938	471	0	0	-653	29873.15	0	0	0	0.000	0.000
05/16/11 07:57:10	60.01938	471	0	0	-653	29873.15	0	0	0	0.000	0.000
05/16/11 07:57:12	60.01938	471	0	0	-653	29873.15	0	0	0	0.000	0.000
05/16/11 07:57:14	60.02036	471	0	0	-653	29889.67	0	0	0	0.001	0.001
05/16/11 07:57:16	60.02197	471	0	0	-653	29889.67	0	0	0	0.002	0.002
05/16/11 07:57:18	60.02423	471	0	0	-653	29889.67	0	0	0	0.002	0.002
05/16/11 07:57:20	60.02682	471	0	0	-653	29889.67	0	0	0	0.003	0.003
05/16/11 07:57:22	60.02811	471	0	0	-653	29889.67	0	0	0	0.001	0.001
05/16/11 07:57:24	60.02939	471	0	0	-653	29886.6	0	0	0	0.001	0.001
05/16/11 07:57:26	60.03036	471	0	0	-653	29886.6	0	0	0	0.001	0.001
05/16/11 07:57:28	60.02875	471	0	0	-653	29886.6	0	0	0	-0.002	0.002
05/16/11 07:57:30	60.02682	471	0	0	-653	29886.6	0	0	0	-0.002	0.002
05/16/11 07:57:32	60.02457	471	0	0	-653	29886.6	0	0	0	-0.002	0.002
05/16/11 07:57:34	60.02261	471	0	0	-653	29891.67	0	0	0	-0.002	0.002
05/16/11 07:57:36	60.02231	471	0	0	-653	29891.67	0	0	0	0.000	0.000
05/16/11 07:57:38	60.02295	471	0	0	-653	29891.67	0	0	0	0.001	0.001
05/16/11 07:57:40	60.02359	471	0	0	-653	29891.67	0	0	0	0.001	0.001

05/16/11 07:57:42	60.02261	471	0	0	-653	29891.67	0	0	0	-0.001	0.001
05/16/11 07:57:44	60.02164	471	0	0	-653	29891.64	0	0	0	-0.001	0.001
05/16/11 07:57:46	60.01971	471	0	0	-653	29891.64	0	0	0	-0.002	0.002
05/16/11 07:57:48	60.01776	471	0	0	-653	29891.64	0	0	0	-0.002	0.002
05/16/11 07:57:50	60.01746	471	0	0	-653	29891.64	0	0	0	0.000	0.000
05/16/11 07:57:52	60.01682	471	0	0	-653	29891.64	0	0	0	-0.001	0.001
05/16/11 07:57:54	60.01712	471	0	0	-653	29891.51	0	0	0	0.000	0.000
05/16/11 07:57:56	60.0184	471	0	0	-653	29891.51	0	0	0	0.001	0.001
05/16/11 07:57:58	60.01874	471	0	0	-653	29891.51	0	0	0	0.000	0.000
05/16/11 07:58:00	60.0181	471	0	0	-653	29891.51	0	0	0	-0.001	0.001
05/16/11 07:58:02	60.01682	471	0	0	-653	29891.51	0	0	0	-0.001	0.001
05/16/11 07:58:04	60.0152	471	0	0	-653	29891.6	0	0	0	-0.002	0.002
05/16/11 07:58:06	60.0152	471	0	0	-653	29891.6	0	0	0	0.000	0.000
05/16/11 07:58:08	60.0155	471	0	0	-653	29891.6	0	0	0	0.000	0.000
05/16/11 07:58:10	60.0155	471	0	0	-653	29891.6	0	0	0	0.000	0.000
05/16/11 07:58:12	60.01453	471	0	0	-653	29891.6	0	0	0	-0.001	0.001
05/16/11 07:58:14	60.01453	471	0	0	-653	29884.5	0	0	0	0.000	0.000
05/16/11 07:58:16	60.0152	471	0	0	-653	29884.5	0	0	0	0.001	0.001
05/16/11 07:58:18	60.01584	471	0	0	-653	29884.5	0	0	0	0.001	0.001
05/16/11 07:58:20	60.01614	471	0	0	-653	29884.5	0	0	0	0.000	0.000
05/16/11 07:58:22	60.01584	471	0	0	-653	29884.5	0	0	0	0.000	0.000
05/16/11 07:58:24	60.0152	471	0	0	-653	29881.79	0	0	0	-0.001	0.001
05/16/11 07:58:26	60.0155	471	0	0	-653	29881.79	0	0	0	0.000	0.000
05/16/11 07:58:28	60.01614	471	0	0	-653	29881.79	0	0	0	0.001	0.001
05/16/11 07:58:30	60.01776	471	0	0	-653	29881.79	0	0	0	0.002	0.002
05/16/11 07:58:32	60.01907	471	0	0	-653	29881.79	0	0	0	0.001	0.001
05/16/11 07:58:34	60.02069	471	0	0	-653	29887.14	0	0	0	0.002	0.002
05/16/11 07:58:36	60.02133	471	0	0	-653	29887.14	0	0	0	0.001	0.001
05/16/11 07:58:38	60.02069	471	0	0	-653	29887.14	0	0	0	-0.001	0.001
05/16/11 07:58:40	60.01907	471	0	0	-653	29887.14	0	0	0	-0.002	0.002
05/16/11 07:58:42	60.01746	471	0	0	-653	29887.14	0	0	0	-0.002	0.002
05/16/11 07:58:44	60.01614	471	0	0	-653	29873.08	0	0	0	-0.001	0.001
05/16/11 07:58:46	60.0152	471	0	0	-653	29873.08	0	0	0	-0.001	0.001
05/16/11 07:58:48	60.01453	471	0	0	-653	29873.08	0	0	0	-0.001	0.001
05/16/11 07:58:50	60.01389	471	0	0	-653	29873.08	0	0	0	-0.001	0.001
05/16/11 07:58:52	60.01358	471	0	0	-653	29873.08	0	0	0	0.000	0.000
05/16/11 07:58:54	60.01099	471	0	0	-653	29862.1	0	0	0	-0.003	0.003
05/16/11 07:58:56	60.00549	471	0	0	-653	29862.1	0	0	0	-0.005	0.005
05/16/11 07:58:58	59.99966	471	0	0	-653	29862.1	0	0	0	-0.006	0.006
05/16/11 07:59:00	59.99451	471	0	0	-653	29862.1	0	0	0	-0.005	0.005
05/16/11 07:59:02	59.99127	471	0	0	-653	29862.1	0	0	0	-0.003	0.003
05/16/11 07:59:04	59.98965	471	0	0	-653	29861.95	0	0	0	-0.002	0.002
05/16/11 07:59:06	59.98868	471	0	0	-653	29861.95	0	0	0	-0.001	0.001
05/16/11 07:59:08	59.98676	471	0	0	-653	29861.95	0	0	0	-0.002	0.002
05/16/11 07:59:10	59.9848	471	0	0	-653	29861.95	0	0	0	-0.002	0.002
05/16/11 07:59:12	59.98288	471	0	0	-653	29861.95	0	0	0	-0.002	0.002
05/16/11 07:59:14	59.98062	471	0	0	-653	29906.21	0	0	0	-0.002	0.002
05/16/11 07:59:16	59.97803	471	0	0	-653	29906.21	0	0	0	-0.003	0.003
05/16/11 07:59:18	59.9761	471	0	0	-653	29906.21	0	O	0	-0.002	0.002

05/16/11 07:59:20	59.97577	471	0	0	-653	29906.21	0	0	0	0.000	0.000
05/16/11 07:59:22	59.9761	471	0	0	-653	29906.21	0	0	0	0.000	0.000
05/16/11 07:59:24	59.9761	471	0	0	-653	29878.69	0	0	0	0.000	0.000
05/16/11 07:59:26	59.97641	471	0	0	-653	29878.69	0	0	0	0.000	0.000
05/16/11 07:59:28	59.97543	471	-	0	-653	29878.69	0	0	0	-0.001	0.001
05/16/11 07:59:30	59.97479	471	0	0	-653	29878.69	0	0	0	-0.001	0.001
05/16/11 07:59:32	59.97382	471	0	0	-653	29878.69	0	0	0	-0.001	0.001
05/16/11 07:59:34	59.97253	471	0	0	-653	29900.56	0	0	0	-0.001	0.001
05/16/11 07:59:36	59.97223	471	0	0	-653	29900.56	0	0	0	0.000	0.000
05/16/11 07:59:38	59.97253	471	0	0	-653	29900.56	0	0	0	0.000	0.000
05/16/11 07:59:40	59.97351	471	0	0	-653	29900.56	0	0	0	0.001	0.001
05/16/11 07:59:42	59.97351	471	0	0	-653	29900.56	0	0	0	0.000	0.000
05/16/11 07:59:44	59.97318	471	0	0	-653	29896.99	0	0	0	0.000	0.000
05/16/11 07:59:46	59.97189	471	0	0	-653	29896.99	0	0	0	-0.001	0.001
05/16/11 07:59:48	59.97092	471	0	0	-653	29896.99	0	0	0	-0.001	0.001
05/16/11 07:59:50	59.97028	471	0	0	-653	29896.99	0	0	0	-0.001	0.001
05/16/11 07:59:52	59.97028	471	0	0	-653	29896.99	0	0	0	0.000	0.000
05/16/11 07:59:54	59.97028	471	0	0	-653	29905.8	0	0	0	0.000	0.000
05/16/11 07:59:56	59.97028	471	0	0	-653	29905.8	0	0	0	0.000	0.000
05/16/11 07:59:58	59.97061	471	0	0	-653	29905.8	0	0	0	0.000	0.000
05/16/11 08:00:00	59.97287	471	0	0	-653	29905.8	0	0	0	0.002	0.002
05/16/11 08:00:02	59.97287	471	0	0	-653	29905.8	0	0	0	0.000	0.000
05/16/11 08:00:04	59.97479	471	0	0	-653	29905.77	0	0	0	0.002	0.002
05/16/11 08:00:06	59.97479	471	0	0	-653	29905.77	0	0	0	0.000	0.000
05/16/11 08:00:08	59.97382	471	0	0	-653	29905.77	0	0	0	-0.001	0.001
05/16/11 08:00:10	59.96832	471	0	0	-653	29905.77	0	0	0	-0.005	0.005
05/16/11 08:00:12	59.96802	471	0	0	-653	29905.77	0	0	0	0.000	0.000
05/16/11 08:00:14	59.96899	471	0	0	-653	29914.9	0	0	0	0.001	0.001
05/16/11 08:00:16	59.96994	471	0	0	-653	29914.9	0	0	0	0.001	0.001
05/16/11 08:00:18	59.97382	471	0	0	-653	29914.9	0	0	0	0.004	0.004
05/16/11 08:00:20	59.97382	471	0	0	-653	29914.9	0	0	0	0.000	0.000
05/16/11 08:00:22	59.97382	471	0	0	-653	29914.9	0	0	0	0.000	0.000
05/16/11 08:00:24	59.97769	471	0	0	-653	29925.58	0	0	0	0.004	0.004
05/16/11 08:00:26	59.97739	471	0	0	-653	29925.58	0	0	0	0.000	0.000
05/16/11 08:00:28	59.9761	471	0	0	-653	29925.58	0	0	0	-0.001	0.001
05/16/11 08:00:30	59.9761	471	0	0	-653	29925.58	0	0	0	0.000	0.000
05/16/11 08:00:32	59.97705	471	0	0	-653	29925.58	0	0	0	0.001	0.001
05/16/11 08:00:34	59.97769	471	0	0	-653	29938.87	0	0	0	0.001	0.001
05/16/11 08:00:36	59.97803	471	0	0	-653	29938.87	0	0	0	0.000	0.000
05/16/11 08:00:38	59.97803	471	0	0	-653	29938.87	0	0	0	0.000	0.000
05/16/11 08:00:40	59.97739	471	0	0	-653	29938.87	0	0	0	-0.001	0.001
05/16/11 08:00:42	59.97675	471	0	0	-653	29938.87	0	0	0	-0.001	0.001
05/16/11 08:00:44	59.97641	471	0	0	-653	29952.51	0	0	0	0.000	0.000
05/16/11 08:00:46	59.97479	471	0	0	-653	29952.51	0	0	0	-0.002	0.002
05/16/11 08:00:48	59.97449	471	0	0	-653	29952.51	0	0	0	0.000	0.000
05/16/11 08:00:50	59.97543	471	0	0	-653	29952.51	0	0	0	0.001	0.001
05/16/11 08:00:52	59.97705	471	0	0	-653	29952.51	0	0	0	0.002	0.002
05/16/11 08:00:54	59.97931	471	0	0	-653	29952.51	0	0	0	0.002	0.002
05/16/11 08:00:56	59.97964	471	0	0	-653	29948.95	0	0	0	0.000	0.000

05/16/11 08:00:58	59.979	471	0	0	-653	29948.95	0	0	0	-0.001	0.001
05/16/11 08:01:00	59.97803	471	0	0	-653	29948.95	0	0	0	-0.001	0.001
05/16/11 08:01:02	59.97803	471	0	0	-653	29948.95	0	0	0	0.000	0.000
05/16/11 08:01:04	59.979	471	0	0	-653	29948.95	0	0	0	0.001	0.001
05/16/11 08:01:06	59.98029	471	0	0	-653	29948.95	0	0	0	0.001	0.001
05/16/11 08:01:08	59.9819	471	0	0	-653	29948.95	0	0	0	0.002	0.002
05/16/11 08:01:10	59.98318	471	0	0	-653	29948.95	0	0	0	0.001	0.001
05/16/11 08:01:12	59.9845	471	0	0	-653	29948.95	0	0	0	0.001	0.001
05/16/11 08:01:14	59.98578	471	0	0	-653	29951.05	0	0	0	0.001	0.001
05/16/11 08:01:16	59.98642	471	0	0	-653	29951.05	0	0	0	0.001	0.001
05/16/11 08:01:18	59.98642	471	0	0	-653	29951.05	0	0	0	0.000	0.000
05/16/11 08:01:20	59.98709	471	0	0	-653	29951.05	0	0	0	0.001	0.001
05/16/11 08:01:22	59.98773	471	0	0	-653	29951.05	0	0	0	0.001	0.001
05/16/11 08:01:24	59.98965	471	0	0	-653	29955.09	0	0	0	0.002	0.002
05/16/11 08:01:26	59.99161	471	0	0	-653	29955.09	0	0	0	0.002	0.002
05/16/11 08:01:28	59.99255	471	0	0	-653	29955.09	0	0	0	0.001	0.001
05/16/11 08:01:30	59.99323	471	0	0	-653	29955.09	0	0	0	0.001	0.001
05/16/11 08:01:32	59.99289	471	0	0	-653	29955.09	0	0	0	0.000	0.000
05/16/11 08:01:34	59.99097	471	0	0	-653	29967.69	0	0	0	-0.002	0.002
05/16/11 08:01:36	59.98804	471	0	0	-653	29967.69	0	0	0	-0.003	0.003
05/16/11 08:01:38	59.98578	471	0	0	-653	29967.69	0	0	0	-0.002	0.002
05/16/11 08:01:40	59.98386	471	0	0	-653	29967.69	0	0	0	-0.002	0.002
05/16/11 08:01:42	59.98318	471	0	0	-653	29967.69	0	0	0	-0.001	0.001
05/16/11 08:01:44	59.98318	471	0	0	-653	29983.13	0	0	0	0.000	0.000
05/16/11 08:01:46	59.98288	471	0	0	-653	29983.13	0	0	0	0.000	0.000
05/16/11 08:01:48	59.98126	471	0	0	-653	29983.13	0	0	0	-0.002	0.002
05/16/11 08:01:50	59.97998	471	0	0	-653	29983.13	0	0	0	-0.001	0.001
05/16/11 08:01:52	59.97964	471	0	0	-653	29983.13	0	0	0	0.000	0.000
05/16/11 08:01:54	59.98029	471	0	0	-653	29976.75	0	0	0	0.001	0.001
05/16/11 08:01:56	59.98126	471	0	0	-653	29976.75	0	0	0	0.001	0.001
05/16/11 08:01:58	59.98352	471	0	0	-653	29976.75	0	0	0	0.002	0.002
05/16/11 08:02:00	59.98386	471	0	0	-653	29976.75	0	0	0	0.000	0.000
05/16/11 08:02:02	59.98126	471	0	0	-653	29976.75	0	0	0	-0.003	0.003
05/16/11 08:02:04	59.97543	471	0	0	-653	29976.78	0	0	0	-0.006	0.006
05/16/11 08:02:06	59.96832	471	0	0	-653	29976.78	0	0	0	-0.007	0.007
05/16/11 08:02:08	59.9635	471	0	0	-653	29976.78	0	0	0	-0.005	0.005
05/16/11 08:02:10	59.96155	471	0	0	-653	29976.78	0	0	0	-0.002	0.002
05/16/11 08:02:12	59.96091	471	0	0	-653	29976.78	0	0	0	-0.001	0.001
05/16/11 08:02:14	59.96155	471	0	0	-653	30008.51	0	0	0	0.001	0.001
05/16/11 08:02:16	59.96057	471	0	0	-653	30008.51		0	0	-0.001	0.001
05/16/11 08:02:18	59.95801	471	0	0	-653	30008.51	0	0	0	-0.003	0.003
05/16/11 08:02:20	59.95575	471	0	0	-653	30008.51	0	0	0	-0.002	0.002
05/16/11 08:02:22	59.95575	471	0	0	-653	30008.51	0	0	0	0.000	0.000
05/16/11 08:02:24	59.95703	471	0	0	-653	30037.25	0	0	0	0.001	0.001
05/16/11 08:02:26	59.95895	471	0	0	-653	30037.25	0	0	0	0.002	0.002
05/16/11 08:02:28	59.96057	471	0	0	-653	30037.25	0	0	0	0.002	0.002
05/16/11 08:02:30	59.96155	471	0	0	-653	30037.25	0	0	0	0.001	0.001
05/16/11 08:02:32	59.96252	471	0	0	-653	30037.25	0	0	0	0.001	0.001
05/16/11 08:02:34	59.96414	471	0	0	-653	30055.73	0	O		0.002	0.002

05/16/11 08:02:36	59.96512	471	0	0	-653	30055.73	0	0	0	0.001	0.001
05/16/11 08:02:38	59.96512	471	0	0	-653	30055.73	0	0	0	0.000	0.000
05/16/11 08:02:40	59.96576	471	0	0	-653	30055.73	0	0	0	0.001	0.001
05/16/11 08:02:42	59.96704	471	0	0	-653	30055.73	0	0	0	0.001	0.001
05/16/11 08:02:44	59.96994	471	0	0	-653	30068.76	0	0	0	0.003	0.003
05/16/11 08:02:46	59.97253	471	0	0	-653	30068.76	0	0	0	0.003	0.003
05/16/11 08:02:48	59.97415	471	0	0	-653	30068.76	0	0	0	0.002	0.002
05/16/11 08:02:50	59.9761	471	0	0	-653	30068.76	0	0	0	0.002	0.002
05/16/11 08:02:52	59.97739	471	0	0	-653	30068.76	0	0	0	0.001	0.001
05/16/11 08:02:54	59.97931	471	0	0	-653	30068.21	0	0	0	0.002	0.002
05/16/11 08:02:56	59.98029	471	0	0	-653	30068.21	0	0	0	0.001	0.001
05/16/11 08:02:58	59.98062	471	0	0	-653	30068.21	0	0	0	0.000	0.000
05/16/11 08:03:00	59.98029	471	0	0	-653	30068.21	0	0	0	0.000	0.000
05/16/11 08:03:02	59.98029	471	0	0	-653	30068.21	0	0	0	0.000	0.000
05/16/11 08:03:04	59.97836	471	0	0	-653	30068.24	0	0	0	-0.002	0.002
05/16/11 08:03:06	59.97836	471	0	0	-653	30068.24	0	0	0	0.000	0.000
05/16/11 08:03:08	59.979	471	0	0	-653	30068.24	0	0	0	0.001	0.001
05/16/11 08:03:10	59.97998	471	0	0	-653	30068.24	0		0	0.001	0.001
05/16/11 08:03:12	59.98029	471	0	0	-653	30068.24	0	0	0	0.000	0.000
05/16/11 08:03:14	59.98093	471	0	0	-653	30076.2	0	0	0	0.001	0.001
05/16/11 08:03:16	59.98093	471	0	0	-653	30076.2	0	0	0	0.000	0.000
05/16/11 08:03:18	59.97998	471	0	0	-653	30076.2	0	0	0	-0.001	0.001
05/16/11 08:03:20	59.98062	471	0	0	-653	30076.2	0	0	0	0.001	0.001
05/16/11 08:03:22	59.98029	471	0	0	-653	30076.2	0	0	0	0.000	0.000
05/16/11 08:03:24	59.97998	471	0	0	-653	30093.95	0	0	0	0.000	0.000
05/16/11 08:03:26	59.979	471	0	0	-653	30093.95	0	0	0	-0.001	0.001
05/16/11 08:03:28	59.97931	471	0	0	-653	30093.95	0	0	0	0.000	0.000
05/16/11 08:03:30	59.97998	471	0	0	-653	30093.95	0	0	0	0.001	0.001
05/16/11 08:03:32	59.98029	471	0	0	-653	30093.95	0	0	0	0.000	0.000
05/16/11 08:03:34	59.98029	471	0	0	-653	30100.97	0	0	0	0.000	0.000
05/16/11 08:03:36	59.98029	471	0	0	-653	30100.97	0		0	0.000	0.000
05/16/11 08:03:38	59.97964	471	0	0	-653	30100.97	0	0	0	-0.001	0.001
05/16/11 08:03:40	59.979	471	0	0	-653	30100.97	0	0	0	-0.001	0.001
05/16/11 08:03:42	59.97803	471	0	0	-653	30100.97	0	0	0	-0.001	0.001
05/16/11 08:03:44	59.97803	471	0	0	-653	30118.87	0	0	0	0.000	0.000
05/16/11 08:03:46	59.97867	471	0	0	-653	30118.87	0	0	0	0.001	0.001
05/16/11 08:03:48	59.97964	471	0	0	-653	30118.87	0	0	0	0.001	0.001
05/16/11 08:03:50	59.98224	471	0	0	-653	30118.87	0	0	0	0.003	0.003
05/16/11 08:03:52	59.9848	471	0	0	-653	30118.87	0	0	0	0.003	0.003
05/16/11 08:03:54	59.98514	471	0	0	-653	30118.77	0	0	0	0.000	0.000
05/16/11 08:03:56	59.98416	471	0	0	-653	30118.77	0			-0.001	0.001
05/16/11 08:03:58	59.98224	471	0	0	-653	30118.77	0	0	0	-0.002	0.002
05/16/11 08:04:00	59.98029	471	0	0	-653	30118.77	0	0	0	-0.002	0.002
05/16/11 08:04:02	59.979	471	0	0	-653	30118.77	0	0	0	-0.001	0.001
05/16/11 08:04:04	59.97867	471	0	0	-653	30118.74	0	0	0	0.000	0.000
05/16/11 08:04:06	59.97931	471	0	0	-653	30118.74	0	0	0	0.001	0.001
05/16/11 08:04:08	59.97998	471	0	0	-653	30118.74	0	0	O	0.001	0.001
05/16/11 08:04:10	59.97931	471	0	0	-653	30118.74	0	0	0	-0.001	0.001
05/16/11 08:04:12	59.979	471	0	0	-653	30118.74	0	0	0	0.000	0.000

05/16/11 08:04:14	59.97803	471	0	0	-653	30106.93	0	0	0	-0.001	0.001
05/16/11 08:04:16	59.97675	471	0	0	-653	30106.93	0	0	0	-0.001	0.001
05/16/11 08:04:18	59.97739	471	0	0	-653	30106.93	0	0	0	0.001	0.001
05/16/11 08:04:20	59.979	471	0	0	-653	30106.93	0	0	0	0.002	0.002
05/16/11 08:04:22	59.97964	471	0	0	-653	30106.93	0	0	0	0.001	0.001
05/16/11 08:04:24	59.98093	471	0	0	-653	30106.61	0	0	0	0.001	0.001
05/16/11 08:04:26	59.98224	471	0	0	-653	30106.61	0	0	0	0.001	0.001
05/16/11 08:04:28	59.98318	471	0	0	-653	30106.61	0	0	0	0.001	0.001
05/16/11 08:04:30	59.98318	471	0	0	-653	30106.61	0	0	0	0.000	0.000
05/16/11 08:04:32	59.98224	471	0	0	-653	30106.61	0	0	0	-0.001	0.001
05/16/11 08:04:34	59.9819	471	0	0	-653	30116.02	0	0	0	0.000	0.000
05/16/11 08:04:36	59.9819	471	0	0	-653	30116.02	0	0	0	0.000	0.000
05/16/11 08:04:38	59.9819	471	0	0	-653	30116.02	0	0	0	0.000	0.000
05/16/11 08:04:40	59.9816	471	0	0	-653	30116.02	0	0	0	0.000	0.000
05/16/11 08:04:42	59.9819	471	0	0	-653	30116.02	0	0	0	0.000	0.000
05/16/11 08:04:44	59.9816	471	0	0	-653	30141.59	0	0	0	0.000	0.000
05/16/11 08:04:46	59.98126	471	0	0	-653	30141.59	0	0	0	0.000	0.000
05/16/11 08:04:48	59.9816	471	0	0	-653	30141.59	0	0	0	0.000	0.000
05/16/11 08:04:50	59.98254	471	0	0	-653	30141.59	0	0	0	0.001	0.001
05/16/11 08:04:52	59.98352	471	0	0	-653	30141.59	0	0	0	0.001	0.001
05/16/11 08:04:54	59.98416	471	0	0	-653	30144.23	0	0	0	0.001	0.001
05/16/11 08:04:56	59.98416	471	0	0	-653	30144.23	0	0	0	0.000	0.000
05/16/11 08:04:58	59.98416	471	0	0	-653	30144.23	0	0	0	0.000	0.000
05/16/11 08:05:00	59.98514	471	0	0	-653	30144.23	0	0	0	0.001	0.001
05/16/11 08:05:02	59.9874	471	0	0	-653	30144.23	0	0	0	0.002	0.002
05/16/11 08:05:04	59.98901	471	0	0	-653	30144.23	0	0	0	0.002	0.002
05/16/11 08:05:06	59.98804	471	0	0	-653	30144.23	0	0	0	-0.001	0.001
05/16/11 08:05:08	59.98642	471	0	0	-653	30144.23	0	0	0	-0.002	0.002
05/16/11 08:05:10	59.98288	471	0	0	-653	30144.23	0	0	0	-0.004	0.004
05/16/11 08:05:12	59.98254	471	0	0	-653	30144.23	0	0	0	0.000	0.000
05/16/11 08:05:14	59.98318	471	0	0	-653	30148.67	0	0	0	0.001	0.001
05/16/11 08:05:16	59.9819	471	0	0	-653	30148.67	0	0	0	-0.001	0.001
05/16/11 08:05:18	59.98062	471	0	0	-653	30148.67	0	0	0	-0.001	0.001
05/16/11 08:05:20	59.97964	471	0	0	-653	30148.67	0	0	0	-0.001	0.001
05/16/11 08:05:22	59.97964	471	0	0	-653	30148.67	0	0	0	0.000	0.000
05/16/11 08:05:24	59.97964	471	0	0	-653	30155.67	0	0	0	0.000	0.000
05/16/11 08:05:26	59.98029	471	0	0	-653	30155.67	0	0	0	0.001	0.001
05/16/11 08:05:28	59.98224	471	0	0	-653	30155.67	0	0	0	0.002	0.002
05/16/11 08:05:30	59.98352	471	0	0	-653	30155.67	0	0	0	0.001	0.001
05/16/11 08:05:32	59.98578	471	0	0	-653	30155.67	0	0	0	0.002	0.002
05/16/11 08:05:34	59.9874	471	0	0	-653	30142.79	0	0	0	0.002	0.002
05/16/11 08:05:36	59.98804	471	0	0	-653	30142.79	0	0	0	0.001	0.001
05/16/11 08:05:38	59.9874	471	0	0	-653	30142.79	0	0	0	-0.001	0.001
05/16/11 08:05:40	59.98611	471	0	0	-653	30142.79	0	0	0	-0.001	0.001
05/16/11 08:05:42	59.9848	471	0	0	-653	30142.79	0	0	0	-0.001	0.001
05/16/11 08:05:44	59.98352	471	0	0	-653	30154.67	0	0	0	-0.001	0.001
05/16/11 08:05:46	59.98318	471	0	0	-653	30154.67	0	0	0	0.000	0.000
05/16/11 08:05:48	59.98352	471	0	0	-653	30154.67	0	0	0	0.000	0.000
05/16/11 08:05:50	59.98416	471.3000183	0	0	-653	30150.35	0	O	0	0.001	0.001

$\begin{array}{llll}05 / 16 / 11 & 08: 05: 52 & 59.98514 & 471.3000183\end{array}$ $\begin{array}{lll}\text { 05/16/11 08:05:54 } & 59.98547 & 471.3000183\end{array}$ $\begin{array}{lll}\text { 05/16/11 08:05:56 } & 59.98642 & 471.3000183\end{array}$ 5/16/11 08.05.58 59.9867641 .8999939 5/16/11 08:06:00 59.9874 471.8999939 55/16/11 08.06.04 59.98801 | | $5 / 16 / 11$ | 08.06.04 | 59.98901 |
| :--- | :--- | :--- | :--- | 551611 08.06.08 59.989804 471.3999939 5/16/11 08.06.10 551611 08:00:12 59.98547 55/16/11 08:00:14 59.98642 471.3999939 55/16/11 08:06:16 $59.98935 \quad 471.3999939$ 5/16/11 08.06.18 $59.99225 \quad 471.3999939$ $5 / 16111$ 08:06.20 $59.99515 \quad 4713999939$ 55/16/11 08:06.22 $59.99579 \quad 471$ 3999939 $5 / 1611$ 08:06.24 59.09515 471.399939 $5 / 1611108 \cdot 00 \cdot 26 \quad 59.99548 \quad 471.3999939$ 5/16/11 08.06.28 $59.99741 \quad 470.8999939$ 5/16/11 08:06.30 $60 \quad 470.8999939$ 5/16/11 08:06.32 60.00162 470.8999939 5/16/11 08:06.34 $60.00162 \quad 470.8999939$ 5/16/11 08:06.36 $60.00195 \quad 470.8999939$ $\begin{array}{lll}5 / 16 / 11 & 08: 06: 36 & 60.00195 \\ 470.8999939\end{array}$ 5/16/11 08:06:38 $\quad 59.95963$ | $05 / 16 / 11$ | $08: 06: 42$ | 59.88144 |
| :--- | :--- | :--- | $\begin{array}{lll}55 / 16 / 11 & 08: 06: 44 & 59.87237011\end{array}$ 5/16/11 08:06:46 59.877432 5/16/11 08:06:46 $\quad 59.87432$ 05/16/11 08:06:50 59.88531 5/16/11 08:06:50 59.88531 $\begin{array}{lll}05 / 16 / 11 & 08: 06: 52 & 59.88787 \\ 05 / 16 / 11 & 08: 06: 54 & 59.88949\end{array}$ 5/16/11 08:06:54 59.88949 | $55 / 16 / 111$ | $08: 06: 56$ |
| :--- | ---: |
| 59.8908 | |
| $5 / 16 / 11$ | $08: 06658$ |
| 59.89175 | | 05/16/11 08:06:58 59.89175 $\begin{array}{ll}\text { 05/16/11 08:07:00 } & 59.89242 \\ 05 / 16 / 11 \text { 08:07:02 } & 59.89306\end{array}$ 55/16/11108:07:02 59.89306 $\begin{array}{lll}55 / 16 / 11 & \text { 08:07:04 } & 59.89306 \\ 05 / 16 / 11 & 08: 07.06 & 59.89306\end{array}$ $\begin{array}{ll}55 / 16 / 111 & 08: 07: 06 \\ 59.89306 \\ 5 / 12 / 11 & 08: 07.08 \\ 59.89532\end{array}$ $\begin{array}{lll}5 / 16 / 111 & 08: 07: 08 & 59.89532 \\ 55 / 16 / 11 & 08: 07 \cdot 10 & 59.89788\end{array}$ | $55 / 16 / 11108: 07: 10$ | 59.89788 |
| :--- | ---: |
| $5 / 16 / 11$ | $08: 07 \cdot 12$ |
| 59.8995 | | $\begin{array}{ll}55 / 16 / 11 & 08: 07: 12 \\ 59.8995 \\ 05 / 16 / 11 & 08: 07 \cdot 14 \\ 59.90081\end{array}$ | $55 / 16 / 111$ | $08: 07: 14$ |
| :--- | ---: |
| 59.90081 | |
| $5 / 16 / 1108.07 .16$ | 59.9021 | $\begin{array}{lr}55 / 16 / 11108: 07: 16 & 59.9021 \\ 05 / 16 / 11 & 08: 07 \cdot 18 \\ 59.90179\end{array}$ $\begin{array}{ll}55 / 16 / 111 & 08: 07: 18 \\ 59.90179 \\ 05 / 16 / 11 & 08: 07.20 \\ 59.90081\end{array}$ $\begin{array}{lll}55 / 16 / 111 & 08: 07: 20 & 59.90081 \\ 05 / 16 / 11 & 08: 07: 22 & 59.90081\end{array}$ $\begin{array}{ll}5 / 16 / 11 & 08: 07: 22 \\ 59.90081 \\ 05 / 16 / 11 & 08: 07: 24 \\ 59.90048\end{array}$ 5/16/11 08:07:26 $\quad 59.8992$ 05/16/11 08:07:28 59.89886

-653	30150.35
-653	30159.63
-653	30159.63
-653	30159.63
-653	30159.63
-653	30151.42
-653	30151.42
-653	30156.16
-653	30156.16
-653	30156.16
-653	30156.16
-653	30164.15
-653	30064.15
-653	30164.15
-653	30164.15
-653	30203.91
-653	30203.91
-653	30203.73
-653	30203.73
-653	30203.73
-653	30203.73
-653	30099.61
-653	30199.61
-653	30199.61
-653	30199.61
-653	30086.11
-653	30086.11
-653	30086.14
-653	30086.14
-653	30086.14
-653	30086.14
-653	30094.43
-653	30094.43
-653	30094.43
-653	30094.43
-653	30139.49
-653	30139.49
-653	30133.38
-653	30033.38
-653	30133.38
-653	30133.38
-653	30137.26
-653	30137.26
-653	30137.26
-653	30137.26
-653	30171.38
-653	30171.38
-653	30168.76
-653	30168.76

0.001
0.000
0.001
0.000
0.001
0.000
0.001
0.000
-0.001
-0.002
-0.001
0.001
0.003
0.003
0.003
0.001
-0.001
0.000
0.002
0.003
0.002
0.000
0.000
-0.042
0.078
0.009
-0.002
0.004
0.006
0.005
0.003
0.002
0.001
0.001
0.001
0.001
0.000
0.000
0.002
0.003
0.002
0.001
0.001
0.000
-0.001
0.000
0.000
-0.001
0.000

0.001 0.000 0.001 0.000 0.001 0.000 0.001
0.000 0.000 0.001
0.002 0.001 0.001 0.003 0.003
0.003 0.003
0.001 0.001
0.001 0.001
0.000 0.000 0.002 0.003

0	0	0	-653	30168.76
0	0	0	-653	30168.76
	0	0	-653	30208.99
0	0	0	-653	30208.99
0	0	0	-653	30208.99
0	0	0	-653	30208.99
-	0	0	-653	30205.66
0	0	0	-653	30205.66
	0	0	-653	30205.66
-	0	0	-653	30205.66
0	0	0	-653	30205.66
-	0	0	-653	30205.66
-	0	0	-653	30211.75
0	0	0	-653	30211.75
0	0	0	-653	30211.75
-	0	0	-653	30211.75
	0	0	-653	30217.55
0	0	0	-653	30217.55
0	0	0	-653	30217.57
0	0	0	-653	30217.57
	0	0	-653	30217.57
	0	0	-653	30217.57
0	0	0	-653	30217.59
0	0	0	-653	30217.59
	0	0	-653	30217.59
0	0	0	-653	30217.59
	0	0	-653	30210.49
0	0	0	-653	30210.49
0	0	0	-653	30210.26
0	0	0	-653	30210.26
0	0	0	-653	30210.26
0	0	0	-653	30210.26
	0	0	-653	30234.59
0	0	0	-653	30234.59
0	0	0	-653	30234.59
0	0	0	-653	30234.59
	0	0	-653	30223.6
0	0	0	-653	30223.6
0	0	0	-653	30223.73
0	0	0	-653	30223.73
0	0	0	-653	30223.73
0	0	0	-653	30223.73
	0	0	-653	30224.39
0	0	0	-653	30224.39
0	0	0	-653	30224.39
0	0	0	-653	30224.39
0	0	0	-653	30255.53
0	0	0	-653	30255.53
0	0	0	-653	30252.87

05/16/11 08:09:08	59.96252	0	0	0	-653	30252.87
05/16/11 08:09:10	59.96188	0	0	0	-653	30252.87
05/16/11 08:09:12	59.96124	0		0	-653	30252.87
05/16/11 08:09:14	59.96027	0	0	0	-653	30232.45
05/16/11 08:09:16	59.96057	0	0	0	-653	30232.45
05/16/11 08:09:18	59.96219	0	0	0	-653	30232.45
05/16/11 08:09:20	59.96512	0	0	0	-653	30232.45
05/16/11 08:09:22	59.96738	0	0	0	-653	30263.99
05/16/11 08:09:24	59.96899	0	0	0	-653	30263.99
05/16/11 08:09:26	59.97061	0	0	0	-653	30263.68
05/16/11 08:09:28	59.97318	0	0	0	-653	30263.68
05/16/11 08:09:30	59.97351	0	0	0	-653	30263.68
05/16/11 08:09:32	59.97287	0	0	0	-653	30263.68
05/16/11 08:09:34	59.97253	0	0	0	-653	30264.96
05/16/11 08:09:36	59.97318	0	0	0	-653	30264.96
05/16/11 08:09:38	59.97415	0	0	0	-653	30264.96
05/16/11 08:09:40	59.97543	0	0	0	-653	30264.96
05/16/11 08:09:42	59.97577	0	0	0	-653	30263.63
05/16/11 08:09:44	59.9761	0	0	0	-653	30263.63
05/16/11 08:09:46	59.97675	0	0	0	-653	30279.39
05/16/11 08:09:48	59.97803	0	0	0	-653	30279.39
05/16/11 08:09:50	59.97931	0	0	0	-653	30279.39
05/16/11 08:09:52	59.97998	0	0	0	-653	30279.39
05/16/11 08:09:54	59.97964	0	0	0	-653	30255.32
05/16/11 08:09:56	59.979	0	0	0	-653	30255.32
05/16/11 08:09:58	59.97964	0	0	0	-653	30255.32
05/16/11 08:10:00	59.98093	0	0	0	-653	30255.32
05/16/11 08:10:02	59.98224	0	0	0	-653	30260.67
05/16/11 08:10:04	59.98386	0	0	0	-653	30260.67
05/16/11 08:10:06	59.98514	0	0	0	-653	30259.99
05/16/11 08:10:08	59.98773	0	0	0	-653	30259.99
05/16/11 08:10:10	59.9903	0	0	0	-653	30259.99
05/16/11 08:10:12	59.99289	0	0	0	-653	30259.99
05/16/11 08:10:14	59.99579	0	0	0	-653	30274.08
05/16/11 08:10:16	59.99646	0	0	0	-653	30274.08
05/16/11 08:10:18	59.99579	0	0	0	-653	30274.08
05/16/11 08:10:20	59.99612	0	0	0	-653	30274.08
05/16/11 08:10:22	59.99579	0	0	0	-653	30297.68
05/16/11 08:10:24	59.99484	0	0	0	-653	30297.68
05/16/11 08:10:26	59.99484	0	0	0	-653	30297.65
05/16/11 08:10:28	59.99805	0	0	0	-653	30297.65
05/16/11 08:10:30	59.99872	0	0	0	-653	30297.65
05/16/11 08:10:32	60.00034	0	0	0	-653	30297.65
05/16/11 08:10:34	60.00195	0	0	0	-653	30300.1
05/16/11 08:10:36	60.00259	0	0	0	-653	30300.1
05/16/11 08:10:38	60.00226	0	0	0	-653	30300.1
05/16/11 08:10:40	60.00195	0	0	0	-653	30300.1
05/16/11 08:10:42	60.00064	0	0	0	-653	30314.84
05/16/11 08:10:44	59.99646	0	0	0	-653	30314.84

0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
	0
0	0
0	0
0	0
0	0

-653	30309.71
-653	30309.71
-653	30309.71
-653	30309.71
-653	30319.5
-653	303919.5
-653	30399.5
-653	30319.5
-653	30357.21
-653	30357.21
-653	30357.18
-653	30357.18
-653	30357.18
-653	30357.18
-653	30354.46
-653	30354.26
-653	30354.26
-653	30354.26
-653	30354.48
-653	30354.48
-653	30353.83
-653	30353.83
-653	30353.83
-653	30353.83
-653	30370.41
-653	30370.41
-653	30370.41
-653	30370.41
-653	30374.79
-653	30374.79
-653	30366.14
-653	30366.14
-653	30366.14
-653	30366.14
-653	30373.53
-653	30373.53
-653	30373.53
-653	30373.53
-653	30343.46
-653	30343.46
-653	30335.12
-653	30335.12
-653	30335.12
-653	30335.12
-653	30337.29
-653	30337.29
-653	30337.29
-653	30337.29
-653	30350.2

\qquad

-653	30350.2
-653	30350.07
-653	30350.07
-653	30350.07
-653	30350.07
-653	30354.77
-653	30354.77
-653	30354.77
-653	30354.77
-653	30372.38
-653	30372.38
-653	30372.38
-653	30372.38
-653	30372.38
-653	30372.38
-653	30349.1
-653	30349.1
-653	30349.1
-653	30349.1
-653	30363.65
-653	30363.65
-653	30363.88
-653	30363.88
-653	30363.88
-653	30363.88
-653	30364.77
-653	30364.77
-653	30364.77
-653	30364.77
-653	30374.43
-653	30374.33
-653	30364.67
-653	30364.67
-653	30364.67
-653	30364.67
-653	30361.56
-653	30361.56
-653	30361.56
-653	30361.56
-653	30350.69
-653	30350.69
-653	30344.52
-653	30344.52
-653	30344.52
-653	30344.52
-653	30354.37
-653	30354.37
-653	30354.37
-653	30354.37

0	0	0	-653	30373.31
0	0	0	-653	30373.31
	0	0	-653	30373.78
0	0	0	-653	30373.78
0	0	0	-653	30373.78
-	0	0	-653	30373.78
-	0	0	-653	30366.33
0	0	0	-653	30366.33
	0	0	-653	30366.33
0	0	0	-653	30366.33
0	0	0	-653	30373.85
-	0	0	-653	30373.85
0	0	0	-653	30373.05
0	0	0	-653	30373.05
0	0	0	-653	30373.05
-	0	0	-653	30373.05
	0	0	-653	30369.77
0	0	0	-653	30369.77
0	0	0	-653	30369.77
0	0	0	-653	30369.77
	0	0	-653	30388.99
	0	0	-653	30388.99
0	0	0	-653	30388.16
0	0	0	-653	30388.16
0	0	0	-653	30388.16
0	0	0	-653	30388.16
	0	0	-653	30376.94
0	0	0	-653	30376.94
0	0	0	-653	30376.94
0	0	0	-653	30376.94
0	0	0	-653	30371.85
0	0	0	-653	30371.85
	0	0	-653	30362.65
0	0	0	-653	30362.65
0	0	0	-653	30362.65
0	0	0	-653	30362.65
0	0	0	-653	30395.46
0	0	0	-653	30395.46
0	0	0	-653	30395.46
0	0	0	-653	30395.46
0	0	0	-653	30397.03
0	0	0	-653	30397.03
0	0	0	-653	30396.67
-	0	0	-653	30396.67
0	0	0	-653	30396.67
0	0	0	-653	30396.67
0	0	0	-653	30388.62
0	0	0	-653	30388.62
0	0	0	-653	30388.62

$05 / 16 / 11$	$08: 15: 40$	60.01874	0	0	0	-653

0	
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0

-653	30416.87
-653	30416.87
-653	30413.65
-653	30413.65
-653	30406.3
-653	30406.3
-653	30406.3
-653	30406.3
-653	30418.59
-653	30418.59
-653	30418.59
-653	30418.59
-653	30433.31
-653	30433.31
-653	30433.31
-653	3043.31
-653	30433.31
-653	30433.31
-653	30451.3
-653	30451.3
-653	30451.3
-653	30451.3
-653	30425.74
-653	30425.74
-653	30419.18
-653	30419.18
-653	30419.18
-653	30419.18
-653	30424.29
-653	30424.29
-653	30424.29
-653	30424.29
-653	30440.82
-653	3040.82
-653	30431.58
-653	30431.58
-653	30431.58
-653	30431.58
-653	30444.25
-653	30444.25
-653	30444.25
-653	3044.25
-653	30465.11
-653	30465.11
-653	30465.3
-653	30465.3
-653	30465.3
-653	30465.3
-653	30478.25

\qquad
.

$05 / 16 / 11$	$08: 18: 56$	59.9971	0	0	0	-653

0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
	0
0	0
0	0

-653	30446.98
-653	30446.98
-653	30446.98
-653	30446.98
-653	30461.02
-653	30461.02
-653	30460.94
-653	30460.94
-653	30460.94
-653	30460.94
-653	30469.23
-653	30469.23
-653	30469.23
-653	30469.23
-653	30481.49
-653	30481.49
-653	30480.29
-653	30480.29
-653	30480.29
-653	30480.29
-653	30473.15
-653	30473.15
-653	30473.15
-653	30473.15
-653	30470.66
-653	30470.66
-653	30470.6
-653	30470.6
-653	3040.6
-653	3040.6
-653	30461.28
-653	30461.28
-653	30461.28
-653	30461.28
-653	30450.44
-653	30450.44
-653	30451.91
-653	30451.91
-653	30451.91
-653	30451.91
-653	30446.52
-653	30446.52
-653	30446.52
-653	30446.52
-653	30452.43
-653	30452.43
-653	30452.43
-653	30452.43
-653	30452.43

\qquad
\qquad

05/16/11 08:22:12	60.03717	0	0	0	-653	30452.43
05/16/11 08:22:14	60.03781	0	0	0	-653	30473.21
05/16/11 08:22:16	60.03781	0	0	0	-653	30473.21
05/16/11 08:22:18	60.03748	0	0	0	-653	30473.21
05/16/11 08:22:20	60.0365	0	0	0	-653	30473.21
05/16/11 08:22:22	60.03683	0	0	0	-653	30476.61
05/16/11 08:22:24	60.03748	0	0	0	-653	30476.61
05/16/11 08:22:26	60.03748	0	0	0	-653	30476.55
05/16/11 08:22:28	60.03812	0	0	0	-653	30476.55
05/16/11 08:22:30	60.03876	0	0	0	-653	30476.55
05/16/11 08:22:32	60.04007	0	0	0	-653	30476.55
05/16/11 08:22:34	60.04169	0	0	0	-653	30473.8
05/16/11 08:22:36	60.04361	0	0	0	-653	30473.8
05/16/11 08:22:38	60.04523	0	0	0	-653	30473.8
05/16/11 08:22:40	60.04492	0	0	0	-653	30473.8
05/16/11 08:22:42	60.04459	0	0	0	-653	30471
05/16/11 08:22:44	60.04395	0	0	0	-653	30471
05/16/11 08:22:46	60.04199	0	0	0	-653	30471.97
05/16/11 08:22:48	60.03717	0	0	0	-653	30471.97
05/16/11 08:22:50	60.03296	0	0	0	-653	30471.97
05/16/11 08:22:52	60.03101	0	0	0	-653	30471.97
05/16/11 08:22:54	60.03134	0	0	0	-653	30485.47
05/16/11 08:22:56	60.03168	0	0	0	-653	30485.47
05/16/11 08:22:58	60.03101	0	0	0	-653	30485.47
05/16/11 08:23:00	60.03101	0	0	0	-653	30485.47
05/16/11 08:23:02	60.03232	0	0	0	-653	30505.49
05/16/11 08:23:04	60.03326	0	0	0	-653	30505.49
05/16/11 08:23:06	60.03326	0	0	0	-653	30505.26
05/16/11 08:23:08	60.03394	0	0	0	-653	30505.26
05/16/11 08:23:10	60.03296	0	0	0	-653	30505.26
05/16/11 08:23:12	60.03232	0	0	0	-653	30505.26
05/16/11 08:23:14	60.03168	0	0	0	-653	30515.6
05/16/11 08:23:16	60.03168	0	0	0	-653	30515.6
05/16/11 08:23:18	60.03232	0	0	0	-653	30515.6
05/16/11 08:23:20	60.03232	0	0	0	-653	30515.6
05/16/11 08:23:22	60.03168	0	0	0	-653	30505.28
05/16/11 08:23:24	60.03168	0	0	0	-653	30505.28
05/16/11 08:23:26	60.03134	0	0	0	-653	30506.12
05/16/11 08:23:28	60.03101	0	0	0	-653	30506.12
05/16/11 08:23:30	60.03036	0	0	0	-653	30506.12
05/16/11 08:23:32	60.03036	0	0	0	-653	30506.12
05/16/11 08:23:34	60.02972	0	0	0	-653	30493.68
05/16/11 08:23:36	60.02875	0	0	0	-653	30493.68
05/16/11 08:23:38	60.03006	0	0	0	-653	30493.68
05/16/11 08:23:40	60.03198	0	0	0	-653	30493.68
05/16/11 08:23:42	60.03326	0	0	0	-653	30529.28
05/16/11 08:23:44	60.03458	0	0	0	-653	30529.28
05/16/11 08:23:46	60.03488	0	0	0	-653	30529.08
05/16/11 0	60.0336	0	0	0	-653	30529.08

-653	30529.08
-653	30529.08
-653	30529.52
-653	30529.52
-653	30529.52
-653	30529.52
-653	30535.57
-653	30535.57
-653	30533.89
-653	30533.89
-653	30533.89
-653	30533.89
-653	30521.82
-653	30521.82
-653	30521.82
-653	30521.82
-653	30533.64
-653	30533.64
-653	30532.32
-653	30532.32
-653	30532.32
-653	30532.32
-653	30519.2
-653	30551.2
-653	30551.2
-653	30551.2
-653	30548.06
-653	30548.06
-653	30543.69
-653	30543.69
-653	30543.69
-653	30543.69
-653	30546.32
-653	30546.32
-653	30546.32
-653	30546.32
-653	30546.28
-653	30546.28
-653	30546.38
-653	30546.38
-653	30546.38
-653	30546.38
-653	30556.84
-653	30556.84
-653	30556.84
-653	30556.84
-653	30557.42
-653	30557.42
-653	30557.43

\square
\square
\square
\square
0
0
0
0

0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0

-653	30557.43
-653	30557.43
-653	30557.43
-653	30566.39
-653	30566.39
-653	30566.39
-653	3056.39
-653	30567.26
-653	30567.26
-653	30562.43
-653	30562.43
-653	30562.43
-653	30562.43
-653	30573.32
-653	30573.32
-653	30573.32
-653	30573.32
-653	30567
-653	30567
-653	30567.04
-653	30567.04
-653	30567.04
-653	30567.04
-653	30556.49
-653	30565.49
-653	30556.49
-653	30556.49
-653	30530.19
-653	30530.19
-653	30530.04
-653	30530.04
-653	30530.04
-653	30530.04
-653	30542.27
-653	30542.27
-653	30542.27
-653	30542.27
-653	30559.64
-653	30559.64
-653	30559.67
-653	30559.67
-653	30559.67
-653	30559.67
-653	30552.02
-653	30552.02
-653	30552.02
-653	30552.02
-653	30556.78
-653	30556678

\qquad
$0 \quad 0$

0	
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	

-653	30550.7
-653	30550.7
-653	3050.7
-653	30500.7
-653	30559.76
-653	30559.76
-653	30559.76
-653	30559.76
-653	30563.61
-653	30563.61
-653	30556.57
-653	30556.57
-653	30556.57
-653	30556.57
-653	30556.7
-653	30556.7
-653	30556.7
-653	30556.7
-653	30544.52
-653	30544.52
-653	30543.34
-653	30543.34
-653	30543.34
-653	30543.34
-653	30554.42
-653	30554.42
-653	30554.42
-653	30554.42
-653	30534.33
-653	30534.33
-653	30533.84
-653	30533.84
-653	30533.84
-653	30533.84
-653	30557.2
-653	30557.2
-653	30557.2
-653	30557.2
-653	30560.91
-653	30560.91
-653	30560.56
-653	30560.56
-653	30560.56
-653	30560.56
-653	30560.08
-653	30560.08
-653	30560.08
-653	30560.08
-653	30558.72

\qquad -653 30558.72

$05 / 16 / 11$	$08: 28: 44$	59.97739	0	0	0	-653

-653	30603.38
-653	30603.38
-653	30597.09
-653	30597.99
-653	3059.99
-653	30597.09
-653	30603.96
-653	30603.96
-653	30603.96
-653	30603.96
-653	30607.96
-653	30607.96
-653	30601.98
-653	3060.98
-653	30597.09
-653	30597.09
-653	30607.96
-653	30607.96
-653	30607.96
-653	30607.96
-653	30607.96
-653	30601.98
-653	30601.98
-653	30601.98
-653	30601.98
-653	30601.98
-653	30632.79
-653	30632.79
-653	30632.79
-653	30632.99
-653	3063.79
-653	30633.18
-653	30633.18
-653	30633.18
-653	30633.18
-653	30633.18
-653	30620.6
-653	30620.6
-653	30620.6
-653	30620.6
-653	30620.6
-653	30620.91
-653	30620.91
-653	30620.91
-653	30620.91
-653	30620.91
-653	30661.87
-653	30661.87
-653	30661.87

$\begin{array}{lll}-653 & 30661.87\end{array}$
\qquad

$05 / 16 / 11$	$08: 32: 00$	60.0239	0	0	0	-653

5516/111 08:33:42 59.97867 5511108.33 .44 $55 / 111$ 08.33.46 59.9764 5 5511/11 08.33.50 59.9764 551111 08.33.52 59.97577 05/16/11 08:33:54 $\quad 59.97479$ \begin{tabular}{lll}
$05 / 16 / 11$ \& $08: 33: 56$ \& 59.97415

\hline $5 / 16 / 11$ \& $08: 33: 58$ \& 59.97287

 $\begin{array}{ll}05 / 16 / 11 & 08: 33: 58 \\ 59.97287 \\ \text { 05/16/11 08:34:00 } & 59.97125\end{array}$ 5/16/11 08:34:02 59.97092 $\begin{array}{lll}0516 / 11 & 08 \cdot 34: 04 & 59.97125\end{array}$ $5 / 16611$ 08.34.06 59.97061 $\begin{array}{lll}05 / 1611 & 08: 34.06 & 59.97061 \\ 08: 34: 08 & 59.97092\end{array}$

$05 / 16 / 11$ \& $08: 34: 10$ \& 59.97125

\hline

 55/16/11 08:34.12 59.97156 $\begin{array}{lll}05 / 16 / 11 & 08: 34: 14 & 59.97253\end{array}$ 55/16/11 08.34:16 59.97449 5/16/11 08:34:18 59.97577 55/16/11 08:34:20 59.9764 $5 / 16 / 11$ 08.34:22 59.97641 $5 / 1611100 \cdot 34 \cdot 24 \quad 59.97513$ $5 / 1611108 \cdot 34 \cdot 26 \quad 59.9761$ $511611108 \cdot 34 \cdot 28 \quad 59.976$ 5/16/11 08:34.30 59.98126 $5 / 1611108 \cdot 34 \cdot 32$ 05/16/11 08:34:32 59.98224 5/16/11 08:34:34 59.9825 5/16/11 08:34:36 59.98254 $\begin{array}{ll}5 / 16 / 11 & 08: 34: 38 \\ 59 / 16 / 11 & \text { 08:34:40 } \\ 59.98029\end{array}$ 5/16/11 08:34:40 59.98029 $\begin{array}{ll}05 / 16 / 11 & 08: 34: 42 \\ 59.97964 \\ 05 / 16 / 11 & 08: 34: 44 \\ 59.98062\end{array}$ 5/16/11 08:34:44 59.98062 5/16/11 08:34:46 59.98093 5/16/11 08:34:48 59.98029 5/16/11 08:34:50 59.97931

$55 / 16 / 11$ \& $08: 34: 52$ \& 59.97836

\hline $5 / 16 / 11$ \& $08: 34: 54$ \& 59.97803
\end{tabular} $\begin{array}{lll}55 / 16 / 11 & 08: 34: 54 & 59.97803 \\ 5 / 16 / 11 & 08: 34: 56 & 59.97803\end{array}$ $\begin{array}{lll}05 / 16 / 11 & \text { 08:34:56 } & 59.97803 \\ \text { 5/16/11 08:34:58 } & 59.97867\end{array}$ 5516/11 08:34:58 59.97867 $\begin{array}{ll}\text { 55/16/11 08:35:00 } & 59.97964 \\ \text { 5/16/11 08:35:02 } & 59.98062\end{array}$ $\begin{array}{lll}59 / 16 / 11 & \text { 08:35:02 } & 59.98062 \\ \text { 5/16/11 08:35:04 } & 59.98126\end{array}$ 55/16/111 08:35:04 59.98126 $\begin{array}{lll}\text { 5/16/11 08:35:06 } & 59.98224 \\ \text { 05/16/11 08:35:08 } & 59.98416\end{array}$ 55/16/111 08:35:08 59.98416 55/16/11 08:35:12 $59 . .98578$ 05/16/11 08:35:14 59.98578

0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
	0
0	0
0	0

-653	30633.8
-653	30633.8
-653	30633.8
-653	30627.71
-653	30627.71
-653	30627.71
-653	30627.71
-653	30627.71
-653	30634.13
-653	30634.13
-653	30634.13
-653	30634.13
-653	30634.13
-653	30627.05
-653	30627.05
-653	30627.05
-653	30627.05
-653	30627.05
-653	30662.72
-653	30662.72
-653	30662.72
-653	30662.72
-653	30662.72
-653	30656.52
-653	30656.52
-653	3065.52
-653	30656.52
-653	30656.52
-653	30642.25
-653	30642.25
-653	30642.25
-653	30642.25
-653	30642.25
-653	30642.49
-653	30642.49
-653	30642.49
-653	30642.49
-653	30642.49
-653	30645.72
-653	30645.72
-653	30645.72
-653	30645.72
-653	30645.72
-653	30648.55
-653	30648.55
-653	30648.55
-653	30648.55
-653	30648.55
-653	30661.06

0	0	0	-653	30661.06
0	0	0	-653	30661.06
0	0	0	-653	30661.06
0	0	0	-653	30661.06
0	0	0	-653	30661.06
-	0	0	-653	30661.06
-	0	0	-653	30661.06
0	0	0	-653	30661.06
0	0	0	-653	30661.06
0	0	0	-653	30684.31
0	0	0	-653	30684.31
0	0	0	-653	30684.31
0	0	0	-653	30684.31
0	0	0	-653	30684.31
0	0	0	-653	30686.83
0	0	0	-653	30686.83
0	0	0	-653	30686.83
0	0	0	-653	30686.83
0	0	0	-653	30686.83
0	0	0	-653	30678.05
0	0	0	-653	30678.05
0	0	0		30678.05
-	0	0		30678.05
0	0	0		30678.05
0	0	0		30679.19
0	0	0		30679.19
0	0	0		30679.19
0	0	0		30679.19
-	0	0		30679.19
0	0	0		30684.85
0	0	0		30684.85
0	0	0		30684.85
0	0	0		30684.85
0	0	0		30684.85
0	0	0		30684.99
0	0	0		30684.99
0	0	0		30684.99
0	0	0		30684.99
0	0	0		30684.99
0	0	0		30687.29
0	0	0		30687.29
0	0	0		30687.29
0	0	0		30687.29
0	0	0		30687.29
0	0	0		30687.59
0	0	0		30687.59
0	0	0		30687.59
0	0	0		30687.59
0	0	0		30687.59

0.001	0.001
0.004	0.004
0.004	0.004
0.004	0.004
0.002	0.002
0.003	0.003
0.000	0.000
-0.001	0.001
-0.002	0.002
-0.001	0.001
-0.001	0.001
0.000	0.000
0.000	0.000
0.001	0.001
0.001	0.001
0.001	0.001
0.000	0.000
0.000	0.000
-0.001	0.001
-0.001	0.001
-0.002	0.002
-0.003	0.003
-0.002	0.002
-0.002	0.002
-0.001	0.001
-0.002	0.002
0.000	0.000
0.000	0.000
0.001	0.001
0.002	0.002
0.002	0.002
0.002	0.002
0.002	0.002
0.002	0.002
0.000	0.000
0.000	0.000
0.001	0.001
0.003	0.003
0.003	0.003
0.003	0.003
0.003	0.003
0.002	0.002
0.001	0.001
0.001	0.001
0.000	0.000
-0.002	0.002
-0.001	0.001
0.000	0.000
0.001	0.001

0	
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
	0
0	0

0.000	0.000
-0.001	0.001
0.000	0.000
0.000	0.000
-0.001	0.001
-0.002	0.002
-0.001	0.001
0.000	0.000
0.000	0.000
0.001	0.001
0.002	0.002
0.001	0.001
0.001	0.001
0.000	0.000
-0.001	0.001
-0.002	0.002
-0.004	0.004
-0.004	0.004
-0.003	0.003
0.000	0.000
0.001	0.001
0.000	0.000
-0.001	0.000
-0.002	0.002
-0.002	0.002
-0.002	0.002
-0.001	0.001
-0.001	0.001
0.001	0.001
0.003	0.003
0.005	0.000
0.003	0.003
0.002	0.002
0.000	0.000
-0.001	0.001
-0.001	0.001
-0.001	0.001
-0.001	0.001
0.000	0.000
0.000	0.000
-0.002	0.002
-0.001	0.001
0.000	0.000
0.001	0.001
0.001	0.001
0.001	0.001
0.001	0.001
0.002	0.002
0.002	0.002

05/16/11 08:38:32	60.00388	0	0	0	30757.92
05/16/11 08:38:34	60.00485	0	0	0	30752.27
05/16/11 08:38:36	60.00549	0	0	0	30752.27
05/16/11 08:38:38	60.00613	0	0	0	30752.27
05/16/11 08:38:40	60.00647	0	0	0	30752.27
05/16/11 08:38:42	60.00677	0	0	0	30752.27
05/16/11 08:38:44	60.00677	0	0	0	30752.33
05/16/11 08:38:46	60.00613	0	0	0	30752.33
05/16/11 08:38:48	60.00549	0	0	0	30752.33
05/16/11 08:38:50	60.00485	0	0	0	30752.33
05/16/11 08:38:52	60.00485	0	0	0	30752.33
05/16/11 08:38:54	60.00613	0	0	0	30755.63
05/16/11 08:38:56	60.01001	0	0	0	30755.63
05/16/11 08:38:58	60.01324	0	0	0	30755.63
05/16/11 08:39:00	60.01614	0	0	0	30755.63
05/16/11 08:39:02	60.0184	0	0	0	30755.63
05/16/11 08:39:04	60.01971	0	0	0	30755.66
05/16/11 08:39:06	60.021	0	0	0	30755.66
05/16/11 08:39:08	60.02133	0	0	0	30755.66
05/16/11 08:39:10	60.02197	0	0	0	30755.66
05/16/11 08:39:12	60.02359	0	0	0	30755.66
05/16/11 08:39:14	60.02682	0	0	0	30784.89
05/16/11 08:39:16	60.0307	0	0	0	30784.89
05/16/11 08:39:18	60.0336	0	0	0	30784.89
05/16/11 08:39:20	60.03424	0	0	0	30784.89
05/16/11 08:39:22	60.03326	0	0	0	30784.89
05/16/11 08:39:24	60.0307	0	0	0	30786.98
05/16/11 08:39:26	60.02875	0	0	0	30786.98
05/16/11 08:39:28	60.02875	0	0	0	30786.98
05/16/11 08:39:30	60.02939	0	0	0	30786.98
05/16/11 08:39:32	60.02908	0	0	0	30786.98
05/16/11 08:39:34	60.02844	0	0	0	30796.28
05/16/11 08:39:36	60.02777	0	0	0	30796.28
05/16/11 08:39:38	60.02811	0	0	0	30796.28
05/16/11 08:39:40	60.02777	0	0	0	30796.28
05/16/11 08:39:42	60.02777	0	0	0	30796.28
05/16/11 08:39:44	60.02777	0	0	0	30792.94
05/16/11 08:39:46	60.02747	0	0	0	30792.94
05/16/11 08:39:48	60.02713	0	0	0	30792.94
05/16/11 08:39:50	60.02618	0	0	0	30792.94
05/16/11 08:39:52	60.02521	0	0	0	30792.94
05/16/11 08:39:54	60.02457	0	0	0	30803.58
05/16/11 08:39:56	60.02487	0	0	0	30803.58
05/16/11 08:39:58	60.02551	0	0	0	30803.58
05/16/11 08:40:00	60.02618	0	0	0	30803.58

Balancing Authority Name: MyBA
Interconnection Prevailing UFLS First Step Relay trip point
terconnection High Relay trip point
Note: See "Instruction" tab for more detailed instructions.

| Step 1. | Copy and Paste Event Data into the appropriate cells of the "Data" worksheet.
 Maintain date and time format of mm/dd/yy hh:mm:ss. |
| ---: | :--- | :--- |
| Step 2. | Data must start at least 2 full minutes before the beginning of the event.
 Collect the same amount of data for each event. Suggest 2 to 3 minutes before to 15 minutes after (up
 to 60 minutes total). Delete unused rows of data in the Data worksheet below your data, columns A
 through R. You must also delete any un-used event detection formulas in columns N through R as well. |
| Step 3. | Enter your BA name in cell B1 of this worksheet. |

11/05/16 Date yymmdd
8:06 Time hh:ss of T(0)
Where "MyBA" = your BA mnemonic
E

T-60 sec	8:05:38	59.9874	471.000			19590	82.303	82.506		2.947	471.000				
T-58 sec	8:05:40	59.98611	471.000			19590	90.672	85.364		2.947	476.805				
T-56 sec	8:05:42	59.9848	471.000			19590	99.241	90.221		2.947	484.609				
T-54 sec	8:05:44	59.98352	471.000			19590	107.611	96.308		2.947	493.643				
T-52 sec	8:05:46	59.98318	471.000			19590	109.803	101.031		2.947	501.313				
T-50 sec	8:05:48	59.98352	471.000			19590	107.611	103.334		2.947	506.563				
T-48 sec	8:05:50	59.98416	471.300			19590	103.426	103.366		2.947	509.542				
T-46 sec	8:05:52	59.98514	471.300			19590	97.049	101.155		2.947	510.278				
T-44 sec	8:05:54	59.98547	471.300			19590	94.857	98.951		2.947	511.020				
T-42 sec	8:05:56	59.98642	471.300			19590	88.680	95.356		2.947	510.372				
T-40 sec	8:05:58	59.98676	471.900			19590	86.487	92.252		2.947	510.215				
T-38 sec	8:06:00	59.9874	471.900			19590	82.303	88.770		2.947	509.680				
T-36 sec	8:06:02	59.98773	471.900			19590	80.110	85.739		2.947	509.596				
T-34 sec	8:06:04	59.98901	471.900			19590	71.741	80.840		2.947	507.643				
T-32 sec	8:06:06	59.98901	471.900			19590	71.741	77.655		2.947	507.406				
T-30 sec	8:06:08	59.98804	471.400			19590	78.118	77.817		2.947	510.515				
T-28 sec	8:06:10	59.98642	471.400			19590	88.680	81.619		2.947	517.263				
T-26 sec	8:06:12	59.98547	471.400			19590	94.857	86.252		2.947	524.844				
T-24 sec	8:06:14	59.98642	471.400			19590	88.680	87.102		2.947	528.640				
T-22 sec	8:06:16	59.98935	471.400			19590	69.549	80.958		2.947	525.443				
T-20 sec	8:06:18	59.99225	471.400			19590	50.617	70.339		2.947	517.771				
T-18 sec	8:06:20	59.99515	471.400			19590	31.685	56.810		2.947	507.189				
T-16 sec	8:06:22	59.99579	471.400	59.999	471.09	19590	27.501	46.552		2.947	499.878				
T-14 sec	8:06:24	59.99515	471.400	59.999	471.09	19590	31.685	41.349		2.947	497.621				
$\mathrm{T}-12 \mathrm{sec}$	8:06:26	59.99548	471.400	59.999	471.09	19590	29.493	37.199		2.947	496.419				
T-10 sec	8:06:28	59.99741	470.900	59.999	471.09	19590	16.939	30.108		2.947	492.275				
T-08 sec	8:06:30	60	470.900	59.999	471.09	19590	0.000	19.570		2.947	484.684				
T-06 sec	8:06:32	60.00162	470.900	59.999	471.09	19590	-10.562	9.024		2.947	477.084				
T-04 sec	8:06:34	60.00162	470.900	59.999	471.09	19590	-10.562	2.169		2.947	473.176				
T-02 sec	8:06:36	60.00195	470.900	59.999	471.09	19590	-12.754	-3.054		2.947	470.900				
T+0 sec	8:06:38	59.95963	0.000			19590	263.647	90.291		0.000	564.245				
T+02 sec	8:06:40	59.88144	0.000			19590	774.227	329.669		-4.264	799.359	0.000	681.802	471.678	471.678
T+04 sec	8:06:42	59.87237	0.000			19590	833.413	505.979		-4.264	971.406	0.000	778.337	467.414	469.546
T+06 sec	8:06:44	59.87011	0.000			19590	848.160	625.742		-4.264	1086.905	0.000	855.479	463.151	467.414
T+08 sec	8:06:46	59.87011	0.000			19590	848.160	703.588		-4.264	1160.488	0.000	916.481	458.887	465.282
T+10 sec	8:06:48	59.87432	0.000			19590	820.659	744.563		-4.264	1197.199	0.000	963.267	454.623	463.151
T+12 sec	8:06:50	59.88076	0.000			19590	778.611	756.480		-4.264	1204.852	0.000	997.779	450.360	461.019
T+14 sec	8:06:52	59.88531	0.000			19590	748.918	753.833		-4.264	1197.942	0.000	1022.800	446.096	458.887
T+16 sec	8:06:54	59.88787	0.000			19590	732.179	746.254		-4.264	1186.099	0.000	1040.944	441.832	456.755
T+18 sec	8:06:56	59.88949	0.000			19590	721.617	737.631		-4.264	1173.212	0.000	1054.171	437.568	454.623
$\mathrm{T}+20 \mathrm{sec}$	8:06:58	59.8908	0.000	59.897	0.00	19590	713.048	729.027	653.00	-4.264	1160.344	0.000	1063.823	433.305	452.491
T+22 sec	8:07:00	59.89175	0.000	59.897	0.00	19590	706.870	721.272	653.00	-4.264	1148.326	0.000	1070.865	429.041	450.360
T+24 sec	8:07:02	59.89242	0.000	59.897	0.00	19590	702.486	714.697	653.00	-4.264	1137.487	0.000	1075.990	424.777	448.228
T+26 sec	8:07:04	59.89306	0.000	59.897	0.00	19590	698.301	708.959	653.00	-4.264	1127.485	0.000	1079.668	420.514	446.096
T+28 sec	8:07:06	59.89306	0.000	59.897	0.00	19590	698.301	705.229	653.00	-4.264	1119.491	0.000	1082.323	416.250	443.964
T+30 sec	8:07:08	59.89306	0.000	59.897	0.00	19590	698.301	702.804	653.00	-4.264	1112.803	0.000	1084.228	411.986	441.832
T+32 sec	8:07:10	59.89532	0.000	59.897	0.00	19590	683.555	696.067	653.00	-4.264	1101.802	0.000	1085.261	407.723	439.700
T+34 sec	8:07:12	59.89788	0.000	59.897	0.00	19590	666.815	685.829	653.00	-4.264	1087.300	0.000	1085.375	403.459	437.568
T+36 sec	8:07:14	59.8995	0.000	59.897	0.00	19590	656.253	675.477	653.00	-4.264	1072.685	0.000	1084.707	399.195	435.437

T+38 sec	8:07:16	59.90081	0.000	59.897	0.00	19590	647.684	665.750	653.00	-4.264	1058.694	0.000	1083.406	394.932	433.305
T+40 sec	8:07:18	59.9021	0.000	59.897	0.00	19590	639.314	656.497	653.00	-4.264	1045.178	0.000	1081.586	390.668	431.173
T+42 sec	8:07:20	59.90179	0.000	59.897	0.00	19590	641.307	651.181	653.00	-4.264	1035.598	0.000	1079.495	386.404	429.041
T+44 sec	8:07:22	59.90081	0.000	59.897	0.00	19590	647.684	649.957	653.00	-4.264	1030.110	0.000	1077.348	382.141	426.909
T+46 sec	8:07:24	59.90081	0.000	59.897	0.00	19590	647.684	649.162	653.00	-4.264	1025.051	0.000	1075.169	377.877	424.777
T+48 sec	8:07:26	59.90048	0.000	59.897	0.00	19590	649.876	649.412	653.00	-4.264	1021.037	0.000	1073.004	373.613	422.646
T+50 sec	8:07:28	59.8992	0.000	59.897	0.00	19590	658.246	652.504	653.00	-4.264	1019.866	0.000	1070.960	369.350	420.514
T+52 sec	8:07:30	59.89886	0.000	59.897	0.00	19590	660.438	655.281	653.00	-4.264	1018.379	0.000	1069.013	365.086	418.382
T+54 sec	8:07:32	59.89856	0.000			19590	662.431	657.783		-4.264	1016.618	0.000	1067.141	360.822	416.250
T+56 sec	8:07:34	59.90017	0.000			19590	651.869	655.713		-4.264	1010.284	0.000	1065.181	356.559	414.118
T+58 sec	8:07:36	59.90243	0.000			19590	637.122	649.207		-4.264	999.514	0.000	1062.992	352.295	411.986
T+60 sec	8:07:38	59.90469	0.000			19590	622.376	639.816		-4.264	985.859	0.000	1060.504	348.031	409.855
T+62 sec	8:07:40	59.90695	0.000			19590	607.629	628.550		-4.264	970.330	0.000	1057.686	343.768	407.723
T+64 sec	8:07:42	59.90887	0.000			19590	595.074	616.834		-4.264	954.350	0.000	1054.555	339.504	405.591
T+66 sec	8:07:44	59.90921	0.000			19590	592.882	608.451		-4.264	941.703	0.000	1051.235	335.240	403.459
T+68 sec	8:07:46	59.90857	0.000			19590	597.067	604.466		-4.264	933.456	0.000	1047.870	330.977	401.327
T+70 sec	8:07:48	59.90887	0.000			19590	595.074	601.179		-4.264	925.905	0.000	1044.482	326.713	399.195
T+72 sec	8:07:50	59.91018	0.000			19590	586.505	596.043		-4.264	916.505	0.000	1041.023	322.449	397.064
T+74 sec	8:07:52	59.91244	0.000			19590	571.759	587.544		-4.264	903.742	0.000	1037.411	318.186	394.932
T+76 sec	8:07:54	59.9147	0.000			19590	557.012	576.858		-4.264	888.792	0.000	1033.600	313.922	392.800
T+78 sec	8:07:56	59.9176	0.000			19590	538.080	563.286		-4.264	870.956	0.000	1029.534	309.658	390.668
T+80 sec	8:07:58	59.91922	0.000			19590	527.519	550.767		-4.264	854.174	0.000	1025.257	305.395	388.536
T+82 sec	8:08:00	59.92083	0.000			19590	516.957	538.933		-4.264	838.077	0.000	1020.800	301.131	386.404
T+84 sec	8:08:02	59.92215	0.000			19590	508.388	528.242		-4.264	823.122	0.000	1016.203	296.867	384.273
T+86 sec	8:08:04	59.92309	0.000			19590	502.210	519.131		-4.264	809.747	0.000	1011.511	292.603	382.141
T+88 sec	8:08:06	59.92505	0.000			19590	489.456	508.745		-4.264	795.097	0.000	1006.702	288.340	380.009
T+90 sec	8:08:08	59.92505	0.000			19590	489.456	501.994		-4.264	784.082	0.000	1001.862	284.076	377.877
T+92 sec	8:08:10	59.9273	0.000			19590	474.709	492.444		-4.264	770.269	0.000	996.935	279.812	375.745
T+94 sec	8:08:12	59.93246	0.000			19590	441.031	474.450		-4.264	748.011	0.000	991.749	275.549	373.613
T+96 sec	8:08:14	59.93505	0.000			19590	424.092	456.825		-4.264	726.122	0.000	986.328	271.285	371.481
T+98 sec	8:08:16	59.93701	0.000			19590	411.338	440.904		-4.264	705.938	0.000	980.720	267.021	369.350
T+100 sec	8:08:18	59.93765	0.000			19590	407.129	429.083		-4.264	689.853	0.000	975.017	262.758	367.218
T+102 sec	8:08:20	59.93927	0.000			19590	396.567	417.702		-4.264	674.209	0.000	969.232	258.494	365.086
T+104 sec	8:08:22	59.94183	0.000			19590	379.827	404.446		-4.264	656.689	0.000	963.335	254.230	362.954
T+106 sec	8:08:24	59.94409	0.000			19590	365.081	390.668		-4.264	638.647	0.000	957.322	249.967	360.822
T+108 sec	8:08:26	59.94571	0.000			19590	354.519	378.016		-4.264	621.731	0.000	951.220	245.703	358.690
T+110 sec	8:08:28	59.94797	0.000			19590	339.772	364.630		-4.264	604.082	0.000	945.022	241.439	356.559
T+112 sec	8:08:30	59.94766	0.000			19590	341.765	356.628		-4.264	591.816	0.000	938.825	237.176	354.427
T+114 sec	8:08:32	59.9454	0.000			19590	356.512	356.587		-4.264	587.511	0.000	932.768	232.912	352.295
T+116 sec	8:08:34	59.94443	0.000			19590	362.888	358.792		-4.264	585.453	0.000	926.881	228.648	350.163
T+118 sec	8:08:36	59.94409	0.000			19590	365.081	360.993		-4.264	583.390	0.000	921.156	224.385	348.031
T+120 sec	8:08:38	59.94507	0.000			19590	358.704	360.192		-4.264	578.325	0.000	915.536	220.121	345.899
T+122 sec	8:08:40	59.94604	0.000			19590	352.327	357.439		-4.264	571.309	0.000	909.984	215.857	343.768
T+124 sec	8:08:42	59.94638	0.000			19590	350.135	354.883		-4.264	564.489	0.000	904.500	211.594	341.636
T+126 sec	8:08:44	59.94733	0.000			19590	343.957	351.059		-4.264	556.401	0.000	899.061	207.330	339.504
T+128 sec	8:08:46	59.9483	0.000			19590	337.580	346.341		-4.264	547.420	0.000	893.651	203.066	337.372
T+130 sec	8:08:48	59.94894	0.000			19590	333.395	341.810		-4.264	538.625	0.000	888.272	198.803	335.240
T+132 sec	8:08:50	59.94992	0.000			19590	327.018	336.633		-4.264	529.184	0.000	882.912	194.539	333.108
T+134 sec	8:08:52	59.9509	0.000			19590	320.641	331.036		-4.264	519.323	0.000	877.566	190.275	330.977

T+136 sec	8:08:54	59.95154	0.000	19590	316.456	325.933	-4.264	509.957	0.000	872.238	186.012	328.845
T+138 sec	8:08:56	59.95187	0.000	19590	314.264	321.849	-4.264	501.609	0.000	866.943	181.748	326.713
T+140 sec	8:08:58	59.95346	0.000	19590	303.902	315.567	-4.264	491.064	0.000	861.649	177.484	324.581
T+142 sec	8:09:00	59.95508	0.000	19590	293.340	307.788	-4.264	479.021	0.000	856.335	173.221	322.449
T+144 sec	8:09:02	59.95575	0.000	19590	288.956	301.197	-4.264	468.166	0.000	851.017	168.957	320.317
T+146 sec	8:09:04	59.95639	0.000	19590	284.771	295.448	-4.264	458.153	0.000	845.708	164.693	318.186
T+148 sec	8:09:06	59.95801	0.000	19590	274.209	288.014	-4.264	446.456	0.000	840.385	160.430	316.054
T+150 sec	8:09:08	59.96124	0.000	19590	253.085	275.789	-4.264	429.967	0.000	834.985	156.166	313.922
T+152 sec	8:09:10	59.96252	0.000	19590	244.716	264.913	-4.264	414.828	0.000	829.528	151.902	311.790
T+154 sec	8:09:12	59.96188	0.000	19590	248.900	259.309	-4.264	404.960	0.000	824.085	147.638	309.658
T+156 sec	8:09:14	59.96124	0.000	19590	253.085	257.131	-4.264	398.518	0.000	818.698	143.375	307.526
T+158 sec	8:09:16	59.96027	0.000	19590	259.462	257.947	-4.264	395.070	0.000	813.403	139.111	305.395
T+160 sec	8:09:18	59.96057	0.000	19590	257.469	257.780	-4.264	390.640	0.000	808.184	134.847	303.263
T+162 sec	8:09:20	59.96219	0.000	19590	246.908	253.974	-4.264	382.571	0.000	802.993	130.584	301.131
T+164 sec	8:09:22	59.96512	0.000	19590	227.777	244.805	-4.264	369.138	0.000	797.766	126.320	298.999
T+166 sec	8:09:24	59.96738	0.000	19590	213.030	233.684	-4.264	353.753	0.000	792.480	122.056	296.867
T+168 sec	8:09:26	59.96899	0.000	19590	202.468	222.758	-4.264	338.564	0.000	787.140	117.793	294.735
T+170 sec	8:09:28	59.97061	0.000	19590	191.906	211.960	-4.264	323.502	0.000	781.749	113.529	292.603
T+172 sec	8:09:30	59.97318	0.000	19590	175.167	199.083	-4.264	306.360	0.000	776.284	109.265	290.472
T+174 sec	8:09:32	59.97351	0.000	19590	172.975	189.945	-4.264	292.959	0.000	770.792	105.002	288.340
T+176 sec	8:09:34	59.97287	0.000	19590	177.160	185.470	-4.264	284.221	0.000	765.325	100.738	286.208
T+178 sec	8:09:36	59.97253	0.000	19590	179.352	183.329	-4.264	277.815	0.000	759.908	96.474	284.076
T+180 sec	8:09:38	59.97318	0.000	19590	175.167	180.472	-4.264	270.695	0.000	754.532	92.211	281.944
	8:09:40	59.97415	0.000	19590	168.790	176.383	-4.264	262.343	0.000	749.182	87.947	279.812
	8:09:42	59.97543	0.000	19590	160.420	170.796	-4.264	252.492	0.000	743.842	83.683	277.681
	8:09:44	59.97577	0.000	19590	158.228	166.397	-4.264	243.830	0.000	738.522	79.420	275.549
	8:09:46	59.9761	0.000	19590	156.036	162.771	-4.264	235.939	0.000	733.232	75.156	273.417
	8:09:48	59.97675	0.000	19590	151.851	158.949	-4.264	227.854	0.000	727.968	70.892	271.285
	8:09:50	59.97803	0.000	19590	143.481	153.535	-4.264	218.176	0.000	722.712	66.629	269.153
	8:09:52	59.97931	0.000	19590	135.112	147.087	-4.264	207.464	0.000	717.454	62.365	267.021
	8:09:54	59.97998	0.000	19590	130.728	141.361	-4.264	197.475	0.000	712.202	58.101	264.890
	8:09:56	59.97964	0.000	19590	132.920	138.407	-4.264	190.257	0.000	706.983	53.838	262.758
	8:09:58	59.979	0.000	19590	137.104	137.951	-4.264	185.537	0.000	701.820	49.574	260.626
	8:10:00	59.97964	0.000	19590	132.920	136.190	-4.264	179.513	0.000	696.699	45.310	258.494
	8:10:02	59.98093	0.000	19590	124.550	132.116	-4.264	171.175	0.000	691.597	41.047	256.362
	8:10:04	59.98224	0.000	19590	115.981	126.469	-4.264	161.264	0.000	686.498	36.783	254.230
	8:10:06	59.98386	0.000	19590	105.419	119.101	-4.264	149.633	0.000	681.385	32.519	252.099
	8:10:08	59.98514	0.000	19590	97.049	111.383	-4.264	137.651	0.000	676.255	28.256	249.967
	8:10:10	59.98773	0.000	19590	80.110	100.438	-4.264	122.442	0.000	671.079	23.992	247.835
	8:10:12	59.9903	0.000	19590	63.371	87.464	-4.264	105.205	0.000	665.840	19.728	245.703
	8:10:14	59.99289	0.000	19590	46.432	73.103	-4.264	86.580	0.000	660.525	15.465	243.571
	8:10:16	59.99579	0.000	19590	27.501	57.142	-4.264	66.355	0.000	655.124	11.201	241.439
	8:10:18	59.99646	0.000	19590	23.116	45.233	-4.264	50.183	0.000	649.674	6.937	239.308
	8:10:20	59.99579	0.000	19590	27.501	39.027	-4.264	39.713	0.000	644.228	2.673	237.176
	8:10:22	59.99612	0.000	19590	25.309	34.225	-4.264	30.648	0.000	638.798	-1.590	235.044
	8:10:24	59.99579	0.000	19590	27.501	31.872	-4.264	24.030	0.000	633.405	-5.854	232.912
	8:10:26	59.99484	0.000	19590	33.678	32.504	-4.264	20.399	0.000	628.075	-10.118	230.780
	8:10:28	59.99484	0.000	19590	33.678	32.915	-4.264	16.546	0.000	622.803	-14.381	228.648
	8:10:30	59.99805	0.000	19590	12.754	25.859	-4.264	5.226	0.000	617.525	-18.645	226.516

8:10:32	59.99872	0.000	19590	8.370	19.738	0.000	-0.895	0.000	612.284	-18.645	224.421
8:10:34	60.00034	0.000	19590	-2.192	12.062	0.000	-8.570	0.000	607.066	-18.645	222.361
8:10:36	60.00195	0.000	19590	-12.754	3.377	0.000	-17.256	0.000	601.864	-18.645	220.336
8:10:38	60.00259	0.000	19590	-16.939	-3.734	0.000	-24.366	0.000	596.688	-18.645	218.344
8:10:40	60.00226	0.000	19590	-14.747	-7.588	0.000	-28.221	0.000	591.566	-18.645	216.386
8:10:42	60.00195	0.000	19590	-12.754	-9.396	0.000	-30.029	0.000	586.512	-18.645	214.459
8:10:44	60.00064	0.000	19590	-4.185	-7.572	0.000	-28.205	0.000	581.555	-18.645	212.564
8:10:46	59.99646	0.000	19590	23.116	3.169	0.000	-17.464	0.000	576.763	-18.645	210.700
8:10:48	59.99191	0.000	19590	52.809	20.543	0.000	-0.090	0.000	572.185	-18.645	208.865
8:10:50	59.98901	0.000	19590	71.741	38.462	0.000	17.830	0.000	567.820	-18.645	207.059
8:10:52	59.98773	0.000	19590	80.110	53.039	0.000	32.407	0.000	563.637	-18.645	205.282
8:10:54	59.98901	0.000	19590	71.741	59.585	0.000	38.952	0.000	559.570	-18.645	203.533
8:10:56	59.99255	0.000	19590	48.624	55.749	0.000	35.116	0.000	555.535	-18.645	201.810
8:10:58	59.99579	0.000	19590	27.501	45.862	0.000	25.229	0.000	551.487	-18.645	200.114
8:11:00	59.99902	0.000	19590	6.377	32.042	0.000	11.410	0.000	547.396	-18.645	198.445
8:11:02	60.00195	0.000	19590	-12.754	16.363	0.000	-4.269	0.000	543.248	-18.645	196.800
8:11:04	60.00485	0.000	19590	-31.685	-0.454	0.000	-21.086	0.000	539.036	-18.645	195.180
8:11:06	60.00809	0.000	19590	-52.809	-18.778	0.000	-39.411	0.000	534.752	-18.645	193.584
8:11:08	60.01163	0.000	19590	-75.926	-38.780	0.000	-59.412	0.000	530.383	-18.645	192.012
8:11:10	60.01422	0.000	19590	-92.864	-57.709	0.000	-78.342	0.000	525.939	-18.645	190.463
8:11:12	60.0152	0.000	19590	-99.241	-72.246	0.000	-92.878	0.000	521.455	-18.645	188.937
8:11:14	60.0155	0.000	19590	-101.234	-82.392	0.000	-103.024	0.000	516.963	-18.645	187.433
8:11:16	60.0155	0.000	19590	-101.234	-88.986	0.000	-109.619	0.000	512.487	-18.645	185.950
8:11:18	60.01682	0.000	19590	-109.803	-96.272	0.000	-116.905	0.000	508.023	-18.645	184.489
8:11:20	60.01907	0.000	19590	-124.550	-106.169	0.000	-126.802	0.000	503.553	-18.645	183.048
8:11:22	60.02295	0.000	19590	-149.858	-121.461	0.000	-142.093	0.000	499.038	-18.645	181.628
8:11:24	60.02618	0.000	19590	-170.982	-138.793	0.000	-159.426	0.000	494.465	-18.645	180.227
8:11:26	60.02972	0.000	19590	-194.099	-158.150	0.000	-178.782	0.000	489.822	-18.645	178.846
8:11:28	60.03262	0.000	19590	-213.030	-177.358	0.000	-197.990	0.000	485.111	-18.645	177.484
8:11:30	60.03458	0.000	19590	-225.784	-194.307	0.000	-214.940	0.000	480.349	-18.645	176.141
8:11:32	60.03522	0.000	19590	-229.969	-206.789	0.000	-227.421	0.000	475.566	-18.645	174.816
8:11:34	60.03424	0.000	19590	-223.592	-212.670	0.000	-233.302	0.000	470.809	-18.645	173.509
8:11:36	60.0336	0.000	19590	-219.407	-215.028	0.000	-235.660	0.000	466.099	-18.645	172.219
8:11:38	60.03522	0.000	19590	-229.969	-220.257	0.000	-240.890	0.000	461.417	-18.645	170.947
8:11:40	60.03812	0.000	19590	-248.900	-230.282	0.000	-250.915	0.000	456.731	-18.645	169.691
8:11:42	60.04037	0.000	19590	-263.647	-241.960	0.000	-262.592	0.000	452.029	-18.645	168.452
8:11:44	60.04105	0.000	19590	-268.031	-251.085	0.000	-271.717	0.000	447.330	-18.645	167.229
8:11:46	60.04199	0.000	19590	-274.209	-259.178	0.000	-279.811	0.000	442.638	-18.645	166.022
8:11:48	60.04233	0.000	19590	-276.401	-265.206	0.000	-285.839	0.000	437.969	-18.645	164.831
8:11:50	60.0433	0.000	19590	-282.778	-271.356	0.000	-291.989	0.000	433.319	-18.645	163.655
8:11:52	60.04425	0.000	19590	-288.956	-277.516	0.000	-298.149	0.000	428.690	-18.645	162.493
8:11:54	60.04492	0.000	19590	-293.340	-283.054	0.000	-303.687	0.000	424.083	-18.645	161.347
8:11:56	60.04556	0.000	19590	-297.525	-288.119	0.000	-308.751	0.000	419.503	-18.645	160.215
8:11:58	60.04587	0.000	19590	-299.518	-292.109	0.000	-312.741	0.000	414.955	-18.645	159.097
8:12:00	60.04654	0.000	19590	-303.902	-296.236	0.000	-316.869	0.000	410.438	-18.645	157.993
8:12:02	60.0488	0.000	19590	-318.648	-304.080	0.000	-324.713	0.000	405.928	-18.645	156.903
8:12:04	60.04974	0.000	19590	-324.826	-311.341	0.000	-331.974	0.000	401.428	-18.645	155.826
8:12:06	60.0491	0.000	19590	-320.641	-314.596	0.000	-335.229	0.000	396.964	-18.645	154.762
8:12:08	60.0491	0.000	19590	-320.641	-316.712	0.000	-337.344	0.000	392.540	-18.645	153.711

8:12:10	60.05042	0.000	19590	-329.210	-321.086	0.000	-341.719	0.000	388.143	-18.645	152.673
8:12:12	60.04974	0.000	19590	-324.826	-322.395	0.000	-343.028	0.000	383.791	-18.645	151.647
8:12:14	60.04846	0.000	19590	-316.456	-320.317	0.000	-340.949	0.000	379.503	-18.645	150.633
8:12:16	60.04718	0.000	19590	-308.087	-316.036	0.000	-336.669	0.000	375.290	-18.645	149.632
8:12:18	60.04587	0.000	19590	-299.518	-310.255	0.000	-330.887	0.000	371.160	-18.645	148.642
8:12:20	60.04587	0.000	19590	-299.518	-306.497	0.000	-327.129	0.000	367.100	-18.645	147.663
8:12:22	60.04556	0.000	19590	-297.525	-303.356	0.000	-323.989	0.000	363.106	-18.645	146.697
8:12:24	60.04425	0.000	19590	-288.956	-298.316	0.000	-318.949	0.000	359.186	-18.645	145.741
8:12:26	60.04297	0.000	19590	-280.586	-292.111	0.000	-312.743	0.000	355.346	-18.645	144.796
8:12:28	60.04169	0.000	19590	-272.216	-285.148	0.000	-305.780	0.000	351.590	-18.645	143.862
8:12:30	60.04233	0.000	19590	-276.401	-282.086	0.000	-302.719	0.000	347.893	-18.645	142.939
8:12:32	60.04459	0.000	19590	-291.148	-285.258	0.000	-305.890	0.000	344.220	-18.645	142.026
8:12:34	60.04654	0.000	19590	-303.902	-291.783	0.000	-312.416	0.000	340.552	-18.645	141.123
8:12:36	60.04718	0.000	19590	-308.087	-297.489	0.000	-318.122	0.000	336.893	-18.645	140.231
8:12:38	60.0462	0.000	19590	-301.710	-298.966	0.000	-319.599	0.000	333.266	-18.645	139.348
8:12:40	60.04425	0.000	19590	-288.956	-295.463	0.000	-316.095	0.000	329.698	-18.645	138.475
8:12:42	60.04492	0.000	19590	-293.340	-294.720	0.000	-315.352	0.000	326.173	-18.645	137.612
8:12:44	60.04523	0.000	19590	-295.333	-294.934	0.000	-315.567	0.000	322.685	-18.645	136.758
8:12:46	60.04523	0.000	19590	-295.333	-295.074	0.000	-315.706	0.000	319.234	-18.645	135.913
8:12:48	60.04556	0.000	19590	-297.525	-295.932	0.000	-316.564	0.000	315.816	-18.645	135.078
8:12:50	60.0462	0.000	19590	-301.710	-297.954	0.000	-318.586	0.000	312.423	-18.645	134.251
8:12:52	60.04654	0.000	19590	-303.902	-300.036	0.000	-320.668	0.000	309.056	-18.645	133.434
8:12:54	60.04654	0.000	19590	-303.902	-301.389	0.000	-322.021	0.000	305.717	-18.645	132.625
8:12:56	60.04523	0.000	19590	-295.333	-299.269	0.000	-319.902	0.000	302.424	-18.645	131.825
8:12:58	60.04361	0.000	19590	-284.771	-294.195	0.000	-314.827	0.000	299.193	-18.645	131.033
8:13:00	60.04199	0.000	19590	-274.209	-287.200	0.000	-307.832	0.000	296.031	-18.645	130.249
8:13:02	60.04071	0.000	19590	-265.839	-279.724	0.000	-300.356	0.000	292.941	-18.645	129.473
8:13:04	60.03876	0.000	19590	-253.085	-270.400	0.000	-291.033	0.000	289.931	-18.645	128.706
8:13:06	60.03586	0.000	19590	-234.154	-257.714	0.000	-278.346	0.000	287.016	-18.645	127.946
8:13:08	60.03394	0.000	19590	-221.599	-245.074	0.000	-265.706	0.000	284.196	-18.645	127.195
8:13:10	60.0336	0.000	19590	-219.407	-236.090	0.000	-256.723	0.000	281.451	-18.645	126.451
8:13:12	60.03262	0.000	19590	-213.030	-228.019	0.000	-248.652	0.000	278.773	-18.645	125.714
8:13:14	60.03006	0.000	19590	-196.291	-216.914	0.000	-237.547	0.000	276.179	-18.645	124.985
8:13:16	60.02747	0.000	19590	-179.352	-203.767	0.000	-224.400	0.000	273.676	-18.645	124.263
8:13:18	60.02682	0.000	19590	-175.167	-193.757	0.000	-214.390	0.000	271.248	-18.645	123.549
8:13:20	60.02585	0.000	19590	-168.790	-185.019	0.000	-205.651	0.000	268.887	-18.645	122.841
8:13:22	60.02359	0.000	19590	-154.043	-174.177	0.000	-194.810	0.000	266.603	-18.645	122.141
8:13:24	60.02197	0.000	19590	-143.481	-163.434	0.000	-184.066	0.000	264.393	-18.645	121.447
8:13:26	60.02164	0.000	19590	-141.289	-155.683	0.000	-176.316	0.000	262.244	-18.645	120.761
8:13:28	60.02231	0.000	19590	-145.674	-152.180	0.000	-172.812	0.000	260.132	-18.645	120.081
8:13:30	60.02133	0.000	19590	-139.297	-147.671	0.000	-168.303	0.000	258.062	-18.645	119.407
8:13:32	60.02133	0.000	19590	-139.297	-144.740	0.000	-165.372	0.000	256.026	-18.645	118.740
8:13:34	60.02002	0.000	19590	-130.728	-139.835	0.000	-160.468	0.000	254.033	-18.645	118.080
8:13:36	60.01776	0.000	19590	-115.981	-131.486	0.000	-152.119	0.000	252.099	-18.645	117.426
8:13:38	60.01584	0.000	19590	-103.426	-121.665	0.000	-142.298	0.000	250.230	-18.645	116.778
8:13:40	60.01291	0.000	19590	-84.295	-108.586	0.000	-129.218	0.000	248.440	-18.645	116.136
8:13:42	60.01132	0.000	19590	-73.933	-96.457	0.000	-117.090	0.000	246.724	-18.645	115.500
8:13:44	60.01001	0.000	19590	-65.364	-85.575	0.000	-106.207	0.000	245.075	-18.645	114.870
8:13:46	60.00937	0.000	19590	-61.179	-77.036	0.000	-97.669	0.000	243.481	-18.645	114.246

8:13:48	60.00775	0.000	19590	-50.617	-67.789	0.000	-88.422	0.000	241.944	-18.645	113.628
8:13:50	60.00516	0.000	19590	-33.678	-55.851	0.000	-76.483	0.000	240.477	-18.645	113.016
8:13:52	60.00452	0.000	19590	-29.493	-46.626	0.000	-67.258	0.000	239.065	-18.645	112.409
8:13:54	60.00613	0.000	19590	-40.055	-44.326	0.000	-64.958	0.000	237.677	-18.645	111.808
8:13:56	60.00613	0.000	19590	-40.055	-42.831	0.000	-63.464	0.000	236.308	-18.645	111.212
8:13:58	60.00549	0.000	19590	-35.870	-40.395	0.000	-61.027	0.000	234.963	-18.645	110.622
8:14:00	60.00516	0.000	19590	-33.678	-38.044	0.000	-58.677	0.000	233.640	-18.645	110.037
8:14:02	60.00388	0.000	19590	-25.309	-33.587	0.000	-54.219	0.000	232.349	-18.645	109.457
8:14:04	60.00259	0.000	19590	-16.939	-27.760	0.000	-48.392	0.000	231.096	-18.645	108.883
8:14:06	60.00128	0.000	19590	-8.370	-20.973	0.000	-41.606	0.000	229.884	-18.645	108.314
8:14:08	60.00128	0.000	19590	-8.370	-16.562	0.000	-37.195	0.000	228.702	-18.645	107.749
8:14:10	60.00064	0.000	19590	-4.185	-12.230	0.000	-32.863	0.000	227.550	-18.645	107.190
8:14:12	60.00034	0.000	19590	-2.192	-8.717	0.000	-29.349	0.000	226.423	-18.645	106.636
8:14:14	60.00226	0.000	19590	-14.747	-10.827	0.000	-31.460	0.000	225.297	-18.645	106.086
8:14:16	60.00421	0.000	19590	-27.501	-16.663	0.000	-37.295	0.000	224.155	-18.645	105.542
8:14:18	60.00677	0.000	19590	-44.240	-26.315	0.000	-46.947	0.000	222.982	-18.645	105.002
8:14:20	60.00903	0.000	19590	-58.987	-37.750	0.000	-58.383	0.000	221.769	-18.645	104.466
8:14:22	60.01291	0.000	19590	-84.295	-54.041	0.000	-74.673	0.000	220.497	-18.645	103.936
8:14:24	60.01486	0.000	19590	-97.049	-69.094	0.000	-89.726	0.000	219.171	-18.645	103.410
8:14:26	60.01453	0.000	19590	-94.857	-78.111	0.000	-98.743	0.000	217.818	-18.645	102.888
8:14:28	60.01422	0.000	19590	-92.864	-83.275	0.000	-103.907	0.000	216.455	-18.645	102.371
8:14:30	60.0152	0.000	19590	-99.241	-88.863	0.000	-109.495	0.000	215.080	-18.645	101.858
8:14:32	60.01614	0.000	19590	-105.419	-94.658	0.000	-115.290	0.000	213.691	-18.645	101.350
8:14:34	60.01682	0.000	19590	-109.803	-99.959	0.000	-120.591	0.000	212.293	-18.645	100.846
8:14:36	60.01746	0.000	19590	-113.988	-104.869	0.000	-125.501	0.000	210.885	-18.645	100.346
8:14:38	60.01712	0.000	19590	-111.796	-107.293	0.000	-127.926	0.000	209.479	-18.645	99.850
8:14:40	60.01682	0.000	19590	-109.803	-108.172	0.000	-128.804	0.000	208.082	-18.645	99.358
8:14:42	60.01648	0.000	19590	-107.611	-107.976	0.000	-128.608	0.000	206.696	-18.645	98.870
8:14:44	60.01614	0.000	19590	-105.419	-107.081	0.000	-127.713	0.000	205.325	-18.645	98.387
8:14:46	60.01746	0.000	19590	-113.988	-109.498	0.000	-130.131	0.000	203.956	-18.645	97.907
8:14:48	60.01776	0.000	19590	-115.981	-111.767	0.000	-132.400	0.000	202.589	-18.645	97.432
8:14:50	60.01776	0.000	19590	-115.981	-113.242	0.000	-133.874	0.000	201.227	-18.645	96.960
8:14:52	60.01648	0.000	19590	-107.611	-111.271	0.000	-131.904	0.000	199.883	-18.645	96.492
8:14:54	60.01584	0.000	19590	-103.426	-108.525	0.000	-129.158	0.000	198.562	-18.645	96.027
8:14:56	60.01648	0.000	19590	-107.611	-108.205	0.000	-128.838	0.000	197.252	-18.645	95.567
8:14:58	60.01584	0.000	19590	-103.426	-106.533	0.000	-127.165	0.000	195.960	-18.645	95.110
8:15:00	60.01358	0.000	19590	-88.680	-100.284	0.000	-120.917	0.000	194.703	-18.645	94.657
8:15:02	60.01163	0.000	19590	-75.926	-91.759	0.000	-112.391	0.000	193.489	-18.645	94.207
8:15:04	60.01132	0.000	19590	-73.933	-85.520	0.000	-106.152	0.000	192.309	-18.645	93.761
8:15:06	60.01132	0.000	19590	-73.933	-81.464	0.000	-102.097	0.000	191.154	-18.645	93.319
8:15:08	60.01099	0.000	19590	-71.741	-78.061	0.000	-98.693	0.000	190.022	-18.645	92.879
8:15:10	60.01099	0.000	19590	-71.741	-75.849	0.000	-96.481	0.000	188.907	-18.645	92.444
8:15:12	60.01291	0.000	19590	-84.295	-78.805	0.000	-99.438	0.000	187.790	-18.645	92.012
8:15:14	60.01486	0.000	19590	-97.049	-85.191	0.000	-105.823	0.000	186.656	-18.645	91.583
8:15:16	60.01776	0.000	19590	-115.981	-95.967	0.000	-116.600	0.000	185.490	-18.645	91.157
8:15:18	60.01776	0.000	19590	-115.981	-102.972	0.000	-123.604	0.000	184.306	-18.645	90.735
8:15:20	60.0184	0.000	19590	-120.166	-108.990	0.000	-129.622	0.000	183.107	-18.645	90.316
8:15:22	60.0181	0.000	19590	-118.173	-112.204	0.000	-132.836	0.000	181.906	-18.645	89.900
8:15:24	60.01746	0.000	19590	-113.988	-112.828	0.000	-133.461	0.000	180.711	-18.645	89.487

$8: 115: 26$	60.0152	0.000	19590	-99.241	-108.073	0.000	-128.705	0.000	179.544

8:17:04	59.9761	0.000	19590	156.036	165.743	0.000	145.110	0.000	153.082	-18.645	72.214
8:17:06	59.97739	0.000	19590	147.666	159.416	0.000	138.784	0.000	153.037	-18.645	71.924
8:17:08	59.97836	0.000	19590	141.289	153.072	0.000	132.439	0.000	152.971	-18.645	71.637
8:17:10	59.97769	0.000	19590	145.674	150.482	0.000	129.850	0.000	152.899	-18.645	71.351
8:17:12	59.97705	0.000	19590	149.858	150.264	0.000	129.632	0.000	152.825	-18.645	71.067
8:17:14	59.97641	0.000	19590	154.043	151.587	0.000	130.954	0.000	152.757	-18.645	70.785
8:17:16	59.97543	0.000	19590	160.420	154.678	0.000	134.046	0.000	152.698	-18.645	70.505
8:17:18	59.97382	0.000	19590	170.982	160.385	0.000	139.752	0.000	152.658	-18.645	70.226
8:17:20	59.97318	0.000	19590	175.167	165.558	0.000	144.926	0.000	152.634	-18.645	69.949
8:17:22	59.97223	0.000	19590	181.345	171.084	0.000	150.451	0.000	152.627	-18.645	69.674
8:17:24	59.97189	0.000	19590	183.537	175.442	0.000	154.810	0.000	152.634	-18.645	69.401
8:17:26	59.97092	0.000	19590	189.914	180.507	0.000	159.875	0.000	152.656	-18.645	69.129
8:17:28	59.96994	0.000	19590	196.291	186.031	0.000	165.399	0.000	152.695	-18.645	68.859
8:17:30	59.96832	0.000	19590	206.852	193.319	0.000	172.686	0.000	152.756	-18.645	68.590
8:17:32	59.96606	0.000	19590	221.599	203.217	0.000	182.584	0.000	152.847	-18.645	68.324
8:17:34	59.96542	0.000	19590	225.784	211.115	0.000	190.483	0.000	152.962	-18.645	68.059
8:17:36	59.96606	0.000	19590	221.599	214.785	0.000	194.152	0.000	153.087	-18.645	67.795
8:17:38	59.9693	0.000	19590	200.475	209.776	0.000	189.144	0.000	153.196	-18.645	67.533
8:17:40	59.97253	0.000	19590	179.352	199.128	0.000	178.495	0.000	153.272	-18.645	67.273
8:17:42	59.97351	0.000	19590	172.975	189.974	0.000	169.342	0.000	153.320	-18.645	67.014
8:17:44	59.97382	0.000	19590	170.982	183.327	0.000	162.695	0.000	153.348	-18.645	66.757
8:17:46	59.97253	0.000	19590	179.352	181.936	0.000	161.303	0.000	153.372	-18.645	66.501
8:17:48	59.97253	0.000	19590	179.352	181.031	0.000	160.399	0.000	153.393	-18.645	66.247
8:17:50	59.97253	0.000	19590	179.352	180.443	0.000	159.811	0.000	153.412	-18.645	65.994
8:17:52	59.96768	0.000	19590	211.037	191.151	0.000	170.519	0.000	153.462	-18.645	65.743
8:17:54	59.97125	0.000	19590	187.722	189.951	0.000	169.318	0.000	153.509	-18.645	65.493
8:17:56	59.97577	0.000	19590	158.228	178.848	0.000	158.215	0.000	153.523	-18.645	65.245
8:17:58	59.97577	0.000	19590	158.228	171.631	0.000	150.999	0.000	153.516	-18.645	64.998
8:18:00	59.97577	0.000	19590	158.228	166.940	0.000	146.308	0.000	153.495	-18.645	64.753
8:18:02	59.98416	0.000	19590	103.426	144.710	0.000	124.078	0.000	153.409	-18.645	64.509
8:18:04	59.9819	0.000	19590	118.173	135.422	0.000	114.790	0.000	153.297	-18.645	64.267
8:18:06	59.979	0.000	19590	137.104	136.011	0.000	115.379	0.000	153.187	-18.645	64.026
8:18:08	59.97769	0.000	19590	145.674	139.393	0.000	118.760	0.000	153.087	-18.645	63.786
8:18:10	59.97769	0.000	19590	145.674	141.591	0.000	120.959	0.000	152.995	-18.645	63.548
8:18:12	59.98126	0.000	19590	122.358	134.859	0.000	114.227	0.000	152.883	-18.645	63.311
8:18:14	59.9848	0.000	19590	99.241	122.393	0.000	101.761	0.000	152.737	-18.645	63.076
8:18:16	59.98868	0.000	19590	73.933	105.432	0.000	84.800	0.000	152.543	-18.645	62.841
8:18:18	59.99161	0.000	19590	54.802	87.711	0.000	67.079	0.000	152.299	-18.645	62.609
8:18:20	59.99353	0.000	19590	42.247	71.799	0.000	51.167	0.000	152.012	-18.645	62.377
8:18:22	59.99579	0.000	19590	27.501	56.295	0.000	35.662	0.000	151.682	-18.645	62.147
8:18:24	59.99677	0.000	19590	21.124	43.985	0.000	23.352	0.000	151.320	-18.645	61.918
8:18:26	59.99774	0.000	19590	14.747	33.751	0.000	13.119	0.000	150.930	-18.645	61.690
8:18:28	59.99838	0.000	19590	10.562	25.635	0.000	5.003	0.000	150.520	-18.645	61.464
8:18:30	59.99774	0.000	19590	14.747	21.824	0.000	1.192	0.000	150.102	-18.645	61.239
8:18:32	59.9971	0.000	19590	18.932	20.812	0.000	0.179	0.000	149.683	-18.645	61.015
8:18:34	59.99741	0.000	19590	16.939	19.456	0.000	-1.176	0.000	149.263	-18.645	60.793
8:18:36	59.99741	0.000	19590	16.939	18.575	0.000	-2.057	0.000	148.843	-18.645	60.572
8:18:38	59.99741	0.000	19590	16.939	18.002	0.000	-2.630	0.000	148.423	-18.645	60.352
8:18:40	60.00064	0.000	19590	-4.185	10.237	0.000	-10.396	0.000	147.984	-18.645	60.133

8:18:42	60.00323	0.000	19590	-21.124	-0.739	0.000	-21.372	0.000	147.518	-18.645	59.915
8:18:44	60.00354	0.000	19590	-23.116	-8.571	0.000	-29.204	0.000	147.032	-18.645	59.699
8:18:46	60.00259	0.000	19590	-16.939	-11.500	0.000	-32.132	0.000	146.542	-18.645	59.483
8:18:48	60.00098	0.000	19590	-6.377	-9.707	0.000	-30.339	0.000	146.058	-18.645	59.269
8:18:50	59.99936	0.000	19590	4.185	-4.845	0.000	-25.477	0.000	145.591	-18.645	59.057
8:18:52	59.99741	0.000	19590	16.939	2.779	0.000	-17.853	0.000	145.147	-18.645	58.845
8:18:54	59.99677	0.000	19590	21.124	9.200	0.000	-11.433	0.000	144.722	-18.645	58.634
8:18:56	59.99677	0.000	19590	21.124	13.373	0.000	-7.259	0.000	144.312	-18.645	58.425
8:18:58	59.9971	0.000	19590	18.932	15.319	0.000	-5.314	0.000	143.908	-18.645	58.217
8:19:00	59.99774	0.000	19590	14.747	15.118	0.000	-5.514	0.000	143.507	-18.645	58.009
8:19:02	59.99872	0.000	19590	8.370	12.756	0.000	-7.876	0.000	143.101	-18.645	57.803
8:19:04	59.99966	0.000	19590	2.192	9.059	0.000	-11.574	0.000	142.687	-18.645	57.598
8:19:06	60	0.000	19590	0.000	5.888	0.000	-14.744	0.000	142.267	-18.645	57.394
8:19:08	60.00034	0.000	19590	-2.192	3.060	0.000	-17.572	0.000	141.842	-18.645	57.192
8:19:10	60.00098	0.000	19590	-6.377	-0.243	0.000	-20.875	0.000	141.411	-18.645	56.990
8:19:12	60.00226	0.000	19590	-14.747	-5.319	0.000	-25.952	0.000	140.968	-18.645	56.789
8:19:14	60.0029	0.000	19590	-18.932	-10.084	0.000	-30.716	0.000	140.515	-18.645	56.590
8:19:16	60.00259	0.000	19590	-16.939	-12.483	0.000	-33.115	0.000	140.058	-18.645	56.391
8:19:18	60.00226	0.000	19590	-14.747	-13.275	0.000	-33.908	0.000	139.601	-18.645	56.194
8:19:20	60.00226	0.000	19590	-14.747	-13.790	0.000	-34.423	0.000	139.146	-18.645	55.997
8:19:22	60.00323	0.000	19590	-21.124	-16.357	0.000	-36.989	0.000	138.686	-18.645	55.802
8:19:24	60.00421	0.000	19590	-27.501	-20.257	0.000	-40.890	0.000	138.218	-18.645	55.608
8:19:26	60.00485	0.000	19590	-31.685	-24.257	0.000	-44.890	0.000	137.743	-18.645	55.414
8:19:28	60.00452	0.000	19590	-29.493	-26.090	0.000	-46.722	0.000	137.265	-18.645	55.222
8:19:30	60.00354	0.000	19590	-23.116	-25.049	0.000	-45.682	0.000	136.792	-18.645	55.031
8:19:32	60.00354	0.000	19590	-23.116	-24.373	0.000	-45.005	0.000	136.324	-18.645	54.840
8:19:34	60.00354	0.000	19590	-23.116	-23.933	0.000	-44.565	0.000	135.859	-18.645	54.651
8:19:36	60.00354	0.000	19590	-23.116	-23.647	0.000	-44.280	0.000	135.397	-18.645	54.462
8:19:38	60.00354	0.000	19590	-23.116	-23.461	0.000	-44.094	0.000	134.938	-18.645	54.275
8:19:40	60.00354	0.000	19590	-23.116	-23.341	0.000	-43.973	0.000	134.481	-18.645	54.088
8:19:42	60.00354	0.000	19590	-23.116	-23.262	0.000	-43.895	0.000	134.027	-18.645	53.903
8:19:44	60.00613	0.000	19590	-40.055	-29.140	0.000	-49.772	0.000	133.561	-18.645	53.718
8:19:46	60.00485	0.000	19590	-31.685	-30.031	0.000	-50.663	0.000	133.094	-18.645	53.535
8:19:48	60.00452	0.000	19590	-29.493	-29.843	0.000	-50.475	0.000	132.631	-18.645	53.352
8:19:50	60.00452	0.000	19590	-29.493	-29.720	0.000	-50.353	0.000	132.170	-18.645	53.170
8:19:52	60.00354	0.000	19590	-23.116	-27.409	0.000	-48.041	0.000	131.717	-18.645	52.989
8:19:54	60.0029	0.000	19590	-18.932	-24.442	0.000	-45.074	0.000	131.274	-18.645	52.809
8:19:56	60.00162	0.000	19590	-10.562	-19.584	0.000	-40.216	0.000	130.845	-18.645	52.630
8:19:58	60.00162	0.000	19590	-10.562	-16.426	0.000	-37.059	0.000	130.427	-18.645	52.452
8:20:00	60.00421	0.000	19590	-27.501	-20.302	0.000	-40.935	0.000	130.000	-18.645	52.275
8:20:02	60.00421	0.000	19590	-27.501	-22.822	0.000	-43.454	0.000	129.570	-18.645	52.098
8:20:04	60.0029	0.000	19590	-18.932	-21.460	0.000	-42.093	0.000	129.145	-18.645	51.923
8:20:06	60.00034	0.000	19590	-2.192	-14.716	0.000	-35.349	0.000	128.739	-18.645	51.748
8:20:08	59.99805	0.000	19590	12.754	-5.102	0.000	-25.734	0.000	128.358	-18.645	51.574
8:20:10	59.99646	0.000	19590	23.116	4.775	0.000	-15.858	0.000	128.004	-18.645	51.401
8:20:12	59.99515	0.000	19590	31.685	14.193	0.000	-6.439	0.000	127.675	-18.645	51.229
8:20:14	59.99387	0.000	19590	40.055	23.245	0.000	2.613	0.000	127.369	-18.645	51.058
8:20:16	59.99289	0.000	19590	46.432	31.361	0.000	10.728	0.000	127.084	-18.645	50.887
8:20:18	59.99255	0.000	19590	48.624	37.403	0.000	16.770	0.000	126.816	-18.645	50.718

8:20:20	59.99225	0.000	19590	50.617	42.028	0.000	21.395	0.000	126.560	-18.645	50.549
8:20:22	59.98965	0.000	19590	67.556	50.963	0.000	30.330	0.000	126.327	-18.645	50.381
8:20:24	59.98514	0.000	19590	97.049	67.093	0.000	46.461	0.000	126.134	-18.645	50.214
8:20:26	59.98254	0.000	19590	113.988	83.506	0.000	62.874	0.000	125.982	-18.645	50.048
8:20:28	59.97836	0.000	19590	141.289	103.730	0.000	83.098	0.000	125.879	-18.645	49.882
8:20:30	59.97641	0.000	19590	154.043	121.340	0.000	100.707	0.000	125.818	-18.645	49.717
8:20:32	59.97705	0.000	19590	149.858	131.321	0.000	110.689	0.000	125.782	-18.645	49.553
8:20:34	59.97705	0.000	19590	149.858	137.809	0.000	117.177	0.000	125.762	-18.645	49.390
8:20:36	59.97705	0.000	19590	149.858	142.026	0.000	121.394	0.000	125.751	-18.645	49.228
8:20:38	59.97803	0.000	19590	143.481	142.536	0.000	121.903	0.000	125.742	-18.645	49.066
8:20:40	59.97964	0.000	19590	132.920	139.170	0.000	118.538	0.000	125.725	-18.645	48.906
8:20:42	59.9816	0.000	19590	120.166	132.519	0.000	111.886	0.000	125.692	-18.645	48.745
8:20:44	59.98126	0.000	19590	122.358	128.962	0.000	108.330	0.000	125.651	-18.645	48.586
8:20:46	59.97931	0.000	19590	135.112	131.115	0.000	110.482	0.000	125.616	-18.645	48.428
8:20:48	59.9761	0.000	19590	156.036	139.837	0.000	119.205	0.000	125.600	-18.645	48.270
8:20:50	59.97543	0.000	19590	160.420	147.041	0.000	126.409	0.000	125.602	-18.645	48.113
8:20:52	59.97577	0.000	19590	158.228	150.957	0.000	130.324	0.000	125.613	-18.645	47.956
8:20:54	59.97675	0.000	19590	151.851	151.270	0.000	130.637	0.000	125.625	-18.645	47.801
8:20:56	59.97803	0.000	19590	143.481	148.544	0.000	127.911	0.000	125.630	-18.645	47.646
8:20:58	59.979	0.000	19590	137.104	144.540	0.000	123.908	0.000	125.626	-18.645	47.492
8:21:00	59.97964	0.000	19590	132.920	140.473	0.000	119.840	0.000	125.613	-18.645	47.338
8:21:02	59.98062	0.000	19590	126.543	135.597	0.000	114.965	0.000	125.588	-18.645	47.185
8:21:04	59.9819	0.000	19590	118.173	129.499	0.000	108.866	0.000	125.550	-18.645	47.033
8:21:06	59.98224	0.000	19590	115.981	124.767	0.000	104.135	0.000	125.501	-18.645	46.882
8:21:08	59.98254	0.000	19590	113.988	120.995	0.000	100.362	0.000	125.443	-18.645	46.731
8:21:10	59.98288	0.000	19590	111.796	117.775	0.000	97.143	0.000	125.378	-18.645	46.582
8:21:12	59.98254	0.000	19590	113.988	116.450	0.000	95.817	0.000	125.311	-18.645	46.432
8:21:14	59.98254	0.000	19590	113.988	115.588	0.000	94.956	0.000	125.242	-18.645	46.284
8:21:16	59.98288	0.000	19590	111.796	114.261	0.000	93.628	0.000	125.170	-18.645	46.136
8:21:18	59.98611	0.000	19590	90.672	106.005	0.000	85.372	0.000	125.080	-18.645	45.989
8:21:20	59.99387	0.000	19590	40.055	82.922	0.000	62.290	0.000	124.937	-18.645	45.842
8:21:22	60.00226	0.000	19590	-14.747	48.738	0.000	28.106	0.000	124.719	-18.645	45.696
8:21:24	60.01099	0.000	19590	-71.741	6.571	0.000	-14.062	0.000	124.406	-18.645	45.551
8:21:26	60.01712	0.000	19590	-111.796	-34.858	0.000	-55.490	0.000	124.002	-18.645	45.406
8:21:28	60.02069	0.000	19590	-135.112	-69.947	0.000	-90.579	0.000	123.521	-18.645	45.262
8:21:30	60.02133	0.000	19590	-139.297	-94.219	0.000	-114.852	0.000	122.988	-18.645	45.119
8:21:32	60.02133	0.000	19590	-139.297	-109.996	0.000	-130.629	0.000	122.422	-18.645	44.976
8:21:34	60.02133	0.000	19590	-139.297	-120.251	0.000	-140.884	0.000	121.835	-18.645	44.834
8:21:36	60.02325	0.000	19590	-151.851	-131.311	0.000	-151.944	0.000	121.227	-18.645	44.693
8:21:38	60.02551	0.000	19590	-166.598	-143.662	0.000	-164.294	0.000	120.594	-18.645	44.552

T-60 sec	8:05:38	59.987	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30142.79	82.303	T-60 sec	8:05:38		
T-58 sec	8:05:40	59.986	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30142.79	90.672	T-58 sec	8:05:40		
T-56 sec	8:05:42	59.985	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30142.79	99.241	T-56 sec	8:05:42		
T-54 sec	8:05:44	59.984	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30154.67	107.611	T-54 sec	8:05:44		
T-52 sec	8:05:46	59.983	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30154.67	109.803	T-52 sec	8:05:46		
T-50 sec	8:05:48	59.984	471.00	0.00	0.00	0.00	0.00	0.00	-653.00	30154.67	107.611	T-50 sec	8:05:48		
T-48 sec	8:05:50	59.984	471.30	0.00	0.00	0.00	0.00	0.00	-653.00	30150.35	103.426	T-48 sec	8:05:50		
T-46 sec	8:05:52	59.985	471.30	0.00	0.00	0.00	0.00	0.00	-653.00	30150.35	97.049	T-46 sec	8:05:52		
T-44 sec	8:05:54	59.985	471.30	0.00	0.00	0.00	0.00	0.00	-653.00	30159.63	94.857	T-44 sec	8:05:54		
T-42 sec	8:05:56	59.986	471.30	0.00	0.00	0.00	0.00	0.00	-653.00	30159.63	88.680	T-42 sec	8:05:56		
T-40 sec	8:05:58	59.987	471.90	0.00	0.00	0.00	0.00	0.00	-653.00	30159.63	86.487	T-40 sec	8:05:58		
T-38 sec	8:06:00	59.987	471.90	0.00	0.00	0.00	0.00	0.00	-653.00	30159.63	82.303	T-38 sec	8:06:00		
T-36 sec	8:06:02	59.988	471.90	0.00	0.00	0.00	0.00	0.00	-653.00	30151.42	80.110	T-36 sec	8:06:02		
T-34 sec	8:06:04	59.989	471.90	0.00	0.00	0.00	0.00	0.00	-653.00	30151.42	71.741	T-34 sec	8:06:04		
T-32 sec	8:06:06	59.989	471.90	0.00	0.00	0.00	0.00	0.00	-653.00	30156.16	71.741	T-32 sec	8:06:06		
T-30 sec	8:06:08	59.988	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30156.16	78.118	T-30 sec	8:06:08		
T-28 sec	8:06:10	59.986	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30156.16	88.680	T-28 sec	8:06:10		
T-26 sec	8:06:12	59.985	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30156.16	94.857	T-26 sec	8:06:12		
T-24 sec	8:06:14	59.986	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30164.15	88.680	T-24 sec	8:06:14		
T-22 sec	8:06:16	59.989	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30164.15	69.549	T-22 sec	8:06:16		
T-20 sec	8:06:18	59.992	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30164.15	50.617	T-20 sec	8:06:18		
$\mathrm{T}-18 \mathrm{sec}$	8:06:20	59.995	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30164.15	31.685	T-18 sec	8:06:20		
T-16 sec	8:06:22	59.996	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30203.91	27.501	T-16 sec	8:06:22	59.999	471.09
T-14 sec	8:06:24	59.995	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30203.91	31.685	T-14 sec	8:06:24	59.999	471.09
T-12 sec	8:06:26	59.995	471.40	0.00	0.00	0.00	0.00	0.00	-653.00	30203.73	29.493	$\mathrm{T}-12 \mathrm{sec}$	8:06:26	59.999	471.09
T-10 sec	8:06:28	59.997	470.90	0.00	0.00	0.00	0.00	0.00	-653.00	30203.73	16.939	T-10 sec	8:06:28	59.999	471.09
T-08 sec	8:06:30	60.000	470.90	0.00	0.00	0.00	0.00	0.00	-653.00	30203.73	0.000	T-08 sec	8:06:30	59.999	471.09
T-06 sec	8:06:32	60.002	470.90	0.00	0.00	0.00	0.00	0.00	-653.00	30203.73	-10.562	T-06 sec	8:06:32	59.999	471.09
T-04 sec	8:06:34	60.002	470.90	0.00	0.00	0.00	0.00	0.00	-653.00	30199.61	-10.562	T-04 sec	8:06:34	59.999	471.09
T-02 sec	8:06:36	60.002	470.90	0.00	0.00	0.00	0.00	0.00	-653.00	30199.61	-12.754	T-02 sec	8:06:36	59.999	471.09
T+0 sec	8:06:38	59.960	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30199.61	263.647	T+0 sec	8:06:38		
T+02 sec	8:06:40	59.881	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30199.61	774.227	T+02 sec	8:06:40		
T+04 sec	8:06:42	59.872	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.11	833.413	T+04 sec	8:06:42		
T+06 sec	8:06:44	59.870	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.11	848.160	T+06 sec	8:06:44		
T+08 sec	8:06:46	59.870	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.11	848.160	T+08 sec	8:06:46		
T+10 sec	8:06:48	59.874	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.14	820.659	T+10 sec	8:06:48		
T+12 sec	8:06:50	59.881	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.14	778.611	T+12 sec	8:06:50		
T+14 sec	8:06:52	59.885	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.14	748.918	T+14 sec	8:06:52		
T+16 sec	8:06:54	59.888	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30086.14	732.179	T+16 sec	8:06:54		
T+18 sec	8:06:56	59.889	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30094.43	721.617	T+18 sec	8:06:56		
T+20 sec	8:06:58	59.891	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30094.43	713.048	$\mathrm{T}+20 \mathrm{sec}$	8:06:58	59.897	0.00
T+22 sec	8:07:00	59.892	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30094.43	706.870	T+22 sec	8:07:00	59.897	0.00
T+24 sec	8:07:02	59.892	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30094.43	702.486	$\mathrm{T}+24 \mathrm{sec}$	8:07:02	59.897	0.00
T+26 sec	8:07:04	59.893	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30139.49	698.301	T+26 sec	8:07:04	59.897	0.00
T+28 sec	8:07:06	59.893	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30139.49	698.301	$\mathrm{T}+28 \mathrm{sec}$	8:07:06	59.897	0.00
T+30 sec	8:07:08	59.893	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30133.38	698.301	T+30 sec	8:07:08	59.897	0.00
T+32 sec	8:07:10	59.895	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30133.38	683.555	T+32 sec	8:07:10	59.897	0.00
T+34 sec	8:07:12	59.898	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30133.38	666.815	$\mathrm{T}+34 \mathrm{sec}$	8:07:12	59.897	0.00
T+36 sec	8:07:14	59.900	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30133.38	656.253	T+36 sec	8:07:14	59.897	0.00

T+38 sec	8:07:16	59.901	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30137.26	647.684	T+38 sec	8:07:16	59.897	0.00
T+40 sec	8:07:18	59.902	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30137.26	639.314	$T+40$ sec	8:07:18	59.897	0.00
T+42 sec	8:07:20	59.902	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30137.26	641.307	$T+42 \mathrm{sec}$	8:07:20	59.897	0.00
T+44 sec	8:07:22	59.901	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30137.26	647.684	T+44 sec	8:07:22	59.897	0.00
T+46 sec	8:07:24	59.901	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30171.38	647.684	T+46 sec	8:07:24	59.897	0.00
T+48 sec	8:07:26	59.900	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30171.38	649.876	T+48 sec	8:07:26	59.897	0.00
T+50 sec	8:07:28	59.899	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30168.76	658.246	T+50 sec	8:07:28	59.897	0.00
T+52 sec	8:07:30	59.899	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30168.76	660.438	T+52 sec	8:07:30	59.897	0.00
T+54 sec	8:07:32	59.899	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30168.76	662.431	T+54 sec	8:07:32		
T+56 sec	8:07:34	59.900	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30168.76	651.869	T+56 sec	8:07:34		
T+58 sec	8:07:36	59.902	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30208.99	637.122	T+58 sec	8:07:36		
T+60 sec	8:07:38	59.905	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30208.99	622.376	T+60 sec	8:07:38		
T+62 sec	8:07:40	59.907	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30208.99	607.629	T+62 sec	8:07:40		
T+64 sec	8:07:42	59.909	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30208.99	595.074	T+64 sec	8:07:42		
T+66 sec	8:07:44	59.909	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30205.66	592.882	T+66 sec	8:07:44		
T+68 sec	8:07:46	59.909	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30205.66	597.067	T+68 sec	8:07:46		
T+70 sec	8:07:48	59.909	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30205.66	595.074	T+70 sec	8:07:48		
$\mathrm{T}+72 \mathrm{sec}$	8:07:50	59.910	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30205.66	586.505	T+72 sec	8:07:50		
T+74 sec	8:07:52	59.912	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30205.66	571.759	T+74 sec	8:07:52		
$\mathrm{T}+76 \mathrm{sec}$	8:07:54	59.915	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30205.66	557.012	T+76 sec	8:07:54		
T+78 sec	8:07:56	59.918	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30211.75	538.080	T+78 sec	8:07:56		
T+80 sec	8:07:58	59.919	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30211.75	527.519	T+80 sec	8:07:58		
T+82 sec	8:08:00	59.921	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30211.75	516.957	T+82 sec	8:08:00		
T+84 sec	8:08:02	59.922	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30211.75	508.388	T+84 sec	8:08:02		
T+86 sec	8:08:04	59.923	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.55	502.210	T+86 sec	8:08:04		
T+88 sec	8:08:06	59.925	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.55	489.456	T+88 sec	8:08:06		
T+90 sec	8:08:08	59.925	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.57	489.456	T+90 sec	8:08:08		
T+92 sec	8:08:10	59.927	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.57	474.709	T+92 sec	8:08:10		
T+94 sec	8:08:12	59.932	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.57	441.031	T+94 sec	8:08:12		
T+96 sec	8:08:14	59.935	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.57	424.092	T+96 sec	8:08:14		
T+98 sec	8:08:16	59.937	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.59	411.338	T+98 sec	8:08:16		
T+100 sec	8:08:18	59.938	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.59	407.129	$\mathrm{T}+100 \mathrm{sec}$	8:08:18		
T+102 sec	8:08:20	59.939	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.59	396.567	T+102 sec	8:08:20		
T+104 sec	8:08:22	59.942	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30217.59	379.827	T+104 sec	8:08:22		
T+106 sec	8:08:24	59.944	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30210.49	365.081	T+106 sec	8:08:24		
T+108 sec	8:08:26	59.946	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30210.49	354.519	T+108 sec	8:08:26		
T+110 sec	8:08:28	59.948	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30210.26	339.772	T+110 sec	8:08:28		
T+112 sec	8:08:30	59.948	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30210.26	341.765	$\mathrm{T}+112 \mathrm{sec}$	8:08:30		
T+114 sec	8:08:32	59.945	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30210.26	356.512	T+114 sec	8:08:32		
T+116 sec	8:08:34	59.944	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30210.26	362.888	T+116 sec	8:08:34		
T+118 sec	8:08:36	59.944	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30234.59	365.081	T+118 sec	8:08:36		
T+120 sec	8:08:38	59.945	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30234.59	358.704	T+120 sec	8:08:38		
T+122 sec	8:08:40	59.946	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30234.59	352.327	$\mathrm{T}+122 \mathrm{sec}$	8:08:40		
T+124 sec	8:08:42	59.946	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30234.59	350.135	$\mathrm{T}+124 \mathrm{sec}$	8:08:42		
T+126 sec	8:08:44	59.947	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30223.60	343.957	T+126 sec	8:08:44		
T+128 sec	8:08:46	59.948	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30223.60	337.580	$\mathrm{T}+128 \mathrm{sec}$	8:08:46		
T+130 sec	8:08:48	59.949	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30223.73	333.395	T+130 sec	8:08:48		
T+132 sec	8:08:50	59.950	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30223.73	327.018	T+132 sec	8:08:50		
T+134 sec	8:08:52	59.951	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30223.73	320.641	$\mathrm{T}+134$ sec	8:08:52		

T+136 sec	8:08:54	59.952	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30223.73	316.456	T+136 sec	8:08:54
T+138 sec	8:08:56	59.952	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30224.39	314.264	T+138 sec	8:08:56
$\mathrm{T}+140$ sec	8:08:58	59.953	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30224.39	303.902	T+140 sec	8:08:58
T+142 sec	8:09:00	59.955	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30224.39	293.340	T+142 sec	8:09:00
T+144 sec	8:09:02	59.956	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30224.39	288.956	T+144 sec	8:09:02
T+146 sec	8:09:04	59.956	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30255.53	284.771	T+146 sec	8:09:04
T+148 sec	8:09:06	59.958	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30255.53	274.209	T+148 sec	8:09:06
T+150 sec	8:09:08	59.961	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30252.87	253.085	$\mathrm{T}+150 \mathrm{sec}$	8:09:08
T+152 sec	8:09:10	59.963	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30252.87	244.716	T+152 sec	8:09:10
T+154 sec	8:09:12	59.962	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30252.87	248.900	T+154 sec	8:09:12
T+156 sec	8:09:14	59.961	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30252.87	253.085	T+156 sec	8:09:14
T+158 sec	8:09:16	59.960	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30232.45	259.462	T+158 sec	8:09:16
T+160 sec	8:09:18	59.961	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30232.45	257.469	T+160 sec	8:09:18
T+162 sec	8:09:20	59.962	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30232.45	246.908	T+162 sec	8:09:20
T+164 sec	8:09:22	59.965	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30232.45	227.777	T+164 sec	8:09:22
T+166 sec	8:09:24	59.967	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.99	213.030	T+166 sec	8:09:24
T+168 sec	8:09:26	59.969	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.99	202.468	T+168 sec	8:09:26
T+170 sec	8:09:28	59.971	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.68	191.906	T+170 sec	8:09:28
T+172 sec	8:09:30	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.68	175.167	T+172 sec	8:09:30
T+174 sec	8:09:32	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.68	172.975	T+174 sec	8:09:32
T+176 sec	8:09:34	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.68	177.160	T+176 sec	8:09:34
T+178 sec	8:09:36	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30264.96	179.352	T+178 sec	8:09:36
T+180 sec	8:09:38	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30264.96	175.167	T+180 sec	8:09:38
	8:09:40	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30264.96	168.790		
	8:09:42	59.975	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30264.96	160.420		
	8:09:44	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.63	158.228		
	8:09:46	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30263.63	156.036		
	8:09:48	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30279.39	151.851		
	8:09:50	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30279.39	143.481		
	8:09:52	59.979	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30279.39	135.112		
	8:09:54	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30279.39	130.728		
	8:09:56	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30255.32	132.920		
	8:09:58	59.979	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30255.32	137.104		
	8:10:00	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30255.32	132.920		
	8:10:02	59.981	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30255.32	124.550		
	8:10:04	59.982	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30260.67	115.981		
	8:10:06	59.984	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30260.67	105.419		
	8:10:08	59.985	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30259.99	97.049		
	8:10:10	59.988	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30259.99	80.110		
	8:10:12	59.990	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30259.99	63.371		
	8:10:14	59.993	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30259.99	46.432		
	8:10:16	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30274.08	27.501		
	8:10:18	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30274.08	23.116		
	8:10:20	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30274.08	27.501		
	8:10:22	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30274.08	25.309		
	8:10:24	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30297.68	27.501		
	8:10:26	59.995	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30297.68	33.678		
	8:10:28	59.995	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30297.65	33.678		
	8:10:30	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30297.65	12.754		

8:10:32	59.999	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30297.65	8.370
8:10:34	60.000	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30297.65	-2.192
8:10:36	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30300.10	-12.754
8:10:38	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30300.10	-16.939
8:10:40	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30300.10	-14.747
8:10:42	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30300.10	-12.754
8:10:44	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30314.84	-4.185
8:10:46	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30314.84	23.116
8:10:48	59.992	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30309.71	52.809
8:10:50	59.989	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30309.71	71.741
8:10:52	59.988	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30309.71	80.110
8:10:54	59.989	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30309.71	71.741
8:10:56	59.993	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30319.50	48.624
8:10:58	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30319.50	27.501
8:11:00	59.999	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30319.50	6.377
8:11:02	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30319.50	-12.754
8:11:04	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30357.21	-31.685
8:11:06	60.008	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30357.21	-52.809
8:11:08	60.012	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30357.18	-75.926
8:11:10	60.014	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30357.18	-92.864
8:11:12	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30357.18	-99.241
8:11:14	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30357.18	-101.234
8:11:16	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.26	-101.234
8:11:18	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.26	-109.803
8:11:20	60.019	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.26	-124.550
8:11:22	60.023	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.26	-149.858
8:11:24	60.026	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.48	-170.982
8:11:26	60.030	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.48	-194.099
8:11:28	60.033	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30353.83	-213.030
8:11:30	60.035	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30353.83	-225.784
8:11:32	60.035	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30353.83	-229.969
8:11:34	60.034	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30353.83	-223.592
8:11:36	60.034	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30370.41	-219.407
8:11:38	60.035	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30370.41	-229.969
8:11:40	60.038	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30370.41	-248.900
8:11:42	60.040	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30370.41	-263.647
8:11:44	60.041	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30374.79	-268.031
8:11:46	60.042	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30374.79	-274.209
8:11:48	60.042	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.14	-276.401
8:11:50	60.043	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.14	-282.778
8:11:52	60.044	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.14	-288.956
8:11:54	60.045	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.14	-293.340
8:11:56	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.53	-297.525
8:11:58	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.53	-299.518
8:12:00	60.047	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.53	-303.902
8:12:02	60.049	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.53	-318.648
8:12:04	60.050	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30343.46	-324.826
8:12:06	60.049	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30343.46	-320.641
8:12:08	60.049	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30335.12	-320.641

8:12:10	60.050	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30335.12	-329.210
8:12:12	60.050	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30335.12	-324.826
8:12:14	60.048	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30335.12	-316.456
8:12:16	60.047	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30337.29	-308.087
8:12:18	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30337.29	-299.518
8:12:20	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30337.29	-299.518
8:12:22	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30337.29	-297.525
8:12:24	60.044	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.20	-288.956
8:12:26	60.043	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.20	-280.586
8:12:28	60.042	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.07	-272.216
8:12:30	60.042	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.07	-276.401
8:12:32	60.045	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.07	-291.148
8:12:34	60.047	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.07	-303.902
8:12:36	60.047	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.77	-308.087
8:12:38	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.77	-301.710
8:12:40	60.044	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.77	-288.956
8:12:42	60.045	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.77	-293.340
8:12:44	60.045	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30372.38	-295.333
8:12:46	60.045	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30372.38	-295.333
8:12:48	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30372.38	-297.525
8:12:50	60.046	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30372.38	-301.710
8:12:52	60.047	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30372.38	-303.902
8:12:54	60.047	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30372.38	-303.902
8:12:56	60.045	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30349.10	-295.333
8:12:58	60.044	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30349.10	-284.771
8:13:00	60.042	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30349.10	-274.209
8:13:02	60.041	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30349.10	-265.839
8:13:04	60.039	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30363.65	-253.085
8:13:06	60.036	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30363.65	-234.154
8:13:08	60.034	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30363.88	-221.599
8:13:10	60.034	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30363.88	-219.407
8:13:12	60.033	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30363.88	-213.030
8:13:14	60.030	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30363.88	-196.291
8:13:16	60.027	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.77	-179.352
8:13:18	60.027	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.77	-175.167
8:13:20	60.026	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.77	-168.790
8:13:22	60.024	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.77	-154.043
8:13:24	60.022	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30374.33	-143.481
8:13:26	60.022	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30374.33	-141.289
8:13:28	60.022	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.67	-145.674
8:13:30	60.021	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.67	-139.297
8:13:32	60.021	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.67	-139.297
8:13:34	60.020	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30364.67	-130.728
8:13:36	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.56	-115.981
8:13:38	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.56	-103.426
8:13:40	60.013	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.56	-84.295
8:13:42	60.011	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.56	-73.933
8:13:44	60.010	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.69	-65.364
8:13:46	60.009	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30350.69	-61.179

8:13:48	60.008	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30344.52	-50.617
8:13:50	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30344.52	-33.678
8:13:52	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30344.52	-29.493
8:13:54	60.006	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30344.52	-40.055
8:13:56	60.006	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.37	-40.055
8:13:58	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.37	-35.870
8:14:00	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.37	-33.678
8:14:02	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30354.37	-25.309
8:14:04	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.31	-16.939
8:14:06	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.31	-8.370
8:14:08	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.78	-8.370
8:14:10	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.78	-4.185
8:14:12	60.000	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.78	-2.192
8:14:14	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.78	-14.747
8:14:16	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.33	-27.501
8:14:18	60.007	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.33	-44.240
8:14:20	60.009	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.33	-58.987
8:14:22	60.013	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30366.33	-84.295
8:14:24	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.85	-97.049
8:14:26	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.85	-94.857
8:14:28	60.014	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.05	-92.864
8:14:30	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.05	-99.241
8:14:32	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.05	-105.419
8:14:34	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30373.05	-109.803
8:14:36	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30369.77	-113.988
8:14:38	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30369.77	-111.796
8:14:40	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30369.77	-109.803
8:14:42	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30369.77	-107.611
8:14:44	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.99	-105.419
8:14:46	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.99	-113.988
8:14:48	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.16	-115.981
8:14:50	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.16	-115.981
8:14:52	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.16	-107.611
8:14:54	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.16	-103.426
8:14:56	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.94	-107.611
8:14:58	60.016	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.94	-103.426
8:15:00	60.014	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.94	-88.680
8:15:02	60.012	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.94	-75.926
8:15:04	60.011	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30371.85	-73.933
8:15:06	60.011	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30371.85	-73.933
8:15:08	60.011	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30362.65	-71.741
8:15:10	60.011	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30362.65	-71.741
8:15:12	60.013	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30362.65	-84.295
8:15:14	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30362.65	-97.049
8:15:16	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30395.46	-115.981
8:15:18	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30395.46	-115.981
8:15:20	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30395.46	-120.166
8:15:22	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30395.46	-118.173
8:15:24	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30397.03	-113.988

8:15:26	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30397.03	-99.241
8:15:28	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30396.67	-99.241
8:15:30	60.014	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30396.67	-90.672
8:15:32	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30396.67	-113.988
8:15:34	60.019	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30396.67	-124.550
8:15:36	60.019	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.62	-124.550
8:15:38	60.020	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.62	-132.920
8:15:40	60.019	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.62	-122.358
8:15:42	60.019	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30388.62	-122.358
8:15:44	60.020	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30381.78	-128.735
8:15:46	60.020	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30381.78	-128.735
8:15:48	60.020	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30382.96	-128.735
8:15:50	60.018	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30382.96	-120.166
8:15:52	60.015	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30382.96	-97.049
8:15:54	60.014	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30382.96	-88.680
8:15:56	60.014	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30381.48	-90.672
8:15:58	60.012	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30381.48	-80.110
8:16:00	60.010	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30381.48	-65.364
8:16:02	60.006	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30381.48	-38.062
8:16:04	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30394.03	-10.562
8:16:06	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30394.03	-10.562
8:16:08	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30394.07	12.754
8:16:10	59.994	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30394.07	42.247
8:16:12	59.993	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30394.07	48.624
8:16:14	59.992	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30394.07	50.617
8:16:16	59.990	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.91	65.364
8:16:18	59.988	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.91	75.926
8:16:20	59.984	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.91	103.426
8:16:22	59.982	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30376.91	120.166
8:16:24	59.981	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.96	124.550
8:16:26	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.96	128.735
8:16:28	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.46	130.728
8:16:30	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.46	141.289
8:16:32	59.975	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.46	162.413
8:16:34	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.46	177.160
8:16:36	59.972	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.18	183.537
8:16:38	59.972	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.18	185.729
8:16:40	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.18	170.982
8:16:42	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30361.18	154.043
8:16:44	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30365.59	141.289
8:16:46	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30365.59	149.858
8:16:48	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30365.19	166.598
8:16:50	59.971	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30365.19	187.722
8:16:52	59.971	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30365.19	189.914
8:16:54	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30365.19	177.160
8:16:56	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30375.91	166.598
8:16:58	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30375.91	170.982
8:17:00	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30375.91	175.167
8:17:02	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30375.91	166.598

8:17:04	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.40	156.036
8:17:06	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.40	147.666
8:17:08	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.72	141.289
8:17:10	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.72	145.674
8:17:12	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.72	149.858
8:17:14	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30367.72	154.043
8:17:16	59.975	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30416.87	160.420
8:17:18	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30416.87	170.982
8:17:20	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30416.87	175.167
8:17:22	59.972	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30416.87	181.345
8:17:24	59.972	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30413.65	183.537
8:17:26	59.971	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30413.65	189.914
8:17:28	59.970	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30406.30	196.291
8:17:30	59.968	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30406.30	206.852
8:17:32	59.966	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30406.30	221.599
8:17:34	59.965	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30406.30	225.784
8:17:36	59.966	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30418.59	221.599
8:17:38	59.969	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30418.59	200.475
8:17:40	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30418.59	179.352
8:17:42	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30418.59	172.975
8:17:44	59.974	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30433.31	170.982
8:17:46	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30433.31	179.352
8:17:48	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30433.31	179.352
8:17:50	59.973	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30433.31	179.352
8:17:52	59.968	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30433.31	211.037
8:17:54	59.971	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30433.31	187.722
8:17:56	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30451.30	158.228
8:17:58	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30451.30	158.228
8:18:00	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30451.30	158.228
8:18:02	59.984	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30451.30	103.426
8:18:04	59.982	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30425.74	118.173
8:18:06	59.979	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30425.74	137.104
8:18:08	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30419.18	145.674
8:18:10	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30419.18	145.674
8:18:12	59.981	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30419.18	122.358
8:18:14	59.985	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30419.18	99.241
8:18:16	59.989	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30424.29	73.933
8:18:18	59.992	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30424.29	54.802
8:18:20	59.994	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30424.29	42.247
8:18:22	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30424.29	27.501
8:18:24	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30440.82	21.124
8:18:26	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30440.82	14.747
8:18:28	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30431.58	10.562
8:18:30	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30431.58	14.747
8:18:32	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30431.58	18.932
8:18:34	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30431.58	16.939
8:18:36	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30444.25	16.939
8:18:38	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30444.25	16.939
8:18:40	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30444.25	-4.185

8:18:42	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30444.25	-21.124
8:18:44	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30465.11	-23.116
8:18:46	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30465.11	-16.939
8:18:48	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30465.30	-6.377
8:18:50	59.999	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30465.30	4.185
8:18:52	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30465.30	16.939
8:18:54	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30465.30	21.124
8:18:56	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30478.25	21.124
8:18:58	59.997	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30478.25	18.932
8:19:00	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30478.25	14.747
8:19:02	59.999	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30478.25	8.370
8:19:04	60.000	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30473.86	2.192
8:19:06	60.000	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30473.86	0.000
8:19:08	60.000	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30468.84	-2.192
8:19:10	60.001	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30468.84	-6.377
8:19:12	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30468.84	-14.747
8:19:14	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30468.84	-18.932
8:19:16	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.63	-16.939
8:19:18	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.63	-14.747
8:19:20	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.63	-14.747
8:19:22	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.63	-21.124
8:19:24	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30488.41	-27.501
8:19:26	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30488.41	-31.685
8:19:28	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	-29.493
8:19:30	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	-23.116
8:19:32	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	-23.116
8:19:34	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	-23.116
8:19:36	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30477.13	-23.116
8:19:38	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30477.13	-23.116
8:19:40	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30477.13	-23.116
8:19:42	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30477.13	-23.116
8:19:44	60.006	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30487.82	-40.055
8:19:46	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30487.82	-31.685
8:19:48	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30489.73	-29.493
8:19:50	60.005	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30489.73	-29.493
8:19:52	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30489.73	-23.116
8:19:54	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30489.73	-18.932
8:19:56	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.09	-10.562
8:19:58	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.09	-10.562
8:20:00	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.09	-27.501
8:20:02	60.004	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.09	-27.501
8:20:04	60.003	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.91	-18.932
8:20:06	60.000	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.91	-2.192
8:20:08	59.998	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.84	12.754
8:20:10	59.996	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.84	23.116
8:20:12	59.995	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.84	31.685
8:20:14	59.994	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.84	40.055
8:20:16	59.993	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30476.09	46.432
8:20:18	59.993	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30476.09	48.624

8:20:20	59.992	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30476.09	50.617
8:20:22	59.990	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30476.09	67.556
8:20:24	59.985	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30456.76	97.049
8:20:26	59.983	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30456.76	113.988
8:20:28	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30457.12	141.289
8:20:30	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30457.12	154.043
8:20:32	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30457.12	149.858
8:20:34	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30457.12	149.858
8:20:36	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30446.98	149.858
8:20:38	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30446.98	143.481
8:20:40	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30446.98	132.920
8:20:42	59.982	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30446.98	120.166
8:20:44	59.981	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30461.02	122.358
8:20:46	59.979	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30461.02	135.112
8:20:48	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30460.94	156.036
8:20:50	59.975	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30460.94	160.420
8:20:52	59.976	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30460.94	158.228
8:20:54	59.977	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30460.94	151.851
8:20:56	59.978	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.23	143.481
8:20:58	59.979	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.23	137.104
8:21:00	59.980	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.23	132.920
8:21:02	59.981	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30469.23	126.543
8:21:04	59.982	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30481.49	118.173
8:21:06	59.982	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30481.49	115.981
8:21:08	59.983	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	113.988
8:21:10	59.983	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	111.796
8:21:12	59.983	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	113.988
8:21:14	59.983	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30480.29	113.988
8:21:16	59.983	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30473.15	111.796
8:21:18	59.986	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30473.15	90.672
8:21:20	59.994	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30473.15	40.055
8:21:22	60.002	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30473.15	-14.747
8:21:24	60.011	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30470.66	-71.741
8:21:26	60.017	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30470.66	-111.796
8:21:28	60.021	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30470.60	-135.112
8:21:30	60.021	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30470.60	-139.297
8:21:32	60.021	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30470.60	-139.297
8:21:34	60.021	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30470.60	-139.297
8:21:36	60.023	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30461.28	-151.851
8:21:38	60.026	0.00	0.00	0.00	0.00	0.00	0.00	-653.00	30461.28	-166.598

											$\begin{aligned} & 0.0078 \\ & 0.0049 \end{aligned}$	
0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968				0.0042	
0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968				0.0049	
0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968				0.0045	
0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968				0.0026	
0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968				0.0000	
0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968				0.0016	
0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968				0.0016	
0.000	0.000	0.000	0.000	0.000	-653.00	30202.74	8.968				0.0020	
											0.0404	-653
										401.98	0.1186	-653
										373.12	0.1276	-653
										366.57	0.1299	-653
										366.57	0.1299	-653
										378.99	0.1257	-653
										399.69	0.1192	-653
										415.73	0.1147	-653
										425.35	0.1121	-653
										431.66	0.1105	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	436.91	0.1092	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	440.78	0.1082	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	443.56	0.1076	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	446.26	0.1069	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	446.26	0.1069	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	446.26	0.1069	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	456.01	0.1047	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	467.62	0.1021	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	475.25	0.1005	-653

0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	481.62	0.0992	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	488.02	0.0979	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	486.48	0.0982	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	481.62	0.0992	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	481.62	0.0992	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	479.97	0.0995	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	473.79	0.1008	-653
0.000	0.000	0.000	0.000	0.000	-653.00	30136.77	671.539	653.00	464.954	472.19	0.1011	-653
										470.75	0.1014	-653
										478.49	0.0998	-653
										489.72	0.0976	-653
										501.49	0.0953	-653
										513.85	0.0931	-653
										524.85	0.0911	-653
										526.82	0.0908	-653
										523.07	0.0914	-653
										524.85	0.0911	-653
										532.64	0.0898	-653
										546.60	0.0876	-653
										561.31	0.0853	-653
										581.39	0.0824	-653
										593.23	0.0808	-653
										605.56	0.0792	-653
										615.95	0.0779	-653
										623.67	0.0769	-653
										640.22	0.0750	-653
										640.22	0.0750	-653
										660.50	0.0727	-653
										711.98	0.0675	-653
										741.03	0.0649	-653
										764.52	0.0630	-653
										772.60	0.0623	-653
										793.66	0.0607	-653
										829.48	0.0582	-653
										863.83	0.0559	-653
										890.23	0.0543	-653
										929.92	0.0520	-653
										924.35	0.0523	-653
										885.13	0.0546	-653
										869.18	0.0556	-653
										863.83	0.0559	-653
										879.58	0.0549	-653
										895.91	0.0540	-653
										901.67	0.0536	-653
										918.30	0.0527	-653
										936.12	0.0517	-653
										948.19	0.0511	-653
										967.21	0.0501	-653
										986.99	0.0491	-653

	○

	0.0152
	0.0152
	0.0139
	0.0175
	0.0191
	0.0191
	0.0204
	0.0187
	0.0187
	0.0197
	0.0197
	0.0197
	0.0184
	0.0149
	0.0136
	0.0139
	0.0123
	0.0100
	0.0058
	0.0016
	0.0016
81245.24	0.0020
9243.47	0.0065
7757.08	0.0074
7385.93	0.0078
5454.63	0.0100
4594.22	0.0116
3256.67	0.0158
2766.41	0.0184
2661.48	0.0191
2568.49	0.0197
2526.45	0.0200
2324.79	0.0216
2004.75	0.0249
1828.98	0.0271
1762.17	0.0281
1740.32	0.0284
1898.72	0.0262
2120.41	0.0236
2324.79	0.0216
2183.39	0.0229
1951.53	0.0255
1720.91	0.0287
1700.07	0.0291
1828.98	0.0271
1951.53	0.0255
1898.72	0.0262
1850.91	0.0268
1951.53	0.0255

2091.68	0.0239
2217.90	0.0226
2324.79	0.0216
2250.23	0.0223
2183.39	0.0229
2120.41	0.0236
2031.13	0.0246
1898.72	0.0262
1850.91	0.0268
1784.58	0.0278
1762.17	0.0281
1700.07	0.0291
1642.19	0.0301
1554.54	0.0317
1446.73	0.0339
1418.80	0.0346
1446.73	0.0339
1606.31	0.0307
1805.45	0.0275
1875.65	0.0265
1898.72	0.0262
1805.45	0.0275
1805.45	0.0275
1805.45	0.0275
1522.35	0.0323
1720.91	0.0287
2060.96	0.0242
2060.96	0.0242
2060.96	0.0242
3256.67	0.0158
2816.90	0.0181
2400.71	0.0210
2250.23	0.0223
2250.23	0.0223
2712.93	0.0187
3407.64	0.0152
4735.15	0.0113
6711.56	0.0084
9243.47	0.0065
16598.49	0.0042
25305.89	0.0032
53229.64	0.0023
192957.44	0.0016
53229.64	0.0023
30873.19	0.0029
38591.49	0.0026
38591.49	0.0026
38591.49	0.0026
	0.0006

	0.0032
	0.0035
	0.0026
	0.0010
	0.0006
38591.49	0.0026
25305.89	0.0032
25305.89	0.0032
30873.19	0.0029
53229.64	0.0023
	0.0013
	0.0003
	0.0000
	0.0003
	0.0010
	0.0023
	0.0029
	0.0026
	0.0023
	0.0023
	0.0032
	0.0042
	0.0049
	0.0045
	0.0035
	0.0035
	0.0035
	0.0035
	0.0035
	0.0035
	0.0035
	0.0061
	0.0049
	0.0045
	0.0045
	0.0035
	0.0029
	0.0016
	0.0016
	0.0042
	0.0042
	0.0029
	0.0003
81245.24	0.0020
21741.68	0.0035
13540.87	0.0049
9895.25	0.0061
8210.95	0.0071
7757.08	0.0074

7385.93	0.0078
5250.54	0.0103
3492.44	0.0149
2929.15	0.0175
2324.79	0.0216
2120.41	0.0236
2183.39	0.0229
2183.39	0.0229
2183.39	0.0229
2286.90	0.0220
2481.77	0.0204
2766.41	0.0184
2712.93	0.0187
2438.64	0.0207
2091.68	0.0239
2031.13	0.0246
2060.96	0.0242
2152.94	0.0233
2286.90	0.0220
2400.71	0.0210
2481.77	0.0204
2616.37	0.0194
2816.90	0.0181
2874.60	0.0178
2929.15	0.0175
2991.59	0.0171
2929.15	0.0175
2929.15	0.0175
2991.59	0.0171
3765.02	0.0139
9895.25	0.0061
	0.0023
	0.0110
	0.0171
	0.0207
	0.0213
	0.0213
	0.0213
	0.0233
	0.0255

"Auto" Event Detection adjustment of $\mathrm{T}(0)$.
\# of rows to shift $\mathrm{T}(0)$
A zero value aligns the data to the hightest Frequency change value. Usually the event begins one or two data scans earlier than this scan

Increasing this value shifts graph data to the right.
Decreasing this value shifts graph data to the left.

Note: The P.U. Performance values indicate performance as a P.U. value of BA Bias setting. For BAs that utilize a variable Bias, the Bias average during $T(+20)$ to $T(+52)$ is used
P.U. values above 1.0 indicate that the Bias setting was below measured Frequency Response. P.U. values below 1.0 indicate that the Bias setting was above measured Frequency Response.

$\mathrm{T}(0)$
 First change in frequency of the event should occur here on the vertical grid line.

It is important that the pre-event frequency average to NOT contain frequency data of the event, "Average Frequency" trend to the left of center of the graph
To shift the data on the graph left or right, adjust the value in cell Q 3 highlighted in yellow above.

$\left.\begin{array}{ccccc|cc|}\hline \text { mary Frequency Response Evaluation Points } & & & \\ \hline \text { Adjusted } & & \\ \begin{array}{c}\text { PFR }\end{array} & \begin{array}{c}\text { PFR }\end{array} & \text { PFR } & \text { PFR } & \text { PFR }\end{array}\right)$

To be completed for each event evaluated.

1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order
Column A: Date and Time in this format, mm/dd/yy HH:MM:SS
Column B: Frequency Hz
Column C: Contingent Resouce Lost MW or Lost Load
Column D: Load Resources tripped during the event.
Column E: Non Conforming Load
Column F: Spare
Column G: Not Used
Column H: Spare
Column I: Spare
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D \& E are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign (+/-) convention defined in FRS Form 1.
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must start a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event with up to 60 minutes of data
Be sure the "Data" worksheet is clear of any old data. Collect the same total minutes of data for each event evaluated to minimize your effort and time.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data.
5 Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on the graph on the "Copy Results" worksheet.
If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process.
6 Once data is in place in the "Data" worksheet, confirm the Auto selection of the beginning of the event by observing the "Graph 20 to 52 s " worksheet. Adjust the selection if necessary. To make an adjustment, change the value in cell "Q3" on the "Graph 20 to 52 s " worksheet. Usually a 0,1 or 2 will achive the correct alignment of $\mathrm{T}(0)$.

7 If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency (red trend) of the event on the center vertical grid line of the graph.
8 The end of the event will be Auto selected based on the frequency value in cell "N2" on the Data worksheet. This will be the frequency at the beginning of the event or 60 Hz , whichever is lower. (for low Hz events) This value controls the end of the "Sustained Frequency Response" evaluation period.
Primary Frequency Response should be sustained during the event recovery period. This evaluation determines how well you achieved this goal
 in the correct order on worksheet "Form 1 Summary Data"
10 Use PasteSpecial/Values and paste the copied data into FRS Form 1 on the appropriate event row. Be sure to use the latest version of Form 1, currently Form 1.9
11 Save this Form 2 using the file name convention on the "Copy Results" worksheet. The complete file name is in bold in cell B38. Return all completed Form 2 s with your Form 1 to NERC.

Steps To be completed the first time you use form 2 for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Copy Results" worksheet. For example: "ERCOT"

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:40:00	60.0097	471		0		0			-653	29756.85		0				
05/16/11 07:40:02	60.00745	471		0		0			-653	29756.85	0	0	0	-0.002	0.002	
05/16/11 07:40:04	60.00452	471		0		0			-653	29756.82	0	0	0	-0.003	0.003	
05/16/11 07:40:06	60.00259	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:08	60.00034	471		0		0			-653	29756.82		0	0	-0.002	0.002	
05/16/11 07:40:10	59.99872	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:12	59.9971	471		0		0			-653	29756.82	,	0	0	-0.002	0.002	
05/16/11 07:40:14	59.99548	471		0		0			-653	29766.46	0	0	0	-0.002	0.002	
05/16/11 07:40:16	59.99353	471		0		0			-653	29766.46	0	0	0	-0.002	0.002	
05/16/11 07:40:18	59.99063	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:20	59.9874	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:22	59.98416	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:24	59.98093	471		0		0			-653	29766.37	0	0	0	-0.003	0.003	
05/16/11 07:40:26	59.97867	471		0		0			-653	29766.37	,	0	0	-0.002	0.002	
05/16/11 07:40:28	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:30	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:32	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:34	59.97577	471		0		0			-653	29780.98	0	0	0	-0.003	0.003	
05/16/11 07:40:36	59.97382	471		0		0			-653	29780.98	0	0	0	-0.002	0.002	
05/16/11 07:40:38	59.97223	471		0		0			-653	29780.98	0	0	0	-0.002	0.002	
05/16/11 07:40:40	59.97223	471		0		0			-653	29780.98	0	0	0	0.000	0.000	
05/16/11 07:40:42	59.97318	471		0		0			-653	29780.98	0	0	0	0.001	0.001	
05/16/11 07:40:44	59.97351	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:46	59.97415	471		0		0			-653	29780.95	0	0	0	0.001	0.001	
05/16/11 07:40:48	59.97287	471		0		0			-653	29780.95	0	0	0	-0.001	0.001	
05/16/11 07:40:50	59.97287	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:52	59.97287	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:54	59.96832	471		0		0			-653	29770.34	0	0	0	-0.005	0.005	
05/16/11 07:40:56	59.96768	471		0		0			-653	29770.34	-	0	0	-0.001	0.001	
05/16/11 07:40:58	59.96899	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:00	59.97028	471		0		0			-653	29770.34	-	0	0	0.001	0.001	
05/16/11 07:41:02	59.97223	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:04	59.97382	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:06	59.97479	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:08	59.9761	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:10	59.97769	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:12	59.97998	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:14	59.98318	471		0		0			-653	29782.73	-	0	0	0.003	0.003	
05/16/11 07:41:16	59.98578	471		0		0			-653	29782.73	0	0	0	0.003	0.003	
05/16/11 07:41:18	59.9874	471		0		0			-653	29782.73	0	0	0	0.002	0.002	
05/16/11 07:41:20	59.98868	471		0		0			-653	29782.73	0	0	0	0.001	0.001	
05/16/11 07:41:22	59.98999	471		0		0			-653	29782.73	0	0	0	0.001	0.001	
05/16/11 07:41:24	59.99191	471		0		0			-653	29782.82	0	0	0	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:41:26	59.99353	471		0		0			-653	29782.82	0	0	0	0.002	0.002	
05/16/11 07:41:28	59.99612	471		0		0			-653	29782.82	0	0	0	0.003	0.003	
05/16/11 07:41:30	59.99805	471		0		0			-653	29782.82	0	0	0	0.002	0.002	
05/16/11 07:41:32	59.99902	471		0		0			-653	29782.82	0	0	0	0.001	0.001	
05/16/11 07:41:34	59.99902	471		0		0			-653	29786.15	0	0	0	0.000	0.000	
05/16/11 07:41:36	59.99774	471		0		0			-653	29786.15	0	0	0	-0.001	0.001	
05/16/11 07:41:38	59.99646	471		0		0			-653	29786.15	,	0	0	-0.001	0.001	
05/16/11 07:41:40	59.99579	471		0		0			-653	29786.15	0	0	0	-0.001	0.001	
05/16/11 07:41:42	59.99612	471		0		0			-653	29786.15	0	0	0	0.000	0.000	
05/16/11 07:41:44	59.9971	471		0		0			-653	29786.21	0	0	-	0.001	0.001	
05/16/11 07:41:46	59.99774	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:48	59.99838	471		0		0			-653	29786.21		0	0	0.001	0.001	
05/16/11 07:41:50	59.99936	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:52	60	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:54	60.00064	471		0		0			-653	29778.98	0	0	0	0.001	0.001	
05/16/11 07:41:56	60.00128	471		0		0			-653	29778.98	0	0	0	0.001	0.001	
05/16/11 07:41:58	60.00226	471		0		0			-653	29778.98	0	0	0	0.001	0.001	
05/16/11 07:42:00	60.00388	471		0		0			-653	29778.98	0	0	0	0.002	0.002	
05/16/11 07:42:02	60.00647	471		0		0			-653	29778.98	0	0	0	0.003	0.003	
05/16/11 07:42:04	60.0097	471		0		0			-653	29778.92	0	0	-	0.003	0.003	
05/16/11 07:42:06	60.01358	471		0		0			-653	29778.92	0	0	0	0.004	0.004	
05/16/11 07:42:08	60.01614	471		0		0			-653	29778.92	0	0	0	0.003	0.003	
05/16/11 07:42:10	60.01776	471		0		0			-653	29778.92	0	0	0	0.002	0.002	
05/16/11 07:42:12	60.01776	471		0		0			-653	29778.92	0	0	0	0.000	0.000	
05/16/11 07:42:14	60.01486	471		0		0			-653	29787.9	0	0	0	-0.003	0.003	
05/16/11 07:42:16	60.01163	471		0		0			-653	29787.9	0	0	0	-0.003	0.003	
05/16/11 07:42:18	60.00903	471		0		0			-653	29787.9	0	0	0	-0.003	0.003	
05/16/11 07:42:20	60.00775	471		0		0			-653	29787.9	0	0	0	-0.001	0.001	
05/16/11 07:42:22	60.00775	471		0		0			-653	29787.9	0	0	0	0.000	0.000	
05/16/11 07:42:24	60.00903	471		0		0			-653	29787.84		0	0	0.001	0.001	
05/16/11 07:42:26	60.00903	471		0		0			-653	29787.84	-	0	0	0.000	0.000	
05/16/11 07:42:28	60.01324	471		0		0			-653	29787.84	0	0	0	0.004	0.004	
05/16/11 07:42:30	60.01486	471		0		0			-653	29787.84	0	0	0	0.002	0.002	
05/16/11 07:42:32	60.0152	471		0		0			-653	29787.84	0	0	0	0.000	0.000	
05/16/11 07:42:34	60.0152	471		0		0			-653	29813.39	0	0	0	0.000	0.000	
05/16/11 07:42:36	60.01486	471		0		0			-653	29813.39	0	0	0	0.000	0.000	
05/16/11 07:42:38	60.01422	471		0		0			-653	29813.39	0	0	0	-0.001	0.001	
05/16/11 07:42:40	60.01358	471		0		0			-653	29813.39	0	0	0	-0.001	0.001	
05/16/11 07:42:42	60.01227	471		0		0			-653	29813.39	0	0	0	-0.001	0.001	
05/16/11 07:42:44	60.01099	471		0		0			-653	29813.33	0	0	0	-0.001	0.001	
05/16/11 07:42:46	60.00873	471		0		0			-653	29813.33	0	0	0	-0.002	0.002	
05/16/11 07:42:48	60.00647	471		0		0			-653	29813.33	0	0	0	-0.002	0.002	
05/16/11 07:42:50	60.00485	471		0		0			-653	29813.33	0	0	0	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:42:52	60.00354	471		0		0			-653	29813.33	0	0	0	-0.001	0.001	
05/16/11 07:42:54	60.00195	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:42:56	60	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:42:58	59.99774	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:43:00	59.99612	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:43:02	59.99646	471		0		0			-653	29797.46	0	0	0	0.000	0.000	
05/16/11 07:43:04	59.99741	471		0		0			-653	29797.52	0	0	0	0.001	0.001	
05/16/11 07:43:06	59.99838	471		0		0			-653	29797.52	0	0	0	0.001	0.001	
05/16/11 07:43:08	59.99936	471		0		0			-653	29797.52	0	0	0	0.001	0.001	
05/16/11 07:43:10	59.99902	471		0		0			-653	29797.52	0	0	0	0.000	0.000	
05/16/11 07:43:12	59.99872	471		0		0			-653	29797.52		0	0	0.000	0.000	
05/16/11 07:43:14	59.99774	471		0		0			-653	29780.33	0	0	0	-0.001	0.001	
05/16/11 07:43:16	59.99646	471		0		0			-653	29780.33	0	0	0	-0.001	0.001	
05/16/11 07:43:18	59.99677	471		0		0			-653	29780.33	0	0	0	0.000	0.000	
05/16/11 07:43:20	59.99677	471		0		0			-653	29780.33	0	0	0	0.000	0.000	
05/16/11 07:43:22	59.99774	471		0		0			-653	29780.33	0	0	0	0.001	0.001	
05/16/11 07:43:24	59.99805	471		0		0			-653	29780.27	0	0	0	0.000	0.000	
05/16/11 07:43:26	59.99774	471		0		0			-653	29780.27	0	0	0	0.000	0.000	
05/16/11 07:43:28	59.99579	471		0		0			-653	29780.27	0	0	0	-0.002	0.002	
05/16/11 07:43:30	59.99387	471		0		0			-653	29780.27	0	0	0	-0.002	0.002	
05/16/11 07:43:32	59.99255	471		0		0			-653	29780.27	0	0	0	-0.001	0.001	
05/16/11 07:43:34	59.99127	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:36	59.98999	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:38	59.98965	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:40	59.98837	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:42	59.98709	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:44	59.98642	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:46	59.98642	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:48	59.98642	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:50	59.98676	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:52	59.98676	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:54	59.98642	471		0		0			-653	29787.12	0	0	0	0.000	0.000	
05/16/11 07:43:56	59.98611	471		0		0			-653	29787.12	0	0	0	0.000	0.000	
05/16/11 07:43:58	59.98611	471		0		0			-653	29787.12	0	0	0	0.000	0.000	
05/16/11 07:44:00	59.98514	471		0		0			-653	29787.12		0	0	-0.001	0.001	
05/16/11 07:44:02	59.98416	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:04	59.98352	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:06	59.98224	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:08	59.98029	471		0		0			-653	29787.12	0	0	0	-0.002	0.002	
05/16/11 07:44:10	59.979	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:12	59.97769	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:14	59.97675	471		0		0			-653	29780.67	0	0	0	-0.001	0.001	
05/16/11 07:44:16	59.97641	471		0		0			-653	29780.67	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:44:18	59.97739	471		0		0			-653	29780.67	0	0	0	0.001	0.001	
05/16/11 07:44:20	59.97998	471		0		0			-653	29780.67	0	0	0	0.003	0.003	
05/16/11 07:44:22	59.98318	471		0		0			-653	29780.67	0	0	0	0.003	0.003	
05/16/11 07:44:24	59.98611	471		0		0			-653	29780.76	0	0	0	0.003	0.003	
05/16/11 07:44:26	59.98837	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:28	59.9903	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:30	59.99191	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:32	59.99353	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:34	59.99579	471		0		0			-653	29777.7	0	0	0	0.002	0.002	
05/16/11 07:44:36	60	471		0		0			-653	29777.7	0	0	0	0.004	0.004	
05/16/11 07:44:38	60.00354	471		0		0			-653	29777.7	0	0	0	0.004	0.004	
05/16/11 07:44:40	60.00647	471		0		0			-653	29777.7	0	0	0	0.003	0.003	
05/16/11 07:44:42	60.00839	471		0		0			-653	29777.7	0	0	0	0.002	0.002	
05/16/11 07:44:44	60.00903	471		0		0			-653	29777.7	0	0	0	0.001	0.001	
05/16/11 07:44:46	60.00873	471		0		0			-653	29777.7	0	0	0	0.000	0.000	
05/16/11 07:44:48	60.00873	471		0		0			-653	29777.7	0	0	0	0.000	0.000	
05/16/11 07:44:50	60.00937	471		0		0			-653	29777.7	0	0	0	0.001	0.001	
05/16/11 07:44:52	60.01099	471		0		0			-653	29777.7	0	0	0	0.002	0.002	
05/16/11 07:44:54	60.01453	471		0		0			-653	29788.63	0	0	0	0.004	0.004	
05/16/11 07:44:56	60.0181	471		0		0			-653	29788.63	0	0	0	0.004	0.004	
05/16/11 07:44:58	60.02002	471		0		0			-653	29788.63	0	0	0	0.002	0.002	
05/16/11 07:45:00	60.02036	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:02	60.02002	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:04	60.02002	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:06	60.01907	471		0		0			-653	29788.63	0	0	0	-0.001	0.001	
05/16/11 07:45:08	60.0181	471		0		0			-653	29788.63	0	0	0	-0.001	0.001	
05/16/11 07:45:10	60.01712	471		0		0			-653	29788.63	0	0	0	-0.001	0.001	
05/16/11 07:45:12	60.01712	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:14	60.01712	471		0		0			-653	29788.51	0	0	0	0.000	0.000	
05/16/11 07:45:16	60.01453	471		0		0			-653	29788.51		0	0	-0.003	0.003	
05/16/11 07:45:18	60.01358	471		0		0			-653	29788.51	-	0	0	-0.001	0.001	
05/16/11 07:45:20	60.01227	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:22	60.01163	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:24	60.01065	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:26	60.0097	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:28	60.00839	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:30	60.00745	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:32	60.00775	471		0		0			-653	29788.51	0	0	0	0.000	0.000	
05/16/11 07:45:34	60.00839	471		0		0			-653	29780.62	0	0	0	0.001	0.001	
05/16/11 07:45:36	60.00839	471		0		0			-653	29780.62	0	0	0	0.000	0.000	
05/16/11 07:45:38	60.00809	471		0		0			-653	29780.62	0	0	0	0.000	0.000	
05/16/11 07:45:40	60.00745	471		0		0			-653	29780.62	0	0	0	-0.001	0.001	
05/16/11 07:45:42	60.00711	471		0		0			-653	29780.62	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 59.999 } \\ \text { 8:06:38 } \\ \text { 8:10:30 } \\ \text { 03:52 } \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:45:44	60.00839	471		0		0			-653	29780.56	0	0	0	0.001	0.001	
05/16/11 07:45:46	60.00937	471		0		0			-653	29780.56	0	0	0	0.001	0.001	
05/16/11 07:45:48	60.0097	471		0		0			-653	29780.56	0	0	0	0.000	0.000	
05/16/11 07:45:50	60.01001	471		0		0			-653	29780.56	0	0	0	0.000	0.000	
05/16/11 07:45:52	60.01065	471		0		0			-653	29780.56	0	0	0	0.001	0.001	
05/16/11 07:45:54	60.01196	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:45:56	60.01324	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:45:58	60.01453	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:46:00	60.01614	471		0		0			-653	29784.96	0	0	0	0.002	0.002	
05/16/11 07:46:02	60.01712	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:46:04	60.01712	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:06	60.01614	471		0		0			-653	29784.93	0	0	0	-0.001	0.001	
05/16/11 07:46:08	60.01584	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:10	60.01614	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:12	60.01584	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:14	60.01486	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:16	60.01422	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:18	60.01227	471		0		0			-653	29760.42	0	0	0	-0.002	0.002	
05/16/11 07:46:20	60.0097	471		0		0			-653	29760.42	0	0	0	-0.003	0.003	
05/16/11 07:46:22	60.00711	471		0		0			-653	29760.42	0	0	0	-0.003	0.003	
05/16/11 07:46:24	60.00583	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:26	60.00516	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:28	60.00516	471		0		0			-653	29760.42	0	0	0	0.000	0.000	
05/16/11 07:46:30	60.00485	471		0		0			-653	29760.42	0	0	0	0.000	0.000	
05/16/11 07:46:32	60.00388	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:34	60.00259	471		0		0			-653	29782.35	0	0	0	-0.001	0.001	
05/16/11 07:46:36	59.99902	471		0		0			-653	29782.35	0	0	0	-0.004	0.004	
05/16/11 07:46:38	59.9971	471		0		0			-653	29782.35	0	0	0	-0.002	0.002	
05/16/11 07:46:40	59.99646	471		0		0			-653	29782.35	0	0	0	-0.001	0.001	
05/16/11 07:46:42	59.99579	471		0		0			-653	29782.35	0	0	0	-0.001	0.001	
05/16/11 07:46:44	59.99417	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:46	59.99225	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:48	59.9903	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:50	59.98804	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:52	59.98709	471		0		0			-653	29782.44	0	0	0	-0.001	0.001	
05/16/11 07:46:54	59.98676	471		0		0			-653	29785.52	0	0	0	0.000	0.000	
05/16/11 07:46:56	59.98578	471		0		0			-653	29785.52	0	0	0	-0.001	0.001	
05/16/11 07:46:58	59.9845	471		0		0			-653	29785.52	0	0	0	-0.001	0.001	
05/16/11 07:47:00	59.98288	471		0		0			-653	29785.52	0	0	0	-0.002	0.002	
05/16/11 07:47:02	59.98224	471		0		0			-653	29785.52	0	0	0	-0.001	0.001	
05/16/11 07:47:04	59.98224	471		0		0			-653	29785.55	0	0	0	0.000	0.000	
05/16/11 07:47:06	59.98224	471		0		0			-653	29785.55	0	0	0	0.000	0.000	
05/16/11 07:47:08	59.98254	471		0		0			-653	29785.55	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:47:10	59.98386	471		0		0			-653	29785.55	0	0	0	0.001	0.001	
05/16/11 07:47:12	59.9848	471		0		0			-653	29785.55	0	0	0	0.001	0.001	
05/16/11 07:47:14	59.98578	471		0		0			-653	29788.21	0	0	0	0.001	0.001	
05/16/11 07:47:16	59.98642	471		0		0			-653	29788.21	0	0	0	0.001	0.001	
05/16/11 07:47:18	59.98999	471		0		0			-653	29788.21	0	0	0	0.004	0.004	
05/16/11 07:47:20	59.99225	471		0		0			-653	29788.21	0	0	0	0.002	0.002	
05/16/11 07:47:22	59.99323	471		0		0			-653	29788.21	0	0	0	0.001	0.001	
05/16/11 07:47:24	59.99646	471		0		0			-653	29788.06	0	0	0	0.003	0.003	
05/16/11 07:47:26	59.99902	471		0		0			-653	29788.06	0	0	0	0.003	0.003	
05/16/11 07:47:28	60.00064	471		0		0			-653	29788.06	0	0	0	0.002	0.002	
05/16/11 07:47:30	60.00647	471		0		0			-653	29788.06	0	0	0	0.006	0.006	
05/16/11 07:47:32	60.00903	471		0		0			-653	29788.06		0	0	0.003	0.003	
05/16/11 07:47:34	60.01099	471		0		0			-653	29776.11	0	0	0	0.002	0.002	
05/16/11 07:47:36	60.01132	471		0		0			-653	29776.11	0	0	0	0.000	0.000	
05/16/11 07:47:38	60.01291	471		0		0			-653	29776.11	0	0	0	0.002	0.002	
05/16/11 07:47:40	60.01324	471		0		0			-653	29776.11	0	0	0	0.000	0.000	
05/16/11 07:47:42	60.01324	471		0		0			-653	29776.11	0	0	0	0.000	0.000	
05/16/11 07:47:44	60.01422	471		0		0			-653	29776.17	0	0	0	0.001	0.001	
05/16/11 07:47:46	60.0181	471		0		0			-653	29776.17	0	0	0	0.004	0.004	
05/16/11 07:47:48	60.01907	471		0		0			-653	29776.17	0	0	-	0.001	0.001	
05/16/11 07:47:50	60.02133	471		0		0			-653	29776.17	0	0	0	0.002	0.002	
05/16/11 07:47:52	60.02197	471		0		0			-653	29776.17	0	0	0	0.001	0.001	
05/16/11 07:47:54	60.02164	471		0		0			-653	29794.69	0	0	0	0.000	0.000	
05/16/11 07:47:56	60.01971	471		0		0			-653	29794.69	0	0	0	-0.002	0.002	
05/16/11 07:47:58	60.01907	471		0		0			-653	29794.69	0	0	0	-0.001	0.001	
05/16/11 07:48:00	60.01746	471		0		0			-653	29794.69	0	0	0	-0.002	0.002	
05/16/11 07:48:02	60.01776	471		0		0			-653	29794.69	0	0	0	0.000	0.000	
05/16/11 07:48:04	60.0184	471		0		0			-653	29794.66	0	0	0	0.001	0.001	
05/16/11 07:48:06	60.01776	471		0		0			-653	29794.66	0	0	0	-0.001	0.001	
05/16/11 07:48:08	60.0152	471		0		0			-653	29794.66	0	0	0	-0.003	0.003	
05/16/11 07:48:10	60.01389	471		0		0			-653	29794.66	-	0	0	-0.001	0.001	
05/16/11 07:48:12	60.01422	471		0		0			-653	29794.66	0	0	0	0.000	0.000	
05/16/11 07:48:14	60.0152	471		0		0			-653	29804.78	0	0	0	0.001	0.001	
05/16/11 07:48:16	60.01614	471		0		0			-653	29804.78	0	0	0	0.001	0.001	
05/16/11 07:48:18	60.01614	471		0		0			-653	29804.78	0	0	0	0.000	0.000	
05/16/11 07:48:20	60.01422	471		0		0			-653	29804.78	0	0	0	-0.002	0.002	
05/16/11 07:48:22	60.01196	471		0		0			-653	29804.78	0	0	0	-0.002	0.002	
05/16/11 07:48:24	60.01035	471		0		0			-653	29804.86	0	0	0	-0.002	0.002	
05/16/11 07:48:26	60.00809	471		0		0			-653	29804.86	0	0	0	-0.002	0.002	
05/16/11 07:48:28	60.00613	471		0		0			-653	29804.86	0	0	0	-0.002	0.002	
05/16/11 07:48:30	60.00516	471		0		0			-653	29804.86	0	0	0	-0.001	0.001	
05/16/11 07:48:32	60.00452	471		0		0			-653	29804.86	0	0	0	-0.001	0.001	
05/16/11 07:48:34	60.00354	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:48:36	60.00128	471		0		0			-653	29800.12	0	0	0	-0.002	0.002	
05/16/11 07:48:38	60	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:40	59.99936	471		0		0			-653	29800.12	0	0	-	-0.001	0.001	
05/16/11 07:48:42	59.99838	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:44	59.99741	471		0		0			-653	29800.18	0	0	0	-0.001	0.001	
05/16/11 07:48:46	59.99579	471		0		0			-653	29800.18	0	0	0	-0.002	0.002	
05/16/11 07:48:48	59.99515	471		0		0			-653	29800.18	0	0	0	-0.001	0.001	
05/16/11 07:48:50	59.99646	471		0		0			-653	29800.18	0	0	0	0.001	0.001	
05/16/11 07:48:52	59.99872	471		0		0			-653	29800.18	0	0	0	0.002	0.002	
05/16/11 07:48:54	60.00128	471		0		0			-653	29799.82	0	0	0	0.003	0.003	
05/16/11 07:48:56	60.00323	471		0		0			-653	29799.82	0	0	0	0.002	0.002	
05/16/11 07:48:58	60.00421	471		0		0			-653	29799.82		0	0	0.001	0.001	
05/16/11 07:49:00	60.00485	471		0		0			-653	29799.82	0	0	0	0.001	0.001	
05/16/11 07:49:02	60.00549	471		0		0			-653	29799.82	0	0	0	0.001	0.001	
05/16/11 07:49:04	60.00583	471		0		0			-653	29799.79	0	0	0	0.000	0.000	
05/16/11 07:49:06	60.00583	471		0		0			-653	29799.79	0	0	0	0.000	0.000	
05/16/11 07:49:08	60.00549	471		0		0			-653	29799.79	0	0	0	0.000	0.000	
05/16/11 07:49:10	60.00388	471		0		0			-653	29799.79	0	0	0	-0.002	0.002	
05/16/11 07:49:12	60.00226	471		0		0			-653	29799.79	0	0	0	-0.002	0.002	
05/16/11 07:49:14	60.00226	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:16	60	471		0		0			-653	29795.67	0	0	0	-0.002	0.002	
05/16/11 07:49:18	60	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:20	60	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:22	60	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:24	60.00452	471		0		0			-653	29795.55	0	0	0	0.005	0.005	
05/16/11 07:49:26	60.00583	471		0		0			-653	29795.55	0	0	0	0.001	0.001	
05/16/11 07:49:28	60.00613	471		0		0			-653	29795.55	0	0	0	0.000	0.000	
05/16/11 07:49:30	60.00583	471		0		0			-653	29795.55	0	0	0	0.000	0.000	
05/16/11 07:49:32	60.00516	471		0		0			-653	29795.55	0	0	0	-0.001	0.001	
05/16/11 07:49:34	60.00388	471		0		0			-653	29783.53	0	0	0	-0.001	0.001	
05/16/11 07:49:36	60.00195	471		0		0			-653	29783.53	-	0	0	-0.002	0.002	
05/16/11 07:49:38	60.00128	471		0		0			-653	29783.53	0	0	0	-0.001	0.001	
05/16/11 07:49:40	60.00098	471		0		0			-653	29783.53	0	0	0	0.000	0.000	
05/16/11 07:49:42	60.00034	471		0		0			-653	29783.53	0	0	0	-0.001	0.001	
05/16/11 07:49:44	60	471		0		0			-653	29783.47	0	0	0	0.000	0.000	
05/16/11 07:49:46	59.99902	471		0		0			-653	29783.47	0	0	0	-0.001	0.001	
05/16/11 07:49:48	59.99872	471		0		0			-653	29783.47	0	0	0	0.000	0.000	
05/16/11 07:49:50	59.99838	471		0		0			-653	29783.47	0	0	0	0.000	0.000	
05/16/11 07:49:52	59.99612	471		0		0			-653	29783.47	0	0	0	-0.002	0.002	
05/16/11 07:49:54	59.99579	471		0		0			-653	29788.38	0	0	0	0.000	0.000	
05/16/11 07:49:56	59.99515	471		0		0			-653	29788.38	0	0	0	-0.001	0.001	
05/16/11 07:49:58	59.99387	471		0		0			-653	29788.38	0	0	0	-0.001	0.001	
05/16/11 07:50:00	59.99225	471		0		0			-653	29788.38	0	0	0	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:50:02	59.99225	471		0		0			-653	29788.38	0	0	0	0.000	0.000	
05/16/11 07:50:04	59.99484	471		0		0			-653	29788.38	0	0	0	0.003	0.003	
05/16/11 07:50:06	59.99646	471		0		0			-653	29788.38	0	0	-	0.002	0.002	
05/16/11 07:50:08	59.9971	471		0		0			-653	29788.38	0	0	0	0.001	0.001	
05/16/11 07:50:10	59.99548	471		0		0			-653	29788.38	0	0	0	-0.002	0.002	
05/16/11 07:50:12	59.99289	471		0		0			-653	29788.38	0	0	0	-0.003	0.003	
05/16/11 07:50:14	59.98999	471		0		0			-653	29790.16	0	0	0	-0.003	0.003	
05/16/11 07:50:16	59.98773	471		0		0			-653	29790.16	0	0	0	-0.002	0.002	
05/16/11 07:50:18	59.98642	471		0		0			-653	29790.16	0	0	0	-0.001	0.001	
05/16/11 07:50:20	59.98547	471		0		0			-653	29790.16	0	0	0	-0.001	0.001	
05/16/11 07:50:22	59.98547	471		0		0			-653	29790.16	0	0	0	0.000	0.000	
05/16/11 07:50:24	59.98611	471		0		0			-653	29790.07		0	0	0.001	0.001	
05/16/11 07:50:26	59.98611	471		0		0			-653	29790.07	0	0	0	0.000	0.000	
05/16/11 07:50:28	59.98676	471		0		0			-653	29790.07	0	0	0	0.001	0.001	
05/16/11 07:50:30	59.98709	471		0		0			-653	29790.07	0	0	0	0.000	0.000	
05/16/11 07:50:32	59.9874	471		0		0			-653	29790.07	0	0	0	0.000	0.000	
05/16/11 07:50:34	59.98676	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:36	59.98611	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:38	59.98642	471		0		0			-653	29777.49	0	0	0	0.000	0.000	
05/16/11 07:50:40	59.9874	471		0		0			-653	29777.49	0	0	0	0.001	0.001	
05/16/11 07:50:42	59.98804	471		0		0			-653	29777.49	0	0	0	0.001	0.001	
05/16/11 07:50:44	59.9874	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:46	59.98676	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:48	59.9848	471		0		0			-653	29777.49	0	0	0	-0.002	0.002	
05/16/11 07:50:50	59.98288	471		0		0			-653	29777.49	0	0	0	-0.002	0.002	
05/16/11 07:50:52	59.98062	471		0		0			-653	29777.49	0	0	0	-0.002	0.002	
05/16/11 07:50:54	59.97998	471		0		0			-653	29782.49	0	0	0	-0.001	0.001	
05/16/11 07:50:56	59.97931	471		0		0			-653	29782.49	0	0	0	-0.001	0.001	
05/16/11 07:50:58	59.979	471		0		0			-653	29782.49	0	0	0	0.000	0.000	
05/16/11 07:51:00	59.97931	471		0		0			-653	29782.49	0	0	0	0.000	0.000	
05/16/11 07:51:02	59.98093	471		0		0			-653	29782.49	-	0	0	0.002	0.002	
05/16/11 07:51:04	59.98126	471		0		0			-653	29782.46	0	0	0	0.000	0.000	
05/16/11 07:51:06	59.98126	471		0		0			-653	29782.46	0	0	0	0.000	0.000	
05/16/11 07:51:08	59.9819	471		0		0			-653	29782.46	0	0	0	0.001	0.001	
05/16/11 07:51:10	59.98126	471		0		0			-653	29782.46	0	0	0	-0.001	0.001	
05/16/11 07:51:12	59.97964	471		0		0			-653	29782.46	0	0	0	-0.002	0.002	
05/16/11 07:51:14	59.97705	471		0		0			-653	29756.13	0	0	0	-0.003	0.003	
05/16/11 07:51:16	59.97479	471		0		0			-653	29756.13	0	0	0	-0.002	0.002	
05/16/11 07:51:18	59.97351	471		0		0			-653	29756.13	0	0	0	-0.001	0.001	
05/16/11 07:51:20	59.97287	471		0		0			-653	29756.13	0	0	0	-0.001	0.001	
05/16/11 07:51:22	59.97223	471		0		0			-653	29756.13	0	0	0	-0.001	0.001	
05/16/11 07:51:24	59.97189	471		0		0			-653	29756.18	0	0	0	0.000	0.000	
05/16/11 07:51:26	59.97125	471		0		0			-653	29756.18	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 $\mathrm{t}(0)$ t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:51:28	59.97156	471		0		0			-653	29756.18	0	0	0	0.000	0.000	
05/16/11 07:51:30	59.97318	471		0		0			-653	29756.18	0	0	0	0.002	0.002	
05/16/11 07:51:32	59.97415	471		0		0			-653	29756.18	0	0	0	0.001	0.001	
05/16/11 07:51:34	59.97479	471		0		0			-653	29777.58	0	0	0	0.001	0.001	
05/16/11 07:51:36	59.97382	471		0		0			-653	29777.58	0	0	0	-0.001	0.001	
05/16/11 07:51:38	59.97287	471		0		0			-653	29777.58	0	0	0	-0.001	0.001	
05/16/11 07:51:40	59.97318	471		0		0			-653	29777.58	0	0	0	0.000	0.000	
05/16/11 07:51:42	59.97449	471		0		0			-653	29777.58	0	0	0	0.001	0.001	
05/16/11 07:51:44	59.97675	471		0		0			-653	29777.4	0	0	0	0.002	0.002	
05/16/11 07:51:46	59.97803	471		0		0			-653	29777.4	0	0	0	0.001	0.001	
05/16/11 07:51:48	59.97998	471		0		0			-653	29777.4	0	0	0	0.002	0.002	
05/16/11 07:51:50	59.98093	471		0		0			-653	29777.4		0	0	0.001	0.001	
05/16/11 07:51:52	59.98093	471		0		0			-653	29777.4	0	0	0	0.000	0.000	
05/16/11 07:51:54	59.97964	471		0		0			-653	29802.24	0	0	0	-0.001	0.001	
05/16/11 07:51:56	59.97803	471		0		0			-653	29802.24	0	0	0	-0.002	0.002	
05/16/11 07:51:58	59.97705	471		0		0			-653	29802.24	0	0	0	-0.001	0.001	
05/16/11 07:52:00	59.97739	471		0		0			-653	29802.24	0	0	0	0.000	0.000	
05/16/11 07:52:02	59.97836	471		0		0			-653	29802.24	0	0	0	0.001	0.001	
05/16/11 07:52:04	59.97931	471		0		0			-653	29802.18	0	0	0	0.001	0.001	
05/16/11 07:52:06	59.98126	471		0		0			-653	29802.18	0	0	-	0.002	0.002	
05/16/11 07:52:08	59.98416	471		0		0			-653	29802.18	0	0	0	0.003	0.003	
05/16/11 07:52:10	59.98611	471		0		0			-653	29802.18	0	0	0	0.002	0.002	
05/16/11 07:52:12	59.98709	471		0		0			-653	29802.18	0	0	0	0.001	0.001	
05/16/11 07:52:14	59.9874	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:16	59.98804	471		0		0			-653	29802.29	0	0	0	0.001	0.001	
05/16/11 07:52:18	59.98804	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:20	59.98773	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:22	59.9874	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:24	59.9874	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:26	59.9874	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:28	59.9874	471		0		0			-653	29802.32	-	0	0	0.000	0.000	
05/16/11 07:52:30	59.98773	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:32	59.98901	471		0		0			-653	29802.32	0	0	0	0.001	0.001	
05/16/11 07:52:34	59.98965	471		0		0			-653	29795.02	0	0	0	0.001	0.001	
05/16/11 07:52:36	59.98935	471		0		0			-653	29795.02	0	0	0	0.000	0.000	
05/16/11 07:52:38	59.98837	471		0		0			-653	29795.02	0	0	0	-0.001	0.001	
05/16/11 07:52:40	59.98868	471		0		0			-653	29795.02	0	0	0	0.000	0.000	
05/16/11 07:52:42	59.98868	471		0		0			-653	29795.02	0	0	0	0.000	0.000	
05/16/11 07:52:44	59.9874	471		0		0			-653	29795.05	0	0	0	-0.001	0.001	
05/16/11 07:52:46	59.98611	471		0		0			-653	29795.05	0	0	0	-0.001	0.001	
05/16/11 07:52:48	59.98611	471		0		0			-653	29795.05	0	0	0	0.000	0.000	
05/16/11 07:52:50	59.98709	471		0		0			-653	29795.05	0	0	0	0.001	0.001	
05/16/11 07:52:52	59.98837	471		0		0			-653	29795.05	0	0	0	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:52:54	59.98935	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:52:56	59.98999	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:52:58	59.99127	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:53:00	59.99255	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:53:02	59.99387	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:53:04	59.99387	471		0		0			-653	29781.45	0	0	0	0.000	0.000	
05/16/11 07:53:06	59.99289	471		0		0			-653	29781.45	,	0	0	-0.001	0.001	
05/16/11 07:53:08	59.99097	471		0		0			-653	29781.45	0	0	0	-0.002	0.002	
05/16/11 07:53:10	59.98868	471		0		0			-653	29781.45	0	0	0	-0.002	0.002	
05/16/11 07:53:12	59.98642	471		0		0			-653	29781.45	0	0	0	-0.002	0.002	
05/16/11 07:53:14	59.98386	471		0		0			-653	29802.43	0	0	0	-0.003	0.003	
05/16/11 07:53:16	59.9816	471		0		0			-653	29802.43		0	0	-0.002	0.002	
05/16/11 07:53:18	59.97931	471		0		0			-653	29802.43	0	0	0	-0.002	0.002	
05/16/11 07:53:20	59.97675	471		0		0			-653	29802.43	0	0	0	-0.003	0.003	
05/16/11 07:53:22	59.97415	471		0		0			-653	29802.43	0	0	0	-0.003	0.003	
05/16/11 07:53:24	59.97287	471		0		0			-653	29802.4	0	0	0	-0.001	0.001	
05/16/11 07:53:26	59.97223	471		0		0			-653	29802.4	0	0	0	-0.001	0.001	
05/16/11 07:53:28	59.97318	471		0		0			-653	29802.4	0	0	0	0.001	0.001	
05/16/11 07:53:30	59.97449	471		0		0			-653	29802.4	0	0	0	0.001	0.001	
05/16/11 07:53:32	59.97351	471		0		0			-653	29802.4	0	0	0	-0.001	0.001	
05/16/11 07:53:34	59.97253	471		0		0			-653	29804.4	0	0	0	-0.001	0.001	
05/16/11 07:53:36	59.97253	471		0		0			-653	29804.4	0	0	0	0.000	0.000	
05/16/11 07:53:38	59.97223	471		0		0			-653	29804.4	0	0	0	0.000	0.000	
05/16/11 07:53:40	59.97156	471		0		0			-653	29804.4	0	0	0	-0.001	0.001	
05/16/11 07:53:42	59.97189	471		0		0			-653	29804.4	0	0	0	0.000	0.000	
05/16/11 07:53:44	59.97318	471		0		0			-653	29804.4	0	0	0	0.001	0.001	
05/16/11 07:53:46	59.97479	471		0		0			-653	29804.4	0	0	0	0.002	0.002	
05/16/11 07:53:48	59.9761	471		0		0			-653	29804.4	0	0	0	0.001	0.001	
05/16/11 07:53:50	59.97803	471		0		0			-653	29804.4	0	0	0	0.002	0.002	
05/16/11 07:53:52	59.98062	471		0		0			-653	29804.4	0	0	0	0.003	0.003	
05/16/11 07:53:54	59.98254	471		0		0			-653	29797.32	-	0	0	0.002	0.002	
05/16/11 07:53:56	59.98416	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:53:58	59.98611	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:54:00	59.98804	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:54:02	59.9903	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:54:04	59.99161	471		0		0			-653	29797.29	0	0	0	0.001	0.001	
05/16/11 07:54:06	59.99323	471		0		0			-653	29797.29	0	0	0	0.002	0.002	
05/16/11 07:54:08	59.99484	471		0		0			-653	29797.29	0	0	0	0.002	0.002	
05/16/11 07:54:10	59.99579	471		0		0			-653	29797.29	0	0	0	0.001	0.001	
05/16/11 07:54:12	59.99515	471		0		0			-653	29797.29	0	0	0	-0.001	0.001	
05/16/11 07:54:14	59.99612	471		0		0			-653	29823.76	0	0	0	0.001	0.001	
05/16/11 07:54:16	59.99805	471		0		0			-653	29823.76	0	0	0	0.002	0.002	
05/16/11 07:54:18	59.99936	471		0		0			-653	29823.76	0	0	0	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align T(0) 1
05/16/11 07:54:20	60.00064	471		0		0			-653	29823.76	0	0	0	0.001	0.001	
05/16/11 07:54:22	60.00098	471		0		0			-653	29823.76	0	0	0	0.000	0.000	
05/16/11 07:54:24	60.00064	471		0		0			-653	29818.41	0	0	0	0.000	0.000	
05/16/11 07:54:26	60	471		0		0			-653	29818.41	0	0	0	-0.001	0.001	
05/16/11 07:54:28	59.99902	471		0		0			-653	29818.41	0	0	0	-0.001	0.001	
05/16/11 07:54:30	59.99872	471		0		0			-653	29818.41	0	0	0	0.000	0.000	
05/16/11 07:54:32	59.99936	471		0		0			-653	29818.41		0	0	0.001	0.001	
05/16/11 07:54:34	60.00034	471		0		0			-653	29808.89	0	0	0	0.001	0.001	
05/16/11 07:54:36	60.00162	471		0		0			-653	29808.89	0	0	0	0.001	0.001	
05/16/11 07:54:38	60.00354	471		0		0			-653	29808.89	0	0	0	0.002	0.002	
05/16/11 07:54:40	60.00485	471		0		0			-653	29808.89	0	0	0	0.001	0.001	
05/16/11 07:54:42	60.00421	471		0		0			-653	29808.89	0	0	0	-0.001	0.001	
05/16/11 07:54:44	60.00195	471		0		0			-653	29814.89	0	0	0	-0.002	0.002	
05/16/11 07:54:46	59.99902	471		0		0			-653	29814.89	0	0	0	-0.003	0.003	
05/16/11 07:54:48	59.99646	471		0		0			-653	29814.89	0	0	0	-0.003	0.003	
05/16/11 07:54:50	59.99417	471		0		0			-653	29814.89	0	0	0	-0.002	0.002	
05/16/11 07:54:52	59.99323	471		0		0			-653	29814.89	0	0	0	-0.001	0.001	
05/16/11 07:54:54	59.99127	471		0		0			-653	29826.47	0	0	0	-0.002	0.002	
05/16/11 07:54:56	59.98935	471		0		0			-653	29826.47	0	0	0	-0.002	0.002	
05/16/11 07:54:58	59.98709	471		0		0			-653	29826.47	0	0	0	-0.002	0.002	
05/16/11 07:55:00	59.98578	471		0		0			-653	29826.47	0	0	0	-0.001	0.001	
05/16/11 07:55:02	59.98547	471		0		0			-653	29826.47	0	0	0	0.000	0.000	
05/16/11 07:55:04	59.98547	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:06	59.98514	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:08	59.9845	471		0		0			-653	29826.41	0	0	0	-0.001	0.001	
05/16/11 07:55:10	59.9845	471		0		0			-653	29826.41	-	0	0	0.000	0.000	
05/16/11 07:55:12	59.9848	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:14	59.9848	471		0		0			-653	29834.18	0	0	0	0.000	0.000	
05/16/11 07:55:16	59.98611	471		0		0			-653	29834.18	0	0	0	0.001	0.001	
05/16/11 07:55:18	59.9874	471		0		0			-653	29834.18	0	0	0	0.001	0.001	
05/16/11 07:55:20	59.98868	471		0		0			-653	29834.18	0	0	0	0.001	0.001	
05/16/11 07:55:22	59.98837	471		0		0			-653	29834.18	0	0	0	0.000	0.000	
05/16/11 07:55:24	59.98837	471		0		0			-653	29836.13	-	0	0	0.000	0.000	
05/16/11 07:55:26	59.98578	471		0		0			-653	29836.13	0	0	0	-0.003	0.003	
05/16/11 07:55:28	59.9845	471		0		0			-653	29836.13	0	0	0	-0.001	0.001	
05/16/11 07:55:30	59.9848	471		0		0			-653	29836.13	0	0	0	0.000	0.000	
05/16/11 07:55:32	59.98547	471		0		0			-653	29836.13	0	0	0	0.001	0.001	
05/16/11 07:55:34	59.98642	471		0		0			-653	29821.84	0	0	0	0.001	0.001	
05/16/11 07:55:36	59.98773	471		0		0			-653	29821.84	0	0	0	0.001	0.001	
05/16/11 07:55:38	59.98965	471		0		0			-653	29821.84	0	0	0	0.002	0.002	
05/16/11 07:55:40	59.99063	471		0		0			-653	29821.84	0	0	0	0.001	0.001	
05/16/11 07:55:42	59.99063	471		0		0			-653	29821.84	0	0	0	0.000	0.000	
05/16/11 07:55:44	59.99063	471		0		0			-653	29821.87	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:55:46	59.99063	471		0		0			-653	29821.87	0	0	0	0.000	0.000	
05/16/11 07:55:48	59.98642	471		0		0			-653	29821.87	0	0	0	-0.004	0.004	
05/16/11 07:55:50	59.9845	471		0		0			-653	29821.87	0	0	0	-0.002	0.002	
05/16/11 07:55:52	59.98224	471		0		0			-653	29821.87		0	0	-0.002	0.002	
05/16/11 07:55:54	59.98062	471		0		0			-653	29831.33	0	0	0	-0.002	0.002	
05/16/11 07:55:56	59.97739	471		0		0			-653	29831.33	0	0	0	-0.003	0.003	
05/16/11 07:55:58	59.97641	471		0		0			-653	29831.33		0	0	-0.001	0.001	
05/16/11 07:56:00	59.97641	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:02	59.9761	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:04	59.97543	471		0		0			-653	29831.33	0	0	0	-0.001	0.001	
05/16/11 07:56:06	59.97577	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:08	59.97675	471		0		0			-653	29831.33	0	0	0	0.001	0.001	
05/16/11 07:56:10	59.97705	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:12	59.97705	471		0		0			-653	29831.33		0	0	0.000	0.000	
05/16/11 07:56:14	59.97705	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:16	59.97675	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:18	59.97705	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:20	59.97739	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:22	59.97803	471		0		0			-653	29835.51	0	0	0	0.001	0.001	
05/16/11 07:56:24	59.97803	471		0		0			-653	29856.55	0	0	0	0.000	0.000	
05/16/11 07:56:26	59.97867	471		0		0			-653	29856.55	0	0	0	0.001	0.001	
05/16/11 07:56:28	59.97964	471		0		0			-653	29856.55	0	0	0	0.001	0.001	
05/16/11 07:56:30	59.9816	471		0		0			-653	29856.55	0	0	0	0.002	0.002	
05/16/11 07:56:32	59.98352	471		0		0			-653	29856.55	0	0	0	0.002	0.002	
05/16/11 07:56:34	59.98642	471		0		0			-653	29846.76	0	0	0	0.003	0.003	
05/16/11 07:56:36	59.9903	471		0		0			-653	29846.76	0	0	0	0.004	0.004	
05/16/11 07:56:38	59.99451	471		0		0			-653	29846.76	0	0	0	0.004	0.004	
05/16/11 07:56:40	59.99741	471		0		0			-653	29846.76		0	0	0.003	0.003	
05/16/11 07:56:42	59.99838	471		0		0			-653	29846.76	0	0	0	0.001	0.001	
05/16/11 07:56:44	59.99805	471		0		0			-653	29860.05	0	0	0	0.000	0.000	
05/16/11 07:56:46	59.99677	471		0		0			-653	29860.05	-	0	0	-0.001	0.001	
05/16/11 07:56:48	59.99612	471		0		0			-653	29860.05		0	0	-0.001	0.001	
05/16/11 07:56:50	59.99548	471		0		0			-653	29860.05	-	0	0	-0.001	0.001	
05/16/11 07:56:52	59.99612	471		0		0			-653	29860.05	0	0	0	0.001	0.001	
05/16/11 07:56:54	59.99936	471		0		0			-653	29873.15	-	0	0	0.003	0.003	
05/16/11 07:56:56	60.00323	471		0		0			-653	29873.15	0	0	0	0.004	0.004	
05/16/11 07:56:58	60.00745	471		0		0			-653	29873.15	0	0	0	0.004	0.004	
05/16/11 07:57:00	60.01163	471		0		0			-653	29873.15	0	0	0	0.004	0.004	
05/16/11 07:57:02	60.01453	471		0		0			-653	29873.15	0	0	0	0.003	0.003	
05/16/11 07:57:04	60.01746	471		0		0			-653	29873.15	0	0	0	0.003	0.003	
05/16/11 07:57:06	60.01907	471		0		0			-653	29873.15	0	0	0	0.002	0.002	
05/16/11 07:57:08	60.01938	471		0		0			-653	29873.15	0	0	0	0.000	0.000	
05/16/11 07:57:10	60.01938	471		0		0			-653	29873.15	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:57:12	60.01938	471		0		0			-653	29873.15	0	0	0	0.000	0.000	
05/16/11 07:57:14	60.02036	471		0		0			-653	29889.67	0	0	0	0.001	0.001	
05/16/11 07:57:16	60.02197	471		0		0			-653	29889.67	0	0	0	0.002	0.002	
05/16/11 07:57:18	60.02423	471		0		0			-653	29889.67	0	0	0	0.002	0.002	
05/16/11 07:57:20	60.02682	471		0		0			-653	29889.67	0	0	0	0.003	0.003	
05/16/11 07:57:22	60.02811	471		0		0			-653	29889.67	0	0	0	0.001	0.001	
05/16/11 07:57:24	60.02939	471		0		0			-653	29886.6	0	0	0	0.001	0.001	
05/16/11 07:57:26	60.03036	471		0		0			-653	29886.6	0	0	0	0.001	0.001	
05/16/11 07:57:28	60.02875	471		0		0			-653	29886.6	0	0	0	-0.002	0.002	
05/16/11 07:57:30	60.02682	471		0		0			-653	29886.6	0	0	0	-0.002	0.002	
05/16/11 07:57:32	60.02457	471		0		0			-653	29886.6		0	0	-0.002	0.002	
05/16/11 07:57:34	60.02261	471		0		0			-653	29891.67	0	0	0	-0.002	0.002	
05/16/11 07:57:36	60.02231	471		0		0			-653	29891.67	0	0	0	0.000	0.000	
05/16/11 07:57:38	60.02295	471		0		0			-653	29891.67	0	0	0	0.001	0.001	
05/16/11 07:57:40	60.02359	471		0		0			-653	29891.67	0	0	0	0.001	0.001	
05/16/11 07:57:42	60.02261	471		0		0			-653	29891.67	0	0	0	-0.001	0.001	
05/16/11 07:57:44	60.02164	471		0		0			-653	29891.64	0	0	0	-0.001	0.001	
05/16/11 07:57:46	60.01971	471		0		0			-653	29891.64	0	0	0	-0.002	0.002	
05/16/11 07:57:48	60.01776	471		0		0			-653	29891.64	0	0	0	-0.002	0.002	
05/16/11 07:57:50	60.01746	471		0		0			-653	29891.64	0	0	0	0.000	0.000	
05/16/11 07:57:52	60.01682	471		0		0			-653	29891.64	0	0	0	-0.001	0.001	
05/16/11 07:57:54	60.01712	471		0		0			-653	29891.51	0	0	0	0.000	0.000	
05/16/11 07:57:56	60.0184	471		0		0			-653	29891.51	0	0	0	0.001	0.001	
05/16/11 07:57:58	60.01874	471		0		0			-653	29891.51	0	0	0	0.000	0.000	
05/16/11 07:58:00	60.0181	471		0		0			-653	29891.51	0	0	0	-0.001	0.001	
05/16/11 07:58:02	60.01682	471		0		0			-653	29891.51	0	0	0	-0.001	0.001	
05/16/11 07:58:04	60.0152	471		0		0			-653	29891.6	0	0	0	-0.002	0.002	
05/16/11 07:58:06	60.0152	471		0		0			-653	29891.6	0	0	0	0.000	0.000	
05/16/11 07:58:08	60.0155	471		0		0			-653	29891.6	0	0	0	0.000	0.000	
05/16/11 07:58:10	60.0155	471		0		0			-653	29891.6	0	0	0	0.000	0.000	
05/16/11 07:58:12	60.01453	471		0		0			-653	29891.6	0	0	0	-0.001	0.001	
05/16/11 07:58:14	60.01453	471		0		0			-653	29884.5	0	0	0	0.000	0.000	
05/16/11 07:58:16	60.0152	471		0		0			-653	29884.5	0	0	0	0.001	0.001	
05/16/11 07:58:18	60.01584	471		0		0			-653	29884.5	0	0	0	0.001	0.001	
05/16/11 07:58:20	60.01614	471		0		0			-653	29884.5	0	0	0	0.000	0.000	
05/16/11 07:58:22	60.01584	471		0		0			-653	29884.5	0	0	0	0.000	0.000	
05/16/11 07:58:24	60.0152	471		0		0			-653	29881.79	0	0	0	-0.001	0.001	
05/16/11 07:58:26	60.0155	471		0		0			-653	29881.79	0	0	0	0.000	0.000	
05/16/11 07:58:28	60.01614	471		0		0			-653	29881.79	0	0	0	0.001	0.001	
05/16/11 07:58:30	60.01776	471		0		0			-653	29881.79	0	0	0	0.002	0.002	
05/16/11 07:58:32	60.01907	471		0		0			-653	29881.79	0	0	0	0.001	0.001	
05/16/11 07:58:34	60.02069	471		0		0			-653	29887.14	0	0	0	0.002	0.002	
05/16/11 07:58:36	60.02133	471		0		0			-653	29887.14	0	0	0	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 $3 \mathrm{t}(0)$ t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:58:38	60.02069	471		0		0			-653	29887.14	0	0	0	-0.001	0.001	
05/16/11 07:58:40	60.01907	471		0		0			-653	29887.14	0	0	0	-0.002	0.002	
05/16/11 07:58:42	60.01746	471		0		0			-653	29887.14	0	0	0	-0.002	0.002	
05/16/11 07:58:44	60.01614	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:46	60.0152	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:48	60.01453	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:50	60.01389	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:52	60.01358	471		0		0			-653	29873.08	0	0	0	0.000	0.000	
05/16/11 07:58:54	60.01099	471		0		0			-653	29862.1	0	0	-	-0.003	0.003	
05/16/11 07:58:56	60.00549	471		0		0			-653	29862.1	0	0	0	-0.005	0.005	
05/16/11 07:58:58	59.99966	471		0		0			-653	29862.1	0	0	0	-0.006	0.006	
05/16/11 07:59:00	59.99451	471		0		0			-653	29862.1	0	0	0	-0.005	0.005	
05/16/11 07:59:02	59.99127	471		0		0			-653	29862.1	0	0	0	-0.003	0.003	
05/16/11 07:59:04	59.98965	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:06	59.98868	471		0		0			-653	29861.95	0	0	0	-0.001	0.001	
05/16/11 07:59:08	59.98676	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:10	59.9848	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:12	59.98288	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:14	59.98062	471		0		0			-653	29906.21	0	0	0	-0.002	0.002	
05/16/11 07:59:16	59.97803	471		0		0			-653	29906.21	0	0	0	-0.003	0.003	
05/16/11 07:59:18	59.9761	471		0		0			-653	29906.21	0	0	0	-0.002	0.002	
05/16/11 07:59:20	59.97577	471		0		0			-653	29906.21	0	0	0	0.000	0.000	
05/16/11 07:59:22	59.9761	471		0		0			-653	29906.21	0	0	0	0.000	0.000	
05/16/11 07:59:24	59.9761	471		0		0			-653	29878.69	0	0	0	0.000	0.000	
05/16/11 07:59:26	59.97641	471		0		0			-653	29878.69	0	0	0	0.000	0.000	
05/16/11 07:59:28	59.97543	471		0		0			-653	29878.69	0	0	0	-0.001	0.001	
05/16/11 07:59:30	59.97479	471		0		0			-653	29878.69	0	0	0	-0.001	0.001	
05/16/11 07:59:32	59.97382	471		0		0			-653	29878.69	0	0	0	-0.001	0.001	
05/16/11 07:59:34	59.97253	471		0		0			-653	29900.56	0	0	0	-0.001	0.001	
05/16/11 07:59:36	59.97223	471		0		0			-653	29900.56	0	0	0	0.000	0.000	
05/16/11 07:59:38	59.97253	471		0		0			-653	29900.56	0	0	0	0.000	0.000	
05/16/11 07:59:40	59.97351	471		0		0			-653	29900.56	0	0	0	0.001	0.001	
05/16/11 07:59:42	59.97351	471		0		0			-653	29900.56	0	0	0	0.000	0.000	
05/16/11 07:59:44	59.97318	471		0		0			-653	29896.99	0	0	0	0.000	0.000	
05/16/11 07:59:46	59.97189	471		0		0			-653	29896.99	0	0	0	-0.001	0.001	
05/16/11 07:59:48	59.97092	471		0		0			-653	29896.99	0	0	0	-0.001	0.001	
05/16/11 07:59:50	59.97028	471		0		0			-653	29896.99	0	0	0	-0.001	0.001	
05/16/11 07:59:52	59.97028	471		0		0			-653	29896.99	0	0	0	0.000	0.000	
05/16/11 07:59:54	59.97028	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 07:59:56	59.97028	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 07:59:58	59.97061	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 08:00:00	59.97287	471		0		0			-653	29905.8	0	0	0	0.002	0.002	
05/16/11 08:00:02	59.97287	471		0		0			-653	29905.8	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:00:04	59.97479	471		0		0			-653	29905.77	0	0	0	0.002	0.002	
05/16/11 08:00:06	59.97479	471		0		0			-653	29905.77	0	0	0	0.000	0.000	
05/16/11 08:00:08	59.97382	471		0		0			-653	29905.77	0	0	-	-0.001	0.001	
05/16/11 08:00:10	59.96832	471		0		0			-653	29905.77	0	0	0	-0.005	0.005	
05/16/11 08:00:12	59.96802	471		0		0			-653	29905.77	0	0	0	0.000	0.000	
05/16/11 08:00:14	59.96899	471		0		0			-653	29914.9	0	0	0	0.001	0.001	
05/16/11 08:00:16	59.96994	471		0		0			-653	29914.9	0	0	0	0.001	0.001	
05/16/11 08:00:18	59.97382	471		0		0			-653	29914.9	0	0	0	0.004	0.004	
05/16/11 08:00:20	59.97382	471		0		0			-653	29914.9	0	0	0	0.000	0.000	
05/16/11 08:00:22	59.97382	471		0		0			-653	29914.9	0	0	0	0.000	0.000	
05/16/11 08:00:24	59.97769	471		0		0			-653	29925.58	0	0	0	0.004	0.004	
05/16/11 08:00:26	59.97739	471		0		0			-653	29925.58	0	0	0	0.000	0.000	
05/16/11 08:00:28	59.9761	471		0		0			-653	29925.58	0	0	0	-0.001	0.001	
05/16/11 08:00:30	59.9761	471		0		0			-653	29925.58	0	0	0	0.000	0.000	
05/16/11 08:00:32	59.97705	471		0		0			-653	29925.58	0	0	0	0.001	0.001	
05/16/11 08:00:34	59.97769	471		0		0			-653	29938.87	0	0	0	0.001	0.001	
05/16/11 08:00:36	59.97803	471		0		0			-653	29938.87	0	0	0	0.000	0.000	
05/16/11 08:00:38	59.97803	471		0		0			-653	29938.87	0	0	0	0.000	0.000	
05/16/11 08:00:40	59.97739	471		0		0			-653	29938.87	0	0	0	-0.001	0.001	
05/16/11 08:00:42	59.97675	471		0		0			-653	29938.87	0	0	0	-0.001	0.001	
05/16/11 08:00:44	59.97641	471		0		0			-653	29952.51	0	0	0	0.000	0.000	
05/16/11 08:00:46	59.97479	471		0		0			-653	29952.51	0	0	0	-0.002	0.002	
05/16/11 08:00:48	59.97449	471		0		0			-653	29952.51	0	0	0	0.000	0.000	
05/16/11 08:00:50	59.97543	471		0		0			-653	29952.51	0	0	0	0.001	0.001	
05/16/11 08:00:52	59.97705	471		0		0			-653	29952.51	0	0	0	0.002	0.002	
05/16/11 08:00:54	59.97931	471		0		0			-653	29952.51	0	0	0	0.002	0.002	
05/16/11 08:00:56	59.97964	471		0		0			-653	29948.95	0	0	0	0.000	0.000	
05/16/11 08:00:58	59.979	471		0		0			-653	29948.95	0	0	0	-0.001	0.001	
05/16/11 08:01:00	59.97803	471		0		0			-653	29948.95	0	0	0	-0.001	0.001	
05/16/11 08:01:02	59.97803	471		0		0			-653	29948.95	0	0	0	0.000	0.000	
05/16/11 08:01:04	59.979	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:06	59.98029	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:08	59.9819	471		0		0			-653	29948.95	0	0	0	0.002	0.002	
05/16/11 08:01:10	59.98318	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:12	59.9845	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:14	59.98578	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:16	59.98642	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:18	59.98642	471		0		0			-653	29951.05	0	0	0	0.000	0.000	
05/16/11 08:01:20	59.98709	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:22	59.98773	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:24	59.98965	471		0		0			-653	29955.09	0	0	0	0.002	0.002	
05/16/11 08:01:26	59.99161	471		0		0			-653	29955.09	0	0	0	0.002	0.002	
05/16/11 08:01:28	59.99255	471		0		0			-653	29955.09	0	0	0	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:01:30	59.99323	471		0		0			-653	29955.09	0	0	0	0.001	0.001	
05/16/11 08:01:32	59.99289	471		0		0			-653	29955.09	0	0	0	0.000	0.000	
05/16/11 08:01:34	59.99097	471		0		0			-653	29967.69	0	0	0	-0.002	0.002	
05/16/11 08:01:36	59.98804	471		0		0			-653	29967.69	0	0	0	-0.003	0.003	
05/16/11 08:01:38	59.98578	471		0		0			-653	29967.69	0	0	0	-0.002	0.002	
05/16/11 08:01:40	59.98386	471		0		0			-653	29967.69	0	0	0	-0.002	0.002	
05/16/11 08:01:42	59.98318	471		0		0			-653	29967.69	0	0	0	-0.001	0.001	
05/16/11 08:01:44	59.98318	471		0		0			-653	29983.13	0	0	0	0.000	0.000	
05/16/11 08:01:46	59.98288	471		0		0			-653	29983.13	0	0	0	0.000	0.000	
05/16/11 08:01:48	59.98126	471		0		0			-653	29983.13	0	0	0	-0.002	0.002	
05/16/11 08:01:50	59.97998	471		0		0			-653	29983.13	0	0	0	-0.001	0.001	
05/16/11 08:01:52	59.97964	471		0		0			-653	29983.13		0	0	0.000	0.000	
05/16/11 08:01:54	59.98029	471		0		0			-653	29976.75	0	0	0	0.001	0.001	
05/16/11 08:01:56	59.98126	471		0		0			-653	29976.75	0	0	0	0.001	0.001	
05/16/11 08:01:58	59.98352	471		0		0			-653	29976.75	0	0	0	0.002	0.002	
05/16/11 08:02:00	59.98386	471		0		0			-653	29976.75	0	0	0	0.000	0.000	
05/16/11 08:02:02	59.98126	471		0		0			-653	29976.75	0	0	0	-0.003	0.003	
05/16/11 08:02:04	59.97543	471		0		0			-653	29976.78	0	0	0	-0.006	0.006	
05/16/11 08:02:06	59.96832	471		0		0			-653	29976.78	0	0	0	-0.007	0.007	
05/16/11 08:02:08	59.9635	471		0		0			-653	29976.78	0	0	0	-0.005	0.005	
05/16/11 08:02:10	59.96155	471		0		0			-653	29976.78	0	0	0	-0.002	0.002	
05/16/11 08:02:12	59.96091	471		0		0			-653	29976.78	0	0	0	-0.001	0.001	
05/16/11 08:02:14	59.96155	471		0		0			-653	30008.51	0	0	0	0.001	0.001	
05/16/11 08:02:16	59.96057	471		0		0			-653	30008.51	0	0	0	-0.001	0.001	
05/16/11 08:02:18	59.95801	471		0		0			-653	30008.51	0	0	0	-0.003	0.003	
05/16/11 08:02:20	59.95575	471		0		0			-653	30008.51		0	0	-0.002	0.002	
05/16/11 08:02:22	59.95575	471		0		0			-653	30008.51	0	0	0	0.000	0.000	
05/16/11 08:02:24	59.95703	471		0		0			-653	30037.25	0	0	0	0.001	0.001	
05/16/11 08:02:26	59.95895	471		0		0			-653	30037.25	0	0	0	0.002	0.002	
05/16/11 08:02:28	59.96057	471		0		0			-653	30037.25	0	0	0	0.002	0.002	
05/16/11 08:02:30	59.96155	471		0		0			-653	30037.25	-	0	0	0.001	0.001	
05/16/11 08:02:32	59.96252	471		0		0			-653	30037.25	0	0	0	0.001	0.001	
05/16/11 08:02:34	59.96414	471		0		0			-653	30055.73	-	0	0	0.002	0.002	
05/16/11 08:02:36	59.96512	471		0		0			-653	30055.73	0	0	0	0.001	0.001	
05/16/11 08:02:38	59.96512	471		0		0			-653	30055.73	0	0	0	0.000	0.000	
05/16/11 08:02:40	59.96576	471		0		0			-653	30055.73	0	0	0	0.001	0.001	
05/16/11 08:02:42	59.96704	471		0		0			-653	30055.73	0	0	0	0.001	0.001	
05/16/11 08:02:44	59.96994	471		0		0			-653	30068.76	0	0	0	0.003	0.003	
05/16/11 08:02:46	59.97253	471		0		0			-653	30068.76	0	0	0	0.003	0.003	
05/16/11 08:02:48	59.97415	471		0		0			-653	30068.76	0	0	0	0.002	0.002	
05/16/11 08:02:50	59.9761	471		0		0			-653	30068.76	0	0	0	0.002	0.002	
05/16/11 08:02:52	59.97739	471		0		0			-653	30068.76	0	0	0	0.001	0.001	
05/16/11 08:02:54	59.97931	471		0		0			-653	30068.21	0	0	0	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 $3 \mathrm{t}(0)$ t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:02:56	59.98029	471		0		0			-653	30068.21	0	0	0	0.001	0.001	
05/16/11 08:02:58	59.98062	471		0		0			-653	30068.21	0	0	0	0.000	0.000	
05/16/11 08:03:00	59.98029	471		0		0			-653	30068.21	0	0	0	0.000	0.000	
05/16/11 08:03:02	59.98029	471		0		0			-653	30068.21	0	0	0	0.000	0.000	
05/16/11 08:03:04	59.97836	471		0		0			-653	30068.24	0	0	0	-0.002	0.002	
05/16/11 08:03:06	59.97836	471		0		0			-653	30068.24	0	0	0	0.000	0.000	
05/16/11 08:03:08	59.979	471		0		0			-653	30068.24	0	0	0	0.001	0.001	
05/16/11 08:03:10	59.97998	471		0		0			-653	30068.24	0	0	0	0.001	0.001	
05/16/11 08:03:12	59.98029	471		0		0			-653	30068.24	0	0	0	0.000	0.000	
05/16/11 08:03:14	59.98093	471		0		0			-653	30076.2	0	0	0	0.001	0.001	
05/16/11 08:03:16	59.98093	471		0		0			-653	30076.2	0	0	0	0.000	0.000	
05/16/11 08:03:18	59.97998	471		0		0			-653	30076.2	0	0	0	-0.001	0.001	
05/16/11 08:03:20	59.98062	471		0		0			-653	30076.2	0	0	0	0.001	0.001	
05/16/11 08:03:22	59.98029	471		0		0			-653	30076.2	0	0	0	0.000	0.000	
05/16/11 08:03:24	59.97998	471		0		0			-653	30093.95	0	0	0	0.000	0.000	
05/16/11 08:03:26	59.979	471		0		0			-653	30093.95	0	0	0	-0.001	0.001	
05/16/11 08:03:28	59.97931	471		0		0			-653	30093.95	0	0	0	0.000	0.000	
05/16/11 08:03:30	59.97998	471		0		0			-653	30093.95	0	0	0	0.001	0.001	
05/16/11 08:03:32	59.98029	471		0		0			-653	30093.95	0	0	0	0.000	0.000	
05/16/11 08:03:34	59.98029	471		0		0			-653	30100.97	0	0	0	0.000	0.000	
05/16/11 08:03:36	59.98029	471		0		0			-653	30100.97	0	0	0	0.000	0.000	
05/16/11 08:03:38	59.97964	471		0		0			-653	30100.97	0	0	0	-0.001	0.001	
05/16/11 08:03:40	59.979	471		0		0			-653	30100.97	0	0	0	-0.001	0.001	
05/16/11 08:03:42	59.97803	471		0		0			-653	30100.97	0	0	0	-0.001	0.001	
05/16/11 08:03:44	59.97803	471		0		0			-653	30118.87	0	0	0	0.000	0.000	
05/16/11 08:03:46	59.97867	471		0		0			-653	30118.87	0	0	0	0.001	0.001	
05/16/11 08:03:48	59.97964	471		0		0			-653	30118.87	0	0	0	0.001	0.001	
05/16/11 08:03:50	59.98224	471		0		0			-653	30118.87	0	0	0	0.003	0.003	
05/16/11 08:03:52	59.9848	471		0		0			-653	30118.87	0	0	0	0.003	0.003	
05/16/11 08:03:54	59.98514	471		0		0			-653	30118.77	0	0	0	0.000	0.000	
05/16/11 08:03:56	59.98416	471		0		0			-653	30118.77	0	0	0	-0.001	0.001	
05/16/11 08:03:58	59.98224	471		0		0			-653	30118.77	0	0	0	-0.002	0.002	
05/16/11 08:04:00	59.98029	471		0		0			-653	30118.77	0	0	0	-0.002	0.002	
05/16/11 08:04:02	59.979	471		0		0			-653	30118.77	0	0	0	-0.001	0.001	
05/16/11 08:04:04	59.97867	471		0		0			-653	30118.74	0	0	0	0.000	0.000	
05/16/11 08:04:06	59.97931	471		0		0			-653	30118.74	0	0	0	0.001	0.001	
05/16/11 08:04:08	59.97998	471		0		0			-653	30118.74	0	0	0	0.001	0.001	
05/16/11 08:04:10	59.97931	471		0		0			-653	30118.74	0	0	0	-0.001	0.001	
05/16/11 08:04:12	59.979	471		0		0			-653	30118.74	0	0	0	0.000	0.000	
05/16/11 08:04:14	59.97803	471		0		0			-653	30106.93	0	0	0	-0.001	0.001	
05/16/11 08:04:16	59.97675	471		0		0			-653	30106.93	0	0	0	-0.001	0.001	
05/16/11 08:04:18	59.97739	471		0		0			-653	30106.93	0	0	0	0.001	0.001	
05/16/11 08:04:20	59.979	471		0		0			-653	30106.93	0	0	0	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 $\mathrm{t}(0)$ t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:04:22	59.97964	471		0		0			-653	30106.93	0	0	0	0.001	0.001	
05/16/11 08:04:24	59.98093	471		0		0			-653	30106.61	0	0	0	0.001	0.001	
05/16/11 08:04:26	59.98224	471		0		0			-653	30106.61	0	0	0	0.001	0.001	
05/16/11 08:04:28	59.98318	471		0		0			-653	30106.61	0	0	0	0.001	0.001	
05/16/11 08:04:30	59.98318	471		0		0			-653	30106.61	0	0	0	0.000	0.000	
05/16/11 08:04:32	59.98224	471		0		0			-653	30106.61	0	0	0	-0.001	0.001	
05/16/11 08:04:34	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:36	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:38	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:40	59.9816	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:42	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:44	59.9816	471		0		0			-653	30141.59		0	0	0.000	0.000	
05/16/11 08:04:46	59.98126	471		0		0			-653	30141.59	0	0	0	0.000	0.000	
05/16/11 08:04:48	59.9816	471		0		0			-653	30141.59	0	0	0	0.000	0.000	
05/16/11 08:04:50	59.98254	471		0		0			-653	30141.59	0	0	0	0.001	0.001	
05/16/11 08:04:52	59.98352	471		0		0			-653	30141.59	0	0	0	0.001	0.001	
05/16/11 08:04:54	59.98416	471		0		0			-653	30144.23	0	0	0	0.001	0.001	
05/16/11 08:04:56	59.98416	471		0		0			-653	30144.23	0	0	0	0.000	0.000	
05/16/11 08:04:58	59.98416	471		0		0			-653	30144.23	0	0	0	0.000	0.000	
05/16/11 08:05:00	59.98514	471		0		0			-653	30144.23	0	0	0	0.001	0.001	
05/16/11 08:05:02	59.9874	471		0		0			-653	30144.23	0	0	0	0.002	0.002	
05/16/11 08:05:04	59.98901	471		0		0			-653	30144.23	0	0	0	0.002	0.002	
05/16/11 08:05:06	59.98804	471		0		0			-653	30144.23	0	0	0	-0.001	0.001	
05/16/11 08:05:08	59.98642	471		0		0			-653	30144.23	0	0	0	-0.002	0.002	
05/16/11 08:05:10	59.98288	471		0		0			-653	30144.23	0	0	0	-0.004	0.004	
05/16/11 08:05:12	59.98254	471		0		0			-653	30144.23		0	0	0.000	0.000	
05/16/11 08:05:14	59.98318	471		0		0			-653	30148.67	0	0	0	0.001	0.001	
05/16/11 08:05:16	59.9819	471		0		0			-653	30148.67	0	0	0	-0.001	0.001	
05/16/11 08:05:18	59.98062	471		0		0			-653	30148.67	-	0	0	-0.001	0.001	
05/16/11 08:05:20	59.97964	471		0		0			-653	30148.67	0	0	0	-0.001	0.001	
05/16/11 08:05:22	59.97964	471		0		0			-653	30148.67	-	0	0	0.000	0.000	
05/16/11 08:05:24	59.97964	471		0		0			-653	30155.67	0	0	0	0.000	0.000	
05/16/11 08:05:26	59.98029	471		0		0			-653	30155.67	-	0	0	0.001	0.001	
05/16/11 08:05:28	59.98224	471		0		0			-653	30155.67	0	0	0	0.002	0.002	
05/16/11 08:05:30	59.98352	471		0		0			-653	30155.67	0	0	0	0.001	0.001	
05/16/11 08:05:32	59.98578	471		0		0			-653	30155.67	0	0	0	0.002	0.002	
05/16/11 08:05:34	59.9874	471		0		0			-653	30142.79	0	0	0	0.002	0.002	
05/16/11 08:05:36	59.98804	471		0		0			-653	30142.79	0	0	0	0.001	0.001	
05/16/11 08:05:38	59.9874	471		0		0			-653	30142.79	0	0	0	-0.001	0.001	
05/16/11 08:05:40	59.98611	471		0		0			-653	30142.79	0	0	0	-0.001	0.001	
05/16/11 08:05:42	59.9848	471		0		0			-653	30142.79	0	0	0	-0.001	0.001	
05/16/11 08:05:44	59.98352	471		0		0			-653	30154.67	0	0	0	-0.001	0.001	
05/16/11 08:05:46	59.98318	471		0		0			-653	30154.67	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align T(0) 1
05/16/11 08:05:48	59.98352	471		0		0			-653	30154.67	0	0	0	0.000	0.000	
05/16/11 08:05:50	59.98416	471.3000183		0		0			-653	30150.35	0	0	0	0.001	0.001	
05/16/11 08:05:52	59.98514	471.3000183		0		0			-653	30150.35	0	0	0	0.001	0.001	
05/16/11 08:05:54	59.98547	471.3000183		0		0			-653	30159.63		0	0	0.000	0.000	
05/16/11 08:05:56	59.98642	471.3000183		0		0			-653	30159.63	0	0	-	0.001	0.001	
05/16/11 08:05:58	59.98676	471.8999939		0		0			-653	30159.63	0	0	0	0.000	0.000	
05/16/11 08:06:00	59.9874	471.8999939		0		0			-653	30159.63	0	0	0	0.001	0.001	
05/16/11 08:06:02	59.98773	471.8999939		0		0			-653	30151.42	0	0	0	0.000	0.000	
05/16/11 08:06:04	59.98901	471.8999939		0		0			-653	30151.42	0	0	0	0.001	0.001	
05/16/11 08:06:06	59.98901	471.8999939		0		0			-653	30156.16	0	0	0	0.000	0.000	
05/16/11 08:06:08	59.98804	471.3999939		0		0			-653	30156.16	0	0	0	-0.001	0.001	
05/16/11 08:06:10	59.98642	471.3999939		0		0			-653	30156.16	0	0	0	-0.002	0.002	
05/16/11 08:06:12	59.98547	471.3999939		0		0			-653	30156.16	0	0	0	-0.001	0.001	
05/16/11 08:06:14	59.98642	471.3999939		0		0			-653	30164.15	-	0	0	0.001	0.001	
05/16/11 08:06:16	59.98935	471.3999939		0		0			-653	30164.15	0	0	0	0.003	0.003	
05/16/11 08:06:18	59.99225	471.3999939		0		0			-653	30164.15	0	0	0	0.003	0.003	
05/16/11 08:06:20	59.99515	471.3999939		0		0			-653	30164.15	0	0	0	0.003	0.003	
05/16/11 08:06:22	59.99579	471.3999939		0		0			-653	30203.91	0	0	0	0.001	0.001	
05/16/11 08:06:24	59.99515	471.3999939		0		0			-653	30203.91		0	0	-0.001	0.001	
05/16/11 08:06:26	59.99548	471.3999939		0		0			-653	30203.73	0	0	0	0.000	0.000	
05/16/11 08:06:28	59.99741	470.8999939		0		0			-653	30203.73	0	0	0	0.002	0.002	
05/16/11 08:06:30	60	470.8999939		0		0			-653	30203.73	,	0	0	0.003	0.003	
05/16/11 08:06:32	60.00162	470.8999939		0		0			-653	30203.73	0	0	0	0.002	0.002	
05/16/11 08:06:34	60.00162	470.8999939		0		0			-653	30199.61	0	0	0	0.000	0.000	
05/16/11 08:06:36	60.00195	470.8999939		0		0			-653	30199.61	0	0	0	0.000	0.000	
05/16/11 08:06:38	59.95963	0		0		0			-653	30199.61	-	0	1	-0.042	0.042	
05/16/11 08:06:40	59.88144	0		0		0			-653	30199.61	1	0	1	-0.078	0.078	
05/16/11 08:06:42	59.87237	0		0		0			-653	30086.11	1	0	1	-0.009	0.009	
05/16/11 08:06:44	59.87011	0		0		0			-653	30086.11	1	0	1	-0.002	0.002	
05/16/11 08:06:46	59.87432	0		0		0			-653	30086.14	1	0	1	0.004	0.004	
05/16/11 08:06:48	59.88076	0		0		0			-653	30086.14	,	0	1	0.006	0.006	
05/16/11 08:06:50	59.88531	0		0		0			-653	30086.14	1	0	1	0.005	0.005	
05/16/11 08:06:52	59.88787	0		0		0			-653	30086.14	,	0	1	0.003	0.003	
05/16/11 08:06:54	59.88949	0		0		0			-653	30094.43	1	0	1	0.002	0.002	
05/16/11 08:06:56	59.8908	0		0		0			-653	30094.43	1	0	1	0.001	0.001	
05/16/11 08:06:58	59.89175	0		0		0			-653	30094.43	1	0	1	0.001	0.001	
05/16/11 08:07:00	59.89242	0		0		0			-653	30094.43	1	0	1	0.001	0.001	
05/16/11 08:07:02	59.89306	0		0		0			-653	30139.49	1	0	1	0.001	0.001	
05/16/11 08:07:04	59.89306	0		0		0			-653	30139.49	1	0	1	0.000	0.000	
05/16/11 08:07:06	59.89306	0		0		0			-653	30133.38	1	0	1	0.000	0.000	
05/16/11 08:07:08	59.89532	0		0		0			-653	30133.38	1	0	1	0.002	0.002	
05/16/11 08:07:10	59.89788	0		0		0			-653	30133.38	1	0	1	0.003	0.003	
05/16/11 08:07:12	59.8995	0		0		0			-653	30133.38	1	0	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	\qquad	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:07:14	59.90081	0		0		0			-653	30137.26	1	0	1	0.001	0.001	
05/16/11 08:07:16	59.9021	0		0		0			-653	30137.26	1	0	1	0.001	0.001	
05/16/11 08:07:18	59.90179	0		0		0			-653	30137.26	1	0	1	0.000	0.000	
05/16/11 08:07:20	59.90081	0		0		0			-653	30137.26	1	0	1	-0.001	0.001	
05/16/11 08:07:22	59.90081	0		0		0			-653	30171.38	1	0	1	0.000	0.000	
05/16/11 08:07:24	59.90048	0		0		0			-653	30171.38	1	0	1	0.000	0.000	
05/16/11 08:07:26	59.8992	0		0		0			-653	30168.76	1	0	1	-0.001	0.001	
05/16/11 08:07:28	59.89886	0		0		0			-653	30168.76	1	0	1	0.000	0.000	
05/16/11 08:07:30	59.89856	0		0		0			-653	30168.76	1	0	1	0.000	0.000	
05/16/11 08:07:32	59.90017	0		0		0			-653	30168.76	1	0	1	0.002	0.002	
05/16/11 08:07:34	59.90243	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:36	59.90469	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:38	59.90695	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:40	59.90887	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:42	59.90921	0		0		0			-653	30205.66	1	0	1	0.000	0.000	
05/16/11 08:07:44	59.90857	0		0		0			-653	30205.66	1	0	1	-0.001	0.001	
05/16/11 08:07:46	59.90887	0		0		0			-653	30205.66	1	0	1	0.000	0.000	
05/16/11 08:07:48	59.91018	0		0		0			-653	30205.66	1	0	1	0.001	0.001	
05/16/11 08:07:50	59.91244	0		0		0			-653	30205.66	1	0	1	0.002	0.002	
05/16/11 08:07:52	59.9147	0		0		0			-653	30205.66	1	0	1	0.002	0.002	
05/16/11 08:07:54	59.9176	0		0		0			-653	30211.75	1	0	1	0.003	0.003	
05/16/11 08:07:56	59.91922	0		0		0			-653	30211.75	1	0	1	0.002	0.002	
05/16/11 08:07:58	59.92083	0		0		0			-653	30211.75	1	0	1	0.002	0.002	
05/16/11 08:08:00	59.92215	0		0		0			-653	30211.75	1	0	1	0.001	0.001	
05/16/11 08:08:02	59.92309	0		0		0			-653	30217.55	1	0	1	0.001	0.001	
05/16/11 08:08:04	59.92505	0		0		0			-653	30217.55	1	0	1	0.002	0.002	
05/16/11 08:08:06	59.92505	0		0		0			-653	30217.57	1	0	1	0.000	0.000	
05/16/11 08:08:08	59.9273	0		0		0			-653	30217.57	1	0	1	0.002	0.002	
05/16/11 08:08:10	59.93246	0		0		0			-653	30217.57	1	0	1	0.005	0.005	
05/16/11 08:08:12	59.93505	0		0		0			-653	30217.57	1	0	1	0.003	0.003	
05/16/11 08:08:14	59.93701	0		0		0			-653	30217.59	1	0	1	0.002	0.002	
05/16/11 08:08:16	59.93765	0		0		0			-653	30217.59	1	0	1	0.001	0.001	
05/16/11 08:08:18	59.93927	0		0		0			-653	30217.59	1	0	1	0.002	0.002	
05/16/11 08:08:20	59.94183	0		0		0			-653	30217.59	1	0	1	0.003	0.003	
05/16/11 08:08:22	59.94409	0		0		0			-653	30210.49	1	0	1	0.002	0.002	
05/16/11 08:08:24	59.94571	0		0		0			-653	30210.49	1	0	1	0.002	0.002	
05/16/11 08:08:26	59.94797	0		0		0			-653	30210.26	1	0	1	0.002	0.002	
05/16/11 08:08:28	59.94766	0		0		0			-653	30210.26	1	0	1	0.000	0.000	
05/16/11 08:08:30	59.9454	0		0		0			-653	30210.26	1	0	1	-0.002	0.002	
05/16/11 08:08:32	59.94443	0		0		0			-653	30210.26	1	0	1	-0.001	0.001	
05/16/11 08:08:34	59.94409	0		0		0			-653	30234.59	1	0	1	0.000	0.000	
05/16/11 08:08:36	59.94507	0		0		0			-653	30234.59	1	0	1	0.001	0.001	
05/16/11 08:08:38	59.94604	0		0		0			-653	30234.59	1	0	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:08:40	59.94638	0		0		0			-653	30234.59	1	0	1	0.000	0.000	
05/16/11 08:08:42	59.94733	0		0		0			-653	30223.6	1	0	1	0.001	0.001	
05/16/11 08:08:44	59.9483	0		0		0			-653	30223.6	1	0	1	0.001	0.001	
05/16/11 08:08:46	59.94894	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:48	59.94992	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:50	59.9509	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:52	59.95154	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:54	59.95187	0		0		0			-653	30224.39	1	0	1	0.000	0.000	
05/16/11 08:08:56	59.95346	0		0		0			-653	30224.39	1	0	1	0.002	0.002	
05/16/11 08:08:58	59.95508			0		0			-653	30224.39	1	0	1	0.002	0.002	
05/16/11 08:09:00	59.95575	0		0		0			-653	30224.39	1	0	1	0.001	0.001	
05/16/11 08:09:02	59.95639	0		0		0			-653	30255.53	1	0	1	0.001	0.001	
05/16/11 08:09:04	59.95801	0		0		0			-653	30255.53	1	0	1	0.002	0.002	
05/16/11 08:09:06	59.96124	0		0		0			-653	30252.87	,	0	1	0.003	0.003	
05/16/11 08:09:08	59.96252	0		0		0			-653	30252.87	1	0	1	0.001	0.001	
05/16/11 08:09:10	59.96188	0		0		0			-653	30252.87	1	0	1	-0.001	0.001	
05/16/11 08:09:12	59.96124	0		0		0			-653	30252.87	1	0	1	-0.001	0.001	
05/16/11 08:09:14	59.96027	0		0		0			-653	30232.45	1	0	1	-0.001	0.001	
05/16/11 08:09:16	59.96057	0		0		0			-653	30232.45	1	0	1	0.000	0.000	
05/16/11 08:09:18	59.96219	0		0		0			-653	30232.45	1	0	1	0.002	0.002	
05/16/11 08:09:20	59.96512	0		0		0			-653	30232.45	1	0	1	0.003	0.003	
05/16/11 08:09:22	59.96738	0		0		0			-653	30263.99	1	0	1	0.002	0.002	
05/16/11 08:09:24	59.96899	0		0		0			-653	30263.99	1	0	1	0.002	0.002	
05/16/11 08:09:26	59.97061	0		0		0			-653	30263.68	1	0	1	0.002	0.002	
05/16/11 08:09:28	59.97318	0		0		0			-653	30263.68	1	0	1	0.003	0.003	
05/16/11 08:09:30	59.97351	0		0		0			-653	30263.68	1	0	1	0.000	0.000	
05/16/11 08:09:32	59.97287	0		0		0			-653	30263.68	1	0	1	-0.001	0.001	
05/16/11 08:09:34	59.97253	0		0		0			-653	30264.96	1	0	1	0.000	0.000	
05/16/11 08:09:36	59.97318	0		0		0			-653	30264.96	1	0	1	0.001	0.001	
05/16/11 08:09:38	59.97415	0		0		0			-653	30264.96	1	0	1	0.001	0.001	
05/16/11 08:09:40	59.97543	0		0		0			-653	30264.96	1	0	,	0.001	0.001	
05/16/11 08:09:42	59.97577	0		0		0			-653	30263.63	1	0	1	0.000	0.000	
05/16/11 08:09:44	59.9761	0		0		0			-653	30263.63	1	0	1	0.000	0.000	
05/16/11 08:09:46	59.97675	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:48	59.97803	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:50	59.97931	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:52	59.97998	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:54	59.97964	0		0		0			-653	30255.32	1	0	1	0.000	0.000	
05/16/11 08:09:56	59.979	0		0		0			-653	30255.32	1	0	1	-0.001	0.001	
05/16/11 08:09:58	59.97964	0		0		0			-653	30255.32	1	0	1	0.001	0.001	
05/16/11 08:10:00	59.98093	0		0		0			-653	30255.32	1	0	1	0.001	0.001	
05/16/11 08:10:02	59.98224	0		0		0			-653	30260.67		0	1	0.001	0.001	
05/16/11 08:10:04	59.98386	0		0		0			-653	30260.67	1	0	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:10:06	59.98514	0		0		0			-653	30259.99	1	0	1	0.001	0.001	
05/16/11 08:10:08	59.98773	0		0		0			-653	30259.99	1	0	1	0.003	0.003	
05/16/11 08:10:10	59.9903	0		0		0			-653	30259.99	1	0	1	0.003	0.003	
05/16/11 08:10:12	59.99289	0		0		0			-653	30259.99	1	0	1	0.003	0.003	
05/16/11 08:10:14	59.99579	0		0		0			-653	30274.08	1	0	1	0.003	0.003	
05/16/11 08:10:16	59.99646	0		0		0			-653	30274.08	1	0	1	0.001	0.001	
05/16/11 08:10:18	59.99579	0		0		0			-653	30274.08	1	0	1	-0.001	0.001	
05/16/11 08:10:20	59.99612	0		0		0			-653	30274.08	1	0	1	0.000	0.000	
05/16/11 08:10:22	59.99579	0		0		0			-653	30297.68	1	0	1	0.000	0.000	
05/16/11 08:10:24	59.99484	0		0		0			-653	30297.68	1	0	1	-0.001	0.001	
05/16/11 08:10:26	59.99484	0		0		0			-653	30297.65	1	0	1	0.000	0.000	
05/16/11 08:10:28	59.99805	0		0		0			-653	30297.65	1	0	1	0.003	0.003	
05/16/11 08:10:30	59.99872	0		0		0			-653	30297.65	1	1	1	0.001	0.001	
05/16/11 08:10:32	60.00034	0		0		0			-653	30297.65	1	1	1	0.002	0.002	
05/16/11 08:10:34	60.00195	0		0		0			-653	30300.1	1	1	1	0.002	0.002	
05/16/11 08:10:36	60.00259	0		0		0			-653	30300.1	1	1	1	0.001	0.001	
05/16/11 08:10:38	60.00226	0		0		0			-653	30300.1	1	1	1	0.000	0.000	
05/16/11 08:10:40	60.00195	0		0		0			-653	30300.1	1	1	1	0.000	0.000	
05/16/11 08:10:42	60.00064	0		0		0			-653	30314.84	1	1	1	-0.001	0.001	
05/16/11 08:10:44	59.99646	0		0		0			-653	30314.84	1	0	1	-0.004	0.004	
05/16/11 08:10:46	59.99191	0		0		0			-653	30309.71	1	0	1	-0.005	0.005	
05/16/11 08:10:48	59.98901	0		0		0			-653	30309.71	1	0	1	-0.003	0.003	
05/16/11 08:10:50	59.98773	0		0		0			-653	30309.71	1	0	1	-0.001	0.001	
05/16/11 08:10:52	59.98901	0		0		0			-653	30309.71	1	0	1	0.001	0.001	
05/16/11 08:10:54	59.99255	0		0		0			-653	30319.5	1	0	1	0.004	0.004	
05/16/11 08:10:56	59.99579	0		0		0			-653	30319.5	1	0	1	0.003	0.003	
05/16/11 08:10:58	59.99902	0		0		0			-653	30319.5	1	1	1	0.003	0.003	
05/16/11 08:11:00	60.00195	0		0		0			-653	30319.5	1	1	1	0.003	0.003	
05/16/11 08:11:02	60.00485	0		0		0			-653	30357.21	1	1	1	0.003	0.003	
05/16/11 08:11:04	60.00809	0		0		0			-653	30357.21	1	1	1	0.003	0.003	
05/16/11 08:11:06	60.01163	0		0		0			-653	30357.18	1	1	,	0.004	0.004	
05/16/11 08:11:08	60.01422	0		0		0			-653	30357.18	1	1	1	0.003	0.003	
05/16/11 08:11:10	60.0152	0		0		0			-653	30357.18	1	1	1	0.001	0.001	
05/16/11 08:11:12	60.0155	0		0		0			-653	30357.18	1	1	1	0.000	0.000	
05/16/11 08:11:14	60.0155	0		0		0			-653	30354.26	1	1	1	0.000	0.000	
05/16/11 08:11:16	60.01682	0		0		0			-653	30354.26	1	1	1	0.001	0.001	
05/16/11 08:11:18	60.01907	0		0		0			-653	30354.26	1	1	1	0.002	0.002	
05/16/11 08:11:20	60.02295	0		0		0			-653	30354.26	1	1	1	0.004	0.004	
05/16/11 08:11:22	60.02618	0		0		0			-653	30354.48	1	1	1	0.003	0.003	
05/16/11 08:11:24	60.02972	0		0		0			-653	30354.48	1	1	1	0.004	0.004	
05/16/11 08:11:26	60.03262	0		0		0			-653	30353.83	1	1	1	0.003	0.003	
05/16/11 08:11:28	60.03458	0		0		0			-653	30353.83		1	1	0.002	0.002	
05/16/11 08:11:30	60.03522	0		0		0			-653	30353.83	1	1	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:11:32	60.03424	0		0		0			-653	30353.83	1	1	1	-0.001	0.001	
05/16/11 08:11:34	60.0336	0		0		0			-653	30370.41	1	1	1	-0.001	0.001	
05/16/11 08:11:36	60.03522	0		0		0			-653	30370.41	1	1	1	0.002	0.002	
05/16/11 08:11:38	60.03812			0		0			-653	30370.41	1	1	1	0.003	0.003	
05/16/11 08:11:40	60.04037	0		0		0			-653	30370.41	1	1	1	0.002	0.002	
05/16/11 08:11:42	60.04105	0		0		0			-653	30374.79	1	1	1	0.001	0.001	
05/16/11 08:11:44	60.04199	0		0		0			-653	30374.79	1	1	1	0.001	0.001	
05/16/11 08:11:46	60.04233	0		0		0			-653	30366.14	1	1	1	0.000	0.000	
05/16/11 08:11:48	60.0433	0		0		0			-653	30366.14	1	1	1	0.001	0.001	
05/16/11 08:11:50	60.04425	0		0		0			-653	30366.14	1	1	1	0.001	0.001	
05/16/11 08:11:52	60.04492	0		0		0			-653	30366.14	1	1	1	0.001	0.001	
05/16/11 08:11:54	60.04556	0		0		0			-653	30373.53	1	1	1	0.001	0.001	
05/16/11 08:11:56	60.04587	0		0		0			-653	30373.53	1	1	1	0.000	0.000	
05/16/11 08:11:58	60.04654	0		0		0			-653	30373.53	1	1	1	0.001	0.001	
05/16/11 08:12:00	60.0488	0		0		0			-653	30373.53	1	1	1	0.002	0.002	
05/16/11 08:12:02	60.04974	0		0		0			-653	30343.46	1	1	1	0.001	0.001	
05/16/11 08:12:04	60.0491	0		0		0			-653	30343.46	1	1	1	-0.001	0.001	
05/16/11 08:12:06	60.0491	0		0		0			-653	30335.12	1	1	,	0.000	0.000	
05/16/11 08:12:08	60.05042	0		0		0			-653	30335.12	1	1	1	0.001	0.001	
05/16/11 08:12:10	60.04974	0		0		0			-653	30335.12	1	1	1	-0.001	0.001	
05/16/11 08:12:12	60.04846	0		0		0			-653	30335.12	1	1	1	-0.001	0.001	
05/16/11 08:12:14	60.04718	0		0		0			-653	30337.29	1	1	1	-0.001	0.001	
05/16/11 08:12:16	60.04587	0		0		0			-653	30337.29	1	1	1	-0.001	0.001	
05/16/11 08:12:18	60.04587	0		0		0			-653	30337.29	1	1	1	0.000	0.000	
05/16/11 08:12:20	60.04556	0		0		0			-653	30337.29	1	1	1	0.000	0.000	
05/16/11 08:12:22	60.04425	0		0		0			-653	30350.2	1	1	1	-0.001	0.001	
05/16/11 08:12:24	60.04297	0		0		0			-653	30350.2	1	1	1	-0.001	0.001	
05/16/11 08:12:26	60.04169	0		0		0			-653	30350.07	1	1	1	-0.001	0.001	
05/16/11 08:12:28	60.04233	0		0		0			-653	30350.07	1	1	1	0.001	0.001	
05/16/11 08:12:30	60.04459	0		0		0			-653	30350.07	1	1	1	0.002	0.002	
05/16/11 08:12:32	60.04654	0		0		0			-653	30350.07	1	1	1	0.002	0.002	
05/16/11 08:12:34	60.04718	0		0		0			-653	30354.77	1	1	1	0.001	0.001	
05/16/11 08:12:36	60.0462	0		0		0			-653	30354.77	1	1	1	-0.001	0.001	
05/16/11 08:12:38	60.04425	0		0		0			-653	30354.77	1	1	1	-0.002	0.002	
05/16/11 08:12:40	60.04492	0		0		0			-653	30354.77	1	1	1	0.001	0.001	
05/16/11 08:12:42	60.04523	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:44	60.04523	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:46	60.04556	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:48	60.0462	0		0		0			-653	30372.38	,	1	1	0.001	0.001	
05/16/11 08:12:50	60.04654	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:52	60.04654	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:54	60.04523	0		0		0			-653	30349.1	1	1	1	-0.001	0.001	
05/16/11 08:12:56	60.04361	0		0		0			-653	30349.1	1	1	1	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:12:58	60.04199	0		0		0			-653	30349.1	1	1	1	-0.002	0.002	
05/16/11 08:13:00	60.04071	0		0		0			-653	30349.1	1	1	1	-0.001	0.001	
05/16/11 08:13:02	60.03876	0		0		0			-653	30363.65	1	1	1	-0.002	0.002	
05/16/11 08:13:04	60.03586	0		0		0			-653	30363.65	1	1	1	-0.003	0.003	
05/16/11 08:13:06	60.03394	0		0		0			-653	30363.88	1	1	1	-0.002	0.002	
05/16/11 08:13:08	60.0336	0		0		0			-653	30363.88	1	1	1	0.000	0.000	
05/16/11 08:13:10	60.03262	0		0		0			-653	30363.88	1	1	1	-0.001	0.001	
05/16/11 08:13:12	60.03006	0		0		0			-653	30363.88	1	1	1	-0.003	0.003	
05/16/11 08:13:14	60.02747	0		0		0			-653	30364.77	1	1	1	-0.003	0.003	
05/16/11 08:13:16	60.02682	0		0		0			-653	30364.77	1	1	1	-0.001	0.001	
05/16/11 08:13:18	60.02585	0		0		0			-653	30364.77	1	1	1	-0.001	0.001	
05/16/11 08:13:20	60.02359	0		0		0			-653	30364.77	1	1	1	-0.002	0.002	
05/16/11 08:13:22	60.02197	0		0		0			-653	30374.33	1	1	1	-0.002	0.002	
05/16/11 08:13:24	60.02164	0		0		0			-653	30374.33	1	1	1	0.000	0.000	
05/16/11 08:13:26	60.02231	0		0		0			-653	30364.67	1	1	1	0.001	0.001	
05/16/11 08:13:28	60.02133	0		0		0			-653	30364.67	1	1	1	-0.001	0.001	
05/16/11 08:13:30	60.02133	0		0		0			-653	30364.67	1	1	1	0.000	0.000	
05/16/11 08:13:32	60.02002	0		0		0			-653	30364.67	1	1	1	-0.001	0.001	
05/16/11 08:13:34	60.01776	0		0		0			-653	30361.56	1	1	1	-0.002	0.002	
05/16/11 08:13:36	60.01584	0		0		0			-653	30361.56	1	1	1	-0.002	0.002	
05/16/11 08:13:38	60.01291	0		0		0			-653	30361.56	1	1	1	-0.003	0.003	
05/16/11 08:13:40	60.01132	0		0		0			-653	30361.56	1	1	1	-0.002	0.002	
05/16/11 08:13:42	60.01001	0		0		0			-653	30350.69	1	1	1	-0.001	0.001	
05/16/11 08:13:44	60.00937	0		0		0			-653	30350.69	1	1	1	-0.001	0.001	
05/16/11 08:13:46	60.00775	0		0		0			-653	30344.52	1	1	1	-0.002	0.002	
05/16/11 08:13:48	60.00516	0		0		0			-653	30344.52	1	1	1	-0.003	0.003	
05/16/11 08:13:50	60.00452	0		0		0			-653	30344.52	1	1	1	-0.001	0.001	
05/16/11 08:13:52	60.00613	0		0		0			-653	30344.52	1	1	1	0.002	0.002	
05/16/11 08:13:54	60.00613	0		0		0			-653	30354.37	1	1	1	0.000	0.000	
05/16/11 08:13:56	60.00549	0		0		0			-653	30354.37	1	1	1	-0.001	0.001	
05/16/11 08:13:58	60.00516	0		0		0			-653	30354.37	1	1	,	0.000	0.000	
05/16/11 08:14:00	60.00388	0		0		0			-653	30354.37	1	1	1	-0.001	0.001	
05/16/11 08:14:02	60.00259	0		0		0			-653	30373.31	1	1	1	-0.001	0.001	
05/16/11 08:14:04	60.00128	0		0		0			-653	30373.31	1	1	1	-0.001	0.001	
05/16/11 08:14:06	60.00128	0		0		0			-653	30373.78	1	1	1	0.000	0.000	
05/16/11 08:14:08	60.00064	0		0		0			-653	30373.78	1	1	1	-0.001	0.001	
05/16/11 08:14:10	60.00034	0		0		0			-653	30373.78	1	1	1	0.000	0.000	
05/16/11 08:14:12	60.00226	0		0		0			-653	30373.78	1	1	1	0.002	0.002	
05/16/11 08:14:14	60.00421	0		0		0			-653	30366.33	1	1	1	0.002	0.002	
05/16/11 08:14:16	60.00677	0		0		0			-653	30366.33	1	1	,	0.003	0.003	
05/16/11 08:14:18	60.00903	0		0		0			-653	30366.33	1	1	1	0.002	0.002	
05/16/11 08:14:20	60.01291	0		0		0			-653	30366.33		1	1	0.004	0.004	
05/16/11 08:14:22	60.01486	0		0		0			-653	30373.85	1	1	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 $3 \mathrm{t}(0)$ t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:14:24	60.01453	0		0		0			-653	30373.85	1	1	1	0.000	0.000	
05/16/11 08:14:26	60.01422	0		0		0			-653	30373.05	1	1	1	0.000	0.000	
05/16/11 08:14:28	60.0152	0		0		0			-653	30373.05	1	1	1	0.001	0.001	
05/16/11 08:14:30	60.01614	0		0		0			-653	30373.05	1	1	1	0.001	0.001	
05/16/11 08:14:32	60.01682	0		0		0			-653	30373.05	1	1	1	0.001	0.001	
05/16/11 08:14:34	60.01746	0		0		0			-653	30369.77	1	1	1	0.001	0.001	
05/16/11 08:14:36	60.01712	0		0		0			-653	30369.77	1	1	1	0.000	0.000	
05/16/11 08:14:38	60.01682	0		0		0			-653	30369.77	1	1	1	0.000	0.000	
05/16/11 08:14:40	60.01648	0		0		0			-653	30369.77	1	1	1	0.000	0.000	
05/16/11 08:14:42	60.01614	0		0		0			-653	30388.99	1	1	1	0.000	0.000	
05/16/11 08:14:44	60.01746	0		0		0			-653	30388.99	1	1	,	0.001	0.001	
05/16/11 08:14:46	60.01776	0		0		0			-653	30388.16	1	1	1	0.000	0.000	
05/16/11 08:14:48	60.01776	0		0		0			-653	30388.16	1	1	1	0.000	0.000	
05/16/11 08:14:50	60.01648	0		0		0			-653	30388.16	1	1	1	-0.001	0.001	
05/16/11 08:14:52	60.01584			0		0			-653	30388.16	1	1	1	-0.001	0.001	
05/16/11 08:14:54	60.01648	0		0		0			-653	30376.94	1	1	1	0.001	0.001	
05/16/11 08:14:56	60.01584	0		0		0			-653	30376.94	1	1	1	-0.001	0.001	
05/16/11 08:14:58	60.01358	0		0		0			-653	30376.94	1	1	1	-0.002	0.002	
05/16/11 08:15:00	60.01163	0		0		0			-653	30376.94	1	1	,	-0.002	0.002	
05/16/11 08:15:02	60.01132			0		0			-653	30371.85	1	1	1	0.000	0.000	
05/16/11 08:15:04	60.01132	0		0		0			-653	30371.85	1	1	1	0.000	0.000	
05/16/11 08:15:06	60.01099	0		0		0			-653	30362.65	1	1	1	0.000	0.000	
05/16/11 08:15:08	60.01099	0		0		0			-653	30362.65	1	1	,	0.000	0.000	
05/16/11 08:15:10	60.01291	0		0		0			-653	30362.65	1	1	1	0.002	0.002	
05/16/11 08:15:12	60.01486	0		0		0			-653	30362.65	1	1	1	0.002	0.002	
05/16/11 08:15:14	60.01776	0		0		0			-653	30395.46	1	1	1	0.003	0.003	
05/16/11 08:15:16	60.01776			0		0			-653	30395.46	1	1	,	0.000	0.000	
05/16/11 08:15:18	60.0184	-		0		0			-653	30395.46	1	1	,	0.001	0.001	
05/16/11 08:15:20	60.0181	0		0		0			-653	30395.46	1	1	1	0.000	0.000	
05/16/11 08:15:22	60.01746	-		0		0			-653	30397.03	1	1	,	-0.001	0.001	
05/16/11 08:15:24	60.0152	0		0		0			-653	30397.03	1	1	1	-0.002	0.002	
05/16/11 08:15:26	60.0152	0		0		0			-653	30396.67	1	1	,	0.000	0.000	
05/16/11 08:15:28	60.01389			0		0			-653	30396.67	1	1	1	-0.001	0.001	
05/16/11 08:15:30	60.01746	0		0		0			-653	30396.67	1	1	1	0.004	0.004	
05/16/11 08:15:32	60.01907	0		0		0			-653	30396.67	1	1	1	0.002	0.002	
05/16/11 08:15:34	60.01907	0		0		0			-653	30388.62	1	1	,	0.000	0.000	
05/16/11 08:15:36	60.02036	0		0		0			-653	30388.62	1	1	1	0.001	0.001	
05/16/11 08:15:38	60.01874	0		0		0			-653	30388.62	1	1	1	-0.002	0.002	
05/16/11 08:15:40	60.01874	0		0		0			-653	30388.62	1	1	1	0.000	0.000	
05/16/11 08:15:42	60.01971	0		0		0			-653	30381.78	1	1	1	0.001	0.001	
05/16/11 08:15:44	60.01971	0		0		0			-653	30381.78	1	1	1	0.000	0.000	
05/16/11 08:15:46	60.01971	0		0		0			-653	30382.96	1	1	1	0.000	0.000	
05/16/11 08:15:48	60.0184	0		0		0			-653	30382.96	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:15:50	60.01486	0		0		0			-653	30382.96	1	1	1	-0.004	0.004	
05/16/11 08:15:52	60.01358			0		0			-653	30382.96	1	1	1	-0.001	0.001	
05/16/11 08:15:54	60.01389	0		0		0			-653	30381.48	1	1	1	0.000	0.000	
05/16/11 08:15:56	60.01227	0		0		0			-653	30381.48	1	1	1	-0.002	0.002	
05/16/11 08:15:58	60.01001	0		0		0			-653	30381.48	1	1	1	-0.002	0.002	
05/16/11 08:16:00	60.00583	0		0		0			-653	30381.48	1	1	1	-0.004	0.004	
05/16/11 08:16:02	60.00162	0		0		0			-653	30394.03	1	1	1	-0.004	0.004	
05/16/11 08:16:04	60.00162	0		0		0			-653	30394.03	1	1	1	0.000	0.000	
05/16/11 08:16:06	59.99805	0		0		0			-653	30394.07	1	0	1	-0.004	0.004	
05/16/11 08:16:08	59.99353	0		0		0			-653	30394.07	1	0	1	-0.005	0.005	
05/16/11 08:16:10	59.99255	0		0		0			-653	30394.07	1	0	1	-0.001	0.001	
05/16/11 08:16:12	59.99225	0		0		0			-653	30394.07	1	0	,	0.000	0.000	
05/16/11 08:16:14	59.98999	0		0		0			-653	30376.91	1	0	1	-0.002	0.002	
05/16/11 08:16:16	59.98837	0		0		0			-653	30376.91	1	0	1	-0.002	0.002	
05/16/11 08:16:18	59.98416	0		0		0			-653	30376.91	1	0	1	-0.004	0.004	
05/16/11 08:16:20	59.9816	0		0		0			-653	30376.91	1	0	1	-0.003	0.003	
05/16/11 08:16:22	59.98093	0		0		0			-653	30367.96	1	0	1	-0.001	0.001	
05/16/11 08:16:24	59.98029	0		0		0			-653	30367.96	1	0	1	-0.001	0.001	
05/16/11 08:16:26	59.97998	0		0		0			-653	30367.46	1	0	1	0.000	0.000	
05/16/11 08:16:28	59.97836	0		0		0			-653	30367.46	1	0	1	-0.002	0.002	
05/16/11 08:16:30	59.97513	0		0		0			-653	30367.46	1	0	1	-0.003	0.003	
05/16/11 08:16:32	59.97287	0		0		0			-653	30367.46	1	0	1	-0.002	0.002	
05/16/11 08:16:34	59.97189	0		0		0			-653	30361.18	1	0	1	-0.001	0.001	
05/16/11 08:16:36	59.97156	0		0		0			-653	30361.18	1	0	1	0.000	0.000	
05/16/11 08:16:38	59.97382	0		0		0			-653	30361.18	1	0	1	0.002	0.002	
05/16/11 08:16:40	59.97641	0		0		0			-653	30361.18	1	0	1	0.003	0.003	
05/16/11 08:16:42	59.97836	0		0		0			-653	30365.59	1	0	1	0.002	0.002	
05/16/11 08:16:44	59.97705	0		0		0			-653	30365.59	1	0	1	-0.001	0.001	
05/16/11 08:16:46	59.97449	0		0		0			-653	30365.19	1	0	1	-0.003	0.003	
05/16/11 08:16:48	59.97125	0		0		0			-653	30365.19	1	0	1	-0.003	0.003	
05/16/11 08:16:50	59.97092	0		0		0			-653	30365.19	1	0	,	0.000	0.000	
05/16/11 08:16:52	59.97287	0		0		0			-653	30365.19	1	0	1	0.002	0.002	
05/16/11 08:16:54	59.97449	0		0		0			-653	30375.91	1	0	1	0.002	0.002	
05/16/11 08:16:56	59.97382	0		0		0			-653	30375.91	1	0	1	-0.001	0.001	
05/16/11 08:16:58	59.97318	0		0		0			-653	30375.91	1	0	1	-0.001	0.001	
05/16/11 08:17:00	59.97449	0		0		0			-653	30375.91	1	0	1	0.001	0.001	
05/16/11 08:17:02	59.9761	0		0		0			-653	30367.4	1	0	1	0.002	0.002	
05/16/11 08:17:04	59.97739	0		0		0			-653	30367.4	1	0	1	0.001	0.001	
05/16/11 08:17:06	59.97836	0		0		0			-653	30367.72	1	0	1	0.001	0.001	
05/16/11 08:17:08	59.97769	0		0		0			-653	30367.72	1	0	1	-0.001	0.001	
05/16/11 08:17:10	59.97705	0		0		0			-653	30367.72	1	0	1	-0.001	0.001	
05/16/11 08:17:12	59.97641	0		0		0			-653	30367.72		0	1	-0.001	0.001	
05/16/11 08:17:14	59.97543	0		0		0			-653	30416.87	1	0	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	\qquad	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:17:16	59.97382	0		0		0			-653	30416.87	1	0	1	-0.002	0.002	
05/16/11 08:17:18	59.97318			0		0			-653	30416.87	1	0	1	-0.001	0.001	
05/16/11 08:17:20	59.97223	0		0		0			-653	30416.87	1	0	1	-0.001	0.001	
05/16/11 08:17:22	59.97189	0		0		0			-653	30413.65	1	0	1	0.000	0.000	
05/16/11 08:17:24	59.97092	0		0		0			-653	30413.65	1	0	1	-0.001	0.001	
05/16/11 08:17:26	59.96994	0		0		0			-653	30406.3	1	0	1	-0.001	0.001	
05/16/11 08:17:28	59.96832	0		0		0			-653	30406.3	1	0	1	-0.002	0.002	
05/16/11 08:17:30	59.96606	0		0		0			-653	30406.3	1	0	1	-0.002	0.002	
05/16/11 08:17:32	59.96542	0		0		0			-653	30406.3	1	0	1	-0.001	0.001	
05/16/11 08:17:34	59.96606	0		0		0			-653	30418.59	1	0	1	0.001	0.001	
05/16/11 08:17:36	59.9693	0		0		0			-653	30418.59	1	0	1	0.003	0.003	
05/16/11 08:17:38	59.97253	0		0		0			-653	30418.59	1	0	1	0.003	0.003	
05/16/11 08:17:40	59.97351	0		0		0			-653	30418.59	1	0	1	0.001	0.001	
05/16/11 08:17:42	59.97382	0		0		0			-653	30433.31	1	0	1	0.000	0.000	
05/16/11 08:17:44	59.97253	0		0		0			-653	30433.31	1	0	1	-0.001	0.001	
05/16/11 08:17:46	59.97253	0		0		0			-653	30433.31	1	0	1	0.000	0.000	
05/16/11 08:17:48	59.97253	0		0		0			-653	30433.31	1	0	1	0.000	0.000	
05/16/11 08:17:50	59.96768	0		0		0			-653	30433.31	1	0	1	-0.005	0.005	
05/16/11 08:17:52	59.97125	0		0		0			-653	30433.31	1	0	1	0.004	0.004	
05/16/11 08:17:54	59.97577	0		0		0			-653	30451.3	1	0	1	0.005	0.005	
05/16/11 08:17:56	59.97577	0		0		0			-653	30451.3	1	0	1	0.000	0.000	
05/16/11 08:17:58	59.97577	0		0		0			-653	30451.3	1	0	1	0.000	0.000	
05/16/11 08:18:00	59.98416	0		0		0			-653	30451.3	1	0	1	0.008	0.008	
05/16/11 08:18:02	59.9819	0		0		0			-653	30425.74	1	0	1	-0.002	0.002	
05/16/11 08:18:04	59.979	0		0		0			-653	30425.74	1	0	1	-0.003	0.003	
05/16/11 08:18:06	59.97769	0		0		0			-653	30419.18	1	0	1	-0.001	0.001	
05/16/11 08:18:08	59.97769	0		0		0			-653	30419.18	1	0	1	0.000	0.000	
05/16/11 08:18:10	59.98126	0		0		0			-653	30419.18	1	0	1	0.004	0.004	
05/16/11 08:18:12	59.9848	0		0		0			-653	30419.18	1	0	1	0.004	0.004	
05/16/11 08:18:14	59.98868	0		0		0			-653	30424.29	1	0	1	0.004	0.004	
05/16/11 08:18:16	59.99161	0		0		0			-653	30424.29	1	0	,	0.003	0.003	
05/16/11 08:18:18	59.99353	0		0		0			-653	30424.29	1	0	1	0.002	0.002	
05/16/11 08:18:20	59.99579	0		0		0			-653	30424.29	1	0	1	0.002	0.002	
05/16/11 08:18:22	59.99677	0		0		0			-653	30440.82	1	0	1	0.001	0.001	
05/16/11 08:18:24	59.99774	0		0		0			-653	30440.82	1	0	1	0.001	0.001	
05/16/11 08:18:26	59.99838	0		0		0			-653	30431.58	1	0	1	0.001	0.001	
05/16/11 08:18:28	59.99774	0		0		0			-653	30431.58	1	0	1	-0.001	0.001	
05/16/11 08:18:30	59.9971	0		0		0			-653	30431.58	1	0	1	-0.001	0.001	
05/16/11 08:18:32	59.99741	0		0		0			-653	30431.58	1	0	1	0.000	0.000	
05/16/11 08:18:34	59.99741	0		0		0			-653	30444.25	1	0	1	0.000	0.000	
05/16/11 08:18:36	59.99741	0		0		0			-653	30444.25	1	0	1	0.000	0.000	
05/16/11 08:18:38	60.00064	0		0		0			-653	30444.25	1	1	1	0.003	0.003	
05/16/11 08:18:40	60.00323	0		0		0			-653	30444.25	1	1	1	0.003	0.003	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 $3 \mathrm{t}(0)$ t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:18:42	60.00354	0		0		0			-653	30465.11	1	1	1	0.000	0.000	
05/16/11 08:18:44	60.00259	0		0		0			-653	30465.11	1	1	1	-0.001	0.001	
05/16/11 08:18:46	60.00098	0		0		0			-653	30465.3	1	1	1	-0.002	0.002	
05/16/11 08:18:48	59.99936	0		0		0			-653	30465.3	1	1	,	-0.002	0.002	
05/16/11 08:18:50	59.99741	0		0		0			-653	30465.3	1	0	1	-0.002	0.002	
05/16/11 08:18:52	59.99677	0		0		0			-653	30465.3	1	0	1	-0.001	0.001	
05/16/11 08:18:54	59.99677	0		0		0			-653	30478.25	1	0	1	0.000	0.000	
05/16/11 08:18:56	59.9971	0		0		0			-653	30478.25	1	0	1	0.000	0.000	
05/16/11 08:18:58	59.99774	0		0		0			-653	30478.25	1	0	1	0.001	0.001	
05/16/11 08:19:00	59.99872	0		0		0			-653	30478.25	1	1	1	0.001	0.001	
05/16/11 08:19:02	59.99966	0		0		0			-653	30473.86	1	1	1	0.001	0.001	
05/16/11 08:19:04	60	0		0		0			-653	30473.86	1	1	1	0.000	0.000	
05/16/11 08:19:06	60.00034	0		0		0			-653	30468.84	1	1	1	0.000	0.000	
05/16/11 08:19:08	60.00098	0		0		0			-653	30468.84	1	1	1	0.001	0.001	
05/16/11 08:19:10	60.00226	0		0		0			-653	30468.84	1	1	1	0.001	0.001	
05/16/11 08:19:12	60.0029	0		0		0			-653	30468.84	1	1	1	0.001	0.001	
05/16/11 08:19:14	60.00259	0		0		0			-653	30469.63	1	1	1	0.000	0.000	
05/16/11 08:19:16	60.00226	0		0		0			-653	30469.63	1	1	1	0.000	0.000	
05/16/11 08:19:18	60.00226	0		0		0			-653	30469.63	1	1	1	0.000	0.000	
05/16/11 08:19:20	60.00323			0		0			-653	30469.63	1	1	1	0.001	0.001	
05/16/11 08:19:22	60.00421	0		0		0			-653	30488.41	1	1	1	0.001	0.001	
05/16/11 08:19:24	60.00485	0		0		0			-653	30488.41	1	1	1	0.001	0.001	
05/16/11 08:19:26	60.00452	0		0		0			-653	30480.29	1	1	1	0.000	0.000	
05/16/11 08:19:28	60.00354	0		0		0			-653	30480.29	1	1	1	-0.001	0.001	
05/16/11 08:19:30	60.00354	0		0		0			-653	30480.29	1	1	1	0.000	0.000	
05/16/11 08:19:32	60.00354	0		0		0			-653	30480.29	1	1	1	0.000	0.000	
05/16/11 08:19:34	60.00354			0		0			-653	30477.13	1	1	,	0.000	0.000	
05/16/11 08:19:36	60.00354	-		0		0			-653	30477.13	1	1	,	0.000	0.000	
05/16/11 08:19:38	60.00354	0		0		0			-653	30477.13	1	1	1	0.000	0.000	
05/16/11 08:19:40	60.00354	-		0		0			-653	30477.13	1	1	,	0.000	0.000	
05/16/11 08:19:42	60.00613	0		0		0			-653	30487.82	1	1	1	0.003	0.003	
05/16/11 08:19:44	60.00485	0		0		0			-653	30487.82	1	1	,	-0.001	0.001	
05/16/11 08:19:46	60.00452	-		0		0			-653	30489.73	1	1	1	0.000	0.000	
05/16/11 08:19:48	60.00452			0		0			-653	30489.73	1	1	1	0.000	0.000	
05/16/11 08:19:50	60.00354	0		0		0			-653	30489.73	1	1	,	-0.001	0.001	
05/16/11 08:19:52	60.0029	0		0		0			-653	30489.73	1	1	,	-0.001	0.001	
05/16/11 08:19:54	60.00162	0		0		0			-653	30480.09	1	1	1	-0.001	0.001	
05/16/11 08:19:56	60.00162	0		0		0			-653	30480.09	1	1	1	0.000	0.000	
05/16/11 08:19:58	60.00421	0		0		0			-653	30480.09	1	1	,	0.003	0.003	
05/16/11 08:20:00	60.00421	0		0		0			-653	30480.09	1	1	1	0.000	0.000	
05/16/11 08:20:02	60.0029	0		0		0			-653	30480.91	1	1	1	-0.001	0.001	
05/16/11 08:20:04	60.00034	0		0		0			-653	30480.91	1	1	1	-0.003	0.003	
05/16/11 08:20:06	59.99805	0		0		0			-653	30480.84	1	0	1	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:20:08	59.99646	0		0		0			-653	30480.84	1	0	1	-0.002	0.002	
05/16/11 08:20:10	59.99515	0		0		0			-653	30480.84	1	0	1	-0.001	0.001	
05/16/11 08:20:12	59.99387	0		0		0			-653	30480.84	1	0	1	-0.001	0.001	
05/16/11 08:20:14	59.99289	0		0		0			-653	30476.09	1	0	1	-0.001	0.001	
05/16/11 08:20:16	59.99255	0		0		0			-653	30476.09	1	0	1	0.000	0.000	
05/16/11 08:20:18	59.99225	0		0		0			-653	30476.09	1	0	1	0.000	0.000	
05/16/11 08:20:20	59.98965	0		0		0			-653	30476.09	1	0	1	-0.003	0.003	
05/16/11 08:20:22	59.98514	0		0		0			-653	30456.76	1	0	1	-0.005	0.005	
05/16/11 08:20:24	59.98254	0		0		0			-653	30456.76	1	0	,	-0.003	0.003	
05/16/11 08:20:26	59.97836	0		0		0			-653	30457.12	1	0	1	-0.004	0.004	
05/16/11 08:20:28	59.97641	0		0		0			-653	30457.12	1	0	,	-0.002	0.002	
05/16/11 08:20:30	59.97705	0		0		0			-653	30457.12	1	0	1	0.001	0.001	
05/16/11 08:20:32	59.97705	0		0		0			-653	30457.12	,	0	1	0.000	0.000	
05/16/11 08:20:34	59.97705	0		0		0			-653	30446.98	1	0	1	0.000	0.000	
05/16/11 08:20:36	59.97803	0		0		0			-653	30446.98	1	0	1	0.001	0.001	
05/16/11 08:20:38	59.97964	0		0		0			-653	30446.98	1	0	1	0.002	0.002	
05/16/11 08:20:40	59.9816	0		0		0			-653	30446.98	1	0	1	0.002	0.002	
05/16/11 08:20:42	59.98126	0		0		0			-653	30461.02	1	0	1	0.000	0.000	
05/16/11 08:20:44	59.97931	0		0		0			-653	30461.02	1	0	1	-0.002	0.002	
05/16/11 08:20:46	59.9761	0		0		0			-653	30460.94	1	0	1	-0.003	0.003	
05/16/11 08:20:48	59.97543	0		0		0			-653	30460.94	1	0	1	-0.001	0.001	
05/16/11 08:20:50	59.97577	0		0		0			-653	30460.94	1	0	1	0.000	0.000	
05/16/11 08:20:52	59.97675	0		0		0			-653	30460.94	1	0	1	0.001	0.001	
05/16/11 08:20:54	59.97803	0		0		0			-653	30469.23	1	0	1	0.001	0.001	
05/16/11 08:20:56	59.979	0		0		0			-653	30469.23	1	0	1	0.001	0.001	
05/16/11 08:20:58	59.97964	0		0		0			-653	30469.23	1	0	1	0.001	0.001	
05/16/11 08:21:00	59.98062	0		0		0			-653	30469.23	1	0	1	0.001	0.001	
05/16/11 08:21:02	59.9819	0		0		0			-653	30481.49	1	0	1	0.001	0.001	
05/16/11 08:21:04	59.98224	0		0		0			-653	30481.49	1	0	1	0.000	0.000	
05/16/11 08:21:06	59.98254	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:08	59.98288	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:10	59.98254	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:12	59.98254	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:14	59.98288	0		0		0			-653	30473.15	1	0	1	0.000	0.000	
05/16/11 08:21:16	59.98611	0		0		0			-653	30473.15	1	0	1	0.003	0.003	
05/16/11 08:21:18	59.99387	0		0		0			-653	30473.15	1	0	1	0.008	0.008	
05/16/11 08:21:20	60.00226	0		0		0			-653	30473.15	1	1	1	0.008	0.008	
05/16/11 08:21:22	60.01099	0		0		0			-653	30470.66	1	1	1	0.009	0.009	
05/16/11 08:21:24	60.01712	0		0		0			-653	30470.66	1	1	1	0.006	0.006	
05/16/11 08:21:26	60.02069	0		0		0			-653	30470.6	1	1	1	0.004	0.004	
05/16/11 08:21:28	60.02133	0		0		0			-653	30470.6	1	1	1	0.001	0.001	
05/16/11 08:21:30	60.02133	0		0		0			-653	30470.6	1	1	1	0.000	0.000	
05/16/11 08:21:32	60.02133	0		0		0			-653	30470.6	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:21:34	60.02325	0		0		0			-653	30461.28	1	1	1	0.002	0.002	
05/16/11 08:21:36	60.02551			0		0			-653	30461.28	1	1	1	0.002	0.002	
05/16/11 08:21:38	60.02682	0		0		0			-653	30461.28	1	1	1	0.001	0.001	
05/16/11 08:21:40	60.02844	0		0		0			-653	30461.28	1	1	1	0.002	0.002	
05/16/11 08:21:42	60.02972	0		0		0			-653	30450.44	1	1	1	0.001	0.001	
05/16/11 08:21:44	60.03101	0		0		0			-653	30450.44	1	1	1	0.001	0.001	
05/16/11 08:21:46	60.03198	0		0		0			-653	30451.91	1	1	1	0.001	0.001	
05/16/11 08:21:48	60.03296	0		0		0			-653	30451.91	1	1	1	0.001	0.001	
05/16/11 08:21:50	60.03458	0		0		0			-653	30451.91	1	1	1	0.002	0.002	
05/16/11 08:21:52	60.03488	0		0		0			-653	30451.91	1	1	1	0.000	0.000	
05/16/11 08:21:54	60.03488	0		0		0			-653	30446.52	1	1	1	0.000	0.000	
05/16/11 08:21:56	60.03424	0		0		0			-653	30446.52	1	1	,	-0.001	0.001	
05/16/11 08:21:58	60.03458	0		0		0			-653	30446.52	1	1	1	0.000	0.000	
05/16/11 08:22:00	60.03458	0		0		0			-653	30446.52	1	1	1	0.000	0.000	
05/16/11 08:22:02	60.03555	0		0		0			-653	30452.43	1	1	1	0.001	0.001	
05/16/11 08:22:04	60.03586	0		0		0			-653	30452.43	1	1	1	0.000	0.000	
05/16/11 08:22:06	60.03683	0		0		0			-653	30452.43	1	1	1	0.001	0.001	
05/16/11 08:22:08	60.03748	0		0		0			-653	30452.43	1	1	1	0.001	0.001	
05/16/11 08:22:10	60.03748	0		0		0			-653	30452.43	1	1	1	0.000	0.000	
05/16/11 08:22:12	60.03717	0		0		0			-653	30452.43	1	1	1	0.000	0.000	
05/16/11 08:22:14	60.03781	0		0		0			-653	30473.21	1	1	1	0.001	0.001	
05/16/11 08:22:16	60.03781	0		0		0			-653	30473.21	1	1	1	0.000	0.000	
05/16/11 08:22:18	60.03748	0		0		0			-653	30473.21	1	1	1	0.000	0.000	
05/16/11 08:22:20	60.0365	0		0		0			-653	30473.21	1	1	1	-0.001	0.001	
05/16/11 08:22:22	60.03683	0		0		0			-653	30476.61	1	1	1	0.000	0.000	
05/16/11 08:22:24	60.03748	0		0		0			-653	30476.61	1	1	1	0.001	0.001	
05/16/11 08:22:26	60.03748	0		0		0			-653	30476.55	1	1	1	0.000	0.000	
05/16/11 08:22:28	60.03812	0		0		0			-653	30476.55	1	1	1	0.001	0.001	
05/16/11 08:22:30	60.03876	0		0		0			-653	30476.55	1	1	1	0.001	0.001	
05/16/11 08:22:32	60.04007	0		0		0			-653	30476.55	1	1	1	0.001	0.001	
05/16/11 08:22:34	60.04169	0		0		0			-653	30473.8	1	1	,	0.002	0.002	
05/16/11 08:22:36	60.04361	0		0		0			-653	30473.8	1	1	1	0.002	0.002	
05/16/11 08:22:38	60.04523	0		0		0			-653	30473.8	1	1	1	0.002	0.002	
05/16/11 08:22:40	60.04492	0		0		0			-653	30473.8	1	1	1	0.000	0.000	
05/16/11 08:22:42	60.04459	0		0		0			-653	30471	1	1	1	0.000	0.000	
05/16/11 08:22:44	60.04395	0		0		0			-653	30471	1	1	1	-0.001	0.001	
05/16/11 08:22:46	60.04199	0		0		0			-653	30471.97	1	1	1	-0.002	0.002	
05/16/11 08:22:48	60.03717	0		0		0			-653	30471.97	1	1	1	-0.005	0.005	
05/16/11 08:22:50	60.03296	0		0		0			-653	30471.97	1	1	1	-0.004	0.004	
05/16/11 08:22:52	60.03101	0		0		0			-653	30471.97	1	1	1	-0.002	0.002	
05/16/11 08:22:54	60.03134	0		0		0			-653	30485.47	1	1	1	0.000	0.000	
05/16/11 08:22:56	60.03168	0		0		0			-653	30485.47	1	1	1	0.000	0.000	
05/16/11 08:22:58	60.03101	0		0		0			-653	30485.47	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:23:00	60.03101	0		0		0			-653	30485.47	1	1	1	0.000	0.000	
05/16/11 08:23:02	60.03232	0		0		0			-653	30505.49	1	1	1	0.001	0.001	
05/16/11 08:23:04	60.03326	0		0		0			-653	30505.49	1	1	1	0.001	0.001	
05/16/11 08:23:06	60.03326	0		0		0			-653	30505.26	1	1	1	0.000	0.000	
05/16/11 08:23:08	60.03394	0		0		0			-653	30505.26	1	1	1	0.001	0.001	
05/16/11 08:23:10	60.03296	0		0		0			-653	30505.26	1	1	1	-0.001	0.001	
05/16/11 08:23:12	60.03232	0		0		0			-653	30505.26	1	1	1	-0.001	0.001	
05/16/11 08:23:14	60.03168	0		0		0			-653	30515.6	1	1	1	-0.001	0.001	
05/16/11 08:23:16	60.03168	0		0		0			-653	30515.6	1	1	1	0.000	0.000	
05/16/11 08:23:18	60.03232	0		0		0			-653	30515.6	1	1	1	0.001	0.001	
05/16/11 08:23:20	60.03232	0		0		0			-653	30515.6	1	1	1	0.000	0.000	
05/16/11 08:23:22	60.03168	0		0		0			-653	30505.28	1	1	1	-0.001	0.001	
05/16/11 08:23:24	60.03168	0		0		0			-653	30505.28	1	1	1	0.000	0.000	
05/16/11 08:23:26	60.03134	0		0		0			-653	30506.12	1	1	1	0.000	0.000	
05/16/11 08:23:28	60.03101	0		0		0			-653	30506.12	1	1	1	0.000	0.000	
05/16/11 08:23:30	60.03036	0		0		0			-653	30506.12	1	1	1	-0.001	0.001	
05/16/11 08:23:32	60.03036	0		0		0			-653	30506.12	1	1	1	0.000	0.000	
05/16/11 08:23:34	60.02972	0		0		0			-653	30493.68	1	1	1	-0.001	0.001	
05/16/11 08:23:36	60.02875	0		0		0			-653	30493.68	1	1	1	-0.001	0.001	
05/16/11 08:23:38	60.03006	0		0		0			-653	30493.68	1	1	1	0.001	0.001	
05/16/11 08:23:40	60.03198	0		0		0			-653	30493.68	1	1	1	0.002	0.002	
05/16/11 08:23:42	60.03326	0		0		0			-653	30529.28	1	1	1	0.001	0.001	
05/16/11 08:23:44	60.03458	0		0		0			-653	30529.28	1	1	1	0.001	0.001	
05/16/11 08:23:46	60.03488	0		0		0			-653	30529.08	1	1	1	0.000	0.000	
05/16/11 08:23:48	60.0336	0		0		0			-653	30529.08	1	1	1	-0.001	0.001	
05/16/11 08:23:50	60.03326	0		0		0			-653	30529.08	1	1	1	0.000	0.000	
05/16/11 08:23:52	60.03232	0		0		0			-653	30529.08	1	1	1	-0.001	0.001	
05/16/11 08:23:54	60.03134	0		0		0			-653	30529.52	1	1	1	-0.001	0.001	
05/16/11 08:23:56	60.03168	0		0		0			-653	30529.52	1	1	1	0.000	0.000	
05/16/11 08:23:58	60.03326	0		0		0			-653	30529.52	1	1	1	0.002	0.002	
05/16/11 08:24:00	60.03458	0		0		0			-653	30529.52	1	1	,	0.001	0.001	
05/16/11 08:24:02	60.03586	0		0		0			-653	30535.57	1	1	1	0.001	0.001	
05/16/11 08:24:04	60.0365	0		0		0			-653	30535.57	1	1	1	0.001	0.001	
05/16/11 08:24:06	60.03748	0		0		0			-653	30533.89	1	1	1	0.001	0.001	
05/16/11 08:24:08	60.03683	0		0		0			-653	30533.89	1	1	1	-0.001	0.001	
05/16/11 08:24:10	60.03619	0		0		0			-653	30533.89	1	1	1	-0.001	0.001	
05/16/11 08:24:12	60.03522	0		0		0			-653	30533.89	1	1	1	-0.001	0.001	
05/16/11 08:24:14	60.03424	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:16	60.03296	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:18	60.03198	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:20	60.03134	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:22	60.03168	0		0		0			-653	30533.64		1	1	0.000	0.000	
05/16/11 08:24:24	60.03134	0		0		0			-653	30533.64	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:24:26	60.03101	0		0		0			-653	30532.32	1	1	1	0.000	0.000	
05/16/11 08:24:28	60.03036	0		0		0			-653	30532.32	1	1	1	-0.001	0.001	
05/16/11 08:24:30	60.02972	0		0		0			-653	30532.32	1	1	1	-0.001	0.001	
05/16/11 08:24:32	60.03006	0		0		0			-653	30532.32	1	1	1	0.000	0.000	
05/16/11 08:24:34	60.0307	0		0		0			-653	30551.2	1	1	1	0.001	0.001	
05/16/11 08:24:36	60.03168	0		0		0			-653	30551.2	1	1	1	0.001	0.001	
05/16/11 08:24:38	60.0336	0		0		0			-653	30551.2	1	1	1	0.002	0.002	
05/16/11 08:24:40	60.03488	0		0		0			-653	30551.2	1	1	1	0.001	0.001	
05/16/11 08:24:42	60.03522	0		0		0			-653	30548.06	1	1	1	0.000	0.000	
05/16/11 08:24:44	60.03586	0		0		0			-653	30548.06	1	1	1	0.001	0.001	
05/16/11 08:24:46	60.03717	0		0		0			-653	30543.69	1	1	1	0.001	0.001	
05/16/11 08:24:48	60.03812	0		0		0			-653	30543.69	1	1	1	0.001	0.001	
05/16/11 08:24:50	60.03717	0		0		0			-653	30543.69	1	1	1	-0.001	0.001	
05/16/11 08:24:52	60.03748	0		0		0			-653	30543.69	1	1	1	0.000	0.000	
05/16/11 08:24:54	60.03845	0		0		0			-653	30546.32	1	1	1	0.001	0.001	
05/16/11 08:24:56	60.03876	0		0		0			-653	30546.32	1	1	1	0.000	0.000	
05/16/11 08:24:58	60.03781	0		0		0			-653	30546.32	1	1	1	-0.001	0.001	
05/16/11 08:25:00	60.03619	0		0		0			-653	30546.32	1	1	1	-0.002	0.002	
05/16/11 08:25:02	60.03488	0		0		0			-653	30546.28	1	1	1	-0.001	0.001	
05/16/11 08:25:04	60.03394	0		0		0			-653	30546.28	1	1	1	-0.001	0.001	
05/16/11 08:25:06	60.0336	0		0		0			-653	30546.38	1	1	1	0.000	0.000	
05/16/11 08:25:08	60.0336	0		0		0			-653	30546.38	1	1	1	0.000	0.000	
05/16/11 08:25:10	60.03458	0		0		0			-653	30546.38	1	1	1	0.001	0.001	
05/16/11 08:25:12	60.0365	0		0		0			-653	30546.38	1	1	1	0.002	0.002	
05/16/11 08:25:14	60.03748	0		0		0			-653	30556.84	1	1	1	0.001	0.001	
05/16/11 08:25:16	60.03781	0		0		0			-653	30556.84	1	1	1	0.000	0.000	
05/16/11 08:25:18	60.03748	0		0		0			-653	30556.84	1	1	1	0.000	0.000	
05/16/11 08:25:20	60.0365	0		0		0			-653	30556.84	1	1	1	-0.001	0.001	
05/16/11 08:25:22	60.03488	0		0		0			-653	30557.42	1	1	1	-0.002	0.002	
05/16/11 08:25:24	60.0336	0		0		0			-653	30557.42	1	1	1	-0.001	0.001	
05/16/11 08:25:26	60.03232	0		0		0			-653	30557.43	1	1	,	-0.001	0.001	
05/16/11 08:25:28	60.03134	0		0		0			-653	30557.43	1	1	1	-0.001	0.001	
05/16/11 08:25:30	60.03101	0		0		0			-653	30557.43	1	1	1	0.000	0.000	
05/16/11 08:25:32	60.03101	0		0		0			-653	30557.43	1	1	1	0.000	0.000	
05/16/11 08:25:34	60.0307	0		0		0			-653	30566.39	1	1	1	0.000	0.000	
05/16/11 08:25:36	60.02972	0		0		0			-653	30566.39	1	1	1	-0.001	0.001	
05/16/11 08:25:38	60.02908	0		0		0			-653	30566.39	1	1	1	-0.001	0.001	
05/16/11 08:25:40	60.02811	0		0		0			-653	30566.39	1	1	1	-0.001	0.001	
05/16/11 08:25:42	60.02649	0		0		0			-653	30567.26	1	1	1	-0.002	0.002	
05/16/11 08:25:44	60.02521	0		0		0			-653	30567.26	1	1	1	-0.001	0.001	
05/16/11 08:25:46	60.02359	0		0		0			-653	30562.43	1	1	1	-0.002	0.002	
05/16/11 08:25:48	60.02133	0		0		0			-653	30562.43		1	1	-0.002	0.002	
05/16/11 08:25:50	60.02002	0		0		0			-653	30562.43	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:25:52	60.02002	0		0		0			-653	30562.43	1	1	1	0.000	0.000	
05/16/11 08:25:54	60.02069	0		0		0			-653	30573.32	1	1	1	0.001	0.001	
05/16/11 08:25:56	60.02133	0		0		0			-653	30573.32	1	1	1	0.001	0.001	
05/16/11 08:25:58	60.021	0		0		0			-653	30573.32	1	1	1	0.000	0.000	
05/16/11 08:26:00	60.02036	0		0		0			-653	30573.32	1	1	1	-0.001	0.001	
05/16/11 08:26:02	60.01938	0		0		0			-653	30567	1	1	1	-0.001	0.001	
05/16/11 08:26:04	60.01938	0		0		0			-653	30567	1	1	1	0.000	0.000	
05/16/11 08:26:06	60.01938	0		0		0			-653	30567.04	1	1	1	0.000	0.000	
05/16/11 08:26:08	60.01971	0		0		0			-653	30567.04	1	1	1	0.000	0.000	
05/16/11 08:26:10	60.01971	0		0		0			-653	30567.04	1	1	1	0.000	0.000	
05/16/11 08:26:12	60.01907	0		0		0			-653	30567.04	1	1	1	-0.001	0.001	
05/16/11 08:26:14	60.01938	0		0		0			-653	30556.49	1	1	1	0.000	0.000	
05/16/11 08:26:16	60.02036	0		0		0			-653	30556.49	1	1	1	0.001	0.001	
05/16/11 08:26:18	60.02036	0		0		0			-653	30556.49	1	1	1	0.000	0.000	
05/16/11 08:26:20	60.01907	0		0		0			-653	30556.49	1	1	1	-0.001	0.001	
05/16/11 08:26:22	60.01712	0		0		0			-653	30530.19	1	1	1	-0.002	0.002	
05/16/11 08:26:24	60.01584	0		0		0			-653	30530.19	1	1	1	-0.001	0.001	
05/16/11 08:26:26	60.0152	0		0		0			-653	30530.04	1	1	1	-0.001	0.001	
05/16/11 08:26:28	60.0155	0		0		0			-653	30530.04	1	1	1	0.000	0.000	
05/16/11 08:26:30	60.01614	0		0		0			-653	30530.04	1	1	1	0.001	0.001	
05/16/11 08:26:32	60.01746	0		0		0			-653	30530.04	1	1	1	0.001	0.001	
05/16/11 08:26:34	60.0181	0		0		0			-653	30542.27	1	1	,	0.001	0.001	
05/16/11 08:26:36	60.01746	0		0		0			-653	30542.27	1	1	1	-0.001	0.001	
05/16/11 08:26:38	60.01712	0		0		0			-653	30542.27	1	1	1	0.000	0.000	
05/16/11 08:26:40	60.01648	0		0		0			-653	30542.27	1	1	1	-0.001	0.001	
05/16/11 08:26:42	60.01486	0		0		0			-653	30559.64	1	1	1	-0.002	0.002	
05/16/11 08:26:44	60.01227	0		0		0			-653	30559.64	1	1	1	-0.003	0.003	
05/16/11 08:26:46	60.01035	0		0		0			-653	30559.67	1	1	1	-0.002	0.002	
05/16/11 08:26:48	60.00937	0		0		0			-653	30559.67	1	1	1	-0.001	0.001	
05/16/11 08:26:50	60.00903	0		0		0			-653	30559.67	1	1	1	0.000	0.000	
05/16/11 08:26:52	60.00937	0		0		0			-653	30559.67	1	1	,	0.000	0.000	
05/16/11 08:26:54	60.01065	0		0		0			-653	30552.02	1	1	1	0.001	0.001	
05/16/11 08:26:56	60.01163	0		0		0			-653	30552.02	1	1	1	0.001	0.001	
05/16/11 08:26:58	60.01227	0		0		0			-653	30552.02	1	1	1	0.001	0.001	
05/16/11 08:27:00	60.01163	0		0		0			-653	30552.02	1	1	1	-0.001	0.001	
05/16/11 08:27:02	60.00873	0		0		0			-653	30556.78	1	1	1	-0.003	0.003	
05/16/11 08:27:04	60.00647	0		0		0			-653	30556.78	1	1	1	-0.002	0.002	
05/16/11 08:27:06	60.00583	0		0		0			-653	30550.7	1	1	1	-0.001	0.001	
05/16/11 08:27:08	60.00613	0		0		0			-653	30550.7	1	1	1	0.000	0.000	
05/16/11 08:27:10	60.00613	0		0		0			-653	30550.7	1	1	,	0.000	0.000	
05/16/11 08:27:12	60.00711	0		0		0			-653	30550.7	1	1	1	0.001	0.001	
05/16/11 08:27:14	60.00903	0		0		0			-653	30559.76		1	1	0.002	0.002	
05/16/11 08:27:16	60.01099	0		0		0			-653	30559.76	1	1	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:27:18	60.01099	0		0		0			-653	30559.76	1	1	1	0.000	0.000	
05/16/11 08:27:20	60.01035	0		0		0			-653	30559.76	1	1	1	-0.001	0.001	
05/16/11 08:27:22	60.0097	0		0		0			-653	30563.61	1	1	1	-0.001	0.001	
05/16/11 08:27:24	60.00873	0		0		0			-653	30563.61	1	1	1	-0.001	0.001	
05/16/11 08:27:26	60.00711	0		0		0			-653	30556.57	1	1	1	-0.002	0.002	
05/16/11 08:27:28	60.00613	0		0		0			-653	30556.57	1	1	1	-0.001	0.001	
05/16/11 08:27:30	60.00583	0		0		0			-653	30556.57	1	1	1	0.000	0.000	
05/16/11 08:27:32	60.00711	0		0		0			-653	30556.57	1	1	1	0.001	0.001	
05/16/11 08:27:34	60.00809	0		0		0			-653	30556.7	1	1	1	0.001	0.001	
05/16/11 08:27:36	60.00839	0		0		0			-653	30556.7	1	1	1	0.000	0.000	
05/16/11 08:27:38	60.00809	0		0		0			-653	30556.7	1	1	1	0.000	0.000	
05/16/11 08:27:40	60.00711	0		0		0			-653	30556.7	1	1	1	-0.001	0.001	
05/16/11 08:27:42	60.00677	0		0		0			-653	30544.52	1	1	1	0.000	0.000	
05/16/11 08:27:44	60.00775	0		0		0			-653	30544.52	1	1	1	0.001	0.001	
05/16/11 08:27:46	60.00711	0		0		0			-653	30543.34	1	1	1	-0.001	0.001	
05/16/11 08:27:48	60.00647	0		0		0			-653	30543.34	1	1	1	-0.001	0.001	
05/16/11 08:27:50	60.00388	0		0		0			-653	30543.34	1	1	1	-0.003	0.003	
05/16/11 08:27:52	60.00128	0		0		0			-653	30543.34	1	1	,	-0.003	0.003	
05/16/11 08:27:54	59.99936	0		0		0			-653	30554.42	1	1	1	-0.002	0.002	
05/16/11 08:27:56	59.99805	0		0		0			-653	30554.42	1	0	1	-0.001	0.001	
05/16/11 08:27:58	59.99741	0		0		0			-653	30554.42	1	0	1	-0.001	0.001	
05/16/11 08:28:00	59.9971	0		0		0			-653	30554.42	1	0	1	0.000	0.000	
05/16/11 08:28:02	59.99677	0		0		0			-653	30534.33	1	0	1	0.000	0.000	
05/16/11 08:28:04	59.9971	0		0		0			-653	30534.33	1	0	1	0.000	0.000	
05/16/11 08:28:06	59.99646	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:08	59.99579	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:10	59.99451	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:12	59.99353	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:14	59.99289	0		0		0			-653	30557.2	1	0	1	-0.001	0.001	
05/16/11 08:28:16	59.99191	0		0		0			-653	30557.2	1	0	1	-0.001	0.001	
05/16/11 08:28:18	59.98901	0		0		0			-653	30557.2	1	0	1	-0.003	0.003	
05/16/11 08:28:20	59.98611	0		0		0			-653	30557.2	1	0	1	-0.003	0.003	
05/16/11 08:28:22	59.9845	0		0		0			-653	30560.91	1	0	1	-0.002	0.002	
05/16/11 08:28:24	59.98318	0		0		0			-653	30560.91	1	0	1	-0.001	0.001	
05/16/11 08:28:26	59.9819	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:28	59.98093	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:30	59.97964	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:32	59.97867	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:34	59.97964	0		0		0			-653	30560.08	,	0	1	0.001	0.001	
05/16/11 08:28:36	59.97998	0		0		0			-653	30560.08	1	0	1	0.000	0.000	
05/16/11 08:28:38	59.98062	0		0		0			-653	30560.08	1	0	1	0.001	0.001	
05/16/11 08:28:40	59.98029	0		0		0			-653	30560.08	1	0	1	0.000	0.000	
05/16/11 08:28:42	59.979	0		0		0			-653	30558.72	1	0	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:28:44	59.97739	0		0		0			-653	30558.72	1	0	1	-0.002	0.002	
05/16/11 08:28:46	59.97513	0		0		0			-653	30553.46	1	0	1	-0.002	0.002	
05/16/11 08:28:48	59.97351	0		0		0			-653	30553.46	1	0	1	-0.002	0.002	
05/16/11 08:28:50	59.97253			0		0			-653	30553.46	1	0	1	-0.001	0.001	
05/16/11 08:28:52	59.97189	0		0		0			-653	30553.46	1	0	1	-0.001	0.001	
05/16/11 08:28:54	59.97318	0		0		0			-653	30562.63	1	0	1	0.001	0.001	
05/16/11 08:28:56	59.97415	0		0		0			-653	30562.63	1	0	1	0.001	0.001	
05/16/11 08:28:58	59.97449	0		0		0			-653	30562.63	1	0	1	0.000	0.000	
05/16/11 08:29:00	59.97513	0		0		0			-653	30562.63	1	0	1	0.001	0.001	
05/16/11 08:29:02	59.97577	0		0		0			-653	30578.05	1	0	1	0.001	0.001	
05/16/11 08:29:04	59.97641	0		0		0			-653	30578.05	1	0	1	0.001	0.001	
05/16/11 08:29:06	59.97705	0		0		0			-653	30570.97	1	0	1	0.001	0.001	
05/16/11 08:29:08	59.97675	0		0		0			-653	30570.97	1	0	1	0.000	0.000	
05/16/11 08:29:10	59.97675	0		0		0			-653	30570.97	1	0	1	0.000	0.000	
05/16/11 08:29:12	59.97675	0		0		0			-653	30570.97	1	0	1	0.000	0.000	
05/16/11 08:29:14	59.9761	0		0		0			-653	30593.17	1	0	1	-0.001	0.001	
05/16/11 08:29:16	59.9761	0		0		0			-653	30593.17	1	0	1	0.000	0.000	
05/16/11 08:29:18	59.97641	0		0		0			-653	30593.17	1	0	1	0.000	0.000	
05/16/11 08:29:20	59.97705	0		0		0			-653	30593.17	1	0	1	0.001	0.001	
05/16/11 08:29:22	59.97803	0		0		0			-653	30575.07	1	0	1	0.001	0.001	
05/16/11 08:29:24	59.98029	0		0		0			-653	30575.07	1	0	1	0.002	0.002	
05/16/11 08:29:26	59.98318	0		0		0			-653	30575.07	1	0	1	0.003	0.003	
05/16/11 08:29:28	59.98547	0		0		0			-653	30575.07	1	0	1	0.002	0.002	
05/16/11 08:29:30	59.98709	0		0		0			-653	30575.07	1	0	1	0.002	0.002	
05/16/11 08:29:32	59.98965	0		0		0			-653	30575.07	1	0	1	0.003	0.003	
05/16/11 08:29:34	59.99225	0		0		0			-653	30575.72	1	0	1	0.003	0.003	
05/16/11 08:29:36	59.99484	0		0		0			-653	30575.72	1	0	1	0.003	0.003	
05/16/11 08:29:38	59.99646	0		0		0			-653	30575.72	1	0	1	0.002	0.002	
05/16/11 08:29:40	59.99774	0		0		0			-653	30575.72	1	0	1	0.001	0.001	
05/16/11 08:29:42	59.99966	0		0		0			-653	30583.84	1	1	1	0.002	0.002	
05/16/11 08:29:44	60.00034	0		0		0			-653	30583.84	1	1	1	0.001	0.001	
05/16/11 08:29:46	60.00128	0		0		0			-653	30586.4	,	1	1	0.001	0.001	
05/16/11 08:29:48	60.00195	0		0		0			-653	30586.4	1	1	1	0.001	0.001	
05/16/11 08:29:50	60.00226	0		0		0			-653	30586.4	1	1	1	0.000	0.000	
05/16/11 08:29:52	60.0029	0		0		0			-653	30586.4	1	1	1	0.001	0.001	
05/16/11 08:29:54	60.00354	0		0		0			-653	30589.72	1	1	1	0.001	0.001	
05/16/11 08:29:56	60.00421	0		0		0			-653	30589.72	1	1	1	0.001	0.001	
05/16/11 08:29:58	60.00452	0		0		0			-653	30589.72	1	1	1	0.000	0.000	
05/16/11 08:30:00	60.00388	0		0		0			-653	30589.72	1	1	1	-0.001	0.001	
05/16/11 08:30:02	60.00388	0		0		0			-653	30590.3	1	1	1	0.000	0.000	
05/16/11 08:30:04	60.00421	0		0		0			-653	30590.3	1	1	1	0.000	0.000	
05/16/11 08:30:06	60.00421	0		0		0			-653	30590.22	1	1	1	0.000	0.000	
05/16/11 08:30:08	60.00388	0		0		0			-653	30590.22	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:30:10	60.00195	0		0		0			-653	30590.22	1	1	1	-0.002	0.002	
05/16/11 08:30:12	59.99966			0		0			-653	30590.22	1	1	1	-0.002	0.002	
05/16/11 08:30:14	59.99387	0		0		0			-653	30600.12	1	0	1	-0.006	0.006	
05/16/11 08:30:16	59.99387	0		0		0			-653	30600.12	1	0	1	0.000	0.000	
05/16/11 08:30:18	59.98999	0		0		0			-653	30600.12	1	0	1	-0.004	0.004	
05/16/11 08:30:20	59.98868	0		0		0			-653	30600.12	1	0	1	-0.001	0.001	
05/16/11 08:30:22	59.98709	0		0		0			-653	30603.38	1	0	1	-0.002	0.002	
05/16/11 08:30:24	59.98578	0		0		0			-653	30603.38	1	0	1	-0.001	0.001	
05/16/11 08:30:26	59.98578	0		0		0			-653	30597.09	1	0	1	0.000	0.000	
05/16/11 08:30:28	59.98288	0		0		0			-653	30597.09	1	0	1	-0.003	0.003	
05/16/11 08:30:30	59.97964	0		0		0			-653	30597.09	1	0	1	-0.003	0.003	
05/16/11 08:30:32	59.97675	0		0		0			-653	30597.09	1	0	,	-0.003	0.003	
05/16/11 08:30:34	59.97479	0		0		0			-653	30603.96	1	0	1	-0.002	0.002	
05/16/11 08:30:36	59.97479	0		0		0			-653	30603.96	1	0	1	0.000	0.000	
05/16/11 08:30:38	59.97641	0		0		0			-653	30603.96	1	0	1	0.002	0.002	
05/16/11 08:30:40	59.97641	0		0		0			-653	30603.96	1	0	1	0.000	0.000	
05/16/11 08:30:42	59.97543	0		0		0			-653	30607.96	1	0	1	-0.001	0.001	
05/16/11 08:30:44	59.97351	0		0		0			-653	30607.96	1	0	1	-0.002	0.002	
05/16/11 08:30:46	59.97318	0		0		0			-653	30601.98	1	0	1	0.000	0.000	
05/16/11 08:30:48	59.97513	0		0		0			-653	30601.98	1	0	1	0.002	0.002	
05/16/11 08:30:50	59.97641	0		0		0			-653	30597.09	1	0	1	0.001	0.001	
05/16/11 08:30:52	59.97705	0		0		0			-653	30597.09	1	0	1	0.001	0.001	
05/16/11 08:30:54	59.97867	0		0		0			-653	30607.96	1	0	1	0.002	0.002	
05/16/11 08:30:56	59.97836	0		0		0			-653	30607.96	1	0	1	0.000	0.000	
05/16/11 08:30:58	59.97803	0		0		0			-653	30607.96	1	0	1	0.000	0.000	
05/16/11 08:31:00	59.97543	0		0		0			-653	30607.96	1	0	1	-0.003	0.003	
05/16/11 08:31:02	59.97415	0		0		0			-653	30607.96	1	0	1	-0.001	0.001	
05/16/11 08:31:04	59.97415	0		0		0			-653	30601.98	1	0	1	0.000	0.000	
05/16/11 08:31:06	59.97479	0		0		0			-653	30601.98	1	0	1	0.001	0.001	
05/16/11 08:31:08	59.97415	0		0		0			-653	30601.98	1	0	1	-0.001	0.001	
05/16/11 08:31:10	59.97351	0		0		0			-653	30601.98	1	0	,	-0.001	0.001	
05/16/11 08:31:12	59.97351	0		0		0			-653	30601.98	1	0	1	0.000	0.000	
05/16/11 08:31:14	59.97543	0		0		0			-653	30632.79	1	0	1	0.002	0.002	
05/16/11 08:31:16	59.97769	0		0		0			-653	30632.79	1	0	1	0.002	0.002	
05/16/11 08:31:18	59.98062	0		0		0			-653	30632.79	1	0	1	0.003	0.003	
05/16/11 08:31:20	59.98514	0		0		0			-653	30632.79	1	0	1	0.005	0.005	
05/16/11 08:31:22	59.98773	0		0		0			-653	30632.79	1	0	1	0.003	0.003	
05/16/11 08:31:24	59.98965	0		0		0			-653	30633.18	1	0	1	0.002	0.002	
05/16/11 08:31:26	59.99097	0		0		0			-653	30633.18	1	0	1	0.001	0.001	
05/16/11 08:31:28	59.99225	0		0		0			-653	30633.18	1	0	1	0.001	0.001	
05/16/11 08:31:30	59.99323	0		0		0			-653	30633.18	1	0	1	0.001	0.001	
05/16/11 08:31:32	59.99612	0		0		0			-653	30633.18	1	0	1	0.003	0.003	
05/16/11 08:31:34	60.00034	0		0		0			-653	30620.6	1	1	1	0.004	0.004	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align T(0) 1
05/16/11 08:31:36	60.00452	0		0		0			-653	30620.6	1	1	1	0.004	0.004	
05/16/11 08:31:38	60.00809	0		0		0			-653	30620.6	1	1	1	0.004	0.004	
05/16/11 08:31:40	60.01099	0		0		0			-653	30620.6	1	1	1	0.003	0.003	
05/16/11 08:31:42	60.01389	0		0		0			-653	30620.6	1	1	1	0.003	0.003	
05/16/11 08:31:44	60.01776	0		0		0			-653	30620.91	1	1	1	0.004	0.004	
05/16/11 08:31:46	60.02069	0		0		0			-653	30620.91	1	1	1	0.003	0.003	
05/16/11 08:31:48	60.02164	0		0		0			-653	30620.91	1	1	1	0.001	0.001	
05/16/11 08:31:50	60.021	0		0		0			-653	30620.91	1	1	1	-0.001	0.001	
05/16/11 08:31:52	60.01907	0		0		0			-653	30620.91	1	1	1	-0.002	0.002	
05/16/11 08:31:54	60.0181	0		0		0			-653	30661.87	1	1	1	-0.001	0.001	
05/16/11 08:31:56	60.0184	0		0		0			-653	30661.87	1	1	,	0.000	0.000	
05/16/11 08:31:58	60.02069	0		0		0			-653	30661.87	1	1	1	0.002	0.002	
05/16/11 08:32:00	60.0239	0		0		0			-653	30661.87	1	1	1	0.003	0.003	
05/16/11 08:32:02	60.02618	0		0		0			-653	30661.87	1	1	1	0.002	0.002	
05/16/11 08:32:04	60.02682	0		0		0			-653	30663.73	1	1	1	0.001	0.001	
05/16/11 08:32:06	60.02649	0		0		0			-653	30663.73	1	1	1	0.000	0.000	
05/16/11 08:32:08	60.02585	0		0		0			-653	30663.73	1	1	1	-0.001	0.001	
05/16/11 08:32:10	60.02359	0		0		0			-653	30663.73	1	1	1	-0.002	0.002	
05/16/11 08:32:12	60.02359	0		0		0			-653	30663.73	1	1	1	0.000	0.000	
05/16/11 08:32:14	60.02164	0		0		0			-653	30659.84	1	1	1	-0.002	0.002	
05/16/11 08:32:16	60.02231	0		0		0			-653	30659.84	1	1	1	0.001	0.001	
05/16/11 08:32:18	60.02325	0		0		0			-653	30659.84	1	1	1	0.001	0.001	
05/16/11 08:32:20	60.02359	0		0		0			-653	30659.84	1	1	1	0.000	0.000	
05/16/11 08:32:22	60.02295	0		0		0			-653	30659.84	1	1	1	-0.001	0.001	
05/16/11 08:32:24	60.02133	0		0		0			-653	30653.46	1	1	1	-0.002	0.002	
05/16/11 08:32:26	60.021	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:28	60.021	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:30	60.02133	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:32	60.021	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:34	60.02036	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:36	60.02002	0		0		0			-653	30661.6	1	1	1	0.000	0.000	
05/16/11 08:32:38	60.01938	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:40	60.0184	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:42	60.01712	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:44	60.01584	0		0		0			-653	30655.51	1	1	1	-0.001	0.001	
05/16/11 08:32:46	60.01486	0		0		0			-653	30655.51	1	1	1	-0.001	0.001	
05/16/11 08:32:48	60.01453	0		0		0			-653	30655.51	1	1	1	0.000	0.000	
05/16/11 08:32:50	60.01486	0		0		0			-653	30655.51	1	1	1	0.000	0.000	
05/16/11 08:32:52	60.01453	0		0		0			-653	30655.51	1	1	1	0.000	0.000	
05/16/11 08:32:54	60.01486	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:32:56	60.0152	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:32:58	60.01486	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:33:00	60.0152	0		0		0			-653	30648.14	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:33:02	60.0152	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:33:04	60.01648	0		0		0			-653	30648.29	1	1	1	0.001	0.001	
05/16/11 08:33:06	60.01614	0		0		0			-653	30648.29	1	1	1	0.000	0.000	
05/16/11 08:33:08	60.0152	0		0		0			-653	30648.29	1	1	1	-0.001	0.001	
05/16/11 08:33:10	60.01486	0		0		0			-653	30648.29	1	1	1	0.000	0.000	
05/16/11 08:33:12	60.01453	0		0		0			-653	30648.29	1	1	1	0.000	0.000	
05/16/11 08:33:14	60.01291	0		0		0			-653	30652.04	1	1	1	-0.002	0.002	
05/16/11 08:33:16	60.01099	0		0		0			-653	30652.04	1	1	1	-0.002	0.002	
05/16/11 08:33:18	60.00775	0		0		0			-653	30652.04	1	1	1	-0.003	0.003	
05/16/11 08:33:20	60.00421	0		0		0			-653	30652.04	1	1	1	-0.004	0.004	
05/16/11 08:33:22	60.00162	0		0		0			-653	30652.04	1	1	1	-0.003	0.003	
05/16/11 08:33:24	60	0		0		0			-653	30651.84	1	1	1	-0.002	0.002	
05/16/11 08:33:26	59.99774	0		0		0			-653	30651.84	1	0	1	-0.002	0.002	
05/16/11 08:33:28	59.99515	0		0		0			-653	30651.84	,	0	1	-0.003	0.003	
05/16/11 08:33:30	59.99255	0		0		0			-653	30651.84	1	0	1	-0.003	0.003	
05/16/11 08:33:32	59.9903	0		0		0			-653	30651.84	1	0	1	-0.002	0.002	
05/16/11 08:33:34	59.98676	0		0		0			-653	30633.8	1	0	1	-0.004	0.004	
05/16/11 08:33:36	59.98352	0		0		0			-653	30633.8	1	0	1	-0.003	0.003	
05/16/11 08:33:38	59.98062	0		0		0			-653	30633.8	1	0	1	-0.003	0.003	
05/16/11 08:33:40	59.97964	0		0		0			-653	30633.8	1	0	1	-0.001	0.001	
05/16/11 08:33:42	59.97867	0		0		0			-653	30633.8	1	0	1	-0.001	0.001	
05/16/11 08:33:44	59.97705	0		0		0			-653	30627.71	1	0	,	-0.002	0.002	
05/16/11 08:33:46	59.97641	0		0		0			-653	30627.71	1	0	1	-0.001	0.001	
05/16/11 08:33:48	59.97675	0		0		0			-653	30627.71	1	0	1	0.000	0.000	
05/16/11 08:33:50	59.97641	0		0		0			-653	30627.71	1	0	1	0.000	0.000	
05/16/11 08:33:52	59.97577	0		0		0			-653	30627.71	1	0	1	-0.001	0.001	
05/16/11 08:33:54	59.97479	0		0		0			-653	30634.13	1	0	1	-0.001	0.001	
05/16/11 08:33:56	59.97415	0		0		0			-653	30634.13	1	0	1	-0.001	0.001	
05/16/11 08:33:58	59.97287	0		0		0			-653	30634.13	1	0	1	-0.001	0.001	
05/16/11 08:34:00	59.97125	0		0		0			-653	30634.13	1	0	1	-0.002	0.002	
05/16/11 08:34:02	59.97092	0		0		0			-653	30634.13	1	0	,	0.000	0.000	
05/16/11 08:34:04	59.97125	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:06	59.97061	0		0		0			-653	30627.05	1	0	1	-0.001	0.001	
05/16/11 08:34:08	59.97092	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:10	59.97125	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:12	59.97156	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:14	59.97253	0		0		0			-653	30662.72	1	0	1	0.001	0.001	
05/16/11 08:34:16	59.97449	0		0		0			-653	30662.72	1	0	1	0.002	0.002	
05/16/11 08:34:18	59.97577	0		0		0			-653	30662.72	1	0	1	0.001	0.001	
05/16/11 08:34:20	59.97641	0		0		0			-653	30662.72	1	0	,	0.001	0.001	
05/16/11 08:34:22	59.97641	0		0		0			-653	30662.72	1	0	1	0.000	0.000	
05/16/11 08:34:24	59.97513	0		0		0			-653	30656.52		0	1	-0.001	0.001	
05/16/11 08:34:26	59.9761	0		0		0			-653	30656.52	1	0	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 $3 \mathrm{t}(0)$ t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:34:28	59.979	0		0		0			-653	30656.52	1	0	1	0.003	0.003	
05/16/11 08:34:30	59.98126	0		0		0			-653	30656.52	1	0	1	0.002	0.002	
05/16/11 08:34:32	59.98224	0		0		0			-653	30656.52	1	0	1	0.001	0.001	
05/16/11 08:34:34	59.98254	0		0		0			-653	30642.25	1	0	,	0.000	0.000	
05/16/11 08:34:36	59.98254	0		0		0			-653	30642.25	1	0	1	0.000	0.000	
05/16/11 08:34:38	59.9816	0		0		0			-653	30642.25	1	0	1	-0.001	0.001	
05/16/11 08:34:40	59.98029	0		0		0			-653	30642.25	1	0	1	-0.001	0.001	
05/16/11 08:34:42	59.97964	0		0		0			-653	30642.25	1	0	1	-0.001	0.001	
05/16/11 08:34:44	59.98062	0		0		0			-653	30642.49	1	0	1	0.001	0.001	
05/16/11 08:34:46	59.98093	0		0		0			-653	30642.49	1	0	1	0.000	0.000	
05/16/11 08:34:48	59.98029	0		0		0			-653	30642.49	1	0	,	-0.001	0.001	
05/16/11 08:34:50	59.97931	0		0		0			-653	30642.49	1	0	1	-0.001	0.001	
05/16/11 08:34:52	59.97836	0		0		0			-653	30642.49	1	0	1	-0.001	0.001	
05/16/11 08:34:54	59.97803	0		0		0			-653	30645.72	1	0	1	0.000	0.000	
05/16/11 08:34:56	59.97803	0		0		0			-653	30645.72	1	0	1	0.000	0.000	
05/16/11 08:34:58	59.97867	0		0		0			-653	30645.72	1	0	1	0.001	0.001	
05/16/11 08:35:00	59.97964	0		0		0			-653	30645.72	1	0	1	0.001	0.001	
05/16/11 08:35:02	59.98062	0		0		0			-653	30645.72	1	0	1	0.001	0.001	
05/16/11 08:35:04	59.98126	0		0		0			-653	30648.55	1	0	1	0.001	0.001	
05/16/11 08:35:06	59.98224	0		0		0			-653	30648.55	1	0	1	0.001	0.001	
05/16/11 08:35:08	59.98416	0		0		0			-653	30648.55	1	0	1	0.002	0.002	
05/16/11 08:35:10	59.98547	0		0		0			-653	30648.55	1	0	1	0.001	0.001	
05/16/11 08:35:12	59.98578	0		0		0			-653	30648.55	1	0	1	0.000	0.000	
05/16/11 08:35:14	59.98578	0		0		0			-653	30661.06	1	0	1	0.000	0.000	
05/16/11 08:35:16	59.98676	0		0		0			-653	30661.06	1	0	1	0.001	0.001	
05/16/11 08:35:18	59.99063	0		0		0			-653	30661.06	1	0	1	0.004	0.004	
05/16/11 08:35:20	59.99417	0		0		0			-653	30661.06	1	0	,	0.004	0.004	
05/16/11 08:35:22	59.99805	0		0		0			-653	30661.06	1	0	,	0.004	0.004	
05/16/11 08:35:24	59.99966			0		0			-653	30661.06	1	1	1	0.002	0.002	
05/16/11 08:35:26	60.00226	-		0		0			-653	30661.06	1	1	,	0.003	0.003	
05/16/11 08:35:28	60.00195	0		0		0			-653	30661.06	1	1	1	0.000	0.000	
05/16/11 08:35:30	60.00098	0		0		0			-653	30661.06	1	1	,	-0.001	0.001	
05/16/11 08:35:32	59.99936	0		0		0			-653	30661.06	1	1	1	-0.002	0.002	
05/16/11 08:35:34	59.99872			0		0			-653	30684.31	1	1	1	-0.001	0.001	
05/16/11 08:35:36	59.99774	0		0		0			-653	30684.31	1	0	,	-0.001	0.001	
05/16/11 08:35:38	59.99741	0		0		0			-653	30684.31	1	0	,	0.000	0.000	
05/16/11 08:35:40	59.99741	0		0		0			-653	30684.31	1	0	1	0.000	0.000	
05/16/11 08:35:42	59.99838	0		0		0			-653	30684.31	1	0	1	0.001	0.001	
05/16/11 08:35:44	59.99966	0		0		0			-653	30686.83	1	1	,	0.001	0.001	
05/16/11 08:35:46	60.00064	0		0		0			-653	30686.83	1	1	1	0.001	0.001	
05/16/11 08:35:48	60.00098	0		0		0			-653	30686.83	1	1	1	0.000	0.000	
05/16/11 08:35:50	60.00064	0		0		0			-653	30686.83	1	1	1	0.000	0.000	
05/16/11 08:35:52	60	0		0		0			-653	30686.83	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:35:54	59.99936	0		0		0			-653	30678.05	1	1	1	-0.001	0.001	
05/16/11 08:35:56	59.99741	0		0		0			-653	30678.05	1	0	1	-0.002	0.002	
05/16/11 08:35:58	59.99484	0		0		0				30678.05	1	0	1	-0.003	0.003	
05/16/11 08:36:00	59.99289	0		0		0				30678.05	1	0	1	-0.002	0.002	
05/16/11 08:36:02	59.99097	0		0		0				30678.05	1	0	1	-0.002	0.002	
05/16/11 08:36:04	59.98965	0		0		0				30679.19	1	0	1	-0.001	0.001	
05/16/11 08:36:06	59.98804	0		0		0				30679.19	1	0	1	-0.002	0.002	
05/16/11 08:36:08	59.98773	0		0		0				30679.19	1	0	1	0.000	0.000	
05/16/11 08:36:10	59.98804	0		0		0				30679.19	1	0	1	0.000	0.000	
05/16/11 08:36:12	59.98901	0		0		0				30679.19	1	0	1	0.001	0.001	
05/16/11 08:36:14	59.99063	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:16	59.99255	0		0		0				30684.85	1	0	,	0.002	0.002	
05/16/11 08:36:18	59.99484	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:20	59.99677	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:22	59.99838	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:24	59.99872	0		0		0				30684.99	1	1	1	0.000	0.000	
05/16/11 08:36:26	59.99872	0		0		0				30684.99	1	1	1	0.000	0.000	
05/16/11 08:36:28	59.99936	0		0		0				30684.99	1	1	1	0.001	0.001	
05/16/11 08:36:30	60.00195	0		0		0				30684.99	1	1	1	0.003	0.003	
05/16/11 08:36:32	60.00485	0		0		0				30684.99	1	1	1	0.003	0.003	
05/16/11 08:36:34	60.00809	0		0		0				30687.29	1	1	1	0.003	0.003	
05/16/11 08:36:36	60.01099	0		0		0				30687.29	1	1	1	0.003	0.003	
05/16/11 08:36:38	60.01324	0		0		0				30687.29	1	1	1	0.002	0.002	
05/16/11 08:36:40	60.01422	0		0		0				30687.29	1	1	1	0.001	0.001	
05/16/11 08:36:42	60.01486	0		0		0				30687.29	1	1	1	0.001	0.001	
05/16/11 08:36:44	60.01453	0		0		0				30687.59	1	1	1	0.000	0.000	
05/16/11 08:36:46	60.01227	0		0		0				30687.59	1	1	1	-0.002	0.002	
05/16/11 08:36:48	60.01099	0		0		0				30687.59	1	1	1	-0.001	0.001	
05/16/11 08:36:50	60.01099	0		0		0				30687.59	1	1	1	0.000	0.000	
05/16/11 08:36:52	60.01227	0		0		0				30687.59	1	1	1	0.001	0.001	
05/16/11 08:36:54	60.01227	0		0		0				30726.76	1	1	1	0.000	0.000	
05/16/11 08:36:56	60.01163	0		0		0				30726.76	1	1	1	-0.001	0.001	
05/16/11 08:36:58	60.01132	0		0		0				30726.76	1	1	1	0.000	0.000	
05/16/11 08:37:00	60.01132	0		0		0				30726.76	1	1	1	0.000	0.000	
05/16/11 08:37:02	60.01065	0		0		0				30726.76	1	1	1	-0.001	0.001	
05/16/11 08:37:04	60.00903	0		0		0				30726.82	1	1	1	-0.002	0.002	
05/16/11 08:37:06	60.00839	0		0		0				30726.82	1	1	1	-0.001	0.001	
05/16/11 08:37:08	60.00809	0		0		0				30726.82	1	1	1	0.000	0.000	
05/16/11 08:37:10	60.00809	0		0		0				30726.82	1	1	1	0.000	0.000	
05/16/11 08:37:12	60.00937	0		0		0				30726.82	1	1	1	0.001	0.001	
05/16/11 08:37:14	60.01099	0		0		0				30720.93	1	1	1	0.002	0.002	
05/16/11 08:37:16	60.01227	0		0		0				30720.93		1	1	0.001	0.001	
05/16/11 08:37:18	60.01291	0		0		0				30720.93	1	1	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load	Event Detection Row 805 821 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:37:20	60.0126	0		0		0				30720.93	1	1	1	0.000	0.000	
05/16/11 08:37:22	60.01132			0		0				30720.93	1	1	1	-0.001	0.001	
05/16/11 08:37:24	60.0097	0		0		0				30720.53	1	1	1	-0.002	0.002	
05/16/11 08:37:26	60.00613	0		0		0				30720.53	1	1	1	-0.004	0.004	
05/16/11 08:37:28	60.00259	0		0		0				30720.53	1	1	1	-0.004	0.004	
05/16/11 08:37:30	59.99936	0		0		0				30720.53	1	1	1	-0.003	0.003	
05/16/11 08:37:32	59.99902	0		0		0				30720.53	1	1	1	0.000	0.000	
05/16/11 08:37:34	60.00034	0		0		0				30720.62	1	1	1	0.001	0.001	
05/16/11 08:37:36	60.00064	0		0		0				30720.62	1	1	1	0.000	0.000	
05/16/11 08:37:38	59.99936	0		0		0				30720.62	1	1	1	-0.001	0.001	
05/16/11 08:37:40	59.99741	0		0		0				30720.62	1	0	1	-0.002	0.002	
05/16/11 08:37:42	59.99579	0		0		0				30720.62	1	0	,	-0.002	0.002	
05/16/11 08:37:44	59.99387	0		0		0				30721.15	1	0	1	-0.002	0.002	
05/16/11 08:37:46	59.99255	0		0		0				30721.15	1	0	1	-0.001	0.001	
05/16/11 08:37:48	59.99191	0		0		0				30721.15	1	0	1	-0.001	0.001	
05/16/11 08:37:50	59.99255	0		0		0				30721.15	1	0	1	0.001	0.001	
05/16/11 08:37:52	59.99548	0		0		0				30721.15	1	0	1	0.003	0.003	
05/16/11 08:37:54	60	0		0		0				30726.87	1	1	1	0.005	0.005	
05/16/11 08:37:56	60.00323	0		0		0				30726.87	1	1	1	0.003	0.003	
05/16/11 08:37:58	60.00516	0		0		0				30726.87	1	1	1	0.002	0.002	
05/16/11 08:38:00	60.00485	0		0		0				30726.87	1	1	1	0.000	0.000	
05/16/11 08:38:02	60.00354	0		0		0				30726.87	1	1	1	-0.001	0.001	
05/16/11 08:38:04	60.00226	0		0		0				30734.84	1	1	1	-0.001	0.001	
05/16/11 08:38:06	60.00098	0		0		0				30734.84	1	1	1	-0.001	0.001	
05/16/11 08:38:08	60	0		0		0				30734.84	1	1	1	-0.001	0.001	
05/16/11 08:38:10	59.99966	0		0		0				30734.84	1	1	1	0.000	0.000	
05/16/11 08:38:12	59.99966	0		0		0				30734.84	1	1	1	0.000	0.000	
05/16/11 08:38:14	59.99774	0		0		0				30757.45	1	0	1	-0.002	0.002	
05/16/11 08:38:16	59.9971	0		0		0				30757.45	1	0	1	-0.001	0.001	
05/16/11 08:38:18	59.99741	0		0		0				30757.45	1	0	1	0.000	0.000	
05/16/11 08:38:20	59.99805	0		0		0				30757.45	1	0	,	0.001	0.001	
05/16/11 08:38:22	59.99872	0		0		0				30757.45	1	1	1	0.001	0.001	
05/16/11 08:38:24	59.99936	0		0		0				30757.92	1	1	1	0.001	0.001	
05/16/11 08:38:26	60	0		0		0				30757.92	1	1	1	0.001	0.001	
05/16/11 08:38:28	60.00162	0		0		0				30757.92	1	1	1	0.002	0.002	
05/16/11 08:38:30	60.00323	0		0		0				30757.92	1	1	1	0.002	0.002	
05/16/11 08:38:32	60.00388	0		0		0				30757.92	1	1	1	0.001	0.001	
05/16/11 08:38:34	60.00485	0		0		0				30752.27	1	1	1	0.001	0.001	
05/16/11 08:38:36	60.00549	0		0		0				30752.27	1	1	1	0.001	0.001	
05/16/11 08:38:38	60.00613	0		0		0				30752.27	1	,	1	0.001	0.001	
05/16/11 08:38:40	60.00647	0		0		0				30752.27	1	1	1	0.000	0.000	
05/16/11 08:38:42	60.00677	0		0		0				30752.27	1	1	1	0.000	0.000	
05/16/11 08:38:44	60.00677	0		0		0				30752.33	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align T(0)
05/16/11 08:38:46	60.00613	0		0		0				30752.33	1	1	1	-0.001	0.001	
05/16/11 08:38:48	60.00549	0		0		0				30752.33	1	1	1	-0.001	0.001	
05/16/11 08:38:50	60.00485	0		0		0				30752.33	1	1	1	-0.001	0.001	
05/16/11 08:38:52	60.00485	0		0		0				30752.33	1	1	1	0.000	0.000	
05/16/11 08:38:54	60.00613	0		0		0				30755.63	1	1	1	0.001	0.001	
05/16/11 08:38:56	60.01001	0		0		0				30755.63	1	1	1	0.004	0.004	
05/16/11 08:38:58	60.01324	0		0		0				30755.63	1	1	1	0.003	0.003	
05/16/11 08:39:00	60.01614	0		0		0				30755.63	1	1	1	0.003	0.003	
05/16/11 08:39:02	60.0184	0		0		0				30755.63	1	1	1	0.002	0.002	
05/16/11 08:39:04	60.01971	0		0		0				30755.66	1	1	1	0.001	0.001	
05/16/11 08:39:06	60.021	0		0		0				30755.66	1	1	1	0.001	0.001	
05/16/11 08:39:08	60.02133	0		0		0				30755.66	1	1	1	0.000	0.000	
05/16/11 08:39:10	60.02197	0		0		0				30755.66	1	1	1	0.001	0.001	
05/16/11 08:39:12	60.02359	0		0		0				30755.66	1	1	1	0.002	0.002	
05/16/11 08:39:14	60.02682	0		0		0				30784.89	1	1	1	0.003	0.003	
05/16/11 08:39:16	60.0307	0		0		0				30784.89	1	1	1	0.004	0.004	
05/16/11 08:39:18	60.0336	0		0		0				30784.89	1	1	1	0.003	0.003	
05/16/11 08:39:20	60.03424	0		0		0				30784.89	1	1	1	0.001	0.001	
05/16/11 08:39:22	60.03326	0		0		0				30784.89	1	1	1	-0.001	0.001	
05/16/11 08:39:24	60.0307	0		0		0				30786.98	1	1	1	-0.003	0.003	
05/16/11 08:39:26	60.02875	0		0		0				30786.98	1	1	1	-0.002	0.002	
05/16/11 08:39:28	60.02875	0		0		0				30786.98	1	1	1	0.000	0.000	
05/16/11 08:39:30	60.02939	0		0		0				30786.98	1	1	1	0.001	0.001	
05/16/11 08:39:32	60.02908	0		0		0				30786.98	1	1	1	0.000	0.000	
05/16/11 08:39:34	60.02844	0		0		0				30796.28	1	1	1	-0.001	0.001	
05/16/11 08:39:36	60.02777	0		0		0				30796.28	1	1	1	-0.001	0.001	
05/16/11 08:39:38	60.02811	0		0		0				30796.28	1	1	1	0.000	0.000	
05/16/11 08:39:40	60.02777	0		0		0				30796.28	1	1	1	0.000	0.000	
05/16/11 08:39:42	60.02777	0		0		0				30796.28	1	1	1	0.000	0.000	
05/16/11 08:39:44	60.02777	0		0		0				30792.94	1	1	1	0.000	0.000	
05/16/11 08:39:46	60.02747	0		0		0				30792.94	1	1	1	0.000	0.000	
05/16/11 08:39:48	60.02713	0		0		0				30792.94	1	1	1	0.000	0.000	
05/16/11 08:39:50	60.02618	0		0		0				30792.94	1	1	1	-0.001	0.001	
05/16/11 08:39:52	60.02521	0		0		0				30792.94	1	1	1	-0.001	0.001	
05/16/11 08:39:54	60.02457	0		0		0				30803.58	1	1	1	-0.001	0.001	
05/16/11 08:39:56	60.02487	0		0		0				30803.58	1	1	1	0.000	0.000	
05/16/11 08:39:58	60.02551	0		0		0				30803.58	1	1	1	0.001	0.001	
05/16/11 08:40:00	60.02618	0		0		0				30803.58	1	1	1	0.001	0.001	

组
 공ำ

 Hix

 38885

"Auto" Event Detection adjustment of $\mathrm{T}(0)$.
\# of rows to shift T(0)
A zero value aligns the data to the hightest Frequency change value. Usually the event begins one or two data scans earlier than this scan.

Increasing this value shifts graph data to the right.
Decreasing this value shifts graph data to the left.

Note: The P.U. Performance values indicate performance as a P.U. value of BA Bias setting. For BAs that utilize a variable Bias, the Bias average during $T(+20)$ to $T(+52)$ is used.
P.U. values above 1.0 indicate that the Bias setting was below measured Frequency Response. P.U. values below 1.0 indicate that the Bias setting was above measured Frequency Response.

First change in frequency of the event should occur here on the vertical grid line.
It is important that the pre-event frequency average to NOT contain frequency data of the event, "Average Frequency" trend to the left of center of the graph. To shift the data on the graph left or right, adjust the value in cell Q3 highlighted in yellow above.

To be completed for each event evaluated.

Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Column A: Date and Time in this format, mm/dd/yy HH:MM:SS
Column B: Frequency Hz
Column C: Contingent Resouce Lost MW or Lost Load
Column D: Load Resources tripped during the event.
Column E: Non Conforming Load
Column F: Spare
Column G: Not Used
Column H: Spare
Column I: Spare
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D \& E are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign ($+/-$) convention defined in FRS Form 1
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must start a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event with up to 60 minutes of data.
Be sure the "Data" worksheet is clear of any old data. Collect the same total minutes of data for each event evaluated to minimize your effort and time.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data.
5 Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on the graph on the "Copy Results" worksheet
If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process.
6 Once data is in place in the "Data" worksheet, confirm the Auto selection of the beginning of the event by observing the "Graph 20 to 52 s " worksheet. Adjust the selection if necessary. To make an adjustment, change the value in cell "Q3" on the "Graph 20 to 52 s " worksheet. Usually a 0,1 or 2 will achive the correct alignment of $\mathrm{T}(0)$.

If the correct row is selected, the "Graph 20 to 52s" worksheet will indicate the first change in frequency (red trend) of the event on the center vertical grid line of the graph.
The end of the event will be Auto selected based on the frequency value in cell " N 2 " on the Data worksheet. This will be the frequency at the beginning of the event or 60 Hz , whichever is lower. (for low Hz events) This value controls the end of the "Sustained Frequency Response" evaluation period.
Primary Frequency Response should be sustained during the event recovery period. This evaluation determines how well you achieved this goal
 in the correct order on worksheet "Form 1 Summary Data"
10 Use PasteSpecial/Values and paste the copied data into FRS Form 1 on the appropriate event row. Be sure to use the latest version of Form 1, currently Form 1.9.
11 Save this Form 2 using the file name convention on the "Copy Results" worksheet. The complete file name is in bold in cell B38. Return all completed Form $2 s$ with your Form 1 to NERC

Steps To be completed the first time you use form 2 for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Copy Results" worksheet. For example: "ERCOT".

Standards Announcement Project 2007-12 Erequency Response

Successive Ballot and Non-Binding Poll Open Through 8 p.m. Monday, November 5, 2012

Now Available

A successive ballot of BAL-003-1 - Frequency Response and Frequency Bias Setting and a non-binding poll of the associated VRFs/VSLs is open through 8 p.m. Eastern on Monday, November 5, 2012.

Instructions

Members of the ballot pools associated with this project may log in and submit their vote for the Standard and opinion in the non-binding poll of the associated VRFs and VSLs by clicking here.

Please read carefully: All stakeholders with comments (both members of the ballot pool as well as other stakeholders, including groups such as trade associations and committees) must submit comments through the electronic comment form. During the ballot window, balloters who wish to submit comments with their ballot may no longer enter comments on the balloting screen, but may still enter the comments through the electronic comment form. Balloters who wish to express support for comments submitted by another entity or group will have an opportunity to enter that information and are not required to answer any other questions.

Next Steps

The drafting team will consider all comments received during the formal comment period and successive ballot and, if needed, make revisions to the standards. If the comments do not show the need for significant revisions, the standard will proceed to a recirculation ballot.

Background

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. The proposed standard's intent is to collect data needed to accurately analyze existing Frequency Response, set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be analyzed, and the reasons for the decline in Frequency Response
can be identified. Once Frequency Response has been analyzed and confirmed, requirements can be modified to maintain reliability.

Additional information is available on the project page.

Standards Process

The Standard Processes Manual contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate.

For more information or assistance, please contact Monica Benson, Standards Development Administrator, at monica.benson@nerc.net or at 404-446-2560.

North American Electric Reliability Corporation
3353 Peachtree Rd.NE
Suite 600, North Tower
Atlanta, GA 30326
404-446-2560 | www.nerc.com

BAL-003-1 - Frequency Response and Frequency Bias Setting, an implementation plan and several associated documents (listed below) have been posted for a parallel formal comment period and successive ballot through 8 p.m. Eastern on Monday, November 5, 2012.

The following associated documents have been posted for stakeholder review and comment:

- Frequency Response Standard Background Document - Provides an explanation of each of the proposed requirements; identifies how the proposed standard proposes to address FERC directives from Order 693; and describes the decision process for use of the median as the measure for Frequency Response.
- Attachment A - Provides methodology for calculating Interconnection Frequency Response Obligation, Balancing Authority Frequency Response Obligation, Frequency Response Measure and the Frequency Bias Setting.
- Procedure - Assigns tasks to the ERO and provides instructions for the ERO to follow when carrying them out to support the BAL-003-1 standard.
- FRS Form 1 (three versions - multiple Balancing Authority Interconnection, ERCOT and Quebec) and FRS Form 2 (three versions - multiple Balancing Authority Interconnection, ERCOT and Quebec) used to determine each Balancing Authority's Frequency Response Measure and Frequency Bias Setting. Instructions are now on the first page of each FRS Form 1 and FRS Form 2.
- Mapping Document - Identifies each requirement in the already approved BAL-003-0.1b and identifies how that requirement has been treated in the revisions proposed in BAL-003-1.

Instructions for Commenting

A formal comment period is open through 8 p.m. Eastern on Monday, November 5, 2012. Please use this electronic form to submit comments. If you experience any difficulties in using the electronic form, please contact Wendy Kinnard at wendy.kinnard@nerc.net. An off-line, unofficial copy of the comment form is posted on the project page.

Please read carefully: All stakeholders with comments (both members of the ballot pool as well as other stakeholders, including groups such as trade associations and committees) must submit comments through the electronic comment form. During the ballot window, balloters who wish to submit comments with their ballot may no longer enter comments on the balloting screen, but may still enter the comments through the electronic comment form. Balloters who wish to express support for comments submitted by another entity or group will have an opportunity to enter that information and are not required to answer any other questions.

Next Steps

A successive ballot and non-binding polls of the associated VRFs and VSLs will be conducted Friday, October 26, 2012 through 8 p.m. Monday, November 5, 2012.

Background

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. The proposed standard's intent is to collect data needed to accurately analyze existing Frequency Response, set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be analyzed, and the reasons for the decline in Frequency Response can be identified. Once Frequency Response has been analyzed and confirmed, requirements can be modified to maintain reliability.

Additional information is available on the project page.

Standards Process

The Standard Processes Manual contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate.

For more information or assistance, please contact Wendy Kinnard, Standards Development Administrator, at wendy.kinnard@nerc.net or at 404-446-2560.

North American Electric Reliability Corporation
3353 Peachtree Rd.NE
Suite 600, North Tower
Atlanta, GA 30326
404-446-2560 | www.nerc.com

BAL-003-1 - Frequency Response and Frequency Bias Setting, an implementation plan and several associated documents (listed below) have been posted for a parallel formal comment period and successive ballot through 8 p.m. Eastern on Monday, November 5, 2012.

The following associated documents have been posted for stakeholder review and comment:

- Frequency Response Standard Background Document - Provides an explanation of each of the proposed requirements; identifies how the proposed standard proposes to address FERC directives from Order 693; and describes the decision process for use of the median as the measure for Frequency Response.
- Attachment A - Provides methodology for calculating Interconnection Frequency Response Obligation, Balancing Authority Frequency Response Obligation, Frequency Response Measure and the Frequency Bias Setting.
- Procedure - Assigns tasks to the ERO and provides instructions for the ERO to follow when carrying them out to support the BAL-003-1 standard.
- FRS Form 1 (three versions - multiple Balancing Authority Interconnection, ERCOT and Quebec) and FRS Form 2 (three versions - multiple Balancing Authority Interconnection, ERCOT and Quebec) used to determine each Balancing Authority's Frequency Response Measure and Frequency Bias Setting. Instructions are now on the first page of each FRS Form 1 and FRS Form 2.
- Mapping Document - Identifies each requirement in the already approved BAL-003-0.1b and identifies how that requirement has been treated in the revisions proposed in BAL-003-1.

Instructions for Commenting

A formal comment period is open through 8 p.m. Eastern on Monday, November 5, 2012. Please use this electronic form to submit comments. If you experience any difficulties in using the electronic form, please contact Wendy Kinnard at wendy.kinnard@nerc.net. An off-line, unofficial copy of the comment form is posted on the project page.

Please read carefully: All stakeholders with comments (both members of the ballot pool as well as other stakeholders, including groups such as trade associations and committees) must submit comments through the electronic comment form. During the ballot window, balloters who wish to submit comments with their ballot may no longer enter comments on the balloting screen, but may still enter the comments through the electronic comment form. Balloters who wish to express support for comments submitted by another entity or group will have an opportunity to enter that information and are not required to answer any other questions.

Next Steps

A successive ballot and non-binding polls of the associated VRFs and VSLs will be conducted Friday, October 26, 2012 through 8 p.m. Monday, November 5, 2012.

Background

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. The proposed standard's intent is to collect data needed to accurately analyze existing Frequency Response, set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard requires entities to provide data so that Frequency Response in each of the Interconnections can be analyzed, and the reasons for the decline in Frequency Response can be identified. Once Frequency Response has been analyzed and confirmed, requirements can be modified to maintain reliability.

Additional information is available on the project page.

Standards Process

The Standard Processes Manual contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate.

For more information or assistance, please contact Wendy Kinnard, Standards Development Administrator, at wendy.kinnard@nerc.net or at 404-446-2560.

North American Electric Reliability Corporation
3353 Peachtree Rd.NE
Suite 600, North Tower
Atlanta, GA 30326
404-446-2560 | www.nerc.com

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Standards Announcement Project 2007-12 Frequency Response

Successive Ballot and Non-Binding Poll Results
Now Available

A successive ballot of BAL-003-1 - Frequency Response and Frequency Bias Setting and a non-binding poll of the associated VRFs/VSLs concluded on Tuesday, November 6, 2012.

Voting statistics for each ballot are listed below, and the Ballots Results page provides a link to the detailed results.

Approval	Non-binding Poll Results
Quorum: 82.04%	76.28%
Approval: 76.08%	Quorum:

Next Steps

The drafting team will consider all comments received during the formal comment period and successive ballot and, if needed, make revisions to the standards. If the comments do not show the need for significant revisions, the standard will proceed to a recirculation ballot.

Background

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard would set a minimum Frequency Response obligation for each Balancing Authority, provide a uniform calculation of Frequency Response and Frequency Bias Settings that transition to values closer to natural Frequency Response, and encourage coordinated AGC operation.

Additional information is available on the project page.

Standards Process

The Standard Processes Manual contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate.

For more information or assistance, please contact Monica Benson, Standards Development Administrator, at monica.benson@nerc.net or at 404-446-2560.

North American Electric Reliability Corporation
3353 Peachtree Rd.NE
Suite 600, North Tower
Atlanta, GA 30326
404-446-2560 | www.nerc.com

NERC

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

6	Tampa Electric Co.	Benjamin F Smith II		
6	Tennessee Valley Authority	Marjorie S. Parsons	Affirmative	
6	Westar Energy	Grant L Wilkerson	Affirmative	
6	Western Area Power Administration - UGP Marketing	Peter H Kinney	Affirmative	
6	Xcel Energy, Inc.	David F Lemmons	Affirmative	
8		Edward C Stein	Affirmative	
8		Robert Blohm	Affirmative	
8		James A Maenner	Abstain	
8		Roger C Zaklukiewicz	Affirmative	
8	Energy Mark, Inc.	Howard F. Illian	Affirmative	
8	J DRJC Associates	J im Cyrulewski	Affirmative	
8	Power Energy Group LLC	Peggy Abbadini	Affirmative	
8	Utility Services, Inc.	Brian Evans-Mongeon	Affirmative	
8	Volkmann Consulting, Inc.	Terry Volkmann	Affirmative	
9	California Energy Commission	William M Chamberlain		
9	Commonwealth of Massachusetts Department of Public Utilities	Donald Nelson		
9	National Association of Regulatory Utility Commissioners	Diane J. Barney	Negative	
9	New York State Department of Public Service	Thomas G. Dvorsky	Negative	
9	Oregon Public Utility Commission	J erome Murray	Abstain	
9	Public Utilities Commission of Ohio	Klaus Lambeck		
10	Florida Reliability Coordinating Council	Linda Campbell	Abstain	
10	Midwest Reliability Organization	James D Burley	Affirmative	
10	New York State Reliability Council	Alan Adamson	Affirmative	
10	Northeast Power Coordinating Council	Guy V. Zito	Affirmative	
10	Reliability First Corporation	Anthony E J ablonski	Affirmative	
10	SERC Reliability Corporation	Carter B. Edge	Affirmative	
10	Southwest Power Pool RE	Emily Pennel	Abstain	
10	Texas Reliability Entity, Inc.	Donald G Jones	Affirmative	
10	Western Electricity Coordinating Council	Steven L. Rueckert	Affirmative	

[^74]Account Log-In/Register

Copyright © 2012 by the North American Electric Reliability Corporation. : All rights reserved.
A New Jersey Nonprofit Corporation

Non-binding Poll Results

Project 2007-12 Frequency Response

Non-binding Poll Results

| Non-binding Poll
 Name: | Project 2007-12 Non-binding Poll | |
| ---: | :--- | :--- | :--- |
| Poll Period: | $10 / 26 / 2012-11 / 6 / 2012$ | |
| Total \# Opinions: | 254 | |
| Total Ballot Pool: | 333 | |
| Summary Results: | 76.28%
 76.30%
 of those who registered to participate provided an opinion or an abstention; | |

1	Ameren Services	Kirit Shah	Abstain	
1	American Electric Power	Paul B. Johnson		
1	Associated Electric Cooperative, Inc.	J ohn Bussman	Affirmative	
1	Avista Corp.	Scott J Kinney	Abstain	
1	Balancing Authority of Northern California	Kevin Smith	Abstain	
1	Baltimore Gas \& Electric Company	Gregory S Miller		
1	BC Hydro and Power Authority	Patricia Robertson	Abstain	
1	Beaches Energy Services	Joseph S Stonecipher		
1	Bonneville Power Administration	Donald S. Watkins	Negative	
1	Brazos Electric Power Cooperative, Inc.	Tony Kroskey	Negative	
1	Central Maine Power Company	J oseph Turano J r.	Affirmative	
1	City of Tacoma, Department of Public Utilities, Light Division, dba Tacoma Power	Chang G Choi	Affirmative	
1	Clark Public Utilities	Jack Stamper	Affirmative	
1	Colorado Springs Utilities	Paul Morland	Affirmative	
1	Consolidated Edison Co. of New York	Christopher L de Graffenried	Negative	
1	CPS Energy	Richard Castrejana	Abstain	
1	Dairyland Power Coop.	Robert W. Roddy	Abstain	
1	Dayton Power \& Light Co.	Hertzel Shamash	Affirmative	
1	Deseret Power	J ames Tucker		
1	Dominion Virginia Power	Michael S Crowley	Abstain	
1	Duke Energy Carolina	Douglas E. Hils	Affirmative	
1	East Kentucky Power Coop.	George S. Carruba		
1	Empire District Electric Co.	Ralph F Meyer	Affirmative	
1	Entergy Services, Inc.	Edward J Davis		
1	FirstEnergy Corp.	William J Smith	Abstain	
1	Florida Keys Electric Cooperative Assoc.	Dennis Minton	Abstain	
1	Florida Power \& Light Co.	Mike O'Neil	Negative	

1	Gainesville Regional Utilities	Luther E. Fair		
1	Great River Energy	Gordon Pietsch	Affirmative	
1	Hoosier Energy Rural Electric Cooperative, Inc.	Bob Solomon	Negative	
1	Hydro One Networks, Inc.	Ajay Garg	Affirmative	
1	Hydro-Quebec TransEnergie	Bernard Pelletier	Affirmative	
1	Idaho Power Company	Ronald D Schellberg	Affirmative	
1	I mperial I rrigation District	Tino Zaragoza	Abstain	
1	I nternational Transmission Company Holdings Corp	Michael Moltane	Abstain	
1	EA	Ted Hobson	Negative	
1	Kansas City Power \& Light Co.	Michael Gammon	Negative	
1	Keys Energy Services	Stanley T Rzad	Affirmative	
1	Lakeland Electric	Larry E Watt		
1	Lee County Electric Cooperative	John W Delucca	Abstain	
1	Lincoln Electric System	Doug Bantam	Affirmative	
1	Manitoba Hydro	J oe D Petaski	Affirmative	
1	MEAG Power	Danny Dees	Affirmative	
1	MidAmerican Energy Co.	Terry Harbour	Affirmative	
1	National Grid	Saurabh Saksena		
1	Nebraska Public Power District	Cole C Brodine	Abstain	
1	New Brunswick Power Transmission Corporation	Randy MacDonald	Abstain	
1	New York State Electric \& Gas Corp.	Raymond P Kinney	Abstain	
1	Northeast Utilities	David Boguslawski		
1	Northern Indiana Public Service Co.	Kevin M Largura	Affirmative	
1	NorthWestern Energy	John Canavan	Affirmative	
1	Ohio Valley Electric Corp.	Robert Mattey	Negative	
1	Omaha Public Power District	Doug Peterchuck	Affirmative	
1	Orlando Utilities Commission	Brad Chase		
1	PacifiCorp	Ryan Millard	Abstain	
1	Platte River Power Authority	John C. Collins	Abstain	
1	Portland General Electric Co.	John T Walker	Negative	
1	PowerSouth Energy Cooperative	Larry D Avery	Negative	
1	PPL Electric Utilities Corp.	Brenda L Truhe	Negative	
1	Progress Energy Carolinas	Brett A. Koelsch	Abstain	
1	Public Service Company of New Mexico	Laurie Williams	Affirmative	
1	Public Service Electric and Gas Co.	Kenneth D. Brown		
1	Public Utility District No. 1 of Okanogan County	Dale Dunckel	Abstain	
1	Puget Sound Energy, Inc.	Denise M Lietz	Negative	
1	Rochester Gas and Electric Corp.	J ohn C. Allen	Affirmative	
1	Sacramento Municipal Utility District	Tim Kelley	Abstain	
1	Salmon River Electric Cooperative	Kathryn Spence		
1	Salt River Project	Robert Kondziolka	Affirmative	
1	Santee Cooper	Terry L Blackwell	Affirmative	
1	SCE\&G	Henry Delk, Jr.		
1	Seattle City Light	Pawel Krupa	Abstain	

1	Snohomish County PUD No. 1	Long T Duong	Abstain	
1	South California Edison Company	Steven Mavis	Affirmative	
1	Southern Company Services, Inc.	Robert A. Schaffeld	Affirmative	
1	Southern Illinois Power Coop.	William Hutchison	Negative	
1	Southwest Transmission Cooperative, Inc.	James Jones	Negative	
1	Sunflower Electric Power Corporation	Noman Lee Williams	Negative	
1	Tampa Electric Co.	Beth Young		
1	Tennessee Valley Authority	Larry G Akens	Abstain	
1	Tri-State G \& T Association, Inc.	Tracy Sliman	Negative	
1	Tucson Electric Power Co.	John Tolo	Affirmative	
1	United Illuminating Co.	Jonathan Appelbaum	Negative	
1	Westar Energy	Allen Klassen	Affirmative	
1	Western Area Power Administration	Brandy A Dunn	Affirmative	
1	Xcel Energy, Inc.	Gregory L Pieper		
2	Alberta Electric System Operator	Mark B Thompson		
2	BC Hydro	Venkataramakrishnan Vinnakota	Abstain	
2	California ISO	Rich Vine	Affirmative	
2	Electric Reliability Council of Texas, Inc.	Charles B Manning	Affirmative	
2	I ndependent Electricity System Operator	Barbara Constantinescu	Affirmative	
2	Midwest ISO, Inc.	Marie Knox	Affirmative	
2	New Brunswick System Operator	Alden Briggs	Abstain	
2	New York Independent System Operator	Gregory Campoli	Abstain	
2	PJ M Interconnection, L.L.C.	Tom Bowe		
2	Southwest Power Pool, Inc.	Charles Yeung		
3	AEP	Michael E Deloach	Negative	
3	Alabama Power Company	Richard J. Mandes	Affirmative	
3	Ameren Services	Mark Peters	Abstain	
3	APS	Steven Norris	Affirmative	
3	Atlantic City Electric Company	NICOLE BUCKMAN	Abstain	
3	BC Hydro and Power Authority	Pat G. Harrington	Abstain	
3	Bonneville Power Administration	Rebecca Berdahl	Negative	
3	City of Bartow, Florida	Matt Culverhouse		
3	City of Clewiston	Lynne Mila	Affirmative	
3	City of Garland	Ronnie C Hoeinghaus		
3	City of Green Cove Springs	Gregg R Griffin	Affirmative	
3	City of Redding	Bill Hughes	Affirmative	
3	Cleco Corporation	Michelle A Corley	Negative	
3	Colorado Springs Utilities	Charles Morgan	Affirmative	
3	Consolidated Edison Co. of New York	Peter T Yost	Negative	
3	Constellation Energy	CJ Ingersoll		
3	Consumers Energy	Richard Blumenstock	Affirmative	
3	CPS Energy	Jose Escamilla	Abstain	
3	Detroit Edison Company	Kent Kujala	Affirmative	
3	Dominion Resources Services	Michael F. Gildea		
3	Duke Energy Carolina	Henry Ernst-Jr		

3	Entergy	J oel T Plessinger		
3	FirstEnergy Energy Delivery	Stephan Kern	Abstain	
3	Florida Municipal Power Agency	Joe McKinney	Affirmative	
3	Florida Power Corporation	Lee Schuster	Affirmative	
3	Georgia Power Company	Anthony L Wilson	Affirmative	
3	Georgia Systems Operations Corporation	William N. Phinney		
3	Grays Harbor PUD	Wesley W Gray		
3	Great River Energy	Brian Glover	Affirmative	
3	Gulf Power Company	Paul C Caldwell	Affirmative	
3	Hydro One Networks, Inc.	David Kiguel	Affirmative	
3	I mperial I rrigation District	J esus S. Alcaraz	Abstain	
3	J EA	Garry Baker	Negative	
3	Kansas City Power \& Light Co.	Charles Locke	Negative	
3	Kissimmee Utility Authority	Gregory D Woessner	Affirmative	
3	Lakeland Electric	Norman D Harryhill		
3	Lincoln Electric System	Jason Fortik	Affirmative	
3	Los Angeles Department of Water \& Power	Daniel D Kurowski	Affirmative	
3	Louisville Gas and Electric Co.	Charles A. Freibert		
3	Manitoba Hydro	Greg C. Parent	Affirmative	
3	Manitowoc Public Utilities	Thomas E Reed	Affirmative	
3	MidAmerican Energy Co.	Thomas C. Mielnik		
3	Mississippi Power	Jeff Franklin	Affirmative	
3	Modesto Irrigation District	Jack W Savage	Affirmative	
3	Municipal Electric Authority of Georgia	Steven M. Jackson	Affirmative	
3	Muscatine Power \& Water	John S Bos	Negative	
3	Nebraska Public Power District	Tony Eddleman	Abstain	
3	New York Power Authority	Marilyn Brown		
3	Niagara Mohawk (National Grid Company)	Michael Schiavone		
3	Northern Indiana Public Service Co.	William SeDoris	Affirmative	
3	Ocala Electric Utility	David Anderson	Affirmative	
3	Orlando Utilities Commission	Ballard K Mutters	Abstain	
3	Owensboro Municipal Utilities	Thomas T Lyons	Abstain	
3	Pacific Gas and Electric Company	John H Hagen	Affirmative	
3	PacifiCorp	Dan Zollner	Abstain	
3	Platte River Power Authority	Terry L Baker	Abstain	
3	PNM Resources	Michael Mertz	Affirmative	
3	Potomac Electric Power Co.	Robert Reuter	Abstain	
3	Progress Energy Carolinas	Sam Waters		
3	Public Service Electric and Gas Co.	effrey Mueller		
3	Public Utility District No. 1 of Clallam County	David Proebstel		
3	Puget Sound Energy, Inc.	Erin Apperson		
3	Sacramento Municipal Utility District	J ames Leigh-Kendall	Abstain	
3	Salt River Project	John T. Underhill	Affirmative	
3	Santee Cooper	J ames M Poston	Affirmative	

3	Seattle City Light	Dana Wheelock	Abstain	
3	Seminole Electric Cooperative, Inc.	J ames R Frauen	Affirmative	
3	Snohomish County PUD No. 1	Mark Oens	Abstain	
3	South Carolina Electric \& Gas Co.	Hubert C Young	Affirmative	
3	Tacoma Public Utilities	Travis Metcalfe	Affirmative	
3	Tampa Electric Co.	Ronald L Donahey		
3	Tennessee Valley Authority	Ian S Grant	Abstain	
3	Tri-State G \& T Association, Inc.	J anelle Marriott	Negative	
3	Westar Energy	Bo J ones	Affirmative	
3	Xcel Energy, Inc.	Michael I bold	Abstain	
4	Alliant Energy Corp. Services, Inc.	Kenneth Goldsmith	Affirmative	
4	American Municipal Power	Kevin Koloini	Affirmative	
4	Blue Ridge Power Agency	Duane S Dahlquist	Affirmative	
4	City of Austin dba Austin Energy	Reza Ebrahimian	Affirmative	
4	City of Clewiston	Kevin McCarthy	Affirmative	
4	City of New Smyrna Beach Utilities Commission	Tim Beyrle		
4	City of Redding	Nicholas Zettel	Affirmative	
4	City Utilities of Springfield, Missouri	John Allen	Affirmative	
4	Consumers Energy	David Frank Ronk	Affirmative	
4	Detroit Edison Company	Daniel Herring	Affirmative	
4	Flathead Electric Cooperative	Russ Schneider		
4	Florida Municipal Power Agency	Frank Gaffney	Affirmative	
4	Fort Pierce Utilities Authority	Thomas Richards		
4	Georgia System Operations Corporation	Guy Andrews	Abstain	
4	Imperial I rrigation District	Diana U Torres		
4	Madison Gas and Electric Co.	Joseph DePoorter	Abstain	
4	Northern California Power Agency	Tracy R Bibb		
4	Ohio Edison Company	Douglas Hohlbaugh	Abstain	
4	Public Utility District No. 1 of Douglas County	Henry E. LuBean	Affirmative	
4	Public Utility District No. 1 of Snohomish County	John D Martinsen	Abstain	
4	Sacramento Municipal Utility District	Mike Ramirez	Abstain	
4	Seattle City Light	Hao Li	Abstain	
4	South Mississippi Electric Power Association	Steven McElhaney		
4	Tacoma Public Utilities	Keith Morisette	Affirmative	
4	Wisconsin Energy Corp.	Anthony Jankowski	Affirmative	
5	AEP Service Corp.	Brock Ondayko	Negative	
5	AES Corporation	Leo Bernier	Affirmative	
5	Amerenue	Sam Dwyer	Abstain	
5	Arizona Public Service Co.	Edward Cambridge	Negative	
5	Avista Corp.	Edward F. Groce	Negative	
5	BC Hydro and Power Authority	Clement Ma	Abstain	
5	Black Hills Corp	George Tatar	Affirmative	
5	Boise-Kuna Irrigation District/dba Lucky peak power plant project	Mike D Kukla	Abstain	

5	Bonneville Power Administration	Francis J. Halpin	Negative	
5	BrightSource Energy, Inc.	Chifong Thomas	Affirmative	
5	City of Austin dba Austin Energy	J eanie Doty	Affirmative	
5	City of Redding	Paul A. Cummings	Affirmative	
5	City of Tacoma, Department of Public Utilities, Light Division, dba Tacoma Power	Max Emrick	Affirmative	
5	City Water, Light \& Power of Springfield	Steve Rose		
5	Colorado Springs Utilities	Jennifer Eckels	Affirmative	
5	Consolidated Edison Co. of New York	Wilket (J ack) Ng	Negative	
5	Consumers Energy Company	David C Greyerbiehl	Affirmative	
5	CPS Energy	Robert Stevens		
5	Detroit Edison Company	Christy Wicke	Affirmative	
5	Dominion Resources, Inc.	Mike Garton	Abstain	
5	Duke Energy	Dale Q Goodwine	Affirmative	
5	Edison Mission Energy	Ellen Oswald		
5	Electric Power Supply Association	John R Cashin		
5	FirstEnergy Solutions	Kenneth Dresner	Abstain	
5	Florida Municipal Power Agency	David Schumann	Affirmative	
5	Great River Energy	Preston L Walsh	Affirmative	
5	Green Country Energy	Greg Froehling		
5	Indeck Energy Services, Inc.	Rex A Roehl		
5	J EA	John J Babik	Negative	
5	Kissimmee Utility Authority	Mike Blough	Affirmative	
5	Lakeland Electric	J ames M Howard	Affirmative	
5	Liberty Electric Power LLC	Daniel Duff		
5	Lincoln Electric System	Dennis Florom	Affirmative	
5	Los Angeles Department of Water \& Power	Kenneth Silver	Affirmative	
5	Luminant Generation Company LLC	Mike Laney	Affirmative	
5	Manitoba Hydro	S N Fernando	Affirmative	
5	Massachusetts Municipal Wholesale Electric Company	David Gordon	Abstain	
5	MEAG Power	Steven Grego	Affirmative	
5	MidAmerican Energy Co.	Christopher Schneider		
5	Muscatine Power \& Water	Mike Avesing	Negative	
5	Nebraska Public Power District	Don Schmit	Abstain	
5	New York Power Authority	Gerald Mannarino		
5	NextEra Energy	Allen D Schriver	Negative	
5	Northern California Power Agency	Hari Modi		
5	Northern Indiana Public Service Co.	William O. Thompson	Affirmative	
5	Omaha Public Power District	Mahmood Z. Safi	Affirmative	
5	Orlando Utilities Commission	Richard K Kinas	Affirmative	
5	Pacific Gas and Electric Company	Richard J. Padilla	Affirmative	
5	PacifiCorp	Sandra L. Shaffer		
5	Platte River Power Authority	Roland Thiel	Abstain	
5	Portland General Electric Co.	Gary L Tingley		
5	PPL Generation LLC	Annette M Bannon	Negative	

5	Progress Energy Carolinas	Wayne Lewis		
5	PSEG Fossil LLC	Tim Kucey	Abstain	
5	Public Utility District No. 1 of Lewis County	Steven Grega	Abstain	
5	Puget Sound Energy, Inc.	Tom Flynn		
5	Sacramento Municipal Utility District	Bethany Hunter	Abstain	
5	Salt River Project	William Alkema	Affirmative	
5	Santee Cooper	Lewis P Pierce	Affirmative	
5	Seattle City Light	Michael J. Haynes	Abstain	
5	Seminole Electric Cooperative, Inc.	Brenda K. Atkins	Affirmative	
5	Siemens PTI	Edwin Cano		
5	Snohomish County PUD No. 1	Sam Nietfeld	Abstain	
5	Southern California Edison Co.	Denise Yaffe		
5	Southern Company Generation	William D Shultz	Affirmative	
5	Tampa Electric Co.	RJames Rocha	Affirmative	
5	Tenaska, Inc.	Scott M. Helyer	Abstain	
5	Tennessee Valley Authority	David Thompson	Abstain	
5	Tri-State G \& T Association, Inc.	Barry Ingold		
5	U.S. Army Corps of Engineers	Melissa Kurtz		
5	Xcel Energy, Inc.	Liam Noailles		
6	ACES Power Marketing	Jason L Marshall	Abstain	
6	AEP Marketing	Edward P. Cox	Negative	
6	Ameren Energy Marketing Co.	J ennifer Richardson	Abstain	
6	APS	Randy A. Young	Negative	
6	Bonneville Power Administration	Brenda S. Anderson	Negative	
6	City of Redding	Marvin Briggs	Affirmative	
6	Cleco Power LLC	Robert Hirchak	Negative	
6	Colorado Springs Utilities	Lisa C Rosintoski		
6	Consolidated Edison Co. of New York	Nickesha P Carrol	Negative	
6	Constellation Energy Commodities Group	Brenda Powell		
6	Dominion Resources, Inc.	Louis S. Slade	Abstain	
6	Duke Energy Carolina	Walter Yeager		
6	Entergy Services, Inc.	Terri F Benoit		
6	FirstEnergy Solutions	Kevin Querry	Abstain	
6	Florida Municipal Power Agency	Richard L. Montgomery	Affirmative	
6	Florida Municipal Power Pool	Thomas Washburn	Affirmative	
6	Florida Power \& Light Co.	Silvia P. Mitchell	Negative	
6	Imperial I rrigation District	Cathy Bretz		
6	Kansas City Power \& Light Co.	Jessica L Klinghoffer	Negative	
6	Lakeland Electric	Paul Shipps	Affirmative	
6	Lincoln Electric System	Eric Ruskamp	Affirmative	
6	Los Angeles Department of Water \& Power	Brad Packer	Affirmative	
6	Luminant Energy	Brad J ones	Affirmative	
6	Manitoba Hydro	Daniel Prowse	Affirmative	
6	MidAmerican Energy Co.	Dennis Kimm		
6	Northern Indiana Public Service Co.	J oseph O'Brien	Affirmative	

6	Omaha Public Power District	David Ried	Affirmative	
6	Orlando Utilities Commission	Claston Augustus Sunanon	Affirmative	
6	PacifiCorp	Scott L Smith	Abstain	
6	Platte River Power Authority	Carol Ballantine	Abstain	
6	PPL EnergyPlus LLC	Mark A Heimbach		
6	Progress Energy	John T Sturgeon		
6	PSEG Energy Resources \& Trade LLC	Peter Dolan	Abstain	
6	Public Utility District No. 1 of Chelan County	Hugh A. Owen		
6	Sacramento Municipal Utility District	Diane Enderby	Abstain	
6	Salt River Project	Steven J Hulet	Affirmative	
6	Santee Cooper	Michael Brown	Affirmative	
6	Seattle City Light	Dennis Sismaet	Abstain	
6	Seminole Electric Cooperative, Inc.	Trudy S. Novak		
6	Snohomish County PUD No. 1	William T Moojen		
6	South California Edison Company	Lujuanna Medina	Affirmative	
6	Southern Company Generation and Energy Marketing	John J. Ciza	Affirmative	
6	Tacoma Public Utilities	Michael C Hill	Affirmative	
6	Tampa Electric Co.	Benjamin F Smith II		
6	Tennessee Valley Authority	Marjorie S. Parsons	Abstain	
6	Westar Energy	Grant L Wilkerson		
6	Western Area Power Administration UGP Marketing	Peter H Kinney	Affirmative	
6	Xcel Energy, Inc.	David F. Lemmons		
8		Roger C Zaklukiewicz	Affirmative	
8		Edward C Stein	Affirmative	
8		J ames A Maenner	Abstain	
8	Energy Mark, Inc.	Howard F. Illian	Affirmative	
8	DRJC Associates	J im Cyrulewski	Affirmative	
8	Power Energy Group LLC	Peggy Abbadini		
8	Utility Services, Inc.	Brian Evans-Mongeon	Abstain	
8	Volkmann Consulting, Inc.	Terry Volkmann	Affirmative	
9	California Energy Commission	William M Chamberlain		
9	Commonwealth of Massachusetts Department of Public Utilities	Donald Nelson		
10	Florida Reliability Coordinating Council	Linda Campbell	Abstain	
10	Midwest Reliability Organization	James D Burley	Affirmative	
10	New York State Reliability Council	Alan Adamson	Affirmative	
10	Northeast Power Coordinating Council	Guy V. Zito	Affirmative	
10	ReliabilityFirst Corporation	Anthony E Jablonski	Affirmative	
10	SERC Reliability Corporation	Carter B. Edge	Abstain	
10	Southwest Power Pool RE	Emily Pennel	Abstain	
10	Texas Reliability Entity, Inc.	Donald G Jones	Abstain	
10	Western Electricity Coordinating Council	Steven L. Rueckert	Abstain	

Name (33 Responses)
Organization (33 Responses)
Group Name (17 Responses)
Lead Contact (17 Responses)
Contact Organization (17 Responses)
IF YOU WISH TO EXPRESS SUPPORT FOR ANOTHER ENTITY'S COMMENTS WITHOUT ENTERING ANY ADDITI ONAL COMMENTS, YOU MAY DO SO HERE. (8 Responses)

Comments (50 Responses)
Question 1 (32 Responses)
Question 1 Comments (42 Responses) Question 2 (31 Responses)
Question 2 Comments (42 Responses) Question 3 (27 Responses)
Question 3 Comments (42 Responses) Question 4 (34 Responses)
Question 4 Comments (42 Responses) Question 5 (23 Responses)
Question 5 Comments (42 Responses) Question 6 (24 Responses)
Question 6 Comments (42 Responses) Question 7 (25 Responses)
Question 7 Comments (42 Responses) Question 8 (24 Responses)
Question 8 Comments (42 Responses) Question 9 (0 Responses)
Question 9 Comments (42 Responses)

Individual
Richard Vine
California Independent System Operator
Yes
Yes
Yes
Yes
Yes
The ISO supports the development of BAL-003-1 and would like to offer the following
comments suggestions: (1) Some BAs may have to develop a new Ancillary Service product to ensure
that its FRO can be met and believes that 12 months after FERC's approval may not provide adequate
time to stakeholder and modify market software applications. The ISO suggest increasing the
implementation timeline by at least one more year. (2) If the implementation timeline cannot be
changed, then the ISO suggests that compliance should be waived for the first year of operation

under BAL-003-1. (3) Some BAs may elect to procure a portion of its FRO through bilateral agreements for certain hours (e.g. off-peak) with a neighboring BA. Since a contingency could be in a BA other than the two BAs under a bilateral agreement, the standard or background document needs to clarify the duration of frequency response so that transmission reservation is not a requirement for frequency response. The ISO believes that the BA experiencing the contingency should have adequate arrangements in place to deal with internal contingencies.
Group
Northeast Power Coordinating Council
Guy Zito
Northeast Power Coordinating Council
Yes

Yes

No
If a BA is using a frequency bias setting and is not providing Overlap Regulation Service (supplying actual interchange, frequency response, and schedules to another BA), then it can be assumed that the BA is supplying regulation service. Was the intent of the requirement to simply state that all BA's must have a bias setting less than zero at all times? The intent of this requirement needs to be clarified.
No
This document lacks definitions of terms such as CCadj, DFcc, DFcbr, resource contingency criteria (in the attachment, this is called the "target contingency criteria"), etc. A sample calculation would be of value to entities. "The largest category $\mathrm{C}(\mathrm{N}-2)$ event is used for all interconnections except the Eastern which uses the largest event in the last 10 years". All interconnections should be using the same design basis contingency. The NERC 2012 CPS2 bounds has an Eastern Interconnection frequency bias of $-6,360 \mathrm{MW} / .1 \mathrm{~Hz}$. Why does this attachment refer to an Interconnection frequency response obligation of $-1,002 \mathrm{MW} / .1 \mathrm{~Hz}$.? This is a significant difference.

No

While the discussion of primary frequency response includes inertial energy, the term inertial energy is missing from the definition of "primary frequency response".
No
The purpose of BAL-003 was to calculate frequency bias in the ACE equation used in BAL-001. The Standard is currently confusing to understand, and it is unclear how the bias is calculated. It is recommended that efforts should be made to clarify the changes, especially in Attachment A.
The VSL's refer to the FRM (Frequency Response Measure). If that is the intent of the Standard, then GO's and GOP's should be included in the applicability since they are the entities responding to the AGC signals. If the intent is the FRO (Frequency Response Obligation) only, then the VSL's should be updated.

Individual

Howard F. Illian
Energy Mark, Inc.

Yes

Yes

Yes

EEI supports the efforts and improvements made by the Standards Drafting Team (SDT) in the latest version of BAL-003 and believe those changes have been responsive to the directives in Order 693. However, we recognizes that the Industry has struggled with this standard and remains split as to how best to respond to those directives and in some cases there are those who question whether a standard is even necessary. Given the many open issues and the concerns expressed by stakeholders we anticipate that this standard will once again fail to achieve sufficient support to gain approval. Should the Standard fail to achieve ballet approval, it is our hope that NERC Staff and the NERC Board of Trustees will allow the SDT a little more time to resolve any final issues that have been identified in this latest ballet. Although we recognize that May 31, 2013 does not leave the ERO with a lot of time to comply with this FERC imposed deadline, we still remain confident that given the progress made by the SDT a standard, which is acceptable to the Industry, is still possible. To the extent EEI can help, we are committed to working with member companies to communicate the issues and exchange insights from the SDT to help as we can to achieve a positive outcome.

Individual

Thad Ness

American Electric Power

As provided in question 2 below, AEP does not agree with the definition containing the Frequency Response Sharing Group as this function does not exist at this point in time.
No
AEP does not necessarily disagree with the words of the definition. However, AEP does not believe it is appropriate to define a new function that is not in the NERC Rules of Procedure, NERC Statement of Registry Criteria, or the NERC Functional Model. It is premature to incorporate this entity without a proposed change to these governing NERC documents.
No
AEP believes this question in the comment form is incorrect. It appears that R3 and R4 are inadvertenly merged together.

No

AEP is under the impression that there are some requirements, which though not explicitly stated, are implied in Attachment A. AEP feels strongly that these "sub-requirements" should be clarified and contained within the body of the requirements of the standard.

There is no leverage for the BA to require the generator to carry their burden of addressing governor settings or droop settings, yet the BA is obligated to meet some performance measures in that regard. This revision adds new performance measure responsibilities on the BA who likely has no direct control over every resource affecting their performance within their footprint. We are not necessarily challenging the performance measures themselves, nor their underlying objectives, however AEP views this as a gap in responsibilities which potentially effects reliability. AEP suggests that GOPs be considered as part of this standard so that their performance can be factored into the process to meet the performance objectives.

Group

NREL Transmission and Grid Integration Group
Erik Ela
National Renewable Energy Laboratory

Yes

Yes

Yes

that addresses (or measures) how a frequency bias setting will discourage response withdrawal through secondary systems. This should either be more fully addressed or removed.	
	Individual
Nazra Gladu	
Manitoba Hydro	
Yes	
No comment.	
Yes	
No comment.	
Yes	
No comment.	
Yes	
(1) Page 2, Balancing Authority Frequency Response Obligation (FRO) and Frequency Bias Setting: States that the ERO is responsible for "annually assigning an FRO and Frequency Bias Setting to each BA." No mention is made of FRSGs. (2) Neither R1 nor the referenced Attachment A clarifies the FRM requirements for an FRSG to comply versus a BA. In particular, compared to BAL-002-0 R1.1, which clearly states that the BA may elect to fulfill its obligation through an FRSG and that in such cases the FRSG has the same responsibilities as each BA (that is a participant in the FRSG). (3)Attachment A refers to an FRSG calculating FRM, but the standard does not.	
Yes	
No comment.	
Yes	
No comment.	
Yes	
No comment.	
Yes	
No comment.	
Purpose: Is the reference to 'Interconnection Frequency' supposed to be 'Frequency Response'? This would be consistent with later wording in the standard. R1: (1) The acronym 'FRO' is used inconsistently within the document. (2) The phrase "to ensure that sufficient Frequency Response ..." should be separated from the requirement as it is (i) not descriptive of the required actions; (ii) redundant with the stated purpose at the beginning of the standard. In general, such a drafting technique should be avoided as it may allow Responsible Entities to argue that a violation has not occurred where the specific action that is described has not been taken, but the purpose referenced in the requirement has been met. M1: The reference to 'documented formula' is not clear. Does this imply that the FRSG or BA have a record of their calculation? In addition, there is a typo, a random ')' after FRM. M2: Should include the words 'and uses a fixed Frequency Bias Setting...' after overlap Regulation Service to make the wording consistent within the Requirement. M3: The wording of this measure switches tenses between 'is' and 'was'. For consistency, we suggest that this be corrected. NERC Glossary definition of an FRSG is a group of BAs that collectively maintain, allocate and supply operating resources required to jointly meet the sum of the Frequency Response Obligations of its members. No mention is made of the agreement including the sharing or delegation of responsibility related to FRM. Accordingly, the standard should only reference a BA being able to delegate responsibility to an FRSG if the RSG Agreement allows for such delegation. Data Retention 1.3.: (1) As the standard is currently drafted, both the BA and the FRSG would be required to retain data or evidence to show compliance with requirements R1 and M1. It is unclear whether this is the intention, or whether it would be acceptable that just one or the other would maintain such records. (2) In the third paragraph, it should be clarified who is required to keep information related to non compliance if the BA belongs to an FRSG - the BA or the FRSG or both.	
Individual	
Alice Ireland	
	Xcel Energy

chosen by the ERO.
No
BPA continues to fundamentally disagree with the approach that BAL-003-1 is developing into. Please reference BPA's extensive comments submitted on 12/8/11 for Project 2007-12 Frequency Response found at: http://www.nerc.com/docs/standards/sar/2007-12_comments_received_120911.pdf.
No
BPA continues to fundamentally disagree with the approach that BAL-003-1 is developing into. Please reference BPA's extensive comments submitted on 12/8/11 for Project 2007-12 Frequency Response found at: http://www.nerc.com/docs/standards/sar/2007-12_comments_received_120911.pdf.

Individual

Shammara Hasty

Southern Company (Alabama Power Company, Georgia Power Company, Gulf Power Company, Mississippi Power Company, Southern Company Services,Inc., Southern Company Generation, Southern Company Energy Market)

Yes

Yes

Yes

Yes

No
Attachment A states that Form 1 is posted annually. The ERO support document selects events annually. The timing for the two documents needs to be aligned so that the set of selected events does not change from quarter to quarter. (If three events are selected for the first quarter those same events will be a sub-set of the 20 events selected for the annual compliance calculations.) No
The industry needs some assurance that the calculation of the Interconnection FRO described in the report cannot be changed outside of the Standards Process for approval by the industry. We do not support using a 4500 MW loss as the basis for determining the FRO for the Eastern Interconnection for future events. However, as the calculation also includes 59.5 Hz as the basis for determining the FRO, the result is an allocation which can be supported. To the extent that the standard drafting team moves in the direction of using 59.7 Hz as the basis for the FRO, then it needs to follow a methodology similar to the other Interconnections for determining the credible multiple contingency to cover.
Yes

Yes
Please refer to comments for question 9.
The organization selecting events must ensure that the change in frequency is outside the normal dead-band of generator governors. Many of the events selected in the past have not been outside the dead-band and therefore, the frequency response was much less than expected. Southern Company proposes .07 which is consistant with WECC.

Individual

Greg Travis
Idaho Power Company

BAL-012-1 so that potential double counting (and whether that is proper of improper), is addressed.
3. Project 2007-12's "Frequency Response Standard Background Document" dated October, 2012 lists several methods of obtaining Frequency Response. Most of those are extracted below. We have provided questions and commentary that we ask the team to address. a. "Regulation services." This is addressed in BAL-001-0.1a. The purpose of this standard is "To maintain Interconnection STEADYSTATE FREQUENCY within defined limits by balancing real power demand and supply in real-time. How is this related to Frequency Response for a disturbance? (The team may answer this as part of 2.b above.) b. "Through a tariff (e.g. Frequency Response and regulation service). " The team is advised to review the actual pro-forma OATT schedule for Schedule 3 "Regulation and Frequency Response Service" which is specifically limited to services providers that are "capable of providing this service as necessary to follow the moment-by-moment changes in load." Again, how is this related to Frequency Response for a disturbance? (The team may answer this as part of 2.b above.) c. "From generators through an interconnection agreement." The FERC's pro-forma Standard Large Generator Interconnection Agreement (LGIA) per Order 2003 contains no requirement for generators to provide Frequency Response service, and we are not aware on ANY interconnection agreement that does. We ask that the team point to ANY interconnection agreement with such a requirement. Modification of an interconnection agreement to incorporate such a requirement would require the consent of both parties. d. "Contract with an internal resource or loads." Since Frequency Response service would likely be considered as a necessary service to provide Transmission Service under an OATT, it would require a tariff. What existing tariff applies in the U.S.? The "methods" above that the team has listed have the factual errors described. The standard BAL-003-1 cannot be implemented until the necessary tariffs are developed that permit BAs and FRSGs to contract for Frequency Response services. Once that is done, BAL-003-1 can dictate the performance requirements of a BA or FRSG. • For context, FERC OATT schedules relevant to Frequency Response DO NOT set performance requirements. Schedule 3 (Regulation and Frequency Response Service) sets forth a tariff for the service, while BAL-001-0.1a sets forth performance requirements in aggregate for a BA or RSG. Likewise, Schedule 5 (Operating Reserve - Spinning Reserve Service) and Schedule 6 (Operating Reserve - Supplemental Reserve Service) set tariffs for both services, while BAL-002-1 sets performance requirement. Without an OATT schedule for Frequency Response service, BAs and FRSGs will have no means to contract with generators or loads to provide Frequency Response per BAL-0031. The team should address this concern.

Individual	
Michael Falvo	
Independent Electricity System Operator	
Yes	
	Not Applicable
Not Applicable	
No	
As indicated in our previous comments, the status of Attachment A is unclear. It is a mixture of	
requirements, criteria, process and guideline. Making a direct reference in the standard's	
requirements (R1 and R2) makes Attachment A as part of the requirement and hence is enforceable,	
but it contains process and guideline information that is not subject to assessment. On the other	
hand, the absence of a Measure to assess adherence to the criteria and process suggests that	
Attachment A is not enforceable. It is this ambiguity that makes it difficult for the industry to assess	
the extent to which they must follow the process. Again, we urge the SDT to keep only the	
criteria/process parts that must be adhered to in Attachment A, and extract the remaining parts and	
place them in a guideline document, or an appendix. In addition, the Responsible Entities are required	
to submit Form 1 and Form 2, but such requirements are not written explicitly as "shall", and are	
imbedded in the Attachement whose mandatory status is unclear. This makes the standard very	
confusing from an Responsible Entity's obligation and compliance perspective.	
Yes	

Yes
No
a. We do not support R2 as drafted, specifically the phrase "until directed to change by the ERO". We
do not agree that the ERO has any authority to "direct" a BA or FRSG, or any responsible entities, to
make changes to the Frequency Bias Setting or take any operating or operations planning actions. We
suggest to replace the word "directed" with "requested". b. In R2, the words "subject to" can be
interpreted differently. We suggest to replace them with "in accordance with" to parallel the intent as
conveyed in R1. c. We are still concerned with the status of Attachment A, as indicated in our
comments submitted under Q4 - that it is unclear if the materials in Attachment A must be adhered
to or not. A standard should not have an attachment whose enforcement status is unclear as part of a
requirement. d. FRS Forms 1 and 2 are referenced in Attachment 1 , which itself has an unclear status
on measurability and enforceability. It is also unclear if FRS Forms 1 and 2 must be used to submit
the requested data. Collectively, Attachment 1 , FRS Form 1 and Form 2 make the standard very
confusing as to which parts must be complied with. Much better clarity is needed to clearly convey the
standard 's requirements that are measurable, enforceable and must be complied with.
The proposed effective date for this standard conflicts with Ontario regulatory practice respecting the
effective date of implementing approved standards. It is suggested that this conflict be removed by
appending to each of Section A1.3 and A1.4, after "months after applicable regulatory approval", of
the standard to the following effect: ", or as otherwise made effective pursuant to the laws applicable
to such ERO governmental authorities." The same change should be made to the two bullets in the
proposed Implementation Plan.
Individual
Brian J Murphy
NextEra Energy

month's forecast or historic load, is this considered variable bias subject to compliance with R3 in lieu of R4?
No
The target contingency protection criterion for the Eastern Interconnection is the largest event in the last 10 years (believed to be a 2007 event) which is inconsistent with the other Interconnections. Is periodic review required for this criteria? Will this criteria be revised after the referenced event is older than 10 years? Are the other three interconnection's target contingency protection criteria subject to revision if they experience an event larger than a category C? This BA believes that future periodic analysis should be defined and subsequent findings used to support changes via the standard revision process. What are the procedural requirements for revising Attachment A? This BA is concerned that the procedure for revising Attachment A is undefined and that, for example, the IFRO could be increased absent the formal standard revision process, increasing a BA's FRO and subsequently increasing a BA's compliance risk without providing BA's the opportunity to review, comment, and ballot. Related to the previous comment/question, how often are the statistically derived values in Table 1 subject to a required update? For example, the Eastern Interconnection is adjusted due to observed primary frequency response withdrawal ('lazy L' characteristic). The other Interconnections are adjusted for observed differences between point C and point B. As the frequency response characteristics of any Interconnection change, is Table 1 subject to required analysis and revision? This BA believes that future periodic analysis should be defined and subsequent findings used to support changes via the standard revision process. Attachment A indicates that a BA may exclude an event from annual Form 1 FRM evaluation only if its tie-line or frequency data is corrupt or unavailable. This exempts numerous scenarios that could result in a poor response score due to system variations. These could include, but are not limited to, changing energy schedules, changes in load, and AGC driving units up or down due to the ACE value at the time of the frequency event. This subjects the BA to undue compliance risk even though the BA may have adequate frequency responsive resources at the time. This BA suggests that the FRSDT adopt language (and Form 2 functionality) that allows the exclusion of events that are skewed by these types of situations. Attachment A and Forms $1 \& 2$ specify that 20 to 52 seconds will be used as the post-event B point average for FRM determination. The number of fast responding resources will increase as the technology for batteries, flywheels, and frequency controlled demand side devices moves forward over time. The 20 to 52 second interval does not adequately incentivize the devopment of these technologies.
No
The Procedure indicates that events that occur when 'large interchange schedule ramping or load change is happening' and 'events occurring within 5 minutes of the top of the hour' should be excluded from consideration. Since interchange schedule ramping and load change occurs at the BA level, this BA believes that the Procedure allows for the selection of events that occur when a BA is experiencing these conditions but Attachment A does not allow for exemption of these events. Also, the Procedure specifies that events that occur at the top of the hour be excluded, if other qualifying events exist, but this does not take into consideration energy markets that allow for sub-hourly schedule changes (e.g. 15 minutes) and the BA is not permitted to exempt these events on Form 1 subjecting the BA to undue compliance risks.
Yes

Yes

No
See previous comments. Also, this standard should be applicable to GOP's as well as BA's with, at a minimum, the following requirements added: Each GOP shall follow all directives of it's Balancing Authority pertaining to frequency responsive operation, including but not limited to the status, droop \& deadband settings of their governors. Each GOP shall provide to their BA the status and droop \& deadband settings of their governors, and headroom available to respond to frequency deviations, as requested.

Group

Duke Energy
Greg Rowland
Duke Energy

No

The definition reads as if the FRM is the median of all of the observations reported by the Balancing Authorities and Frequency Response Sharing Groups. Duke Energy would suggest that the definition read, "The median of all of the Frequency Response observations reported annually by a Frequency Response Sharing Group, or Balancing Authority if not a participant in a Frequency Response Sharing Group, for frequency events specified by the ERO. The Frequency Response Measure is calculated as MW/0.1Hz."
No
As a Balancing Authority may not be the entity maintaining or supplying resources, but would be responsible for utilizing applicable resources within its BA Area, Duke Energy would suggest the following definition, "A group whose members consist of two or more Balancing Authorities that collectively utilize operating resources required to achieve a group FRM equal to or more negative than the sum of the Frequency Response Obligations of its members."

No

Duke Energy agrees with allowing single-BA Interconnections to utilize a variable Frequency Bias Setting (FBS). Duke Energy disagrees with NERC allowing Balancing Authorities in a multiple-BA Interconnection to change the ACE and bounds by which the Balancing Authorities are measured under BAL-001 and BAL-002 by operating to a variable FBS. It is desired that a Balancing Authority be capable of recognizing the amount of primary response available in real-time operation, such information can be included among other information in the generation control algorithm; however, the obligation to support the Interconnection frequency under the secondary control standards, and the amount provided for any given frequency, should be based on the same criteria across all Balancing Authorities of the same size. Nathan Cohn in his comments on Union Electric's use of a variable FBS expressed similar concern regarding the equitable sharing of the obligation to support Interconnection frequency in a multiple-BA Interconnection. Take for example two Balancing Authorities with equal total generation and load, but one operating under a fixed FBS and the other operating under a variable FBS. To the extent that a Balancing Authority is not providing Frequency Response comparable to its fixed Frequency Bias Setting, its ACE will reflect the difference to be covered with secondary control and the Balancing Authority will be measured in a manner similar to other BAs of its "size" based upon the FBS. To the extent that the other BA using a variable FBS is not providing Frequency Response comparable to what it would be allocated using a fixed FBS, its ACE will not reflect the difference or any further obligation to support Interconnection frequency at that time with secondary control. Duke Energy's concern regarding non-comparable treatment of all BAs is further amplified by the lack of scrutiny placed on the BA algorithm used to determine the real-time variable FBS, to ensure that compliance cannot be gamed by such use.
No
As indicated in our comments in the past, Duke Energy is certain that as the Interconnection Frequency Bias Setting (FBS) is set closer to the actual Frequency Response in a multi-BA Interconnection, most BAs will be challenged in meeting CPS2, while CPS1 and the proposed Balancing Authority ACE Limit (BAAL) will be more achieveable bounds, and in some cases CPS1 performance will improve. Though probably most of the BAs may welcome a FBS set as high in magnitude as allowed to address the potential compliance risk, there are some which may desire to set their FBS closer to their required minimum allocation rather than have to take on a larger obligation in frequency support under the secondary control measures. Duke Energy believes that this proposed standard should incent BAs to provide more than their share of Frequency Response to the Interconnection and allow that good performance to be recognized; however the requirements described in Attachment A for determining the minimum Frequency Bias Setting (FBS), which requires that the FBS be set no lower in magnitude than the FRM, will leave certain over-performing BAs with no choice but to reduce their actual Frequency Response (still well-above their FRO) if they want to operate with a FBS set closer to the Interconnection Minimum allocation and be relieved of the associated increased obligation for frequency support under the secondary control measures. The FBS is embedded within the secondary control measures of CPS1, CPS2 and the draft Balancing Authority

ACE Limit (BAAL). Comparable treatment of similarly-sized BAs (based upon the FRO allocation) is only possible if all BAs are provided the same minimum FBS requirement. To the extent that a BA provides more than its share of response to events, it's over-performance will only be recognized if its ACE is allowed to reflect a FBS comparable to its peers, allowing its over-performance to be reflected in ACE in support of bringing frequency closer to 60 Hz . Generation control algorithms implemented today to optimize CPS1 will allow non-zero ACE when in support Interconnection frequency within bounds determined by the BA - there should be no concern of "response withdrawal" with such algorithms in place, the BA will simply get credit for such performance. As depicted in the current document, the over-performing BA would be required to set its minimum FBS at its FRM (or greater in magnitude), taking away what should be considered over-performance, erasing it in ACE, and turning it into an obligation under the secondary control measures. Based upon the draft, the only way that the BA could be treated comparably to other similarly sized BAs held only to operating to the Interconnection Minimum allocation, would be to reduce its actual response in FRM to a value less in magnitude than its Interconnection Minimum allocation. Duke Energy believes that BAs should be incented to provide more than their share of Frequency Response, and be given the opportunity to report performance on a basis comparable to similar-sized BAs. Our opinion is that Attachment A ensures that the Interconnection Frequency Bias Setting will remain at some margin above the actual Interconnection Frequency Response in magnitude - the reliability of the Interconnection will not be at risk by allowing over-performing BAs to operate and report performance on a comparable basis to other similarly-sized BAs based upon the Interconnection Minimum allocation if they choose to do so to that extent, Duke Energy suggests that the language on page 3 be changed to: "A BA using a fixed Frequency Bias Setting may set its Frequency Bias Setting to any number the BA chooses up to 125% of its Frequency Response Measure as calculated on FRS Form 1, but no less in magnitude than its Interconnection Minimum allocation as determined by the ERO." Regarding the argument which could be offered that a larger FBS in magnitude will also allow wider bounds for control performance, Duke Energy agrees that a large portion of the BA operation will be around 60 Hz where such a benefit could be realized, however it would also come at the cost of a larger obligation than other comparably-sized BAs in sustained support of frequency during the more critical times of significant deviation from 60 Hz where the BA's compliance could be at risk. Below 59.95 Hz in the Eastern Interconnection (the Frequency Trigger Limit under BAAL), the additional MWs needed to be compliant for any given frequency are greater than the MWs of imbalance allowed by the larger BAAL bound - comparably-sized BAs will not be comparably judged if the standard forces over-performing BAs to assume a larger FBS (in magnitude) than their peers - that should be the decision of the BA. We believe that the proposed language above will create the proper incentive for a Balancing Authority to provide more than its minimum allocation of Frequency Response, and allow it to choose if it wants to make that performance part of a larger FBS (in magnitude), knowing the associated risks and benefits of that decision. Duke Energy supports this standard allowing for Frequency Response Sharing Groups, however the requirements and supporting documents need to clearly allow the FRSG to be treated no differently than if it was a Balancing Authority and shield the participating BAs from compliance scrutiny when all scrutiny should be placed on the FRSG performance as a whole. At the top of Page 3, the standard attachment allows the FRSG to "calculate a group NIA and measure the group response to all events in the reporting year on a single FRS Form 1", however at the bottom of page 3, the standard attachment still requires the FRSG BAs to individually fill out Form 1 and Form 2 for the purposes of determining the minimum Frequency Bias Setting. Duke Energy believes that the standard language in Attachment A, and the supporting form(s), should allow the FRSG, if it chooses, to also report the split of the group FRM which the BAs will use to individually determine their Frequency Bias Setting, rather than require each BA in an FRSG to still maintain Form 1 and Form 2 data. Form 1 could be modified for the FRSG to report the group's FRM along with the split of the FRM among the members, and another form could be developed for each FRSG BA to fill out, replicating only the section of Form 1 (column S) where each BA could provide values for its FRM allocation, its desired FBS, its minimum FBS allocation, and so on.

No

Duke Energy agrees with allowing the ERO to perform this function, however the industry needs some assurance that this Procedure cannot be changed outside of the Standards Process for approval by the industry. In the sixth line of the third paragraph on page 5, the statement should reference Table 2. Page 5 reads as if the BAs will submit their data based upon Form 1 which includes an adjustment to the Interconnection peak load (initially 0.9), and then the ERO will determine whether the Interconnection minimum FBS is still more than 20% above the measured response - if so, the
minimum FBS will be adjusted, requiring the BAs to reassess their new minimum FBS based upon a different factor, and decide whether to use that value or choose a value up to 125% of their FRM, resulting in another iteration of values being submitted to the ERO. If the ERO is going to do an independent assessment of Interconnection Frequency Response to the events, on an annual basis prior to gathering data from the BAs, the ERO could compare the total FBS being used by the BAs against the estimated Frequency Response over that period to determine if an adjustment is warranted, and then the ERO could include the appropriate adjustment factor ($0.9,0.8$, etc..) in Form 1 for the BAs to use. If the ERO is not going to estimate the Frequency Response aside from the BAs, multiple iterations will be likely. Duke Energy suggests the following language to cover the point above: "On an annual basis, the ERO will review the Interconnection total minimum Frequency Bias Setting for the prior period and compare it against the Interconnection's total natural Frequency Response determined for that period. If an Interconnection's total minimum Frequency Bias Setting exceeds (in absolute value) the Interconnection's total natural Frequency Response by more (in absolute value) than 0.2 percentage points of the Interconnection non-coincident peak load (expressed in MW/0.1Hz), the minimum Frequency Bias Setting for BAs within that Interconnection may be reduced (in absolute value) based on the technical evaluation and consultation with the regions affected by 0.1 percentage point of Interconnection non-coincident peak load (expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$) to better match that Frequency Bias Setting and natural Frequency Response. The ERO will include the adjustment factor in the Interconnection Form 1 used by the Balancing Authorities for the calculation of the new minimum Frequency Bias Setting. The Form 1 information from the Balancing Authorities will be gathered by the ERO in coordination with the regions of each I nterconnection to determine the final Interconnection Frequency Bias Setting for the next period." No
Similar to our earlier concern, the industry needs some assurance that the calculation of the Interconnection FRO described in the report cannot be changed outside of the Standards Process for approval by the industry. Duke Energy does not support using a 4500 MW loss as the basis for determining the FRO for the Eastern Interconnection for future events. However, as the calculation also includes 59.5 Hz as the basis for determining the FRO, the result is an allocation which can be supported. To the extent that the standard drafting team moves in the direction of using 59.7 Hz as the basis for the FRO, then it needs to follow a methodology similar to the other Interconnections for determining the credible multiple contingency to cover.
Yes
Though Duke Energy does not agree with some of the points in the Background Document, it does justify the rationale used by the SDT. Additional comments: at the top of page 23, it states that the basic Frequency Response Obligation is based on non-coincident peak load and generation data reported in FERC Form 714, however the actual calculation is missing and should be based upon the reported MWh, not the peak load as stated. At the bottom of page 23, it states that Attachment A proposes the three options for event criteria, however doesn't clarify why it was chosen that the Eastern Interconnection would be held to the largest event over the last 10 years, while others will be based upon the largest category C loss-of-resource ($\mathrm{N}-2$) event.
No
Given the FERC deadline approaching for NERC to deliver a Frequency Response standard, Duke Energy supports the adoption of this standard with some reservations. We believe that the proposed standard addresses the FERC directive to NERC, however it also introduces some longer-term issues related to secondary control and related costs that may have not been anticipated by the FERC. To that point, Duke Energy believes that if this standard is adopted, the industry will have the time and opportunity through the NERC standards development process to mitigate some of the concerns presented in our comments."
The concern raised in Duke Energy's comments in item 4 will not be a factor for a few years, but will be an issue as more and more BAs are in the position of their FRM being better than the Interconnection Minimum allocation. We believe that the language that we proposed for calculating the minimum FBS in a multiple-BA Interconnection allows for the proper incentives for BAs to maintain FRM much better than required, and allows for comparable measurement of secondary control performance between similarly-sized BAs, while presenting no risk to reliability.

I ndividual

Don Schmit

Nebraska Public Power District
Agree
MRO NSRF [Midwest Reliability Organization - NERC Standards Review Forum]

Group

ACES Power Marketing Standards Collaborators
Jason Marshall
ACES Power Marketing

Yes
We believe that refinements to the definition were needed.
No
We agree that a definition is needed and thank the drafting team for writing one. However, we believe additional refinement of the definition is necessary. Although the definition appears to be written to parallel the Reserve Sharing Group definition, we think the definition needs to be simplified. For one, it encompasses actions that are not necessary. For instance, the proposed definition includes the action to "maintain operating resources". This could literally include generating plant maintenance. We do not agree that a Frequency Response Sharing Group would jointly perform maintenance on their plants. In fact, since the definition applies to BAs, it is entirely possible within the functional model that the BAs do not even own the plants and could not perform joint maintenance. We assume the purpose of including "maintain" was to recognize that maintenance of generating resources would need to be coordinated to ensure that there was sufficient frequency response reserve. We do not believe this needs to be explicitly identified in the definition. Furthermore, we find the use of "operating resource" as a source of potential confusion. While we understand operating resource is intended to mean a facility that provides the ability to increase or decrease MW output based on the frequency deviation, resource has various meanings throughout the standards and its use here could be confusing and contradictory. For instance, TOP-006-2 R1 discusses transmission resources. Furthermore, if an "operating resource" is capable of increasing or decreasing MW output based on frequency deviation, what is a "resource"? In other words, why is "operating" added to the term "resource"? We think it is best to avoid use of the term operating resource and, thus, recommend changing the definition to: "A group of two or more Balancing Authorities that share frequency response reserves and are required to jointly meet the Frequency Response Obligations of its members."
(1) Frequency Response Obligation (FRO) is used inconsistently with the proposed definition in the document. The document uses the term "I nterconnection Frequency Response Obligation" in many locations. However, FRO specifically is defined as the BA's "share of the required Frequency Response". It does not apply to the Interconnection. How can the Interconnection have a share of the required frequency response? A new term may need to be defined for the Interconnection required Frequency Response. (2) On page 3 Attachment A states the ERO will post the Frequency Bias Setting for each BA along with their Frequency Response Obligation. Later on the same page, the document states that the BA shall set its Frequency Bias Setting to 100% to 125% of it Frequency Response Measure or Interconnection Minimum. What is the purpose of the ERO determining Frequency Bias Settings if the settings are not going to be used by the BA? What are we missing in the explanation? (3) Late on page 3, the document states that BAs are encouraged to notify NERC if load or generation is transferred. Section 4(a) on page 8 of the Rules of Procedure Appendix 5A - Organization Registration and Certification Manual indicates that changes to a Registered Entity's footprint actually triggers a potential certification audit. Since BAs are required to be certified and moving generation or load from the metered boundaries of one BA to another BA would represent a change in footprint, we suggest removing the word "encouraged" and stating affirmatively that BAs must notify NERC of such changes and referencing the appropriate section of the Rules of Procedure. Otherwise, BAs may not realize notification is actually required.

Overall, we agree. However, we suggest the document clarify that the ERO shall perform these tasks in coordination with the Resources Subcommittee. It consists of industry experts that can be an extra resource to NERC. Furthermore, NERC staff working with the Resources Subcommittee will provide additional transparency to the process.
Yes
We agree that this method will provide sufficient frequency response. However, we believe Interconnection Frequency Response Obligation is used inconsistentently with the definition of Frequency Response Obligation as documented in our response to other comments.
No
(1) The formula for calculating Frequency Response Obligation appears to be missing on page 23. (2) We are confused by the varying sample rates for the different scan rates in the Definitions of Frequency Values for Frequency Response Calculation table on page 13. It would appear that the time range of values for the average B value varies more than necessary by scan rate. For example, for 2second scan rates, sampling would start at 20 seconds and end at 52 seconds. However, for the 4second scan rates, sampling starts at 24 seconds and ends at 48 seconds. Why would it not also cover 20 and 52 seconds for a 4 -second scan rate?
No
(1) We believe that the drafting team work has demonstrated that the standard is unnecessary. The data presented in the posting shows that all of the interconnections easily exceed the required Frequency Response necessary to avoid actuating UFLS relays. Since one of the main purposes of the standard is to provide sufficient Frequency Response, it would seem the purpose is already met without implementing and enforceable standard. So why is a standard needed to compel required Frequency Response if it is already provided? (2) Even though we believe the supporting data for the posting demonstrates the standard is unnecessary, we understand NERC is required by a FERC directive to provide a standard. Given this requirement, we do believe the drafting team has largely provided a reasonable standard and supporting documents that only require a few additional adjustments (see our comments in other questions for these adjustments) to finalize the standard. As a result, we will likely end up supporting the standard once these final adjustments are made.
(1) Please strike "that is a member of a multiple BA Interconnection" in R2 and R3. The language makes the requirements difficult to read. We understand this is trying to clarify that these requirements should not apply to BAs such as ERCOT since changing its Frequency Bias Setting does not need to be coordinated with other BAs among other issues, and we do not have an issue with this intent. However, there is an easier way to address this issue without creating a confusing requirement. The SDT should include seeking a variance for the ERCOT area in conjunction with developing the standard. (2) Please strike "in order to represent the Frequency Bias Setting for the combined Balancing Authority Area" in Requirement R4 as it is superfluous and incorrect. First, the two bullets provide the necessary information making the statement unnecessary. Second, the BA Areas are not combined into a single BA Area as implied with the statement "combined Balancing Authority Area". They are still in fact two distinct BA Areas. (3) The data retention period for R1, R2, R3, and R4 is not consistent with the NERC Rules of Procedure. Section 3.1.4.2 of Appendix 4C Compliance Monitoring and Enforcement Program states that the compliance audit will cover the period from the day after the last compliance audit to the end date of the current compliance audit. The data retention section states that data shall be kept for the current calendar year plus the three previous calendar years. This could be up to four years which exceeds the BA audit period of three years. It is unnecessary for a BA to maintain evidence that was already verified in a prior audit. We recommend changing the evidence retention period to three years. (4) Has the drafting team coordinated the addition of the Frequency Response Sharing Group (FRSG) with the Functional Model Working Group and the NERC staff responsible for organizational registration? If not, please do so as NERC will need to be willing to register entities as a FRSG if it is to be utilized. Furthermore, the Functional Model Working Group should document the purpose and intent of the FRSG. (5) We disagree with the VSLs for R1. The VSLs are structured such that a BA's or FRSG's violation is dependent upon the rest of the interconnection to determine the severity level of the violation. If the BAs collectively fail to achieve the Interconnection Frequency Response obligation, a 2% violation of the Frequency Response Measure jumps from a Lower VSL to a High VSL. This should never be the case. No violation by a registered entity should become potentially more or less severe based on the violation of another entity. We encourage the drafting team to work with NERC Legal department in reviewing this VSL further as FERC has already allowed ISO/RTO violations investigation to draw in
third parties that potentially contributed to the ISO/RTO violation to ensure the appropriate party is fined. The principal is similar here in ensuring the appropriate BA is fined for its violation not the violations/failures of other BAs. The background document mentions on page 31 that the motivation for structuring the VSL in this manner was to prevent BAs in multiple BA interconnections from being sanctioned disproportionately. We appreciate the drafting team considering this issue but believe there is a simpler solution. Four VSLs could simply be written based on the percentage the BA misses its own Frequency Response Obligation. Furthermore, the compliance enforcement process already considers if the violation impacted reliability when assessing a sanction. (6) The Frequency Response Obligation (FRO) term is used inconsistently with the definition in the VSLs for R1. The first part of each BA implies that the Interconnection has an FRO. However, the definition specifically states that FRO is the BA's "share of the required Frequency Response". It does not apply to the Interconnection. How can the Interconnection have a share of the required frequency response? A new term may need to be defined for the Interconnection. (7) The implementation plan still references Requirement R5. There is no such requirement. (8) Requirement R1 is not consistent with the recent direction NERC has taken to refocus on reliability and looking forward during compliance audits rather than backwards. For instance, NERC has proposed monitoring internal controls of registered entities because this will provide a reasonable assurance that the registered entity is prepared to comply in the future. Current compliance audits focus mostly on past performance and provide no indication of future reliability. How does Requirement R1 support this forward looking vision when it is a lagging indicator that looks at historical performance? (9) Requirement R4 appears to be inconsistent with Requirement R1 and Attachment A. On page 3, Attachment A states the BA shall set its Frequency Bias Setting to 100% to 125% of it Frequency Response Measure or Interconnection Minimum. However, Requirement R4 states that the BA providing Overlap Regulation Service shall set its Frequency Bias Setting to the sum of its Frequency Bias Settings on FRS Form 1 and FRS Form 2 of its own BA and the BA to which its provides Overlap Regulation Service. For simplicity let's call the BA providing Overlap Regulation Service BA X and the BA receiving the service BA Y. Why would the BA X not set its Frequency Bias Setting to 100% to 125% of the sum of BA X's and BA Y's Frequency Response Measure? This would make Requirement R4 parallel with R2. (10) We do not understand the difference between the two bullets in Requirement R4. They appear to say essentially the same thing and the background document provides no discussion to distinguish their differences. Please provide further explanation.

Group

SERC OC Standards Review Group

Gerry Beckerle

Ameren

No
The definition reads as if the FRM is the median of all of the observations reported by the Balancing Authorities and Frequency Response Sharing Groups. We agree with the Duke Energy suggestion that the definition read, "The median of all of the Frequency Response observations reported annually by a Frequency Response Sharing Group, or Balancing Authority if not a participant in a Frequency Response Sharing Group, for frequency events specified by the ERO. The Frequency Response Measure is calculated as MW/0.1 Hz."
No
A Balancing Authority may not be the entity maintaining or supplying resources, but would be responsible for utilizing applicable resources within its BA Area. We would modify the Duke Energy suggestion to read as follows: "A group whose members consist of two or more Balancing Authorities that collectively utilize operating resources with a goal to achieve a group FRM equal to or more negative than the sum of the Frequency Response Obligations of its members."

No

It is important for NERC to monitor the interaction between the deployment of this standard and its impact on CPS1, CPS2, and BAAL. If performance in the CPS criteria is degraded, there should be a halt in the reduction of the minimum bias setting allowed. There is also concern that we are providing the correct incentives to the entities to provide the appropriate amount of frequency response. We also suggest that clarification be made so that changes in the BA's footprint that would necessitate
changes in the bias setting or the FRO be permanent changes, not just temporary. It is unclear how performance would be measured for a BA versus a frequency response sharing group.

No
We believe the industry needs some assurance that the calculation of the interconnection FRO cannot be changed without rigorous review and input from the industry. In addition the clarification should be made how the one in ten year loss for the Eastern Interconnection (4500 MW) would change after 10 years. Would the same methodology be used or would the largest Category C ($\mathrm{n}-2$) be used?
Yes
We agree with the Duke Energy comments on this question.

The comments expressed herein represent a consensus of the views of the above named members of the SERC OC Standards Review Group only and should not be construed as the position of SERC Reliability Corporation, its board, or its officers.

Individual

Brett Holland

Kansas City Power \& Light
Yes
Yes
Yes
No
The Standard proposes a calculation that overstates the frequency response obligation (FRO) for Balancing Authorities.

No
Criteria 3-Why are frequency thresholds different between regions when generator governor reaction is supposed to be the same between regions? Criteria 5 - What is the reasoning that multiple events that are not stabilized within 18 seconds not being considered? Criteria 6 - How are "changes in scheduled interchange" or load change determined in regions with interconnections with multiple BAs with different time zones?
Yes

Yes

No
The Standard does not consider instances for smaller BAs that operate generation for peak conditions and acquire energy for most of the operating year.

Individual

Angela P Gaines
Portland General Electric Company

No
Exelon is troubled by the approach of having requirements that rely so heavily on the attachment to the standard. The use of both of the documents is required to be compliant and this makes it difficult to determine what the obligations are and increases the chance for error in interpretation. The suggested changes below in response to question 8 take information from the Attachment and establish requirements so that an entity does not have to go back and forth between the two documents to identify its obligations. Attachment A should then be modified to include examples of Forms 1 and 2 and instructions for completing the form for Balancing Authorities and Frequency Response Sharing Groups.
No
Please see response to question 8.

No
Exelon checked "no" because it does not support the current draft standard. Exelon's position is that efforts to modify frequency monitoring and control should be directed at the existing standards. Since Frequency Bias is already a component of ACE, and ACE performance is tracked by both CPS 1 and CPS 2, it seems evident that NERC already has in place mechanisms for evaluating frequency response. NERC already has in place mechanisms for ensuring sustained frequency response during a contingency, through the Disturbance Control Standard (DCS) and its requirement for the contingent Balancing Authority to deploy resources. Under the current BAL-003-0.1b language, Balancing Authorities are given a consistent means for determining frequency bias, via the minimum requirement of 1% peak generation or 1% peak load. Together with the above references to existing CPS 1 performance measurements, current standards meet the objectives outlined in BAL-003-1. This proposed draft BAL-003-1 complicates the setting of Frequency Bias and attempts to go beyond that purpose into frequency response performance, without clear rules for how to perform. Exelon is also concerned with moving this standard forward while there is an ongoing field trial that could impact whether this standard should be put into place. For example, waivers are in place for CPS 2 for participating Balancing Authorities and there is ongoing effort with the BAAL field trial set of standards that will establish performance metrics around frequency control. As an alternate approach to waiting to move forward on the standard, Exelon recommends the following BAL-003-1 Requirement language: R1. The ERO shall identify up to five [5] system frequency events in each Interconnection that will be included in the Form 1 and 2 data requests for Balancing Authorities by April 30th each year. R2. Each Balancing Authority shall submit the following data to the ERO annually by July 15:
R2.1 The total annual net output of generating plants inside the Balancing Authority Area. R2.2 The total annual load with losses inside the Balancing Authority Area. R3. Each Balancing Authority shall calculate its Frequency Response Measure using Forms 1 and 2 as posted by the ERO. (See Attachment A_Form 1 and Form 2) R4. Each Balancing Authority or Frequency Response Sharing Group shall submit Forms 1 and 2 to contacts designated by the ERO before the expiration of ERO established deadlines, which shall be no earlier than 30 days after posting of Forms 1 and 2. R5. The ERO shall post the following information: R5.1. Each Interconnection's Frequency Response Obligation R5.2 Each Balancing Authorities Frequency Response Obligation R5.3 Each Balancing Authorities Frequency Bias Setting R6. Each Balancing Authority shall implement in its ACE equation its ERO established Frequency Bias Setting during the ERO established three-day implementation period. No further adjustments can be implemented outside of the parameters established below in the upcoming year unless a Balancing Authority coordinates with the Regional Entity and the affected Balancing Authorities. R6.1 A Balancing Authority using a fixed Frequency Bias Setting sets its Frequency Bias Setting to the greater of (in absolute value): R6.1.1. The number the BA chooses between 100% and 125% of its Frequency Response Measure as calculated on FRS Form 1. R6.1.2. The Balancing Authorities share of the Interconnection Minimum as determined by the ERO. R6.2 A Balancing Authority using a variable Frequency Bias Setting shall maintain a setting that is: R6.2.1 Less than zero at all times, and R6.2.2 Equal to or greater in magnitude than its Frequency Response Obligations when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$. R7. Each Frequency Response Sharing Group or Balancing Authority that is not a member of a FRSG shall monitor its Frequency Response Obligation and work with generating facilities or demand response resources to provide sufficient Frequency Response to meet the Frequency Response Obligation assigned by the ERO. R8. Each Balancina Authoritv that adds or removes aeneration or load, includina throuah the
use of dynamic transfers, shall notify the ERO to ensure that any needed adjustments to the Interconnection Frequency Response Obligation or Balancing Authority Frequency Response Obligation and Bias can be calculated. R8.1. The ERO shall notify all affected Balancing Authorities of modifications to the Frequency Response Obligation due to the addition or removal of generation or load. R9. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation, in order to represent the Frequency Bias Setting for the combined Balancing Authority Area, to be equivalent of the sum of the Frequency Bias Setting as communicated by the ERO for the participating Balancing Authorities.

Individual
Janelle Marriott Gill
Tri-State Generation and Transmission Assn., Inc.
No
It is our opinion that there has not been enough justification to merit creating a new standard. If
additional justification is provided then frequency responsive reserves should be a subset of spinning reserves much like spinning reserves are a subset of operating reserves.

We are concerned with the tariff implictations associated with this standard. Will this standard create the need for an additional ancillary service under the FERC pro forma OATT?
Individual

Denise M Lietz

Puget Sound Energy

In reviewing the Consideration of Comments document, it is clear that the standard drafting team does not wish for the administrative elements of Attachment A to become items addressed during compliance evaluations ("There is no intent to require filing on a certain date and to have the BA prove to the auditor that a filing was made on that date." This quote appears at several places in the Consideration of Comments documents, but first at page 113). However, because Attachment A is referenced in the standard, its provisions, including the timing table, are all mandatory and enforceable. This result is emphasized by the language of requirement R1, which states that entities "...shall achieve an annual Frequency Response Measure (FRM) as calculated and reported in accordance with Attachment A...." This language means that a failure to file a document on a date specified in the attachment would be a potential compliance violation. Because Attachment A is mandatory and enforceable, the standard drafting team should carefully review its provisions and clarify which elements are requirements and which elements are background statements or guidance. In addition, the use of additional headings and section numbers would add in clarifying the document (for example, at the top of page 3, there is a discussion of how an FRSG would calculate its FRM; however, there is an entire section beginning on page 4 addressing FRM where that discussion should instead appear).

No
See comment in response to question 4 above for a discussion of Attachment A concerns. Appendix 1 of the Frequency Response Standard Background Document contains a discussion about why the use of net actual interchange to calculate an entity's Frequency Response Measure might introduce inaccuracies into that calculation. That discussion ends with the following statement: "The frequency response is buried within the typical hour to hour operational cacophony superimposed on actual net interchange values. The choice of metrics will be important to artfully extract frequency response from the noise and other unrepresentative error." Based on these statements, it is very difficult to support the standard's approach to calculating the Frequency Response Measure. At Puget Sound Energy (PSE), though, we believe that there is another factor to add to the "operational cacophony" listed in Appendix 1. PSE is a comparatively small BA with limited internal generation. We are embedded between two of the largest energy exporters in the Western Interconnection and, when there is a frequency event, their response flows through PSE's system. As a result, PSE will experience transmission losses associated with the two BAs' frequency response as it flows through our system. When PSE's frequency response is measured using net actual interchange, these losses obscure, at least in part, our system's frequency response. As a result, we ask the standard drafting team to consider specifying a process that would allow us to propose and use an equivalent measure of frequency response. For example, while we understand the concerns and difficulties associated with measuring frequency response at the generator as the default measure for all BAs, in our case, a choice to use that measurement option might prove to be a more-feasible way to comply with the standard.
The definition of "Frequency Response Obligation" applies only to a Balancing Authority. However, requirement R1 applies to both FRSGs and BAs and includes a Frequency Response Obligation that applies to each of those entities. As a result, the definition must also address an FRSG's Frequency Response Obligation. The acronym for Balancing Authority is not included following the first reference to the term in requirement R1 (looks like an inadvertent deletion). Requirement R1 states that an entity "...shall achieve an annual Frequency Response Measure (FRM)..." However, the definition of Frequency Response Measure already includes the concept of annual. As a result, the word "annual" should be removed from the requirement. Requirement R1 includes the language "...to ensure that sufficient Frequency Response is provided by each FRSG or BA that is not a member of a FRSG to maintain Interconnection Frequency Response equal to or more negative than the Interconnection Frequency Response Obligation." This language is a purpose statement rather than a requirement applicable to a FRSG or a BA and should be excluded from the requirement. So long as an FRSG or BA achieves the FRM calculated in accordance with Attachment A, it has done everything necessary to comply with the standard. There are discrepancies between the implementation plan and the proposed standard: - The definitions of "Frequency Response Measure" and "Frequency Response Obligation" in the Implementation Plan are different from those proposed in the draft standard. - The Implementation Plan references "Reserve Sharing Group" rather than "Frequency Response Sharing Group". - The Implementation Plan does not include a definition for the term "Frequency Response Sharing Group". - The Implementation Plan continues to reference R5 in the discussion of the standard's proposed effective date. The annual process dates listed on page 32 of the Background document appear to be inconsistent with those listed in Attachment A.
Individual
Rich Salgo
NV Energy
Yes

Yes

Yes

Yes
This document is improved, and satisfactorily addresses comments from the prior posting. Yes

in its currently posted version. We believe this was removed by mistake. 2. There is no clarity as to how certain factors used in determining the Interconnection FRO such as CCADJ, CBR and BC'ADJ were determined. There is no apparent provision to re-assess any potential changes to these factors over the future years. If such provision is needed or has been provided then consideration should be given to averaging the adjustment over a longer duration (i.e., using the average of the factor observed over a number of years rather than just the year being assessed). 3. The method used for the allocation of the Interconnection FRO to BAs seems to not recognize the fact that frequency response from Load is much less than frequency response from Generation of an equal MW size. 4.If this Attachment A is considered an integral part of the standard then there should be some enforceable measures to ensure applicable entities adhering to the prescribed time line.
No
BC Hydro agrees in principle that the ERO should perform these tasks related to BAL-003-1 but has the following concerns: 1.There is no clear indication whether the Interconnection FRO will be calculated every year, and if yes, how each of the factors involved will be determined. 2.It is not clear whether data gathered in these procedures are only for the determination of annual FRO and FBS, or also to determine whether the BA or the FRSG was in compliance to BAL-003-1 for the assessed year. Since the ERO in this Document seems to be the NERC Resources Subcommittee and its Frequency Work Group, we think this fact should be made clear. The Background document should also be reviewed to ensure its alignment in this regard.

No Comment

Yes

BC Hydro respectfully submits these additional comments/observations: 1.The proposed standard seems to indicate that it is applicable to the identified responsible entities at all times. There might be circumstances where a BA that belongs to a multiple-BA Interconnection became isolated and has to operate in restorative mode which might require adjusting the frequency bias to a value less negative than the minimum FBS setting value in order to follow the much reduced load/generation level in the area. We suggest adding some language in either the Applicability section or in individual
Requirements to recognize these circumstances. 2.Effective Dates: the proposed standard specifies a fixed period (12-month or 24-month) following Regulatory Approval which may fall in the middle of the year while the calculation and implementation are performed on an annual basis. Does this represent any conflicts? 3.The proposed standard does not clearly specify whether a BA must chose between using fixed bias or variable bias for the entire year. Should BAs be allowed to switched back and forth between the two methods? If yes, more details may be needed to account for the FRM and minimum FBS. 4. The proposed standard does not clearly specify whether a BA can be part of a FRSG for only part of the year or must be the whole year. 5. The definition of FRO, FRM, FBS, etc. should all include language to indicate the "negative" nature of the value. 6. Measure M2 should have "and uses a fixed bias" added for clarity purpose. 7.In the Additional Compliance Information section of the proposed standard the following info still exists: For Interconnections that are also Balancing Authorities, Tie Line Bias control and fFlat Ffrequency control are equivalent and either is acceptable. Since all reference to AGC Modes have been removed from the Requirements, this additional info should also be removed.
Individual
Grergory Campoli
New York Independent System Operator

Yes
Yes

With a new process we are concerned that the interconnection minimum will initially move from 1.0\% to 0.9\%.

Yes
No
The drafting team should consider some method for discounting outliers, that may not be explainable.
No
In general we support the work of the DT, and the proposal to measure the systems response to
frequency events, along with the method to determine the FRO. My outstanding concern is with
enforcement on an entity that does not own the resources that provides the frequency response or
the lack of obligation for the entity with the information to provide to the BA to make the assessment
of expected frequency response. BA's should at a minimum be given assurance that resources will
provide data that BA's could use to forecast frequency response and take corrective actions.
Individual
Robert Blohm
Keen Resources Asia Ltd.
Yes
Yes

What needs to be changed, besides properly wording this question? The FRI method of linear regression should be adopted, and the SDT method of median should be rejected, in the standard to change the first sentence of this question into a true statement from a false statement and to, in answer to the question, provide for the proper amount of Frequency Response.
No
See reply to Question 6. Also, the Background Document is seriously deficient in the discussion of inertial response and therefore how imbalances "cause" frequency deviation. The Background Document is overflowing in discussion of how frequency deviation causes frequency response. In other words, the Background Document is "reactive" and not "proactive". The Background Document lacks any discussion of the internal dynamics of rotating machines, beginning with any definition of what Inertial Response is. Inertial Response is the instantaneous power produced by the lag ("inertia") in the ability of the generator's rotor to slow down to the frequency of the magnetic field in the generator's fixed stator whose frequency is instantaneously lowered by a change in phase angle between voltage and current that is due to a sudden loss of interconnected generation to meet load. Adjustments by voltage response within milliseconds and near the location of the loss are sometimes possible to avert rapid spread of a loss to the frequency of the entire interconnection, and constitute the ongoing work of the Phasor Project long ago initiated by the DOE in the persistent absence of NERC interest or work in this area. NERC and drafting team members under advisement by NERC staff studiously resisted so much as any mention of frequency deviation causation in discussions or in the Background Document. An inexplicable technical Cold War and Berlin Wall built in the 1970s and today separating the DOE Phasor Project from NERC Frequency Response standard development and NERC's so-called Frequency Response "Initiative" needs to be ended and torn down. My document http://www.robertblohm.com/Inertia.doc provides missing technical support and explanation for graphs 1-7 on pages 4-10 of the Background Document, on the basis of an exact understanding of Inertial Response.

A probabilistic/statistical basis needs to be developed for the FRM that assesses for usage of frequency response (causation of frequency error) and not just for provision of it. This would also overcome NERC's singular focus on reaction, and NERC's color-blindness to proaction, pointed out in my reply to question 7.

Group

SPP Standards REview Group
Robert Rhodes
Southwest Power Pool

Yes

Yes
Yes

Yes
Delete the 2nd 'that' in the 2nd bullet at the top of page 3.
Yes

Yes

Yes
We like the document and feel that it provides a primer on the frequency response standard. The following are typos in and suggested corrections to the document: - The blue lines referenced in the paragraph under Figure 2 on page 14 are green (A) and red (B). -Insert an 'a' in the 3rd line of the 2nd paragraph in the Sustained Response section on page 19 between 'provides' and 'greater'. -Insert a 'for' in the 2 nd line of the 1st paraaraph on page 21 between 'resource' and 'all'. -Chanae 'provide'
to 'provided' in the 3rd line from the bottom line of the 1st paragraph in the Single Event Frequency Response Data section on page 24. -Change the 'east' to 'Eastern Interconnection' in the 4th line of the 1st paragraph in the Median as the Standard's Measure of Balancing Authority Performance section on page 27. -Delete the 'put' in the 3rd bullet on page 29. Also, replace the 'put' in the 5th bullet with 'gave'.
We support the standard as proposed.
Additional typos: Change the ')' to a '(' in the 4th line of M1 of the standard. No further comment Individual
Marie Knox
MISO

Yes

Yes

No
We agree with the general obligation but believe that the requirement should apply to single BA Interconnections as well. This is supposed to be a North American standard. What other standards shouldn't apply to a single BA Interconnection? We have the same concern with Requirement 2. Yes

Yes
The first hyperlink on page 3 of the Procedure for ERO Support does not work.
Yes

Yes

Yes

Group
JEA
Thomas McElhinney
JEA

R1 places the burden for compliance on the BA but the BA does not control generation assets and should not be solely responsible for maintaining frequency response. While the standard can still define the amount of Frequency Response for each BA, there needs to be an obligation on the GO/GOP to provide that service as directed by the BA and they should also be held accountable for compliance. Finally, we do not believe that a sufficient study has been conducted to determine the impact of this standard. We are concerned that a substantial number of compliance issues could result and that the resulting cost to maintain compliance could be excessive and we suggest it be put

through the Cost Effective Analysis Process (CEAP). We suggest that the proposed values be
evaluated on a sample size within each region to determine the number of compliance issues and for
those issues that are found determine what the BA would have to do be compliant.
Individual
Tony Kroskey
Brazos Electric Power Cooperative, Inc.
Agree
ACES Power Marketing
Individual
Mauricio Guardado
Los Angeles Department of Water and Power
:---
Spinning reserves are intended to support the interconnection response to the loss of a resource. If BAL-003-1 is adopted through this Project, the LADWP recommends that the spinning reserve requirements of BAL-002-0.1b and BAL-STD-002-0 be removed, as the Spinning reserve requirement would require utilities to reserve resources in excess of the reserves required in BAL-003-1. LADWP recognizes that this recommendation may be handled through a separate NERC Project, but wanted to submit this comment to bring light to this potential conflict in Reliability Standards.

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Consideration of Comments Project 2007-12 Frequency Response (BAL-003-1)

The Project 2007-12 Drafting Team thanks all commenters who submitted comments on the proposed standard, BAL-003-1 which was posted for a 30-day formal comment period from October 5, 2012 through November 6, 2012. Stakeholders were asked to provide feedback on the standard and associated documents through a special electronic comment form. There were 50 sets of comments, including comments from approximately 144 different people from approximately 100 companies representing 8 of the 10 Industry Segments as shown in the table on the following pages.

Based on industry comments the drafting team made the following clarifying modifications to the proposed standard and associated documents.

- Made clarifying changes to the proposed standard including replacing the term "...subject to...: with "...in accordance with..." in Requirement R2.
- Clarified the description of the calculation for the Interconnection IFRO in Attachment A.
- Modified Attachment A and the Procedure to provide consistency with the use of the term "resource contingency criteria".
- Corrected typographical errors in all documents.

All comments submitted may be reviewed in their original format on the standard's project page.

If you feel that your comment has been overlooked, please let us know immediately. Our goal is to give every comment serious consideration in this process! If you feel there has been an error or omission, you can contact the Vice President and Director of Standards, Mark Lauby, at 404-446-2560 or at mark.lauby@nerc.net. In addition, there is a NERC Reliability Standards Appeals Process. ${ }^{1}$

[^75]
Index to Questions, Comments, and Responses

1. The SDT has made minor modifications to the proposed definition for Frequency Response Measure based on industry comments. Do you agree that these modifications provide sufficient clarity? If not, please explain in the comment area. 11
2. The SDT has created a definition for Frequency Response Sharing Group. The definition is as follows: A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members. Do you agree with this definition? If not, please explain in the comment area. 16
3. The SDT has added Requirement R3 for entities using variable Frequency Bias. R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias Setting that is: 3.1 Less than zero at all times, and 3.3 Equal to or more negative than its Frequency Response Obligation when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$. 22
4. Based on Industry comments the SDT has modified "Attachment A- Supporting Document" to provide additional clarity. Do you agree with the modifications? If not, what modifications do you disagree with? 29
5. The SDT has moved a portion of the material located in Attachment A and all of the material located in "Attachment B- Process for Adjusting Bias Setting Floor" into a new document "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard". The SDT created this document to assign tasks to the ERO and provide instructions for the ERO to follow when carrying them out under the BAL-003-1 standard. Do you agree that the ERO should perform these tasks and that this document provides sufficient detail for the ERO to do it under the BAL-003-1 standard? If not, what needs to be added to the document?".
6. The SDT is now using the method detailed in the Frequency Response Initiative Report dated September 30, 2012 to calculate the Interconnection Frequency Response Obligation. Do you agree that this method provides for the proper amount of Frequency Response? If not, what specifically needs to be changed?
7. Based on Industry comments received the SDT made significant clarifying modifications to the Background Document. Do you agree that this document provides sufficient information to justify the rationale used by the SDT in developing the draft standard an provides the industry with sufficient understanding of the issues being addressed by the standard?
8. If you are not in support of this draft standard, what modifications do you believe need to be made in order for you to support the standard? Please list the issues and your proposed solution to the issue.
9. Please provide any other comments (that you have not already provided in response to the questions above) that you have on the draft standard BAL-003-1.

NERC

The Industry Segments are:

1 - Transmission Owners
2 - RTOs, ISOs
3 - Load-serving Entities
4 - Transmission-dependent Utilities
5 - Electric Generators
6 - Electricity Brokers, Aggregators, and Marketers
7 - Large Electricity End Users
8 - Small Electricity End Users
9 - Federal, State, Provincial Regulatory or other Government Entities
10 - Regional Reliability Organizations, Regional Entities

Group/Individual		Commenter	Organization			Registered Ballot Body Segment									
						1	2	3	4	5	6	7	8	9	10
1.	Group	Guy Zito	Northeast Power Coordinating Council												X
	Additional Member	Additional Organization		Region	Segment Selection										
1.	Alan Adamson	New York State Reliability Council, LLC		NPCC	10										
	Carmen Agavriloai	Independent Electricity System Operator		NPCC	2										
	Greg Campoli	New York Independent System Operator		NPCC	2										
4.	Sylvain Clermont	Hydro-Quebec TransEnergie		NPCC	1										
	Chris de Graffenried	Consolidated Edison Co. of New York, Inc.		NPCC	1										
	Gerry Dunbar	Northeast Power Coordinating Council		NPCC	10										
7.	Mike Garton	Dominion Resources Services, Inc.		NPCC	5										
	Peter Yost	Consolidated Edison Co. of New York, Inc.		NPCC	3										
	Michael Jones	National Grid		NPCC	1										

Additional Member Additional Organization Region Segment Selection

1. Ted Hobson	FRCC	1
2. Garry Baker	FRCC	3
3. John Babik	FRCC	5

3. John Babik FRCC 5

Group/Individual		Commenter	Organization	Registered Ballot Body Segment									
				1	2	3	4	5	6	7	8	9	10
30.	Individual	Don Jones	Texas Reliability Entity										X
31.	Individual	Don Schmit	Nebraska Public Power District	X		X		X					
32.	Individual	Brett Holland	Kansas City Power \& Light	X		X		X	X				
33.	Individual	Angela P Gaines	Portland General Electric Company	X		X		X	X				
34.	Individual	Kathleen Goodman	ISO New England Inc.		X								
35.	Individual	RoLynda Shumpert	South Carolina Electric and Gas	X		X		X	X				
36.	Individual	Oliver Burke	Entergy Services, Inc. (Transmission)	X									
37.	Individual	Chris de Graffenried	Consolidated Edison Co. of NY, Inc.	X		X		X	X				
38.	Individual	David Jendras	Ameren	X		X		X	X				
39.	Individual	Maggy Powell	Exelon Corporation and its affiliates	X		X	X	X	X				
40.	Individual	Janelle Marriott Gill	Tri-State Generation and Transmission Assn., Inc.	X		X		X					
41.	Individual	Denise M Lietz	Puget Sound Energy	X		X		X					
42.	Individual	Rich Salgo	NV Energy	X		X		X					
43.	Individual	John Tolo	Tucson Electric Power	X									
44.	Individual	Ken Gardner	AESO		X								
45.	Individual	Patricia Robertson	BC Hydro	X	X	X		X					
46.	Individual	Grergory Campoli	New York Independent System Operator		X								
47.	Individual	Robert Blohm	Keen Resources Asia Ltd.								X		
48.	Individual	Marie Knox	MISO		X								
49.	Individual	Tony Kroskey	Brazos Electric Power Cooperative, Inc.	X									
50.	Individual	Mauricio Guardado	Los Angeles Department of Water and Power	X		X		X	X				

If you support the comments submitted by another entity and would like to indicate you agree with their comments, please select "agree" below and enter the entity's name in the comment section (please provide the name of the organization, trade association, group, or committee, rather than the name of the individual submitter).

Summary Consideration:

Organization	Supporting Comments of "Entity Name"
MEAG Power	Southern Company Services, Inc - Gen
Associated Electric Cooperative, Inc. - JRO00088	SERC OC Standards Review Group
Avista	Bonneville Power Administration
Nebraska Public Power District	MRO NSRF [Midwest Reliability Organization - NERC Standards Review Forum]
ISO New England Inc.	Last submitted comments of ISO-NE which have not been addressed and, for efficiency sake, do not believe we should be requested to re-submit.
South Carolina Electric and Gas	SERC OC Standards Review Group
Entergy Services, Inc. (Transmission)	Entergy is in agreement with comments submitted by SERC on 11/5/0212.
Brazos Electric Power Cooperative, Inc.	ACES Power Marketing

1. The SDT has made minor modifications to the proposed definition for Frequency Response Measure based on industry comments. Do you agree that these modifications provide sufficient clarity? If not, please explain in the comment area.

Summary Consideration: A few of the commenters felt that the definition applied to all of the observations for both the BA and the FRSG. The drafting team stated that although they understood their concern they did not agree with them. They felt that the present definition provided sufficient clarity and decided to not make any modifications.

One commenter felt that the definition should state that it is a negative value. The drafting team explained that while the desired value would be negative it is mathematically feasible for the actual value to be positive but that value would by definition mean that the entity failed the measurement for Requirement R1.

Another commenter did not believe that there was sufficient clarity as to the number of observations that would be used to calculate FRM. The drafting team stated that the number of observations would vary from year to year. The basis for determining events is outlined in the Procedure attached to this standard.

Organization	Yes or No	Question 1 Comment
Duke Energy	No	The definition reads as if the FRM is the median of all of the observations reported by the Balancing Authorities and Frequency Response Sharing Groups. Duke Energy would suggest that the definition read, "The median of all of the Frequency Response observations reported annually by a Frequency Response Sharing Group, or Balancing Authority if not a participant in a Frequency Response Sharing Group, for frequency events specified by the ERO. The Frequency Response Measure is calculated as MW/O.1Hz."
Response: The drafting team thanks you for your comment. However, the drafting team believes that the present definition provides sufficient clarity and has decided to not make any changes.		
SERC OC Standards Review Group	No	The definition reads as if the FRM is the median of all of the observations reported by the Balancing Authorities and Frequency Response Sharing Groups. We agree with the Duke Energy suggestion that the definition read, "The median of all of the Frequency Response observations reported annually by a Frequency Response Sharing Group, or Balancing

| Organization | Yes or No | Question 1 Comment |
| :--- | :--- | :--- | :--- |
| | | Authority if not a participant in a Frequency Response Sharing Group, for frequency events
 specified by the ERO. The Frequency Response Measure is calculated as MW/0.1Hz." |
| Response: The drafting team thanks you for your comment. However, the drafting team believes that the present definition
 provides sufficient clarity and has decided to not make any changes. | | |
| PPL NERC Registered
 Affiliates | No | The PPL Affiliates support the comments of the SERC OC Standards Review Group on this
 question. |
| Response: The drafting team thanks you for your comment. However, the drafting team believes that the present definition
 provides sufficient clarity and has decided to not make any changes. | | |
| BC Hydro | Yes | Additionally, there should be language to clarify that this is a negative value (the same
 should apply to the definitions of FRO and Frequency Bias). It is fairly obvious that these
 values should be negative when reading elsewhere in the proposed Standard and its related
 document but not in their definitions. |

Organization	Yes or No	Question 1 Comment
ACES Power Marketing Standards Collaborators	Yes	We believe that refinements to the definition were needed.
Response: Thank you for your affirmative response and clarifying comment.		
Manitoba Hydro	Yes	No comment.
Northeast Power Coordinating Council	Yes	
NREL Transmission and Grid Integration Group	Yes	
MRO NSRF	Yes	
Bonneville Power Administration	Yes	
SPP Standards REview Group	Yes	
Edison Electric Institute	Yes	
Arizona Public Service Company	Yes	
pacificorp	Yes	
PJM Interconnection, LLC	Yes	
California Independent	Yes	

NERC

Organization	Yes or No	
System Operator		
Energy Mark, Inc.	Yes	
Tacoma Power	Yes 1 Comment	
Xcel Energy	Yes	
Southern Company	Yes	
Idaho Power Company	Yes	
Independent Electricity System Operator	Yes	
Texas Reliability Entity	Yes	
 Light	Yes	
Consolidated Edison Co. of NY, Inc.	Yes	
Ameren	Yes	
NV Energy	Yes	
New York Independent System Operator	Yes	
Keen Resources Asia Ltd.	Yes	

Organization	Yes or No	
MISO	Yes	
American Electric Power		As provided in question 2 below, AEP does not agree with the definition containing the Frequency Response Sharing Group as this function does not exist at this point in time.
Response: Thank you for your comments. The term Frequency Response Sharing Group is defined at the beginning of the standard. Once this standard is approved by the industry, NERC BOT and FERC the definition will be removed from the standard and added to the NERC Glossary of Terms.		

2. The SDT has created a definition for Frequency Response Sharing Group. The definition is as follows: A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members. Do you agree with this definition? If not, please explain in the comment area.

Summary Consideration: Almost all of the commenters wanted to modify the definition. The drafting team explained that they believed that the proposed definition should remain unchanged. The drafting team developed the definition to be essentially the same as that currently used for contingency Reserve Sharing Groups. This will help ensure that the different types of reserve groups are comparable as we move forward with this new type of group.
One commenter did not agree believe it was appropriate to define a new function that was not in the NERC ROP, NERC Statement of Registry Criteria or the NERC Functional Model. The drafting team stated that they had discussed this issue with NERC. NERC staff will add this entity to the registered entity list in the same manner as the existing Reserve Sharing Group. While this is not in the current version available online, NERC will have at least 24 months from the time of regulatory approval to add the entity to the list of registered entities.

Organization	Yes or No	Question 2 Comment
SERC OC Standards Review Group	No	A Balancing Authority may not be the entity maintaining or supplying resources, but would be responsible for utilizing applicable resources within its BA Area. We would modify the Duke Energy suggestion to read as follows: "A group whose members consist of two or more Balancing Authorities that collectively utilize operating resources with a goal to achieve a group FRM equal to or more negative than the sum of the Frequency Response Obligations of its members."
Response: Thank you for your comments. After review of suggested changes, the drafting team believes that the proposed definition should remain unchanged. The drafting team developed the definition to be essentially the same as that currently used for contingency Reserve Sharing Groups. This will help ensure that the different types of reserve groups are comparable as we move forward with this new type of group.	American Electric Power No AEP does not necessarily disagree with the words of the definition. However, AEP does	

| Organization | Yes or No | Question 2 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l|l|l|}\hline not believe it is appropriate to define a new function that is not in the NERC Rules of

Procedure, NERC Statement of Registry Criteria, or the NERC Functional Model. It is

premature to incorporate this entity without a proposed change to these governing

NERC documents.\end{array}\right.\right]\)

Response: After review of suggested changes, the drafting team believes that the proposed definition should remain unchanged. The drafting team developed the definition to be essentially the same as that currently used for contingency Reserve Sharing Groups. This

| Organization | Yes or No | Question 2 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{|l|l|l|}\hline will help ensure that the different types of reserve groups are comparable as we move forward with this new type of group.

Standards Collaborators \& No \& $$
\begin{array}{l}\text { We agree that a definition is needed and thank the drafting team for writing one. } \\
\text { However, we believe additional refinement of the definition is necessary. Although the } \\
\text { definition appears to be written to parallel the Reserve Sharing Group definition, we } \\
\text { think the definition needs to be simplified. For one, it encompasses actions that are not } \\
\text { necessary. For instance, the proposed definition includes the action to "maintain } \\
\text { operating resources". This could literally include generating plant maintenance. We do } \\
\text { not agree that a Frequency Response Sharing Group would jointly perform } \\
\text { maintenance on their plants. In fact, since the definition applies to BAs, it is entirely } \\
\text { possible within the functional model that the BAs do not even own the plants and } \\
\text { could not perform joint maintenance. We assume the purpose of including "maintain" } \\
\text { was to recognize that maintenance of generating resources would need to be } \\
\text { coordinated to ensure that there was sufficient frequency response reserve. We do not } \\
\text { believe this needs to be explicitly identified in the definition. Furthermore, we find the } \\
\text { use of "operating resource" as a source of potential confusion. While we understand } \\
\text { operating resource is intended to mean a facility that provides the ability to increase or } \\
\text { decrease MW output based on the frequency deviation, resource has various meanings } \\
\text { throughout the standards and its use here could be confusing and contradictory. For }\end{array}
$$

instance, TOP-006-2 R1 discusses transmission resources. Furthermore, if an "operating\end{array}\right.\right\}\)

Organization	Yes or No	Question 2 Comment		
	Interconnections to form the FRSG			
Response: After review of suggested changes, the drafting team believes that the proposed definition should remain unchanged. The drafting team developed the definition to be essentially the same as that currently used for contingency Reserve Sharing Groups. This will help ensure that the different types of reserve groups are comparable as we move forward with this new type of group.				
PPL NERC Registered Affiliates	Yes	PPL Affiliates suggest additional detail be added to the definition to ensure the members of the FRSG are all within the same interconnection. The following definition includes the suggested changes: A group whose members consist of two or more Balancing Authorities all within a single interconnection that collectively operate resources required to jointly meet the sum of the Frequency Response Obligations of its members.		
Response: After review of suggested changes, the drafting team believes that the proposed definition should remain unchanged. The drafting team developed the definition to be essentially the same as that currently used for contingency Reserve Sharing Groups. This will help ensure that the different types of reserve groups are comparable as we move forward with this new type of group.				
Ameren	Yes	The word "jointly" may add confusion and we believe it is unessassry.		
Response: After review of suggested changes, the drafting team believes that the proposed definition should remain unchanged. The drafting team developed the definition to be essentially the same as that currently used for contingency Reserve Sharing Groups. This will help ensure that the different types of reserve groups are comparable as we move forward with this new type of group.				
Manitoba Hydro	Yes	No comment.		
Northeast Power Coordinating Council	Yes			
NREL Transmission and Grid Integration Group	Yes	Yes		
MRO NSRF	Yes			
Bonneville Power				

NERC

Organization	Yes or No	
Administration		
SPP Standards REview Group	Yes Comment	
Arizona Public Service Company	Yes	
pacificorp	Yes	
PJM Interconnection, LLC	Yes	
California Independent System Operator	Yes	
Energy Mark, Inc.	Yes	
Tacoma Power	Yes	
Xcel Energy	Yes	
Southern Company	Yes	
Idaho Power Company	Yes	
Texas Reliability Entity	Yes	
Kansas City Power \& Light	Yes	
Consolidated Edison Co. of NY, Inc.	Yes	

NERC

Organization	Yes or No	
Exelon Corporation and its affiliates	Yes	
NV Energy	Yes	
Tucson Electric Power	Yes Comment	
Keen Resources Asia Ltd.	Yes	
MISO	Yes	
Independent Electricity System Operator		Not Applicable

3. The SDT has added Requirement R3 for entities using variable Frequency Bias. R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias Setting that is:
3.1 Less than zero at all times, and
3.3 Equal to or more negative than its Frequency Response Obligation when Frequency varies from 60 Hz by more than +/-0.036 Hz.

Summary Consideration: A couple of commenters felt that the intent of the requirement needed to be clarified. The drafting team explained that Requirement R3 is only applicable to a BA using a variable bias and does require a BA to maintain a bias less than zero. Bullet R3.2 extends the requirement to ensure that BAs using variable bias have a bias at least equal to the FRO when frequency is outside the bandwidth of $+/-0.036 \mathrm{~Hz}$. The BAs using a fixed bias are addressed in Requirement R2.

A few commenters expressed concern with excluding a single BA interconnection from compliance with Requirement R3. The drafting team stated that they had discussed the applicability of variable bias requirements to single BA Interconnections extensively. The consensus of the drafting team was that single BA Interconnections inherently have strong incentives to accurately represent their frequency response characteristic. Any adverse consequences of misrepresenting the frequency response characteristic will be borne solely by that BA and cannot affect other BAs in other Interconnections adversely.

One commenter disagreed with allowing the use of variable Frequency Bias in a multi-BA interconnection. The drafting team believes that this concern may be better addressed within BAL-001. Variable frequency bias settings allow a Balancing Authority to better match their frequency bias setting in use with the actual frequency response occurring at any instant in time. If it is meeting its FRO for larger frequency deviations and the frequency bias setting in use at that time meets or exceeds its FRO, then the BA is doing its part to support frequency and AGC will not be withdrawing that frequency response.
Another commenter question the periodicity of a BA changing its Frequency Bias Setting to be considered using variable Frequency Bias. They gave an example of an entity changing its FBS monthly. The drafting team stated that they had not defined the periodicity for changing their bias to be variable. The example given would be a form of variable bias and would trigger all rules related to variable bias. Requirement R3 is separate from Requirement R4. Requirement R4 is related

> to those entities providing Overlap Regulation Service. It is possible for an entity to provide Overlap Regulation Service and have a variable bias setting therefore an entity may be subject to compliance for both Requirement R3 and Requirement R4.

Organization	Yes or No	Question 3 Comment
American Electric Power	No	AEP believes this question in the comment form is incorrect. It appears that R3 and R4 are inadvertenly merged together.
Response: The drafting team is not sure of the point you are trying to make. The question only contains the Requirement R3 from the standard. The drafting team did notice that the numbering of the sub-bullets was incorrect.		
Duke Energy	No	Duke Energy agrees with allowing single-BA Interconnections to utilize a variable Frequency Bias Setting (FBS). Duke Energy disagrees with NERC allowing Balancing Authorities in a multiple-BA Interconnection to change the ACE and bounds by which the Balancing Authorities are measured under BAL-001 and BAL-002 by operating to a variable FBS. It is desired that a Balancing Authority be capable of recognizing the amount of primary response available in real-time operation, such information can be included among other information in the generation control algorithm; however, the obligation to support the Interconnection frequency under the secondary control standards, and the amount provided for any given frequency, should be based on the same criteria across all Balancing Authorities of the same size. Nathan Cohn in his comments on Union Electric's use of a variable FBS expressed similar concern regarding the equitable sharing of the obligation to support Interconnection frequency in a multiple-BA Interconnection. Take for example two Balancing Authorities with equal total generation and load, but one operating under a fixed FBS and the other operating under a variable FBS. To the extent that a Balancing Authority is not providing Frequency Response comparable to its fixed Frequency Bias Setting, its ACE will reflect the difference to be covered with secondary control and the Balancing Authority will be measured in a manner similar to other BAs of its "size" based upon the FBS. To the extent that the other BA using a variable FBS is not providing Frequency Response

| Organization | Yes or No | Question 3 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l|l|l|}\hline comparable to what it would be allocated using a fixed FBS, its ACE will not reflect the

difference or any further obligation to support Interconnection frequency at that time

with secondary control. Duke Energy's concern regarding non-comparable treatment of

all BAs is further amplified by the lack of scrutiny placed on the BA algorithm used to

determine the real-time variable FBS, to ensure that compliance cannot be gamed by

such use.\end{array}\right.\right]\)

Organization	Yes or No	Question 3 Comment

does require a BA to maintain a bias less than zero. Bullet R3.2 extends the requirement to ensure that BAs using variable bias have a bias at least equal to the FRO when frequency is outside the bandwidth of $+/-0.036 \mathrm{~Hz}$. The BAs using a fixed bias are addressed in Requirement R2.

Exelon Corporation and its affiliates	No	Please see response to question 8.
Response: Please refer to the drafting team response to Question \#8.		
MRO NSRF	No	The MRO NSRF is concerned with the drafting team's exclusion of single Balancing Authority Interconnections from compliance with Requirement R3. To ensure a consistent approach in the application of the standard, recommend R3 be revised as follows:(R3). Each Balancing Authority that is not receiving Overlap Regulation Service and is utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias Setting that is: ...

Response: The drafting team discussed the applicability of variable bias requirements to single BA Interconnections extensively. The consensus of the drafting team was that single BA Interconnections inherently have strong incentives to accurately represent their frequency response characteristic. Any adverse consequences of misrepresenting the frequency response characteristic will be borne solely by that BA and cannot affect other BAs in other Interconnections adversely.

MISO	No	We agree with the general obligation but believe that the requirement should apply to single BA Interconnections as well. This is supposed to be a North American standard. What other standards shouldn't apply to a single BA Interconnection? We have the same concern with Requirement 2.

Response: The drafting team discussed the applicability of variable bias requirements to single BA Interconnections extensively. The consensus of the drafting team was that single BA Interconnections inherently have strong incentives to accurately represent their frequency response characteristic. Any adverse consequences of misrepresenting the frequency response characteristic will be borne solely by that BA and cannot affect other BAs in other Interconnections adversely.

PJM Interconnection, LLC	No	With what periodicity does a BA's frequency bias setting have to change to be

Organization	Yes or No	Question 3 Comment
		$\begin{array}{l}\text { considered variable bias? For example, if a BA changes it's frequency bias setting } \\ \text { monthly based on a percentage of each month's forecast or historic load, is this } \\ \text { considered variable bias subject to compliance with R3 in lieu of R4? }\end{array}$
$\begin{array}{l}\text { Response: The drafting team has not defined the periodicity for changing their bias to be variable. The example given would be a } \\ \text { form of variable bias and would trigger all rules related to variable bias. Requirement R3 is separate from Requirement R4. } \\ \text { Requirement R4 is related to those entities providing Overlap Regulation Service. It is possible for an entity to provide Overlap } \\ \text { Regulation Service and have a variable bias setting therefore an entity may be subject to compliance for both Requirement R3 and } \\ \text { Requirement R4. }\end{array}$		
BC Hydro	Yes	$\begin{array}{l}\text { BC Hydro applauds the STD's efforts to recognize a more suitable bound for Variable } \\ \text { Frequency Bias settings }\end{array}$
Response: Thank you for your affirmative response and clarifying comment.		
$\begin{array}{l}\text { Bonneville Power } \\ \text { Administration }\end{array}$	Yes	$\begin{array}{l}\text { BPA is responding to 3.1 and 3.2 of R3. The bullets listed in question 3 on the original } \\ \text { comment form appear to be for Requirement R4. BPA is in support of R3.1 and R3.2. }\end{array}$
Response: Thank you for your affirmative response and clarifying comment.		
Texas Reliability Entity	Yes	$\begin{array}{l}\text { It appears that R3.2 is based on the assumption that governor dead-band settings are } \\ 0.036 ~ H z ~ f o r ~ a l l ~ i n t e r c o n n e c t i o n s ~ w i t h ~ m u l t i p l e ~ B A s . ~ W h i l e ~ t h e ~ E R C O T ~ r e g i o n ~ h a s ~ a ~\end{array}$
standard 0.036 Hz dead-band specified in the ERCOT Protocols and Operating Guides,		
we are not sure if this is applicable to the other regions.		

NERC

Organization	Yes or No	
Manitoba Hydro	Yes	No comment.
NREL Transmission 3 Comment Integration Group	Yes	
ACES Power Marketing Standards Collaborators	Yes	
SPP Standards REview Group	Yes	
Edison Electric Institute	Yes	
pacificorp	Yes	
California Independent System Operator	Yes	
Energy Mark, Inc.	Yes	
Tacoma Power	Yes	
Southern Company	Yes	
Idaho Power Company	Yes	
Kansas City Power \& Light	Yes	
Ameren	Yes	
NV Energy		

NERC

Organization	Yes or No	
Keen Resources Asia Ltd.	Yes	
Independent Electricity System Operator		Not Applicable

4. Based on Industry comments the SDT has modified "Attachment A- Supporting Document" to provide additional clarity. Do you agree with the modifications? If not, what modifications do you disagree with?

Summary Consideration: A few commenters felt that there were requirements stated within Attachment A. The drafting team explained that the requirement stated in the standard was the only requirement related to FRM. Attachment A is there to provide uniformity in the calculation of the FRM. The drafting team conscientiously included only reliability objectives in the requirements and put procedural steps in the attachment and procedure.

Several commenters expressed concern over the use of the largest event in the last 10 years for the Eastern Interconnection while all of the other Interconnections used the Category C ($\mathrm{N}-2$). The drafting team stated that the results for the current Eastern Interconnection model do not represent observed response adequately. The models for the other Interconnections have a better match. For this reason the drafting team has recommended the largest event in the last ten years be used to provide for an increased reliability margin for the Eastern Interconnection. Further details are provided on pages 52 through 55 of the Frequency Response Initiative paper.

A couple of commenters questioned the difference between the present frequency bias of $-6,360 \mathrm{MW} / 0.1 \mathrm{~Hz}$ and the proposed of $1,002 \mathrm{MW} / 0.1 \mathrm{~Hz}$. The drafting team explained that the $-6,630 \mathrm{MW} / 0.1 \mathrm{~Hz}$ represents a summation of the Frequency Bias Settings of all Balancing Authorities in the Eastern Interconnection, most of which use the 1% default minimum as required in the current BAL-003-0 standard, which far exceeds their real response. The IFRO of $-1002 \mathrm{MW} / 0.1 \mathrm{~Hz}$ is the response determined to avoid the first step of Underfrequency load shedding in the Interconnection for a 4,500 MW generation loss.
A few commenters felt that clarification was need concerning changes in a BAs footprint and changes to the bias setting or FRO. The drafting team felt that this was a problem that would take care of itself. If two BAs change footprint but do not raise the issue the impact is transparent to the Interconnection. If one BA believes that its limits need to be adjusted the process will adjust the limits of both BAs accordingly.
A couple of commenters requested clarity as to how changes to the process in Attachment A would be handled. The drafting team explained that any change to the methodology described in Attachment A would have to go through the Standards Development Process prior to being implemented.

Two commenters felt that there should be an exemption for non-conforming load performing contrary to the performance of conventional load. The drafting team stated that they did not agree that there should be an exemption but has designed the forms to allow for adjustments for non-conforming load. However the BA may find that no adjustment for non-conforming load may be needed due to the measurement over multiple events rather than individual events.

Organization	Yes or No	Question 4 Comment
ACES Power Marketing Standards Collaborators	No	(1) Frequency Response Obligation (FRO) is used inconsistently with the proposed definition in the document. The document uses the term "Interconnection Frequency Response Obligation" in many locations. However, FRO specifically is defined as the BA's "share of the required Frequency Response". It does not apply to the Interconnection. How can the Interconnection have a share of the required frequency response? A new term may need to be defined for the Interconnection required Frequency Response. (2) On page 3 Attachment A states the ERO will post the Frequency Bias Setting for each BA along with their Frequency Response Obligation. Later on the same page, the document states that the BA shall set its Frequency Bias Setting to 100% to 125% of it Frequency Response Measure or Interconnection Minimum. What is the purpose of the ERO determining Frequency Bias Settings if the settings are not going to be used by the BA? What are we missing in the explanation? (3) Late on page 3, the document states that BAs are encouraged to notify NERC if load or generation is transferred. Section 4(a) on page 8 of the Rules of Procedure Appendix 5A - Organization Registration and Certification Manual indicates that changes to a Registered Entity's footprint actually triggers a potential certification audit. Since BAs are required to be certified and moving generation or load from the metered boundaries of one BA to another BA would represent a change in footprint, we suggest removing the word "encouraged" and stating affirmatively that BAs must notify NERC of such changes and referencing the appropriate section of the Rules of Procedure. Otherwise, BAs may not realize notification is actually required.
Response: (1) The drafting team believes the IFRO and FRO terms are used appropriately in Attachment A. Interconnection Frequency Response Obligation is not defined in the standard nor is it a performance obligation. The drafting team has clarified Attachment A in instances when using the terms to address your comments.		

Organization	Yes or No	Question 4 Comment
(2) The ERO is not determining the FBS but is only validating the FBS provided by the BA on FRS Form 1. (3) The SDT believes these are two coordinated but separate processes. If the Rules of Procedure apply, as worded this document provides the avenue to make the necessary changes to Frequency Bias Setting.		
Consolidated Edison Co. of NY, Inc.	No	(1) This document lacks definitions of terms such as CCadj, DFcc, DFcbr, resource contingency criteria (in the attachment, this is called the "target contingency criteria"), etc. (2) Of value to entities would be a sample calculation. (3) "The largest category $\mathrm{C}(\mathrm{N}-2)$ event is used for all interconnections except the Eastern which uses the largest event in the last 10 years". Why aren't all interconnections using the same design contingency design basis? (4) The NERC 2012 CPS2 bounds has an Eastern Interconnection frequency bias of $6,360 \mathrm{MW} / .1 \mathrm{~Hz}$. Can the DT explain why this attachment refers to an Interconnection frequency response obligation of $-1,002 \mathrm{MW} / .1 \mathrm{~Hz}$. This is a significant difference.
Response: (1) As stated in Attachment A these terms are defined in the Procedure. The drafting team clarified the use of multiple terms of "resource contingency criteria" throughout both Attachment A and the Procedure documents. (2) The drafting team will provide a sample calculation of the BA FRO and FRM and post this information on the NERC RS website. The calculation of the IFRO is shown in the Attachment A with the formulas shown in the Procedure document. (3) The results for the current Eastern Interconnection model do not represent observed response adequately. The models for the other Interconnections have a better match. For this reason the drafting team has recommended the largest event in the last ten years be used to provide for an increased reliability margin for the Eastern Interconnection. Further details are provided on pages 52 through 55 of the Frequency Response Initiative paper. (4) The $-6,630 \mathrm{MW} / 0.1 \mathrm{~Hz}$ represents a summation of the Frequency Bias Settings of all Balancing Authorities in the Eastern Interconnection, most of which use the 1% default minimum as required in the current BAL-003-0 standard, which far exceeds their real response. The IFRO of $-1002 \mathrm{MW} / 0.1 \mathrm{~Hz}$ is the response determined to avoid the first step of Underfrequency load shedding in the Interconnection for a 4,500 MW generation loss.		

| Organization | Yes or No | Question 4 Comment |
| :--- | :--- | :--- |$|$| American Electric Power | No | AEP is under the impression that there are some requirements, which though not
 explicitly stated, are implied in Attachment A. AEP feels strongly that these "sub-
 requirements" should be clarified and contained within the body of the requirements
 of the standard. |
| :--- | :--- | :--- |
| Response: The requirement stated in the standard is the only requirement related to FRM. Attachment A is there to provide
 uniformity in the calculation of the FRM. | | |
| Duke Energy | No | As indicated in our comments in the past, Duke Energy is certain that as the
 Interconnection Frequency Bias Setting (FBS) is set closer to the actual Frequency
 Response in a multi-BA Interconnection, most BAs will be challenged in meeting CPS2,
 while CPS1 and the proposed Balancing Authority ACE Limit (BAAL) will be more
 achieveable bounds, and in some cases CPS1 performance will improve. Though
 probably most of the BAs may welcome a FBS set as high in magnitude as allowed to
 address the potential compliance risk, there are some which may desire to set their FBS
 closer to their required minimum allocation rather than have to take on a larger
 obligation in frequency support under the secondary control measures. Duke Energy
 believes that this proposed standard should incent BAs to provide more than their
 share of Frequency Response to the Interconnection and allow that good performance
 to be recognized; however the requirements described in Attachment A for
 determining the minimum Frequency Bias Setting (FBS), which requires that the FBS be
 set no lower in magnitude than the FRM, will leave certain over-performing BAs with
 no choice but to reduce their actual Frequency Response (still well-above their FRO) if
 they want to operate with a FBS set closer to the Interconnection Minimum allocation
 and be relieved of the associated increased obligation for frequency support under the
 secondary control measures. The FBS is embedded within the secondary control
 measures of CPS1, CPS2 and the draft Balancing Authority ACE Limit (BAAL).
 Comparable treatment of similarly-sized BAs (based upon the FRO allocation) is only
 possible if all BAs are provided the same minimum FBS requirement. To the extent that
 a BA provides more than its share of response to events, it's over-performance will only |

Organization	Yes or No	Question 4 Comment
		be recognized if its ACE is allowed to reflect a FBS comparable to its peers, allowing its over-performance to be reflected in ACE in support of bringing frequency closer to 60 Hz . Generation control algorithms implemented today to optimize CPS1 will allow nonzero ACE when in support Interconnection frequency within bounds determined by the BA - there should be no concern of "response withdrawal" with such algorithms in place, the BA will simply get credit for such performance. As depicted in the current document, the over-performing BA would be required to set its minimum FBS at its FRM (or greater in magnitude), taking away what should be considered overperformance, erasing it in ACE, and turning it into an obligation under the secondary control measures. Based upon the draft, the only way that the BA could be treated comparably to other similarly sized BAs held only to operating to the Interconnection Minimum allocation, would be to reduce its actual response in FRM to a value less in magnitude than its Interconnection Minimum allocation. Duke Energy believes that BAs should be incented to provide more than their share of Frequency Response, and be given the opportunity to report performance on a basis comparable to similar-sized BAs. Our opinion is that Attachment A ensures that the Interconnection Frequency Bias Setting will remain at some margin above the actual Interconnection Frequency Response in magnitude - the reliability of the Interconnection will not be at risk by allowing over-performing BAs to operate and report performance on a comparable basis to other similarly-sized BAs based upon the Interconnection Minimum allocation if they choose to do so - to that extent, Duke Energy suggests that the language on page 3 be changed to:"A BA using a fixed Frequency Bias Setting may set its Frequency Bias Setting to any number the BA chooses up to 125% of its Frequency Response Measure as calculated on FRS Form 1, but no less in magnitude than its Interconnection Minimum allocation as determined by the ERO."Regarding the argument which could be offered that a larger FBS in magnitude will also allow wider bounds for control performance, Duke Energy agrees that a large portion of the BA operation will be around 60 Hz where such a benefit could be realized, however it would also come at the cost of a larger obligation than other comparably-sized BAs in sustained support of frequency during the more critical times of significant deviation from 60 Hz where the BA's compliance could be at risk. Below 59.95 Hz in the Eastern Interconnection (the

Organization	Yes or No	Question 4 Comment
		Frequency Trigger Limit under BAAL), the additional MWs needed to be compliant for any given frequency are greater than the MWs of imbalance allowed by the larger BAAL bound - comparably-sized BAs will not be comparably judged if the standard forces over-performing BAs to assume a larger FBS (in magnitude) than their peers - that should be the decision of the BA. We believe that the proposed language above will create the proper incentive for a Balancing Authority to provide more than its minimum allocation of Frequency Response, and allow it to choose if it wants to make that performance part of a larger FBS (in magnitude), knowing the associated risks and benefits of that decision.Duke Energy supports this standard allowing for Frequency Response Sharing Groups, however the requirements and supporting documents need to clearly allow the FRSG to be treated no differently than if it was a Balancing Authority and shield the participating BAs from compliance scrutiny when all scrutiny should be placed on the FRSG performance as a whole. At the top of Page 3, the standard attachment allows the FRSG to "calculate a group NIA and measure the group response to all events in the reporting year on a single FRS Form $1^{\prime \prime}$, however at the bottom of page 3 , the standard attachment still requires the FRSG BAs to individually fill out Form 1 and Form 2 for the purposes of determining the minimum Frequency Bias Setting. Duke Energy believes that the standard language in Attachment A, and the supporting form(s), should allow the FRSG, if it chooses, to also report the split of the group FRM which the BAs will use to individually determine their Frequency Bias Setting, rather than require each BA in an FRSG to still maintain Form 1 and Form 2 data. Form 1 could be modified for the FRSG to report the group's FRM along with the split of the FRM among the members, and another form could be developed for each FRSG BA to fill out, replicating only the section of Form 1 (column S) where each BA could provide values for its FRM allocation, its desired FBS, its minimum FBS allocation, and so on.
Response: The drafting team has chosen to reduce the minimum Frequency Bias Settings for individual BAs on a controlled basis on each Interconnection. Your suggestion would eliminate the ability of the drafting team to coordinate the reduction of the minimum Frequency Bias Settings for the BAs. Other commenters have stated that they disagree with reducing the minimum		

Organization	Yes or No	Question 4 Comment

Frequency Bias Setting. The drafting team is attempting to balance between the two positions stated in previous postings.
The drafting team understands your concern regarding the treatment of FRSG and the minimum Frequency Bias Setting. However, the drafting team believes that this allocation of Frequency Bias among the FRSG members on a basis different from the measured response could be detrimental to reliability under system separation conditions. Future consideration of this issue may be possible once additional information is available.

Independent Electricity System Operator	No	As indicated in our previous comments, the status of Attachment A is unclear. It is a mixture of requirements, criteria, process and guideline. Making a direct reference in the standard's requirements (R1 and R2) makes Attachment A as part of the requirement and hence is enforceable, but it contains process and guideline information that is not subject to assessment. On the other hand, the absence of a Measure to assess adherence to the criteria and process suggests that Attachment A is not enforceable. It is this ambiguity that makes it difficult for the industry to assess the extent to which they must follow the process. Again, we urge the SDT to keep only the criteria/process parts that must be adhered to in Attachment A, and extract the remaining parts and place them in a guideline document, or an appendix.In addition, the Responsible Entities are required to submit Form 1 and Form 2, but such requirements are not written explicitly as "shall", and are imbedded in the Attachement whose mandatory status is unclear. This makes the standard very confusing from an Responsible Entity's obligation and compliance perspective.
Response: The requirement stated in the standard is the only requirement related to FRM. Attachment A is there to provide uniformity in the calculation of the FRM. The drafting team conscientiously included only reliability objectives in the requirements and put procedur steps in the attachment and procedure.		
BC Hydro	No	BC Hydro agrees with the principles outlined in the Attachment A but has some concerns as follows: 1.Attachment A is no longer recognized as one of the associated document of the proposed Standard in its currently posted version. We believe this was removed by mistake.

| Organization |
| :--- |$|$| Ques or No | 2.There is no clarity as to how certain factors used in determining the Interconnection
 FRO such as CCADJ, CBR and BC'ADJ were determined. There is no apparent provision
 to re-assess any potential changes to these factors over the future years. If such
 provision is needed or has been provided then consideration should be given to
 averaging the adjustment over a longer duration (i.e., using the average of the factor
 observed over a number of years rather than just the year being assessed).
 3.The method used for the allocation of the Interconnection FRO to BAs seems to not
 recognize the fact that frequency response from Load is much less than frequency
 response from Generation of an equal MW size. |
| :--- | :--- | :--- |
| 4.If this Attachment A is considered an integral part of the standard then there should | |
| be some enforceable measures to ensure applicable entities adhering to the prescribed | |
| time line. | |

Organization	Yes or No	Question 4 Comment
Response: Please refer to our response to Question \#6 and our responses to your comments submitted on 12/8/11.		
Exelon Corporation and its affiliates	No	Exelon is troubled by the approach of having requirements that rely so heavily on the attachment to the standard. The use of both of the documents is required to be compliant and this makes it difficult to determine what the obligations are and increases the chance for error in interpretation. The suggested changes below in response to question 8 take information from the Attachment and establish requirements so that an entity does not have to go back and forth between the two documents to identify its obligations. Attachment A should then be modified to include examples of Forms 1 and 2 and instructions for completing the form for Balancing Authorities and Frequency Response Sharing Groups.
Response: The requirement stated in the standard is the only requirement related to FRM. Attachment A is there to provide uniformity in the calculation of the FRM. The drafting team conscientiously included only reliability objectives in the requirements and put procedural steps in the attachment and procedure. The drafting team will provide a sample calculation of the BA FRO and FRM and post this information on the NERC RS website. The calculation of the IFRO is shown in the Attachment A with the formulas shown in the Procedure document.		
SERC OC Standards Review Group	No	It is important for NERC to monitor the interaction between the deployment of this standard and its impact on CPS1, CPS2, and BAAL. If performance in the CPS criteria is degraded, there should be a halt in the reduction of the minimum bias setting allowed. There is also concern that we are providing the correct incentives to the entities to provide the appropriate amount of frequency response. We also suggest that clarification be made so that changes in the BA's footprint that would necessitate changes in the bias setting or the FRO be permanent changes, not just temporary. It is unclear how performance would be measured for a BA versus a frequency response sharing group.

Response: The minimum is not required to be reduced but is allowed to be reduced if no significant impacts are seen on CPS1, CPS2 and BAAL.

The drafting team agrees that temporary changes will not apply in this case. It is a problem that will take care of itself. If two BAs change footprint but do not raise the issue the impact is transparent to the Interconnection. If one BA believes that its limits need to be adjusted the process will adjust the limits of both BAs accordingly.
The Background Document and Attachment A explain how a FRSG would report. The FRS Forms allow BAs and RSGs to account for contributions from either.

| PPL NERC Registered |
| :--- | :--- | :--- | :--- |
| Affiliates |\quad No | The NERC posting did not include a redline to Attachment A, therefore, it is not clear |
| :--- |
| what modifications were made. However, there are several modifications that would |
| add clarity to the attachment. The PPL Affiliates support the comments of the SERC OC |
| Standards Review Group on this question, additionally, the following issues should be |
| addressed: |
| In Attachment A, page 3 and elsewhere, clarify that temporary or small transfers of |
| load or generation between BAs do not require notification to the ERO or changes to |
| the FBS or CPS limits. |
| In Attachment A, page 4, a BA should be allowed to be exempt from evaluation any |
| single frequency event where non-conforming load performs contrary to the |
| performance of conventional load (ie. during a frequency decline, the non-conforming |
| load simultaneously increases significantly). By nature, non-conforming load is totally |
| unpredictable, changes quickly, and fluctuates widely. Other than interruption, the BA |
| has no control over the actions of such loads nor can the BA predict or assume any |
| "normal" action by a non-conforming load during a frequency disturbance event. |
| Setting a limit on the number of events that a BA could exempt (regardless of the |
| reason) from FR evaluation in any given year would be more fair and effective in |
| evaluating a BA's frequency response performance. |

Organization	Yes or No	Question 4 Comment

The drafting team does not agree that there should be an exemption but has designed the forms to allow for adjustments for nonconforming load. However the BA may find that no adjustment for non-conforming load may be needed due to the measurement over multiple events rather than individual events.

Kansas City Power \& Light	No	The Standard proposes a calculation that overstates the frequency response obligation (FRO) for Balancing Authorities.

Response: The drafting team disagrees with your comment. However, the drafting team cannot provide any detail due to the lack of details in your comment.
$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Arizona Public Service } \\ \text { Company }\end{array} & \text { No } & \begin{array}{l}\text { The supporting document on the standards page does not provide information on CB } \\ \text { Ratio and why it is used. It significantly increases FRO and should be justified based } \\ \text { upon strong technical basis and actual experience. (Please also see AZPS response to } \\ \text { question 6, The Frequency Response Initiative Report should be on the Standards } \\ \text { page). }\end{array} \\ \hline \begin{array}{l}\text { Response: The rationale can be found beginning on page 14 of the Background document and page 49 of the FRI report. } \\ \text { Please refer to our response for Question \#6. }\end{array} \\ \hline \text { PJM Interconnection, LLC } & \text { No } & \begin{array}{l}\text { The target contingency protection criterion for the Eastern Interconnection is the } \\ \text { largest event in the last 10 years (believed to be a 2007 event) which is inconsistent } \\ \text { with the other Interconnections. Is periodic review required for this criteria? } \\ \text { Will this criteria be revised after the referenced event is older than 10 years? }\end{array} \\ \text { Are the other three interconnection's target contingency protection criteria subject to } \\ \text { revision if they experience an event larger than a category C? } \\ \text { This BA believes that future periodic analysis should be defined and subsequent } \\ \text { findings used to support changes via the standard revision process. What are the } \\ \text { procedural requirements for revising Attachment A? } \\ \text { This BA is concerned that the procedure for revising Attachment A is undefined and }\end{array}\right]$

| Organization | Yes or No | Question 4 Comment |
| :--- | :--- | :--- |$|$| that, for example, the IFRO could be increased absent the formal standard revision |
| :--- |
| process, increasing a BA's FRO and subsequently increasing a BA's compliance risk |
| without providing BA's the opportunity to review, comment, and ballot.Related to the |
| previous comment/question, how often are the statistically derived values in Table 1 |
| subject to a required update? For example, the Eastern Interconnection is adjusted due |
| to observed primary frequency response withdrawal ('lazy L' characteristic). The other |
| Interconnections are adjusted for observed differences between point C and point B. |
| As the frequency response characteristics of any Interconnection change, is Table 1 |
| subject to required analysis and revision? This BA believes that future periodic analysis |
| should be defined and subsequent findings used to support changes via the standard |
| revision process. |
| Attachment A indicates that a BA may exclude an event from annual Form 1 FRM |
| evaluation only if its tie-line or frequency data is corrupt or unavailable. This exempts |
| numerous scenarios that could result in a poor response score due to system |
| variations. These could include, but are not limited to, changing energy schedules, |
| changes in load, and AGC driving units up or down due to the ACE value at the time of |
| the frequency event. This subjects the BA to undue compliance risk even though the BA |
| may have adequate frequency responsive resources at the time. This BA suggests that |
| the FRSDT adopt language (and Form 2 functionality) that allows the exclusion of |
| events that are skewed by these types of situations. |
| Attachment A and Forms 1 \& 2 specify that 20 to 52 seconds will be used as the post- |
| event B point average for FRM determination. The number of fast responding |
| resources will increase as the technology for batteries, flywheels, and frequency |
| controlled demand side devices moves forward over time. The 20 to 52 second interval |
| does not adequately incentivize the devopment of these technologies. |

Organization	Yes or No	Question 4 Comment

are provided on pages 52 through 55 of the Frequency Response Initiative paper.
As the model for the El is improved and information and experience is gained under this standard the answer to your question will be determined through an open and inclusive process.

If it is determined that a change in any methodology used in the processes in this standard is needed it would have to go through the standards process.
The drafting team does not agree that there should be an exemption but has designed the forms to allow for certain adjustments. In addition, the methodology recommended utilizing the median addresses the concerns related to a single event occurrence. Ultimately the BA may find that no adjustment may be needed due to the measurement over multiple events rather than individual events.

This standard was not intended to provide incentives for the development of new technologies. It is intended to provide for the reliable operation of the Bulk Electric System.

Northeast Power Coordinating Council	No	This document lacks definitions of terms such as CCadj, DFcc, DFcbr, resource contingency criteria (in the attachment, this is called the "target contingency criteria"), etc. A sample calculation would be of value to entities. "The largest category C ($\mathrm{N}-2$ 2) event is used for all interconnections except the Eastern which uses the largest event in the last 10 years". All interconnections should be using the same design basis contingency. The NERC 2012 CPS bounds has an Eastern Interconnection frequency bias of -6,360 MW/.1Hz. Why does this attachment refer to an Interconnection frequency response obligation of $-1,002 \mathrm{MW} / .1 \mathrm{~Hz}$.? This is a significant difference.

Response: As stated in Attachment A these terms are defined in the Procedure. The drafting team clarified the use of multiple terms of "resource contingency criteria" throughout both Attachment A and the Procedure documents.

The drafting team will provide a sample calculation of the BA FRO and FRM and post this information on the NERC RS website. The calculation of the IFRO is shown in the Attachment A with the formulas shown in the Procedure document.

The results for the current Eastern Interconnection model do not represent observed response adequately. The models for the other Interconnections have a better match. For this reason, the drafting team has recommended the largest event in the last ten years be used to provide for an increased reliability margin for the Eastern Interconnection. Further details are provided on pages

Organization	Yes or No	Question 4 Comment

52 through 55 of the Frequency Response Initiative paper.
The $-6,630 \mathrm{MW} / 0.1 \mathrm{~Hz}$ represents a summation of the Frequency Bias Settings of all Balancing Authorities in the Eastern Interconnection, most of which use the 1% default minimum as required in the current BAL-003-0 standard, which far exceeds their real response. The IFRO of $-1002 \mathrm{MW} / 0.1 \mathrm{~Hz}$ is the response determined to avoid the first step of Underfrequency load shedding in the Interconnection for a 4,500 MW generation loss.

Ameren	No	We disagree on having different methodologies for determining the targets, and would like clarity added for when those targets may change, such as what will happen after the largestest event in the last 10 years rolls off the books for the EI?

Response: The results for the current Eastern Interconnection model do not represent observed response adequately. The models for the other Interconnections have a better match. For this reason, the drafting team has recommended the largest event in the last ten years be used to provide for an increased reliability margin for the Eastern Interconnection. Further details are provided on pages 52 through 55 of the Frequency Response Initiative paper.
If it is determined that a change in any methodology used in the processes in this standard is needed it would have to go through the standards process.

As the model for the El is improved and information and experience is gained under this standard the answer to your question will be determined through an open and inclusive process.

Manitoba Hydro	Yes	(1) Page 2, Balancing Authority Frequency Response Obligation (FRO) and Frequency Bias Setting: States that the ERO is responsible for "annually assigning an FRO and Frequency Bias Setting to each BA." No mention is made of FRSGs.
	(2) Neither R1 nor the referenced Attachment A clarifies the FRM requirements for an FRSG to comply versus a BA. In particular, compared to BAL-002-0 R1.1, which clearly states that the BA may elect to fulfill its obligation through an FRSG and that in such cases the FRSG has the same responsibilities as each BA (that is a participant in the FRSG). (3)Attachment A refers to an FRSG calculating FRM, but the standard does not.	

Organization	Yes or No
Response: 1) - The FRSG FRO is a summation of its members' FROs.	
2) \& 3) -The drafting team believes that it is clearly stated for a FRSG compliance with R1. The Requirement reads "Each	
Frequency Response Sharing Group (FRSG) or Balancing Authority that is not a member of a FRSG shall achieve an annual	
Frequency Response Measure (FRM) (as calculated and reported in accordance with Attachment A) that is equal to or more	
negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each FRSG or	
BA that is not a member of a FRSG to maintain Interconnection Frequency Response equal to or more negative than the	
Interconnection Frequency Response Obligation."	

Interconnection Frequency Response Obligation."
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Texas Reliability Entity } & \text { Yes } & \begin{array}{l}\text { 1. The calculation for the FRO for ERCOT includes a credit of } 1400 \mathrm{MW} \text { for load } \\
\text { resources. 1400 MW is currently the maximum amount of LR that can be procured } \\
\text { through the ERCOT ancillary service process. There can be periods during the day } \\
\text { where } 1400 \mathrm{MW} \text { was not procured or is not available (It was noted during the summer } \\
\text { of } 2012 \text { that on some days, only } 900 \mathrm{MW} \text { of LR was available through the ancillary } \\
\text { service process). Should the calculated IFRO (-286 MW per 0.1 Hz) be modified to } \\
\text { account for this variation? } \\
\text { 2. Background Document says: "Attachment A proposes the following Interconnection } \\
\text { event criteria as a basis to determine an Interconnection's Frequency Response } \\
\text { Obligation: o Largest category C loss-of-resource (N-2) event o Largest total } \\
\text { generating plant with common voltage switchyard o Largest loss of generation in the } \\
\text { interconnection in the last 10 years" For ERCOT, the largest loss of generation in the } \\
\text { last 10 years was over 3400 MW, and does not match the 2750 MW (N-2) value used } \\
\text { for the IFRO calculation. }\end{array}
$$

\hline Response:

(1) The process used to determine the IFRO has been vetted through multiple forums. The drafting team feels that the proposed

calculation is appropriate for the standard at this time. As experience is gained through the implementation of this standard,

the calculation will be reviewed and any adjustments will be addressed through an open and inclusive process.\end{array}\right\}\)| (2) The results for the current Texas Interconection model represent observed response adequately so the recommended |
| :--- |
| Resource Contingency Criteria for ERCOT is the Category C N-2 event. For further details related to the full determination, |

Organization	Yes or No	Question 4 Comment
please refer to the Frequency Response Initiative paper.		
SPP Standards REview Group	Yes	Delete the 2nd 'that' in the 2nd bullet at the top of page 3.
Response: Thank you for the comment. The drafting team has made the correction.		
Xcel Energy	Yes	It is not clear however, as to if this is actually part of the standard or if it is a document that can be revised without going through the standards development process. Also, the formatting of the document should be modified to clearly identify where 'steps/actions' are needed from responsible parties, whether that be the ERO or BA/FRSG.
Response: If it is determined that a change in any methodology used in the processes in this standard is needed it would have to go through the standards process. Please refer to the "timeline" on page \#6 of Attachment A as this clearly provides for who has responsibility for each step in the process.		
NextEra Energy	Yes	NextEra Energy does not support the changes made. It is concerned that certian changes were made to help some large East coast entities that could not comply at the expense of the FRCC region. Specifically, now on page 3 of Attachment A 4th paragraph from the bottom the statement is made " sets its frequency bias to the greater of". We believe that this must be changed to either Statement 1 "Any number the BA chooses between 100\% etc" Or Statement 2 " Interconnection minimum as determined by the ERO" Without this change, NextEra beleives the FRCC will be unfiarly treated relative to others on the Eastern Interconnection. The technical reasons for this is concern was explained during the Standard Drafting Team meetings. In addition, the ERO limit which is set at 0.9% of load should be changed to read within 0.8 or 0.9% of peak load based on the BA's choice. Also, see page 7 of the Procedure document and compare to page 1 of Attachment A.

Organization	Yes or No	Question 4 Comment
		The formulae abbreviations for the variables in the Procedure are not likewise abbreviated in Attachment A. For example, "Credit for LR" on Attachment A is "CLR" in the Procedure, but it requires cross checking each document to figure this out. Or CBr in Attachment A, Table 1 is represented as DFCBR in the Procedure, Page 7. Since the same variables are being described, these should be represented the same way in both documents throughout. 2. Similarly, is "IFRO" in Table 1 of Attachment A the same as "FROInt" of the equation that follows on page 2? The same abbreviation should be used to represent this variable. The documents should be revised in general along these lines for all terms. 3. In Procedure document, page 5, paragraph 3 it should read "Table 2", not " 1 ". 4. In the Procedure, it would be good to show Table 1 and Table 2 as Table 1 of Attachment A (i.e. use table lines and borders). 5. At least in the first usage, ERO in the Procedure document should be spelled out as "Electric Reliability Organization (ERO)". 6. In Table 1 of Attachment A, the two footnotes preceded by asterisks (single and double on page 2) should be connected to the table by adding a single superscripted asterisk to the Eastern UFLS value of 59.5, and a double superscripted asterisk to the ERCOT LR value of 1,400 .
Response: (1) The drafting team does not believe any BAs were favored over other BAs. However the drafting team is unclear as to your expressed concerns related to FRCC. In direct communications with FRCC they concluded that the IFRO starting frequency of the prevalent 59.5 Hz for the Eastern Interconnection is acceptable in that it imposes no greater risk of UFLS operation in FRCC for an external resource loss event than for an internal FRCC event. The drafting team does not agree with the recommended wording change for the bias setting because it would essentially remove the Interconnection minimum FBS. The drafting team does not agree that we are mixing terms between the Procedure and Attachment A. The drafting team uses CBR and DFCBR in both documents defining two different variables. The drafting team clarified CLR.		

Organization	Yes or No	Question 4 Comment
(2) The drafting team clarified IFRO/FRO in the documents. (3) Thank you. The drafting team has corrected this in the document. (4) The drafting team thanks you for your comment. However, the majority of the industry does not support your suggested modification. Therefore, the drafting team will leave the tables as shown. (5) The drafting team changed ERO to Electric Reliability Organization as per your suggestion. (6) Thank you. The drafting team has made the changes.		
NREL Transmission and Grid Integration Group	Yes	Table 1: CB_r units should be unitless, CB'adj should be Hz.
Response: Thank you for the comment. The drafting team has made these changes.		
NV Energy	Yes	This document is improved, and satisfactorily addresses comments from the prior posting.
Response: Thank you for the comment.		
New York Independent System Operator	Yes	With a new process we are concerned that the interconnection minimum will initially move from 1.0% to 0.9%.
Response: Thank you for your comment. The new process moves the minimum from 1.0\% to 0.9\%.		
MRO NSRF	Yes	
Edison Electric Institute	Yes	
pacificorp	Yes	
California Independent System Operator	Yes	

Organization	Yes or No	
Energy Mark, Inc.	Yes	
Tacoma Power	Yes	
Southern Company	Yes	
Idaho Power Company	Yes	
Tucson Electric Power	Yes	Yes
Keen Resources Asia Ltd.	Yes	
MISO		In reviewing the Consideration of Comments document, it is clear that the standard drafting team does not wish for the administrative elements of Attachment A to become items addressed during compliance evaluations ("There is no intent to require filing on a certain date and to have the BA prove to the auditor that a filing was made on that date." This quote appears at several places in the Consideration of Comments documents, but first at page 113). However, because Attachment A is referenced in the standard, its provisions, including the timing table, are all mandatory and enforceable. This result is emphasized by the language of requirement R1, which states that entities "...shall achieve an annual Frequency Response Measure (FRM) as calculated and reported in accordance with Attachment A..." This language means that a failure to file a document on a date specified in the attachment would be a potential compliance violation. Because Attachment A is mandatory and enforceable, the standard drafting team should carefully review its provisions and clarify which elements are requirements and which elements are background statements or guidance. In addition, the use of additional headings and section numbers would add in clarifying the document (for example, at the top of page 3, there is a discussion of how an FRSG would calculate its FRM; however, there is an entire section beginning on

Organization	Yes or No	Question 4 Comment		
	page 4 addressing FRM where that discussion should instead appear).			
Response: The requirement stated in the standard is the only requirement related to FRM. Attachment A is there to provide uniformity in the calculation of the FRM. The drafting team conscientiously included only reliability objectives in the requirements and put procedural steps in the attachment and procedure.				

5. The SDT has moved a portion of the material located in Attachment A and all of the material located in "Attachment B- Process for Adjusting Bias Setting Floor" into a new document "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard". The SDT created this document to assign tasks to the ERO and provide instructions for the ERO to follow when carrying them out under the BAL-003-1 standard. Do you agree that the ERO should perform these tasks and that this document provides sufficient detail for the ERO to do it under the BAL-003-1 standard? If not, what needs to be added to the document?".

Summary Consideration: Several commenters requested clarity on how modifications to the Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard would be made. The drafting team explained that the "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard" was not incorporated into the BAL-003 Frequency Response Reliability Standard. As such, modifications to the Procedure will not be developed through the standard development process. Consistent with NERC's commitment to an open and transparent process, the procedure for modifying the event selection process for supporting the Frequency Response Standard is set forth in the opening paragraph of the Procedure for ERO Support of Frequency Response and Frequency Bias Setting document. NERC will post suggested modifications for a 45-day formal comment period, respond to all comments and will discuss the revision request in a public meeting. Revisions will be provided to the NERC BOT for approval and in addition, any modifications will be filed with FERC for informational purposes. This process provides the industry assurance that changes will be properly vetted and that there is an opportunity for stakeholder input.

A couple of commenters questioned how events would be excluded, specifically with regards to during ramping periods. The drafting team stated that all events are considered. Events that occur over known ramping periods are selected last. As an example, the event reflected in the right graph shown in the Procedure would be selected over the event reflected in the graph on the left. If an inadequate number of events are available for that season, then these events may be used. The benefit of using the median of at least $\mathbf{2 0}$ events in a year helps minimize the impact of outliers.

A few commenters did not understand why the frequency criteria are different for each Interconnection. The drafting team explained that the frequency criteria was different for each interconnection because the frequency used to measure frequency response is interconnection dependent and varies differently for each interconnection. Larger interconnections have greater frequency response and as a consequence smaller frequency deviations for events of the size typically experienced.

One or two commenters questioned whether certain events should always be included in the evaluation process. The drafting team stated that based on event evaluation by this drafting team, it has been determined that it is impossible to require certain events to be included. This is the reason that the drafting team has developed the Event Selection Criteria.
\(\begin{array}{|l|l|l|}\hline Organization \& Yes or No \&

\hline Keen Resources Asia Ltd. \& No \&\)| Question 5 Comment |
| :--- |

\hline As a professionally trained published statistical expert never compensated by any

balloting participant, I consider event selection criterion 7 to be unacceptable because

it violates the fundamental statistical procedure of sampling statistical data "as is" and

not pre-selecting the data (to fit some preferred even-distribution over time) and

therefore biasing it before applying any statistical procedure to the data. Event

criterion 6 is also unacceptable for being an an "ad hoc" explicit exclusion, from the

definition of the frequency response being measured, of response to frequency events

that occur during a specific kind of scheduled generation and load changes. Said

exclusion needs to be written into the definition of the Frequency Response that is

being measured. It is procedurally improper and unacceptable to bias the sampling

procedure by explicit exclusion of data as an alternative to redefining the thing being

sampled. In that case it's not generic Frequency Response that is being sampled, but

some specific Frequency-Response-less-Response-to-Excluded-Events that is being

measured. It is non-transparent and subterfuge to avoid instead accordingy

reworking/narrowing the definition of Frequency Response, especially as said

reworking requires a clear technical justification that is absent from this standard, and

modifying the existing NERC Glossary definition of Frequency Response which Criterion\end{array}$\}$

Response: Criterion 7 is included in the Event Selection Criteria because the drafting team considers it very important to be able to select and finalize events for analysis quarterly so that the BAs can evaluate their performance as the measurement year unfolds. This necessarily requires minimal criteria to insure that this selection and finalization process can be completed quarterly. The drafting team recognizes that this finalization may have some effect on the sampling, but values the quarterly selection and finalization more than the pure statistical sampling theory. This is a trade-off that the drafting team has chosen to make. Once several years of a regular disparity between seasons of the year were established in terms of number of events in a season, the industry could propose modifying the Standard at that time to adjust Criterion 7 accordingly.

Criterion 6 is included because historic data indicate that the periods within 5 minutes of the top of the hour have shown to have

Organization	Yes or No	Question 5 Comment
higher frequency variability than other periods in the hour. Statistical analysis presented in the FRI Report indicates that predisturbance frequency is a significant contributor to the variability of frequency response. The drafting team has chosen to allow the exclusion of events close to the top of the hour when other acceptable events are available until analysis is done of whether these periods have a statistically different frequency response and therefore introduce bias. Meanwhile, as Balancing Authorities are moving toward quarter-hourly scheduling, the higher top-of-the-hour frequency variability prompting the need and application of Criterion 6 is expected to disappear. Therefore, while your recommended alternative of changing the NERC definition of Frequency Response may be statistically correct, from a practical perspective it would likely prove to be a needless chore and to yield a needlessly complicated definition only to have to be changed back again.		
Southern Company	No	Attachment A states that Form 1 is posted annually. The ERO support document selects events annually. The timing for the two documents needs to be aligned so that the set of selected events does not change from quarter to quarter. (If three events are selected for the first quarter those same events will be a sub-set of the 20 events selected for the annual compliance calculations.)
Response: Attachment A indicates that Form 1 with the events from the previous quarter is posted on May $10^{\text {th }}$, August $10^{\text {th }}$, November $10^{\text {th }}$ and the second business day in February. It is the intent of the standard that events once posted will be included in the FRM analysis.		
BC Hydro	No	BC Hydro agrees in principle that the ERO should perform these tasks related to BAL-003-1 but has the following concerns: 1. There is no clear indication whether the Interconnection FRO will be calculated every year, and if yes, how each of the factors involved will be determined. 2. It is not clear whether data gathered in these procedures are only for the determination of annual FRO and FBS, or also to determine whether the BA or the FRSG was in compliance to BAL-003-1 for the assessed year. Since the ERO in this Document seems to be the NERC Resources Subcommittee and its Frequency Work Group, we think this fact should be made clear. The Background document should also be reviewed to ensure its alignment in this regard.

Organization	Yes or No	Question 5 Comment
Response: The drafting team has chosen to use the methods presented in the FRI Report to determine the values presented in Table 1 of Attachment A to determine the Interconnection FRO. If the method of calculation by the ERO or the base starting values used to determine the IFRO change (i.e. Resource Contingency Criteria or Prevailing UFLS First Step), then those changes will be subject to the standards process to accept those changes. If the statistical determinates used in the method change (i.e. Starting Frequency, $\mathrm{CC}_{\mathrm{ADJ}}, \mathrm{CB}_{\mathrm{R}}, \mathrm{BC}^{\prime}{ }_{A D J}$, and Credit for LR) or the data used to allocate the IFRO among the BAs (i.e. FERC Form 714 data) changes, the new values will be implemented without being subject to the standards process.		
The data gathered for the FRO calculation is not compliance related. The calculation of FBS is also not compliance related. However, assuming the information is entered into FRS Form 1 correctly then the FBS number will be used by an auditor to determine compliance with Requirement $\mathbf{R 2}$.		
The drafting team has been instructed by NERC to refer to all NERC entities (i.e. Frequency Working Group, Resources Subcommittee, etc) as the ERO.		
Bonneville Power Administration	No	BPA does not agree with the methodologies outlined in Attachment B. Please see BPA's response to question 6 as well as BPA's extensive comments submitted on 12/8/11 for Project 2007-12 Frequency Response found at: http://www.nerc.com/docs/standards/sar/2007-12 comments received 120911.pdf

Response: Please refer to our response to your comment for Question \#6 and our responses to your comments dated 12/8/11.

Kansas City Power \& Light	No	Criteria 3-Why are frequency thresholds different between regions when generator governor reaction is supposed to be the same between regions? Criteria 5-What is the reasoning that multiple events that are not stabilized within 18 seconds not being considered? Criteria 6-How are "changes in scheduled interchange" or load change determined in regions with interconnections with multiple BAs with different time zones?

Response: The frequency criteria is different for each interconnection because the frequency used to measure frequency response is interconnection dependent and varies differently for each interconnection. Larger interconnections have greater frequency response and as a consequence smaller frequency deviations for events of the size typically experienced.

Organization	Yes or No	Question 5 Comment

The standardized method used to measure frequency response will not work correctly for events that have not stabilized within 18 seconds.

This determination will be made by the ERO (presently the Frequency Working Group).
All events are considered. Events that occur over known ramping periods are selected last. As an example, the event reflected in the right graph shown in the Procedure would be selected over the event reflected in the graph on the left. If an inadequate number of events are available for that season, then these events may be used. The benefit of using the median of at least 20 events in a year helps minimize the impact of outliers.

Duke Energy	No	Duke Energy agrees with allowing the ERO to perform this function, however the industry needs some assurance that this Procedure cannot be changed outside of the Standards Process for approval by the industry. In the sixth line of the third paragraph on page 5, the statement should reference Table 2. Page 5 reads as if the BAs will submit their data based upon Form 1 which includes an adjustment to the Interconnection peak load (initially 0.9), and then the ERO will determine whether the Interconnection minimum FBS is still more than 20\% above the measured response - if so, the minimum FBS will be adjusted, requiring the BAs to reassess their new minimum FBS based upon a different factor, and decide whether to use that value or choose a value up to 125\% of their FRM, resulting in another iteration of values being submitted to the ERO. If the ERO is going to do an independent assessment of Interconnection Frequency Response to the events, on an annual basis prior to gathering data from the BAs, the ERO could compare the total FBS being used by the BAs against the estimated Frequency Response over that period to determine if an adjustment is warranted, and then the ERO could include the appropriate adjustment factor (0.9, 0.8, etc..) in Form 1 for the BAs to use. If the ERO is not going to estimate the Frequency Response aside from the BAs, multiple iterations will be likely. Duke Energy suggests the following language to cover the point above: "On an annual basis, the ERO will review the Interconnection total minimum Frequency Bias Setting for the
prior period and compare it against the Interconnection's total natural Frequency		
Response determined for that period. If an Interconnection's total minimum		
Frequency Bias Setting exceeds (in absolute value) the Interconnection's total natural		

Organization	Yes or No	Question 5 Comment
		Frequency Response by more (in absolute value) than 0.2 percentage points of the Interconnection non-coincident peak load (expressed in MW/0.1Hz), the minimum Frequency Bias Setting for BAs within that Interconnection may be reduced (in absolute value) based on the technical evaluation and consultation with the regions affected by 0.1 percentage point of Interconnection non-coincident peak load (expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$) to better match that Frequency Bias Setting and natural Frequency Response. The ERO will include the adjustment factor in the Interconnection Form 1 used by the Balancing Authorities for the calculation of the new minimum Frequency Bias Setting. The Form 1 information from the Balancing Authorities will be gathered by the ERO in coordination with the regions of each Interconnection to determine the final Interconnection Frequency Bias Setting for the next period."
Response: The "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard" is not incorporated into the BAL-003 Frequency Response Reliability Standard. As such, modifications to the Procedure will not be developed through the standard development process. Consistent with NERC's commitment to an open and transparent process, the procedure for modifying the event selection process for supporting the Frequency Response Standard is set forth in the opening paragraph of the Procedure for ERO Support of Frequency Response and Frequency Bias Setting document. NERC will post suggested modifications for a 45-day formal comment period, respond to all comments and will discuss the revision request in a public meeting. Revisions will be provided to the NERC BOT for approval and in addition, any modifications will be filed with FERC for informational purposes. This process provides the industry assurance that changes will be properly vetted and that there is an opportunity for stakeholder input. The reference has been changed from Table 1 to Table 2. Thank you for your comment. The review of the information provided by the BAs discussed in the Procedure document will take a significant amount of time. Therefore, the change to the Interconnection Minimum Frequency Bias Setting will occur on the subsequent year's Form 1. This will eliminate the risk of multiple iterations and allow sufficient time for the ERO to consult with the regions as indicated in the Procedure. The drafting team has included clarifying language in the document.		
Tucson Electric Power	No	I think it should be more clear or better defined that an interconnection does have some input into what events are selected.

Organization	Yes or No	Question 5 Comment				
Response: Thank you for your comment. Each interconnection has a representative on the Frequency Working Group that performs the selection of events.						
Exelon Corporation and its affiliates	No	Please see response to question 8.				
Response: Thank you for your comment. Please see response to Question 8.				PJM Interconnection, LLC	No	The Procedure indicates that events that occur when 'large interchange schedule ramping or load change is happening' and 'events occurring within 5 minutes of the top of the hour' should be excluded from consideration. Since interchange schedule ramping and load change occurs at the BA level, this BA believes that the Procedure allows for the selection of events that occur when a BA is experiencing these conditions but Attachment A does not allow for exemption of these events. Also, the Procedure specifies that events that occur at the top of the hour be excluded, if other qualifying events exist, but this does not take into consideration energy markets that allow for sub-hourly schedule changes (e.g. 15 minutes) and the BA is not permitted to exempt these events on Form 1 subjecting the BA to undue compliance risks.
:---	:---	:---				

Organization	Yes or No	Question 5 Comment
		interchange ramp schedule or load change. May also want to consider changing the language from" "will be excluded from consideration" to "MAY be excluded from consideration".

Response: Thank you for your comment. Based on event evaluation by this drafting team, it has been determined that it is impossible to require certain events to be included. This is the reason that the drafting team has developed the Event Selection Criteria.

The drafting team wrote the criteria to allow flexibility for any change that significantly impacts frequency.
The drafting team looked at the language and determined that the present language provides greater clarity. The "will be excluded" is followed by "...if other acceptable frequency excursion events from the same quarter are available." Therefore, it is not a mandatory exclusion.

Edison Electric Institute	Yes	EEI supports the ERO's role as defined in the procedure but is concerned that the procedure, unlike approved NERC standards, is unbounded by the current rules for developing standards. For that reason, EEI recommends that the procedure become more formalized and integrated into the standard as an addendum thereby avoiding any Industry concerns that future modification might occur outside the approved processes

Response: Thank you for your comment. The "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard" is not incorporated into the BAL-003 Frequency Response Reliability Standard. As such, modifications to the Procedure will not be developed through the standard development process. Consistent with NERC's commitment to an open and transparent process, the procedure for modifying the event selection process for supporting the Frequency Response Standard is set forth in the opening paragraph of the Procedure for ERO Support of Frequency Response and Frequency Bias Setting document. NERC will post suggested modifications for a 45 -day formal comment period, respond to all comments and will discuss the revision request in a public meeting. Revisions will be provided to the NERC BOT for approval and in addition, any modifications will be filed with FERC for informational purposes. This process provides the industry assurance that changes will be properly vetted and that there is an opportunity for stakeholder input.

ACES Power Marketing	Yes	Overall, we agree. However, we suggest the document clarify that the ERO shall

Organization	Yes or No	Question 5 Comment
Standards Collaborators		perform these tasks in coordination with the Resources Subcommittee. It consists of industry experts that can be an extra resource to NERC. Furthermore, NERC staff working with the Resources Subcommittee will provide additional transparency to the process.
Response: Thank you for your comment. The drafting team has been instructed by NERC to refer to all NERC entities (i.e. Frequency Working Group, Resources Subcommittee, etc) as the ERO.		
MISO	Yes	The first hyperlink on page 3 of the Procedure for ERO Support does not work.
Response: Thank you for your comment. The drafting team has corrected this.		
Xcel Energy	YES	It is not clear however, as to if this is actually part of the standard or if it is a document that can be revised without going through the standards development process. Also, the formatting of the doucment should be modified to clearly identify where 'steps/actions' are needed from repsonsible parties, whether that be the ERO or BA/FRSG.

NERC

Organization	Yes or No	
Integration Group		
SPP Standards REview Group	Yes	
pacificorp	Yes Comment	
California Independent System Operator	Yes	
Energy Mark, Inc.	Yes	
Idaho Power Company	Yes	
Independent Electricity System Operator	Yes	
NV Energy	Yes	
New York Independent System Operator	Yes	
MRO NSRF	MRO NSRF AGREES	

6. The SDT is now using the method detailed in the Frequency Response Initiative Report dated September 30, 2012 to calculate the Interconnection Frequency Response Obligation. Do you agree that this method provides for the proper amount of Frequency Response? If not, what specifically needs to be changed?

Summary Consideration: Many of the commenters requested clarification on how changes to the methodology defined in Attachment A could be modified. The drafting team explained that Attachment A was part of the standard and as such is subject to the NERC standards process for making any changes.

Several commenters questioned the use of the largest event in the last 10 years for the Eastern Interconnection. The drafting team stated that the results for the current Eastern Interconnection model do not represent observed response adequately. The models for the other Interconnections have a better match. For this reason the SDT has recommended the largest event in the last ten years be used to provide for an increased reliability margin for the Eastern Interconnection. If the largest event in the last $\mathbf{1 0}$ years falls below $\mathbf{4 5 0 0}$ MW then the SDT believes that an N-2 event would be utilized.

One commenter wanted a method to discount outliers. The drafting team explained that this was one of the reasons that they had chosen the median as the appropriate measure for FRM. The benefit of using the median of at least $\mathbf{2 0}$ events per year helps to minimize the impact of outliers.

Organization	Yes or No	Question 6 Comment
Bonneville Power Administration	No	BPA does not have specific changes to the methodology to suggest, however, a methodology that arrives at a negative 840 MW per tenth Hz for WECC is obviously under-calculating the frequency bias obligation. Currently WECC has an interconnection bias of over 2000 MW / 0.1Hz and with this bias the frequency is steady state following point B on the frequency response curve. BPA would expect to see frequency decline after point B if the FBO is lowered by almost 60\%. BPA also must reiterate that there is still a problem with the method used for modifying the FBO and frequency bias for Balancing Authorities. A high-performing Balancing Authority will have its frequency bias increased each year due to higher response during the events chosen by the ERO. Conversely, a low-performing Balancing Authority will have its frequency bias reduced each year due to lower response during the events chosen by

Organization	Yes or No	Question 6 Comment
		the ERO.
Response: After review of comments, the drafting team feels confident with the current method of calculating Frequency Response Obligation as outlined in the Frequency Response Initiative report. This standard requires minimum bias setting not to be less than 0.9% of the non-coincidental peak load for a multi-BA interconnection. This will ensure that minimum bias settings will be based on Interconnection's non-coincidental peak load rather than biased toward low-performer. The minimum Frequency Bias settings requirement are outlined in Table 2 of "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard" The drafting team points out that there is not a Frequency Bias obligation and that the currently measured response for the Western Interconnection is approximately $-1200 \mathrm{MW} / 0.1 \mathrm{~Hz}$. This number is above, but much closer to the required level of -840 MW/0.1 Hz under this standard.		
Tucson Electric Power	No	I believe that the frequency bias obligation of the Western Interconnection is understated.
Response: The drafting team points out that there is not a Frequency Bias obligation and that the currently measured response for the Western Interconnection is approximately $-1200 \mathrm{MW} / 0.1 \mathrm{~Hz}$. This number is above, but much closer to the required level of $840 \mathrm{MW} / 0.1 \mathrm{~Hz}$ under this standard.		
Duke Energy	No	Similar to our earlier concern, the industry needs some assurance that the calculation of the Interconnection FRO described in the report cannot be changed outside of the Standards Process for approval by the industry. Duke Energy does not support using a 4500 MW loss as the basis for determining the FRO for the Eastern Interconnection for future events. However, as the calculation also includes 59.5 Hz as the basis for determining the FRO, the result is an allocation which can be supported. To the extent that the standard drafting team moves in the direction of using 59.7 Hz as the basis for the FRO, then it needs to follow a methodology similar to the other Interconnections for determining the credible multiple contingency to cover.
Response: Thank you for your comment. The Attachment A is part of the standard and as such is subject to the NERC standards		

Organization	Yes or No	Question 6 Comment
process manual for making any changes.		
The drafting team agrees with your concern regarding the use of 4500 MW . However, the results for the current Eastern		
Interconnection model do not represent observed response adequately. The models for the other Interconnections have a better		
match. For this reason the SDT has recommended the largest event in the last ten years be used to provide for an increased		
reliability margin for the Eastern Interconnection. If the largest event in the last 10 years falls below 4500 MW then the SDT		
believes that an N-2 event would be utilized.		

New York Independent System Operator	No	The drafting team should consider some method for discounting outliers, that may not be explainable.

Response: Thank you for your comment. All events are considered. Events that occur over known ramping periods are selected last. As an example, the event reflected in the right graph shown in the Procedure would be selected over the event reflected in the graph on the left. If an inadequate number of events are available for that season, then these events may be used. The benefit of using the median of at least 20 events in a year helps minimize the impact of outliers.

Southern Company	No	The industry needs some assurance that the calculation of the Interconnection FRO described in the report cannot be changed outside of the Standards Process for approval by the industry. We do not support using a 4500 MW loss as the basis for determining the FRO for the Eastern Interconnection for future events. However, as the calculation also includes 59.5 Hz as the basis for determining the FRO, the result is an allocation which can be supported. To the extent that the standard drafting team moves in the direction of using 59.7 Hz as the basis for the FRO, then it needs to follow a methodology similar to the other Interconnections for determining the credible multiple contingency to cover.

Response: Thank you for your comment. The Attachment A is part of the standard and as such is subject to the NERC standards process for making any changes.
The drafting team agrees with your concern regarding the use of 4500 MW . However, the results for the current Eastern Interconnection model do not represent observed response adequately. The models for the other Interconnections have a better match. For this reason, the drafting team has recommended the largest event in the last ten years be used to provide for an

Organization	Yes or No	Question 6 Comment

increased reliability margin for the Eastern Interconnection. If the largest event in the last 10 years falls below 4500 MW then the SDT believes that an $\mathrm{N}-2$ event would be utilized.

PPL NERC Registered Affiliates	No	The PPL Affiliates support the comments of the SERC OC Standards Review Group on this question

Response: The Attachment A is part of the standard and as such is subject to the NERC standards process for making any changes.
The drafting team agrees with your concern regarding the use of 4500 MW. However, the results for the current Eastern Interconnection model do not represent observed response adequately. The models for the other Interconnections have a better match. For this reason, the drafting team has recommended the largest event in the last ten years be used to provide for an increased reliability margin for the Eastern Interconnection. If the largest event in the last 10 years falls below 4500 MW then the SDT believes that an $\mathrm{N}-2$ event would be utilized.

Keen Resources Asia Ltd.	No	This question is falsely worded. The SDT is specifically NOT using the method detailed in the Frequency Response Initiative Report dated September 30, 2012. So the term "this method" is practically meaningless in this question because it is not clear if it means "the SDT's method" or "the FRI's method". The Background Document specifically states on page 29: "The NERC Frequency Response Initiative Report addressed the relative merits of using the median versus linear regression for aggregating single event frequency response samples into a frequency response measurement score for compliance evaluation. This report provided 11 evaluation criteria as a basis for recommending the use of linear regression instead of the median for the frequency response measurement aggregation technique. The FRSDT made its own assessment on the basis of these evaluation criteria on September 20, 2012, but concluded that the median would be the best aggregation technique to use initially when the relative importance of each criterion was considered." What needs to be changed, besides properly wording this question? The FRI method of linear regression should be adopted, and the SDT method of median should be rejected, in the standard to change the first sentence of this question into a true statement from a false statement and to, in answer to the question, provide for the proper amount of

Organization	Yes or No		Question 6 Comment
		Frequency Response.	

Response: Thank you for your comments. The drafting team disagrees that the methodology for calculating the IFRO used in this standard is different than that detailed in the FRI Report. The drafting team considered replacing median with linear regression but chose to use the median because of its better resiliency to data quality problems found in the Actual Net Interchange data used in the frequency-response calculation.

SERC OC Standards Review Group	No	We believe the industry needs some assurance that the calculation of the interconnection FRO cannot be changed without rigorous review and input from the industry. In addition the clarification should be made how the one in ten year loss for the Eastern Interconnection (4500 MW) would change after 10 years. Would the same methodology be used or would the largest Category C ($\mathrm{n}-2$) be used?

Response: Thank you for your comment. The Attachment A is part of the standard and as such is subject to the NERC standards process manual for making any changes.

The drafting team agrees with your concern regarding the use of 4500 MW. However, the results for the current Eastern Interconnection model do not represent observed response adequately. The models for the other Interconnections have a better match. For this reason, the drafting team has recommended the largest event in the last ten years be used to provide for an increased reliability margin for the Eastern Interconnection. If the largest event in the last 10 years falls below 4500 MW then the SDT believes that an $\mathrm{N}-2$ event would be utilized.

Arizona Public Service Company	NO	1. The Frequency Response initiative report should be added to the standard as an appendix. It is not clear where to find this report. 2. The jusitification for dividing delta frequency with C to B ratio is not adequate and not clear.

Response: Thank you for your comment. 1) The drafting team disagrees that the FRI Report should be attached to this standard as an appendix. We do agree that it should be easier to locate.
2) Please refer to the FRI Report for the reasoning you request.

Edison Electric Institute	Yes	EEI finds the method to be acceptable but as mentioned in our response to question

| Organization | Yes or No | Question 6 Comment |
| :--- | :--- | :--- |$|$| | No. 5 (above), we believe that the procedure should be more formally documented as
 an addendum. Such a change would ensure that the document would remain
 unchanged outside of the approved standards making process. Additionally, EEI does
 not support using 4500 MW loss as the basis for determining the FRO for the Eastern
 Interconnection for future events. However, as the calculation also includes 59.5 Hz as
 the basis for determining the FRO, the results is an allocation which we believe is
 acceptable. In the future, should the SDT decide to use 59.7 Hz as the basis for the
 FRO, than it will need to follow a methodology similar to the other interconnections for
 determining the credible multiple contingency to cover. |
| :--- | :--- |
| Response: Thank you for your comment. The Attachment A is part of the standard and as such is subject to the NERC standards
 process manual for making any changes.
 The drafting team agrees with your concern regarding the use of 4500 Mw. However, the results for the current Eastern
 Interconnection model do not represent observed response adequately. The models for the other Interconnections have a better
 match. For this reason the drafting team has recommended the largest event in the last ten years be used to provide for an
 increased reliability margin for the Eastern Interconnection. If the largest event in the last 10 years falls below 4500 Mw then the
 SDT believes that an N-2 event would be utilized. | |
| ACES Power Marketing
 Standards Collaborators | Yes |

NERC

Organization	Yes or No	
Group		
pacificorp	Yes	
PJM Interconnection, LLC Comment	Yes	
California Independent System Operator	Yes	
Energy Mark, Inc.	Yes	
Idaho Power Company	Yes	
Independent Electricity System Operator	Yes	
Texas Reliability Entity	Yes	
Kansas City Power \& Light	Yes	
Ameren	Yes	
NV Energy	Yes	
MISO	Yes	
MRO NSRF	MRO NSRF AGREES	

7. Based on Industry comments received the SDT made significant clarifying modifications to the Background Document. Do you agree that this document provides sufficient information to justify the rationale used by the SDT in developing the draft standard and provides the industry with sufficient understanding of the issues being addressed by the standard?

Summary Consideration: Several of the commenters questioned why the formula for FRO was missing. The drafting team explained that this was a problem incurred during the conversion to a pdf file. Once the problem was recognized by NERC, it was immediately fixed during the posting.

A couple of commenters felt that there should be discussion in the Background Document concerning "inertial response". The drafting team stated that they saw a limited role for inertial response in the context of this standard. The standard inherently does not address inertial requirements. It is of interest herein because of its role in determining the postcontingency rate of decline of frequency, as it ultimately impacts the duration of time before the frequency nadir (point C) occurs. The drafting team considered a more elaborate description of inertial response, but believes that it is tangential to the main mission of this standard.

A few of the commenters questioned the use of the largest event in the last 10 years as the criteria for the Eastern Interconnection. The drafting team explained that the results for the current Eastern Interconnection model do not represent observed response adequately. The models for the other Interconnections have a better match. For this reason the drafting team has recommended the largest event in the last ten years be used to provide for an increased reliability margin for the Eastern Interconnection. Further details are provided on pages 52 through 55 of the Frequency Response Initiative paper.

Organization	Yes or No	Question 7 Comment
$\begin{array}{l}\text { ACES Power Marketing } \\ \text { Standards Collaborators }\end{array}$	No	$\begin{array}{l}\text { (1) The formula for calculating Frequency Response Obligation appears to be missing } \\ \text { on page 23. } \\ \text { (2) We are confused by the varying sample rates for the different scan rates in the }\end{array}$
Definitions of Frequency Values for Frequency Response Calculation table on page 13.		
It would appear that the time range of values for the average B value varies more than		
necessary by scan rate. For example, for 2-second scan rates, sampling would start at		
20 seconds and end at 52 seconds. However, for the 4-second scan rates, sampling		

Organization	Yes or No	Question 7 Comment
		starts at 24 seconds and ends at 48 seconds. Why would it not also cover 20 and 52 seconds for a 4 -second scan rate?
Response: Thank you for your comment. (1) This was corrected during the posting. The formula was lost when converting to a pdf file. (2) The SDT has corrected the table.		
Bonneville Power Administration	No	BPA continues to fundamentally disagree with the approach that BAL-003-1 is developing into. Please reference BPA's extensive comments submitted on 12/8/11 for Project 2007-12 Frequency Response found at: http://www.nerc.com/docs/standards/sar/2007-12_comments_received_120911.pdf.
Response: Thank you for your comment. Please refer to our response to your comments dated 12/8/11.		
Keen Resources Asia Ltd.	No	See reply to Question 6. Also, the Background Document is seriously deficient in the discussion of inertial response and therefore how imbalances "cause" frequency deviation. The Background Document is overflowing in discussion of how frequency deviation causes frequency response. In other words, the Background Document is "reactive" and not "proactive". The Background Document lacks any discussion of the internal dynamics of rotating machines, beginning with any definition of what Inertial Response is. Inertial Response is the instantaneous power produced by the lag ("inertia") in the ability of the generator's rotor to slow down to the frequency of the magnetic field in the generator's fixed stator whose frequency is instantaneously lowered by a change in phase angle between voltage and current that is due to a sudden loss of interconnected generation to meet load. Adjustments by voltage response within milliseconds and near the location of the loss are sometimes possible to avert rapid spread of a loss to the frequency of the entire interconnection, and constitute the ongoing work of the Phasor Project long ago initiated by the DOE in the persistent absence of NERC interest or work in this area. NERC and drafting team members under advisement by NERC staff studiously resisted so much as any mention of frequency deviation causation in discussions or in the Background Document. An

| Organization | Yes or No | Question 7 Comment |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l|l|l|}\hline inexplicable technical Cold War and Berlin Wall built in the 1970s and today separating

the DOE Phasor Project from NERC Frequency Response standard development and

NERC's so-called Frequency Response "Initiative" needs to be ended and torn down.

My document http://www.robertblohm.com/Inertia.doc provides missing technical

support and explanation for graphs 1-7 on pages 4-10 of the Background Document, on

the basis of an exact understanding of Inertial Response.\end{array}\right.\right]\)

Organization	Yes or No	Question 7 Comment
PPL NERC Registered Affiliates	Yes	The PPL Affiliates applaud the SDT for developing this technical justification document.
Response: Thank you for your comment.	Yes	Though Duke Energy does not agree with some of the points in the Background Document, it does justify the rationale used by the SDT. Additional comments: at the top of page 23, it states that the basic Frequency Response Obligation is based on non- coincident peak load and generation data reported in FERC Form 714, however the actual calculation is missing and should be based upon the reported MWh, not the peak load as stated. At the bottom of page 23, it states that Attachment A proposes the three options for event criteria, however doesn't clarify why it was chosen that the Eastern Interconnection would be held to the largest event over the last 10 years, while others will be based upon the largest category C loss-of-resource (N-2) event.
Duke Energy		
Response: Thank you for your comment. (1) This was corrected during the posting. The formula was lost when converting to a pdf file. (2) The results for the current Eastern Interconnection model do not represent observed response adequately. The models for		
the other Interconnections have a better match. For this reason the drafting team has recommended the largest event in the last		
ten years be used to provide for an increased reliability margin for the Eastern Interconnection. Further details are provided on		
pages 52 through 55 of the Frequency Response Initiative paper.		

Organization	Yes or No	Question 7 Comment
pages 52 through 55 of the Frequency Response Initiative paper.		
SPP Standards REview Group	Yes	We like the document and feel that it provides a primer on the frequency response standard.The following are typos in and suggested corrections to the document:-The blue lines referenced in the paragraph under Figure 2 on page 14 are green (A) and red (B).-Insert an 'a' in the 3rd line of the 2nd paragraph in the Sustained Response section on page 19 between 'provides' and 'greater'.-Insert a 'for' in the 2nd line of the 1st paragraph on page 21 between 'resource' and 'all'.-Change 'provide' to 'provided' in the 3rd line from the bottom line of the 1st paragraph in the Single Event Frequency Response Data section on page 24.-Change the 'east' to 'Eastern Interconnection' in the 4th line of the 1st paragraph in the Median as the Standard's Measure of Balancing Authority Performance section on page 27. -Delete the 'put' in the 3rd bullet on page 29. Also, replace the 'put' in the 5th bullet with 'gave'.
Response: Thank you for your affirmative response and clarifying comment. The errors you mentioned have been corrected.		

NERC

Organization	Yes or No	
Southern Company	Yes	
Idaho Power Company	Yes	
Texas Reliability Entity	Yes	
Kansas City Power \& Light	Yes	
Ameren	Yes	
NV Energy	Yes	
Tucson Electric Power	Yes	
BC Hydro	Yes	
MISO	Yes	
MRO NSRF		MRO NSRF AGREES

8. If you are not in support of this draft standard, what modifications do you believe need to be made in order for you to support the standard? Please list the issues and your proposed solution to the issue.

Summary Consideration: A couple of commenters expressed concern with the fact that the onus for Frequency Response was being put on the BAs who do not own or operate the generators. The drafting team explained that they had heard some of the same concerns, but there are quite a few good reasons why this standard is a good starting point to meet the FERC directives in Order No. 693 (which NERC was given a specific date next year to deliver).

There are several other standards where a similar situation occurs. As you note, many BAs don't own generators. Still, they are responsible for meeting DCS and CPS. The BAs control regulating and contingency reserves to meet the standards. Similarly a TOP is responsible for maintaining voltage even though they may own no capacitor banks or generators to control VArs.

To measure frequency response fairly accurately (one of the 693 directives), you have to monitor the BAs' frequency response (or generator governor response if the standard was generator centric) to about 30 events per year. There are about 140 BAs in North America. There are on the order of 4000 generators that would have to report under a generator-centric standard. How do you verify performance of $\mathbf{1 2 0 , 0 0 0}$ observations annually?

The standard is a backstop standard beyond which we could expect problems during light load conditions for a large contingency. It is not intended to be difficult to meet. As proposed, the standard has a performance obligation about half of what we see today in actual operation. The obligation for the East is on the order of $-1000 \mathrm{MW} / 0.1 \mathrm{~Hz}$. We have about $-2200 \mathrm{MW} / 0.1 \mathrm{~Hz}$ on average. The standard allows the formation of frequency response sharing groups (similar in concept to DCS' RSGs) and allows obtaining response from other BAs contractually. This means there should be no BAs out of compliance once the standard is in place.
A couple of commenters stated that they thought the standard was confusing. The drafting team stated that they appreciated their concern that the standard is confusing, but the drafting team believed that the proposed standard is as clear as possible while covering all of the issues involved and that based on comments received the industry was not in agreement.

NBRC

One or two commenters requested clarity on how modifications to the Attachment A could be made and if the FRS Forms $\mathbf{1}$ and $\mathbf{2}$ had
to be used. The drafting team explained that Attachment A was part of the standard and would have to use the Standard Development Process to make any modifications. The drafting team also stated that the FRS Forms were required to be used in the reporting.

A couple of commenters questioned the use of the Background Document. The drafting team explained that the Background Document was only intended to be used for education and training similar to other training references in the NERC Operating Manual.

Organization	Yes or No	Question 8 Comment			
ACES Power Marketing Standards Collaborators	No	(1) We believe that the drafting team work has demonstrated that the standard is unnecessary. The data presented in the posting shows that all of the interconnections easily exceed the required Frequency Response necessary to avoid actuating UFLS relays. Since one of the main purposes of the standard is to provide sufficient Frequency Response, it would seem the purpose is already met without implementing and enforceable standard. So why is a standard needed to compel required Frequency Response if it is already provided? (2) Even though we believe the supporting data for the posting demonstrates the			
standard is unnecessary, we understand NERC is required by a FERC directive to					
provide a standard. Given this requirement, we do believe the drafting team has largely					
provided a reasonable standard and supporting documents that only require a few					
additional adjustments (see our comments in other questions for these adjustments) to					
finalize the standard. As a result, we will likely end up supporting the standard once					
these final adjustments are made.			$	$	We agree that the standard meets the primary directive to provide Frequency
:---					

Organization	Yes or No	Question 8 Comment
System Operator		any responsible entities, to make changes to the Frequency Bias Setting or take any operating or operations planning actions. We suggest to replace the word "directed" with "requested". b. In R2, the words "subject to" can be interpreted differently. We suggest to replace them with "in accordance with" to parallel the intent as conveyed in R1. c. We are still concerned with the status of Attachment A, as indicated in our comments submitted under Q4 - that it is unclear if the materials in Attachment A must be adhered to or not. A standard should not have an attachment whose enforcement status is unclear as part of a requirement. d. FRS Forms 1 and 2 are referenced in Attachment 1, which itself has an unclear status on measurability and enforceability. It is also unclear if FRS Forms 1 and 2 must be used to submit the requested data. Collectively, Attachment 1, FRS Form 1 and Form 2 make the standard very confusing as to which parts must be complied with. Much better clarity is needed to clearly convey the standard 's requirements that are measurable, enforceable and must be complied with.
Response: Thank you for your comments, a) The drafting team believes that the term "direct" is less ambiguous. The drafting team believes that using the term "request" could leave the impression that the action is optional. b) The drafting team has adopted your suggested language. c) Please refer to the drafting team response to Question \#4. d) The Attachment is mentioned in the standard requirements and is therefore enforceable. Since the FRS Forms are discussed in the Attachment then they must be used in the calculation process.		
Bonneville Power Administration	No	BPA continues to fundamentally disagree with the approach that BAL-003-1 is developing into. Please reference BPA's extensive comments submitted on 12/8/11 for Project 2007-12 Frequency Response found at: http://www.nerc.com/docs/standards/sar/2007-12_comments_received_120911.pdf.

Organization	Yes or No	Question 8 Comment
Response: Thank you for your comment. Please refer to the drafting team response to your comments submitted on 12/8/11.		
Exelon Corporation and its affiliates	No	Exelon checked "no" because it does not support the current draft standard. Exelon's position is that efforts to modify frequency monitoring and control should be directed at the existing standards. Since Frequency Bias is already a component of ACE, and ACE performance is tracked by both CPS 1 and CPS 2, it seems evident that NERC already has in place mechanisms for evaluating frequency response. NERC already has in place mechanisms for ensuring sustained frequency response during a contingency, through the Disturbance Control Standard (DCS) and its requirement for the contingent Balancing Authority to deploy resources. Under the current BAL-003-0.1b language, Balancing Authorities are given a consistent means for determining frequency bias, via the minimum requirement of 1% peak generation or 1% peak load. Together with the above references to existing CPS 1 performance measurements, current standards meet the objectives outlined in BAL-003-1. This proposed draft BAL-003-1 complicates the setting of Frequency Bias and attempts to go beyond that purpose into frequency response performance, without clear rules for how to perform. Exelon is also concerned with moving this standard forward while there is an ongoing field trial that could impact whether this standard should be put into place. For example, waivers are in place for CPS 2 for participating Balancing Authorities and there is ongoing effort with the BAAL field trial set of standards that will establish performance metrics around frequency control. As an alternate approach to waiting to move forward on the standard, Exelon recommends the following BAL-003-1 Requirement language: R1. The ERO shall identify up to five [5] system frequency events in each Interconnection that will be included in the Form 1 and 2 data requests for Balancing Authorities by April 30th each year. R2. Each Balancing Authority shall submit the following data to the ERO annually by July 15 : R2.1 The total annual net output of generating plants inside the Balancing

Organization	Yes or No	Question 8 Comment
		Authority Area. R2.2 The total annual load with losses inside the Balancing Authority Area. R3. Each Balancing Authority shall calculate its Frequency Response Measure using Forms 1 and 2 as posted by the ERO. (See Attachment A_Form 1 and Form 2) R4. Each Balancing Authority or Frequency Response Sharing Group shall submit Forms 1 and 2 to contacts designated by the ERO before the expiration of ERO established deadlines, which shall be no earlier than 30 days after posting of Forms 1 and 2. R5. The ERO shall post the following information: R5.1. Each Interconnection's Frequency Response Obligation R5.2 Each Balancing Authorities Frequency Response Obligation R5.3 Each Balancing Authorities Frequency Bias Setting R6. Each Balancing Authority shall implement in its ACE equation its ERO established Frequency Bias Setting during the ERO established three-day implementation period. No further adjustments can be implemented outside of the parameters established below in the upcoming year unless a Balancing Authority coordinates with the Regional Entity and the affected Balancing Authorities. R6.1 A Balancing Authority using a fixed Frequency Bias Setting sets its Frequency Bias Setting to the greater of (in absolute value): R6.1.1. The number the BA chooses between 100% and 125% of its Frequency Response Measure as calculated on FRS Form 1. R6.1.2. The Balancing Authorities share of the Interconnection Minimum as determined by the ERO. R6.2 A Balancing Authority using a variable Frequency Bias Setting shall maintain a setting that is:

Organization	Yes or No	Question 8 Comment
		R6.2.1 Less than zero at all times, and R6.2.2 Equal to or greater in magnitude than its Frequency Response Obligations when Frequency varies from 60 Hz by more than $+/-0.036$ Hz. R7. Each Frequency Response Sharing Group or Balancing Authority that is not a member of a FRSG shall monitor its Frequency Response Obligation and work with generating facilities or demand response resources to provide sufficient Frequency Response to meet the Frequency Response Obligation assigned by the ERO. R8. Each Balancing Authority that adds or removes generation or load, including through the use of dynamic transfers, shall notify the ERO to ensure that any needed adjustments to the Interconnection Frequency Response Obligation or Balancing Authority Frequency Response Obligation and Bias can be calculated. R8.1. The ERO shall notify all affected Balancing Authorities of modifications to the Frequency Response Obligation due to the addition or removal of generation or load. R9. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation, in order to represent the Frequency Bias Setting for the combined Balancing Authority Area, to be equivalent of the sum of the Frequency Bias Setting as communicated by the ERO for the participating Balancing Authorities.
Response: Thank you for your comment. ACE, CPS1, CPS2, BAAL and DCS are all standards that measure Secondary Control actions. The inclusion of the Frequency Bias Setting in ACE and these standards make them blind to Primary Frequency Control and thus incapable of helping with the evaluation of Frequency Response (Primary Frequency Control). R1 sets clear rules with respect to how much Frequency Response is required from each BA through the Frequency Response Obligation (FRO) and Frequency Response Measure (FRM). The BAAL Field Trial is investigating issues associated with Secondary Frequency Control only and is not impacted by and has no impact on Primary Frequency Control and BAL-003. The drafting team has considered the suggestions contained in the requirements suggested and has explained in the Background document the reasons for writing the		

Organization	Yes or No	Question 8 Comment
requirements and measures as contained in the draft BAL-003-1.		
Duke Energy	No	Given the FERC deadline approaching for NERC to deliver a Frequency Response standard, Duke Energy supports the adoption of this standard with some reservations. We believe that the proposed standard addresses the FERC directive to NERC, however it also introduces some longer-term issues related to secondary control and related costs that may have not been anticipated by the FERC. To that point, Duke Energy believes that if this standard is adopted, the industry will have the time and opportunity through the NERC standards development process to mitigate some of the concerns presented in our comments."
Response: Thank you for your affirmative response and clarifying comment. The drafting team agrees that there could be some impact on other standards but the implementation period will allow for time to adjust and learn		
Tucson Electric Power	No	I feel that a BA's frequency bias for the upcoming year should not be related to present performance. A BA may have a good response one year and not good response another year and therefore the threshold keeps moving around. I feel it should be related to BA size and therefore somewhat standardized. E.g. a high-performing Balancing Authority will have its frequency bias increased each year due to higher response during the events chosen by the ERO. Conversely, a low-performing Balancing Authority will have its frequency bias reduced each year due to lower response during the events chosen by the ERO.
Response: Thank you for your comment. The drafting team believes that control and frequency performance improve if the Bias Setting and the BA's Frequency Response are as closely matched as possible. Low performing BAs will still have to provide the Interconnection minimum Bias Setting. In an unlikely case where a high performing BA has an internal change that markedly reduces their Frequency Response, there are provisions in the standard's supporting document to accommodate an intra-year change in its Bias Setting.		
New York Independent System Operator	No	In general we support the work of the DT, and the proposal to measure the systems response to frequency events, along with the method to determine the FRO. My

Organization	Yes or N	Question 8 Co
		that provides the frequency response or the lack of obligation for the entity with the information to provide to the BA to make the assessment of expected frequency response. BA's should at a minimum be given assurance that resources will provide data that BA's could use to forecast frequency response and take corrective actions.
Response: Thank you for your comment. We've heard some of the same concerns, but there are quite a few good reasons why this standard is a good starting point to meet the FERC directives in Order No. 693 (which NERC was given a specific date next year to deliver). There are several other standards where a similar situation occurs. As you note, many BAs don't own generators. Still, they are responsible for meeting DCS and CPS. The BAs control regulating and contingency reserves to meet the standards. Similarly a TOP is responsible for maintaining voltage even though they may own no capacitor banks or generators to control VArs. To measure frequency response fairly accurately (one of the 693 directives), you have to monitor the BAs' frequency response (or generator governor response if the standard was generator centric) to about 30 events per year. There are about 140 BAs in North America. There are on the order of 4000 generators that would have to report under a generator-centric standard. How do you verify performance of 120,000 observations annually? MISO has done analysis to find all large frequency events over the past year and how the generators in its footprint performed. It turns out that many of the generators aren't on line for any of the events and only a few of the generators were on line for all large events. So what do you do with generators that are not frequently run? Even if a generator ran 50% of the time, you wouldn't have enough events to do a quality measure in a year. The standard is a backstop standard beyond which we could expect problems during light load conditions for a large contingency. It is not intended to be difficult to meet. As proposed, the standard has a performance obligation about half of what we see today in actual operation. The obligation for the East is on the order of $-1000 \mathrm{MW} / 0.1 \mathrm{~Hz}$. We have about $-2200 \mathrm{MW} / 0.1 \mathrm{~Hz}$ on average. The standard allows the formation of frequency response sharing groups (similar in concept to DCS' RSGs) and allows obtaining response from other BAs contractually. This means there should be no BAs out of compliance once the standard is in place. Finally, to make it a generator standard precluded other solutions (load management, flywheels, market solution, etc.).		

Organization	Yes or No	Question 8 Comment
Tri-State Generation and Transmission Assn., Inc.	No	It is our opinion that there has not been enough justification to merit creating a new standard. If additional justification is provided then frequency responsive reserves should be a subset of spinning reserves much like spinning reserves are a subset of operating reserves.
Response: Thank you for your comment. This standard will set a backstop to assure that Frequency Response will not declin a "point of no return" This standard does not prescribe a method to provide Frequency Response but does provide for measuring that Frequency Response is delivered. Spinning reserve is outside the scope of the industry approved SAR.		
Puget Sound Energy	No	See comment in response to question 4 above for a discussion of Attachment A concerns. Appendix 1 of the Frequency Response Standard Background Document contains a discussion about why the use of net actual interchange to calculate an entity's Frequency Response Measure might introduce inaccuracies into that calculation. That discussion ends with the following statement: "The frequency response is buried within the typical hour to hour operational cacophony superimposed on actual net interchange values. The choice of metrics will be important to artfully extract frequency response from the noise and other unrepresentative error." Based on these statements, it is very difficult to support the standard's approach to calculating the Frequency Response Measure.At Puget Sound Energy (PSE), though, we believe that there is another factor to add to the "operational cacophony" listed in Appendix 1. PSE is a comparatively small BA with limited internal generation. We are embedded between two of the largest energy exporters in the Western Interconnection and, when there is a frequency event, their response flows through PSE's system. As a result, PSE will experience transmission losses associated with the two BAs' frequency response as it flows through our system. When PSE's frequency response is measured using net actual interchange, these losses obscure, at least in part, our system's

Organization	Yes or No	Question 8 Comment
		frequency response. As a result, we ask the standard drafting team to consider specifying a process that would allow us to propose and use an equivalent measure of frequency response. For example, while we understand the concerns and difficulties associated with measuring frequency response at the generator as the default measure for all BAs, in our case, a choice to use that measurement option might prove to be a more-feasible way to comply with the standard.
Response: Thank you for your comment. Please refer to our response to your comments on Question \#4. Analysis of Field trial data has not shown that this has been a problem. The spreadsheets have been designed to allow for adjustment for dynamically scheduled resources located in another BA.		
PJM Interconnection, LLC	No	See previous comments. Also, this standard should be applicable to GOP's as well as BA's with, at a minimum, the following requirements added: Each GOP shall follow all directives of it's Balancing Authority pertaining to frequency responsive operation, including but not limited to the status, droop \& deadband settings of their governors. Each GOP shall provide to their BA the status and droop \& deadband settings of their governors, and headroom available to respond to frequency deviations, as requested.
Response: Thank you for your comment. MISO has done analysis to find all large frequency events over the past year and how the generators in its footprint performed. It turns out that many of the generators aren't on line for any of the events and only a few of the generators were on line for all large events. So what do you do with generators that are not frequently run? Even if a generator ran 50% of the time, you wouldn't have enough events to do a quality measure in a year. Generator verification standards (MOD 27) are scheduled to be revised. The drafting team believes that this will address your second concern		
PPL NERC Registered	No	The PPL Affiliates are concerned that the document referred to "Attachment A" is

Organization	Yes or No	Question 8 Comment
Affiliates		directly referenced in the proposed standard's requirements but not actually attached to the standard itself as Attachment A. Therefore, it is not clear how the proposed document could be modified in the future. Having such material incorporated into a standard takes away from the open and transparent stakeholder drive process.

Response: Thank you for your comment. The attachment is mentioned in the requirement within the standard and therefore becomes a part of the standard. Any modifications needing to be made to the attachment will have to use the Standards Process.

Consolidated Edison Co. of NY, Inc.	No	The purpose of BAL-003 was to calculate frequency bias in the ACE equation used in BAL-001. The Standard is currently confusing to understand and it is unclear how the bias is calculated. It is recommended that efforts should be made to clarify the changes, especially Attachment A.

Response: Thank you for your comment. The drafting team appreciates your concern that the standard is confusing, but the drafting team believes that the proposed standard is as clear as possible while covering all of the issues involved.
The drafting team will either develop training materials to provide better understanding for both the FRM and FBS calculations or recommend to the NERC Resources Subcommittee to develop said materials.

Northeast Power Coordinating Council	No	The purpose of BAL-003 was to calculate frequency bias in the ACE equation used in BAL-001. The Standard is currently confusing to understand, and it is unclear how the bias is calculated. It is recommended that efforts should be made to clarify the changes, especially in Attachment A.

Response: Thank you for your comment. The drafting team appreciates your concern that the standard is confusing, but the drafting team believes that the proposed standard is as clear as possible while covering all of the issues involved.
The drafting team will either develop training materials to provide better understanding for both the FRM and FBS calculations or recommend to the NERC Resources Subcommittee to develop said materials.

Kansas City Power \& Light	No	The Standard does not consider instances for smaller BAs that operate generation for peak conditions and acquire energy for most of the operating year.

Response: Thank you for your comment. The drafting team is unsure of your precise question. However, if your question concerns meeting your performance obligation year around, then the process does allow for mechanisms for a BA to obtain Frequency Response from external resources

NV Energy	No	While I support the concept of a Frequency Response Standard with minimum performance obligations, this Standard places the entire obligation for performance on the Balancing Authority (and Frequency Reserve Sharing Group). Requirements R2-R4 are properly assigned to the BA, as this is the entity that is responsible for the configuration and parameters in the ACE equation, including the provision of a frequency bias setting. Requirement 1, however, is a performance requirement over which the BA in the Functional Model has virtually no control or ability to influence. Only a Generator Owner or Generator Operator is in a position of control over the performance under this requirement through the operational control and configuration of the responding generating units. In most BA's, the host BA entity also owns a fair amount, even a vast majority in many cases, of the generation within the BA. However, even in the event that the host BA owned 100\% of the generation within its metered boundary, it is the action of the entity exercising its GO/GOP function that impacts the frequency response performance within the Balancing Area. Assignment of R1 to the BA is inappropriate from the standpoint that reliability requirements are to be assigned to the Reliability Functions who are capable of causing compliance to occur. A BA has limited ability to influence the outcome of the R1 performance metric. This is unlike other BA-assigned requirements, such as those related to DCS or CPS compliance. For those, the BA does have considerable influence regarding the curtailment of transactions to restore ACE, the direction of plant loading so as to distribute operating reserve, etc. In contrast, performance under this proposed R1 of BAL-003-1 is dependent upon the actions of the GO/GOP in such things as governor settings, generator control system configuration and other operatinal or maintenance activities conducted at the generating plant site. For this reason, it is inappropriate to assign this performance requirement to the BA. Rather, the requirements should be allocated among the GO/GOP's of the on-line generation in some fashion.In further support of

Organization

Arizona Public Service	NO	1. Either do not use C to B Ratio or provide adequate rational for using it. It appears to

Organization	Yes or No	Question 8 Comment
Company		make FRO unnecessarily too conservative and is not justified based upon experience. 2. The VRF is too complicated and hard to understand. It must be either simplified or should be followed by example. 3. The Frequency Response Obligation Methodology on Page 7 of "Procedure" does not show any formula (it is blank).
Response: Thank you for your comment. 1) The rationale can be found beginning on page 14 of the Background document and page 49 of the FRI report. 2) The drafting team is assuming you meant the VSLs. The VSL attempts to correct the VRF based on the BA's size and its impact on the interconnection. 3) This was corrected during the posting. The problem occurred when the Word document was translated to a pdf file.		
Energy Mark, Inc.	Yes	Although I am in favor of using linear regression to determine the FRM, the standard using Median is better than not having a standard.
Response: Thank you for your comment. The drafting team thanks you for your affirmative response and clarifying comment.		
Southern Company	Yes	Please refer to comments for question 9.
Response: The drafting team thanks you for your affirmative response and clarifying comment. Please refer to our response for Question \#9.		
Manitoba Hydro	Yes	No comment.
NREL Transmission and Grid Integration Group	Yes	
Edison Electric Institute	Yes	
pacificorp	Yes	

Organization	Yes or No	Question 8 Comment
California Independent System Operator	Yes	
Ameren	Yes	
MISO	Yes	
AESO		1. The AESO disagrees with using a non-authoritative background document that has definitions/description of terms used in the reliability standard. It is the opinion of the AESO that these definitions/descriptions need to be authoritative. 2. The AESO has previously submitted comments to the SDT that for the purpose of the FRM calculation, BAs should be able to exclude or include events based on specific conditions or consideration, such as data quality or event suitability (e.g. BA separation from the Interconnection). The revisions made by the SDT do not enable the inclusion of other relevant events in the FRM calcualtion by a BA. The AESO would like to to see these type of events to be permitted in the FRM calculation by a BA.
Response: Thank you for your comment. 1) The Background Document is intended for education and training similar to the other training references in the NERC Operating Manual. The drafting team believes that any new definitions that are located in the standard will ultimately be placed in the NERC glossary. 2) The drafting team believes that your concern will be addressed through the process since: a) separation events would not be selected, b) the median will exclude the outlier situations, and c) If the data is corrupted, the FRS Forms allows for exclusion of that event.		
Public Service Enterprise Group		PSEG entities will vote "Negative" on the standard until this Project 2007-12 achieves the following: 1. It coordinates with Project 2010-14.1 Phase 1 of Balancing Authority Reliability-

Organization	Yes or No	Question 8 Comment

Organization	Yes or No	Question 8 Comment

Organization	Yes or No	Question 8 Comment
		forma Standard Large Generator Interconnection Agreement (LGIA) per Order 2003 contains no requirement for generators to provide Frequency Response service, and we are not aware on ANY interconnection agreement that does. We ask that the team point to ANY interconnection agreement with such a requirement. Modification of an interconnection agreement to incorporate such a requirement would require the consent of both parties. d. "Contract with an internal resource or loads."Since Frequency Response service would likely be considered as a necessary service to provide Transmission Service under an OATT, it would require a tariff. What existing tariff applies in the U.S.?The "methods" above that the team has listed have the factual errors described. The standard BAL-003-1 cannot be implemented until the necessary tariffs are developed that permit BAs and FRSGs to contract for Frequency Response services. Once that is done, BAL-003-1 can dictate the performance requirements of a BA or FRSG. o For context, FERC OATT schedules relevant to Frequency Response DO NOT set performance requirements. Schedule 3 (Regulation and Frequency Response Service) sets forth a tariff for the service, while BAL-001-0.1a sets forth performance requirements in aggregate for a BA or RSG. Likewise, Schedule 5 (Operating Reserve Spinning Reserve Service) and Schedule 6 (Operating Reserve - Supplemental Reserve Service) set tariffs for both services, while BAL-002-1 sets performance requirement. Without an OATT schedule for Frequency Response service, BAs and FRSGs will have no means to contract with generators or loads to provide Frequency Response per BAL-003-1. The team should address this concern.
Response: Thank you for your comment. There is significant coordination between the two drafting teams and this coordination will continue as all standards referenced are posted for comment.		
With regard to double jeopardy, both drafting teams have been coordinating to ensure this does not occur.		
We believe it is important from a reliability perspective to have a performance based standard. The ultimate need for tariff changes, interconnection agree, etc will be based on a BA's need to meet the standard.		

Organization	Yes or No	Question 8 Comment

Within the measures for R1 and the discussions in the Background document, the drafting team believes that FERC and the industry will be able to develop the changes to tariffs to address your concerns with the BA contracting with sources of Frequency Response to meet its FRO. The BA is also responsible for dispatch levels of resources that provide Frequency Response. Now that Frequency Response has been clearly defined and is able to be measured, sources of Frequency Response for delivery of the service can be developed by the industry.

Once both BAL-003-1 and BAL-012-1 have passed, the drafting team believes it would then be an appropriate time for the members of the two drafting teams to develop an application guide.

| American Electric Power | There is no leverage for the BA to require the generator to carry their burden of
 addressing governor settings or droop settings, yet the BA is obligated to meet some
 performance measures in that regard.This revision adds new performance measure
 responsibilities on the BA who likely has no direct control over every resource affecting
 their performance within their footprint. We are not necessarily challenging the
 performance measures themselves, nor their underlying objectives, however AEP views
 this as a gap in responsibilities which potentially effects reliability. AEP suggests that
 GOPs be considered as part of this standard so that their performance can be factored
 into the process to meet the performance objectives. |
| :--- | :--- | :--- |
| Response: Thank you for your comments. We've heard some of the same concerns, but there are quite a few good reasons why this | |
| standard is a good starting point to meet the FERC directives in Order No. 693 (which NERC was given a specific date next year to | |
| deliver). | |
| There are several other standards where a similar situation occurs. As you note, many BAs don't own generators. Still, they are | |
| responsible for meeting DCS and CPS. The BAs control regulating and contingency reserves to meet the standards. Similarly a TOP is | |
| responsible for maintaining voltage even though they may own no capacitor banks or generators to control VARs. | |

To measure frequency response fairly accurately (one of the 693 directives), you have to monitor the BAs' frequency response (or
generator governor response if the standard was generator centric) to about 30 events per year. There are about 140 BAs in North
America. There are on the order of 4000 generators that would have to report under a generator-centric standard. How do you
verify performance of 120,000 observations annually?

Organization	Yes or No	Question 8 Comment

MISO has done analysis to find all large frequency events over the past year and how the generators in its footprint performed. It turns out that many of the generators aren't on line for any of the events and only a few of the generators were on line for all large events. So what do you do with generators that are not frequently run? Even if a generator ran 50% of the time, you wouldn't have enough events to do a quality measure in a year.

The standard is a backstop standard beyond which we could expect problems during light load conditions for a large contingency. It is not intended to be difficult to meet. As proposed, the standard has a performance obligation about half of what we see today in actual operation. The obligation for the East is on the order of $-1000 \mathrm{MW} / 0.1 \mathrm{~Hz}$. We have about $-2200 \mathrm{MW} / 0.1 \mathrm{~Hz}$ on average. The standard allows the formation of frequency response sharing groups (similar in concept to DCS' RSGs) and allows obtaining response from other BAs contractually. This means there should be no BAs out of compliance once the standard is in place.

Finally, to make it a generator standard precluded other solutions (load management, flywheels, market solution, etc.).

SPP Standards REview Group		We support the standard as proposed.

Response: The drafting team thanks you for your support.
9. Please provide any other comments (that you have not already provided in response to the questions above) that you have on the draft standard BAL-003-1.

Summary Consideration: A couple of commenter disagreed with the VSLs for Requirement R1. The drafting team explained that the VSLs were a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections. Consider a small BA that whose performance is 70% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections. However, the drafting team has added language to the requirement to reference the Interconnection Frequency Response Obligation.

One commenter felt that there was an inconsistency between Requirement R4 and Requirement R1 and Attachment A concerning how a BA providing Overlap Regulation Services would calculate its FBS. The drafting team disagreed with their comment. Under the two options in R4 the BAs must still comply with the minimum setting requirements through the calculations performed under R2. In your example, if both BAs turned in FRS Form 1 showing a FBS based on the 100\% - 125\% minimum these two numbers would be added together for compliance with R4.

One commenter felt that the definition should state that it is a negative value. The drafting team explained that while the desired value would be negative it is mathematically feasible for the actual value to be positive but that value would by definition mean that the entity failed the measurement for Requirement R1.

One commenter disagreed with putting the onus on the BA for providing Frequency Response. The drafting team The drafting team explained that they had heard some of the same concerns, but there are quite a few good reasons why this standard is a good starting point to meet the FERC directives in Order No. 693 (which NERC was given a specific date next year to deliver).

There are several other standards where a similar situation occurs. As you note, many BAs don't own generators. Still, they are responsible for meeting DCS and CPS. The BAs control regulating and contingency reserves to meet the standards. Similarly a TOP is responsible for maintaining voltage even though they may own no capacitor banks or generators to control VArs.

To measure frequency response fairly accurately (one of the 693 directives), you have to monitor the BAs' frequency response (or generator governor response if the standard was generator centric) to about 30 events per year. There are about 140 BAs in North America. There are on the order of 4000 generators that would have to report under a generator-centric standard. How do you verify performance of $\mathbf{1 2 0 , 0 0 0}$ observations annually?

The standard is a backstop standard beyond which we could expect problems during light load conditions for a large contingency. It is not intended to be difficult to meet. As proposed, the standard has a performance obligation about half of what we see today in actual operation. The obligation for the East is on the order of $-1000 \mathrm{MW} / 0.1 \mathrm{~Hz}$. We have about $-2200 \mathrm{MW} / 0.1 \mathrm{~Hz}$ on average. The standard allows the formation of frequency response sharing groups (similar in concept to DCS' RSGs) and allows obtaining response from other BAs contractually. This means there should be no BAs out of compliance once the standard is in place.

One commenter questioned how the event selection process would work. The drafting team stated that the event selection process was outline in the Procedure for ERO Support of the Frequency Response and Frequency Bias Setting Standard.

Organization	\quad Question 9 Comment
ACES Power Marketing	Standards Collaborators
	(1) Please strike "that is a member of a multiple BA Interconnection" in R2 and R3. The language makes the requirements difficult to read. We understand this is trying to clarify that these requirements should not apply to BAs such as ERCOT since changing its Frequency Bias Setting does not need to be coordinated with other BAs among other issues, and we do not have an issue with this intent. However, there is an easier way to address this issue without creating a confusing requirement. The SDT should include seeking a variance for the ERCOT area in conjunction with developing the standard.
	(2) Please strike "in order to represent the Frequency Bias Setting for the combined Balancing Authority Area" in Requirement R4 as it is superfluous and incorrect. First, the two bullets provide the necessary information making the statement unnecessary. Second, the BA Areas are not combined into a single BA Area as implied with the statement "combined Balancing Authority Area". They are still in fact two distinct BA Areas.

Question 9 Comment

(3) The data retention period for R1, R2, R3, and R4 is not consistent with the NERC Rules of Procedure. Section 3.1.4.2 of Appendix 4C - Compliance Monitoring and Enforcement Program states that the compliance audit will cover the period from the day after the last compliance audit to the end date of the current compliance audit. The data retention section states that data shall be kept for the current calendar year plus the three previous calendar years. This could be up to four years which exceeds the BA audit period of three years. It is unnecessary for a BA to maintain evidence that was already verified in a prior audit. We recommend changing the evidence retention period to three years.
(4) Has the drafting team coordinated the addition of the Frequency Response Sharing Group (FRSG) with the Functional Model Working Group and the NERC staff responsible for organizational registration? If not, please do so as NERC will need to be willing to register entities as a FRSG if it is to be utilized. Furthermore, the Functional Model Working Group should document the purpose and intent of the FRSG
.(5) We disagree with the VSLs for R1. The VSLs are structured such that a BA's or FRSG's violation is dependent upon the rest of the interconnection to determine the severity level of the violation. If the BAs collectively fail to achieve the Interconnection Frequency Response obligation, a 2\% violation of the Frequency Response Measure jumps from a Lower VSL to a High VSL. This should never be the case. No violation by a registered entity should become potentially more or less severe based on the violation of another entity. We encourage the drafting team to work with NERC Legal department in reviewing this VSL further as FERC has already allowed ISO/RTO violations investigation to draw in third parties that potentially contributed to the ISO/RTO violation to ensure the appropriate party is fined. The principal is similar here in ensuring the appropriate BA is fined for its violation not the violations/failures of other BAs. The background document mentions on page 31 that the motivation for structuring the VSL in this manner was to prevent BAs in multiple BA interconnections from being sanctioned disproportionately. We appreciate the draftingteam considering this issue but believe there is a simpler solution. Four VSLs could simply be written based on the percentage the BA misses its own Frequency Response Obligation. Furthermore, the compliance enforcement process already considers if the violation impacted reliability when assessing a sanction

Question 9 Comment

.(6) The Frequency Response Obligation (FRO) term is used inconsistently with the definition in the VSLs for R1. The first part of each BA implies that the Interconnection has an FRO. However, the definition specifically states that FRO is the BA's "share of the required Frequency Response". It does not apply to the Interconnection. How can the Interconnection have a share of the required frequency response? A new term may need to be defined for the Interconnection.
(7) The implementation plan still references Requirement R5. There is no such requirement
.(8) Requirement R1 is not consistent with the recent direction NERC has taken to refocus on reliability and looking forward during compliance audits rather than backwards. For instance, NERC has proposed monitoring internal controls of registered entities because this will provide a reasonable assurance that the registered entity is prepared to comply in the future. Current compliance audits focus mostly on past performance and provide no indication of future reliability. How does Requirement R1 support this forward looking vision when it is a lagging indicator that looks at historical performance?
(9) Requirement R4 appears to be inconsistent with Requirement R1 and Attachment A. On page 3, Attachment A states the BA shall set its Frequency Bias Setting to 100% to 125% of it Frequency Response Measure or Interconnection Minimum. However, Requirement R4 states that the BA providing Overlap Regulation Service shall set its Frequency Bias Setting to the sum of its Frequency Bias Settings on FRS Form 1 and FRS Form 2 of its own BA and the BA to which its provides Overlap Regulation Service. For simplicity let's call the BA providing Overlap Regulation Service BA X and the BA receiving the service BA Y. Why would the BA X not set its Frequency Bias Setting to 100% to 125% of the sum of BA X's and BA Y's Frequency Response Measure? This would make Requirement R4 parallel with R2.
(10) We do not understand the difference between the two bullets in Requirement R4. They appear to say essentially the same thing and the background document provides no discussion to distinguish their differences. Please provide further explanation.

Response: Thank you for your comments.

(1) The proposed variance alternative could create unnecessary work for different organizations.
(2) The proposed elimination of words could help but, the elimination could bring more questions than benefits.

Question 9 Comment

(3) The drafting team believes that the language proposed in the draft standard is typical of other standards and is not in violation of anything.
(4) The drafting team is coordinating as you stated.
(5) VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plain as single-BA Interconnections. Consider a small BA that whose performance is 70\% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections. However, the drafting team has added language to the requirement to reference the Interconnection Frequency Response Obligation.
(6) The drafting team has clarified the VSL.
(7) The drafting team has corrected the Implementation Plan.
(8) The drafting team disagrees. The drafting team believes that this is a performance based standard similar to BAL-001 CPS and BAL-002 DCS requirements. With regards to "internal controls" the drafting team believes that this is an enforcement activity not a standards activity.
(9) The drafting team disagrees with your comment. Under the two options in R4 the BAs must still comply with the minimum setting requirements through the calculations performed under R2. In your example, if both BAs turned in FRS Form 1 showing a FBS based on the $100 \%-125 \%$ minimum these two numbers would be added together for compliance with R4.
(10) Under the first bullet, two BAs have submitted two FRS Form 1 document in accordance with R1. Under the second bullet, one entity has turned in a single FRS Form 1 with all information for the two BAs combined.

Keen Resources Asia Ltd.	A probabilistic/statistical basis needs to be developed for the FRM that assesses for usage of frequency response (causation of frequency error) and not just for provision of it. This would also overcome NERC's singular focus on reaction, and NERC's color-blindness to proaction, pointed out in my reply to question 7.

Response: Thank you for your comment. As part of the ongoing evaluation of Frequency Response this may be considered.
SPP Standards REview Group
Additional typos:Change the ')' to a '(' in the 4th line of M1 of the standard.No further comment

Response: Thank you for your comment. This has been corrected.

Arizona Public Service Company | As mentioned in Item 8 above, the VRF language is too complicated and hard to follow. Even |
| :--- |
| though the VRF poll is non binding, it needs to be clear and simple enough to be understood. |

Response: Thank you for your comments. The drafting team is assuming you mean the VSL. VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multiBA Interconnections on the same plain as single-BA Interconnections. Consider a small BA that whose performance is 70\% of it's FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a BA who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response. To do otherwise would treat multi-BA Interconnections tens of times more harshly than single BA Interconnections. However, the drafting team has added language to the requirement to reference the Interconnection Frequency Response Obligation.
\(\left.\begin{array}{|l|l|}\hline BC Hydro \& BC Hydro respectfully submits these additional comments/observations:

1.The proposed standard seems to indicate that it is applicable to the identified responsible

entities at all times. There might be circumstances where a BA that belongs to a multiple-BA

Interconnection became isolated and has to operate in restorative mode which might require

adjusting the frequency bias to a value less negative than the minimum FBS setting value in order

to follow the much reduced load/generation level in the area. We suggest adding some language in

either the Applicability section or in individual Requirements to recognize these circumstances.

2.Effective Dates: the proposed standard specifies a fixed period (12-month or 24-month) following\end{array}\right\}\)| Regulatory Approval which may fall in the middle of the year while the calculation and |
| :--- |
| implementation are performed on an annual basis. Does this represent any conflicts? |
| 3.The proposed standard does not clearly specify whether a BA must chose between using fixed |
| bias or variable bias for the entire year. Should BAs be allowed to switched back and forth between |
| the two methods? If yes, more details may be needed to account for the FRM and minimum FBS. |
| 4.The proposed standard does not clearly specify whether a BA can be part of a FRSG for only part |

Organization	Question 9 Comment
	of the year or must be the whole year 5.The definition of FRO, FRM, FBS, etc. should all include language to indicate the "negative" nature of the value. 6. Measure M2 should have "and uses a fixed bias" added for clarity purpose. 7.In the Additional Compliance Information section of the proposed standard the following info still exists: For Interconnections that are also Balancing Authorities, Tie Line Bias control and fFlat Ffrequency control are equivalent and either is acceptable. Since all reference to AGC Modes have been removed from the Requirements, this additional info should also be removed.
Response: Thank you f (1) The drafting team standard. With reg (2) The timelines are (3) The drafting team number for the ent (4) FRS Form 1 and 2 a (5) While the desired value would by def an inverse contribu The FRO will be an negative number w (6) Requirement R2 is bias. (7) The proposed elimi	mments. elieve that there is any difference between adherence to the current standard and the proposed nded operations, the drafting team believes that other standards prevail under those conditions. ments and may be adjusted to meet the annual calculation process proposed by the standard. e standard as drafted, allows for two types of bias, fixed and variable. A fixed bias is a single A number that changes within the period is a variable bias and is subject to Requirement R3. the transfer of Frequency Response on a per event basis. e FRM would be negative it is mathematically feasible for the actual value to be positive but that an that the entity failed the measurement for Requirement R1. The FBS definition states that it is interconnection frequency; therefore the definition does not need to reference a negative value. of the IFRO whose calculation methodology will provide a negative number. The allocation of a a negative number. For these reasons the SDT did not modify the definitions. cable to entity's using a fixed bias therefore Measure M2 only applies to those utilizing a fixed words could help but, the elimination could bring up more questions than benefits.
Edison Electric Institute	EEI supports the efforts and improvements made by the Standards Drafting Team (SDT) in the latest version of BAL-003 and believe those changes have been responsive to the directives in Order 693. However, we recognizes that the Industry has struggled with this standard and remains split as to how best to respond to those directives and in some cases there are those who question

Organization	Question 9 Comment
	whether a standard is even necessary. Given the many open issues and the concerns expressed by stakeholders we anticipate that this standard will once again fail to achieve sufficient support to gain approval. Should the Standard fail to achieve ballet approval, it is our hope that NERC Staff and the NERC Board of Trustees will allow the SDT a little more time to resolve any final issues that have been identified in this latest ballet. Although we recognize that May 31, 2013 does not leave the ERO with a lot of time to comply with this FERC imposed deadline, we still remain confident that given the progress made by the SDT a standard, which is acceptable to the Industry, is still possible. To the extent EEI can help, we are committed to working with member companies to communicate the issues and exchange insights from the SDT to help as we can to achieve a positive outcome.
Response: Thank you for your comment and support.	
Manitoba Hydro	Purpose: Is the reference to 'Interconnection Frequency' supposed to be 'Frequency Response'? This would be consistent with later wording in the standard.
	R1: (1) The acronym 'FRO' is used inconsistently within the document.
	(2) The phrase "to ensure that sufficient Frequency Response ..." should be separated from the requirement as it is (i) not descriptive of the required actions
	(ii) redundant with the stated purpose at the beginning of the standard. In general, such a drafting technique should be avoided as it may allow Responsible Entities to argue that a violation has not occurred where the specific action that is described has not been taken, but the purpose referenced in the requirement has been met.
M1: The reference to 'documented formula' is not clear. Does this imply that the FRSG or BA have a record of their calculation? In addition, there is a typo, a random ' '' after FRM. M2: Should include the words 'and uses a fixed Frequency Bias Setting...' after overlap Regulation	

| Organization | Question 9 Comment |
| :--- | :--- |\quad| Service to make the wording consistent within the Requirement. |
| :--- |
| M3: The wording of this measure switches tenses between 'is' and 'was'. For consistency, we |
| suggest that this be corrected. |
| NERC Glossary definition of an FRSG is a group of BAs that collectively maintain, allocate and supply |
| operating resources required to jointly meet the sum of the Frequency Response Obligations of its |
| members. |
| No mention is made of the agreement including the sharing or delegation of responsibility related |
| to FRM. Accordingly, the standard should only reference a BA being able to delegate responsibility |
| to an FRSG if the RSG Agreement allows for such delegation. |

Data Retention
(1) Both the BA and FRSG must maintain data. At a minimum the BA needs data to document its bias setting obligation. In addition, the BAs data may be needed to demonstrate FRSG performance.
(2) The drafting team believes that the language is clear; the entity that is found non-compliant would be the entity that would be required to keep the data.

JEA
\qquadR1 places the burden for compliance on the BA but the BA does not control generation assets and should not be solely responsible for maintaining frequency response. While the standard can still define the amount of Frequency Response for each BA, there needs to be an obligation on the GO/GOP to provide that service as directed by the BA and they should also be held accountable for compliance. Finally, we do not believe that a sufficient study has been conducted to determine the impact of this standard. We are concerned that a substantial number of compliance issues could result and that the resulting cost to maintain compliance could be excessive and we suggest it be put through the Cost Effective Analysis Process (CEAP). We suggest that the proposed values be evaluated on a sample size within each region to determine the number of compliance issues and for those issues that are found determine what the BA would have to do be compliant.
Response: Thank you for your comments. We've heard some of the same concerns, but there are quite a few good reasons why this
standard is a good starting point to meet the FERC directives in Order No. 693 (which NERC was given a specific date next year to
deliver).
There are several other standards where a similar situation occurs. As you note, many BAs don't own generators. Still, they are
responsible for meeting DCS and CPS. The BAs control regulating and contingency reserves to meet the standards. Similarly a TOP is
responsible for maintaining voltage even though they may own no capacitor banks or generators to control VArs.

Organization

Question 9 Comment

MISO has done analysis to find all large frequency events over the past year and how the generators in its footprint performed. It turns out that many of the generators aren't on line for any of the events and only a few of the generators were on line for all large events. So what do you do with generators that are not frequently run? Even if a generator ran 50% of the time, you wouldn't have enough events to do a quality measure in a year.

The standard is a backstop standard beyond which we could expect problems during light load conditions for a large contingency. It is not intended to be difficult to meet. As proposed, the standard has a performance obligation about half of what we see today in actual operation. The obligation for the East is on the order of $-1000 \mathrm{MW} / 0.1 \mathrm{~Hz}$. We have about $-2200 \mathrm{MW} / 0.1 \mathrm{~Hz}$ on average. The standard allows the formation of frequency response sharing groups (similar in concept to DCS' RSGs) and allows obtaining response from other BAs contractually. This means there should be no BAs out of compliance once the standard is in place.

Finally, to make it a generator standard precluded other solutions (load management, flywheels, market solution, etc.).
The SDT does not believe that there is a need to perform a "cost analysis". The numbers are lower than the numbers we are presently seeing.

Spinning reserves are intended to support the interconnection response to the loss of a resource. If BAL-003-1 is adopted through this Project, the LADWP recommends that the spinning reserve requirements of BAL-002-0.1b and BAL-STD-002-0 be removed, as the Spinning reserve requirement would require utilities to reserve resources in excess of the reserves required in BAL-003-1. LADWP recognizes that this recommendation may be handled through a separate NERC Project, but wanted to submit this comment to bring light to this potential conflict in Reliability Standards.

Response: Thank you for the observation.

Tacoma Power

The addition to the Frequency Bias Setting definition of "and discourage response withdrawal through secondary control systems" seems incomplete. Tacoma Power does not see anything in the standard that addresses (or measures) how a frequency bias setting will discourage response withdrawal through secondary systems. This should either be more fully addressed or removed.

NERC

Organization	Question 9 Comment
Response: The FRI Report and the Background Documents contain explanations on this issue.	
SERC OC Standards Review Group	The comments expressed herein represent a consensus of the views of the above namedmembers of the SERC OC Standards Review Group only and should not be construed as theposition of SERC Reliability Corporation, its board, or its officers.
Response: Thank you for the clarification	
Duke Energy	The concern raised in Duke Energy's comments in item 4 will not be a factor for a few years, but will be an issue as more and more BAs are in the position of their FRM being better than the Interconnection Minimum allocation. We believe that the language that we proposed for calculating the minimum FBS in a multiple-BA
Interconnection allows for the proper incentives for BAs to maintain FRM much better than	
required, and allows for comparable measurement of secondary control performance between	
similarly-sized BAs, while presenting no risk to reliability.	

| Organization | Question 9 Comment |
| :--- | :--- |$|$| by each FRSG or BA that is not a member of a FRSG to maintain Interconnection Frequency |
| :--- |
| Response equal to or more negative than the Interconnection Frequency Response Obligation." |
| This language is a purpose statement rather than a requirement applicable to a FRSG or a BA and |
| should be excluded from the requirement. So long as an FRSG or BA achieves the FRM calculated |
| in accordance with Attachment A, it has done everything necessary to comply with the standard. |
| There are discrepancies between the implementation plan and the proposed standard:- The |
| definitions of "Frequency Response Measure" and "Frequency Response Obligation" in the |
| Implementation Plan are different from those proposed in the draft standard.- The Implementation |
| Plan references "Reserve Sharing Group" rather than "Frequency Response Sharing Group".- The |
| Implementation Plan does not include a definition for the term "Frequency Response Sharing |
| Group".- |

Organization	Question 9 Comment
	stakeholder and modify market software applications. The ISO suggest increasing the implementation timeline by at least one more year. (2) If the implementation timeline cannot be changed, then the ISO suggests that compliance should be waived for the first year of operation under BAL-003-1. (3) Some BAs may elect to procure a portion of its FRO through bilateral agreements for certain hours (e.g. off-peak) with a neighboring BA. Since a contingency could be in a BA other than the two BAs under a bilateral agreement, the standard or background document needs to clarify the duration of frequency response so that transmission reservation is not a requirement for frequency response. The ISO believes that the BA experiencing the contingency should have adequate arrangements in place to deal with internal contingencies.
Response: Thank you for your comments. (1) The implementation date for Requirement R1 is 24 months after FERC approval, not 12 months. We believe that th provide ample time. (2) See (1) above. (3) The measurement period is 20 to 52 seconds after the beginning of the event. Additionally, there is no mention of transmission requirements for purchase or delivery of Frequency Response.	
Portland General Electric Company	The issue with proposed Reliability Standard BAL-003-1, requirement R1, is that the Annual Frequency Response Measure (FRM) is determined after the fact with an entity unable to identify or monitor compliance (on non-compliance) along the way. Also, the requirement seems to go the opposite direction of NERC's risk based initiatives where collecting historic compliance information become unsustainable.
Response: Thank you for your comments. (1) The identification and posting of events will occur on a quarterly basis as stated in the Procedure Document. This will allow BAs to monitor their compliance. (2) The SDT believes that this is a performance based standard similar to BAL-001 CPS and BAL-002 DCS requirements.	

Organization	Question 9 Comment
MRO NSRF	The MRO NSRF is concerned with the drafting team's exclusion of single Balancing Authority Interconnections from compliance with Requirement R2. To ensure a consistent approach in the application of BAL-003-1, recommend R2 be revised as follows: R2). Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation ...
Response: Based on the comment rather than the proposed language the drafting team is providing the following response. The drafting team discussed the applicability of bias requirements to single BA Interconnections extensively. The consensus of the FRSDT was that single BA Interconnections inherently have strong incentives to accurately represent their frequency response characteristic. Any adverse consequences of misrepresenting the frequency response characteristic will be borne solely by that BA and cannot affect other BAs in other Interconnections adversely.	
Southern Company	The organization selecting events must ensure that the change in frequency is outside the normal dead-band of generator governors. Many of the events selected in the past have not been outside the dead-band and therefore, the frequency response was much less than expected. Southern Company proposes .07 which is consistant with WECC.
Response: Thank you for your comments. The drafting team has created a Procedure Document that details the event selection criteria for each Interconnection. This should alleviate the concern of smaller events being selected.	
Independent Electricity System Operator	The proposed effective date for this standard conflicts with Ontario regulatory practice respecting the effective date of implementing approved standards. It is suggested that this conflict be removed by appending to each of Section A1.3 and A1.4, after "months after applicable regulatory approval", of the standard to the following effect:", or as otherwise made effective pursuant to the laws applicable to such ERO governmental authorities."The same change should be made to the two bullets in the proposed Implementation Plan.
Response: The drafting team appreciates your comment. However, this language is required to be used by the drafting team with	

Organization	Question 9 Comment
the only modification allowed to be the number of months prior to implementation.	
Northeast Power Coordinating Council	The VSL's refer to the FRM (Frequency Response Measure). If that is the intent of the Standard, then GO's and GOP's should be included in the applicability since they are the entities responding to the AGC signals. If the intent is the FRO (Frequency Response Obligation) only, then the VSL's should be updated.
Response: The FRM is not intended to measure response to AGC signals but is intended to measure response to frequency changes. Therefore, the drafting team does not believe that any modification is warranted.	
Consolidated Edison Co. of NY, Inc.	The VSL's refer to the FRM (Frequency Response Measure). If that is the intent of the Standard, then GO's and GOP's should be included in the applicability since they are the entities responding to the AGC signals. If the intent is the FRO (Frequency Response Obligation) only, then the VSL's should be updated.
Response: The FRM is not intended to measure response to AGC signals but is intended to measure response to frequency changes. Therefore, the SDT does not believe that any modification is warranted.	
Tucson Electric Power	This is an important task and the efforts of the drafting team are appreciated.
Response: Thank you for the recognition.	
The United Illuminating Company	Ul believes the VRF should be High. The VRF justification for Medium is that the prior year's bias setting would exist in the control system so the impact would not cause a Cascade. Ul thinks that is an adjustment factor that is applied after non-compliance is determined. Not having settings is likely to cause cascade so the VRF is High.
Response: The drafting team reviewed the definition for the VRF levels and believes that the appropriate levels were used for each requirement.	
Tri-State Generation and	We are concerned with the tariff implictations associated with this standard. Will this standard

Organization

Question 9 Comment

Transmission Assn., Inc.
create the need for an additional ancillary service under the FERC pro forma OATT?
Response: The drafting team believes that your comment is possible but does not think that it is in the scope of NERC to make changes to the FERC pro forma OATT.

NREL Transmission and Grid Integration Group

We commend the drafting team for a rigorous approach to this new and important standard. Being observers who have a strong interest in this standard as it applies to much of the research that we do, but not stakeholders of the ultimate standard, we submit our overall comments as recommendations here. We believe there are a few potential issues, that may at least need more thought before going forward. The first is the credit for LR.
(1) Overfrequency can be an issue: using ERCOT as an example, with $-282 \mathrm{MW} / 0.1 \mathrm{~Hz}$ response and 1400 MW of LR all responsive at 59.7 Hz , if just meeting FRO requirements, the 1400 MW LR can all be triggered with a loss of $(282 * 3=) 846 \mathrm{MW}$, causing ($1400-846=) 554 \mathrm{MW}$ of overgeneration. This can be exacerbated by further increases of LR without recognition of the triggering frequency, and the disconnect between BA and interconnection in the other interconnections.
(2) With crediting LR toward the Interconnection, it will not give incentive toward BAs to provide it. We believe the LR should contribute to the BA FRO rather than discount the IFRO.
(3) There is no requirement for frequency response capacity (ie MW) available to provide the FR. This is a nonissue in today's world with the amount of spinning reserve already available, but the issue could be apparent on future systems with increased reserve sharing, or reserve capacity from resources that operate in modes which do not provide frequency response. The European Interconnection requirement has two intentions: a 3,000 MW capacity requirement and a 1,500 MW/0.1Hz FRO requirement that is allocated out to its Transmission System Operators. This could solve the issue with LR and generators, where LR is in MW and generation governing is in $\mathrm{MW} / 0.1 \mathrm{~Hz}$.
(4) It is likely, and from our understanding is true in some areas like ERCOT, that the LR is selected based on market solutions, and may not be available all times of the year. This is another reason why the LR should contribute to the BA FRO rather than discount the IFRO.
(5) It may be beneficial to guide frequency settings for LR or even multiple settings to mimic a

| Organization | Question 9 Comment |
| :--- | :--- |$|$| droop curve for LR. Other potential issues not related to the LR. We think the SDT has done an |
| :--- |
| outstanding job on reviewing the data sets and determining statistically based values to better |
| account for different factors that may affect minimum frequency levels. We agree that there are |
| current issues in the primary governing response, but that there may be a disconnect in fixing |
| those issues with the static values. We also agree that there is not an easy solution. In specific: |
| (a) The static CB ratio might not incentivize BAs to improve response with increased inertia |
| or faster responding governing response. |
| (b) The static withdrawal BC'adj may not incentivize BAs to improve their governing |
| response and limit their withdrawal. Improved technology may allow for better |
| measurement to account for these issues dynamically rather than using static numbers. |
| Guidance on increasing inertia, increasing governing speed, and reducing withdrawal should |
| be considered by stakeholders. We thank NERC and the SDT for the opportunity to provide |
| comments on this important standard. |

Organization	Question 9 Comment
methodologies when operational experience has been gained.	
Xcel Energy	Xcel Energy supports this proposed revision to the standard as a first step and suggests that after operating for a couple of years under the revised standard, that NERC initiates a more complete study to support any modifications to the standard.
Response: Thank you for your comment. The drafting team agrees.	

END OF REPORT

Standard Development Roadmap

This section is maintained by the drafting team during the development of the standard and will be removed when the standard becomes effective.

Development Steps Completed:

1. The Standards Committee approved the SAR for posting on January 13, 2005.
2. The SAR was posted for industry comment from January 17, 2005 through February 17, 2005.
3. Reply comments and a revised SAR were posted for a second industry comment period from April 4, 2006 through May 3, 2006.
4. Reply comments and a revised SAR were posted for a third industry comment period from February 8, 2007 through March 9, 2007.
5. Standards Committee approved moving the project into the standards development phase on July 12, 2007.
6. The Standards Committee appointed the Standard Drafting Team on August 13, 2007.
7. The draft standard was posted for a 30 day formal comment period from February 4, 2011 through March 7, 2011.
8. The draft standard was posted for a 45 -day formal comment period and a 10 day initial ballot from October 25, 2011 through December 8, 2011.

Proposed Action Plan and Description of Current Draft:

This is the third posting of the proposed standard and its associated documents for a 30 day formal comment period and a successive 10 day ballot, from October 5, 2012 through November 5, 2012.

Future Development Plan:

Anticipated Actions	Anticipated Date
1. Respond to comments submitted within the comment period and with the successive ballot.	December, 2012
2. Conduct a recirculation ballot for ten days.	December, 2012
3. BOT adoption.	February, 2013

Definitions of Terms used in the Standard

Frequency Response Measure (FRM)

The median of all the Frequency Response observations reported annually by Balancing Authorities or Frequency Response Sharing Groups for frequency events specified by the ERO. This will be calculated as MW/0.1Hz.

Frequency Response Obligation (FRO)

The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection. This will be calculated as MW/0.1Hz.

Frequency Bias Setting

A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's inverse Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems.

Frequency Response Sharing Group (FRSG) ${ }^{\mathbf{1}}$

A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the sum of the Frequency Response Obligations of its members.

[^76]
A. Introduction

Title: Frequency Response and Frequency Bias Setting

Number: BAL-003-1
Purpose: To require sufficient Frequency Response from the Balancing Authority (BA) to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored to its scheduled value. To provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting.

Applicability:
1.1. Balancing Authority
1.1.1 The Balancing Authority is the responsible entity unless the Balancing Authority is a member of a Frequency Response Sharing Group, in which case, the Frequency Response Sharing Group becomes the responsible entity.
1.2. Frequency Response Sharing Group

Effective Date:

1.3. In those jurisdictions where regulatory approval is required, Requirements R2, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R2, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
1.4. In those jurisdictions where regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.

B. Requirements

R1. Each Frequency Response Sharing Group (FRSG) or Balancing Authority that is not a member of a FRSG shall achieve an annual Frequency Response Measure (FRM) (as calculated and reported in accordance with Attachment A) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each FRSG or BA that is not a member of a FRSG to maintain Interconnection Frequency Response equal to or more negative than the Interconnection Frequency Response Obligation. [Risk Factor: Medium][Time Horizon: Real-time Operations]

R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined in accordance with Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO and shall use this Frequency Bias Setting until directed to change by the ERO. [Risk Factor: Medium][Time Horizon: Operations Planning]

R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and is utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias Setting that is: [Risk Factor: Medium][Time Horizon: Operations Planning]
3.1 Less than zero at all times, and
3.2 Equal to or more negative than its Frequency Response Obligation when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$.
R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation, in order to represent the Frequency Bias Setting for the combined Balancing Authority Area, to be equivalent to either: [Risk Factor: Medium][Time Horizon: Operations Planning]

- \quad The sum of the Frequency Bias Settings as shown on FRS Form 1 and FRS Form 2 for the participating Balancing Authorities as validated by the ERO, or
- The Frequency Bias Setting shown on FRS Form 1 and FRS Form 2 for the entirety of the participating Balancing Authorities’ Areas.

C. Measures

M1. Each Frequency Response Sharing Group or Balancing Authority that is not a member of a Frequency Response Sharing Group shall have evidence such as dated data plus documented formula in either hardcopy or electronic format that it achieved an annual FRM (in accordance with the methods specified by the ERO in Attachment A with data from FRS Form 1 reported to the ERO as specified in Attachment A) that is equal to or more negative than its FRO to demonstrate compliance with Requirement R1.
M2. The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service shall have evidence such as a dated document in hard copy or electronic format showing the ERO validated Frequency Bias Setting was implemented into its ACE calculation within the implementation period specified or other evidence to demonstrate compliance with Requirement R2.

M3. The Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and is utilizing variable Frequency Bias shall have evidence such as a dated report in hard copy or electronic format showing the average clock-minute average Frequency Bias Setting was less than zero and during periods when the clock-minute average frequency was outside of
the range 59.964 Hz to 60.036 Hz was equal to or more negative than its Frequency Response Obligation to demonstrate compliance with Requirement R3.

M4. The Balancing Authority shall have evidence such as a dated operating log, database or list in hard copy or electronic format showing that when it performed Overlap Regulation Service, it modified its Frequency Bias Setting in its ACE calculation as specified in Requirement R4 to demonstrate compliance with Requirement R4.
D. Compliance

1. Compliance Monitoring Process

1.1. Compliance Enforcement Authority

The Regional Entity is the Compliance Enforcement Authority except where the responsible entity works for the Regional Entity. Where the responsible entity works for the Regional Entity, the Regional Entity will establish an agreement with the ERO or another entity approved by the ERO and FERC (i.e. another Regional Entity), to be responsible for compliance enforcement.
1.2. Compliance Monitoring and Assessment Processes:

Compliance Audits
Self-Certifications
Spot Checking
Compliance Investigation
Self-Reporting
Complaints

1.3. Data Retention

The following evidence retention periods identify the period of time an entity is required to retain specific evidence to demonstrate compliance. For instances where the evidence retention period specified below is shorter than the time since the last audit, the Compliance Enforcement Authority may ask an entity to provide other evidence to show that it was compliant for the full time period since the last audit.

The Balancing Authority shall retain data or evidence to show compliance with Requirements R1, R2, R3 and R4, Measures M1, M2, M3 and M4 for the current year plus the previous three calendar years unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation.

The Frequency Response Sharing Group shall retain data or evidence to show compliance with Requirement R1 and Measure M1 for the current year plus the previous three calendar years unless directed by its Compliance Enforcement

Authority to retain specific evidence for a longer period of time as part of an investigation.

If a Balancing Authority or Frequency Response Sharing Group is found noncompliant, it shall keep information related to the non-compliance until found compliant or for the time period specified above, whichever is longer.
The Compliance Enforcement Authority shall keep the last audit records and all subsequent requested and submitted records.

1.4. Additional Compliance Information

For Interconnections that are also Balancing Authorities, Tie Line Bias control and flat frequency control are equivalent and either is acceptable.

2.0 Violation Severity Levels

R\#	Lower VSL	Medium VSL	High VSL	Severe VSL
R1	The summation of the Balancing Authorities’ FRM within an Interconnection was equal to or more negative than the Interconnection's IFRO, and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 1% but by at most 30% or 15 MW/0.1 Hz , whichever one is the greater deviation from its FRO	The summation of the Balancing Authorities’ FRM within an Interconnection was equal to or more negative than the Interconnection's IFRO, and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 30% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO	The summation of the Balancing Authorities’ FRM within an Interconnection did not meet its IFRO, and the Balancing Authority's, or Frequency Response Sharing Group’s, FRM was less negative than its FRO by more than 1% but by at most 30\% or 15 MW/0.1 Hz , whichever one is the greater deviation from its FRO	The summation of the Balancing Authorities’ FRM within an Interconnection did not meet its IFRO, and the Balancing Authority's, or Frequency Response Sharing Group’s, FRM was less negative than its FRO by more than 30% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO
R2	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation

	Service and uses a fixed Frequency Bias Setting failed to implement the validated Frequency Bias Setting value into its ACE calculation within the implementation period specified but did so within 5 calendar days from the implementation period specified by the ERO.	Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 5 calendar days but less than or equal to 15 calendar days from the implementation period specified by the ERO.	Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 15 calendar days but less than or equal to 25 calendar days from the implementation period specified by the ERO.	Service and uses a fixed Frequency Bias Setting did not implement the validated Frequency Bias Setting value into its ACE calculation in more than 25 calendar days from the implementation period specified by the ERO.
R3	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 1% but by at most 10%.	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 10% but by at most 20%.	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 20% but by at most 30\%.	The Balancing Authority that is a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response obligation by more than 30%.
R4	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing

	Overlap Regulation Services with combined footprint setting-error less than or equal to 10% of the validated or calculated value.	Overlap Regulation Services with combined footprint setting-error more than 10\% but less than or equal to 20\% of the validated or calculated value.	Overlap Regulation Services with combined footprint setting-error more than 20\% but less than or equal to 30\% of the validated or calculated value.	Overlap Regulation Services with combined footprint setting-error more than 30\% of the validated or calculated value. OR
The Balancing Authority failed to change the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services.				

E. Regional Variance

None

F. Associated Documents

Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard FRS Form 1

FRS Form 2
Frequency Response Standard Background Document
G. Version History

Version	Date	Action	Change Tracking
0	April 1, 2005	Effective Date	New
1		Complete Revision under Project 2007-12	Revision

Standard Development Roadmap

This section is maintained by the drafting team during the development of the standard and will be removed when the standard becomes effective.

Development Steps Completed:

1. The Standards Committee approved the SAR for posting on January 13, 2005.
2. The SAR was posted for industry comment from January 17, 2005 through February 17, 2005.
3. Reply comments and a revised SAR were posted for a second industry comment period from April 4, 2006 through May 3, 2006.
4. Reply comments and a revised SAR were posted for a third industry comment period from February 8, 2007 through March 9, 2007.
5. Standards Committee approved moving the project into the standards development phase on July 12, 2007.
6. The Standards Committee appointed the Standard Drafting Team on August 13, 2007.
7. The draft standard was posted for a 30 day formal comment period from February 4, 2011 through March 7, 2011.
8. The draft standard was posted for a 45 -day formal comment period and a 10 day initial ballot from October 25, 2011 through December 8, 2011.

Proposed Action Plan and Description of Current Draft:

This is the third posting of the proposed standard and its associated documents for a 30 day formal comment period and a successive 10 day ballot, from October 5, 2012 through November 5, 2012.

Future Development Plan:

Anticipated Actions	Anticipated Date
1. Respond to comments submitted within the comment period and with the successive ballot.	December, 2012
2. Conduct a recirculation ballot for ten days.	December, 2012
3. BOT adoption.	February, 2013

Definitions of Terms used in the Standard

Frequency Response Measure (FRM)

The median of all the Frequency Response observations reported annually by Balancing Authorities or Frequency Response Sharing Groups for frequency events specified by the ERO. This will be calculated as MW/0.1Hz.

Frequency Response Obligation (FRO)

The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection. This will be calculated as MW/0.1Hz.

Frequency Bias Setting

A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's inverse Frequency Response contribution to the Interconnection, and discourage response withdrawal through secondary control systems.

Frequency Response Sharing Group (FRSG) ${ }^{\underline{1}}$

A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the sum of the Frequency Response Obligations of its members.

[^77]
A. Introduction

Title: Frequency Response and Frequency Bias Setting

Number: BAL-003-1
Purpose: To require sufficient Frequency Response from the Balancing Authority (BA) to maintain Interconnection Frequency within predefined bounds by arresting frequency deviations and supporting frequency until the frequency is restored to its scheduled value. To provide consistent methods for measuring Frequency Response and determining the Frequency Bias Setting.

Applicability:
1.1. Balancing Authority
1.1.1 The Balancing Authority is the responsible entity unless the Balancing Authority is a member of a Frequency Response Sharing Group, in which case, the Frequency Response Sharing Group becomes the responsible entity.
1.2. Frequency Response Sharing Group

Effective Date:

1.3. In those jurisdictions where regulatory approval is required, Requirements R2, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R2, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
1.4. In those jurisdictions where regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.

B. Requirements

R1. Each Frequency Response Sharing Group (FRSG) or Balancing Authority that is not a member of a FRSG shall achieve an annual Frequency Response Measure (FRM) (as calculated and reported in accordance with Attachment A) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each FRSG or BA that is not a member of a FRSG to maintain Interconnection Frequency Response equal to or more negative than the Interconnection Frequency Response Obligation. [Risk Factor: Medium][Time Horizon: Real-time Operations]

R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined in accordance withsubject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO and shall use this Frequency Bias Setting until directed to change by the ERO. [Risk Factor: Medium][Time Horizon: Operations Planning]

R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and is utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias Setting that is: [Risk Factor: Medium][Time Horizon: Operations Planning]
3.1 Less than zero at all times, and
3.2 Equal to or more negative than its Frequency Response Obligation when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$.
R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation, in order to represent the Frequency Bias Setting for the combined Balancing Authority Area, to be equivalent to either: [Risk Factor: Medium][Time Horizon: Operations Planning]

- The sum of the Frequency Bias Settings as shown on FRS Form 1 and FRS Form 2 for the participating Balancing Authorities as validated by the ERO, or
- The Frequency Bias Setting shown on FRS Form 1 and FRS Form 2 for the entirety of the participating Balancing Authorities’ Areas.

C. Measures

M1. Each Frequency Response Sharing Group or Balancing Authority that is not a member of a Frequency Response Sharing Group shall have evidence such as dated data plus documented formula in either hardcopy or electronic format that it achieved an annual FRM)(in accordance with the methods specified by the ERO in Attachment A with data from FRS Form 1 reported to the ERO as specified in Attachment A) that is equal to or more negative than its FRO to demonstrate compliance with Requirement R1.
M2. The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service shall have evidence such as a dated document in hard copy or electronic format showing the ERO validated Frequency Bias Setting was implemented into its ACE calculation within the implementation period specified or other evidence to demonstrate compliance with Requirement R2.

M3. The Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and is utilizing variable Frequency Bias shall have evidence such as a dated report in hard copy or electronic format showing the average clock-minute average Frequency Bias Setting was less than zero and during periods when the clock-minute average frequency wasis outside
of the range 59.964 Hz to 60.036 Hz was equal to or more negative than its Frequency Response Obligation to demonstrate compliance with Requirement R3.

M4. The Balancing Authority shall have evidence such as a dated operating log, database or list in hard copy or electronic format showing that when it performed Overlap Regulation Service, it modified its Frequency Bias Setting in its ACE calculation as specified in Requirement R4 to demonstrate compliance with Requirement R4.
D. Compliance

1. Compliance Monitoring Process

1.1. Compliance Enforcement Authority

The Regional Entity is the Compliance Enforcement Authority except where the responsible entity works for the Regional Entity. Where the responsible entity works for the Regional Entity, the Regional Entity will establish an agreement with the ERO or another entity approved by the ERO and FERC (i.e. another Regional Entity), to be responsible for compliance enforcement.
1.2. Compliance Monitoring and Assessment Processes:

Compliance Audits
Self-Certifications
Spot Checking
Compliance Investigation
Self-Reporting
Complaints

1.3. Data Retention

The following evidence retention periods identify the period of time an entity is required to retain specific evidence to demonstrate compliance. For instances where the evidence retention period specified below is shorter than the time since the last audit, the Compliance Enforcement Authority may ask an entity to provide other evidence to show that it was compliant for the full time period since the last audit.

The Balancing Authority shall retain data or evidence to show compliance with Requirements R1, R2, R3 and R4, Measures M1, M2, M3 and M4 for the current year plus the previous three calendar years unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation.

The Frequency Response Sharing Group shall retain data or evidence to show compliance with Requirement R1 and Measure M1 for the current year plus the previous three calendar years unless directed by its Compliance Enforcement

Authority to retain specific evidence for a longer period of time as part of an investigation.

If a Balancing Authority or Frequency Response Sharing Group is found noncompliant, it shall keep information related to the non-compliance until found compliant or for the time period specified above, whichever is longer.
The Compliance Enforcement Authority shall keep the last audit records and all subsequent requested and submitted records.

1.4. Additional Compliance Information

For Interconnections that are also Balancing Authorities, Tie Line Bias control and flat frequency control are equivalent and either is acceptable.

2.0 Violation Severity Levels

R\#	Lower VSL	Medium VSL	High VSL	Severe VSL
R1	The summation of the Balancing Authorities’ FRM within an Interconnection was equal to or more negative than the Interconnection's IFRO, and the Balancing Authority's, or Frequency Response Sharing Group’s, FRM was less negative than its FRO by more than 1% but by at most 30% or 15 MW/0.1 Hz , whichever one is the greater deviation from its FRO	The summation of the Balancing Authorities’ FRM within an Interconnection was equal to or more negative than the Interconnection's IFRO, and the Balancing Authority's, or Frequency Response Sharing Group’s, FRM was less negative than its FRO by more than 30% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO	The summation of the Balancing Authorities’ FRM within an Interconnection did not meet its IFRO, and the Balancing Authority's, or Frequency Response Sharing Group’s, FRM was less negative than its FRO by more than 1% but by at most 30\% or 15 MW/0.1 Hz , whichever one is the greater deviation from its FRO	The summation of the Balancing Authorities’ FRM within an Interconnection did not meet its IFRO, and the Balancing Authority's, or Frequency Response Sharing Group’s, FRM was less negative than its FRO by more than 30% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO
R2	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation

	Service and uses a fixed Frequency Bias Setting failed to implement the validated Frequency Bias Setting value into its ACE calculation within the implementation period specified but did so within 5 calendar days from the implementation period specified by the ERO.	Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 5 calendar days but less than or equal to 15 calendar days from the implementation period specified by the ERO.	Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 15 calendar days but less than or equal to 25 calendar days from the implementation period specified by the ERO.	Service and uses a fixed Frequency Bias Setting did not implement the validated Frequency Bias Setting value into its ACE calculation in more than 25 calendar days from the implementation period specified by the ERO.
R3	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 1% but by at most 10%.	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 10% but by at most 20%.	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 20% but by at most 30\%.	The Balancing Authority that is a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock-minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response obligation by more than 30%.
R4	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing	The Balancing Authority incorrectly changed the Frequency Bias Setting value used in its ACE calculation when providing

	Overlap Regulation Services with combined footprint setting-error less than or equal to 10% of the validated or calculated value.	Overlap Regulation Services with combined footprint setting-error more than 10\% but less than or equal to 20\% of the validated or calculated value.	Overlap Regulation Services with combined footprint setting-error more than 20\% but less than or equal to 30\% of the validated or calculated value.	Overlap Regulation Services with combined footprint setting-error more than 30\% of the validated or calculated value. OR
The Balancing Authority failed to change the Frequency Bias Setting value used in its ACE calculation when providing Overlap Regulation Services.				

E. Regional Variance

None

F. Associated Documents

Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard FRS Form 1

FRS Form 2
Frequency Response Standard Background Document
G. Version History

Version	Date	Action	Change Tracking
0	April 1, 2005	Effective Date	New
1		Complete Revision under Project 2007-12	Revision

Attachment A

BAL-003-1 Frequency Response \& Frequency Bias Setting Standard

Supporting Document

Interconnection Frequency Response Obligation (IFRO)

The ERO, in consultation with regional representatives, has established a target contingency protection criterion for each Interconnection called the Interconnection Frequency Response Obligation (IFRO). The default IFRO listed in Table 1 is based on the resource contingency criteria (RCC), which is the largest category C ($\mathrm{N}-2$) event identified except for the Eastern Interconnection, which uses the largest event in the last 10 years. A maximum delta frequency (MDF) is calculated by adjusting a starting frequency for each Interconnection by the following:

- Prevailing UFLS first step
- $\quad \mathrm{CC}_{\text {Adj }}$ which is the adjustment for the differences between 1-second and sub-second Point C observations for frequency events. A positive value indicates that the sub-second C data is lower than the 1 -second data
- CB_{R} which is the statistically determined ratio of the Point C to Value B
- $\mathrm{BC}^{\prime}{ }_{\text {Adj }}$ which is the statistically determined adjustment for the event nadir being below the Value B (Eastern Interconnection only) during primary frequency response withdrawal.

The IFRO for each Interconnection in Table 1 is then calculated by dividing the RCC MWs by 10 times the MDF. In the Eastern Interconnection there is an additional adjustment ($\mathrm{BC}^{\prime}{ }_{\mathrm{Adj}}$) for the event nadir being below the Value B due to primary frequency response withdrawal. This IFRO includes uncertainty adjustments at a 95% confidence level. Detailed descriptions of the calculations used in Table 1 below are defined in the Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard.
Interconnection
Starting Frequency ($\mathrm{F}_{\text {start }}$)
Prevailing UFLS First Step
Base Delta Frequency ($\mathrm{DF}_{\text {Base }}$)
$\mathrm{CC}_{\text {ADJ }}$
Delta Frequency ($\mathrm{DF}_{\mathrm{cc}}$)
CB_{R}

Eastern	Western	ERCOT	HQ
Units			
59.974	59.976	59.963	59.972
59.5^{*}	59.5	59.3	58.5
Hz			
0.474	0.476	0.663	1.472
0.007	0.004	0.012	Nz $/ \mathrm{A}$
Hz			
0.467	0.472	0.651	1.472
1.000	1.625	1.377	Hz

Attachment A
BAL-003-1 Frequency Response and Frequency Bias Setting Supporting Document

Delta Frequency ($\mathrm{DF}_{\mathrm{CBR}}$)	0.467	0.291	0.473	0.949	Hz
$B C '_{\text {ADJ }}$	0.018	N/A	N/A	N/A	Hz
Max. Delta Frequency (MDF)	0.449	0.291	0.473	0.949	
Resource Contingency Criteria (RCC)	4,500	2,740	2,750	1,700	MW
Credit for Load Resources (CLR)		300	1,400**		MW
IFRO	-1,002	-840	-286	-179	MW/0.1 Hz

Table 1: Interconnection Frequency Response Obligations
*The Eastern Interconnection UFLS set point listed is a compromise value set midway between the stable frequency minimum established in PRC-006-1 (59.3 Hz) and the local protection UFLS setting of 59.7 Hz used in Florida and Manitoba.
**In the Base Obligation measure for ERCOT, 1400 MW (Load Resources triggered by Under Frequency Relays at 59.70 Hz) was reduced from its Resource Contingency Criteria level of 2750 MW to get 239 MW/0.1 Hz. This was reduced to accurately account for designed response from Load Resources within 30 cycles.

An Interconnection may propose alternate IFRO protection criteria to the ERO by submitting a SAR with supporting technical documentation.

Balancing Authority Frequency Response Obligation (FRO) and Frequency Bias Setting

The ERO will manage the administrative procedure for annually assigning an FRO and implementation of the Frequency Bias Setting for each Balancing Authority. The annual timeline for all activities described in this section are shown below.

For a multiple Balancing Authority interconnection, the Interconnection Frequency Response Obligation shown in Table 1 is allocated based on the Balancing Authority annual load and annual generation. The FRO allocation will be based on the following method:

$$
\mathrm{FRO}_{\mathrm{BA}}=\mathrm{IFRO} \quad \times \frac{\text { Annual Gen }_{\mathrm{BA}}+\text { Annual Load }}{\mathrm{BA}} \text { }
$$

Where:

- Annual Gen BA is the total annual "Output of Generating Plants" within the Balancing Authority Area (BAA), on FERC Form 714, column c of Part II - Schedule 3.
- Annual Load $_{B A}$ is total annual Load within the BAA, on FERC Form 714, column e of Part II Schedule 3.
- Annual Gen $_{\text {Int }}$ is the sum of all Annual $G e n_{B A}$ values reported in that interconnection.
- Annual Load ${ }_{1 n t}$ is the sum of all Annual Load ${ }_{B A}$ values reported in that interconnection.

The data used for this calculation is from the most recently filed Form 714. As an example, a report to NERC in January 2013 would use the Form 714 data filed in 2012, which utilized data from 2011.

Balancing Authorities that are not FERC jurisdictional should use the Form 714 Instructions to assemble and submit equivalent data to the ERO for use in the FRO Allocation process.

Balancing Authorities that elect to form a FRSG will calculate a FRSG FRO by adding together the individual BA FRO's.

Balancing Authorities that elect to form a FRSG as a means to jointly meet the FRO will calculate their FRM performance one of two ways:

- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or
- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that contains the sum of each participant's individual event performance.

Balancing Authorities that merge or that transfer load or generation are encouraged to notify the ERO of the change in footprint and corresponding changes in allocation such that the net obligation to the Interconnection remains the same and so that CPS limits can be adjusted.

Each Balancing Authority reports its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO each year to allow the ERO to validate the revised Frequency Bias Settings on FRS Form 1. If the ERO posts the official list of events after the date specified in the timeline below, Balancing Authorities will be given 30 days from the date the ERO posts the official list of events to submit their FRS Form 1.

Once the ERO reviews the data submitted in FRS Form 1 and FRS Form 2 for all Balancing Authorities, the ERO will use FRS Form 1 data to post the following information for each Balancing Authority for the upcoming year:

- Frequency Bias Setting
- Frequency Response Obligation (FRO)

Once the data listed above is fully posted, the ERO will announce the three-day implementation period for changing the Frequency Bias Setting if it differs from that shown in the timeline below.

A BA using a fixed Frequency Bias Setting sets its Frequency Bias Setting to the greater of (in absolute value):

- Any number the BA chooses between 100% and 125% of its Frequency Response Measure as calculated on FRS Form 1
- Interconnection Minimum as determined by the ERO

For purposes of calculating the minimum Frequency Bias Setting, a Balancing Authority participating in a Frequency Response Sharing Group will need to calculate its stand-alone Frequency Response Measure using FRS Form 1 and FRS Form 2 to determine its minimum Frequency Bias Setting.

A Balancing Authority providing Overlap Regulation will report the historic peak demand and generation of its combined BAs' areas on FRS Form 1 as described in Requirement R4.

There are occasions when changes are needed to Bias Settings outside of the normal schedule. Examples are footprint changes between Balancing Authorities and major changes in load or generation or the formation of new Balancing Authorities. In such cases the changing Balancing Authorities will work with their Regions, NERC and the Resources Subcommittee to confirm appropriate changes to Bias Settings, FRO, CPS limits and Inadvertent Interchange balances.

If there is no net change to the Interconnection total Bias, the Balancing Authorities involved will agree on a date to implement their respective change in Bias Settings. The Balancing Authorities and ERO will also agree to the allocation of FRO such that the sum remains the same.

If there is a net change to the Interconnection total Bias, this will cause a change in CPS2 limits and FRO for other Balancing Authorities in the Interconnection. In this case, the ERO will notify the impacted Balancing Authorities of their respective changes and provide an implementation window for making the Bias Setting changes.

Frequency Response Measure (FRM)

The Balancing Authority will calculate its FRM from Single Event Frequency Response Data (SEFRD), defined as: "the data from an individual event from a Balancing Authority that is used to calculate its Frequency Response, expressed in MW/0.1Hz" as calculated on FRS Form 2 for each event shown on FRS Form 1. The events in FRS Form 1 are selected by the ERO using the Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard. The SEFRD for a typical Balancing Authority in an Interconnection with more than one Balancing Authority is basically the change in its Net Actual Interchange on its tie lines with its adjacent Balancing Authorities divided by the change in Interconnection frequency. (Some Balancing Authorities may choose to apply corrections to their Net Actual Interchange (NA_{1}) values to account for factors such as nonconforming loads. FRS Form 1 and 2 shows the types of adjustments that are allowed. Note that with the exception of the Contingent BA column, any adjustments made must be made for all events in an evaluation year. As an example, if an entity has non-conforming loads and makes an adjustment for one event, all events must show the nonconforming load, even if the non-conforming load does not impact the calculation. This ensures that the reports are not utilizing the adjustments only when they are favorable to the BA.) The ERO will use a standardized sampling interval of approximately 16 seconds before the event up to the time of the event for the pre-event $N A_{1}$, and frequency (A values) and approximately 20 to 52 seconds after the event for the post-event $N A_{1}(B$ values) in the computation of SEFRD values, dependent on the data scan rate of the Balancing Authority's Energy Management System (EMS).

Attachment A
 BAL-003-1 Frequency Response and Frequency Bias Setting
 Supporting Document

All events listed on FRS Form 1 need to be included in the annual submission of FRS Forms 1 and 2. The only time a Balancing Authority should exclude an event is if its tie-line data or its Frequency data is corrupt or its EMS was unavailable. FRS Form 2 has instructions on how to correct the BA's data if the given event is internal to the BA or if other authorized adjustments are used.

Assuming data entry is correct FRS Form 1 will automatically calculate the Balancing Authority's FRM for the past 12 months as the median of the SEFRD values. A Balancing Authority electing to report as an FRSG or a provider of Overlap Regulation Service will provide an FRS Form 1 for the aggregate of its participants.

To allow Balancing authorities to plan its operations, events with a "Point C" that cause the Interconnection Frequency to be lower than that shown in Table 1 above (for example, an event in the Eastern Interconnection that causes the Interconnection Frequency to go to 59.4 Hz) or higher than an equal change in frequency going above 60 Hz may be included in the list of events for that interconnection. However, the calculation of the BA response to such an event will be adjusted to show a frequency change only to the Target Minimum Frequency shown in Table 1 above (in the previous example this adjustment would cause Frequency to be shown as 59.5 Hz rather than 59.4 HZ) or a high frequency amount of an equal quantity. Should such an event happen, the ERO will provide additional guidance.

Timeline for Balancing Authority Frequency Response and Frequency Bias Setting Activities

Described below is the timeline for the exchange of information between the ERO and Balancing Authorities (BA) to:

- Facilitate the assignment of BA Frequency Response Obligations (FRO)
- Calculate BA Frequency Response Measures (FRM)
- Determine BA Frequency Bias Settings (FBS)

Target Date	Activity
April 30	The ERO reviews candidate frequency events and selects frequency events for the first quarter (December to February).
May 10	Form1 is posted with selected events from the first quarter for BA usage by the ERO.
May 15	The BAs receive a request to provide load and generation data as described in Attachment A to support FRO assignments and determining minimum FBS for BAs.
July 15	The BAs provide load and generation data as described in Attachment A to the ERO.
July 30	The ERO reviews candidate frequency events and selects frequency events for the second quarter (March to May).
August 10	Form1 is posted with selected events from the first and second quarters for BA usage by the ERO.
October 30	The ERO reviews candidate frequency events and selects frequency events for the third quarter (June to August)
November 10	Form1 is posted with selected events from the first, second, and third quarters for BA usage by the ERO.
November 20	If necessary, the ERO provides any updates to the necessary Frequency Response.
November 20	The ERO provides the fractional responsibility of each BA for the Interconnection's FRO and Minimum FBS to the BAs.
January 30	The ERO reviews candidate frequency events and selects frequency events for the fourth quarter (September to November).

BAL-003-1 Frequency Response and Frequency Bias Setting Supporting Document

$2^{\text {nd }}$ business day in February	Form1 is posted with all selected events for the year for BA usage by the ERO.
February 10	The ERO assigns FRO values to the BAs for the upcoming year.
March 7	BAs complete their frequency response sampling for all four quarters and their FBS calculation, returning the results to the ERO.
March 24	The ERO validates FBS values, computes the sum of all FBS values for each Interconnection, and determines L10 values for the CPS 2 criterion for each BA as applicable.
Any time during first 3 business days of April (unless specified otherwise by the ERO)	The BA implements any changes to their FBS and L10 value.

Attachment A

BAL-003-1 Frequency Response \& Frequency Bias Setting Standard

Supporting Document

Interconnection Frequency Response Obligation (IFRO)for the

Interconnection

The ERO, in consultation with regional representatives, has established a target contingency protection criterion for each Interconnection called the Interconnection Frequency Response Obligation (IFRO). The default IFROtarget listed in Table 1 is based on the resource contingency criteria (RCC), which is the largest category C (N-2) event identified except for the Eastern Interconnection, which uses the largest event in the last 10 years. A maximum delta frequency (MDF) is calculated by adjusting a starting frequency for each Interconnection by the following:

- Prevailing UFLS first step
- $\quad C_{\text {adj }}$ which is the adjustment for the differences between 1-second and sub-second Point C observations for frequency events. A positive value indicates that the sub-second C data is lower than the 1-second data
- $\quad \mathrm{CB}_{\underline{R}}$ which is the statistically determined ratio of the Point C to Value B
- $\mathrm{BC}^{\prime}{ }_{\text {Adj }}$ which is the statistically determined adjustment for the event nadir being below the Value B (Eastern Interconnection only) during primary frequency response withdrawal.

Additionally, this contingency protection criterion includes uncertainty adjustments at a 95% confidence level to prevent Point C from encroaching on the interconnection's highest Under Frequency Load Shed (UFLS) step for credible contingencies. -The IFROObligation for each Interconnection in Table 1 is then calculated by dividing the RCFarget Protection-Criteria MWs by 10 times the MDFdifference between the starting frequency and the Prevailing UFLS First Step. This number is then multiplied by the C to B Ratio to arrive at a $\mathrm{MW} / 0.1 \mathrm{~Hz}$ number. In the Eastern Interconnection there is an additional adjustment $\left.\|^{\left(B C_{A d j}^{\prime}\right.}{ }_{A}\right)$ for the event nadir being below the Value B due to primary frequency response withdrawal. This Interconnection Frequency Response Obligation (IFROt includes uncertainty adjustments at a 95 \% confidence level. Detailed descriptions of the calculations used in Table 1 below are defined in the Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard.

Interconnection

Eastern	Western	ERCOT	HQ

Attachment A
BAL-003-1 Frequency Response and Frequency Bias Setting Supporting Document

Starting Frequency ($\mathrm{F}_{\text {Start }}$)	59.974	59.976	59.963	59.972	Hz
Prevailing UFLS First Step	59.5*	59.5	59.3	58.5	Hz
Base Delta Frequency (DF Base $^{\text {) }}$	0.474	0.476	0.663	1.472	Hz
$\mathrm{CC}_{\text {ADJ }}$	0.007	0.004	0.012	N/A	Hz
Delta Frequency ($\mathrm{DF}_{\mathrm{cc}}$)	0.467	0.472	0.651	1.472	Hz
CB_{R}	1.000	1.625	1.377	1.550	Hz
Delta Frequency ($\mathrm{DF}_{\mathrm{CBR}}$)	0.467	0.291	0.473	0.949	Hz
$B C^{\prime}{ }_{\text {ADJ }}$	0.018	N/A	N/A	N/A	$\underline{\mathrm{Hz}}$
Max. Delta Frequency (MDF)	0.449	0.291	0.473	0.949	
Resource Contingency Criteria (RCC)	4,500	2,740	2,750	1,700	MW
Credit for Load Resources (CLR)		300	1,400**		MW
IFRO	-1,002	-840	-286	-179	MW/0.1 Hz

Table 1: Interconnection Frequency Response Obligations
*The Eastern Interconnection UFLS set point listed is a compromise value set midway between the stable frequency minimum established in PRC-006-1 (59.3 Hz) and the local protection UFLS setting of 59.7 Hz used in Florida and Manitoba.
**In the Base Obligation measure for ERCOT, 1400 MW (Load Resources triggered by Under Frequency Relays at 59.70 Hz) was reduced from its Resource Contingency Protection-Criteria level of 2750 MW to get $239 \mathrm{MW} / 0.1 \mathrm{~Hz}$. This was reduced to accurately account for designed response from Load Resources within 30 cycles.

An Interconnection may propose alternate IFRO protection criteria to the ERO by submitting a SAR with supporting technical documentation.

Balancing Authority Frequency Response Obligation (FRO) and

 Frequency Bias SettingThe ERO will manage the administrative procedure for annually assigning an FRO and implementation of the Frequency Bias Setting for each Balancing Authority. The annual timeline for all activities described in this section are shown below.

For a multiple Balancing Authority interconnection, the Interconnection Frequency Response Obligation shown in Table 1 is allocated based on the Balancing Authority annual load and annual generation. The FRO allocation will be based on the following method:

$$
\mathrm{FRO}_{\mathrm{BA}}=\mathrm{IFRO}_{\mathrm{Int}} \times \frac{\text { Annual Gen }}{\text { BA }}+\text { Annual } \operatorname{Load}_{\mathrm{BA}}
$$

Where:

- Annual Gen $_{B A}$ is the total annual "Output of Generating Plants" within the Balancing Authority Area (BAA), on FERC Form 714, column c of Part II - Schedule 3.
- Annual Load ${ }_{B A}$ is total annual Load within the BAA, on FERC Form 714, column e of Part II Schedule 3.
- Annual Gen $_{1 n t}$ is the sum of all Annual $G^{\text {en }}{ }_{B A}$ values reported in that interconnection.
- Annual Load ${ }_{1 n t}$ is the sum of all Annual Load ${ }_{B A}$ values reported in that interconnection.

The data used for this calculation is from the most recently filed Form 714. As an example, a report to NERC in January 2013 would use the Form 714 data filed in 2012, which utilized data from 2011.

Balancing Authorities that are not FERC jurisdictional should use the Form 714 Instructions to assemble and submit equivalent data to the ERO for use in the FRO Allocation process.

Balancing Authorities that elect to form a FRSG will calculate a FRSG FRO by adding together the individual BA FRO's.

Balancing Authorities that elect to form a FRSG as a means to jointly meet the FRO will calculate their FRM performance one of two ways:

- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or
- Jointly submit the individual BA' Form 1s, with a summary spreadsheet that that contains the sum of each participant's individual event performance.

Balancing Authorities that merge or that transfer load or generation are encouraged to notify the ERO of the change in footprint and corresponding changes in allocation such that the net obligation to the Interconnection remains the same and so that CPS limits can be adjusted.

Each Balancing Authority reports its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO each year to allow the ERO to validate the revised Frequency Bias Settings on FRS Form 1. If the ERO posts the official list of events after the date specified in the timeline below, Balancing Authorities will be given 30 days from the date the ERO posts the official list of events to submit their FRS Form 1.

Once the ERO reviews the data submitted in FRS Form 1 and FRS Form 2 for all Balancing Authorities, the ERO will use FRS Form 1 data to post the following information for each Balancing Authority for the upcoming year:

- Frequency Bias Setting
- Frequency Response Obligation (FRO)

Once the data listed above is fully posted, the ERO will announce the three-day implementation period for changing the Frequency Bias Setting if it differs from that shown in the timeline below.

A BA using a fixed Frequency Bias Setting sets its Frequency Bias Setting to the greater of (in absolute value):

- Any number the BA chooses between 100% and 125% of its Frequency Response Measure as calculated on FRS Form 1
- Interconnection Minimum as determined by the ERO

For purposes of calculating the minimum Frequency Bias Setting, a Balancing Authority participating in a Frequency Response Sharing Group will need to calculate its stand-alone Frequency Response Measure using FRS Form 1 and FRS Form 2 to determine its minimum Frequency Bias Setting.

A Balancing Authority providing Overlap Regulation will report the historic peak demand and generation of its combined BAs' areas on FRS Form 1 as described in Requirement R4.

There are occasions when changes are needed to Bias Settings outside of the normal schedule. Examples are footprint changes between Balancing Authorities and major changes in load or generation or the formation of new Balancing Authorities. In such cases the changing Balancing Authorities will work with their Regions, NERC and the Resources Subcommittee to confirm appropriate changes to Bias Settings, FRO, CPS limits and Inadvertent Interchange balances.

If there is no net change to the Interconnection total Bias, the Balancing Authorities involved will agree on a date to implement their respective change in Bias Settings. The Balancing Authorities and ERO will also agree to the allocation of FRO such that the sum remains the same.

If there is a net change to the Interconnection total Bias, this will cause a change in CPS2 limits and FRO for other Balancing Authorities in the Interconnection. In this case, the ERO will notify the impacted Balancing Authorities of their respective changes and provide an implementation window for making the Bias Setting changes.

Frequency Response Measure (FRM)

The Balancing Authority will calculate its FRM from Single Event Frequency Response Data (SEFRD), defined as: "the data from an individual event from a Balancing Authority that is used to calculate its Frequency Response, expressed in MW/0.1Hz" as calculated on FRS Form 2 for each event shown on FRS Form 1. The events in FRS Form 1 are selected by the ERO using the Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard. The SEFRD for a typical Balancing Authority in an Interconnection with more than one Balancing Authority is basically the change in its Net Actual Interchange on its tie lines with its adjacent Balancing Authorities divided by the change in Interconnection frequency. (Some Balancing Authorities may choose to apply corrections to their Net Actual Interchange ($N A_{1}$) values to account for factors such as nonconforming loads. FRS Form 1 and 2 shows the types of adjustments that are allowed. Note that with the exception of the Contingent BA column, any adjustments made must be made for all events in an evaluation year. As an example, if an entity has non-conforming loads and makes an adjustment for one event, all events must show the nonconforming load, even if the non-conforming load does not impact the calculation. This ensures that the

Attachment A

BAL-003-1 Frequency Response and Frequency Bias Setting

Supporting Document

reports are not utilizing the adjustments only when they are favorable to the BA.) The ERO will use a standardized sampling interval of approximately 16 seconds before the event up to the time of the event for the pre-event $N A_{1}$, and frequency (A values) and approximately 20 to 52 seconds after the event for the post-event $N A_{1}$ (B values) in the computation of SEFRD values, dependent on the data scan rate of the Balancing Authority's Energy Management System (EMS).

All events listed on FRS Form 1 need to be included in the annual submission of FRS Forms 1 and 2. The only time a Balancing Authority should exclude an event is if its tie-line data or its Frequency data is corrupt or its EMS was unavailable. FRS Form 2 has instructions on how to correct the BA's data if the given event is internal to the BA or if other authorized adjustments are used.

Assuming data entry is correct FRS Form 1 will automatically calculate the Balancing Authority's FRM for the past 12 months as the median of the SEFRD values. A Balancing Authority electing to report as an FRSG or a provider of Overlap Regulation Service will provide an FRS Form 1 for the aggregate of its participants.

To allow Balancing authorities to plan its operations, events with a "Point C" that cause the Interconnection Frequency to be lower than that shown in Table 1 above (for example, an event in the Eastern Interconnection that causes the Interconnection Frequency to go to 59.4 Hz) or higher than an equal change in frequency going above 60 Hz may be included in the list of events for that interconnection. However, the calculation of the BA response to such an event will be adjusted to show a frequency change only to the Target Minimum Frequency shown in Table 1 above (in the previous example this adjustment would cause Frequency to be shown as 59.5 Hz rather than 59.4 HZ) or a high frequency amount of an equal quantity. Should such an event happen, the ERO will provide additional guidance.

Timeline for Balancing Authority Frequency Response and Frequency Bias Setting Activities

Described below is the timeline for the exchange of information between the ERO and Balancing Authorities (BA) to:

- Facilitate the assignment of BA Frequency Response Obligations (FRO)
- Calculate BA Frequency Response Measures (FRM)
- Determine BA Frequency Bias Settings (FBS)

Target Date	Activity
April 30	The ERO reviews candidate frequency events and selects frequency events for the first quarter (December to February).
May 10	Form1 is posted with selected events from the first quarter for BA usage by the ERO.
May 15	The BAs receive a request to provide load and generation data as described in Attachment A to support FRO assignments and determining minimum FBS for BAs.
July 15	The BAs provide load and generation data as described in Attachment A to the ERO.
July 30	The ERO reviews candidate frequency events and selects frequency events for the second quarter (March to May).
August 10	Form1 is posted with selected events from the first and second quarters for BA usage by the ERO.
October 30	The ERO reviews candidate frequency events and selects frequency events for the third quarter (June to August)
November 10	Form1 is posted with selected events from the first, second, and third quarters for BA usage by the ERO.
November 20	If necessary, the ERO provides any updates to the necessary Frequency Response.
November 20	The ERO provides the fractional responsibility of each BA for the Interconnection's FRO and Minimum FBS to the BAs.
January 30	The ERO reviews candidate frequency events and selects frequency events for the fourth quarter (September to November).

BAL-003-1 Frequency Response and Frequency Bias Setting Supporting Document

$2^{\text {nd }}$ business day in February	Form1 is posted with all selected events for the year for BA usage by the ERO.
February 10	The ERO assigns FRO values to the BAs for the upcoming year.
March 7	BAs complete their frequency response sampling for all four quarters and their FBS calculation, returning the results to the ERO.
March 24	The ERO validates FBS values, computes the sum of all FBS values for each Interconnection, and determines L10 values for the CPS 2 criterion for each BA as applicable.
Any time during first 3 business days of April (unless specified otherwise by the ERO)	The BA implements any changes to their FBS and L10 value.

Implementation Plan for BAL-003-1 - Frequency Response \& Frequency Bias Setting Standard

Prerequisite Approvals

There are no other reliability standards or Standard Authorization Requests (SARs), in progress or approved, that must be implemented before this standard can be implemented.

Modified Standards

BAL-003-0.1b should be retired midnight of the day immediately prior to the Effective Date of BAL-0031 in the Jurisdiction in which the new standard is becoming effective.

New or Modified Definitions

The following definitions shall become effective when BAL-003-1 Requirements R2, R3, R4 and R5 become effective:

Frequency Response Measure (FRM): The median of all the Frequency Response observations reported annually by Balancing Authorities for frequency events specified by the ERO. This will be calculated as MW/0.1Hz.

Frequency Response Obligation (FRO): The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection. This will be calculated as $\mathrm{MW} / 0.1 \mathrm{~Hz}$.

Frequency Bias Setting: A number, either fixed or variable, , usually expressed in MW/0.1 Hz, included in a Balancing Authority’s Area Control Error equation to account for the Balancing Authority's inverse Frequency Response contribution to the Interconnection, and discourage withdrawal through secondary control systems.

Frequency Response Sharing Group (FRSG) ${ }^{\mathbf{1}}$: A group, whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members.

The existing definition of Frequency Bias Setting should be retired midnight of the day immediately prior to the Effective Date of BAL-003-1 in the Jurisdiction in which the new standard is becoming effective.

[^78]November, 2012

The proposed revised definition for "Frequency Bias Setting" is incorporated in the following NERC approved standards:

- BAL-001-0.1a Real Power Balancing Control Performance
- BAL-004-0 Time Error Correction
- BAL-004-1 Time Error Correction
- BAL-005-0.1b Automatic Generation Control

Compliance with Standards

Once this standard becomes effective, the responsible entities identified in the applicability section of the standard must comply with the requirements. These include:

- Balancing Authorities
- Frequency Response Sharing Groups

Proposed Effective Date

Compliance with BAL-003-1 shall be implemented over a two-year period, as follows:

- In those jurisdictions where regulatory approval is required, Requirements R2, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R2, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
- In those jurisdictions where regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.
- Requirement R1 cannot be implemented prior to the addition of Frequency Response Sharing Group to the Compliance Registry.

Implementation Plan for BAL-003-1 - Frequency Response \& Frequency Bias Setting Standard

Prerequisite Approvals

There are no other reliability standards or Standard Authorization Requests (SARs), in progress or approved, that must be implemented before this standard can be implemented.

Modified Standards

BAL-003-0.1b should be retired midnight of the day immediately prior to the Effective Date of BAL-0031 in the Jurisdiction in which the new standard is becoming effective.

New or Modified Definitions

The following definitions shall become effective when BAL-003-1 Requirements R2, R3, R4 and R5 become effective:

Frequency Response Measure (FRM): The median of all the Frequency Response observations reported annually by Balancing Authorities for frequency events specified by the ERO. This will be calculated as MW/0.1Hz.

Frequency Response Obligation (FRO): The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection. This will be calculated as MW/0.1Hz.

Frequency Bias Setting: A number, either fixed or variable, , usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's inverse Frequency Response contribution to the Interconnection, and discourage withdrawal through secondary control systems.

Frequency Response Sharing Group (FRSG) ${ }^{\text {1 }}$: A group, whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the Frequency Response Obligations of its members.

The existing definition of Frequency Bias Setting should be retired midnight of the day immediately prior to the Effective Date of BAL-003-1 in the Jurisdiction in which the new standard is becoming effective.

[^79]November, 2012

The proposed revised definition for "Frequency Bias Setting" is incorporated in the following NERC approved standards:

- BAL-001-0.1a Real Power Balancing Control Performance
- BAL-004-0 Time Error Correction
- BAL-004-1 Time Error Correction
- BAL-005-0.1b Automatic Generation Control

Compliance with Standards

Once this standard becomes effective, the responsible entities identified in the applicability section of the standard must comply with the requirements. These include:

- Balancing Authorities
- Frequency Response Sharing Groups

Proposed Effective Date

Compliance with BAL-003-1 shall be implemented over a two-year period, as follows:

- In those jurisdictions where regulatory approval is required, Requirements R2, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R2, R3 and R4 of this standard shall become effective the first calendar day of the first calendar quarter 12 months after Board of Trustees adoption.
- In those jurisdictions where regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after applicable regulatory approval. In those jurisdictions where no regulatory approval is required, Requirements R1 of this standard shall become effective the first calendar day of the first calendar quarter 24 months after Board of Trustees adoption.
- Requirement R1 cannot be implemented prior to the addition of Frequency Response Sharing Group to the Compliance Registry.

This procedure outlines the Electric Reliability Organization (ERO) process for supporting the Frequency Response Standard (FRS). A Procedure revision request may be submitted to the ERO for consideration. The revision request must provide a technical justification for the suggested modification. The ERO shall post the suggested modification for a 45-day formal comment period and discuss the revision request in a public meeting. The ERO will make a recommendation to the NERC BOT, which may adopt the revision request, reject it, or adopt it with modifications. Any approved revision to this Procedure shall be filed with FERC for informational purposes.

Event Selection Process

Event Selection Objectives

The goals of this procedure are to outline a transparent, repeatable process to annually identify a list of frequency events to be used by Balancing Authorities (BA) to calculate their Frequency Response to determine:

- Whether the BA met its Frequency Response Obligation, and
- An appropriate fixed Bias Setting.

Event Selection Criteria

1. The ERO will use the following criteria to select FRS frequency excursion events for analysis. The events that best fit the criteria will be used to support the FRS. The evaluation period for performing the annual Frequency Bias Setting and the Frequency Response Measure (FRM) calculation is December 1 of the prior year through November 30 of the current year.
2. The ERO will identify 20 to 35 frequency excursion events in each Interconnection for calculating the Frequency Bias Setting and the FRM. If the ERO cannot identify 20 frequency excursion events in a 12 month evaluation period satisfying the criteria below, then similar acceptable events from the subsequent year's evaluation period will be included with the data set by the ERO for determining FRS compliance. This is described later.
3. The ERO will use three criteria to determine if an acceptable frequency excursion event for the FRM has occurred:
a. The change in frequency as defined by the difference from the A Value to Point C and the arrested frequency Point C exceeds the excursion threshold values specified for the Interconnection in Table 1 below.
i. The A Value is computed as an average over the period from -16 seconds to 0 seconds before the frequency transient begins to decline.
ii. Point C is the arrested value of frequency observed within 12 seconds following the start of the excursion.

Interconnection	A Value to Pt C	Point C (Low)	Point C (High)
East	0.04 Hz	<59.96	>60.04
West	0.07 Hz	<59.95	>60.05
ERCOT	0.15 Hz	<59.90	>60.10
HQ	0.30 Hz	<59.85	>60.15

Table 1: Interconnection Frequency Excursion Threshold Values
b. The time from the start of the rapid change in frequency until the point at which Frequency has stabilized within a narrow range should be less than 18 seconds.
c. If any data point in the B Value average recovers to the A Value, the event will not be included.
4. Pre-disturbance frequency should be relatively steady and near 60.000 Hz for the A Value. The A Value is computed as an average over the period from -16 seconds to 0 seconds before the frequency transient begins to decline. For example, given the choice of the two events below, the one on the right is preferred as the pre-disturbance frequency is stable and also closer to 60 Hz.

5. Excursions that include 2 or more events that do not stabilize within 18 seconds will not be considered.
6. Frequency excursion events occurring during periods:
(i) when large interchange schedule ramping or load change is happening, or
(ii) within 5 minutes of the top of the hour,
will be excluded from consideration if other acceptable frequency excursion events from the same quarter are available.
7. The ERO will select the largest (A Value to Point C) 2 or 3 frequency excursion events occurring each month. If there are not 2 frequency excursion events satisfying the selection criteria in a month, then other frequency excursion events should be picked in the following sequence:
a. From the same event quarter of the year.
b. From an adjacent month.
c. From a similar load season in the year (shoulder vs. summer/winter)
d. The largest unused event.

As noted earlier, if a total of 20 events are not available in an evaluation year, then similar acceptable events from the next year's evaluation period will be included with the data set by the ERO for determining Frequency Response Obligation (FRO) compliance. The first year's small set of data will be reported and used for Bias Setting purposes, but compliance evaluation on the FRO will be done using a 24 month data set.

To assist Balancing Authority preparation for complying with this standard, the ERO will provide quarterly posting of candidate frequency excursion events for the current year FRM calculation. The ERO will post the final list of frequency excursion events used for standard compliance as specified in Attachment A of BAL-003-1. The following is a general description of the process that the ERO will use to ensure that BAs can evaluate events during the year in order to monitor their performance throughout the year.

Monthly

Candidate events will be initially screened by the "Frequency Event Detection Methodology" shown on the following link located on the NERC Resources Subcommittee area of the NERC website: http://www.nerc.com/docs/oc/rs/Frequency Event Detection Methodology and Criteria Oct 2011.p df. Each month's list will be posted by the end of the following month on the NERC website, http://www.nerc.com/filez/rs.html and listed under "Candidate Frequency Events".

Quarterly

The monthly event lists will be reviewed quarterly with the quarters defined as:

- December through February
- March through May
- June through August
- September through November

Based on criteria established in the "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard", events will be selected to populate the FRS Form 1 for each Interconnection. The Form 1's will be posted on the NERC website, in the Resources Subcommittee area under the title "Frequency Response Standard Resources". Updated Form 1's will be posted at the end of each quarter listed above after a review by the NERC RS' Frequency Working Group. While the events on this list are expected to be final, as outlined in the selection criteria, additional events may be considered, if the number of events throughout the year do not create a list of at least 20 events. It is intended that this quarterly posting of updates to the FRS Form 1 would allow BAs to evaluate the events throughout the year, lessening the burden when the yearly posting is made.

Annually

The final FRS Form 1 for each Interconnection, which would contain the events from all four quarters listed above, will be posted as specified in Attachment A. Each Balancing Authority reports its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO as specified in Attachment A using the final FRS Form 1. The ERO will check for errors and use the FRS Form 1 data to calculate CPS limits and FROs for the upcoming year.

Once the data listed above is fully reviewed, the ERO may adjust the implementation specified in Attachment A for changing the Frequency Bias Settings and CPS limits. This allows flexibility in when each BA implements its settings.

Process for Adjusting Interconnection Minimum Frequency Bias Setting

This procedure outlines the process the ERO is to use for modifying minimum Frequency Bias Settings to better meet reliability needs. The ERO will adjust the Frequency Bias Setting minimum in accordance with this procedure.

The ERO will post the minimum Frequency Bias Setting values on the ERO website along with other balancing standard limits.

Under BAL-003-1, the minimum Frequency Bias Settings will be moved toward the natural Frequency Response in each interconnection. In the first year, the minimum Frequency Bias Setting for each interconnection is shown in Table 2 below. Each Interconnection Minimum Frequency Bias Setting is based on the sum of the non-coincident peak loads for each BA from the currently available FERC 714 Report or equivalent. This non-coincident peak load sum is multiplied by the percentage shown in Table 2 to get the Interconnection Minimum Frequency Bias Setting. The Interconnection Minimum Frequency Bias Setting is allocated among the BAs on an interconnection using the same allocation method as is used for the allocation of the Frequency Response Obligation (FRO).

Interconnection	Interconnection Minimum Frequency Bias Setting (in MW/0.1Hz)
Eastern	0.9% of non-coincident peak load
Western	0.9% of non-coincident peak load
ERCOT*	N/A
HQ* *	N/A

Table 2. Frequency Bias Setting Minimums
*The minimum Frequency Bias Setting requirement does not apply to a Balancing Authority that is the only Balancing Authority in its Interconnection. These Balancing Authorities are solely responsible for providing reliable frequency control of their Interconnection. These Balancing Authorities are responsible for converting frequency error into a megawatt error to provide reliable frequency control, and the imposition of a minimum bias setting greater than the magnitude the Frequency Response Obligation may have the potential to cause control system hunting, and instability in the extreme.

The ERO, in coordination with the regions of each interconnection, will annually review Frequency Bias Setting data submitted by BAs. If an Interconnection's total minimum Frequency Bias Setting exceeds (in absolute value) the Interconnection's total natural Frequency Response by more (in absolute value) than 0.2 percentage points of peak load (expressed in $M W / 0.1 \mathrm{~Hz}$), the minimum Frequency Bias Setting for BAs within that Interconnection may be reduced (in absolute value) in the subsequent years FRS Form 1 based on the technical evaluation and consultation with the regions affected by 0.1 percentage point of peak load (expressed in $M W / 0.1 \mathrm{~Hz}$) to better match that Frequency Bias Setting and natural Frequency Response.

The ERO, in coordination with the regions of each Interconnection, will monitor the impact of the reduction of minimum frequency bias settings, if any, on frequency performance, control performance, and system reliability. If unexpected and undesirable impacts such as, but not limited to, sluggish postcontingency restoration of frequency to schedule or control performance problems occur, then the prior reduction in the minimum frequency bias settings may be reversed, and/or the prospective reduction based on the criterion stated above may not be implemented.

Interconnection Frequency Response Obligation Methodology

This procedure outlines the process the ERO is to use for determining the Interconnection Frequency Response Obligation (IFRO).

The following are the formulae that comprise the calculation of the IFROs.

$$
\begin{gathered}
D F_{B a s e}=F_{S t a r t}-U F L S \\
D F_{C C}=D F_{B a s e}-C C_{A d j} \\
D F_{C B R}=\frac{D F_{C C}}{C B_{R}} \\
M D F=D F_{C B R}-B C_{A d j}^{\prime} \\
A R C C=R C C-C L R \\
I F R O=\frac{A R C C}{10 * M D F}
\end{gathered}
$$

Where:

- $\quad \mathrm{DF}_{\text {Base }}$ is the base delta frequency.
- $F_{\text {start }}$ is the starting frequency determined by the statistical analysis.
- UFLS is the highest UFLS trip setpoint for the interconnection.
- $\mathrm{CC}_{\text {Adj }}$ is the adjustment for the differences between 1-second and sub-second Point C observations for frequency events. A positive value indicates that the sub-second C data is lower than the 1-second data.
- $\quad \mathrm{DF}_{\mathrm{cc}}$ is the delta frequency adjusted for the differences between 1-second and sub-second Point C observations for frequency events.
- $\quad \mathrm{CB}_{\mathrm{R}}$ is the statistically determined ratio of the Point C to Value B .
- $\quad \mathrm{DF}_{\mathrm{CBR}}$ is the delta frequency adjusted for the ratio of the Point C to Value B .
- $\mathrm{BC}^{\prime}{ }_{\text {ADJ }}$ is the statistically determined adjustment for the event nadir being below the Value B (Eastern Interconnection only) during primary frequency response withdrawal.
- MDF is the maximum allowable delta frequency.
- RCC is the resource contingency criteria.
- CLR is the credit for load resources.
- ARCC is the adjusted resource contingency criteria adjusted for the credit for load resources.
- IFRO is the interconnection frequency response obligation.

Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard

Event Selection Process

This procedure outlines the Electric Reliability Organization (ERO) process for supporting the Frequency Response Standard (FRS). A Procedure revision request may be submitted to the ERO for consideration. The revision request must provide a technical justification for the suggested modification. The ERO shall post the suggested modification for a 45-day formal comment period and discuss the revision request in a public meeting. The ERO will make a recommendation to the NERC BOT, which may adopt the revision request, reject it, or adopt it with modifications. Any approved revision to this Procedure shall be filed with FERC for informational purposes.

Event Selection Process

Event Selection Objectives

The goals of this procedure are to outline a transparent, repeatable process to annually identify a list of frequency events to be used by Balancing Authorities (BA) to calculate their Frequency Response to determine:

- Whether the BA met its Frequency Response Obligation, and
- An appropriate fixed Bias Setting.

Event Selection Criteria

1. The ERO will use the following criteria to select FRS frequency excursion events for analysis. The events that best fit the criteria will be used to support the FRS. The evaluation period for performing the annual Frequency Bias Setting and the Frequency Response Measure (FRM) calculation is December 1 of the prior year through November 30 of the current year.
2. The ERO will identify 20 to 35 frequency excursion events in each Interconnection for calculating the Frequency Bias Setting and the FRM. If the ERO cannot identify 20 frequency excursion events in a 12 month evaluation period satisfying the criteria below, then similar acceptable events from the subsequent year's evaluation period will be included with the data set by the ERO for determining FRS compliance. This is described later.
3. The ERO will use three criteria to determine if an acceptable frequency excursion event for the FRM has occurred:
a. The change in frequency as defined by the difference from the A Value to Point C and the arrested frequency Point C exceeds the excursion threshold values specified for the Interconnection in Table 1 below.
i. The A Value is computed as an average over the period from -16 seconds to 0 seconds before the frequency transient begins to decline.
ii. Point C is the arrested value of frequency observed within 12 seconds following the start of the excursion.

Interconnection	A Value to Pt C	Point C (Low)	Point C (High)
East	0.04 Hz	<59.96	>60.04
West	0.07 Hz	<59.95	>60.05
ERCOT	0.15 Hz	<59.90	>60.10
HQ	0.30 Hz	<59.85	>60.15

Table 1: Interconnection Frequency Excursion Threshold Values
b. The time from the start of the rapid change in frequency until the point at which Frequency has stabilized within a narrow range should be less than 18 seconds.
c. If any data point in the B Value average recovers to the A Value, the event will not be included.
4. Pre-disturbance frequency should be relatively steady and near 60.000 Hz for the A Value. The A Value is computed as an average over the period from -16 seconds to 0 seconds before the frequency transient begins to decline. For example, given the choice of the two events below, the one on the right is preferred as the pre-disturbance frequency is stable and also closer to 60 Hz.

5. Excursions that include 2 or more events that do not stabilize within 18 seconds will not be considered.
\qquad Frequency excursion events occurring during periods:
(i) when large interchange schedule ramping or load change is happening, or and frequency excursion events occurring_(ii) within 5 minutes of the top of the hour,

Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard

will be excluded from consideration if other acceptable frequency excursion events from the same quarter are available.
6.7. The ERO will select the largest (A Value to Point C) 2 or 3 frequency excursion events occurring each month. If there are not 2 frequency excursion events satisfying the selection criteria in a month, then other frequency excursion events should be picked in the following sequence:
a. From the same event quarter of the year.
b. From an adjacent month.
c. From a similar load season in the year (shoulder vs. summer/winter)
d. The largest unused event.

As noted earlier, if a total of 20 events are not available in an evaluation year, then similar acceptable events from the next year's evaluation period will be included with the data set by the ERO for determining Frequency Response Obligation (FRO) compliance. The first year's small set of data will be reported and used for Bias Setting purposes, but compliance evaluation on the FRO will be done using a 24 month data set.

To assist Balancing Authority preparation for complying with this standard, the ERO will provide quarterly posting of candidate frequency excursion events for the current year FRM calculation. The ERO will post the final list of frequency excursion events used for standard compliance as specified in Attachment A of BAL-003-1. The following is a general description of the process that the ERO will use to ensure that BAs can evaluate events during the year in order to monitor their performance throughout the year.

Monthly

Candidate events will be initially screened by the "Frequency Event Detection Methodology" shown on the following link located on the NERC Resources Subcommittee area of the NERC website: http://www.nerc.com/docs/oc/rs/Frequency Event Detection Methodology and Criteria Oct 2011.p df. Each month's list will be posted by the end of the following month on the NERC website, http://www.nerc.com/filez/rs.html and listed under "Candidate Frequency Events".

Quarterly

The monthly event lists will be reviewed quarterly with the quarters defined as:

- December through February
- March through May
- June through August
- September through November

Based on criteria established in the "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard", events will be selected to populate the FRS Form 1 for each Interconnection. The Form 1's will be posted on the NERC website, in the Resources Subcommittee area under the title "Frequency Response Standard Resources". Updated Form 1's will be posted at the end of each quarter listed above after a review by the NERC RS' Frequency Working Group. While the events on this list are expected to be final, as outlined in the selection criteria, additional events may be considered, if the number of events throughout the year do not create a list of at least 20 events. It is intended that this quarterly posting of updates to the FRS Form 1 would allow BAs to evaluate the events throughout the year, lessening the burden when the yearly posting is made.

Annually

The final FRS Form 1 for each Interconnection, which would contain the events from all four quarters listed above, will be posted as specified in Attachment A. Each Balancing Authority reports its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO as specified in Attachment A using the final FRS Form 1. The ERO will check for errors and use the FRS Form 1 data to calculate CPS limits and FROs for the upcoming year.

Once the data listed above is fully reviewed, the ERO may adjust the implementation specified in Attachment A for changing the Frequency Bias Settings and CPS limits. This allows flexibility in when each BA implements its settings.

Process for Adjusting Interconnection Minimum Frequency Bias Setting

This procedure outlines the process the ERO is to use for modifying minimum Frequency Bias Settings to better meet reliability needs. The ERO will adjust the Frequency Bias Setting minimum in accordance with this procedure.

The ERO will post the minimum Frequency Bias Setting values on the ERO website along with other balancing standard limits.

Under BAL-003-1, the minimum Frequency Bias Settings will be moved toward the natural Frequency Response in each interconnection. In the first year, the minimum Frequency Bias Setting for each interconnection is shown in Table 2 below. Each Interconnection Minimum Frequency Bias Setting is based on the sum of the non-coincident peak loads for each BA from the currently available FERC 714 Report or equivalent. This non-coincident peak load sum is multiplied by the percentage shown in Table 21 to get the Interconnection Minimum Frequency Bias Setting. The Interconnection Minimum Frequency Bias Setting is allocated among the BAs on an interconnection using the same allocation method as is used for the allocation of the Frequency Response Obligation (FRO).

Interconnection	Interconnection Minimum Frequency Bias Setting (in MW/0.1Hz)
Eastern	0.9% of non-coincident peak load
Western	0.9% of non-coincident peak load
ERCOT*	N/A
HQ* *	N/A

Table 2. Frequency Bias Setting Minimums
*The minimum Frequency Bias Setting requirement does not apply to a Balancing Authority that is the only Balancing Authority in its Interconnection. These Balancing Authorities are solely responsible for providing reliable frequency control of their Interconnection. These Balancing Authorities are responsible for converting frequency error into a megawatt error to provide reliable frequency control, and the imposition of a minimum bias setting greater than the magnitude the Frequency Response Obligation may have the potential to cause control system hunting, and instability in the extreme.

The ERO, in coordination with the regions of each interconnection, will annually review Frequency Bias Setting data submitted by BAs. If an Interconnection's total minimum Frequency Bias Setting exceeds (in absolute value) the Interconnection's total natural Frequency Response by more (in absolute value) than 0.2 percentage points of peak load (expressed in $M W / 0.1 \mathrm{~Hz}$), the minimum Frequency Bias Setting for BAs within that Interconnection may be reduced (in absolute value) in the subsequent years FRS Form 1 based on the technical evaluation and consultation with the regions affected by 0.1 percentage point of peak load (expressed in $M W / 0.1 \mathrm{~Hz}$) to better match that Frequency Bias Setting and natural Frequency Response.

The ERO, in coordination with the regions of each Interconnection, will monitor the impact of the reduction of minimum frequency bias settings, if any, on frequency performance, control performance, and system reliability. If unexpected and undesirable impacts such as, but not limited to, sluggish postcontingency restoration of frequency to schedule or control performance problems occur, then the prior reduction in the minimum frequency bias settings may be reversed, and/or the prospective reduction based on the criterion stated above may not be implemented.

Interconnection Frequency Response Obligation Methodology

This procedure outlines the process the ERO is to use for determining the Interconnection Frequency Response Obligation (IFRO).

The following are the formulae that comprise the calculation of the IFROs.

$$
\begin{gathered}
D F_{B a s e}=F_{S t a r t}-U F L S \\
D F_{C C}=D F_{B a s e}-C C_{A d j} \\
D F_{C B R}=\frac{D F_{C C}}{C B_{R}} \\
M D F=D F_{C B R}-B C_{A d j}^{\prime} \\
A R C C=R C C-C L R \\
I F R O=\frac{A R C C}{10 * M D F}
\end{gathered}
$$

Where:

- $\mathrm{DF}_{\text {Base }}$ is the base delta frequency.
- $F_{\text {start }}$ is the starting frequency determined by the statistical analysis.
- UFLS is the highest UFLS trip setpoint for the interconnection.
- $\mathrm{CC}_{\text {Adj }}$ is the adjustment for the differences between 1-second and sub-second Point C observations for frequency events. A positive value indicates that the sub-second C data is lower than the 1-second data.
- $\quad \mathrm{DF}_{\mathrm{cc}}$ is the delta frequency adjusted for the differences between 1-second and sub-second Point C observations for frequency events.
- $\quad \mathrm{CB}_{\mathrm{R}}$ is the statistically determined ratio of the Point C to Value B .
- $\quad D F_{C B R}$ is the delta frequency adjusted for the ratio of the Point C to Value B.
- $\mathrm{BC}^{\prime}{ }_{\text {ADJ }}$ is the statistically determined adjustment for the event nadir being below the Value B (Eastern Interconnection only) during primary frequency response withdrawal.
- MDF is the maximum allowable delta frequency.
- RCC is the resource contingency criteria.
- CLR is the credit for load resources.
- ARCC is the adjusted resource continegency criteria adjusted for the credit for load resources.
- IFRO is the interconnection frequency response obligation.

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Frequency Response Standard Background Document November, 2012

RELIABILITY | ACCOUNTABILITY

3353 Peachtree Road NE

Table of Contents

Table of Contents 1
Introduction 2
Background 2
Rationale by Requirement 22
Requirement 1 22
Background and Rationale 22
Requirement 2 32
Background and Rationale 32
Requirement 3 34
Requirement 4 34
Background and Rationale 35
Requirement 5 35
Background and Rationale Error! Bookmark not defined.
How this Standard Meets the FERC Order 693 Directives 36
FERC Directive 36

1. Levels of Non-Compliance 36
2. Determine the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other Requirements of the Reliability Standard are met 36
3. Define the necessary amount of Frequency Response needed for Reliable Operation for each Balancing Authority with methods of obtaining and measuring that the frequency response is achieved 36
Necessary Amount of Frequency Response 36
Methods of Obtaining Frequency Response 37
Measuring that the Frequency Response is Achieved 37
Going Beyond the Directive 38
Future Work Error! Bookmark not defined.
Good Practices and Tools 39
Background 39
Identifying and Estimating Frequency Responsive Reserves 39
Using FRS Form 1 Data 40
Tools 40
Field Trial Error! Bookmark not defined.

Introduction

This document provides background on the development, testing and implementation of BAL-003-1 - Frequency Response Standard (FRS). ${ }^{1}$ The intent is to explain the rationale and considerations for the Requirements of this standard and their associated compliance information. The document also provides good practices and tips for Balancing Authorities ("BAs") with regard to Frequency Response.

In Order No. 693, the Federal Energy Regulatory Commission ("FERC" or the "Commission") directed additional changes to BAL-003. ${ }^{2}$ This document explains how compliance with those directives are met by BAL-003-1.

The original Standards Authorization Request ("SAR"), finalized on June 30, 2007, assumed there was adequate Frequency Response in all the North American Interconnections. The goal of the SAR was to update the Standard to make the measurement process of frequency response more objective and to provide this objective data to Planners and Operators for improved modeling. The updated models will improve understanding of the trends in Frequency Response to determine if reliability limits are being approached. The Standard would also lay the process groundwork for a transition to a performance-based Standard if reliability limits are approached.

This document will be periodically updated by the FRS Drafting Team (FRSDT) until the Standard is approved. Once approved, this document will then be maintained and updated by the ERO and the NERC Resources Subcommittee to be used as a reference and training resource.

Background

This section discusses the different components of frequency control and the individual components of Primary Frequency Control also known as Frequency Response.

Frequency Control

Most system operators generally have a good understanding of frequency control and Bias Setting as outlined in the balancing standards and the references to them in the NERC Operating Manual. Frequency control can be divided into four overlapping windows of time as outlined below.

Primary Frequency Control (Frequency Response) - Actions provided by the Interconnection to arrest and stabilize frequency in response to frequency deviations. Primary Control comes from automatic generator governor response (also known as speed

[^80]regulation), load response (typically from motors), and other devices that provide an immediate response based on local (device-level) control systems.

Secondary Frequency Control - Actions provided by an individual BA or its Reserve Sharing Group to correct the resource - load unbalance that created the original frequency deviation, which will restore both Scheduled Frequency and Primary Frequency Response. Secondary Control comes from either manual or automated dispatch from a centralized control system.

Tertiary Frequency Control - Actions provided by Balancing Authorities on a balanced basis that are coordinated so there is a net zero effect on Area Control Error (ACE). Examples of Tertiary Control include dispatching generation to serve native load; economic dispatch; dispatching generation to affect Interchange; and re-dispatching generation. Tertiary Control actions are intended to replace Secondary Control Response by reconfiguring reserves.

Time Control includes small offsets to scheduled frequency to keep long term average frequency at 60 Hz .

Primary Frequency Control - Frequency Response

Primary Frequency Control, also known generally as Frequency Response, is the first stage of overall frequency control and is the response of resources and load to a locally sensed change in frequency in order to arrest that change in frequency. Frequency Response is automatic, not driven by any centralized system, and begins within seconds rather than minutes. Different resources, loads, and systems provide Frequency Response with different response times, based on current system conditions such as total resource/load and their respective mix.

The proposed NERC Glossary of Terms defines Frequency Response as:

- (Equipment) The immediate and automatic reaction or response of power from a system or power from elements of the system to a change in locally sensed system frequency.
- (System) The sum of the change in demand, and the change in generation, divided by the change in frequency, expressed in megawatts per 0.1 Hertz (MW/0.1 Hz).

As noted above, Frequency Response is the characteristic of load and generation within Balancing Authorities and Interconnections. It reacts or responds with changes in power to attempted changes in load-resource balance that result in changes to system frequency. Because the loss of a large generator is much more likely than a sudden loss of an equivalent amount of load, Frequency Response is typically discussed in the context of a loss of a large generator. Included within Frequency Response are many components of that response. Understanding Frequency Response and the FRS requires an understanding of each of these components and how they relate to each other.

Frequency Response Illustration

The following simple example is presented to illustrate the components of Frequency Response in graphical form. It includes a series of seven graphs that illustrate the various components of

Frequency Response and a brief discussion of each describing how these components react to attempted changes in the load-resource balance and resulting changes in system frequency. The illustration is based on an assumed Disturbance event of the sudden loss of 1000 MW of generation. Although a large event is used to illustrate the response components, even small frequently occurring events will result in similar reactions or responses. The magnitude of the event only affects the shape of the curves on the graph; it does not obviate the need for Frequency Response.

The first graph, Primary Frequency Control - Frequency Response - Graph 1, presents a sudden loss of generation of 1000 MW . The components are presented relative to time as shown on the horizontal Time axis in seconds. This simplified example assumes a Disturbance event of the sudden loss of generation resulting from a breaker trip that instantaneously removes 1000 MW of generation from the interconnection. This sudden loss is illustrated by the power deficit line shown in black using the MW scale on the left. Interconnection frequency is illustrated by the frequency line shown in red using the Hertz scale on the right. Since the Scheduled Frequency is normally 60 Hz , it is assumed that this is the frequency when the Disturbance event occurs.

Even though the generation has tripped and power injected by the generator has been removed from the interconnection, the loads continue to use the same amount of power. The
"Law of Conservation of Energy" ${ }^{3}$ requires that the 1000 MW must be supplied to the interconnection if energy balance is to be "conserved". This additional 1000 MW of power is produced by extracting kinetic energy that was stored in the rotating mass of all of the synchronized generators and motors on the interconnection - essentially using this equipment as a giant flywheel. The extracted energy supplies the "balancing inertia" ${ }^{4}$ power required to maintain the power and energy balance on the interconnection. This balancing inertia power is produced by the generators' spinning inertial mass' resistance to the slowdown in speed of the rotating equipment on the interconnection that both provides the stored kinetic energy and reduces the frequency of the interconnection. This is illustrated in the second graph, Primary Frequency Control - Frequency Response - Graph 2, by the orange dots representing the balancing inertia power that exactly overlay and offset the power deficit.

As the frequency decreases, synchronized motors slow, as does the work they are providing, resulting in a decrease in load called "load damping." This load damping is the reason that the power deficit initially declines. Synchronously operated motors will contribute to load damping. Variable speed drives that are decoupled from the interconnection frequency do not

[^81]contribute to load damping. In general, any load that does not change with interconnection frequency including resistive load will not contribute to load damping or Frequency Response.

It is important to note that the power deficit equals exactly the balancing inertia, indicating that there is no power or energy imbalance at any time during this process. What is normally considered as "balancing power or energy" is actually power or energy required to correct the frequency error from scheduled frequency. Any apparent power or energy imbalance is corrected instantaneously by the balancing inertia power and energy extracted from the interconnection. Thus the balancing function is really a frequency control function described as a balancing function because ACE is calculated in MWs instead of Hertz, frequency error.

During the initial seconds of the Disturbance event, the governors have yet to respond to the frequency decline. This is illustrated with the Blue line on the third graph, Primary Frequency Control - Frequency Response - Graph 3, showing Governor Response. This time delay results from the time that it takes the controller to adjust the equipment and the time it takes the mass to flow from the source of the energy (main steam control valve for steam turbines, the combustor for gas turbines, or the gate valve for hydro turbines) to the turbine-generator blades where the power is converted to electrical energy.

Note that the frequency continues to decline due to the ongoing extraction by balancing inertia power of energy from the rotating turbine-generators and synchronous motors on the interconnection. The reduction in load also continues as the effect of load damping continues
to reduce the load while frequency declines. During this time delay (before the governor response begins) the balancing inertia limits the rate of change of frequency.

After a short time delay, the governor response begins to increase rapidly in response to the initial rapid decline in frequency, as illustrated on the fourth graph, Primary Frequency Control - Frequency Response - Graph 4. Governor response exactly offsets the power deficit at the point in time that the frequency decline is arrested. At this point in time, the balancing inertia has provided its contribution to reliability and its power contribution is reduced to zero as it is replaced by the governor response. If the time delay associated with the delivery of governor response is reduced, the amount of balancing inertia required to limit the change in frequency by the Disturbance event can also be reduced. This supports the conclusion that balancing inertia is required to manage the time delays associated with the delivery of Frequency Response. Not only is the rapid delivery of Frequency Response important, but the shortening of the time delay associated with its delivery is also important. Therefore, two important components of Frequency Response are 1) how long the time delay is before the initial delivery of response begins; and 2) how much of the response is delivered before the frequency change is arrested.

This point, at which the frequency is first arrested, is defined as "Point C" and Frequency Response calculated at this point is called the "arrested frequency response." The arrested frequency is normally the minimum (maximum for load loss events) frequency that will be
experienced during a Disturbance event. From a reliability perspective, this minimum frequency is the frequency that is of concern. Adequate reliability requires that frequency at the time frequency is arrested remain above the under-frequency relay settings so as not to trip these relays and the firm load interrupted by them. Frequency Response delivered after frequency is arrested at this minimum level provides less reliability value than Frequency Response delivered before Point C, but greater value than Secondary Frequency Control power and energy which is delivered minutes later.

Once the frequency decline is arrested, the governors continue to respond because of the time delay associated with their Governor Response. This results in the frequency partially recovering from the minimum arrested value and results in an oscillating transient that follows the minimum frequency (arrested frequency) until power flows and frequency settle during the transient period that ends roughly 20 seconds after the Disturbance event. This postdisturbance transient period is included on the fifth illustrative graph, Primary Frequency Control - Frequency Response - Graph 5.

The total Disturbance event illustration is presented on the sixth graph, Primary Frequency Control - Frequency Response - Graph 6. Frequency and power contributions stabilize at the end of the transient period. Frequency Response calculated from data measured during this settled period is called the "Settled Frequency Response." The Settled Frequency Response is the best measure to use as an estimator for the "Frequency Bias Setting" discussed later.

The final Disturbance event illustration is presented on the seventh graph, Primary Frequency Control - Frequency Response - Graph 7. This graph shows the averaging periods used to estimate the pre-disturbance A-Value averaging period and the post-disturbance B-Value averaging period used to calculate the settled frequency response. A discussion of the measurement of Frequency Response immediately follows these graphs. That discussion includes consideration of the factors that affect the methods chosen to measure Frequency Response for implementation in a reliability standard.

Frequency Response Measurement (FRM)

The classic Frequency Response points A, C, and B, shown below in Fig. 1 Frequency Response Characteristic, are used for measurement as found in the Frequency Response Characteristic Survey Training Document within the NERC operating manual, found at http://www.nerc.com/files/opman 7-1-11.pdf. This traditional Frequency Response Measure has recently been more specifically termed "settled frequency response." This term has been used because it provides the best Frequency Response Measure to estimate the Frequency Bias Setting in Tie-line Bias Control based Automatic Generation Control Systems. However, the industry has recognized that there is considerable variability in measurement resulting from the selection of Point A and Point B in the traditional measure making the traditional measurement method unsuitable as the basis for an enforceable reliability standard in a real world setting of multiple Balancing Authority interconnections.

Frequency Response

Figure 1. Frequency Response Characteristic

By contrast, measuring an Interconnection's settled frequency response is straightforward and fairly accurate. All that's needed to make the calculation is to know the size of a given contingency (MW), divide this value by the change in frequency and multiply the results by 10 since frequency response is expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$.

Measuring a BA's frequency response is more challenging. Prior to BAL-003-1, NERC's Frequency Response Characteristic Survey Training Document provided guidance to calculate Frequency Response. In short, it told the reader to identify the BA's interchange values "immediately before" and "immediately after" the Disturbance event and use the difference to calculate the MWs the BA deployed for the event. There are two challenges with this approach:

- Two people looking at the same data would come up with different values when assessing which exact points were immediately before and after the event.
- In practice, the actual response provided by the BA can change significantly in the window of time between point B and when secondary and tertiary control can assist in recovery.

Therefore, the measurement of settled frequency response has been standardized in a number of ways to limit the variability in measurement resulting from the poorly specified selection of Point A and Point B. It should be noted that $\mathrm{t}-\mathrm{O}$ has been defined as the first scan value that
shows a deviation in frequency of some significance, usually approaching about 10 mHz . The goal is such that the first scan prior to $t-0$ was unaffected by the deviation and appropriate for one of the averaging points.

- The A-value averaging period of approximately the previous 16 seconds prior to t-0 was selected to allow for an averaging of at least 2 scans for entities utilizing 6 second scan rates. (All time average period references in this document are for 2 second scan rates unless noted otherwise.)
- The B-value averaging period of approximately ($\mathrm{t}+20 \mathrm{to} \mathrm{t}+52$ seconds) was selected to attempt to obtain the average of the data after primary frequency response was deployed and the transient completed(settled), but before significance influence of secondary control. Multiple periods were considered for averaging the B-value:
- 12 to 24 sec
- 18 to 30 sec
- 20 to 40 sec
- 18 to 52 sec
- 20 to 52 sec

It is necessary for all BAs from an interconnection to use the same averaging periods to provide consistent results. In addition, the SDT decided that until more experience is gained, it is also desirable for all interconnections to use the same averaging periods to allow comparison between interconnections.

The methods presented in this document only address the values required to calculate the frequency response associated with the frequency change between the initial frequency, AValue, and the settling frequency, B-Value. No reasonable or consistent calculations can be made relating to the arresting frequency, C-Value, using Energy Management System (EMS) scan rate data as long as 6 -seconds or tie-line flow values associated with the minimum value of the frequency response characteristic (C-value) as measured at the BA level.

Both the calculation of the frequency at Point A and the frequency at Point B began with the assumption that a 6 -second scan rate was the source of the data. Once the averaging periods for a 6 -second scan rate were selected, the averaging periods for the other scan rates were selected to provide as much consistency as possible between BAs with different scan rates.

The Frequency at Point A was initially defined as the average of the two scans immediately prior to the frequency event. All other averaging periods were selected to be as consistent as possible with this 12 second average scan from the 6 -second scan rate method. In addition, the "actual net interchange immediately before Disturbance" is defined as the average of the same scans as used for the Point A frequency average.

The Frequency at Point B was then selected to be an average as long as the average of 6 -second scan data as possible that would not begin until most of the hydro governor response had been delivered and would end before significant Automatic Generation Control (AGC) recovery response had been initiated as indicated by a consistent frequency restoration slope. The "actual net interchange immediately after Disturbance" is defined as the average of the same scans as used for the Point B frequency average.

B Averaging Period Selection:

Experience from the Electric Reliability Council of Texas ("ERCOT") and the field trail on other interconnections indicated that the 12 to 24 second and 18 to 30 second averaging periods were not suitable because they did not provide the consistency in results that the other averaging periods provided, and that the remaining measuring periods do not provide significantly different results from each other. The team believed that this was observed because the transients were not complete in all of the samples using these averaging periods.

The 18 to 52 second and 20 to 52 second averaging periods were compared to each other, with the 20 to 52 second period providing more consistent values, believed to result from the incomplete transient in some of the 18 to 52 second samples.

This left a choice between the 20 to 40 second and the 20 to 52 second averaging periods. The team recognized that there would be more AGC response in the 20 to 52 second period, but the team also recognized that the 20 to 52 second period would provide a better measure of squelched response from outer loop control action. The 20 to 52 second period was selected because it would indicate squelched response from outer-loop control and provide incentive to reduce response withdrawal. The final selections for the data averaging periods used in FRS Form 1 are shown in the table below.

Definitions of Frequency Values for Frequency Response Calculation			
Scan Rate	T 0 Scan	A Value (average)	B Value (average)
6-Seconds	Identify first significant change in frequency as the TO scan	Average of T-1 through T-2 scans	Average of $\mathrm{T}+4$ through $\mathrm{T}+8$ scans
5-Seconds		Average of T-1 through T-2 scans	Average of $T+5$ through $T+10$ scans
4-Seconds		Average of T-1 through T-3 scans	Average of $\mathrm{T}+6$ through $\mathrm{T}+12$ scans
3-Seconds		Average of T-1 through T-5 scans	Average of $\mathrm{T}+7$ through $\mathrm{T}+17$ scans
2-Seconds		Average of T-1 through T-8 scans	Average of T+10 through T+26 scans

Consistent measurement of Primary Frequency Response is achievable for a selected number of events and can produce representative frequency response values, provided an appropriate sample size is used in the analysis. Available research investigating the minimum sample size to provide consistent measurements of Frequency Response has shown that a minimum sample size of 20 events should be adequate.

Measurement of Primary Frequency Response on an individual resource or load basis requires analysis of energy amounts that are often small and difficult to measure using current methods. In addition, the number of an interconnection's resources and loads providing their response could be problematic when compiling results for multiple events.

Measurement of Primary Frequency Response on an interconnection (System) basis is straight forward provided that an accurate frequency metering source is available and the magnitude of the resource/load imbalance is known in MWs.

Measurement on a Balancing Authority basis can be a challenge, since the determination of change in MWs is determined by the change in the individual BA's metered tie lines.
Summation of tie lines is accomplished by summing the results of values obtained by the digital scanning of meters at intervals up to six seconds, resulting in a non-coincidental summing of values. Until the technology to GPS time stamp tie line values at the meter and the summing of those values for coincidental times is in use throughout the industry, it is necessary to use averaging of values described above to obtain consistent results.

Figure 2. Frequency Response Measurement

The standardized measure is shown graphically in Fig. 2 Frequency Response Measurement with the averaging periods shown by the solid green and red lines on the graph. Since FERC directed a performance obligation for BAL-003-1, it is important to be more objective in the measurement process. The standardized calculation is available on FRS Form 2 for EMS scan rates of $2,3,4,5$, and 6 seconds at http://www.nerc.com/filez/standards/Frequency Response.html.

Arrested Frequency Response

There is another measure of Frequency Response that is of interest when developing a Frequency Response estimate that not only will be used for estimating the Frequency Bias Setting, but will also be used to assure reliability by operating in a manner that will bound interconnection frequency and prevent the operation of Under-frequency Relays. This Frequency Response Measure has recently been named "arrested frequency response." This Frequency Response is significantly affected by the inertial Frequency Response, the governor Frequency Response and the time delays associated with the delivery of governor Frequency

Response. It is calculated by using the change in frequency between the initial frequency, A, and the maximum frequency change during the event, C , instead of using the change between A and B . Arrested Frequency Response is the correct response for determining the minimum Frequency Response related to under-frequency relay operation and the support of interconnection reliability. This is because it can be used to provide a direct estimate of the maximum frequency deviation an interconnection will experience for an initial frequency and a given size event in MW. Unfortunately, arrested frequency response cannot currently be measured using the existing EMS-based measurement infrastructure. This limitation exists because the scan rates currently used in industry EMSs are incapable of measuring the net actual interchange at the same instant that the maximum frequency deviation is reached. Fortunately, the ratio of arrested frequency response and settled frequency response tends to be stable on an interconnection. This allows the settled frequency response value to be used as a surrogate for the arrested frequency response and implement a reasonable measure upon which to base a standard. One consequence of using the settled frequency response as a surrogate for the arrested frequency response is the inclusion of a large reliability margin in Interconnection Frequency Response Obligation to allow for the difference between the settled frequency response as measured and the arrested frequency response that indicates reliability.

As measurement infrastructure improves one might expect the Frequency Response Obligation to transition to a measurement based directly on the arrested frequency response while the Frequency Bias Setting will continue to be based on the settled frequency response. However, at this time, the measurement devices and methods in use do not support the necessary level of accuracy to estimate arrested frequency response contribution for an individual Balancing Authority.

Frequency Response Definition and Examples

Limitations of the measurement infrastructure determine the measurement methods recommended in this standard. The measurement limitations provide opportunities to improve the Frequency Response as measured in the standard without contributing to an improvement in Frequency Response that contributes to reliability. These definitions and examples provide a basis for determining which contributions to Frequency Response contribute the most to improved reliability. They also provide the basis for determining on a case by case basis whether the individual contributors to the Frequency Response Measure are also contributing to reliability.

General Frequency Response Characteristics

In the simplest case Frequency Response includes any automatic response to changes in local frequency. If that response works to decrease that change in frequency, it is beneficial to reliability. If that response works to increase that change in frequency, it is detrimental to reliability. However, this definition does not address the relative value of one response as compared to other responses that may be provided in a specific case.

There are numerous characteristics associated with the Frequency Response that affect the reliability value and economic value of the response. These characteristics include:

1. Inertial - the response is inertial or approximates inertial response

Inertial response provides power without delay that is proportional to the frequency and the change in frequency. Therefore, power provided by electronic control as synthetic Inertial response must be proportional to the frequency and change in frequency and be provided without a time delay.
2. Immediate - no unnecessary intentional time delays or reduction in the rate of response delivery
a. time delay before the beginning of the response

Turbines that convert heat or kinetic energy have time delays related to the time delay from the time that the control valves are moved to initiate the change in power and the time that the power is delivered to the generator. These times are usually associated with the time it takes a change in mass flow to travel from the control valve to the first blades of the turbine in the turbine generator.
b. reduction in the rate of response delivery There are natural delays associated with the rate of response delivery that are related to the mass flow travel from the first turbine blades to the last turbine blades. In addition, some turbines have intentional delays designed into the control system to slow the rate of change in the delivery of the kinetic energy or fuel to the turbine to prevent the turbine or other equipment from being damaged, hydro turbines, or to prevent the turbine from tripping due to excessive rate of change, gas turbines.
3. Proportional - the amount of the total response is proportional to the frequency error
a. No Deadband - the response is proportional across the entire frequency range
b. Deadband - the response is only proportional outside of a defined deadband
4. Bi-directional - the response occurs to both increases and decreases in frequency
5. Continuous - there are no discontinuities in the delivery of the response (no step changes)
6. Sustained - the response is sustained until frequency is returned to schedule

Frequency Response Reliability Value

This section contains a more detailed discussion of the various characteristics of Frequency Response listed in the previous section. It also provides an indication of the relative value of these characteristics with respect to their contribution to reliability. Finally, it includes some examples of the described responses.

Inertial Response is provided from the stored energy in the rotating mass of the turbinegenerators and synchronous motors on the interconnection. It limits the rate of change of frequency until sufficient Frequency Response can be supplied to arrest the change in frequency. Its reliability value increases as the time delay associated with the delivery of other Frequency Response on the interconnection increases. If those time delays are minimal, then the value of inertial response is low. If all time delays associated with the Frequency Response could be eliminated, then inertial response would have little value.

The reliability value of Inertial Response is the greatest on small interconnections because the size of the Disturbance events is larger relative to the inertia of the interconnection. Electronic controls have been developed to provide synthetic inertial response from the stored energy in asynchronous generators to supplement the natural inertial response. Some Type III \& IV Wind Turbines have this capability. In addition, electronically controlled SCRs have been developed that can store energy in the electrical system and release this stored energy to supply synthetic inertial response when required.

Immediate Response is provided by load damping and because the time delays associated with its delivery are very short (related to the speed of electrical signal in the electrical system); load damping requires very little inertial response to limit arrested frequency effectively. Synthetic immediate response can also be supplied from loads because in many cases, there is no mass flow time delay associated with the load process providing the power and energy reduction. Therefore, loads can provide an immediate response with a higher reliability value than generators with time delays required by the physics of the turbine-generator.

Governor response has time delays associated with its delivery. Governor response provided with shorter time delays has a higher reliability value because those shorter time delays require less inertial response to arrest frequency. Governor response is provided by the turbinegenerators on the interconnection. Time delays associated with governor response vary depending on the type of turbine-generator providing the response.

The longest time delays are usually associated with high head hydro turbine-generators that require long times from the governor action until the additional mass flow through the turbine. These units may also have the longest delivery time associated with the full delivery of response because of the timing designed into the governor response. ${ }^{5}$

Intermediate time delays are usually associated with steam turbine-generators. The response begins when the steam control valves are adjusted and the steam mass flows from the valves to the first high pressure turbine blades. The delivery times associated with the full delivery of response may require the steam to flow through high, intermediate and low pressure turbines including reheat flows before full power is delivered. These times are shorter than those of the hydro turbine-generators in general, but not as fast as the times associated with gas turbines. ${ }^{6}$

Gas turbines typically have the shortest time delays, because control is provided by injecting more or less fuel into the turbine combustor and adjusting the air control dampers. These control changes can be initiated rapidly and the mass flow has the shortest path to the turbine

[^82]blades. There may be timing limitations related to the rate of change in output of the gas turbine-generator to maintain flame stability in some cases slowing the rate of change. ${ }^{7}$

Synthetic Governor Response can be supplied by certain loads and storage systems. The immediacy of the response is normally limited only by the electronic controls used to activate the desired response. Synthetic response, when it can be supplied immediately without significant time delay, has a higher reliability value because it requires less inertial response to achieve smaller arrested frequency deviations.

Proportional Response indicates that the response provided is proportional in magnitude to the frequency error. Response deadbands cause a non-proportional response and reduce the value of the response with respect to reliability. Contrary to general consensus, deadbands do not reduce the amount of Frequency Response that must be provided, they only transfer the responsibility for providing that Frequency Response from one source on the interconnection to another. For a given response, the response with the smaller deadband has the greater reliability value. Therefore, deadbands should be set to the smallest value that supports overall reliable operation including the reliable operation of the generator.

Electronic controls have also been developed to provide synthetic governor response. When these controls are applied to certain loads or stored energy systems, they can be programmed to provide synthetic governor response similar to the proportional response of a turbinegenerator governor. Governor response in generators is limited to a small percentage of the output of the generating unit, while synthetic governor response could be applied to much larger percentages of loads or storage devices providing such response.

Load damping provides a proportional response.
Continuous Response is response that has no discontinuous (step) changes in the frequency versus response curve. Step changes (Non-continuous Response) in the Governor Response curve can lead to frequency instabilities at frequencies near the changes. The ERCOT Interconnection observed this and has since prohibited the use of governor response characteristics incorporating step responses.

Step responses also occur with the implementation of load interruption using under-frequency or over-frequency relays.

Bi-directional Response is response that occurs in both directions, when the frequency is increasing and when the frequency is decreasing. A uni-directional response is a response that only occurs once when frequency is decreasing or when frequency is increasing.

Inertial response, governor response and load damping are all bi-directional responses. Certain loads are capable of providing proportional bi-directional response while others are only capable of providing non-proportional bi-directional response.

[^83]The ERCOT Load Resource program is a uni-directional response program. Loads are only tripped when frequency declines below a given set-point. When frequency is restored above that set-point, the loads must be manually reconnected. As a consequence, the Frequency Response only occurs once with declining frequency and does not oppose the increase in frequency after the initial decline. If there should be a frequency oscillation, the uni-directional response will not contribute to the opposition of a second frequency decline across the setpoint during an oscillation event. Once a uni-directional response has occurred, it is unavailable for a second decline before reset.

Step or proportional responses implemented bi-directionally can lead to frequency instability when there is less continuous frequency response than the magnitude of the change in continuous response between the trip and reset frequencies in step, or the proportional response rate of change is greater than the underlying continuous response. A step bidirectional response will have the load reconnected as frequency recovers from the event thus opposing the increase in frequency during recovery, and also resetting the load response for the next frequency decline automatically. Bi-directional response obviously has a greater reliability value than uni-directional response.

Sustained Response is provided at its full value until frequency is restored to its scheduled value. On today's interconnections, few frequency responses are fully sustained until frequency has been restored to its scheduled value. On steam based turbine-generators, the steam pressure may drop after a time as the result of the additional steam flow from governor action. However, in general this has not been a problem because most responses are incomplete at the time that frequency has been initially arrested and the additional response has generally been sufficient to make up for more than the these unpreventable reductions in response. However, the intentional withdrawal of response before frequency has been restored to schedule can cause a decline in frequency beyond that which would be otherwise expected. This intentional withdrawal of response is highly detrimental to reliability. Therefore, it can be concluded in general that sustained response has a higher reliability value than un-sustained response.

On an interconnection, the withdrawal of response due to the loss of steam pressure on the steam units may be offset by the slower response of hydro turbine-generators. In these cases, the reliability of the combined response provides a greater reliability value than the individual response of each type. The steam turbine-generators provide a fast response that may be reduced, while the hydro turbine-generators provide a slower response, contributing less to the arresting response, offsetting any reduction by the steam turbine-generators to assure a sustained response.

Sustained Response must also be considered for any resource that has a limited duration associated with its response. The amount of stored energy available from a resource may limit its ability to sustain response for a duration of time necessary to support reliability.

Frequency Response Cost Factors

In every system of exchange there are two sides; the supply side and the demand side. The supply side provides the services used by the demand side. In the case of Frequency Response,
the supply side includes all providers of Frequency Response and the demand side includes all participants that create the need for Frequency Response.

Frequency Response Costs - Supply Side

There are a number of factors that affect the cost of providing Frequency Response from resources. Since there is a cost associated with those factors, some method of appropriate compensation could be made available to those resources providing Frequency Response. Without compensation, providers of Frequency Response will be put in the position of incurring additional cost that can be avoided only by reducing or eliminating the response they provide. These costs are incurred independently of whether provided for in a formal Regional Transmission Organization/Independent System Operator (RTO/ISO) market or in a traditional BA subject to the FERC pro-forma tariffs.

It is the responsibility of the BA or the RTO/ISO to acquire the necessary amount of Frequency Response to support reliability in the most cost effective manner. This function is performed best when the suppliers are evaluated based on the value of the Frequency Response they provide and compensated appropriately for that Frequency Response. Suppliers provide Frequency Response when they are assured that they will receive fair compensation. Before considering how to perform this evaluation and compensation, the costs associated with providing Frequency Response should be understood and evaluated with respect to the level of reliability they offer.

Some cost factors that have been identified for providing Frequency Response include:

1. Capacity Opportunity Cost - the costs, including opportunity costs, associated with reserving capacity to provide Frequency Response. These costs are usually associated with the alternative use of the same capacity to provide energy or other ancillary services. There may also be capacity opportunity costs associated with the loss in average capacity by a load providing Frequency Response.
2. Fuel Cost - The cost of fuel used to provide the Frequency Response. The costs for fuel to provide Frequency Response can result in energy costs significantly different from the system marginal energy cost, both higher and lower. This is the case when Frequency Response is provided by resources that are not at the system marginal cost.
3. Energy Efficiency Penalty Costs - the costs associated with the loss in efficiency when the resource is operated in a mode that supports the delivery of Frequency Response. This cost is usually in the form of additional fuel use to provide the same amount of energy. An example is the difference between operating a steam turbine in valve control mode with an active governor and sliding pressure mode with valves wide open and no active governor control except for over-speed. This cost is incurred for all of the energy provided by the resource, not just the energy provided for Frequency Response. There may be additional energy costs associated with a load providing Frequency Response from loss in efficiency of their process when load is reduced.
4. Capacity Efficiency Penalty Costs - the costs associated with any reduction in capacity resulting from the loss of capacity associated with the loss in energy efficiency. When efficiency is lost, capacity may be lost at the same time because of limitations in the amount of input energy that can be provided to the resource.
5. Maintenance Costs - the operation of the resource in a manner necessary to provide Frequency Response may result in increases in the maintenance costs associated with the resource.
6. Emissions Costs - the additional costs incurred to manage any additional emissions that result when the resource is providing Frequency Response or stands ready to provide Frequency Response.

A good contract for the acquisition of Frequency Response from a resource will provide appropriate compensation to the resource for all of the costs the resource incurs to provide Frequency Response. It will also provide a method to evaluate the least cost mix of resources necessary to provide the minimum required Frequency Response for maintaining reliability. Finally, it will provide the least complex method of evaluation considering the complexity and efficiency of the acquisition process.

Frequency Response Costs - Demand Side

Not only are there costs associated with acquiring Frequency Response from the supplying resources, there are costs associated with the amount of Frequency Response that must be acquired and influenced by those participants that create the need for Frequency Response. If the costs of acquiring Frequency Response from the supply resources can be assigned to those parties that create the need for Frequency Response, there is the promise that the amount of Frequency Response required to maintain reliability can be minimized. The considerations are the same as those that are driving the development of "real time pricing" and "dynamic pricing". If the costs are passed on to those contributing to the need for Frequency Response, incentives are created to reduce the need for Frequency Response making interconnection operations less expensive and more reliable. The problem is to balance both cost and complexity against reliability on both the supply side and the demand side.

Rationale by Requirement

Requirement 1

R1. Each Frequency Response Sharing Group (FRSG) or Balancing Authority that is not a member of a FRSG shall achieve an annual Frequency Response Measure (FRM) (as calculated and reported in accordance with Attachment A) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each FRSG or Balancing Authority that is not a member of a FRSG to maintain Interconnection Frequency Response equal to or more negative than the Interconnection Frequency Response Obligation.

Background and Rationale

R1 is intended to meet the following primary objectives:

- Determine whether a Balancing Authority (BA) has sufficient Frequency Response for reliable operations.
- Provide the feeder information needed to calculate CPS limits and Frequency Bias Settings.

Primary Objective

With regard to the first objective, FRS Form 1 and the process in Attachment A provide the method for determining the Interconnections' necessary amount of Frequency Response and allocating it to the Balancing Authorities. The field trial for BAL-003-1 is testing an allocation methodology based on the amount of load and generation in the BA. This is to accommodate the wide spectrum of BAs from generation-only all the way to load-only.

Frequency Response Sharing Groups (FRSGs)

This standard proposes an entity called FRSG, which is defined as:
A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the sum of the Frequency Response Obligations of its members.

This standard allows Balancing Authorities to cooperatively form FRSGs as a means to jointly meet the FRS. There is no obligation to form or be a part of FRSGs. The members of the FRSG would determine how to allocate sanctions among its members. This standard does not mandate the formation of FRSGs, but allows them as a means to meet one of FERC's Order No. 693 directives.

FRSG performance may be calculated one of two ways:

- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or
- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual event performance.

Frequency Response Obligation and Calculation

The basic Frequency Response Obligation is based on annual load and generation data reported in FERC Form 714 (where applicable, see below for non-jurisdictional entities) for the previous full calendar year. The basic allocation formula used by NERC is:

$\mathrm{FRO}_{\mathrm{BA}}=\mathrm{FRO}_{\text {Int }} \times \frac{\text { Annual }^{\text {Gen }} \text { BA }}{}+$ Annual $\operatorname{Load}_{\text {BA }} ~\left(\right.$ Annual Gen $_{\text {Int }}+$ Annual Load ${ }_{\text {Int }}$

Where:

- Annual Gen ${ }_{B A}$ is the annual "Net Generation (MWh)", FERC Form 714, line 13, column c of Part II - Schedule 3.
- Annual Load $_{B A}$ is the annual "Net Energy for Load (MWh)", FERC Form 714, line 13, column e of Part II - Schedule 3.
- Annual Gen $_{\text {Int }}$ is the sum of all Annual Gen $_{B A}$ values reported in that interconnection.
- Annual Load ${ }_{\text {Int }}$ is the sum of all Annual Load $_{B A}$ values reported in that interconnection.

Balancing Authorities that are not FERC jurisdictional should use the Form 714 Instructions to assemble and submit equivalent data. Until the BAL-003-1 process outlined in Attachment 1 is implemented, Balancing Authorities can approximate their FRO by multiplying their Interconnection's FRO by their share of Interconnection Bias. The data used for this calculation should be for the most recently filed Form 714. As an example, a report to NERC in January 2013 would use the Form 714 data filed in 2012, which utilized data from 2011.

Balancing Authorities that merge or that transfer load or generation need to notify the ERO of the change in footprint and corresponding changes in allocation such that the net obligation for the Interconnection remains the same and so that CPS limits can be adjusted.

Attachment A proposes the following Interconnection event criteria as a basis to determine an Interconnection's Frequency Response Obligation:

- Largest category C loss-of-resource (N-2) event.
- Largest total generating plant with common voltage switchyard.
- Largest loss of generation in the interconnection in the last 10 years.

With regard to the second objective above (determining Frequency Bias Settings and CPS limits), Balancing Authorities have been asked to perform annual reviews of their Frequency Bias Settings by measuring their Frequency Response, dating back to Policy 1. This obligation was carried forward into BAL-003-01.b. While the associated training document provided useful information, it left many of the details to the judgment of the person doing the analysis. The FRS Form 1 and FRS Form 2 provide a consistent, objective process for calculating Frequency Response to develop an annual measure, the FRM.

The FRM will be computed from Single Event Frequency Response Data (SEFRD), defined as: "the data from an individual event from a Balancing Authority that is used to calculate its Frequency Response, expressed in MW/0.1Hz". The SEFRD for a typical Balancing Authority in an Interconnection with more than one Balancing Authority is basically the change of its net actual interchange on its tie lines with its adjacent Balancing Authorities divided by the change in interconnection frequency. (Some Balancing Authorities may choose to apply corrections to their net actual interchange values to account for factors such as nonconforming loads. FRS Form 1 shows the types of adjustments that are allowed.)

A standardized sampling interval of approximately 20 to 52 seconds will be used in the computation of SEFRD values. Microsoft Excel ${ }^{\circledR}$ spreadsheet interfaces for EMS scan rates of 2 through 6 seconds are provided to support the computation.

Single Event Frequency Response Data ${ }^{8}$

The use of a "single event measure" was considered early in the development of the FRS for compliance because a single event measure could be enforced for each event on the interconnection making compliance enforcement a simpler process. The variability of the measurement of Frequency Response for an individual BA for an individual Disturbance event was evaluated to determine its suitability for use as a compliance measure. The individual Disturbance events were normalized and plotted for each BA on the Eastern and Western Interconnections. This data was plotted with a dot representing each event. Events with a measured Frequency Response above the FRO were shown as blue dots and events with a measured Frequency Response below the FRO were shown as red dots. In order to show the full variability of the results the plots have been provided with two scales, a large scale to show all of the events and small scale to show the events closer to the FRO or a value of 1.0. This data is presented on four charts titled Frequency Response Events as Normalized by FRO.

Analysis of this data indicates a single event based compliance measure is unsuitable for compliance evaluation when the data has the large degree of variability shown in these charts. Based on the field trial data provided, only 3 out of 19 BAs on the Western Interconnection would be compliant for all events with a standard based on a single event measure. Only 1 out of 31 BAs on the Eastern Interconnection would be compliant for all events with a standard based on a single event measure. The general consensus of the industry is that there is not a reliability issue with insufficient Frequency Response on any of the North American Interconnections at this time. Therefore, it is unreasonable to even consider a standard that would indicate over 90% of the BAs in North American to be non-compliant with respect to maintaining sufficient Frequency Response to maintain adequate reliability.

In an attempt to balance the workload of Balancing Authorities with the need for accuracy in the FRM, the standard will require at least 20 samples selected during the course of the year to compute the FRM. Research conducted by the FRSDT indicated that a Balancing Authority's FRM will converge to a reasonably stable value with at least 20 samples.

[^84]

Sample Size

In order to support field trial evaluations of sample size, sampling intervals, and aggregation techniques, the FRSDT will be retrieving scan rate data from the Balancing Authorities for each SEFRD. Additional frequency events may also be requested for research purposes, though they will not be included in the FRM computation.

FERC Order No. 693 directed the ERO (at P 375) to define the number of Frequency Response surveys that were conducted each year and to define a necessary amount of Frequency Response. R1 addresses both of these directives:

- There is a single annual survey of at least 20 events each year.
- The FRM calculated on FRS Form 1 is compared by the ERO against the FRO determined 12 months earlier (when the last FRS Form 1 was submitted) to verify the Balancing Authority provided its share of Interconnection Frequency Response.

Median as the Standard's Measure of Balancing Authority Performance

The FRSDT evaluated different approaches for "averaging" individual event observations to compute a technically sound estimate of Frequency Response Measure. The MW contribution for a single BA in a multi-BA Interconnection is small compared to the minute to minute changes in load, interchange and generation. For example, a 3000 MW BA in the Eastern Interconnection may only be called on to contribute 10 MW for the loss of a 1000MW. The 10 MW of governor and load response may easily be masked as a coincident change in load.

In general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FRSDT has shown the Median to be less influenced by noise in the measurement process and the team has chosen the median as the initial metric for calculating the BAs' Frequency Response Measure.

The FRSDT performed extensive empirical studies and engaged in lively discussions in an attempt to determine the best aggregation technique for a sample set size of at least 20 events. Mean, median, and linear regression techniques were used on a trial basis with the data that was available during the early phases of the effort.

A key characteristic of the "aggregation challenge" is related to the use of actual net interchange data for measuring frequency response. The tie line flow measurements are varying continuously due to other operational phenomena occurring concurrently with the provision of frequency response. (See Appendix 1 for details.) All samples have "noise" in them, as most operational personnel who have computed the frequency response of their BA can attest. What has also become apparent to the FRSDT is that while the majority of the frequency response samples have similar levels of noise in them, a few of the samples may have much larger errors in them than the others that result in unrepresentative results. And with the sample set size of interest, it is common to have unrepresentative errors in these few samples to be very large and asymmetric. For example, one BA's subject matter expert observed recently that 4 out of 31 samples had a much larger error contribution than the other 27 samples, and that 3 out of 4 of the very high error samples grossly underestimated the frequency response. The median value demonstrated greater resiliency to this data quality problem than the mean with this data set. (The median has also demonstrated superiority to
linear regression in the presence of these described data quality problems in other analyses conducted by the FRSDT, but the linear regression showed better performance than the mean.)

The above can be demonstrated with a relatively simple example. Let's assume that a Balancing Authority's true frequency response has an average value of $-200 \mathrm{MW} / .1 \mathrm{~Hz}$. Let's also assume that this Balancing Authority installed "special" perfect metering on key loads and generators, so that we could know the true frequency response of each sample. And then we will compare them with that measured by typical tie line flow metering, with the kind of noise and error that occurs commonly and "not so commonly". Let's start with the following 4 samples having a common level of noise, with MW/ .1 Hz as the unit of measurement.

Perfect measurement	Noise	Samples from tie lines
-190	-30	-220
-210	-20	-230
-220	10	-210
-180	20	-160
-200	Mean	-205
-200	Median	-215

Now let's add a fifth sample, which is highly contaminated with noise and error that grossly underestimates frequency response.

Perfect measurement	Noise	Samples from tie lines
-190	-30	-220
-210	-20	-230
-220	10	-210
-180	20	-160
-200	250	+50
-200	Mean	-154
-200	Median	-210

It is clear from the above simplistic example that the mean drops by about 25% while the median is affected minimally by the single highly contaminated value.

Based on the analyses performed thus far, the FRSDT believes that the median's superior resiliency to this type of data quality problem makes it the best aggregation technique at this time. However, the FRSDT sees merit and promise in future research with sample filtering combined with a technique such as linear regression.

When compared with the mean, linear regression shows superior performance with respect to the elimination of noise because the measured data is weighted by the size of the frequency change associated with the event. Since the noise is independent from frequency change, the greater weighting on larger events provides a superior technique for reducing the effect of noise on the results.

However, linear regression does not provide a better method when dealing with a few samples with large magnitudes of noise and unrepresentative error. There are only two alternatives to improve over the use of median when dealing with these larger unrepresentative errors:

1. Increase the sample size, or
2. Actively eliminate outliers due to unrepresentative error.

Unfortunately, the first alternative, increasing the sample size is not available because significantly more sample events are not available within the measurement time period of one year. Linear regression techniques are being investigated that have an active outlier elimination algorithm that would eliminate data that lie outside ranges of the 96th percentile and 99th percentile, for example.

Still, the use of linear regression has value in the context of this standard. The NERC Resources Subcommittee will use linear regression to evaluate Interconnection frequency response, particularly to evaluate trends, seasonal impacts, time of day influences, etc. The Good Practices and Tools section of this document outlines how a BA can use linear regression to develop a predictive tool for its operators.

Additional discussion on this topic is contained in "Appendix 1 - Data Quality Concerns Related to the Use of Actual Net Interchange Value" of this document.

The NERC Frequency Response Initiative Report addressed the relative merits of using the median versus linear regression for aggregating single event frequency response samples into a frequency response measurement score for compliance evaluation. This report provided 11 evaluation criteria as a basis for recommending the use of linear regression instead of the median for the frequency response measurement aggregation technique. The FRSDT made its own assessment on the basis of these evaluation criteria on September 20, 2012, but concluded that the median would be the best aggregation technique to use initially when the relative importance of each criterion was considered. A brief summary of the FRSDT majority consensus on the basis of each evaluation criterion is provided below.

- Provides two dimensional measurement - The FRSDT agrees that the two dimensional concept is a useful way to perceive frequency response characteristics, and that it may be useful for potential future modeling activities. Better data quality would increase support for such future efforts, and the use of the median for initial compliance evaluations within BAL-003-1 should not hinder any such effort. The FRSDT perceived this as a mild advantage for linear regression.
- Represents nonlinear characteristics - With considerations similar to those applied to the previous criterion, the FRSDT perceived this as a mild advantage for linear regression.
- Provides a single best estimator - The FRSDT gave minimal importance to the characteristic of the median averaging the middle values when used with an even number of samples.
- Is part of a linear system - With considerations similar to those applied to the first two criteria, the FRSDT perceived this as a mild advantage for linear regression (particularly in the modeling area.)
- Represents bimodal distributions - The FRSDT gave minimal weight of this criterion, as a change in Balancing Authority footprint does not seem to be addressed adequately by any aggregation technique.
- Quality statistics available - The FRSDT perceived this as a mild advantage for linear regression in that the statistics would be coupled directly to the compliance evaluation. The FRSDT also included this criterion as part of the modeling advantages cited above.

The FRSDT supports collecting data and performing quality statistical analysis. If it is determined that the use of the median, as opposed to a mean or linear regression aggregation, is yielding undesirable consequences, the FRSDT recommends that other aggregation techniques be re-evaluated at that time.

- Reducing influence of noise - This is the dominant concern of the FRSDT, and it perceives the median to have a major advantage over linear regression in addressing noise in the change in actual net interchange calculation. The FRSDT bases this judgment on: prior FRSDT studies that have shown that the median produces more stable results; the data used in the NERC Frequency Response Initiative document exhibits large quantities of noise; prior efforts of FRSDT members in performing frequency response sampling for their own Balancing Authorities over many years; and similar observations of noise in the CERTS frequency Monitoring Application. The FRSDT has serious concerns that the influence of noise has a greater tendency to yield a "false positive" compliance violation with linear regression than with the median. Also, limited studies performed by the FRSDT indicates the possibility that the resultant frequency response measure would yield more measurement variation across years with linear regression versus the median while the actual Balancing Authority performance remains unchanged.
- Reducing the influence of outliers - This is related to the previous criterion. The FRSDT recognizes four main sources of noise: concurrent operating phenomena (described elsewhere in this document), transient tie line flows for nearby contingencies, data acquisition time skew in tie line data measurements, and time skew and data compression issues in archiving techniques and tools such as PI. Some outliers may be caused in part by true variation in the actual frequency response, and it is desirable to include those in the frequency response measure. The FRSDT supports efforts in the near future to distinguish between outliers caused by noise versus true frequency response, and progress in this area may make it feasible and desirable to replace the median with linear regression, or some other validated technique. The FRSDT does note that this is a substantial undertaking, and it would require substantial input from a sufficient number of experts to help distinguish noise from true frequency response.
- Easy to calculate - The FRSDT perceives this to be a minor to moderate advantage for the median. However, more complex (but reasonably so) techniques would receive more support if clear progress can be made in noise elimination.
- Familiar indicator - The FRSDT perceives this to be a minor to moderate advantage for the median. However, more complex (but reasonably so) techniques would receive more support if clear progress can be made as a result of noise elimination.
- Currently used as a measure in BAL-003 - The present standard refers to an average and does not provide specific guidance on the computation of that average, but the FRSDT puts minimal weight on this evaluation criterion.

In summary, the FRSDT perceives an approximate balance between the modeling advantage for linear regression and the simplicity advantage of the median. However, the clear determinant in endorsing the use of the median is the data quality issue related to concurrent operational phenomena, transient tie line flows, and data acquisition and archiving limitations.

FERC Order No. 693 also directed the Standard (at P 375) to identify methods for Balancing Authorities to obtain Frequency Response. Requirement R1 allows Balancing Authorities to participate in Frequency Response Sharing Groups (FRSGs) to provide or obtain Frequency Response. These may be the same FRSGs that cooperate for BAL-002-0 or may be FRSGs that form for the purposes of BAL-003-1.

If BAs participate as an FRSG for BAL-003-1, compliance is based on the sum of the participants' performance.

Two other ways that BAs could obtain Frequency Response are through Supplemental Service or Overlap Regulation Service:

- No special action is needed if a BA provides or receives supplemental regulation. If the regulation occurs via Pseudo Tie, the transfer occurs automatically as part of Net Actual Interchange (NIA) and in response to information transferred from recipient to provider.
- If a BA provides overlap regulation, its FRS Form 1 will include the Frequency Bias setting as well as peak load and generation of the combined Balancing Authority Areas. The FRM event data will be calculated on the sum of the provider's and recipient's performance.

In the Violation Severity Levels for Requirement R1, the impact of a BA not having enough frequency response depends on two factors:

- Does the Interconnection have sufficient response?
- How short is the BA in providing its FRO?

The VSL takes these factors into account. While the VSLs look different than some other standards, an explanation would be helpful.

VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plane as single-BA Interconnections.

Consider a small BA whose performance is 70% of its FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a $B A$ who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response, because this would treat multi-BA Interconnections more harshly than single BA Interconnections on a significant scale.

The "Lower" and "Medium" VSLs say that the Interconnection has sufficient Frequency Response but individual BAs are deficient by small or larger amounts respectively. The High and Severe VSLs say the Interconnection does not meet the FRO and assesses sanctions based on whether the BA is deficient by a small or larger amount respectively.

Requirement 2

R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined in accordance with Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO.

Background and Rationale

Attachment A of the Standard discusses the process the ERO will follow to validate the BA's FRS Form 1 data and publish the official Frequency Bias Settings. Historically, it has taken multiple rounds of validation and outreach to confirm each BA's data due to transcription errors, misunderstanding of instructions, and other issues. While BAs historically submit Bias Setting data by January 1, it often takes one or more months to complete the process.

The target is to have BAs submit their data by January 10. The BAs are given 30 days to assemble their data since the BAs are dependent on the ERO to provide them with FRS Form 1, and there may be process delays in distributing the forms since they rely on identification of frequency events through November 30 of the preceding year.

Frequency Bias Settings generally change little from year to year. Given the fact that BAs can encounter staffing or EMS change issues coincident with the date the ERO sets for new Frequency Bias Setting implementation, the standard provides a 24 hour window on each side of the target date.

To recap the annual process:

1. The ERO posts the official list of frequency events to be used for this Standard in early December. The FRS Form 1 for each Interconnection will be posted shortly thereafter.
2. The Balancing Authority submits its revised annual Frequency Bias Setting value to NERC by January 10.
3. The ERO and the Resources Subcommittee validate Frequency Bias Setting values, perform error checking, and calculate, validate, and update CPS2 L10 values. This data collection and validation process can take as long as two months.
4. Once the L10 and Frequency Bias Setting values are validated, The ERO posts the values for the upcoming year and also informs the Balancing Authorities of the date on which to implement revised Frequency Bias Setting values. Implementation typically would be on or about March $1^{\text {st }}$ of each year.

BAL-003-0.1b standard requires a minimum Frequency Bias Setting equal in absolute value to one percent of the Balancing Authority's estimated yearly peak demand (or maximum generation level if native load is not served). For most Balancing Authorities this calculated amount of Frequency Bias is significantly greater in absolute value than their actual Frequency Response characteristic (which represents an over-bias condition) resulting in over-control
since a larger magnitude response is realized. This is especially true in the Eastern Interconnection where this condition requires excessive secondary frequency control response which degrades overall system performance and increases operating cost as compared to requiring an appropriate balance of primary and secondary frequency control response.

Balancing Authorities were given a minimum Frequency Bias Setting obligation because there had never been a mandatory Frequency Response Obligation. This historic "one percent of peak per 0.1 Hz " obligation, dating back to NERC's predecessor, NAPSIC, was intended to ensure all BAs provide some support to Interconnection frequency.

The ideal system control state exists when the Frequency Bias Setting of the Balancing Authority exactly matches the actual Frequency Response characteristic of the Balancing Authority. If this is not achievable, over-bias is significantly better from a control perspective than under-bias with the caveat that Frequency Bias is set relatively close in magnitude to the Balancing Authority actual Frequency Response characteristic. Setting the Frequency Bias to better approximate the Balancing Authority natural Frequency Response characteristic will improve the quality and accuracy of ACE control, CPS \& DCS and general AGC System control response. This is the technical basis for recommending an adjustment to the long standing " 1% of peak/0.1Hz" Frequency Bias Setting. The Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard is intended to bring the Balancing Authorities' Frequency Bias Setting closer to their natural Frequency Response. Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard balances the following objectives:

- Bring the Frequency Bias Setting and Frequency Response closer together.
- Allow time to analyze impact on other Standards (CPS, BAAL and to a lesser extent DCS) by adjustments in the minimum Frequency Bias Setting, by accommodating only minor adjustments.
- Do not allow the Frequency Bias Setting minimum to drop below natural Frequency Response, because under-biasing could affect an Interconnection adversely.

Additional flexibility has been added to the Frequency Bias Setting based on the actual Frequency Response (FRM) by allowing the Frequency Bias Setting to have a value in the range from 100% of FRM to 125% of FRM. This change has been included for the following reasons:

- When the new standardized measurement method is applied to BAs with a Frequency Response close to the interconnection minimum response, the requirement to use FRM is as likely to result in a Frequency Bias Setting below the actual response as it is to result in a response above the actual response. From a reliability perspective, it is
always better to have a Frequency Bias Setting slightly above the actual Frequency Response.
- As with single $B A$ interconnections, the tuning of the control system may require that the BA implement a Frequency Response Setting slightly greater in absolute terms than its actual Frequency Response to get the best performance.
- The new standardized measurement method for determining FRM in some cases results in a measured Frequency Response significantly lower than the previous methods used by some BAs. It is desirable to not require significant change in the Frequency Bias Setting for these BAs that experience a reduction in their measured Frequency Response.

Requirement 3

R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias Setting that is:

- Less than zero at all times, and
- Equal to or more negative than its Frequency Response Obligation when the Frequency varies from 60 Hz by more that +/- 0.036 Hz .

Background and Rationale

In multi-Balancing Authority interconnections, the Frequency Bias Setting should be coordinated among all BAs on the interconnection. When there is a minimum Frequency Bias Setting requirement, it should apply for all BAs. However, BAs using a variable Frequency Bias Setting may have non-linearity in their actual response for a number of reasons including the dead-bands implemented on their generator governors. The measurement to ensure that these BAs are conforming to the interconnection minimum is adjusted to remove the deadband range from the calculated average Frequency Bias Setting actually used. For BAs using variable bias, FRS Form 1 has a data entry location for the previous year's average monthly Bias. The Balancing Authority and the ERO can compare this value to the previous year's Frequency Bias Setting minimum to ensure R3 has been met.

On single BA interconnections, there is no need to coordinate the Frequency Bias Setting with other BAs. This eliminates the need to maintain a minimum Frequency Bias Setting for any reason other than meeting the reliability requirement as specified by the Frequency Response Obligation.

Requirement 4

R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation, in order to represent the Frequency Bias Setting for the combined Balancing Authority Area, to be equivalent to either:

- The sum of the Frequency Bias Settings as shown on FRS Form 1 and FRS Form 2 for the participating Balancing Authorities as validated by the ERO, or
- The Frequency Bias Setting as shown on FRS Form 1 and FRS Form 2 for the entirety of the participating Balancing Authorities' Areas.

Background and Rationale

This requirement reflects the operating principles first established by NERC Policy 1 and is similar to Requirement R6 of the approved BAL-003-0.1b standard. Overlap Regulation Service is a method of providing regulation service in which the Balancing Authority providing the regulation service incorporates another Balancing Authority's actual interchange, frequency response, and schedules into the providing Balancing Authority's AGC/ACE equation.

As noted earlier, a BA that is providing Overlap Regulation will report the sum of the Bias Settings in its FRS Form 1. Balancing Authorities receiving Overlap Regulation Service have an ACE and Frequency Bias Setting equal to zero (0).

How this Standard Meets the FERC Order 693 Directives

FERC Directive

The following is the relevant paragraph of Order No. 693.
Accordingly, the Commission approves Reliability Standard BAL-003-0 as mandatory and enforceable. In addition, the Commission directs the ERO to develop a modification to BAL-003-0 through the Reliability Standards development process that: (1) includes Levels of Non-Compliance; (2) determines the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other requirements of the Reliability Standard are being met, and to modify Measure M1 based on that determination and (3) defines the necessary amount of Frequency Response needed for Reliable Operation for each balancing authority with methods of obtaining and measuring that the frequency response is achieved.

1. Levels of Non-Compliance

VRFs and VSLs are an equally effective way of assigning compliance elements to the standard.
2. Determine the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other Requirements of the Reliability Standard are met
BAL-003 V0 R2 (the basis of Order No. 693) deals with the calculation of Frequency Bias Setting such that it reflects natural Frequency Response.

The drafting team has determined that a sample size on the order of at least 20 events is necessary to have a high confidence in the estimate of a BA's Frequency Response. Selection of the frequency excursion events used for analysis will be done via a method outlined in Attachment A to the Standard.

On average, these events will represent the largest 2-3 "clean" frequency excursions occurring each month.

Since Frequency Bias Setting is an annual obligation, the survey of the at least 20 frequency excursion events will occur once each year.

3. Define the necessary amount of Frequency Response needed for Reliable Operation for each Balancing Authority with methods of obtaining and measuring that the frequency response is achieved

Necessary Amount of Frequency Response

The drafting team has proposed the following approach to defining the necessary amount of frequency response. In general, the goal is to avoid triggering the first step of under-frequency load shedding (UFLS) in the given Interconnection for reasonable contingencies expected. The
methodology for determining each Interconnection's and Balancing Authority's obligation is outlined in Attachment A to the Standard.

It should be noted the standard cannot guarantee there will never be a triggering of UFLS as the magnitude of "point C" differs throughout an interconnection during a disturbance and there are local areas that see much wider swings in frequency.

The contingency protection criterion is the largest reasonably expected contingency in the Interconnection. This can be based on the largest observed credible contingency in the previous 10 years or the largest Category C event for the Interconnection.

Attachment A to the standard presents the base obligation by Interconnection and adds a Reliability Margin. The Reliability Margin included addresses the difference between Points B and C and accounts for variables.

For multiple BA interconnections, the Frequency Response Obligation is allocated to BAs based on size. This allocation will be based on the following calculation:

$$
\mathrm{FRO}_{\mathrm{BA}}=\mathrm{FRO}_{\mathrm{Int}} \times \frac{\text { Annual } \mathrm{Gen}_{\mathrm{BA}}+\text { Annual } \operatorname{Load}_{\mathrm{BA}}}{\text { Annual Gen }}
$$

Methods of Obtaining Frequency Response

The drafting team believes the following are valid methods of obtaining Frequency Response:

- Regulation services.
- Contractual service. The drafting team has developed an approach to obtain a contractual share of Frequency Response from Adjacent Balancing Authorities. See FRS Form 1. While the final rules with regard to contractual services are being defined, the current expectation is that the ERO and the associated Region(s) should be notified beforehand and that the service be at least 6 months in duration.
- Through a tariff (e.g. Frequency Response and regulation service).
- From generators through an interconnection agreement.
- Contract with an internal resource or loads (The drafting team encourages the development of a NAESB business practice for Frequency Response service for linear (droop) and stepped (e.g. LaaR in Texas) response).

Since NERC standards should not prescribe or preclude any particular market related service, BAs and FRSGs may use whatever is most appropriate for their situation.

Measuring that the Frequency Response is Achieved

FRS Form 1 and the underlying data retained by the BA will be used for measuring whether Frequency Response was provided. FRS Form 1 will provide the guidance on how to account for and measure Frequency Response.

Going Beyond the Directive

Based on the combined operating experience of the SDT, the drafting team consensus is that each Interconnection has sufficient Frequency Response. If margins decline, there may be a need for additional standards or tools. The drafting team and the Resources Subcommittee are working with the ERO on its Frequency Response Initiative to develop processes and good practices so the Interconnections are prepared. These good practices and tools are described in the following section.

The drafting team is also evaluating a risk-based approach for basing the Interconnection Frequency Response Obligation on an historic probability density of frequency error, and for allocating the obligation on the basis of the Balancing Authority's average annual ACE share of frequency error. This allocation method uses the inverse of the rationale for allocating the CPS1 epsilon requirement by Bias share.

Good Practices and Tools

Background

This section outlines tips and tools to help Balancing authorities meet the Frequency Response Standard or to operate more reliably. If you have suggested additions, please send them to balancing@nerc.com.

Identifying and Estimating Frequency Responsive Reserves

Knowing the quantity and depth of frequency responsive reserves in real time is a possible next step to being better prepared for the next event. The challenge in achieving this is having the knowledge of the capabilities of all sources of frequency response. Presently the primary source of Frequency Response remains with the generation resources in our fleets.

Understanding how each of these sources performs to changes in system frequency and knowing their limitations would improve the BA's ability to measure frequency responsive reserves. Presently there are only guidelines, criteria and protocols in some regions of the industry that identify specific settings and performance expectations of Primary Frequency Response of resources.

One method of gaining a better understanding of performance is to measure performance during actual events that occur on the system. Measuring performance during actual events would only provide feedback for performance during that specific event and would not provide insight into depth of response or other limitations.

Repeated measurements will increase confidence in expected performance. NERC modeling standards are in process to be revised that will improve the BA's insight into predicting available frequency responsive reserves. However, knowing how resources are operated, what modes of operation provide sustained Primary Frequency Response and knowing the operating range of this response would give the BA the knowledge to accurately predict frequency response and the amount of frequency responsive reserves available in real time.

Some benefits have been realized by communicating to generation resources (GO) the importance of operating in modes that allow Primary Frequency Response to be sustained by the control systems of the resource. Other improvements in implementation of Primary Frequency Response have been achieved through improved settings on turbine governors through the elimination of "step" frequency response with the simultaneous reduction in governor dead-band settings.

Improvements in the full AGC control loop of the generating resource, which accounts for the expected Primary Frequency Response, have improved the delivery of quality Primary Frequency Response while minimizing secondary control actions of generators. Some of these actions can provide quick improvement in delivery of Primary Frequency Response.

Once Primary Frequency Response sources are known, the BA could calculate available reserves that are frequency responsive. Planning for these reserves during normal and emergency operations could be developed and added to the normal planning process.

Using FRS Form 1 Data

The information collected for this standard can be supplemented by a few data points to provide the Balancing Authority useful tools and information. The BA could do a regression analysis of its frequency response against the following values:

- Load (value A).
- Interchange (Value A).
- Total generation.
- Spinning reserve.

While the last two values above are not part of Form 1, they should be readily available. Small BAs might even include headroom on its larger generators as part of the regression.

The regression would provide a formula the BA could program in its EMS to present the operator a real time estimate of the BA's Frequency Response.

Statistical outliers in the regression would point to cases meriting further inspection to find causes of low Frequency Response or opportunities for improvement.

Tools

Single generating resource performance evaluation tools for steam turbine, combustion turbine (simple cycle or combined cycle) and for intermittent resources are available at the following link. http://texasre.org/standards rules/standardsdev/rsc/sar003/Pages/Default.aspx.

These tools and the regional standard associated with them are in their final stages of development in the Texas region.

These tools will be posted on the NERC website.

References

NERC Frequency Response Characteristic Survey Training Document (Found in the NERC Operating Manual)

NERC Resources Subcommittee Position Paper on Frequency Response
NERC TIS Report Interconnection Criteria for Frequency Response Requirements (for the Determination Interconnection Frequency Response Obligations (IFRO)

Frequency Response Standard Field Trial Analysis, September 17, 2012

Appendix 1 - Data Quality Concerns Related To The Use Of The Actual Net Interchange Value

Actual net interchange for a typical Balancing Authority (BA) is the summation of its tie lines to other BAs. In some cases, there are pseudo-ties in it which reflect the effective removal or addition of load and/or generation from another BA, or it could include supplemental regulation as well. But in the typical scenario, actual net interchange values that are extracted from EMS data archiving can be influenced by data latency times in the data acquisition process, and also any timestamp skewing in the archival process.

Of greater concern, however, are the inevitable variations of other operating phenomena occurring concurrently with a frequency event. The impacts of these phenomena are superimposed on actual net interchange values along with the frequency response that we wish to measure through the use of the actual net interchange value.

To explore this issue further, let's begin with the idealized condition:

- frequency is fairly stable at some value near or a little below 60 Hz
- ACE of the non-contingent BA of interest is 0 and has been 0 for an extended period, and AGC control signals have not been issued recently
- Actual net interchange is "on schedule", and there are no schedule changes in the immediate future
- BA load is flat
- All generators not providing AGC are at their targets
- Variable generation such as wind and solar are not varying
- Operators have not directed any manual movements of generation recently

And when the contingency occurs in this idealized state, the change in actual net interchange will be measuring only the decline in load due to lesser frequency and generator governor response, and, none of the contaminating influences. While the ACE may become negative due to the actual frequency response being less than that called for by the frequency bias setting within the BA's AGC system, this contaminating influence on measuring frequency response will not appear in the actual net interchange value if the measurement interval ends before the generation on AGC responds.

Now let's explore the sensitivity of the resultant frequency response sampling to the relaxation of these idealized circumstances.

1. The " 60 Hz load" increases moderately due to time of day concurrent with the frequency event. If the frequency event happens before AGC or operator-directed manual load adjustments occur, then the actual net interchange will be reduced by the moderate increase in load and the frequency response will be underestimated. But if the frequency event happens while AGC response and/or manual adjustments occur, then the actual net interchange will be increased by the AGC response (and/or manual adjustments) and the frequency response will be overestimated.
2. The " 60 Hz load" decreases moderately due to time of day concurrent with the frequency event. If the frequency event happens before AGC or operator-directed manual load adjustments occur, then the actual net interchange will be increased by the moderate reduction in load and the frequency response will be overestimated. But if the frequency event happens while AGC response and/or manual adjustments occur, then the actual net interchange will be decreased by the AGC response (and/or manual adjustments) and the frequency response will be underestimated.
3. In anticipation of increasing load during the next hour, the operator increases manual generation before the load actually appears. If the frequency event happens while the generation "leading" the load is increasing, then the actual net interchange will be increased by the increase in manual generation and the frequency response will be overestimated. But if the frequency event occurs when the result of AGC signals sent to offset the operator's leading actions take effect, then the actual net interchange will be decreased and the frequency response is underestimated.
4. In anticipation of decreasing load during the next hour, the operator decreases manual generation before the load actually declines. If the frequency event happens while the generation "leading" the load downward is decreasing, then the actual net interchange will be decreased by the reduction in manual generation and the frequency response will be underestimated. But if the frequency event occurs when the result of AGC signals sent to offset the operator's leading actions take effect, then the actual net interchange will be increased and the frequency response is overestimated.
5. A schedule change to export more energy is made at 5 minutes before the top of the hour. The BA's " 60 Hz load" is not changing. The schedule change is small enough that the operator is relying on upward movement of generators on AGC to provide the additional energy to be exported. The time at which the AGC generators actually begin to provide the additional energy is dependent on how much time passes before the AGC algorithm gets out of its deadbands, the individual generator control errors get large enough for sending out the control signal, and maybe 20 seconds to 3 minutes for the response to be effected. The key point here is that it is not clear when the effects of a schedule change, as manifested in a change in generation and then ultimately a change in actual net interchange, will occur.
6. With the expected penetration of wind in the near future, unanticipated changes in their output will tend to affect actual net interchange and add noise to the frequency response observation process.

To a greater or lesser extent, 1 through 4 above are happening continuously for the most part with most BAs in the Eastern and Western Interconnections. The frequency response is buried within the typical hour to hour operational cacophony superimposed on actual net interchange values. The choice of metrics will be important to artfully extract frequency response from the noise and other unrepresentative error.

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Frequency Response Standard Background Document November, 2012

RELIABILITY | ACCOUNTABILITY

3353 Peachtree Road NE

Table of Contents

Table of Contents 1
Introduction 2
Background 2
Rationale by Requirement 224
Requirement 1 224
Background and Rationale 224
Requirement 2 328
Background and Rationale 329
Requirement 3 349
Requirement 4 3410
Background and Rationale 3510
Requirement 5 3510
Background and Rationale Error! Bookmark not defined. 10
How this Standard Meets the FERC Order 693 Directives 3611
FERC Directive 3611

1. Levels of Non-Compliance 3611
2. Determine the appropriate periodicity of frequency response surveys necessary to
| ensure that Requirement R2 and other Requirements of the Reliability Standard are met 36123. Define the necessary amount of Frequency Response needed for Reliable Operation foreach Balancing Authority with methods of obtaining and measuring that the frequencyresponse is achieved3612
Necessary Amount of Frequency Response 3612
Methods of Obtaining Frequency Response 3713
Measuring that the Frequency Response is Achieved 3713
Going Beyond the Directive 3813
Future Work Error! Bookmark not defined. 13
Good Practices and Tools 3914
Background 3914
Identifying and Estimating Frequency Responsive Reserves 3914
Using FRS Form 1 Data 4015
Tools 4015
Field Trial Error! Bookmark not defined. 16

Introduction

This document provides background on the development, testing and implementation of BAL-003-1 - Frequency Response Standard (FRS). ${ }^{1}$ The intent is to explain the rationale and considerations for the Requirements of this standard and their associated compliance information. The document also provides good practices and tips for Balancing Authorities ("BAs") with regard to Frequency Response.

In Order No. 693, the Federal Energy Regulatory Commission ("FERC" or the "Commission") directed additional changes to BAL-003. ${ }^{2}$ This document explains how compliance with those directives are met by BAL-003-1.

The original Standards Authorization Request ("SAR"), finalized on June 30, 2007, assumed there was adequate Frequency Response in all the North American Interconnections. The goal of the SAR was to update the Standard to make the measurement process of frequency response more objective and to provide this objective data to Planners and Operators for improved modeling. The updated models will improve understanding of the trends in Frequency Response to determine if reliability limits are being approached. The Standard would also lay the process groundwork for a transition to a performance-based Standard if reliability limits are approached.

This document will be periodically updated by the FRS Drafting Team (FRSDT) until the Standard is approved. Once approved, this document will then be maintained and updated by the ERO and the NERC Resources Subcommittee to be used as a reference and training resource.

Background

This section discusses the different components of frequency control and the individual components of Primary Frequency Control also known as Frequency Response.

Frequency Control

Most system operators generally have a good understanding of frequency control and Bias Setting as outlined in the balancing standards and the references to them in the NERC Operating Manual. Frequency control can be divided into four overlapping windows of time as outlined below.

Primary Frequency Control (Frequency Response) - Actions provided by the Interconnection to arrest and stabilize frequency in response to frequency deviations. Primary Control comes from automatic generator governor response (also known as speed

[^85]regulation), load response (typically from motors), and other devices that provide an immediate response based on local (device-level) control systems.

Secondary Frequency Control - Actions provided by an individual BA or its Reserve Sharing Group to correct the resource - load unbalance that created the original frequency deviation, which will restore both Scheduled Frequency and Primary Frequency Response. Secondary Control comes from either manual or automated dispatch from a centralized control system.

Tertiary Frequency Control - Actions provided by Balancing Authorities on a balanced basis that are coordinated so there is a net zero effect on Area Control Error (ACE). Examples of Tertiary Control include dispatching generation to serve native load; economic dispatch; dispatching generation to affect Interchange; and re-dispatching generation. Tertiary Control actions are intended to replace Secondary Control Response by reconfiguring reserves.

Time Control includes small offsets to scheduled frequency to keep long term average frequency at 60 Hz .

Primary Frequency Control - Frequency Response

Primary Frequency Control, also known generally as Frequency Response, is the first stage of overall frequency control and is the response of resources and load to a locally sensed change in frequency in order to arrest that change in frequency. Frequency Response is automatic, not driven by any centralized system, and begins within seconds rather than minutes. Different resources, loads, and systems provide Frequency Response with different response times, based on current system conditions such as total resource/load and their respective mix.

The proposed NERC Glossary of Terms defines Frequency Response as:

- (Equipment) The immediate and automatic reaction or response of power from a system or power from elements of the system to a change in locally sensed system frequency.
- (System) The sum of the change in demand, and the change in generation, divided by the change in frequency, expressed in megawatts per 0.1 Hertz (MW/0.1 Hz).

As noted above, Frequency Response is the characteristic of load and generation within Balancing Authorities and Interconnections. It reacts or responds with changes in power to attempted changes in load-resource balance that result in changes to system frequency. Because the loss of a large generator is much more likely than a sudden loss of an equivalent amount of load, Frequency Response is typically discussed in the context of a loss of a large generator. Included within Frequency Response are many components of that response. Understanding Frequency Response and the FRS requires an understanding of each of these components and how they relate to each other.

Frequency Response Illustration

The following simple example is presented to illustrate the components of Frequency Response in graphical form. It includes a series of seven graphs that illustrate the various components of

Frequency Response and a brief discussion of each describing how these components react to attempted changes in the load-resource balance and resulting changes in system frequency. The illustration is based on an assumed Disturbance event of the sudden loss of 1000 MW of generation. Although a large event is used to illustrate the response components, even small frequently occurring events will result in similar reactions or responses. The magnitude of the event only affects the shape of the curves on the graph; it does not obviate the need for Frequency Response.

The first graph, Primary Frequency Control - Frequency Response - Graph 1, presents a sudden loss of generation of 1000 MW . The components are presented relative to time as shown on the horizontal Time axis in seconds. This simplified example assumes a Disturbance event of the sudden loss of generation resulting from a breaker trip that instantaneously removes 1000 MW of generation from the interconnection. This sudden loss is illustrated by the power deficit line shown in black using the MW scale on the left. Interconnection frequency is illustrated by the frequency line shown in red using the Hertz scale on the right. Since the Scheduled Frequency is normally 60 Hz , it is assumed that this is the frequency when the Disturbance event occurs.

Even though the generation has tripped and power injected by the generator has been removed from the interconnection, the loads continue to use the same amount of power. The
"Law of Conservation of Energy" ${ }^{3}$ requires that the 1000 MW must be supplied to the interconnection if energy balance is to be "conserved". This additional 1000 MW of power is produced by extracting kinetic energy that was stored in the rotating mass of all of the synchronized generators and motors on the interconnection - essentially using this equipment as a giant flywheel. The extracted energy supplies the "balancing inertia" ${ }^{4}$ power required to maintain the power and energy balance on the interconnection. This balancing inertia power is produced by the generators' spinning inertial mass' resistance to the slowdown in speed of the rotating equipment on the interconnection that both provides the stored kinetic energy and reduces the frequency of the interconnection. This is illustrated in the second graph, Primary Frequency Control - Frequency Response - Graph 2, by the orange dots representing the balancing inertia power that exactly overlay and offset the power deficit.

As the frequency decreases, synchronized motors slow, as does the work they are providing, resulting in a decrease in load called "load damping." This load damping is the reason that the power deficit initially declines. Synchronously operated motors will contribute to load damping. Variable speed drives that are decoupled from the interconnection frequency do not

[^86]contribute to load damping. In general, any load that does not change with interconnection frequency including resistive load will not contribute to load damping or Frequency Response.

It is important to note that the power deficit equals exactly the balancing inertia, indicating that there is no power or energy imbalance at any time during this process. What is normally considered as "balancing power or energy" is actually power or energy required to correct the frequency error from scheduled frequency. Any apparent power or energy imbalance is corrected instantaneously by the balancing inertia power and energy extracted from the interconnection. Thus the balancing function is really a frequency control function described as a balancing function because ACE is calculated in MWs instead of Hertz, frequency error.

During the initial seconds of the Disturbance event, the governors have yet to respond to the frequency decline. This is illustrated with the Blue line on the third graph, Primary Frequency Control - Frequency Response - Graph 3, showing Governor Response. This time delay results from the time that it takes the controller to adjust the equipment and the time it takes the mass to flow from the source of the energy (main steam control valve for steam turbines, the combustor for gas turbines, or the gate valve for hydro turbines) to the turbine-generator blades where the power is converted to electrical energy.

Note that the frequency continues to decline due to the ongoing extraction by balancing inertia power of energy from the rotating turbine-generators and synchronous motors on the interconnection. The reduction in load also continues as the effect of load damping continues
to reduce the load while frequency declines. During this time delay (before the governor response begins) the balancing inertia limits the rate of change of frequency.

After a short time delay, the governor response begins to increase rapidly in response to the initial rapid decline in frequency, as illustrated on the fourth graph, Primary Frequency Control - Frequency Response - Graph 4. Governor response exactly offsets the power deficit at the point in time that the frequency decline is arrested. At this point in time, the balancing inertia has provided its contribution to reliability and its power contribution is reduced to zero as it is replaced by the governor response. If the time delay associated with the delivery of governor response is reduced, the amount of balancing inertia required to limit the change in frequency by the Disturbance event can also be reduced. This supports the conclusion that balancing inertia is required to manage the time delays associated with the delivery of Frequency Response. Not only is the rapid delivery of Frequency Response important, but the shortening of the time delay associated with its delivery is also important. Therefore, two important components of Frequency Response are 1) how long the time delay is before the initial delivery of response begins; and 2) how much of the response is delivered before the frequency change is arrested.

This point, at which the frequency is first arrested, is defined as "Point C" and Frequency Response calculated at this point is called the "arrested frequency response." The arrested frequency is normally the minimum (maximum for load loss events) frequency that will be
experienced during a Disturbance event. From a reliability perspective, this minimum frequency is the frequency that is of concern. Adequate reliability requires that frequency at the time frequency is arrested remain above the under-frequency relay settings so as not to trip these relays and the firm load interrupted by them. Frequency Response delivered after frequency is arrested at this minimum level provides less reliability value than Frequency Response delivered before Point C, but greater value than Secondary Frequency Control power and energy which is delivered minutes later.

Once the frequency decline is arrested, the governors continue to respond because of the time delay associated with their Governor Response. This results in the frequency partially recovering from the minimum arrested value and results in an oscillating transient that follows the minimum frequency (arrested frequency) until power flows and frequency settle during the transient period that ends roughly 20 seconds after the Disturbance event. This postdisturbance transient period is included on the fifth illustrative graph, Primary Frequency Control - Frequency Response - Graph 5.

The total Disturbance event illustration is presented on the sixth graph, Primary Frequency Control - Frequency Response - Graph 6. Frequency and power contributions stabilize at the end of the transient period. Frequency Response calculated from data measured during this settled period is called the "Settled Frequency Response." The Settled Frequency Response is the best measure to use as an estimator for the "Frequency Bias Setting" discussed later.

The final Disturbance event illustration is presented on the seventh graph, Primary Frequency Control - Frequency Response - Graph 7. This graph shows the averaging periods used to estimate the pre-disturbance A-Value averaging period and the post-disturbance B-Value averaging period used to calculate the settled frequency response. A discussion of the measurement of Frequency Response immediately follows these graphs. That discussion includes consideration of the factors that affect the methods chosen to measure Frequency Response for implementation in a reliability standard.

Frequency Response Measurement (FRM)

The classic Frequency Response points A, C, and B, shown below in Fig. 1 Frequency Response Characteristic, are used for measurement as found in the Frequency Response Characteristic Survey Training Document within the NERC operating manual, found at http://www.nerc.com/files/opman 7-1-11.pdf. This traditional Frequency Response Measure has recently been more specifically termed "settled frequency response." This term has been used because it provides the best Frequency Response Measure to estimate the Frequency Bias Setting in Tie-line Bias Control based Automatic Generation Control Systems. However, the industry has recognized that there is considerable variability in measurement resulting from the selection of Point A and Point B in the traditional measure making the traditional measurement method unsuitable as the basis for an enforceable reliability standard in a real world setting of multiple Balancing Authority interconnections.

Frequency Response

Figure 1. Frequency Response Characteristic

By contrast, measuring an Interconnection's settled frequency response is straightforward and fairly accurate. All that's needed to make the calculation is to know the size of a given contingency (MW), divide this value by the change in frequency and multiply the results by 10 since frequency response is expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$.

Measuring a BA's frequency response is more challenging. Prior to BAL-003-1, NERC's Frequency Response Characteristic Survey Training Document provided guidance to calculate Frequency Response. In short, it told the reader to identify the BA's interchange values "immediately before" and "immediately after" the Disturbance event and use the difference to calculate the MWs the BA deployed for the event. There are two challenges with this approach:

- Two people looking at the same data would come up with different values when assessing which exact points were immediately before and after the event.
- In practice, the actual response provided by the BA can change significantly in the window of time between point B and when secondary and tertiary control can assist in recovery.

Therefore, the measurement of settled frequency response has been standardized in a number of ways to limit the variability in measurement resulting from the poorly specified selection of Point A and Point B. It should be noted that $\mathrm{t}-\mathrm{O}$ has been defined as the first scan value that
shows a deviation in frequency of some significance, usually approaching about 10 mHz . The goal is such that the first scan prior to $t-0$ was unaffected by the deviation and appropriate for one of the averaging points.

- The A-value averaging period of approximately the previous 16 seconds prior to t-0 was selected to allow for an averaging of at least 2 scans for entities utilizing 6 second scan rates. (All time average period references in this document are for 2 second scan rates unless noted otherwise.)
- The B-value averaging period of approximately ($\mathrm{t}+20 \mathrm{to} \mathrm{t}+52$ seconds) was selected to attempt to obtain the average of the data after primary frequency response was deployed and the transient completed(settled), but before significance influence of secondary control. Multiple periods were considered for averaging the B-value:
- 12 to 24 sec
- 18 to 30 sec
- 20 to 40 sec
- 18 to 52 sec
- 20 to 52 sec

It is necessary for all BAs from an interconnection to use the same averaging periods to provide consistent results. In addition, the SDT decided that until more experience is gained, it is also desirable for all interconnections to use the same averaging periods to allow comparison between interconnections.

The methods presented in this document only address the values required to calculate the frequency response associated with the frequency change between the initial frequency, AValue, and the settling frequency, B-Value. No reasonable or consistent calculations can be made relating to the arresting frequency, C-Value, using Energy Management System (EMS) scan rate data as long as 6 -seconds or tie-line flow values associated with the minimum value of the frequency response characteristic (C-value) as measured at the BA level.

Both the calculation of the frequency at Point A and the frequency at Point B began with the assumption that a 6 -second scan rate was the source of the data. Once the averaging periods for a 6 -second scan rate were selected, the averaging periods for the other scan rates were selected to provide as much consistency as possible between BAs with different scan rates.

The Frequency at Point A was initially defined as the average of the two scans immediately prior to the frequency event. All other averaging periods were selected to be as consistent as possible with this 12 second average scan from the 6 -second scan rate method. In addition, the "actual net interchange immediately before Disturbance" is defined as the average of the same scans as used for the Point A frequency average.

The Frequency at Point B was then selected to be an average as long as the average of 6 -second scan data as possible that would not begin until most of the hydro governor response had been delivered and would end before significant Automatic Generation Control (AGC) recovery response had been initiated as indicated by a consistent frequency restoration slope. The "actual net interchange immediately after Disturbance" is defined as the average of the same scans as used for the Point B frequency average.

B Averaging Period Selection:

Experience from the Electric Reliability Council of Texas ("ERCOT") and the field trail on other interconnections indicated that the 12 to 24 second and 18 to 30 second averaging periods were not suitable because they did not provide the consistency in results that the other averaging periods provided, and that the remaining measuring periods do not provide significantly different results from each other. The team believed that this was observed because the transients were not complete in all of the samples using these averaging periods.

The 18 to 52 second and 20 to 52 second averaging periods were compared to each other, with the 20 to 52 second period providing more consistent values, believed to result from the incomplete transient in some of the 18 to 52 second samples.

This left a choice between the 20 to 40 second and the 20 to 52 second averaging periods. The team recognized that there would be more AGC response in the 20 to 52 second period, but the team also recognized that the 20 to 52 second period would provide a better measure of squelched response from outer loop control action. The 20 to 52 second period was selected because it would indicate squelched response from outer-loop control and provide incentive to reduce response withdrawal. The final selections for the data averaging periods used in FRS Form 1 are shown in the table below.

Definitions of Frequency Values for Frequency Response Calculation			
Scan Rate	T 0 Scan	A Value (average)	B Value (average)
6-Seconds	Identify first significant change in frequency as the TO scan	Average of T-1 through T-2 scans	Average of $\mathrm{T}+4$ through $\mathrm{T}+8$ scans
5-Seconds		Average of T-1 through T-2 scans	Average of $T+5$ through $T+10$ scans
4-Seconds		Average of T-1 through T-3 scans	Average of $\mathrm{T}+6$ through $\mathrm{T}+12$ scans
3-Seconds		Average of T-1 through T-5 scans	Average of $\mathrm{T}+7$ through $\mathrm{T}+17$ scans
2-Seconds		Average of T-1 through T-8 scans	Average of T+10 through T+26 scans

Consistent measurement of Primary Frequency Response is achievable for a selected number of events and can produce representative frequency response values, provided an appropriate sample size is used in the analysis. Available research investigating the minimum sample size to provide consistent measurements of Frequency Response has shown that a minimum sample size of 20 events should be adequate.

Measurement of Primary Frequency Response on an individual resource or load basis requires analysis of energy amounts that are often small and difficult to measure using current methods. In addition, the number of an interconnection's resources and loads providing their response could be problematic when compiling results for multiple events.

Measurement of Primary Frequency Response on an interconnection (System) basis is straight forward provided that an accurate frequency metering source is available and the magnitude of the resource/load imbalance is known in MWs.

Measurement on a Balancing Authority basis can be a challenge, since the determination of change in MWs is determined by the change in the individual BA's metered tie lines.
Summation of tie lines is accomplished by summing the results of values obtained by the digital scanning of meters at intervals up to six seconds, resulting in a non-coincidental summing of values. Until the technology to GPS time stamp tie line values at the meter and the summing of those values for coincidental times is in use throughout the industry, it is necessary to use averaging of values described above to obtain consistent results.

Figure 2. Frequency Response Measurement

The standardized measure is shown graphically in Fig. 2 Frequency Response Measurement with the averaging periods shown by the solid blue-green and red lines on the graph. Since FERC directed a performance obligation for BAL-003-1, it is important to be more objective in the measurement process. The standardized calculation is available on FRS Form 2 for EMS scan rates of $2,3,4,5$, and 6 seconds at http://www.nerc.com/filez/standards/Frequency Response.html.

Arrested Frequency Response

There is another measure of Frequency Response that is of interest when developing a Frequency Response estimate that not only will be used for estimating the Frequency Bias Setting, but will also be used to assure reliability by operating in a manner that will bound interconnection frequency and prevent the operation of Under-frequency Relays. This Frequency Response Measure has recently been named "arrested frequency response." This Frequency Response is significantly affected by the inertial Frequency Response, the governor Frequency Response and the time delays associated with the delivery of governor Frequency

Response. It is calculated by using the change in frequency between the initial frequency, A, and the maximum frequency change during the event, C , instead of using the change between A and B . Arrested Frequency Response is the correct response for determining the minimum Frequency Response related to under-frequency relay operation and the support of interconnection reliability. This is because it can be used to provide a direct estimate of the maximum frequency deviation an interconnection will experience for an initial frequency and a given size event in MW. Unfortunately, arrested frequency response cannot currently be measured using the existing EMS-based measurement infrastructure. This limitation exists because the scan rates currently used in industry EMSs are incapable of measuring the net actual interchange at the same instant that the maximum frequency deviation is reached. Fortunately, the ratio of arrested frequency response and settled frequency response tends to be stable on an interconnection. This allows the settled frequency response value to be used as a surrogate for the arrested frequency response and implement a reasonable measure upon which to base a standard. One consequence of using the settled frequency response as a surrogate for the arrested frequency response is the inclusion of a large reliability margin in Interconnection Frequency Response Obligation to allow for the difference between the settled frequency response as measured and the arrested frequency response that indicates reliability.

As measurement infrastructure improves one might expect the Frequency Response Obligation to transition to a measurement based directly on the arrested frequency response while the Frequency Bias Setting will continue to be based on the settled frequency response. However, at this time, the measurement devices and methods in use do not support the necessary level of accuracy to estimate arrested frequency response contribution for an individual Balancing Authority.

Frequency Response Definition and Examples

Limitations of the measurement infrastructure determine the measurement methods recommended in this standard. The measurement limitations provide opportunities to improve the Frequency Response as measured in the standard without contributing to an improvement in Frequency Response that contributes to reliability. These definitions and examples provide a basis for determining which contributions to Frequency Response contribute the most to improved reliability. They also provide the basis for determining on a case by case basis whether the individual contributors to the Frequency Response Measure are also contributing to reliability.

General Frequency Response Characteristics

In the simplest case Frequency Response includes any automatic response to changes in local frequency. If that response works to decrease that change in frequency, it is beneficial to reliability. If that response works to increase that change in frequency, it is detrimental to reliability. However, this definition does not address the relative value of one response as compared to other responses that may be provided in a specific case.

There are numerous characteristics associated with the Frequency Response that affect the reliability value and economic value of the response. These characteristics include:

1. Inertial - the response is inertial or approximates inertial response

Inertial response provides power without delay that is proportional to the frequency and the change in frequency. Therefore, power provided by electronic control as synthetic Inertial response must be proportional to the frequency and change in frequency and be provided without a time delay.
2. Immediate - no unnecessary intentional time delays or reduction in the rate of response delivery
a. time delay before the beginning of the response

Turbines that convert heat or kinetic energy have time delays related to the time delay from the time that the control valves are moved to initiate the change in power and the time that the power is delivered to the generator. These times are usually associated with the time it takes a change in mass flow to travel from the control valve to the first blades of the turbine in the turbine generator.
b. reduction in the rate of response delivery There are natural delays associated with the rate of response delivery that are related to the mass flow travel from the first turbine blades to the last turbine blades. In addition, some turbines have intentional delays designed into the control system to slow the rate of change in the delivery of the kinetic energy or fuel to the turbine to prevent the turbine or other equipment from being damaged, hydro turbines, or to prevent the turbine from tripping due to excessive rate of change, gas turbines.
3. Proportional - the amount of the total response is proportional to the frequency error
a. No Deadband - the response is proportional across the entire frequency range
b. Deadband - the response is only proportional outside of a defined deadband
4. Bi-directional - the response occurs to both increases and decreases in frequency
5. Continuous - there are no discontinuities in the delivery of the response (no step changes)
6. Sustained - the response is sustained until frequency is returned to schedule

Frequency Response Reliability Value

This section contains a more detailed discussion of the various characteristics of Frequency Response listed in the previous section. It also provides an indication of the relative value of these characteristics with respect to their contribution to reliability. Finally, it includes some examples of the described responses.

Inertial Response is provided from the stored energy in the rotating mass of the turbinegenerators and synchronous motors on the interconnection. It limits the rate of change of frequency until sufficient Frequency Response can be supplied to arrest the change in frequency. Its reliability value increases as the time delay associated with the delivery of other Frequency Response on the interconnection increases. If those time delays are minimal, then the value of inertial response is low. If all time delays associated with the Frequency Response could be eliminated, then inertial response would have little value.

The reliability value of Inertial Response is the greatest on small interconnections because the size of the Disturbance events is larger relative to the inertia of the interconnection. Electronic controls have been developed to provide synthetic inertial response from the stored energy in asynchronous generators to supplement the natural inertial response. Some Type III \& IV Wind Turbines have this capability. In addition, electronically controlled SCRs have been developed that can store energy in the electrical system and release this stored energy to supply synthetic inertial response when required.

Immediate Response is provided by load damping and because the time delays associated with its delivery are very short (related to the speed of electrical signal in the electrical system); load damping requires very little inertial response to limit arrested frequency effectively. Synthetic immediate response can also be supplied from loads because in many cases, there is no mass flow time delay associated with the load process providing the power and energy reduction. Therefore, loads can provide an immediate response with a higher reliability value than generators with time delays required by the physics of the turbine-generator.

Governor response has time delays associated with its delivery. Governor response provided with shorter time delays has a higher reliability value because those shorter time delays require less inertial response to arrest frequency. Governor response is provided by the turbinegenerators on the interconnection. Time delays associated with governor response vary depending on the type of turbine-generator providing the response.

The longest time delays are usually associated with high head hydro turbine-generators that require long times from the governor action until the additional mass flow through the turbine. These units may also have the longest delivery time associated with the full delivery of response because of the timing designed into the governor response. ${ }^{5}$

Intermediate time delays are usually associated with steam turbine-generators. The response begins when the steam control valves are adjusted and the steam mass flows from the valves to the first high pressure turbine blades. The delivery times associated with the full delivery of response may require the steam to flow through high, intermediate and low pressure turbines including reheat flows before full power is delivered. These times are shorter than those of the hydro turbine-generators in general, but not as fast as the times associated with gas turbines. ${ }^{6}$

Gas turbines typically have the shortest time delays, because control is provided by injecting more or less fuel into the turbine combustor and adjusting the air control dampers. These control changes can be initiated rapidly and the mass flow has the shortest path to the turbine

[^87]blades. There may be timing limitations related to the rate of change in output of the gas turbine-generator to maintain flame stability in some cases slowing the rate of change. ${ }^{7}$

Synthetic Governor Response can be supplied by certain loads and storage systems. The immediacy of the response is normally limited only by the electronic controls used to activate the desired response. Synthetic response, when it can be supplied immediately without significant time delay, has a higher reliability value because it requires less inertial response to achieve smaller arrested frequency deviations.

Proportional Response indicates that the response provided is proportional in magnitude to the frequency error. Response deadbands cause a non-proportional response and reduce the value of the response with respect to reliability. Contrary to general consensus, deadbands do not reduce the amount of Frequency Response that must be provided, they only transfer the responsibility for providing that Frequency Response from one source on the interconnection to another. For a given response, the response with the smaller deadband has the greater reliability value. Therefore, deadbands should be set to the smallest value that supports overall reliable operation including the reliable operation of the generator.

Electronic controls have also been developed to provide synthetic governor response. When these controls are applied to certain loads or stored energy systems, they can be programmed to provide synthetic governor response similar to the proportional response of a turbinegenerator governor. Governor response in generators is limited to a small percentage of the output of the generating unit, while synthetic governor response could be applied to much larger percentages of loads or storage devices providing such response.

Load damping provides a proportional response.
Continuous Response is response that has no discontinuous (step) changes in the frequency versus response curve. Step changes (Non-continuous Response) in the Governor Response curve can lead to frequency instabilities at frequencies near the changes. The ERCOT Interconnection observed this and has since prohibited the use of governor response characteristics incorporating step responses.

Step responses also occur with the implementation of load interruption using under-frequency or over-frequency relays.

Bi-directional Response is response that occurs in both directions, when the frequency is increasing and when the frequency is decreasing. A uni-directional response is a response that only occurs once when frequency is decreasing or when frequency is increasing.

Inertial response, governor response and load damping are all bi-directional responses. Certain loads are capable of providing proportional bi-directional response while others are only capable of providing non-proportional bi-directional response.

[^88]The ERCOT Load Resource program is a uni-directional response program. Loads are only tripped when frequency declines below a given set-point. When frequency is restored above that set-point, the loads must be manually reconnected. As a consequence, the Frequency Response only occurs once with declining frequency and does not oppose the increase in frequency after the initial decline. If there should be a frequency oscillation, the uni-directional response will not contribute to the opposition of a second frequency decline across the setpoint during an oscillation event. Once a uni-directional response has occurred, it is unavailable for a second decline before reset.

Step or proportional responses implemented bi-directionally can lead to frequency instability when there is less continuous frequency response than the magnitude of the change in continuous response between the trip and reset frequencies in step, or the proportional response rate of change is greater than the underlying continuous response. A step bidirectional response will have the load reconnected as frequency recovers from the event thus opposing the increase in frequency during recovery, and also resetting the load response for the next frequency decline automatically. Bi-directional response obviously has a greater reliability value than uni-directional response.

Sustained Response is provided at its full value until frequency is restored to its scheduled value. On today's interconnections, few frequency responses are fully sustained until frequency has been restored to its scheduled value. On steam based turbine-generators, the steam pressure may drop after a time as the result of the additional steam flow from governor action. However, in general this has not been a problem because most responses are incomplete at the time that frequency has been initially arrested and the additional response has generally been sufficient to make up for more than the these unpreventable reductions in response. However, the intentional withdrawal of response before frequency has been restored to schedule can cause a decline in frequency beyond that which would be otherwise expected. This intentional withdrawal of response is highly detrimental to reliability. Therefore, it can be concluded in general that sustained response has a higher reliability value than un-sustained response.

On an interconnection, the withdrawal of response due to the loss of steam pressure on the steam units may be offset by the slower response of hydro turbine-generators. In these cases, the reliability of the combined response provides a greater reliability value than the individual response of each type. The steam turbine-generators provide a fast response that may be reduced, while the hydro turbine-generators provide a slower response, contributing less to the arresting response, offsetting any reduction by the steam turbine-generators to assure a sustained response.

Sustained Response must also be considered for any resource that has a limited duration associated with its response. The amount of stored energy available from a resource may limit its ability to sustain response for a duration of time necessary to support reliability.

Frequency Response Cost Factors

In every system of exchange there are two sides; the supply side and the demand side. The supply side provides the services used by the demand side. In the case of Frequency Response,
the supply side includes all providers of Frequency Response and the demand side includes all participants that create the need for Frequency Response.

Frequency Response Costs - Supply Side

There are a number of factors that affect the cost of providing Frequency Response from resources. Since there is a cost associated with those factors, some method of appropriate compensation could be made available to those resources providing Frequency Response. Without compensation, providers of Frequency Response will be put in the position of incurring additional cost that can be avoided only by reducing or eliminating the response they provide. These costs are incurred independently of whether provided for in a formal Regional Transmission Organization/Independent System Operator (RTO/ISO) market or in a traditional BA subject to the FERC pro-forma tariffs.

It is the responsibility of the BA or the RTO/ISO to acquire the necessary amount of Frequency Response to support reliability in the most cost effective manner. This function is performed best when the suppliers are evaluated based on the value of the Frequency Response they provide and compensated appropriately for that Frequency Response. Suppliers provide Frequency Response when they are assured that they will receive fair compensation. Before considering how to perform this evaluation and compensation, the costs associated with providing Frequency Response should be understood and evaluated with respect to the level of reliability they offer.

Some cost factors that have been identified for providing Frequency Response include:

1. Capacity Opportunity Cost - the costs, including opportunity costs, associated with reserving capacity to provide Frequency Response. These costs are usually associated with the alternative use of the same capacity to provide energy or other ancillary services. There may also be capacity opportunity costs associated with the loss in average capacity by a load providing Frequency Response.
2. Fuel Cost - The cost of fuel used to provide the Frequency Response. The costs for fuel to provide Frequency Response can result in energy costs significantly different from the system marginal energy cost, both higher and lower. This is the case when Frequency Response is provided by resources that are not at the system marginal cost.
3. Energy Efficiency Penalty Costs - the costs associated with the loss in efficiency when the resource is operated in a mode that supports the delivery of Frequency Response. This cost is usually in the form of additional fuel use to provide the same amount of energy. An example is the difference between operating a steam turbine in valve control mode with an active governor and sliding pressure mode with valves wide open and no active governor control except for over-speed. This cost is incurred for all of the energy provided by the resource, not just the energy provided for Frequency Response. There may be additional energy costs associated with a load providing Frequency Response from loss in efficiency of their process when load is reduced.
4. Capacity Efficiency Penalty Costs - the costs associated with any reduction in capacity resulting from the loss of capacity associated with the loss in energy efficiency. When efficiency is lost, capacity may be lost at the same time because of limitations in the amount of input energy that can be provided to the resource.
5. Maintenance Costs - the operation of the resource in a manner necessary to provide Frequency Response may result in increases in the maintenance costs associated with the resource.
6. Emissions Costs - the additional costs incurred to manage any additional emissions that result when the resource is providing Frequency Response or stands ready to provide Frequency Response.

A good contract for the acquisition of Frequency Response from a resource will provide appropriate compensation to the resource for all of the costs the resource incurs to provide Frequency Response. It will also provide a method to evaluate the least cost mix of resources necessary to provide the minimum required Frequency Response for maintaining reliability. Finally, it will provide the least complex method of evaluation considering the complexity and efficiency of the acquisition process.

Frequency Response Costs - Demand Side

Not only are there costs associated with acquiring Frequency Response from the supplying resources, there are costs associated with the amount of Frequency Response that must be acquired and influenced by those participants that create the need for Frequency Response. If the costs of acquiring Frequency Response from the supply resources can be assigned to those parties that create the need for Frequency Response, there is the promise that the amount of Frequency Response required to maintain reliability can be minimized. The considerations are the same as those that are driving the development of "real time pricing" and "dynamic pricing". If the costs are passed on to those contributing to the need for Frequency Response, incentives are created to reduce the need for Frequency Response making interconnection operations less expensive and more reliable. The problem is to balance both cost and complexity against reliability on both the supply side and the demand side.

Rationale by Requirement

Requirement 1

R1. Each Frequency Response Sharing Group (FRSG) or Balancing Authority that is not a member of a FRSG shall achieve an annual Frequency Response Measure (FRM) (as calculated and reported in accordance with Attachment A) that is equal to or more negative than its Frequency Response Obligation (FRO) to ensure that sufficient Frequency Response is provided by each FRSG or Balancing Authority that is not a member of a FRSG to maintain Interconnection Frequency Response equal to or more negative than the Interconnection Frequency Response Obligation.

Background and Rationale

R1 is intended to meet the following primary objectives:

- Determine whether a Balancing Authority (BA) has sufficient Frequency Response for reliable operations.
- Provide the feeder information needed to calculate CPS limits and Frequency Bias Settings.

Primary Objective

With regard to the first objective, FRS Form 1 and the process in Attachment A provide the method for determining the Interconnections' necessary amount of Frequency Response and allocating it to the Balancing Authorities. The field trial for BAL-003-1 is testing an allocation methodology based on the amount of load and generation in the BA. This is to accommodate the wide spectrum of BAs from generation-only all the way to load-only.

Frequency Response Sharing Groups (FRSGs)

This standard proposes an entity called FRSG, which is defined as:
A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating resources required to jointly meet the sum of the Frequency Response Obligations of its members.

This standard allows Balancing Authorities to cooperatively form FRSGs as a means to jointly meet the FRS. There is no obligation to form or be a part of FRSGs. The members of the FRSG would determine how to allocate sanctions among its members. This standard does not mandate the formation of FRSGs, but allows them as a means to meet one of FERC's Order No. 693 directives.

FRSG performance may be calculated one of two ways:

- Calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or
- Jointly submit the individual BAs' Form 1s, with a summary spreadsheet that sums each participant's individual event performance.

Frequency Response Obligation and Calculation

The basic Frequency Response Obligation is based on annual loadnon-coincident peak load and generation data reported in FERC Form 714 (where applicable, see below for non-jurisdictional entities) for the previous full calendar year. The basic allocation formula used by NERC is:

$$
\mathrm{FRO}_{\mathrm{BA}}=\mathrm{FRO}_{\mathrm{Int}} \times \frac{\text { Annual } \mathrm{Gen}_{\mathrm{BA}}+\text { Annual } \operatorname{Load}_{\mathrm{BA}}}{\text { Annual Gen }}
$$

Where:

- Annual Gen BA is the annual "Net Generation (MWh)", FERC Form 714, line 13, column c of Part II - Schedule 3.
- Annual Load $_{B A}$ is the annual "Net Energy for Load (MWh)", FERC Form 714, line 13, column e of Part II - Schedule 3.
- Annual Gen $_{\text {Int }}$ is the sum of all Annual Gen $_{B A}$ values reported in that interconnection.
- Annual Load ${ }_{1 n t}$ is the sum of all Annual Load $_{B A}$ values reported in that interconnection.

Balancing Authorities that are not FERC jurisdictional should use the Form 714 Instructions to assemble and submit equivalent data. Until the BAL-003-1 process outlined in Attachment 1 is implemented, Balancing Authorities can approximate their FRO by multiplying their Interconnection's FRO by their share of Interconnection Bias. The data used for this calculation should be for the most recently filed Form 714. As an example, a report to NERC in January 2013 would use the Form 714 data filed in 2012, which utilized data from 2011.

Balancing Authorities that merge or that transfer load or generation need to notify the ERO of the change in footprint and corresponding changes in allocation such that the net obligation for the Interconnection remains the same and so that CPS limits can be adjusted.

Attachment A proposes the following Interconnection event criteria as a basis to determine an Interconnection's Frequency Response Obligation:

- Largest category C loss-of-resource (N-2) event.
- Largest total generating plant with common voltage switchyard.
- Largest loss of generation in the interconnection in the last 10 years.

With regard to the second objective above (determining Frequency Bias Settings and CPS limits), Balancing Authorities have been asked to perform annual reviews of their Frequency Bias Settings by measuring their Frequency Response, dating back to Policy 1. This obligation was carried forward into BAL-003-01.b. While the associated training document provided useful information, it left many of the details to the judgment of the person doing the analysis. The FRS Form 1 and FRS Form 2 provide a consistent, objective process for calculating Frequency Response to develop an annual measure, the FRM.

The FRM will be computed from Single Event Frequency Response Data (SEFRD), defined as: "the data from an individual event from a Balancing Authority that is used to calculate its Frequency Response, expressed in MW/0.1Hz". The SEFRD for a typical Balancing Authority in an Interconnection with more than one Balancing Authority is basically the change of its net actual interchange on its tie lines with its adjacent Balancing Authorities divided by the change in interconnection frequency. (Some Balancing Authorities may choose to apply corrections to their net actual interchange values to account for factors such as nonconforming loads. FRS Form 1 shows the types of adjustments that are allowed.)

A standardized sampling interval of approximately 20 to 52 seconds will be used in the computation of SEFRD values. Microsoft Excel ${ }^{\circledR}$ spreadsheet interfaces for EMS scan rates of 2 through 6 seconds are provided to support the computation.

Single Event Frequency Response Data ${ }^{8}$

The use of a "single event measure" was considered early in the development of the FRS for compliance because a single event measure could be enforced for each event on the interconnection making compliance enforcement a simpler process. The variability of the measurement of Frequency Response for an individual BA for an individual Disturbance event was evaluated to determine its suitability for use as a compliance measure. The individual Disturbance events were normalized and plotted for each BA on the Eastern and Western Interconnections. This data was plotted with a dot representing each event. Events with a measured Frequency Response above the FRO were shown as blue dots and events with a measured Frequency Response below the FRO were shown as red dots. In order to show the full variability of the results the plots have been provided with two scales, a large scale to show all of the events and small scale to show the events closer to the FRO or a value of 1.0. This data is presented on four charts titled Frequency Response Events as Normalized by FRO.

Analysis of this data indicates a single event based compliance measure is unsuitable for compliance evaluation when the data has the large degree of variability shown in these charts. Based on the field trial data provided, only 3 out of 19 BAs on the Western Interconnection would be compliant for all events with a standard based on a single event measure. Only 1 out of 31 BAs on the Eastern Interconnection would be compliant for all events with a standard based on a single event measure. The general consensus of the industry is that there is not a reliability issue with insufficient Frequency Response on any of the North American Interconnections at this time. Therefore, it is unreasonable to even consider a standard that would indicate over 90% of the BAs in North American to be non-compliant with respect to maintaining sufficient Frequency Response to maintain adequate reliability.

In an attempt to balance the workload of Balancing Authorities with the need for accuracy in the FRM, the standard will require at least 20 samples selected during the course of the year to compute the FRM. Research conducted by the FRSDT indicated that a Balancing Authority's FRM will converge to a reasonably stable value with at least 20 samples.

[^89]

Sample Size

In order to support field trial evaluations of sample size, sampling intervals, and aggregation techniques, the FRSDT will be retrieving scan rate data from the Balancing Authorities for each SEFRD. Additional frequency events may also be requested for research purposes, though they will not be included in the FRM computation.

FERC Order No. 693 directed the ERO (at P 375) to define the number of Frequency Response surveys that were conducted each year and to define a necessary amount of Frequency Response. R1 addresses both of these directives:

- There is a single annual survey of at least 20 events each year.
- The FRM calculated on FRS Form 1 is compared by the ERO against the FRO determined 12 months earlier (when the last FRS Form 1 was submitted) to verify the Balancing Authority provided its share of Interconnection Frequency Response.

Median as the Standard's Measure of Balancing Authority Performance

The FRSDT evaluated different approaches for "averaging" individual event observations to compute a technically sound estimate of Frequency Response Measure. The MW contribution for a single BA in a multi-BA Interconnection is small compared to the minute to minute changes in load, interchange and generation. For example, a 3000 MW BA in the east-Eastern Interconnection may only be called on to contribute 10MW for the loss of a 1000MW. The 10 MW of governor and load response may easily be masked as a coincident change in load.

In general, statisticians use the median as the best measure of central tendency when a population has outliers. Two independent reviews by the FRSDT has shown the Median to be less influenced by noise in the measurement process and the team has chosen the median as the initial metric for calculating the BAs' Frequency Response Measure.

The FRSDT performed extensive empirical studies and engaged in lively discussions in an attempt to determine the best aggregation technique for a sample set size of at least 20 events. Mean, median, and linear regression techniques were used on a trial basis with the data that was available during the early phases of the effort.

A key characteristic of the "aggregation challenge" is related to the use of actual net interchange data for measuring frequency response. The tie line flow measurements are varying continuously due to other operational phenomena occurring concurrently with the provision of frequency response. (See Appendix 1 for details.) All samples have "noise" in them, as most operational personnel who have computed the frequency response of their BA can attest. What has also become apparent to the FRSDT is that while the majority of the frequency response samples have similar levels of noise in them, a few of the samples may have much larger errors in them than the others that result in unrepresentative results. And with the sample set size of interest, it is common to have unrepresentative errors in these few samples to be very large and asymmetric. For example, one BA's subject matter expert observed recently that 4 out of 31 samples had a much larger error contribution than the other 27 samples, and that 3 out of 4 of the very high error samples grossly underestimated the frequency response. The median value demonstrated greater resiliency to this data quality problem than the mean with this data set. (The median has also demonstrated superiority to
linear regression in the presence of these described data quality problems in other analyses conducted by the FRSDT, but the linear regression showed better performance than the mean.)

The above can be demonstrated with a relatively simple example. Let's assume that a Balancing Authority's true frequency response has an average value of $-200 \mathrm{MW} / .1 \mathrm{~Hz}$. Let's also assume that this Balancing Authority installed "special" perfect metering on key loads and generators, so that we could know the true frequency response of each sample. And then we will compare them with that measured by typical tie line flow metering, with the kind of noise and error that occurs commonly and "not so commonly". Let's start with the following 4 samples having a common level of noise, with MW/ .1 Hz as the unit of measurement.

Perfect measurement	Noise	Samples from tie lines
-190	-30	-220
-210	-20	-230
-220	10	-210
-180	20	-160
-200	Mean	-205
-200	Median	-215

Now let's add a fifth sample, which is highly contaminated with noise and error that grossly underestimates frequency response.

Perfect measurement	Noise	Samples from tie lines
-190	-30	-220
-210	-20	-230
-220	10	-210
-180	20	-160
-200	250	+50
-200	Mean	-154
-200	Median	-210

It is clear from the above simplistic example that the mean drops by about 25% while the median is affected minimally by the single highly contaminated value.

Based on the analyses performed thus far, the FRSDT believes that the median's superior resiliency to this type of data quality problem makes it the best aggregation technique at this time. However, the FRSDT sees merit and promise in future research with sample filtering combined with a technique such as linear regression.

When compared with the mean, linear regression shows superior performance with respect to the elimination of noise because the measured data is weighted by the size of the frequency change associated with the event. Since the noise is independent from frequency change, the greater weighting on larger events provides a superior technique for reducing the effect of noise on the results.

However, linear regression does not provide a better method when dealing with a few samples with large magnitudes of noise and unrepresentative error. There are only two alternatives to improve over the use of median when dealing with these larger unrepresentative errors:

1. Increase the sample size, or
2. Actively eliminate outliers due to unrepresentative error.

Unfortunately, the first alternative, increasing the sample size is not available because significantly more sample events are not available within the measurement time period of one year. Linear regression techniques are being investigated that have an active outlier elimination algorithm that would eliminate data that lie outside ranges of the 96th percentile and 99th percentile, for example.

Still, the use of linear regression has value in the context of this standard. The NERC Resources Subcommittee will use linear regression to evaluate Interconnection frequency response, particularly to evaluate trends, seasonal impacts, time of day influences, etc. The Good Practices and Tools section of this document outlines how a BA can use linear regression to develop a predictive tool for its operators.

Additional discussion on this topic is contained in "Appendix 1 - Data Quality Concerns Related to the Use of Actual Net Interchange Value" of this document.

The NERC Frequency Response Initiative Report addressed the relative merits of using the median versus linear regression for aggregating single event frequency response samples into a frequency response measurement score for compliance evaluation. This report provided 11 evaluation criteria as a basis for recommending the use of linear regression instead of the median for the frequency response measurement aggregation technique. The FRSDT made its own assessment on the basis of these evaluation criteria on September 20, 2012, but concluded that the median would be the best aggregation technique to use initially when the relative importance of each criterion was considered. A brief summary of the FRSDT majority consensus on the basis of each evaluation criterion is provided below.

- Provides two dimensional measurement - The FRSDT agrees that the two dimensional concept is a useful way to perceive frequency response characteristics, and that it may be useful for potential future modeling activities. Better data quality would increase support for such future efforts, and the use of the median for initial compliance evaluations within BAL-003-1 should not hinder any such effort. The FRSDT perceived this as a mild advantage for linear regression.
- Represents nonlinear characteristics - With considerations similar to those applied to the previous criterion, the FRSDT perceived this as a mild advantage for linear regression.
- Provides a single best estimator - The FRSDT putgave minimal importance to the characteristic of the median averaging the middle values when used with an even number of samples.
- Is part of a linear system - With considerations similar to those applied to the first two criteria, the FRSDT perceived this as a mild advantage for linear regression (particularly in the modeling area.)
- Represents bimodal distributions - The FRSDT putgave minimal weight of this criterion, as a change in Balancing Authority footprint does not seem to be addressed adequately by any aggregation technique.
- Quality statistics available - The FRSDT perceived this as a mild advantage for linear regression in that the statistics would be coupled directly to the compliance evaluation. The FRSDT also included this criterion as part of the modeling advantages cited above.

The FRSDT supports collecting data and performing quality statistical analysis. If it is determined that the use of the median, as opposed to a mean or linear regression aggregation, is yielding undesirable consequences, the FRSDT recommends that other aggregation techniques be re-evaluated at that time.

- Reducing influence of noise - This is the dominant concern of the FRSDT, and it perceives the median to have a major advantage over linear regression in addressing noise in the change in actual net interchange calculation. The FRSDT bases this judgment on: prior FRSDT studies that have shown that the median produces more stable results; the data used in the NERC Frequency Response Initiative document exhibits large quantities of noise; prior efforts of FRSDT members in performing frequency response sampling for their own Balancing Authorities over many years; and similar observations of noise in the CERTS frequency Monitoring Application. The FRSDT has serious concerns that the influence of noise has a greater tendency to yield a "false positive" compliance violation with linear regression than with the median. Also, limited studies performed by the FRSDT indicates the possibility that the resultant frequency response measure would yield more measurement variation across years with linear regression versus the median while the actual Balancing Authority performance remains unchanged.
- Reducing the influence of outliers - This is related to the previous criterion. The FRSDT recognizes four main sources of noise: concurrent operating phenomena (described elsewhere in this document), transient tie line flows for nearby contingencies, data acquisition time skew in tie line data measurements, and time skew and data compression issues in archiving techniques and tools such as PI. Some outliers may be caused in part by true variation in the actual frequency response, and it is desirable to include those in the frequency response measure. The FRSDT supports efforts in the near future to distinguish between outliers caused by noise versus true frequency response, and progress in this area may make it feasible and desirable to replace the median with linear regression, or some other validated technique. The FRSDT does note that this is a substantial undertaking, and it would require substantial input from a sufficient number of experts to help distinguish noise from true frequency response.
- Easy to calculate - The FRSDT perceives this to be a minor to moderate advantage for the median. However, more complex (but reasonably so) techniques would receive more support if clear progress can be made in noise elimination.
- Familiar indicator - The FRSDT perceives this to be a minor to moderate advantage for the median. However, more complex (but reasonably so) techniques would receive more support if clear progress can be made as a result of noise elimination.
- Currently used as a measure in BAL-003 - The present standard refers to an average and does not provide specific guidance on the computation of that average, but the FRSDT puts minimal weight on this evaluation criterion.

In summary, the FRSDT perceives an approximate balance between the modeling advantage for linear regression and the simplicity advantage of the median. However, the clear determinant in endorsing the use of the median is the data quality issue related to concurrent operational phenomena, transient tie line flows, and data acquisition and archiving limitations.

FERC Order No. 693 also directed the Standard (at P 375) to identify methods for Balancing Authorities to obtain Frequency Response. Requirement R1 allows Balancing Authorities to participate in Frequency Response Sharing Groups (FRSGs) to provide or obtain Frequency Response. These may be the same FRSGs that cooperate for BAL-002-0 or may be FRSGs that form for the purposes of BAL-003-1.

If BAs participate as an FRSG for BAL-003-1, compliance is based on the sum of the participants' performance.

Two other ways that BAs could obtain Frequency Response are through Supplemental Service or Overlap Regulation Service:

- No special action is needed if a BA provides or receives supplemental regulation. If the regulation occurs via Pseudo Tie, the transfer occurs automatically as part of Net Actual Interchange (NIA) and in response to information transferred from recipient to provider.
- If a BA provides overlap regulation, its FRS Form 1 will include the Frequency Bias setting as well as peak load and generation of the combined Balancing Authority Areas. The FRM event data will be calculated on the sum of the provider's and recipient's performance.

In the Violation Severity Levels for Requirement R1, the impact of a BA not having enough frequency response depends on two factors:

- Does the Interconnection have sufficient response?
- How short is the BA in providing its FRO?

The VSL takes these factors into account. While the VSLs look different than some other standards, an explanation would be helpful.

VSLs are a starting point for the enforcement process. The combination of the VSL and VRF is intended to measure a violation's impact on reliability and thus levy an appropriate sanction. Frequency Response is an interconnection-wide resource. The proposed VSLs are intended to put multi-BA Interconnections on the same plane as single-BA Interconnections.

Consider a small BA whose performance is 70% of its FRO. If all other BAs in the Interconnection are compliant, the small BA's performance has negligible impact on reliability, yet would be sanctioned at the same level as a $B A$ who was responsible for its entire Interconnection. It is not rational to sanction this BA the same as a single BA Interconnection that had insufficient Frequency Response, because this would treat multi-BA Interconnections more harshly than single BA Interconnections on a significant scale.

The "Lower" and "Medium" VSLs say that the Interconnection has sufficient Frequency Response but individual BAs are deficient by small or larger amounts respectively. The High and Severe VSLs say the Interconnection does not meet the FRO and assesses sanctions based on whether the BA is deficient by a small or larger amount respectively.

Requirement 2

R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined in accordance withsubject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO.

Background and Rationale

Attachment A of the Standard discusses the process the ERO will follow to validate the BA's FRS Form 1 data and publish the official Frequency Bias Settings. Historically, it has taken multiple rounds of validation and outreach to confirm each BA's data due to transcription errors, misunderstanding of instructions, and other issues. While BAs historically submit Bias Setting data by January 1, it often takes one or more months to complete the process.

The target is to have BAs submit their data by January 10. The BAs are given 30 days to assemble their data since the BAs are dependent on the ERO to provide them with FRS Form 1, and there may be process delays in distributing the forms since they rely on identification of frequency events through November 30 of the preceding year.

Frequency Bias Settings generally change little from year to year. Given the fact that BAs can encounter staffing or EMS change issues coincident with the date the ERO sets for new Frequency Bias Setting implementation, the standard provides a 24 hour window on each side of the target date.

To recap the annual process:

1. The ERO posts the official list of frequency events to be used for this Standard in early December. The FRS Form 1 for each Interconnection will be posted shortly thereafter.
2. The Balancing Authority submits its revised annual Frequency Bias Setting value to NERC by January 10.
3. The ERO and the Resources Subcommittee validate Frequency Bias Setting values, perform error checking, and calculate, validate, and update CPS2 L10 values. This data collection and validation process can take as long as two months.
4. Once the L10 and Frequency Bias Setting values are validated, The ERO posts the values for the upcoming year and also informs the Balancing Authorities of the date on which to implement revised Frequency Bias Setting values. Implementation typically would be on or about March $1^{\text {st }}$ of each year.

BAL-003-0.1b standard requires a minimum Frequency Bias Setting equal in absolute value to one percent of the Balancing Authority's estimated yearly peak demand (or maximum generation level if native load is not served). For most Balancing Authorities this calculated amount of Frequency Bias is significantly greater in absolute value than their actual Frequency Response characteristic (which represents an over-bias condition) resulting in over-control
since a larger magnitude response is realized. This is especially true in the Eastern Interconnection where this condition requires excessive secondary frequency control response which degrades overall system performance and increases operating cost as compared to requiring an appropriate balance of primary and secondary frequency control response.

Balancing Authorities were given a minimum Frequency Bias Setting obligation because there had never been a mandatory Frequency Response Obligation. This historic "one percent of peak per 0.1 Hz " obligation, dating back to NERC's predecessor, NAPSIC, was intended to ensure all BAs provide some support to Interconnection frequency.

The ideal system control state exists when the Frequency Bias Setting of the Balancing Authority exactly matches the actual Frequency Response characteristic of the Balancing Authority. If this is not achievable, over-bias is significantly better from a control perspective than under-bias with the caveat that Frequency Bias is set relatively close in magnitude to the Balancing Authority actual Frequency Response characteristic. Setting the Frequency Bias to better approximate the Balancing Authority natural Frequency Response characteristic will improve the quality and accuracy of ACE control, CPS \& DCS and general AGC System control response. This is the technical basis for recommending an adjustment to the long standing " 1% of peak/0.1Hz" Frequency Bias Setting. The Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard is intended to bring the Balancing Authorities' Frequency Bias Setting closer to their natural Frequency Response. Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard balances the following objectives:

- Bring the Frequency Bias Setting and Frequency Response closer together.
- Allow time to analyze impact on other Standards (CPS, BAAL and to a lesser extent DCS) by adjustments in the minimum Frequency Bias Setting, by accommodating only minor adjustments.
- Do not allow the Frequency Bias Setting minimum to drop below natural Frequency Response, because under-biasing could affect an Interconnection adversely.

Additional flexibility has been added to the Frequency Bias Setting based on the actual Frequency Response (FRM) by allowing the Frequency Bias Setting to have a value in the range from 100% of FRM to 125% of FRM. This change has been included for the following reasons:

- When the new standardized measurement method is applied to BAs with a Frequency Response close to the interconnection minimum response, the requirement to use FRM is as likely to result in a Frequency Bias Setting below the actual response as it is to result in a response above the actual response. From a reliability perspective, it is
always better to have a Frequency Bias Setting slightly above the actual Frequency Response.
- As with single $B A$ interconnections, the tuning of the control system may require that the BA implement a Frequency Response Setting slightly greater in absolute terms than its actual Frequency Response to get the best performance.
- The new standardized measurement method for determining FRM in some cases results in a measured Frequency Response significantly lower than the previous methods used by some BAs. It is desirable to not require significant change in the Frequency Bias Setting for these BAs that experience a reduction in their measured Frequency Response.

Requirement 3

R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias Setting that is:

- Less than zero at all times, and
- Equal to or more negative than its Frequency Response Obligation when the Frequency varies from 60 Hz by more that +/- 0.036 Hz .

Background and Rationale

In multi-Balancing Authority interconnections, the Frequency Bias Setting should be coordinated among all BAs on the interconnection. When there is a minimum Frequency Bias Setting requirement, it should apply for all BAs. However, BAs using a variable Frequency Bias Setting may have non-linearity in their actual response for a number of reasons including the dead-bands implemented on their generator governors. The measurement to ensure that these BAs are conforming to the interconnection minimum is adjusted to remove the deadband range from the calculated average Frequency Bias Setting actually used. For BAs using variable bias, FRS Form 1 has a data entry location for the previous year's average monthly Bias. The Balancing Authority and the ERO can compare this value to the previous year's Frequency Bias Setting minimum to ensure R3 has been met.

On single BA interconnections, there is no need to coordinate the Frequency Bias Setting with other BAs. This eliminates the need to maintain a minimum Frequency Bias Setting for any reason other than meeting the reliability requirement as specified by the Frequency Response Obligation.

Requirement 4

R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation, in order to represent the Frequency Bias Setting for the combined Balancing Authority Area, to be equivalent to either:

- The sum of the Frequency Bias Settings as shown on FRS Form 1 and FRS Form 2 for the participating Balancing Authorities as validated by the ERO, or
- The Frequency Bias Setting as shown on FRS Form 1 and FRS Form 2 for the entirety of the participating Balancing Authorities' Areas.

Background and Rationale

This requirement reflects the operating principles first established by NERC Policy 1 and is similar to Requirement R6 of the approved BAL-003-0.1b standard. Overlap Regulation Service is a method of providing regulation service in which the Balancing Authority providing the regulation service incorporates another Balancing Authority's actual interchange, frequency response, and schedules into the providing Balancing Authority's AGC/ACE equation.

As noted earlier, a BA that is providing Overlap Regulation will report the sum of the Bias Settings in its FRS Form 1. Balancing Authorities receiving Overlap Regulation Service have an ACE and Frequency Bias Setting equal to zero (0).

How this Standard Meets the FERC Order 693 Directives

FERC Directive

The following is the relevant paragraph of Order No. 693.
Accordingly, the Commission approves Reliability Standard BAL-003-0 as mandatory and enforceable. In addition, the Commission directs the ERO to develop a modification to BAL-003-0 through the Reliability Standards development process that: (1) includes Levels of Non-Compliance; (2) determines the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other requirements of the Reliability Standard are being met, and to modify Measure M1 based on that determination and (3) defines the necessary amount of Frequency Response needed for Reliable Operation for each balancing authority with methods of obtaining and measuring that the frequency response is achieved.

1. Levels of Non-Compliance

VRFs and VSLs are an equally effective way of assigning compliance elements to the standard.
2. Determine the appropriate periodicity of frequency response surveys necessary to ensure that Requirement R2 and other Requirements of the Reliability Standard are met
BAL-003 V0 R2 (the basis of Order No. 693) deals with the calculation of Frequency Bias Setting such that it reflects natural Frequency Response.

The drafting team has determined that a sample size on the order of at least 20 events is necessary to have a high confidence in the estimate of a BA's Frequency Response. Selection of the frequency excursion events used for analysis will be done via a method outlined in Attachment A to the Standard.

On average, these events will represent the largest 2-3 "clean" frequency excursions occurring each month.

Since Frequency Bias Setting is an annual obligation, the survey of the at least 20 frequency excursion events will occur once each year.

3. Define the necessary amount of Frequency Response needed for Reliable Operation for each Balancing Authority with methods of obtaining and measuring that the frequency response is achieved

Necessary Amount of Frequency Response

The drafting team has proposed the following approach to defining the necessary amount of frequency response. In general, the goal is to avoid triggering the first step of under-frequency load shedding (UFLS) in the given Interconnection for reasonable contingencies expected. The
methodology for determining each Interconnection's and Balancing Authority's obligation is outlined in Attachment A to the Standard.

It should be noted the standard cannot guarantee there will never be a triggering of UFLS as the magnitude of "point C" differs throughout an interconnection during a disturbance and there are local areas that see much wider swings in frequency.

The contingency protection criterion is the largest reasonably expected contingency in the Interconnection. This can be based on the largest observed credible contingency in the previous 10 years or the largest Category C event for the Interconnection.

Attachment A to the standard presents the base obligation by Interconnection and adds a Reliability Margin. The Reliability Margin included addresses the difference between Points B and C and accounts for variables.

For multiple BA interconnections, the Frequency Response Obligation is allocated to BAs based on size. This allocation will be based on the following calculation:

$$
\mathrm{FRO}_{\mathrm{BA}}=\mathrm{FRO}_{\mathrm{Int}} \times \frac{\text { Annual } \mathrm{Gen}_{\mathrm{BA}}+\text { Annual } \operatorname{Load}_{\mathrm{BA}}}{\text { Annual Gen }}
$$

Methods of Obtaining Frequency Response

The drafting team believes the following are valid methods of obtaining Frequency Response:

- Regulation services.
- Contractual service. The drafting team has developed an approach to obtain a contractual share of Frequency Response from Adjacent Balancing Authorities. See FRS Form 1. While the final rules with regard to contractual services are being defined, the current expectation is that the ERO and the associated Region(s) should be notified beforehand and that the service be at least 6 months in duration.
- Through a tariff (e.g. Frequency Response and regulation service).
- From generators through an interconnection agreement.
- Contract with an internal resource or loads (The drafting team encourages the development of a NAESB business practice for Frequency Response service for linear (droop) and stepped (e.g. LaaR in Texas) response).

Since NERC standards should not prescribe or preclude any particular market related service, BAs and FRSGs may use whatever is most appropriate for their situation.

Measuring that the Frequency Response is Achieved

FRS Form 1 and the underlying data retained by the BA will be used for measuring whether Frequency Response was provided. FRS Form 1 will provide the guidance on how to account for and measure Frequency Response.

Going Beyond the Directive

Based on the combined operating experience of the SDT, the drafting team consensus is that each Interconnection has sufficient Frequency Response. If margins decline, there may be a need for additional standards or tools. The drafting team and the Resources Subcommittee are working with the ERO on its Frequency Response Initiative to develop processes and good practices so the Interconnections are prepared. These good practices and tools are described in the following section.

The drafting team is also evaluating a risk-based approach for basing the Interconnection Frequency Response Obligation on an historic probability density of frequency error, and for allocating the obligation on the basis of the Balancing Authority's average annual ACE share of frequency error. This allocation method uses the inverse of the rationale for allocating the CPS1 epsilon requirement by Bias share.

Good Practices and Tools

Background

This section outlines tips and tools to help Balancing authorities meet the Frequency Response Standard or to operate more reliably. If you have suggested additions, please send them to balancing@nerc.com.

Identifying and Estimating Frequency Responsive Reserves

Knowing the quantity and depth of frequency responsive reserves in real time is a possible next step to being better prepared for the next event. The challenge in achieving this is having the knowledge of the capabilities of all sources of frequency response. Presently the primary source of Frequency Response remains with the generation resources in our fleets.

Understanding how each of these sources performs to changes in system frequency and knowing their limitations would improve the BA's ability to measure frequency responsive reserves. Presently there are only guidelines, criteria and protocols in some regions of the industry that identify specific settings and performance expectations of Primary Frequency Response of resources.

One method of gaining a better understanding of performance is to measure performance during actual events that occur on the system. Measuring performance during actual events would only provide feedback for performance during that specific event and would not provide insight into depth of response or other limitations.

Repeated measurements will increase confidence in expected performance. NERC modeling standards are in process to be revised that will improve the BA's insight into predicting available frequency responsive reserves. However, knowing how resources are operated, what modes of operation provide sustained Primary Frequency Response and knowing the operating range of this response would give the BA the knowledge to accurately predict frequency response and the amount of frequency responsive reserves available in real time.

Some benefits have been realized by communicating to generation resources (GO) the importance of operating in modes that allow Primary Frequency Response to be sustained by the control systems of the resource. Other improvements in implementation of Primary Frequency Response have been achieved through improved settings on turbine governors through the elimination of "step" frequency response with the simultaneous reduction in governor dead-band settings.

Improvements in the full AGC control loop of the generating resource, which accounts for the expected Primary Frequency Response, have improved the delivery of quality Primary Frequency Response while minimizing secondary control actions of generators. Some of these actions can provide quick improvement in delivery of Primary Frequency Response.

Once Primary Frequency Response sources are known, the BA could calculate available reserves that are frequency responsive. Planning for these reserves during normal and emergency operations could be developed and added to the normal planning process.

Using FRS Form 1 Data

The information collected for this standard can be supplemented by a few data points to provide the Balancing Authority useful tools and information. The BA could do a regression analysis of its frequency response against the following values:

- Load (value A).
- Interchange (Value A).
- Total generation.
- Spinning reserve.

While the last two values above are not part of Form 1, they should be readily available. Small BAs might even include headroom on its larger generators as part of the regression.

The regression would provide a formula the BA could program in its EMS to present the operator a real time estimate of the BA's Frequency Response.

Statistical outliers in the regression would point to cases meriting further inspection to find causes of low Frequency Response or opportunities for improvement.

Tools

Single generating resource performance evaluation tools for steam turbine, combustion turbine (simple cycle or combined cycle) and for intermittent resources are available at the following link. http://texasre.org/standards rules/standardsdev/rsc/sar003/Pages/Default.aspx.

These tools and the regional standard associated with them are in their final stages of development in the Texas region.

These tools will be posted on the NERC website.

References

NERC Frequency Response Characteristic Survey Training Document (Found in the NERC Operating Manual)

NERC Resources Subcommittee Position Paper on Frequency Response
NERC TIS Report Interconnection Criteria for Frequency Response Requirements (for the Determination Interconnection Frequency Response Obligations (IFRO)

Frequency Response Standard Field Trial Analysis, September 17, 2012

Appendix 1 - Data Quality Concerns Related To The Use Of The Actual Net Interchange Value

Actual net interchange for a typical Balancing Authority (BA) is the summation of its tie lines to other BAs. In some cases, there are pseudo-ties in it which reflect the effective removal or addition of load and/or generation from another BA, or it could include supplemental regulation as well. But in the typical scenario, actual net interchange values that are extracted from EMS data archiving can be influenced by data latency times in the data acquisition process, and also any timestamp skewing in the archival process.

Of greater concern, however, are the inevitable variations of other operating phenomena occurring concurrently with a frequency event. The impacts of these phenomena are superimposed on actual net interchange values along with the frequency response that we wish to measure through the use of the actual net interchange value.

To explore this issue further, let's begin with the idealized condition:

- frequency is fairly stable at some value near or a little below 60 Hz
- ACE of the non-contingent BA of interest is 0 and has been 0 for an extended period, and AGC control signals have not been issued recently
- Actual net interchange is "on schedule", and there are no schedule changes in the immediate future
- BA load is flat
- All generators not providing AGC are at their targets
- Variable generation such as wind and solar are not varying
- Operators have not directed any manual movements of generation recently

And when the contingency occurs in this idealized state, the change in actual net interchange will be measuring only the decline in load due to lesser frequency and generator governor response, and, none of the contaminating influences. While the ACE may become negative due to the actual frequency response being less than that called for by the frequency bias setting within the BA's AGC system, this contaminating influence on measuring frequency response will not appear in the actual net interchange value if the measurement interval ends before the generation on AGC responds.

Now let's explore the sensitivity of the resultant frequency response sampling to the relaxation of these idealized circumstances.

1. The " 60 Hz load" increases moderately due to time of day concurrent with the frequency event. If the frequency event happens before AGC or operator-directed manual load adjustments occur, then the actual net interchange will be reduced by the moderate increase in load and the frequency response will be underestimated. But if the frequency event happens while AGC response and/or manual adjustments occur, then the actual net interchange will be increased by the AGC response (and/or manual adjustments) and the frequency response will be overestimated.
2. The " 60 Hz load" decreases moderately due to time of day concurrent with the frequency event. If the frequency event happens before AGC or operator-directed manual load adjustments occur, then the actual net interchange will be increased by the moderate reduction in load and the frequency response will be overestimated. But if the frequency event happens while AGC response and/or manual adjustments occur, then the actual net interchange will be decreased by the AGC response (and/or manual adjustments) and the frequency response will be underestimated.
3. In anticipation of increasing load during the next hour, the operator increases manual generation before the load actually appears. If the frequency event happens while the generation "leading" the load is increasing, then the actual net interchange will be increased by the increase in manual generation and the frequency response will be overestimated. But if the frequency event occurs when the result of AGC signals sent to offset the operator's leading actions take effect, then the actual net interchange will be decreased and the frequency response is underestimated.
4. In anticipation of decreasing load during the next hour, the operator decreases manual generation before the load actually declines. If the frequency event happens while the generation "leading" the load downward is decreasing, then the actual net interchange will be decreased by the reduction in manual generation and the frequency response will be underestimated. But if the frequency event occurs when the result of AGC signals sent to offset the operator's leading actions take effect, then the actual net interchange will be increased and the frequency response is overestimated.
5. A schedule change to export more energy is made at 5 minutes before the top of the hour. The BA's " 60 Hz load" is not changing. The schedule change is small enough that the operator is relying on upward movement of generators on AGC to provide the additional energy to be exported. The time at which the AGC generators actually begin to provide the additional energy is dependent on how much time passes before the AGC algorithm gets out of its deadbands, the individual generator control errors get large enough for sending out the control signal, and maybe 20 seconds to 3 minutes for the response to be effected. The key point here is that it is not clear when the effects of a schedule change, as manifested in a change in generation and then ultimately a change in actual net interchange, will occur.
6. With the expected penetration of wind in the near future, unanticipated changes in their output will tend to affect actual net interchange and add noise to the frequency response observation process.

To a greater or lesser extent, 1 through 4 above are happening continuously for the most part with most BAs in the Eastern and Western Interconnections. The frequency response is buried within the typical hour to hour operational cacophony superimposed on actual net interchange values. The choice of metrics will be important to artfully extract frequency response from the noise and other unrepresentative error.

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Project 2007-12 Frequency Response BAL-003-1

Mapping Document

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting		
Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
R1. Each Balancing Authority shall	This	Attachment A
review its Frequency Bias Settings by January 1 of each year and recalculate its setting	Requirement has been moved into	Balancing Authorities that merge or that transfer load or generation are encouraged to notify the ERO of the change
to reflect any change in the Frequency Response of the	BAL-003-1 Attachment A	in footprint and corresponding changes in allocation such that the net obligation to the Interconnection remains the
Balancing Authority Area. R1.1. The Balancing Authority may change its Frequency	\& FRS Form 1 as described in the Proposed	same and so that CPS limits can be adjusted. Each Balancing Authority reports its previous year's
Bias Setting, and the method used to determine	Language Section	Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the
the setting, whenever any of the factors used to		ERO each year to allow the ERO to validate the revised Frequency Bias Settings on FRS Form 1. If the ERO posts
value change. R1.2. Each Balancing Authority		the official list of events after the date specified in the timeline below, Balancing Authorities will be given 30 days
shall report its Frequency Bias Setting, and method		from the date the ERO posts the official list of events to

Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
for determining that setting, to the NERC Operating Committee.		submit their FRS Form 1. AND FRS Form 1 Note: Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1.
R2. Each Balancing Authority shall establish and maintain a Frequency Bias Setting that is as close as practical to, or greater than, the Balancing Authority's Frequency Response. Frequency Bias may be calculated several ways: R2.1. The Balancing Authority may use a fixed Frequency Bias value which is based on a fixed, straight-line function of Tie Line deviation versus Frequency Deviation. The	This Requirement is included in BAL-003-1 as described in the Proposed Language Section.	R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO. R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and is utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias setting that is:

Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
Balancing Authority shall determine the fixed value by observing and averaging the Frequency Response for several Disturbances during on-peak hours. R2.2. The Balancing Authority may use a variable (linear or non-linear) bias value, which is based on a variable function of Tie Line deviation to Frequency Deviation. The Balancing Authority shall determine the variable frequency bias value by analyzing Frequency Response as it varies with factors such as load, generation, governor characteristics, and frequency.		3.1 Less than zero at all times, and 3.2 Equal to or more negative than its Frequency Response Obligation when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$. AND Attachment A Each Balancing Authority reports its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO each year to allow the ERO to validate the revised Frequency Bias Settings on FRS Form 1. If the ERO posts the official list of events after the date specified in the timeline below, Balancing Authorities will be given 30 days from the date the ERO posts the official list of events to submit their FRS Form 1. AND FRS Form 1

Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
		Note : Balancing Authorities with variable Frequency Bias Settings shall calculate monthly average Frequency Bias Settings. The previous year's monthly averages will be reported annually on FRS Form 1. AND A portion of this Requirement is being phased out in accordance with the process detailed in the Procedure. This phase out is intended to bring the Frequency Bias Setting closer or equal to the natural Frequency Response.
R3. Each Balancing Authority shall operate its Automatic Generation Control (AGC) on Tie Line Frequency Bias, unless such operation is adverse to system or Interconnection reliability.	This Requirement has been removed from the BAL-003-1 standard.	This Requirement has been removed from proposed standard BAL-003-I. It is duplicative of BAL-005-0.1b Requirements R6 and R7. BAL-005-0.1b R6. The Balancing Authority's AGC shall compare total Net Actual Interchange to total Net Scheduled Interchange plus Frequency Bias obligation to determine the Balancing Authority's ACE. Single Balancing Authorities operating asynchronously may employ alternative ACE calculations such as (but not limited to) flat frequency control. If a Balancing Authority is unable to calculate ACE for more than 30 minutes it shall notify its

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting

| Requirement in Approved Standard |
| :--- | :--- | :--- |

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting		
Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
schedules (B and C). R4.2. The Balancing Authorities that have a fixed schedule (B and C) but do not contain the Jointly Owned Unit shall not include their share of the governor droop response in their Frequency Bias Setting.		
R5. Balancing Authorities that serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of the Balancing Authority's estimated yearly peak demand per 0.1 Hz change. R5.1. Balancing Authorities that do not serve native load shall have a monthly average Frequency Bias Setting that is at least 1% of its estimated maximum generation level in the coming year per 0.1 Hz change.	This Requirement has been combined into Requirements R2 and R3 of BAL-003-1.	R2. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection and is not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting shall implement the Frequency Bias Setting determined subject to Attachment A, as validated by the ERO, into its Area Control Error (ACE) calculation during the implementation period specified by the ERO. R3. Each Balancing Authority that is a member of a multiple Balancing Authority Interconnection, is not receiving Overlap Regulation Service and is utilizing a variable Frequency Bias Setting shall maintain a Frequency Bias setting that is: 3.1 Less than zero at all times, and 3.2 Equal to or more negative than its Frequency

Standard: BAL-003-1 Frequency Response and Frequency Bias Setting

Requirement in Approved Standard	Translation to New Standard or Other Action	Proposed Language in BAL-003-1/Comments
		Response Obligation when Frequency varies from 60 Hz by more than $+/-0.036 \mathrm{~Hz}$.
R6. A Balancing Authority that is performing Overlap Regulation Service shall increase its Frequency Bias Setting to match the frequency response of the entire area being controlled. A Balancing Authority shall not change its Frequency Bias Setting when performing Supplemental Regulation Service.	This Requirement has been moved into BAL-003-1 Requirement R4.	R4. Each Balancing Authority that is performing Overlap Regulation Service shall modify its Frequency Bias Setting in its ACE calculation, in order to represent the Frequency Bias Setting for the combined Balancing Authority Area, to be equivalent to either: - The sum of the Frequency Bias Settings as shown on FRS Form 1 and FRS Form 2 for the participating Balancing Authorities as validated by the ERO, or - The Frequency Bias Setting as shown on FRS Form 1 and FRS Form 2 for the entirety of the participating Balancing Authorities' Areas.

Violation Risk Factor and Violation Severity Level Assignments

Project 2007-12 - Frequency Response

This document provides the drafting team's justification for assigning draft standard Requirement violation risk factors (VRFs) and violation severity levels (VSLs) for:

- BAL-003-1 - Frequency Response and Frequency Bias Setting

Each primary Requirement is assigned a VRF and a set of one or more VSLs. These elements support the determination of an initial value range for the Base Penalty Amount regarding violation of requirements in FERC-approved Reliability Standards, as defined in the ERO Sanction Guidelines.

J ustification for Assignment of Violation Risk Factors

The Frequency Response Standard Drafting Team applied the following NERC criteria when proposing VRFs for the requirements under this project:

High Risk Requirement

A requirement that, if violated, could directly cause or contribute to bulk electric system instability, separation, or a cascading sequence of failures, or could place the bulk electric system at an unacceptable risk of instability, separation, or cascading failures; or, a requirement in a planning time frame that, if violated, could, under emergency, abnormal, or restorative conditions anticipated by the preparations, directly cause or contribute to bulk electric system instability, separation, or a cascading sequence of failures, or could place the bulk electric system at an unacceptable risk of instability, separation, or cascading failures, or could hinder restoration to a normal condition.

Medium Risk Requirement

A requirement that, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system. However, violation of a medium risk requirement is unlikely to lead to bulk electric system instability, separation, or cascading failures; or, a requirement in a planning time frame that, if violated, could, under emergency, abnormal, or restorative conditions anticipated by the preparations, directly and adversely affect the electrical state or capability of the bulk electric system, or the ability to effectively monitor, control, or restore the bulk electric system. However, violation of a medium risk requirement is unlikely, under emergency, abnormal, or restoration conditions anticipated by the preparations, to lead to bulk electric system instability, separation, or cascading failures, nor to hinder restoration to a normal condition.

Lower Risk Requirement

A requirement that is administrative in nature and a requirement that, if violated, would not be expected to adversely affect the electrical state or capability of the bulk electric system, or the
ability to effectively monitor and control the bulk electric system; or, a requirement that is administrative in nature and a requirement in a planning time frame that, if violated, would not, under the emergency, abnormal, or restorative conditions anticipated by the preparations, be expected to adversely affect the electrical state or capability of the bulk electric system, or the ability to effectively monitor, control, or restore the bulk electric system. A planning requirement that is administrative in nature.

The SDT also considered consistency with the FERC Violation Risk Factor Guidelines for setting VRFs ${ }^{1}$:

Guideline (1) - Consistency with the Conclusions of the Final Blackout Report

The Commission seeks to ensure that Violation Risk Factors assigned to Requirements of Reliability Standards in these identified areas appropriately reflect their historical critical impact on the reliability of the Bulk-Power System.

In the VSL Order, FERC listed critical areas (from the Final Blackout Report) where violations could severely affect the reliability of the Bulk-Power System: ${ }^{2}$

- Emergency operations
- Vegetation management
- Operator personnel training
- Protection systems and their coordination
- Operating tools and backup facilities
- Reactive power and voltage control
- System modeling and data exchange
- Communication protocol and facilities
- Requirements to determine equipment ratings
- Synchronized data recorders
- Clearer criteria for operationally critical facilities
- Appropriate use of transmission loading relief

Guideline (2) — Consistency within a Reliability Standard

The Commission expects a rational connection between the sub-Requirement Violation Risk Factor assignments and the main Requirement Violation Risk Factor assignment.

Guideline (3) - Consistency among Reliability Standards
The Commission expects the assignment of Violation Risk Factors corresponding to Requirements that address similar reliability goals in different Reliability Standards would be treated comparably.

[^90]Guideline (4) — Consistency with NERC's Definition of the Violation Risk Factor Level Guideline (4) was developed to evaluate whether the assignment of a particular Violation Risk Factor level conforms to NERC's definition of that risk level.

Guideline (5) — Treatment of Requirements that Co-mingle More Than One Obligation Where a single Requirement co-mingles a higher risk reliability objective and a lesser risk reliability objective, the VRF assignment for such Requirements must not be watered down to reflect the lower risk level associated with the less important objective of the Reliability Standard.

J ustification for Assignment of Violation Severity Levels:

In developing the VSLs for the standards under this project, the SDT anticipated the evidence that would be reviewed during an audit, and developed its VSLs based on the noncompliance an auditor may find during a typical audit. The SDT based its assignment of VSLs on the following NERC criteria:

Lower	Moderate	High	Severe
Missing a minor element (or a small percentage) of the required performance The performance or product measured has significant value as it almost meets the full intent of the requirement.	Missing at least one significant element (or a moderate percentage) of the required performance. The performance or product measured still has significant value in meeting the intent of the requirement.	Missing more than one significant element (or is missing a high percentage) of the required performance or is missing a single vital component. The performance or product has limited value in meeting the intent of the requirement.	Missing most or all of the significant elements (or a significant percentage) of the required performance. The performance measured does not meet the intent of the requirement or the product delivered cannot be used in meeting the intent of the requirement.

FERC VSL guidelines are presented below, followed by an analysis of whether the VSLs proposed for each requirement in this standard meet the FERC Guidelines for assessing VSLs:

Guideline 1: Violation Severity Level Assignments Should Not Have the Unintended Consequence of Lowering the Current Level of Compliance

Compare the VSLs to any prior levels of non-compliance and avoid significant changes that may encourage a lower level of compliance than was required when levels of non-compliance were used.

Guideline 2: Violation Severity Level Assignments Should Ensure Uniformity and Consistency in the Determination of Penalties

A violation of a "binary" type requirement must be a "Severe" VSL.
Do not use ambiguous terms such as "minor" and "significant" to describe noncompliant performance.

Guideline 3: Violation Severity Level Assignment Should Be Consistent with the Corresponding Requirement

VSLs should not expand on what is required in the requirement.

Guideline 4: Violation Severity Level Assignment Should Be Based on a Single Violation, Not on a Cumulative Number of Violations

Unless otherwise stated in the requirement, each instance of non-compliance with a requirement is a separate violation. Section 4 of the Sanction Guidelines states that assessing penalties per violation per day basis is the "default" for penalty calculations.

VRF and VSL J ustification

BAL-003-1 VRF and VSL Justifications

Discussion	
Proposed Lower VSL	The summation of the Balancing Authorities' FRM within an Interconnection was equal to or more negative than the Interconnection's FRO and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 1% but by at most 30% or 15 MW/0.1 Hz, whichever one is the greater deviation from its FRO
Proposed Moderate VSL	The summation of the Balancing Authorities' FRM within an Interconnection was equal to or more negative than the Interconnection's FRO and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 30% or by more than 15 MW/0.1 Hz , whichever is the greater deviation from its FRO
Proposed High VSL	The summation of the Balancing Authorities' FRM within an Interconnection did not meet its FRO and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 1% but by at most 30% or $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever one is the greater deviation from its FRO
Proposed Severe VSL	The summation of the Balancing Authorities' FRM within an Interconnection did not meet its FRO and the Balancing Authority's, or Frequency Response Sharing Group's, FRM was less negative than its FRO by more than 30% or by more than $15 \mathrm{MW} / 0.1 \mathrm{~Hz}$, whichever is the greater deviation from its FRO
Compliance with NERC Revised VSL Guidelines	The NERC VSL guidelines are satisfied by incorporating percentage of noncompliance performance for the calculated FRM being less negative than FRO.
FERC VSL G1 Discussion	This is not applicable since there was not a Requirement mandating a certain level of Frequency Response prior to this standard.
FERC VSL G2 Discussion	Proposed VSL's is not binary. Proposed VSL language does not include ambiguous terms and ensures uniformity and consistency in the determination of penalties based only on the amount the calculated FRM is less negative than FRO.
FERC VSL G3 Discussion	Proposed VSL's do not expand on what is required. The VSL's assigned only consider results of the calculation required. Proposed VSL's are consistent with the requirement.
FERC VSL G4 Discussion	Proposed VSL's are based on a single violation and not a cumulative violation methodology.

	Proposed VRF	Medium
	NERC VRF Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support f the contingency. This is consistent with the NERC definition.
	FERC VRF G1 Discussion	This Requirement is more administrative in nature requiring entities to implement the Frequency Bias Setting validated by the ERO. The requirement does not directly correlate to the list of critical areas identified in the FERC VRF Guideline 1. Guideline 1 appears to conflict with guideline 4. Guideline 1 identifies a list of topics that encompass nearly all topics within the NERC Reliability Standards and implies that these requirements should be assigned a High VRF. Guideline 4 directs assignment of VRFs based on the impact of a specific requirement on the reliability of the system. The SDT believes that Guideline 4 better reflects the intent for assigning VRFs for this standard since this approach is focused on the reliability impact of the requirement.
R2	FERC VRF G2 Discussion	Consistency within a Reliability Standard exists. This Requirement does not contain Parts. Requirement action is unique with respect to other standard requirements. All standard requirements have a common reliability focus relevant to Frequency Response and Frequency Bias Setting.
	FERC VRF G3 Discussion	The Requirement VRF is consistent with other BES standards addressing responsiveness. This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R1 which specifies a Lower VRF however BAL-003-1 Requirements R1, R3, and R4 specify a Medium VRF and the SDT believes it is appropriate for this Requirement to also possess a Medium VRF given the nature of the revision to BAL-003-0.1b.
	FERC VRF G4 Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support f the contingency. This is consistent with the NERC definition.
	FERC VRF G5 Discussion	This requirement does not co-mingle reliability objectives.

	Proposed Lower VSL	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting failed to implement the validated Frequency Bias Setting value into its ACE calculation within the implementation period specified but did so within 5 calendar days from the implementation period specified by the ERO.
	Proposed Moderate VSL	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 5 calendar days but less than or equal to 15 calendar days from the implementation period specified by the ERO.
	Proposed High VSL	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting implemented the validated Frequency Bias Setting value into its ACE calculation in more than 15 calendar days but less than or equal to 25 calendar days from the implementation period specified by the ERO.
	Proposed Severe VSL	The Balancing Authority in a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a fixed Frequency Bias Setting did not implement the validated Frequency Bias Setting value into its ACE calculation in more than 25 calendar days from the implementation period specified by the ERO.
	Compliance with NERC Revised VSL Guidelines	The NERC VSL guidelines are satisfied by incorporating increments for tardiness implementing the validated Frequency Bias Setting into the ACE calculation.
	FERC VSL G1 Discussion	This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R1 which specifies a Lower VRF. Proposed VSL's meet or exceed the current threshold of compliance.
	FERC VSL G2 Discussion	Proposed VSL's is not binary. Proposed VSL language does not include ambiguous terms and ensures uniformity and consistency in the determination of penalties based only on how late the validated Frequency Bias Setting is implemented.
	FERC VSL G3 Discussion	Proposed VSL's do not expand on what is required. The VSL's assigned only consider performance of required action. Proposed VSL's are consistent with the requirement.
	FERC VSL G4	Proposed VSL's are based on a single violation and not a cumulative

	Discussion	violation methodology.
R3	Proposed VRF	Medium
	NERC VRF Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting in its ACE equation and would provide support for a contingency. This is consistent with the NERC definition.
	FERC VRF G1 Discussion	This Requirement is more administrative in nature requiring entities to implement a Frequency Bias Setting validated by the ERO. The requirement does not directly correlate to the list of critical areas identified in the FERC VRF Guideline 1. Guideline 1 appears to conflict with guideline 4. Guideline 1 identifies a list of topics that encompass nearly all topics within the NERC Reliability Standards and implies that these requirements should be assigned a High VRF. Guideline 4 directs assignment of VRFs based on the impact of a specific requirement on the reliability of the system. The SDT believes that Guideline 4 better reflects the intent for assigning VRFs for this standard since this approach is focused on the reliability impact of the requirement.
	FERC VRF G2 Discussion	Consistency within a Reliability Standard exists. This Requirement does not contain Parts. Requirement action is unique with respect to other standard requirements. All standard requirements have a common reliability focus relevant to Frequency Response and Frequency Bias Setting.
	FERC VRF G3 Discussion	The Requirement VRF is consistent with other BES standards addressing responsiveness. This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R1 which specifies a Lower VRF however BAL-003-1 Requirements R1, R2, and R4 specify a Medium VRF and the SDT believes it is appropriate for this Requirement to also possess a Medium VRF given the nature of the revision to BAL-003-0.1b.
	FERC VRF G4 Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support for a contingency. This is consistent with the NERC definition.
	FERC VRF G5	This requirement does not co-mingle reliability objectives.

Discussion	
Proposed Lower VSL	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock- minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 1\% but by at most 10\%.
Proposed Moderate VSL	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock- minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 10\% but by at most 20\%.
Proposed High VSL	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock- minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response Obligation by more than 20\% but by at most 30\%.
Proposed Severe VSL	The Balancing Authority that is a member of a multiple Balancing Authority Interconnection and not receiving Overlap Regulation Service and uses a variable Frequency Bias Setting average Frequency Bias Setting during periods when the clock- minute average frequency was outside of the range 59.964 Hz to 60.036 Hz was less negative than its Frequency Response obligation by more than 30\%..
oERC VSL G1 Discussion	The NERC VSL guidelines are satisfied by incorporating percentage of noncompliance performance for the calculated average Frequency Bias Setting being less negative than its minimum as defined in Attachment B.
FERC VSL G2	This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R1 which specifies a Medium VRF. Proposed VSL’s meet or exceed the current threshold of compliance.
Discussion	Proposed VSL is not binary. Proposed VSL language does not include ambiguous terms and ensures uniformity and consistency in the determination of penalties based on the calculated average Frequency Bias Setting being less negative than its minimum as defined in Attachment B.

	FERC VSL G3 Discussion	Proposed VSL does not expand on what is required. The VSLs assigned only consider compliance with the Frequency Bias Setting calculation and implementation required. Proposed VSL's are consistent with the requirement.
	FERC VSL G4 Discussion	Proposed VSL's are based on a single violation and not a cumulative violation methodology.
	Proposed VRF	Medium
	NERC VRF Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the previous year's Frequency Bias Setting already in its ACE equation and would provide support f the contingency. This is consistent with the NERC definition. In addition, this Requirement VRF is consistent with the BAL-003-0 Requirement which has been approved by FERC.
R4	FERC VRF G1 Discussion	This Requirement is more administrative in nature requiring entities providing Overlap Regulation Services to correctly increase its Frequency Bias Setting. The requirement does not directly correlate to the list of critical areas identified in the FERC VRF Guideline 1. Guideline 1 appears to conflict with guideline 4. Guideline 1 identifies a list of topics that encompass nearly all topics within the NERC Reliability Standards and implies that these requirements should be assigned a High VRF. Guideline 4 directs assignment of VRFs based on the impact of a specific requirement on the reliability of the system. The SDT believes that Guideline 4 better reflects the intent for assigning VRFs for this standard since this approach is focused on the reliability impact of the requirement.
	FERC VRF G2 Discussion	Consistency within a Reliability Standard exists. This Requirement does not contain Parts. Requirement action is unique with respect to other standard requirements. All standard requirements have a common reliability focus relevant to Frequency Response and Frequency Bias Setting.
	FERC VRF G3 Discussion	The Requirement VRF is consistent with other BES standards addressing responsiveness. This Requirement is similar in concept to the current enforceable BAL-003-0.1b Requirement R6 which specifies a Medium VRF
	FERC VRF G4 Discussion	This Requirement, if violated, could directly affect the electrical state or the capability of the bulk electric system, or the ability to effectively monitor and control the bulk electric system but would unlikely result in the bulk electric system instability, separation, or cascading failures since a Balancing Authority would have the

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Previous year’s Frequency Bias Setting already in its ACE equation } \\ \text { and would provide support f the contingency. This is consistent with } \\ \text { the NERC definition. In addition, this Requirement VRF is consistent } \\ \text { with the BAL-003-0 Requirement which has been approved by } \\ \text { FERC. }\end{array} \\ \hline \begin{array}{l}\text { FERC VRF G5 } \\ \text { Discussion }\end{array} & \text { This requirement does not co-mingle reliability objectives. } \\ \hline \text { Proposed Lower VSL } & \begin{array}{l}\text { The Balancing Authority incorrectly changed the Frequency Bias } \\ \text { Setting value used in its ACE calculation when providing Overlap } \\ \text { Regulation Services with combined footprint setting error less than } \\ \text { 10\% of the validated or calculated value. }\end{array} \\ \hline \text { Proposed Moderate VSL } & \begin{array}{l}\text { The Balancing Authority incorrectly changed the Frequency Bias } \\ \text { Setting value used in its ACE calculation when providing Overlap } \\ \text { Regulation Services with combined footprint setting error more than } \\ \text { 10\% but less than or equal to 20\% of the validated or calculated value }\end{array} \\ \hline \text { Proposed High VSL } & \begin{array}{l}\text { The Balancing Authority incorrectly changed the Frequency Bias } \\ \text { Setting value used in its ACE calculation when providing Overlap } \\ \text { Regulation Services with combined footprint setting error more than } \\ \text { 20\% but less than or equal to 30\% of the validated or calculated } \\ \text { value. }\end{array} \\ \hline \text { Proposed Severe VSL } & \begin{array}{l}\text { The Balancing Authority incorrectly changed the Frequency Bias } \\ \text { Setting value used in its ACE calculation when providing Overlap } \\ \text { Regulation Services with setting error more than 30\% of the validated } \\ \text { or calculated value. }\end{array} \\ \hline \begin{array}{l}\text { FERC VSL G1 } \\ \text { Discussion }\end{array} & \begin{array}{l}\text { The Balancing Authority failed to change the Frequency Bias Setting } \\ \text { value used in its ACE calculation when providing Overlap Regulation } \\ \text { Services }\end{array} \\ \hline \begin{array}{l}\text { FERC VSL G2 } \\ \text { Discussion }\end{array} & \begin{array}{l}\text { The NERC VSL guidelines are satisfied by incorporating percentage } \\ \text { of noncompliance performance for the absolute value of the } \\ \text { Balancing Authorities' calculated monthly average Frequency Bias } \\ \text { Setting being below the minimum percentage specified by the ERO. } \\ \text { The VSL also includes a binary requirement for failing to change the } \\ \text { Frequency Bias Setting value when providing Overlap Regulation } \\ \text { Services. }\end{array} \\ \hline \text { Compliance with NERC Requirement is similar in concept to the current enforceable } \\ \text { Revised VSL Guidelines } \\ \text { BAL-003-0.1b Requirement R6 which specifies a Medium VRF. } \\ \text { Proposed VSL’s meet or exceed the current threshold of compliance. }\end{array}\right\}$

| | by the ERO or if the entity fails to change the Frequency Bias Setting
 value when providing Overlap Regulation Services. |
| :--- | :--- | :--- |
| FERC VSL G3
 Discussion | Proposed VSL's do not expand on what is required. The VSL's
 assigned only consider results of the calculation required and if the
 Frequency Bias Setting is correctly set when providing Overlap
 Regulation Services. Proposed VSL's are consistent with the
 requirement. |
| FERC VSL G4
 Discussion | Proposed VSL's are based on a single violation and not a cumulative
 violation methodology. |

NERC

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Frequency Response Initiative Report

The Reliability Role of Frequency Response

October 30, 2012

RELIABILITY | ACCOUNTABILITY

3353 Peachtree Road NE

NERC's Mission

The North American Electric Reliability Corporation's (NERC) mission is to ensure the reliability of the North American bulk power system. NERC is the electric reliability organization (ERO) certified by the Federal Energy Regulatory Commission (FERC) to establish and enforce reliability standards for the bulk power system. NERC develops and enforces reliability standards; assesses adequacy annually via a 10-year forecast and summer and winter forecasts; monitors the bulk power system; and educates, trains, and certifies industry personnel. ERO activities in Canada related to the reliability of the bulk power system are recognized and overseen by the appropriate governmental authorities in that country. ${ }^{1}$

NERC assesses and reports on the reliability and adequacy of the North American bulk power system, which is divided into eight Regional areas, as shown on the map and table below. The users, owners, and operators of the bulk power system within these areas account for virtually all the electricity supplied in the United States, Canada, and a portion of Baja California Norte, Mexico.

Note: The highlighted area between SPP RE and SERC denotes overlapping Regional area boundaries. For example, some load-serving entities participate in one Region and their associated transmission owner/operators in another.

NERC Regional Entities

FRCC	SERC
Florida Reliability	
Coordinating Council	SERC Reliability
Corporation	

Midwest Reliability

Organization \& Southwest Power Pool

Regional Entity\end{array}\right|\)| NPCC | TRE |
| :--- | :--- |
| Northeast Power
 Coordinating Council | Texas Reliability Entity |
| RFC
 ReliabilityFirst
 Corporation | WECC |

[^91]
Table of Contents

NERC's Mission i
Table of Contents ii
Introduction 1
Executive Summary 3
Recommendations 3
Findings 7
Frequency Response Overview. 9
Frequency Control 9
Primary Frequency Control - Primary Frequency Response 9
Frequency Response Illustration 10
Balancing Authority Frequency Response 17
Historical Frequency Response Analysis 22
History of Frequency Response and its Decline 22
Projections of Frequency Response Decline 23
Statistical Analysis of Frequency Response (Eastern Interconnection) 27
Key Statistical Findings 27
Frequency Response Withdrawal 31
Modeling of Frequency Response in the Eastern Interconnection 35
Concerns for Future of Frequency Response 38
Role of Inertia in Frequency Response 39
Need for Higher Speed Primary Frequency Response 40
Preservation or Improvement of Existing Generation Primary Frequency Response 40
Withdrawal of Primary Frequency Response 41
Interconnection Frequency Response Obligation (IFRO) 43
Tenets of IFRO 43
Statistical Analyses 44
Frequency Variation Statistical Analysis 44
Point C Analysis - One-second versus Sub-second Data 48
Adjustment for Differences between Value B and Point C. 48
Adjustment for Primary Frequency Response Withdrawal 50
Variables in Determination of Interconnection Frequency Response Obligation from Criteria 51
Low Frequency Limit 51
Credit for Load Resources (CLR) 52
Interconnection Resource Contingency Protection Criteria. 53
Largest N-2 Event 53
Largest Total Plant with Common Voltage Switchyard 54
Largest Resource Event in Last 10 Years 54
Recommended Resource Contingency Protection Criteria 55
Comparison of Alternative IFRO Calculations 56
IFRO Formulae 56
Determination of Maximum Delta Frequencies 57
Largest N-2 Event 58
Largest Total Plant with Common Voltage Switchyard 59
Largest Resource Event in Last 10 Years 60
Recommended IFROs 61
Special IFRO Considerations 61
Comparison of IFRO Calculations 63
Allocation of IFRO to Balancing Authorities 66
Frequency Response Performance Measurement 68
Interconnection Process 68
Frequency Event Detection, Analysis, and Trending (for Metrics and Analysis) 68
Ongoing Evaluation 69
Balancing Authority Level Measurements 69
Single-Event Compliance. 70
Balancing Authority Frequency Response Performance Measurement Analysis 71
Event Sample Size 72
Measurement Methods - Median, Mean, or Regression Results 72
Role of Governors 79
Deadband and Droop 79
ERCOT Experience 80
Frequency Regulation 80
Turbine-Generator Performance with Reduced Deadbands 84
Generator Governor Survey 87
Administrative Findings 87
Summary of the Survey Responses 88
Reported Deadband Settings 90
Reported Droop Settings 92
Governor Status and Operational Parameters 93
Response to Selected Frequency Events 94
Future Analysis Work Recommendations 99
Testing of Eastern Interconnection Maximum Allowable Frequency Deviations 99

Eastern Interconnection Inter-area Oscillations - Potential for Large Resource Losses 99

This report was approved by the Planning Committee October 4, 2012, via e-mail vote. This report was accepted by the Operating Committee October 12, 2012, via e-mail vote.

I ntroduction

System planning and operations experts are anticipating significantly higher penetrations of renewable energy resources, most of which are electronically coupled to the grid. This presents some new and different technical challenges, particularly in the reduction of system inertia through the displacement of conventional generation resources during light load periods. Load management and other demand-side initiatives also continue to grow. Most importantly, a continued downward trend for frequency response over a number of years has raised concern that credible contingencies may result in frequency excursions that encroach on the first step of under-frequency load shedding (UFLS). Such large frequency excursions could also trigger undesirable reactions from frequency-sensitive smart grid loads and electronically coupled renewable resources. Taken together, it is clear that maintaining adequate frequency response for bulk power system reliability is becoming more important and complex. While the decline in frequency response has lessened in the last couple of years, it is important that the industry understands the growing complexities of frequency control and is ready with comprehensive strategies to stay ahead of any potential problems.

NERC has undertaken various activities over the past few years in an effort to understand the steady decline in frequency response, particularly in the Eastern Interconnection. While some significant insight has been gained and system-wide and technical improvements have been achieved in the Western Interconnection and ERCOT, a deeper and more dedicated effort is needed.

To comprehensively address the issues related to frequency response, NERC launched the Frequency Response Initiative in 2010. In addition to coordinating the myriad of efforts underway in standards development and performance analysis, the initiative includes performing in-depth analysis of interconnection-wide frequency response to achieve a better understanding of the factors influencing frequency performance across North America.

Basic objectives of the Frequency Response Initiative include:

- development of a clearer and more specific statement of frequency-related reliability factors, including better definitions for "ownership" of responsibility for frequency response;
- collection and provision of more granular frequency response data on and technical analyses of frequency-driven bulk power system events, including root cause analyses;
- metrics and benchmarks to improve frequency response performance tracking;
- increasing coordinated communication and outreach on the issue to include webinars and NERC alerts and to share lessons learned; and
- focused discussion on communication of emerging technology issues, including frequency-related effects caused by renewable energy integration, smart grid technology deployment, and new end-use technology.

In March 2011, the NERC Planning Committee tasked the Transmission Issues Subcommittee (TIS, now the System Analysis and Modeling Subcommittee (SAMS)) with determining what criteria should be used to decide the appropriate level of interconnection-wide frequency response needed for reliability. The TIS started with a body of work already underway by the Resources Subcommittee (RS) and the Frequency Working Group (FWG) of the Operating Committee, and the Frequency Responsive Reserve Standard Drafting Team (FRRSDT). The RS produced a position paper on frequency response outlining the method to translate a resource contingency criterion into an Interconnection Frequency Response Obligation (IFRO).

The report on IFRO was approved by the Planning Committee September 2011. ${ }^{2}$ Since that time, numerous modifications and improvements have been made to the IFRO determination analysis and calculations. Those changes are reflected in the IFRO section of this report.

This report provides an overview of the work that has been done to date toward gaining understanding of frequency response. It is in support of NERC Standards Project 2007-12 Frequency Response, which is preparing a revised draft standard (BAL-003-1). That standard is intended to codify a Frequency Response Obligation and means for measuring the performance of the Balancing Authorities.

[^92]
Executive Summary

Recommendations

1. NERC should embark immediately on the development of a NERC Frequency Response Resource Guideline to define the performance characteristics expected of those resources for supporting reliability. That guideline should address appropriate parameters for the following:

- Existing conventional generator fleet - In order to retain or regain frequency response capabilities of the existing generator fleet, adopt:
o deadbands of $\pm 16.67 \mathrm{mHz}$,
o droop settings of 3\%-5\% depending on turbine type,
o continuous, proportional (non-step) implementation of the response,
o appropriate operating modes to provide frequency response, and
o appropriate outer-loop controls modifications to avoid primary frequency response withdrawal at a plant level.
- Other frequency-responsive resources - Augment existing generation response with fast-acting, electronically coupled frequency responsive resources, particularly for the arresting and rebound periods of a frequency event:
o contractual high-speed demand-side response,
0 wind and photo-voltaic - particularly for over-frequency response,
0 storage - automatic high-speed energy retrieval and injection, and
o variable-speed drives - non-critical, short-time load reduction.

2. Instead of using a fixed margin, the calculation of the Interconnection Frequency Response Obligations should use statistical analysis to determine the necessary margin.
3. The starting frequency for the calculation of IFROs should be the frequency 5% of the lower tail of samples from the statistical analysis, representing a 95\% confidence that frequencies will be at or above that value at the start of any frequency event, as shown in table A .

Table A: Interconnection Frequency Variation Analysis (Hz)

Value	Eastern	Western	ERCOT	Québec
Starting Frequency ($\mathrm{F}_{\text {Start }}$)	59.974	59.976	59.963	59.972

4. The recommended UFLS first-step limitations for IFRO calculations are listed in table B.

Table B: Low-frequency Limits (Hz)	
Interconnection	Highest UFLS Trip Frequency
Eastern	59.5^{3}
Western	59.5
ERCOT	59.3
Québec	58.5

5. The allowable frequency deviation (starting frequency minus the highest UFLS step) should be reduced to account for differences between the 1 -second and sub-second data for Point C (frequency nadir) by a statistically determined adjustment as listed in table C. Sub-second measurements will more accurately detect Point C.

Table C: Analysis of 1-Second and Sub-Second Data for Point C (CC ADJ)				
Interconnection	Number of Samples	Mean	Standard Deviation	CC $_{\text {ADJ }}$ (95\% Quantile)
Eastern	30	0.0006	0.0038	0.0068
Western	17	0.0012	0.0019	0.0044
ERCOT	58	0.0021	0.0061	0.0121
Québec	0	$\mathrm{~N} / \mathrm{A}$	N / A	N / A

6. The allowable change in frequency from the IFRO Starting Frequency should be adjusted by a statistically determined value to account for the differences between the Value B and the Point C for historical frequency events as listed in table D.

Table D: Analysis of B Value and Point C (CB $\left.{ }_{R}\right)$				
Interconnection	Number of Samples	Mean	Standard Deviation	CB_{R} $(95 \%$ Quantile)
Eastern	41	0.964	0.0149	$1.0(0.989)^{4}$
Western	30	1.570	0.0326	1.625
ERCOT	88	1.322	0.0333	1.377
Québec 5	N/A	1		1.550

[^93]7. An adjustment should be made to the maximum allowable delta frequency to compensate for the predominant withdrawal of primary frequency response exhibited in an interconnection until such withdrawal is no longer exhibited in that interconnection.
8. The determination of the maximum delta frequencies should be calculated in accordance with the methods embodied in Table E - Determination of Maximum Delta Frequencies.

Table E: Determination of Maximum Delta Frequencies

	Eastern	Western	ERCOT	Québec	Units
Starting Frequency	59.974	59.976	59.963	59.972	Hz
Minimum Frequency Limit	59.500	59.500	59.300	58.500	Hz
Base Delta Frequency	0.474	0.476	0.663	1.472	Hz
$C_{\text {ADJ }}{ }^{6}$	0.007	0.004	0.012	N/A	Hz
Delta Frequency ($\mathrm{DF}_{\mathrm{cc}}$)	0.467	0.472	0.651	1.472	Hz
$\mathrm{CB}^{\text { }}$	1.000^{8}	1.625	1.377	1.550^{9}	Hz
Delta Frequency $\left(\mathrm{DF}_{\mathrm{CBR}}\right)^{10}$	0.467	0.291	0.473	0.949	Hz
$\mathrm{BC}^{\prime}{ }_{\text {d }}{ }^{11}$. 018	N/A	N/A	N/A	Hz
Max. Delta Frequency	0.449	0.291	0.473	0.949	Hz

[^94]9. The Interconnection Frequency Response Obligations should be calculated as shown in Table F: Recommended IFROs.

Table F: Recommended IFROs					
	Eastern	Western	ERCOT	Québec	Units
Starting Frequency	59.974	59.976	59.963	59.972	Hz
Max. Delta Frequency	0.449	0.291	0.473	0.949	Hz
Resource Contingency Protection Criteria	4,500	2,740	2,750	1,700	MW
Credit for LR $^{\text {IFRO }}$ 12					

10. NERC and the Western Interconnection should analyze the FRO allocation implications of the Pacific Northwest RAS generation tripping of 3,200 MW.
11. Trends in frequency response sustainability should be measured and tracked by observing frequency between $T+45$ seconds and $T+180$ seconds. A pair of indices for gauging sustainability should be calculated comparing that value to both the Point C and Value B.
12. Frequency response performance by Balancing Authorities should not be judged for compliance on a per-event basis.
13. Linear regression is the method that should be used for calculating Balancing Authority Frequency Response Measure (FRM) for compliance with Standard BAL-003-1 Frequency Response.

[^95]14. NERC and the Frequency Working Group should annually review the process for detection of frequency events and the method for calculating the A and B Values and Point C. The associated interconnection frequency event database, methods for calculating interconnection metrics on risks to reliability, the associated probabilities, and the calculation of the IFROs using updated data should also undergo review in an effort to improve the process. Throughout this process, NERC should strive to improve the quality and consistency of the data measurements.
15. NERC should address improving the level of understanding of the role of turbine governors through seminars and webinars, with educational materials available to the Generator Owners and Generator Operators on an ongoing basis.
16. When the Eastern Interconnection Reliability Assessment Group Multiregional Modeling Working Group (ERAG MMWG) completes its review of turbine governor modeling, a new light-load case should be developed, and the resource loss criterion for the Eastern Interconnection's IFRO should be re-simulated.
17. Eastern Interconnection inter-area oscillatory behavior should be further investigated by NERC, including the testing of large resource loss analysis for IFRO validation.

Findings

1. Analysis of data submitted by the Balancing Authorities during the field trial indicates that a single-event-based compliance measure is unsuitable for compliance evaluation when based on data that has the large degree of variability demonstrated by the field trial.
2. Analysis of data submitted by the Balancing Authorities during the field trial confirms that the sample size selected (a minimum of 20-25 frequency events) is sufficient to stabilize the result and alleviate the perceived problem associated with outliers in the measurement of Balancing Authority frequency response performance.
3. There is a strong positive correlation between Eastern Interconnection load and frequency response for the 2009-2011 events. On average, when interconnection load changes by $1,000 \mathrm{MW}$, frequency response changes by $3.5 \mathrm{MW} / 0.1 \mathrm{~Hz}$.
4. Pre-disturbance frequency (Value A) is a statistically significant contributor to the variability of frequency response for the Eastern Interconnection. The expected (mean of the sample) frequency response for events where Value A is greater than 60 Hz is $2,188 \mathrm{MW} / 0.1 \mathrm{~Hz}$ versus $2,513 \mathrm{MW} / 0.1 \mathrm{~Hz}$ for events where Value A is less than or equal to 60 Hz based on data from 2009 through April 2012.
5. There is a statistically significant seasonal (summer/not summer) correlation to the variability of frequency response for the Eastern Interconnection. The expected frequency response for summer (June-August) frequency events is $2,598 \mathrm{MW} / 0.1 \mathrm{~Hz}$ versus $2,271 \mathrm{MW} / 0.1 \mathrm{~Hz}$ for non-summer events based on data from 2009 through April 2012.
6. The difference in average frequency response between on-peak events and off-peak events is not statistically significant for the Eastern Interconnection and could occur by chance.

Frequency Response Overview

To understand the role frequency response plays in system reliability, it is important to understand the different components of frequency control and the individual components of Primary Frequency Control (also known as frequency response). It is also important to understand how those individual components relate to each other.

Frequency Control

Frequency control can be divided into four overlapping windows of time:
Primary Frequency Control (frequency response) - Actions provided by the interconnection to arrest and stabilize frequency in response to frequency deviations. Primary Control comes from automatic generator governor response, load response (typically from motors), and other devices that provide an immediate response based on local (device-level) control systems.

Secondary Frequency Control - Actions provided by an individual Balancing Authority or its Reserve Sharing Group to correct the resource-load unbalance that created the original frequency deviation, which will restore both Scheduled Frequency and Primary frequency response. Secondary Control comes from either manual or automated dispatch from a centralized control system.

Tertiary Frequency Control - Actions provided by Balancing Authorities on a balanced basis that are coordinated so there is a net-zero effect on area control error (ACE). Examples of Tertiary Control include dispatching generation to serve native load, economic dispatch, dispatching generation to affect interchange, and re-dispatching generation. Tertiary Control actions are intended to replace Secondary Control Response by reconfiguring reserves.

Time Control - This includes small offsets to scheduled frequency to keep long-term average frequency at 60 Hz .

Primary Frequency Control - Primary Frequency Response

Primary Frequency Control, also known generally as primary frequency response, is the first stage of frequency control and is the response of resources and load to arrest local changes in frequency. Primary frequency response is automatic, is not driven by any centralized system, and begins within seconds after the frequency changes, rather than minutes. Different resources, loads, and systems provide primary frequency response with different response times, based on current system conditions such as total resource/load mix and characteristics.

The NERC Glossary of Terms defines Frequency Response ${ }^{15}$ in two parts:

- Equipment - The ability of a system or elements of the system to react or respond to a change in system frequency.
- System - The sum of the change in demand, plus the change in generation, divided by the change in frequency, expressed in megawatts per 0.1 hertz ($\mathrm{MW} / 0.1 \mathrm{~Hz}$).

Because the loss of a large generator is much more likely than a sudden loss of an equivalent amount of load, frequency response is typically discussed in the context of a loss of generation.

NOTE: For purposes of this report, the term "frequency response" is considered to be the overall response measured between $\mathrm{T}+20$ and $\mathrm{T}+52$ seconds, as used in the BAL-003-1 draft standard.

Frequency Response Illustration

Many components are included within the defined frequency response. The following simplified example graphically illustrates those components of frequency response and how they react to changes in system frequency. The example is presented as an energy balance problem for the interconnection. It is not intended to be a treatise on governors or other turbine-generator controls or the internal machine dynamics associated with those control actions. For additional information on those topics, see the References on Rotating Machines section in Appendix L.

The example is based on an assumed disturbance event due to the sudden loss of 1,000 MW of generation. Although a large event is used to illustrate the response components, even small events can result in similar reactions or responses. The magnitude of the event only affects the shape of the curves on the graph; it does not obviate the need for frequency response.

The loss of generation is illustrated by the black power deficit line using the MW scale on the left. The interconnection frequency is illustrated in red, using the hertz (Hz) scale on the right. The interconnection frequency is assumed to be 60 Hz when the disturbance occurs.

Figure 1 shows the tripping of a 1,000 MW generator. Even though the generation has tripped and power injected by the generator has been removed from the interconnection, the loads across the system continue to use the same amount of power. The Law of Conservation of Energy ${ }^{16}$ requires that the $1,000 \mathrm{MW}$ must be supplied to the interconnection if the energy balance is to be conserved. That $1,000 \mathrm{MW}$ of balancing power is provided by extracting it from the kinetic energy stored as inertial energy in the rotating mass of all of the synchronized turbine-generators and motors on the interconnection. It is produced by the slowing of the spinning inertial mass of rotating equipment on the interconnection that both releases the stored kinetic energy and reduces the frequency of the interconnection. The extracted energy

[^96]supplies the "balancing inertia" ${ }^{17}$ power required to maintain the power and energy balance on the interconnection.

Figure 1: Loss of a 1,000 MW Generator

As this balancing power from inertia is used, the speed of the rotating equipment on the interconnection declines, resulting in a reduction of the interconnection frequency. Synchronously operated motors contribute to load damping; adjustable or variable speed drive motors are effectively decoupled from the interconnection frequency through their electronic controls, and they do not contribute to load damping. In general, any load that does not change with interconnection frequency (such as resistive loads) will not contribute to load damping or frequency response. The balancing inertia is illustrated in figure 2 by the orange dots, which represent the balancing inertia power that exactly overlays and offsets the power deficit. At this point in the example, no other energy injection has occurred through any governor control action.

[^97]Figure 2: Inertial Energy Extracted from Rotating Mass of Generation and Synchronous Motor Load

As the rotating machines slow down (reflected as a decline of frequency), the generator governors, which are the controls that "govern" the speed of the generator turbines, sense this as a change in turbine speed. In this example, the change in frequency will be used to reflect this control parameter. Governor action then takes physical action, such as injecting more gas into a gas turbine, opening steam valves wider on a steam unit (also injecting more fuel into the boiler), or opening the control gates wider on a hydraulic turbine. This control action results in more combusted gases, steam, or water to impart more mechanical energy to the shaft of the turbine to increase its speed. The turbine shaft is coupled to the generator, where it is converted into additional electric energy. The process of the turbine slowing, the detection of change in speed, and the injection of additional mechanical energy is not instantaneous.

Until the additional mechanical energy can be injected, the frequency continues to decline, due to the ongoing extraction of balancing power from the inertial energy of the rotating turbinegenerators and synchronous motors on the interconnection. As frequency continues to decline, the reduction in load also continues as the effect of load damping continues to reduce the load.

Figure 3: Time Delay of Governor Response

During the initial seconds of the disturbance event, the primary frequency response from the turbine governors has not yet influenced the frequency decline. For this example, primary frequency response from governors that injects additional energy into the system is reflected by the blue line (in MW) on figure 3.

After a short time delay, the governor response begins to increase rapidly in response to the initial decline in frequency, as illustrated in figure 4. In order to arrest the frequency decline, the governor response must offset the power deficit and replace the balancing power that had extracted inertial energy from the rotating machines of the interconnection. At this point in time, the balancing power from inertia is reduced to zero as it is replaced by the governor response. That replacement is shown as the crossing of the orange and blue lines in figure 4. The point at which the frequency decline is arrested is called the nadir, or Point C , and frequency response calculated to that point is "arrested frequency response."

If the time delay associated with the delivery of governor response is reduced, the amount of balancing power from inertia required to limit the change in frequency for the disturbance event can also be reduced. This supports the conclusion that balancing power from inertia is required to manage the time delays associated with the delivery of primary frequency response. Not only is the rapid delivery of primary frequency response important, but so is the shortening of the time delay associated with its delivery.

Figure 4: Governor Response Replaces Balancing Power from Inertia and Arrests Frequency Decline

The above components are related to the length of time before the initial delivery of primary frequency response from governors begins and how much of the response is delivered before the frequency change is arrested.

From a system standpoint during this time delay, the amount of inertia on the interconnection, which determines the amount of energy available to be extracted from rotating machines, determines the slope of the frequency decline: the less inertia there is, the steeper the slope. This is important in the relationship between the balancing power from inertia and the time delay associated with the governor response. For a given time delay in primary frequency response from governors, the steeper the slope, the lower frequency will dip before it is arrested. Conversely, for a given balancing power from inertia and slope of frequency decline, the faster governor response can be provided, the sooner the frequency decline is arrested, making the nadir less severe.

Therefore, as traditional rotating generators are replaced by electronically coupled resources, such as wind turbines and solar voltaic resources (which provide less overall system inertia), the speed of delivery of governor response should increase, or other methods should be provided that support fast-acting energy injection to minimize the depth of frequency excursions.

The arrested frequency is normally the minimum (maximum for load loss events) frequency that will be experienced during a disturbance event. This minimum frequency is the frequency that is of concern from a reliability perspective. The goal is to arrest the frequency decline so frequency remains above the under-frequency load shedding (UFLS) relays with the highest settings so that load is not tripped. Frequency response delivered after frequency is arrested at
this minimum provides less reliability value than frequency response delivered before Point C , but greater value than secondary frequency control power and energy that is delivered minutes later.

Figure 5: Post-Disturbance Transient Period (0 to 20 seconds)

Once the frequency decline is arrested, the governors continue to respond because of the time delay associated with the governor action. This results in the frequency partially recovering from the minimum arrested value and results in some oscillating transient that follows the minimum frequency (arrested frequency) until power flows and frequency settle during the transient period, which typically ends around 20 seconds after start of the disturbance event. This post-disturbance transient period is shown in figure 5.

The total disturbance event is illustrated in figure 6. Frequency and power contributions stabilize at the end of the transient period. Frequency response calculated from data measured during this settled period is called the "settled frequency response." The settled frequency response is the measure used as an estimator for determining the Frequency Bias ${ }^{18}$ setting used in the automated generator control (AGC) systems of the energy management systems (EMS) in energy control centers.

[^98]Figure 6: Disturbance Event Frequency Excursion

Figure 7: Averaging Periods used for Measuring Frequency Response

Figure 7 shows the averaging periods used to calculate ${ }^{19}$ the pre-disturbance Value A frequency averaging period ($\mathrm{T}-16$ through $\mathrm{T}+0$ seconds) and the post-disturbance Value B frequency averaging period ($\mathrm{T}+20$ through $\mathrm{T}+52$ seconds) used to calculate the settled frequency response. The length of those periods is based on the length of the system control and data acquisition (SCADA) scan rates of the energy management systems (EMS) of the Balancing Authorities.

The calculation of the Value A and Value B frequencies began with the assumption that a 6second scan rate was the source of the data. Once the averaging periods for a 6 -second SCADA scan rate were selected, the averaging periods for the other scan rates were selected to provide as much consistency as possible between Balancing Authorities with different scan rates.

The Value A frequency was initially defined as the average of the two scans immediately prior to the frequency event. All other averaging periods were then selected to be as consistent as possible with this 12 -second average scan from the 6 -second scan rate method. In addition, the "actual net interchange immediately before Disturbance" was then defined as the average of the same period and same scans as used for Value A averaging.

The Value B frequency was then selected to be an average as long as the average of 6-second scan data as possible, that would not begin until most of the hydro governor response had been delivered, and would end before significant Automatic Generation Control (AGC) recovery response had been initiated as indicated by a consistent frequency restoration slope. The "actual net interchange immediately after Disturbance" was then similarly defined as the average of the same period and same scans as used for the Value B.

Balancing Authority Frequency Response

Disturbances can cause the frequency to either increase from loss of load or decrease from loss of generation; frequency response characteristics of Balancing Authorities should be evaluated for both types of events.

Accurate measurement of frequency response for an interconnection or for individual Balancing Authorities is difficult unless the frequency deviation resulting from a system disturbance is significant. Therefore, it is better to analyze response only when significant frequency deviations occur.

Frequency response considers the following elements of an interconnected transmission system:

1. Frequency Response Characteristic (FRC) - For any change in generation/load balance in the interconnection, a frequency change occurs. Each Balancing Authority in the interconnection will respond to this frequency change through:

- a load change that is proportional to the frequency change due to the load's FRC, and

[^99]- a generation change that is inverse to the frequency change due to turbine governor action. The net effect of these two actions is the Balancing Authority's response to the frequency change; that is, its FRC. The combined response of all Balancing Authorities in the interconnection will cause the interconnection frequency to settle at some value different from the pre-disturbance value. It will not return frequency to the pre-disturbance value because of the turbine governor droop characteristic. Frequency will remain different until the Balancing Authority with the generation/load imbalance (referred to as the "Contingent Balancing Authority") corrects that imbalance, thus returning the interconnection frequency to its predisturbance value.

2. Response to Internal and External Generation/Load Imbalances - Most of a Balancing Authority's frequency response will be reflected in a change in its actual net interchange. By monitoring the frequency error (the difference between actual and scheduled frequency) and the difference between actual and scheduled interchange, using its response to frequency deviation, a Balancing Authority's automatic generation control (AGC) can determine whether the imbalance in load and generation is internal or external to its system. If internal, the Balancing Authority's AGC should correct the imbalance. If external, the Balancing Authority's AGC should allow its generator governors to continue responding (preserved by its frequency bias contribution in its ACE equation) until the contingent Balancing Authority corrects its imbalance, which should return frequency to its pre-disturbance value.
3. Frequency Bias versus Frequency Response Characteristic (FRC) - The Balancing Authority should set its bias setting in its AGC ACE equation to match its FRC. In doing so, the Balancing Authority's bias contribution term would exactly offset the tie line flow error ($\mathrm{Ni}_{\mathrm{A}}-\mathrm{Ni}_{\mathrm{s}}$) of the ACE that results from governor action following a frequency deviation on the interconnection. The following sections discuss the effects of bias settings on control action and explain the importance of setting the bias equal to the Balancing Authority's FRC. The discussion explains the control action on all Balancing Authorities external to the contingent Balancing Authority (the Balancing Authority that experienced the sudden generation/load imbalance) and on the contingent Balancing Authority itself.

While this discussion deals with loss of generation, it applies equally to loss of load, or any sudden contingency resulting in a generation/load mismatch. Each Balancing Authority's frequency response will vary with each disturbance because generation and load characteristics change continuously. This discussion also assumes that the frequency error from 60 Hz was zero (all ACE values were zero) just prior to the sudden generation/load imbalance.
4. Effects of a Disturbance on all Balancing Authorities External to the Contingent Balancing Authority - When a loss of generation occurs, an interconnection frequency error will occur as rotating kinetic energy from the generators of the interconnection is expended, slowing the generators throughout the interconnection. All Balancing Authorities' generator governors will respond to the frequency error and increase the
output of their generators (increase speed) accordingly. This will cause a change in the Balancing Authorities' actual net interchange. In other words, the Actual Net Interchange $\left(\mathrm{Ni}_{\mathrm{A}}\right)$ will be greater than the Scheduled Net Interchange ($\mathrm{Ni} \mathrm{i}_{\mathrm{s}}$) for all but the contingent Balancing Authority, and the result is a positive flow out of the noncontingent Balancing Authorities. The resulting tie flow error $\left(\mathrm{Ni}_{\mathrm{A}}-\mathrm{Ni} \mathrm{i}_{\mathrm{S}}\right)$ will be counted as Inadvertent Interchange.

If the Balancing Authorities were using only tie line flow error (i.e., flat tie control ignoring the frequency error), this non-zero ACE would cause their AGC to reduce generation until Ni_{A} was equal to Ni_{s}, returning their ACE to zero. However, doing this would not help arrest interconnection frequency decline, because the Balancing Authorities would not be helping to temporarily replace some of the generation deficiency in the interconnection. With the tie line bias method, the Balancing Authorities' AGC should allow their governors to continue responding to the frequency deviation until the contingent Balancing Authority replaces the generation it has lost.

In order for the AGC to allow governor action to continue to support frequency, a frequency bias contribution term is added to the ACE equation to counteract the tie flow error. This bias contribution term is equal in magnitude and opposite in direction to the governor action and should ideally be equal to each Balancing Authority's frequency response characteristic measured in MW/0.1 Hz. Then, when multiplied by the frequency error, the bias should exactly counteract the tie flow error portion of the ACE calculation, allowing the continued support of the generator governor action to support system frequency.

In other words, BiasContributionTerm $=10 B\left(f_{A}-f_{s}\right)$. ACE will be zero, and AGC will not read just generation.

The ACE equation is then:

$$
A C E=\left(N i_{A}-N i_{S}\right)-10 B\left(f_{A}-f_{S}\right)-I_{M E}
$$

Where:

- The factor 10 converts the bias setting (B) from MW/0.1 Hz to MW/Hz.
- $I_{\text {ME }}$ is meter error correction estimate; this term should normally be very small or zero.

NOTE: Although frequency response and bias are often discussed as positive values (such as "our bias is $50 \mathrm{MW} / 0.1 \mathrm{~Hz}$ "), frequency response and bias are actually negative values.

If the bias setting is greater than the Balancing Authority's actual frequency response characteristic, then its AGC will increase generation beyond the primary frequency response from governors, which further helps arrest the frequency decline, but increases Inadvertent Interchange. Likewise, if the bias contribution term is less than
the actual FRC, its AGC will reduce generation, reducing the Balancing Authority's contribution to arresting the frequency change. In both cases, the resultant control action is unwanted.
5. Effects of a Disturbance on the Contingent Balancing Authority - In the contingent Balancing Authority where the generation deficiency occurred, most of the replacement power comes from the interconnection over its tie lines from the frequency response contributions of the other Balancing Authorities in the interconnection. A small portion will be made up internally from the contingent Balancing Authority's own governor response. In this case, the difference between Ni_{A} and Ni_{s} for the contingent Balancing Authority is much greater than its frequency bias component. Its ACE will be negative (if the loss is generation), and its AGC will begin to increase generation.

- Ni_{A} - drops by the total generation lost less the contingent Balancing Authority's own primary frequency response from governors
- Ni_{s} - does not change

The contingent Balancing Authority must take appropriate steps to reduce its ACE to zero or pre-disturbance ACE if ACE is negative within 15 minutes of the contingency. (Reference: formerly Operating Criterion II.A.) The energy supplied from the interconnection is posted to the contingent Balancing Authority's inadvertent balance.
6. Effects of a Disturbance on the Contingent Balancing Authority with a Jointly Owned Unit - In the contingent Balancing Authority where the generation deficiency occurred on a jointly owned unit (with dynamically scheduled shares being exported), the effect on the tie line component ($\mathrm{Ni}_{\mathrm{A}}-\mathrm{Ni}_{\mathrm{s}}$) of their ACE equation is more complicated. The Ni_{A} drops by the total amount of the generator lost, while the Ni_{s} is reduced only by the dynamic reduction in the shares being exported.

- Ni_{A} - drops by the total generation lost less the contingent Balancing Authority's own primary frequency response from governors
- $\mathrm{Ni}_{\text {s }}$ - decreases by the reduction in dynamic shares being exported

The net effect is that the tie line bias component only reflects the contingent Balancing Authority's share of the lost generation. Most of the replacement power comes from the interconnection over its tie lines from the frequency bias contributions of the other Balancing Authorities in the interconnection.
7. Effects of a Disturbance on the Non-contingent Balancing Authority with a Jointly Owned Unit - In the non-contingent Balancing Authority where the generation deficiency occurred on a jointly-owned unit in another Balancing Authority (with dynamically scheduled shares being exported), the effect on the tie line component (Ni_{A} - Ni_{s}) of their ACE equation is also complicated. The Ni_{A} increases by the Balancing Authority's own primary frequency response from governors, while the Ni_{s} is reduced only by the dynamic reduction in the shares being imported.

- Ni_{A} - increases by the Balancing Authority's own primary frequency response from governors
- Ni_{s} - decreases by withdrawn dynamic shares of the jointly-owned unit

The net effect is that the tie line bias component only reflects the contingent Balancing Authority's share of the lost generation. Most of the replacement power comes from the interconnection over its tie lines from the frequency bias contributions of the other Balancing Authorities in the interconnection.

Historical Frequency Response Analysis

History of Frequency Response and its Decline

Interconnection frequency response has been a subject of industry interest and attention since the first two electric systems became interconnected and the concept of frequency bias was adopted. In 1942, the first test to determine the system's load/frequency characteristic was conducted for use in setting bias control. As interconnected systems grew larger and the characteristics of load and generation changed, it became apparent that guidelines were needed regarding frequency response to avoid one system imposing undue frequency regulation burdens on its interconnected neighbors. During the 1970s and 1980s, NERC's Performance Subcommittee (now the Resources Subcommittee of the Operating Committee), which is charged with monitoring the control performance of the interconnections, observed that generators' governor responses to frequency deviations had been decreasing, especially in the Eastern Interconnection. The result was quite noticeable during large generation losses where the frequency deviation was not arrested as quickly as it once was. The industry did not initially recognize that power systems operations could significantly influence primary frequency response. ${ }^{20}$

In 1991, NERC's Performance Subcommittee approached the Electric Power Research Institute (EPRI) with a request to fund and manage a study of the apparent decline in governor response in the interconnections. EPRI agreed and in turn contracted with EPIC Engineering to perform this study. The conclusions were captured in a joint EPRI/NERC report, "Impacts of Governor Response Changes on the Security of North American Interconnections." ${ }^{21}$ These studies indicated that the frequency response of the interconnections was declining at rates greater than would be expected with the growth of demand and generating capacity. ${ }^{22}$ Although frequency response was declining, the opinion of experts at the time was that the decline had not reached a point at which reliability was being compromised.

The NERC Resources Subcommittee proposed a frequency response standard for comment in 2001. In response to these comments, the Frequency Task Force of the NERC Resources Subcommittee published a Frequency Response Standard white paper ${ }^{23}$ intended to create an understanding of the need for a frequency response standard and the technical and economic drivers motivating its development. The paper documented and discussed the decline observed in frequency response in the Eastern and Western Interconnections.

[^100]
Projections of Frequency Response Decline

In August 2011, the Transmission Issues Subcommittee ${ }^{24}$ of the NERC Planning Committee completed an analysis titled "Interconnection Criteria for Frequency Response Requirements Determination of Interconnection Frequency Response Obligations." ${ }^{25}$ The analysis included comparisons of various Resource Contingency Protection Criteria for loss of resources, including largest potential loss-of-resource event ($\mathrm{N}-2$), the largest total generating plant with common voltage switchyard, and the largest loss of generation in the interconnection in the last 10 years. Also examined in that analysis were the various other factors that must be considered in an IFRO determination: the highest under-frequency load shedding (UFLS) program setpoint within each interconnection, special consideration of demand-side frequency responsive programs in ERCOT, and a reliability margin to account for the variability of frequency due to items such as time error correction (TEC), variability of load, variability of interchange, variability of frequency over the course of a normal day, and other uncertainties. The proposed margin was analyzed using a probabilistic approach based on 1-minute frequency performance data for each interconnection. The Transmission Issues Subcommittee recommended the following IFROs for the four interconnections: Eastern: -1,875 MW/0.1 Hz; Western: -637 MW/0.1 Hz; Texas: -327 MW/0.1 Hz; and Québec: -113 MW/0.1 Hz. The Transmission Issues Subcommittee IFRO report was approved by the NERC Planning Committee in September 2011 and forwarded to the Standard Drafting Team for their consideration.

A similar report had been prepared by the Resources Subcommittee of the NERC Operating Committee in January 2011 titled "NERC Resources Subcommittee Position Paper on Frequency Response." ${ }^{26}$ That report used similar Resource Contingency Protection Criteria but used the prevalent 59.5 Hz highest UFLS setpoint for the Eastern Interconnection and a lower 59.3 Hz UFLS setpoint for ERCOT. The Resources Subcommittee analysis also used a 25% reliability margin for all four interconnections. The Resources Subcommittee recommended the following IFROs for the four interconnections: Eastern: $-1,406 \mathrm{MW} / 0.1 \mathrm{~Hz}$; Western: -685 MW/0.1 Hz; Texas: - $286 \mathrm{MW} / 0.1 \mathrm{~Hz}$; and Québec: $-141 \mathrm{MW} / 0.1 \mathrm{~Hz}$. The Resources Subcommittee position paper was approved by the Operating Committee in March 2011 and was considered by the Frequency Response Standard Drafting Team. NERC has been tracking the decline of frequency response in the Eastern Interconnection for several years.

[^101]Figure 8: Eastern Interconnection Mean Primary Frequency Response ${ }^{27}$
(March 30, 2012)

Figure 8 shows how frequency response has declined since 1994, as filed in NERC's "Motion for an Extension of Time of the North American Electric Reliability Corporation" (for the development of Standard BAL-003-1 - Frequency Response). ${ }^{28}$ That request for extension of time was granted by FERC in its Order on Motion for an Extension of Time and Setting Compliance Schedule (Issued May 4, 2012). ${ }^{29}$

Comparing the proposed IFROs from those two studies, the Eastern Interconnection IFROs range from about $1,400 \mathrm{MW} / 0.1 \mathrm{~Hz}$ to about $1,900 \mathrm{MW} / 0.1 \mathrm{~Hz}$, and the linear projection of the frequency response decline intercepts those target IFROs between 2019 and 2024. Even the more pessimistic polynomial projection of the decline intercepts the proposed IFROs between 2014 and 2016. This shows that there was still some time as of that filing for revising BAL-003-1 and responding to the decline in frequency response.

Figure 8 was revised shortly after the March 2012 filing in conjunction with revised frequency response calculation methods used in NERC's 2012 State of Reliability report (May 2012). Figure 9 reflects the revised frequency response calculations for 2009 through 2011.

[^102]Figure 9: Updated Eastern Interconnection Mean Primary Frequency Response (May 2012)

Figure 9 shows an improvement in frequency response in 2009 through 2011 due to alignment of the methods for calculation Values A and B. That method is consistent with the method being proposed in NERC Standard BAL-003-1. The method has since been further refined, as reflected in the Statistical Analysis of Frequency Response section of this report.

Figures 10-13 show the statistical analysis of the frequency response for 2009-2011 for the Eastern, Western, and ERCOT Interconnections from the 2012 State of Reliability report in box plot format (only 2011 data was available for the Québec Interconnection).

Figure 10: Eastern Interconnection Frequency Response Analysis for 2009-2011

Figure 11: Western Interconnection Frequency Response Analysis for 2009-2011

Figure 12: ERCOT Interconnection Frequency Response Analysis for 2009-2011

It is important to note the range of variability of the frequency response for each year. Additional events and modifications to the calculation methods for the A, B, and C values have been made since these values were calculated for the May 2012 report. The new values are reflected in the Statistical Analysis section of this report.

Figure 13: Québec Interconnection Frequency Response Analysis for 2011

Statistical Analysis of Frequency Response (Eastern I nterconnection)

In July 2012, a statistical analysis of the frequency response of the Eastern Interconnection was performed for the calendar years 2009-2011 and the first three months of 2012. The size of the dataset was 163 (with 44 observations for 2009, 49 for 2010, 65 for 2011, and 5 for 2012).

Table 1: Statistical Analysis Dataset			
Sample Parameter	2009	2010	2011
Sample Size	44	49	65
Sample Mean	$2,258.4$	$2,335.7$	$2,467.8$
Sample Standard Deviation	522.5	697.6	593.7

The report on that analysis was updated in August and September 2012 and is contained in Appendix G. Its results are paraphrased here for brevity. For the analysis, frequency response pertains to the absolute value of frequency response.

Key Statistical Findings

1. A linear regression equation with the parameters defined in Appendix G is an adequate statistical model to describe the relationship between time (predictor) and frequency response (responsive variable). The graph of the linear regression line and frequency response scatter plot is given in figure 14.

Figure 14: Linear Regression Fit Plot for Eastern Interconnection Frequency Response

2. The probability distribution of the whole frequency response dataset is approximately normal, with an expected frequency response of $2,363 \mathrm{MW} / 0.1 \mathrm{~Hz}$ and a standard deviation of $605.7 \mathrm{MW} / 0.1 \mathrm{~Hz}$ as shown in figure 15 .

Figure 15: Probability Distribution Eastern Interconnection Frequency Response January 2009-April 2012

3. There is a statistically significant seasonal (summer/not summer) correlation to the variability of frequency response for the Eastern Interconnection. The expected frequency response (mean of the samples) for summer (June-August) frequency events is 2,598 $\mathrm{MW} / 0.1 \mathrm{~Hz}$ versus $2,271 \mathrm{MW} / 0.1 \mathrm{~Hz}$ for non-summer events. This is attributable to at least two factors: higher load contribution to frequency response and increased generation dispatch of units with higher frequency response characteristics.
4. Pre-disturbance (average) frequency (Value A) is another statistically significant contributor to the variability of frequency response. The expected frequency response (mean of the samples) for events where Value A is greater than 60 Hz is $2,188 \mathrm{MW} / 0.1 \mathrm{~Hz}$ versus 2,513 MW/0.1 Hz for events where Value A is less than or equal to 60 Hz .

Figure 16: Linear Regression for Frequency Response and Interconnection Load

5. The difference in average frequency response between on-peak events and off-peak events is not statistically significant and could occur by chance. According to the NERC definition, Eastern Interconnection on-peak hours are designated as follows: Monday to Saturday from 07:00 to 22:00 hours (Central Time) excluding six holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, and Christmas Day. Analysis showed that the on-peak/off-peak variable is not a statistically significant contributor to the variability of frequency response. There is a positive correlation of 0.06 between the indicator function of on-peak hours and frequency response; however, difference in average frequency response between on-peak events and off-peak events is not statistically significant and could occur by chance (P -value-the probability of obtaining a result at least as extreme-is 0.49).
6. There is a strong positive correlation of 0.364 between interconnection load and frequency response for the 2009-2011 events. On average, when interconnection load changes by $1,000 \mathrm{MW}$, frequency response changes by $3.5 \mathrm{MW} / 0.1 \mathrm{~Hz}$.

This correlation indicates a statistically significant linear relationship between interconnection load (predictor) and frequency response (response variable). Figure 16 shows the linear regression line and frequency response scatter plot. For the dataset, the regression line has a positive slope estimate of 0.00349 ; thus, the frequency response variable increases when interconnection load grows.
7. For the 2009-2011 dataset, five variables (time, summer, high pre-disturbance frequency, on-peak/off peak hour, and interconnection load) were involved in the statistical analysis of frequency response. Four of these-time, summer, on-peak hours, and interconnection load-have a positive correlation with frequency response ($0.16,0.24,0.06$, and 0.36 , respectively), and the high pre-disturbance frequency has a negative correlation with frequency response (-0.26). The corresponding coefficients of determination R^{2} (the square of correlation) indicate that about 2.6% in variability of frequency response can be explained by the changes in time, about 5.8% is seasonal, 0.4% is due to on-peak/off-peak changes, 13.3% is the effect of interconnection load variability, and about 6.9% can be accounted for by a high pre-disturbance frequency. However, the correlation between frequency response and on-peak hours is not statistically significant, with the probability of about 0.44 having occurred by mere chance (the same holds true for the corresponding R^{2}).

Table 2: Explanatory Variables for Eastern Interconnection				
Frequency Response				
Variable X	Sample Correlation (X, FR)	P-Value	Linear Regression Statistically Significant	Coefficient of Determination R^{2} (Single Regression)
Interconnection Load	0.36	<0.0001	Yes	13.3%
Value A >60 Hz	-0.26	0.0008	Yes	6.9%
Summer/Not Summer	0.24	0.0023	Yes	5.8%
Date	0.16	0.044	Yes	2.6%
On-Peak Hours	0.06	0.438	No	N/A

Therefore, out of the five parameters, interconnection load has the biggest impact on frequency response followed by the indicator of high pre-disturbance frequency. A multivariate regression with interconnection load and starting frequency (Value A) greater
than 60 Hz as the explanatory variables for frequency response yields a linear model with the best fit (it has the smallest mean square error among the linear models with any other set of explanatory variables selected from the five studied). Together these two factors can account for about 20\% of the variability in frequency response.

Frequency response is, therefore, affected by other parameters that have low correlation with those studied and account for the remaining share of frequency response variability, minimizing the random error variance.

Note that interconnection load is positively correlated with summer (0.55), on-peak hours (0.45), and time (0.20), but is uncorrelated with starting frequency greater than 60 Hz (P -value of the test on zero correlation is 0.90).

Frequency Response Withdrawal

Withdrawal of primary frequency response is an undesirable characteristic associated most often with digital turbine-generator control systems using setpoint output targets for generator output. These are typically outer-loop control systems that defeat the primary frequency response of the governors after a short time to return the unit to operating at a requested MW output.

Figure 17: Primary Response Sustainability

Figure 17 shows how the outer-loop control on a single machine would influence its ability to provide primary frequency response.

Some of the typical causes of the withdrawal are:

- Plant outer-loop control systems - driving the units to MW setpoints
- Unit characteristics
o Plant incapable of sustaining primary frequency response
o Governor controls overridden by other turbine/steam cycle controls
- Operating philosophies - operating characteristic choices made by plant operators
o Desire to maintain highest efficiencies for the plant
The phenomenon is most prevalent in the Eastern Interconnection and can easily be seen in the comparison of the typical frequency response performance of the three interconnections (figure 18).

Figure 18: Typical Interconnection Responses for $2011{ }^{\mathbf{3 0}}$

Sustainability of primary frequency response becomes more important during light load conditions (nighttime) when there are generally fewer frequency-responsive generators online.

A number of the governor survey questions addressed the operational status and parameters of the governor fleet. The results of the survey show:

- About 90% of the generators were reported to have governors.

[^103]- Virtually all (95-99\% by interconnection) of the GOs and GOPs reported that their governors are operational.
- 80-85\% (by interconnection) of the governors were reported to be capable of sustaining primary frequency response for longer than 1 minute if the frequency remained outside of their deadband.
- Roughly 50% of the governors reported that they had unit-level or plant-level control systems that override or limit governor performance.

Despite the fact that the majority of generators reported they have operational turbine governors, half of them have unit- or plant-level control systems that override governor responses. These control systems allow the units to return to scheduled output (MW setpoint) or an optimized operating point for economic reasons. These factors heavily influence the sustainability of primary frequency response, contributing to the withdrawal symptom often observed. This is often evident during light load periods in the middle of the night when highefficiency, low-cost units that operate on MW setpoints are the majority of the generators dispatched to serve load.

This was exhibited by two events involving generator trips in the spring of 2012 in one weekend. During the first event (figure 19), 1,711 MW of generation was tripped with a typical -2,369 MW/0.1 Hz frequency response.

Figure 19: 3:30 pm Saturday Afternoon 1,711 MW Resource Loss

The second event (figure 20) occurred late Sunday night when load in the Eastern Interconnection was much lighter, and the generators dispatched-probably the most efficient units-were of a different character. Despite the resource loss being almost 700 MW less, the frequency response of the interconnection was significantly reduced and exhibited the "lazy L" of primary frequency response withdrawal. Point C defined to occur during the first 8 seconds (at that time) was 59.962 Hz , while a lower point of about 59.939 Hz occurred about 1 minute after the event.

Figure 20: 11:21 pm Sunday Night 1,049 MW Resource Loss

These two events point to the composition of the dispatch and the characteristics of the units on-line as primary elements in the frequency response strength, as well as the key elements in creating withdrawal. Therefore, when calculating an Interconnection Frequency Response Obligation (IFRO), it is important for operational planners and operators to recognize the potential for that withdrawal and the frequency consequentially being lower one to two minutes after the beginning of the event.

A similar withdrawal was experienced during the major frequency excursion of August 4, 2007 (figure 21). During that event some $4,500 \mathrm{MW}$ of generation was lost.

The lowest frequency in the event was 59.868 Hz at about one minute after the start. Recovery to pre-event frequency was about 8 minutes, but the measurement of Value B (20 to 52 seconds) would not capture the lowest frequency. That frequency point is the true frequency
event nadir, hereafter referred to as Point C' ("Point C Prime"), and is normally equal to Point C for events that don't exhibit the so-called "lazy L" effect.

It is important that the phenomenon be recorded and trended to determine if it is improving or deteriorating.

Figure 21: Interconnection Frequency - August 4, 2007 El Frequency Excursion

Recommendation - Measure and track frequency response sustainability trends by observing frequency between $T+45$ seconds and $T+180$ seconds. A pair of indices for gauging sustainability should be calculated comparing that value to both Point C and Value B.

Modeling of Frequency Response in the Eastern Interconnection

Modeling of frequency response characteristics has been a known problem since at least 2008, when forensic modeling of the Eastern Interconnection required a "de-tuning" of the existing MMWG dynamics governor to 20% of modeled (80% error) to approach the measured frequency response values from the event.

Figure 22 shows the response comparison for that event analysis. Although the event was an over-frequency problem at that point, it is indicative of the larger problem of governor modeling in the Eastern Interconnection. The problem was further highlighted in the 2010 "Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation," by Ernest Orlando Lawrence Berkeley National Laboratory (LBNL). In that analysis, an attempt was made to simulate a 4,500 MW loss event that occurred on August 4, 2007. Figure 23 shows a comparison of the simulation to the measured frequency from the event.

Figure 22: 2007 Event Frequency Response Forensic Analysis

Figure 23: Eastern Interconnection Frequency Response - August 4, 2007 Initial 20 Seconds

As part of the NERC Frequency Response Initiative and the Modeling Improvements Initiative, NERC collaborated with the Eastern Interconnection Reliability Assessment Group (ERAG) Multiregional Modeling Working Group (MMWG) to perform an analysis of the modeling of overall frequency response in the Eastern Interconnection. That review was a prelude to a plan
for thorough examination of the governor models in the Eastern Interconnection dynamics study cases that are assembled by the MMWG. That report stated, "The turbine-governor modeling currently reflected in the MMWG dynamics simulation database is not a valid representation of the frequency control behavior of the Eastern Interconnection."

That project created a "generic case" dynamics model, replacing the turbine governor models in the case with a generic governor model in order to ascertain the basic characteristics of the frequency response of the Eastern Interconnection. Figure 24 shows a comparison of the actual event data and the simulations using the original governor data and the generic case.

The characteristics found in that study were:

- Only 30% of the units on-line provide primary frequency response.
- Two-thirds of the units that did respond exhibit withdrawal of primary frequency response.
- Only 10% of units on-line sustain primary frequency response.

Figure 24: Comparison of Legacy and Generic Simulations to August 4 Event

Following that study, a follow-on analysis was performed by NERC staff to determine the general order of magnitude of a frequency event that could be sustained by the Eastern Interconnection without violating the 59.7 Hz first step UFLS in FRCC. A simulation was run that tripped about 8,500 MW of generation in the southeast United States (north of Florida). Figure 25 shows the result of that testing.

The simulation showed that the lowest frequency would be about 59.76 Hz in southern Florida. The initial nadir of 59.78 Hz in southern Florida is lower than the nadir in northern Florida due to the wave properties of the disturbance.

Figure 25: 8,500 MW Resource Loss Simulation

Although the simulations using the generic governor models are not exact, that analysis is indicative of the Eastern Interconnection's ability to sustain a resource loss event significantly higher than the Resource Contingency Protection Criteria proposed in this report.

Concerns for Future of Frequency Response

There is a growing concern about the future of frequency response in light of a number of factors:

- Electronically coupled resources - The incorporation of renewable resources such as wind and solar and the increasing penetration of variable speed motor drives presents a continuing erosion of system inertia; all are electronically coupled to the system. As such, those resources, unless specifically designed to mimic inertial response, do not have inertial response.
- Electronically coupled loads - As synchronous motors are replaced by variable speed drives, the load response of the motors is eliminated by the power electronics of the motor controller. This reduces the load damping factor for the interconnection.
- Displacement of traditional turbine-generators in the dispatch - Traditional turbinegenerators are being displaced in the dispatch, particularly during off-peak hours when wind generation is at its highest and the loads and generation levels are at their lowest.

Such displacement of frequency responsive resources increasingly depletes the inertia of the interconnection at those times.

Role of Inertia in Frequency Response

Inertia plays a crucial role in determining the slope of a frequency decline during a resource loss event.

The slope of frequency excursion is determined by the inertia of the system and a factor to account for the load damping characteristics of the interconnection.

Where:
D = Load Damping Factor
The load damping factor ranges from 0 to 2 , where 2 would represent a load of all motors.
$\mathrm{H}=$ Inertia Constant of the interconnection
The inertia constant ranges from 2.5 to 6.5
Figure 26 shows the sensitivity of frequency response to changes to system inertia. The lower green curve represents an inertia constant of 2.5, and the lower red curve represents an inertia constant of 5.0.

Figure 26: Frequency Response Sensitivity to System Inertia

Figure 27 shows an actual example from ERCOT of how frequency response is changed for similarly sized resource loses with differences in inertia. It is clear that when the inertia on the system is lower, a similar resource MW loss creates a much steeper and deeper frequency excursion. This is a good example of the displacement of traditional resources with electronically coupled resources during light load periods.

Figure 27: Inertial Response Sensitivity

Need for Higher Speed Primary Frequency Response

The reduction of inertia drives a need for higher speed response to frequency excursions. If the slope of the frequency decline is steeper, it is necessary for high-speed injection of energy to arrest the decline in order to prevent the excursion from being too deep. Such energy injection can come from a number of sources, such as energy storage devices and wind turbines with modified inverters.

Preservation or Improvement of Existing Generation Primary Frequency Response

Additionally, to further ensure strong overall frequency response, it is important to preserve or improve the primary frequency response of the existing generation fleet. The Role of Governors section of this report discusses the results of the 2010 survey on generator governors. The survey results show that there is a significant portion of the existing generator fleet that has operational governors. However, the reported deadband ranges make those governors ineffective for all but catastrophic losses of resources. Figure 28 shows the reported deadband ranges.

If the existing generator fleet primary frequency response performance can be improved through adjustments in deadbands and implementation of no-step droop responses, a significant improvement in interconnection frequency response could be realized. Further, if all of the existing generators were made capable of response, any generators that are on-line during light load periods would be more able to provide response.

Figure 28: Reported Governor Deadband Settings

The Role of Governors section of this report recommends immediate development of a NERC turbine-generator governor guideline calling for deadbands of $\pm 16.67 \mathrm{mHz}$ with droop settings of $4 \%-5 \%$ depending on turbine type in order to retain or regain frequency response capabilities of the existing generator fleet.

Withdrawal of Primary Frequency Response

Withdrawal of primary frequency response caused by outer-loop control systems must be addressed. As shown in the Frequency Response Withdrawal section of this report, frequency response during light load periods can be highly influenced by the mix of dispatched resources. Economics of the dispatch dictates that the most efficient, cost-effective generation will remain on-line during those periods. Such generation employs setpoint controls that return generation to AGC-prescribed or efficiency-prescribed generation levels regardless of system frequency. This results in "squelching" of any primary frequency response that the governors may have provided during a frequency event. This withdrawal of primary response before secondary frequency response from AGC becomes effective starting at about $T+45$ to $T+60$ seconds, creating the "lazy L" event response prevalent in the Eastern Interconnection.

To illustrate this effect, a dynamic simulation of a $3,700 \mathrm{MW}$ resource loss frequency event was performed for the Eastern Interconnection using the generic dynamics case described in the Modeling of Frequency Response in the Eastern Interconnection section of this report. Two simulation runs were performed to mimic about $1,400 \mathrm{MW} / 0.1 \mathrm{~Hz}$ frequency response
(between 20 and 52 seconds), with different combinations of generator dispatch and differing amounts of response "squelch." Figure 29 shows that the effects on frequency response sustainability can be highly influenced by the composition of the resource dispatch, even with the same measured frequency response.

There are potential ways of alleviating this withdrawal symptom, including introduction of a frequency bias into the outer-loop controls systems that would prevent withdrawal of primary frequency response, similar to the frequency bias settings in an automatic generation control (AGC) system.

Recommendation - NERC should include guidance on methods to reduce or eliminate the effects of primary frequency response withdrawal by outer-loop unit or plant control systems.

Figure 29: Simulations of Varying Levels of Primary Frequency Response Withdrawal Eastern Interconnection

Note that these simulation runs were done for illustrative purposes only; the simulations are not yet accurate enough to confidently predict system performance, and AGC secondary frequency response was NOT simulated. Secondary frequency response from AGC becomes effective starting at about $\mathrm{T}+45$ to $\mathrm{T}+60$ seconds.

I nterconnection Frequency Response Obligation (IFRO)

Tenets of I FRO

The IFRO is intended to be the minimum amount of frequency response that must be maintained by an interconnection. Each Balancing Authority in the interconnection should be allocated a portion of the IFRO that represents its minimum responsibility. In order to be sustainable, Balancing Authorities that may be susceptible to islanding may need to carry additional frequency responsive reserves to coordinate with their under-frequency load shedding (UFLS) plans for islanded operation.

A number of methods to assign the frequency response targets for each interconnection can be considered. Initially, the following tenets should be applied:

1. A frequency event should not trip the first stage of regionally approved UFLS systems within the interconnection.
2. Local tripping of first-stage UFLS systems for severe frequency excursions, particularly those associated with protracted faults or on systems on the edge of an interconnection, may be unavoidable.
3. Other frequency-sensitive loads or electronically coupled resources may trip during such frequency events (as is the case for photovoltaic inverters in the Western Interconnection).
4. Other susceptible frequency sensitivities may have to be considered in the future (e.g., electronically coupled load common-mode sensitivities).

UFLS is intended to be a safety net to prevent against system collapse from severe contingencies. Conceptually, that safety net should not be violated for frequency events that happen on a relatively regular basis. As such, the resource criteria are selected to avoid violating UFLS settings approved by the Regional Entities.

The Frequency Responsive Reserve Standard Drafting Team (FRRSDT) is proposing an administered value approach for the BAL-003-1 field trial. Eventually, an agreed-upon method of determining the interconnection FRO will be included in a reliability standard, or in the NERC Rules of Procedure. ${ }^{31}$

[^104]
Statistical Analyses

Frequency Variation Statistical Analysis

A statistical analysis of the variability of frequency for each of the four interconnections was performed using 1 -second measured frequency for the Eastern, Western, and ERCOT Interconnections for 2007-2011 (five years). Data for the Québec Interconnection was only available for 2010 and 2011. Analysis of data showed the Western Interconnection frequency deviations (Epsilon) to be more volatile since the Balancing Authority ACE Limit (BAAL) field trial began there in March of 2010. Therefore, it was decided to limit the analysis to the years 2009-2011 to more accurately portray the current frequency characteristics.

This variability accounts for items such as time error correction; variability of load, interchange, and frequency over the course of a normal day; and other uncertainties, including time error corrections and all frequency events-no large events were excluded. The results of the analysis are shown in table 3.

Table 3: Interconnection Frequency Variation Analysis (Hz)				
Value	Eastern	Western	ERCOT	Québec
Timeframe	2009-2011	2009-2011	2009-2011	2010-2011
Number ${ }^{32}$ of Samples	91,283,555	90,446,802	85,924,929	34,494,049
Expected Value	60.0000367	59.9999522	59.9999847	60.00002303
Maximum Value	60.3090	60.3575	62.1669	60.8776
Minimum Value	59.0015	59.7364	58.0000	59.1879
Variance of Frequency $\left(\sigma^{2}\right)$	$\begin{gathered} 0.00024092 \\ \mathrm{~Hz}^{2} \end{gathered}$	$\begin{gathered} 0.00022266 \\ \mathrm{~Hz}^{2} \end{gathered}$	$\begin{gathered} 0.00060749 \\ \mathrm{~Hz}^{2} \end{gathered}$	$\begin{gathered} 0.00035315 \\ \mathrm{~Hz}^{2} \end{gathered}$
σ	0.01552147	0.01492184	0.02464722	0.01879236
2σ	0.03104295	0.02984369	0.04929445	0.03758472
3σ	0.04656442	0.04476553	0.07394167	0.05637708
Starting Frequency ($\mathrm{F}_{\text {start }}$) 5% of lower tail samples	59.974	59.976	59.963	59.972

[^105]For each interconnection, the distribution of the interconnection frequency fails the normality test (both the chi-square goodness-of-fit and the Kolmogorov-Smirnov goodness-of-fit) at any standard significance level. The combined datasets for the interconnection frequency consist of very large numbers of observations. For such large samples, the empirical distribution can be considered as a very good approximation of the actual distribution of the frequency, and was judged a better predictor than use of standards deviation for predicting the interconnection starting frequencies for an event. The rate of convergence in the Glivenko-Cantelli theorem is $\mathrm{n}^{(-1 / 2)}$, where n is the sample size. Therefore, quantiles of the empirical distribution function can be used directly to calculate intervals where values of frequency belong with any predetermined probability.

Only resource losses (frequency drops) are examined for IFRO calculations, so the focus is on the one-sided lower tail of the distribution for frequencies that fall outside the upper 95\% interval of the overall distribution. Therefore, the starting frequency that should be used for the calculation of the IFROs is the 10% quantile frequency value, which represents a 95% confidence in the prediction for that single tail.

Those starting frequencies encompass all variations in frequency, including changes to the target frequency during time error correction. That eliminates the need to expressly evaluate TEC as a variable in the IFRO calculation.

Recommendation - The starting frequency for the calculation of IFROs should be frequency of the 5% of lower tail of samples from the statistical analysis, representing a 95% confidence that frequencies will be at or above that value at the start of any frequency event.

Figures 30-33 show the interconnection histograms broken into 1-mHz "bins." A complete set of graphs for the four interconnections is located in Appendix D of this report.

Figure 30: Eastern Interconnection 2009-2011 Frequency Histogram

Figure 31: Western Interconnection 2009-2011 Frequency Histogram

Figure 32: ERCOT Interconnection 2009-2011 Frequency Histogram

Note that the ERCOT frequency histogram displays the influence of the "flat-top" f profile that was common to that interconnection prior to 2008 . That phenomenon was caused by a standardized $\pm 36 \mathrm{mHz}$ deadband with a step-function implementation. Additional discussion on that topic is in the ERCOT Experience section of this report.

Figure 33: Québec Interconnection 2010-2011 Frequency Histogram

Point C Analysis - One-second versus Sub-second Data

Additional statistical analysis was performed for the differences between Point C and Value B calculated as a ratio of Point C to Value B using 1-second data for events from December 2010 through May 2012. Although the 1-second data sample is robust, it does not necessarily ensure the nadir of the event was accurately captured. To do so requires sub-second measurements that can only be provided by PMUs or FDRs. Therefore, a "CC" adjustment component ($C^{\text {ADJ }}$) for the IFRO calculation was designed to account for the differences observed between the 1second Point C and high-speed Point C measurements.

Table 4: Analysis of One-second and Sub-second Data for Point C (CC ADJ $^{\prime}$)				
Interconnection	Number of Samples	Mean	Standard Deviation	CC $_{\text {ADJ }}$ (95\% Quantile)
Eastern	30	0.0006	0.0038	0.0068
Western	17	0.0012	0.0019	0.0044
ERCOT	58	0.0021	0.0061	0.0121
Québec 33	0	N/A	N/A	N/A

This adjustment should be made to the allowable frequency deviation value before it is adjusted for the ratio of Point C to Value B. Note: No sub-second data was available for the Québec Interconnection.

Recommendation - The allowable frequency deviation (starting frequency minus the highest UFLS step) should be reduced by the $\mathrm{CC}_{\text {ADJ }}$ to account for differences between the 1 -second and sub-second data for Point C as listed in table B-C9.

Adjustment for Differences between Value B and Point C

All of the calculations of the IFRO are based on protecting from instantaneous or time-delayed tripping of the highest step of UFLS, either for the initial nadir (Point C), or for any lower frequency that might occur during the frequency event. The frequency variance analysis in the previous section of this report is based on 1-second data from 2007 through 2011 (except Québec 2010 and 2011 only).

As a practical matter, the ability to measure the tie line and loads for the Balancing Authorities is limited to system control and data acquisition (SCADA) scan-rate data of 1-6 seconds. Therefore, the ability to measure frequency response of the Balancing Authorities is still limited by the SCADA scan rates available to calculate Point B.

[^106]Candidate events from the ALR1-12 Interconnection Frequency Response selection process (Appendix E) for frequency response analysis were used to analyze the relationship between Value B and Point C for the significant frequency disturbances from December 2010 through May 2012. This sample set was selected because data was available for the analysis on a consistent basis. This resulted in the number of events shown in table 5.

Analysis Method

When evaluating some physical systems, the nature of the system and the data resulting from measurements derived from that system do not fit the standard linear regression methods that allow for both a slope and an intercept for the regression line. In those cases, it is better to use a linear regression technique that represents the system correctly.

The Interconnection Frequency Response Obligation is a minimum performance level that must be met by the Balancing Authorities in an interconnection. Such response is expected to come from the frequency response in MWs of the Balancing Authorities to a change in frequency. As such, if there is no change in frequency there should be no change in MWs resulting from frequency response.

This response is also related to the function of the frequency bias setting in the ACE equation of the Balancing Authorities for longer term. The ACE equation looks at the difference between scheduled frequency and actual frequency times the frequency bias setting to estimate the amount of MWs that are being provided by load and generation within the Balancing Authority. If the actual frequency is equal to the scheduled frequency, the frequency bias component of ACE must be zero.

Since the IFRO is ultimately a projection of how the interconnection is expected to respond to changes in frequency related to a change in MW (resource loss or load loss), there should be no expectation of frequency response without an attendant change in MW. It is this relationship that indicates the appropriateness of the use of regression with a forced fit through zero.

Evaluation of data to determine C-to-B ratio:

The evaluation of data to determine C-to-B ratio to account for the differences between arrested frequency response (to the nadir, Point C) and settled frequency response (Value B) is also based on a physical representation of the electrical system. Evaluation of this system requires investigation of the meaning of an intercept. The C-to-B ratio is defined as the difference between the pre-disturbance frequency and the frequency at the maximum deviation in post-disturbance frequency, divided by the difference between the pre-disturbance frequency and the settled post-disturbance frequency.

A stable physical system requires the ratio to be positive; a negative ratio indicates frequency instability or recovery of frequency greater than the initial deviation.

Table 5: Analysis of Value B and Point C (CBR)				
Interconnection	Number of Samples	Mean	Standard Deviation	CB $_{R}$ (95\% Quantile)
Eastern	41	0.964	0.0149	$1.0(0.989)^{34}$
Western	30	1.570	0.0326	1.625
ERCOT	88	1.322	0.0333	1.377
Québec 35				1.550

This statistical analysis was completed using 1-second averaged data that does not accurately capture Point C and is better measured by high-speed metering (PMUs or FDRs). Therefore, a separate correction must be used to account for the differences between the Point C in the 1 second data and the Point C values measured with sub-second measurements from the FNet FDRs.

The CB_{R} value for the Eastern Interconnection indicates that the Value B is generally below the Point C value. Therefore, there is no adjustment necessary for that interconnection.

The Québec Interconnection's resources are predominantly hydraulic and are operated to optimize efficiency, typically at about 85% of rated output. Consequently, most generators have about 15% headroom to supply primary frequency response. This results in a robust response to most frequency events, exhibited by high rebound rates between Point C and the calculated B Value. For the 26 frequency events in their event sample, Québec's $C B_{R}$ value would be 3.613, or two to three times as high as the CB_{R} value of other interconnections. Using the same calculation method for CB_{R} would effectively penalize Québec for their outstanding rebound performance and make their IFRO artificially high. Therefore, the method for calculating the Québec CB_{R} was modified.

Québec operates with an operating mandate for frequency responsive reserves to protect from tripping their 58.5 Hz (300 ms trip time) first step UFLS for their largest hazard at all times, effectively protecting against tripping for Point C frequency excursions. They also protect against tripping a UFLS step set at 59.0 Hz that has a 20 -second time delay, which protects them for Value B low frequency and any withdrawals. This results in a Point C to Value B ratio of 1.5. To account for the confidence interval, 0.05 is then added, making the $\mathrm{CB}_{\mathrm{R}}=1.550$.

Adjustment for Primary Frequency Response Withdrawal

At times, the nadir for a frequency event occurs after Point C-defined in BAL-003-1 as occurring in the $T+0$ to $T+12$ second period, during the Value B averaging period ($T+20$ through $\mathrm{T}+52$ seconds), or later. For purposes of this report, that later occurring nadir is termed Point

[^107]C^{\prime}. This lower nadir is symptomatic of primary frequency response withdrawal, or squelching, by unit or plant-level outer-loop control systems. Withdrawal is most prevalent in the Eastern Interconnection, as described earlier.

As described in the Withdrawal of Primary Frequency Response section of this report, frequency response withdrawal can become important depending on the type and characteristics of the generators in the resource dispatch, especially during light load periods. Therefore, an additional adjustment to the maximum allowable delta frequency for calculating the IFROs was statistically developed. This adjustment should be used whenever withdrawal is a prevalent feature of frequency events. Initially, it is only being applied to the Eastern Interconnection.

Table 6 shows the statistical results of the analysis based on the 34 frequency response events in the Eastern Interconnection. Note that the expected timeframe for the C^{\prime} nadir to occur is about 82 seconds after the start of the event.

Table 6: Statistical Analysis of the Adjustment for C' Nadir (BC' ${ }_{\text {ADJ }}$)				
Value	Number of Samples	Mean	Standard Deviation	$\mathrm{BC}^{\prime}{ }_{\text {ADJ }}$ $(95 \%$ Quantile)
Delta Frequency from Value B to Point C' Nadir	34	4.0 mHz	8.2 mHz	17.5 mHz
Seconds from T+0 to C' Nadir	34	38.9 s	26.3 s	82.1 s

This $\mathrm{BC}^{\prime}{ }_{\text {ADJ }}$ should be applied to the allowable delta frequency after the differences from Value B to Point C are adjusted. The values driving this adjustment should also be carefully monitored and the adjustment recalculated during the annual review of IFRO calculations.

Variables in Determination of I nterconnection Frequency Response Obligation from Criteria

To make a determination of the appropriate Resource Contingency Protection Criteria to protect for a certain kind of event, the MW target value needs to be translated into an Interconnection Frequency Response Obligation (IFRO) for an appropriate comparison. A number of other variables must be taken into consideration.

Low Frequency Limit

The low frequency limit to be used for the IFRO calculations should be the highest setpoint in the interconnection for regionally approved UFLS systems.

Recommendation - Based on the tenet that UFLS should not trip for a frequency event throughout the interconnection, the recommended UFLS first-step limitations for IFRO calculations listed in table 7 should be used.

Table 7: Low-Frequency Limits (Hz)	
Interconnection	Highest UFLS Trip Frequency
Eastern	59.5^{36}
Western	59.5
ERCOT	59.3
Québec	58.5

The highest UFLS setpoint in the Eastern Interconnection is 59.7 Hz in FRCC, while the prevalent highest setpoint in the rest of that interconnection is 59.5 Hz . The FRCC 59.7 Hz first UFLS step is based on internal stability concerns and preventing the Florida peninsula from separation from the rest of the interconnection. The FRCC concluded that the IFRO starting point of 59.5 Hz for the Eastern Interconnection is acceptable in that it imposes no greater risk of UFLS operation for an interconnection resource loss event than for an internal FRCC event.

Protection against tripping the highest step of UFLS does not ensure that generation that has frequency-sensitive protection or turbine control systems will not trip. Severe system conditions might drive the frequency to levels that may present protection and control systems with a combination of conditions that may cause the generation to trip, such as severe rate of change in voltage or frequency, which might actuate volts per hertz relays. Similarly, some combustion turbines may not be able to sustain operation at frequencies below 59.5 Hz . Recent laboratory testing by Southern California Edison of inverters used on residential and commercial scale photovoltaic (PV) systems revealed a propensity to trip at about 59.4 Hz , which is 200 mHz above the expected 59.2 Hz prescribed in IEEE Standard 1547 for distributionconnected PV rating $\leq 30 \mathrm{~kW}$ (57.0 Hz for larger installations). This could become problematic in areas of high penetration of photovoltaic resources.

Credit for Load Resources (CLR)

The ERCOT Interconnection depends on contractually interruptible demand that automatically trips at 59.7 Hz to help arrest frequency declines. A 1,400 MW Load Resource (formerly Load acting as a Resource - LaaR) credit is included against the Resource Contingency for the ERCOT Interconnection. Similarly, there is a remedial action scheme (RAS) in WECC that trips 300 MW of load for the loss of two Palo Verde generating units.

For the Western Interconnection, if the larger 3,200 MW resource loss activates the RAS and trips the Pacific DC Intertie (PDCI), the 300 MW credit for Load Resources associated with the loss of the two Palo Verde units does not apply.

[^108]For both interconnections, credit for load resources is handled in the calculation of the IFRO as a reduction to the loss of resources, when appropriate.

I nterconnection Resource Contingency Protection Criteria

Selection of discrete event protection criteria for each interconnection must be done before the IFRO can be calculated. The protection criteria selected should ensure that Point C would not encroach on the first step UFLS. However, the criteria may need to be different from one interconnection to the other due to the differences in size and design characteristics.

The following potential interconnection event criteria were considered:

- largest N-2 loss-of-resource event,
- largest total generating plant with common voltage switchyard, and
- largest loss-of-resource event in the interconnection in the last 10 years.

Largest N-2 Event

For this approach, each interconnection will have a target Resource Contingency Protection Criteria based on the largest N -2 loss-of-resource event. This should not be confused with a Category C, N-2 event prescribed in the NERC TPL standards; it is intended to reflect a simultaneous loss of the resources without time for system adjustments. As such, these events would be considered Category D events in the current standards.

Table 8: Largest N-2 Event		
Interconnection	Basis	MW
Eastern	Nelson DC Bi-poles 1 \& 2	$3,854^{37}$
Western	Two Palo Verde Units	$2,740^{38}$
ERCOT	Two South Texas Project Units	$2,750^{39}$

For both the ERCOT and Western Interconnections, that would be the loss of the two largest generating units in the interconnection. However, for the Eastern Interconnection, the largest N -2 loss-of-resource event would be the loss of the two Nelson dc bi-pole converters.

[^109]
Largest Total Plant with Common Voltage Switchyard

Another approach is to examine the largest complete generating plant outage in each of the interconnections, limiting this classification to those generators with a common voltage switchyard. The reasoning for considering such a protection criteria is that despite popular belief, complete plant outages can and do happen on a regular basis; 15 complete plant outages occurred in North America in the 12 months from July 1, 2010 through June 30, 2011.

Table 9: Largest Total Plant with Common Voltage Switchyard		
Interconnection	Basis	MW
Eastern	Darlington Units 1-4	$3,524^{40}$
Western	3 Palo Verde Units	$3,575^{41}$
ERCOT	2 South Texas Project Units	$2,750^{42}$

Note that in the Western Interconnection, multi-plant generation tripping by the operation of the Pacific Northwest remedial action scheme (RAS) results in resource loss of 3,200 MW. That issue is further discussed in the Special IFRO Considerations section of this report.

Largest Resource Event in Last 10 Years

A third approach is to examine the largest complete resource loss event in the interconnection over the last 10 years. Although this method yields a reasonable value for the Eastern Interconnection, the values for the other two interconnections would likely not be sustainable without activating some UFLS. It also results in a larger resource contingency for the Western Interconnection than for the Eastern Interconnection. These single events were not approached in magnitude by any other events in the 10-year period.

Table 10: Largest Resource Contingency Event in Last 10 Years		
Interconnection	Basis	MW
Eastern	August 4, 2007 Disturbance	
Western	June 14, 2004 Disturbance 44	4,500
ERCOT	May 15, 2003 Disturbance ${ }^{45}$	5,000

[^110]
Recommended Resource Contingency Protection Criteria

Because the philosophy is for the criteria to protect against the largest frequency excursion the interconnection can withstand, the contingency criteria may vary significantly between the interconnections. For example, because of its sheer size and generating capacity, the Eastern Interconnection can withstand a greater loss of resources.

Therefore, a blending of Resource Contingency Protection Criteria is recommended (table 4) for the determination of IFROs.

Table 11: Recommended Resource Contingency Protection Criteria			
Interconnection	Resource Contingency	Basis	MW
Eastern	Largest Resource Event in Last 10 Years	August 4, 2007 Disturbance	4,500
Western	Largest N-2 Event	2 Palo Verde Units	$2,740^{46}$
ERCOT	Largest N-2 Event	2 South Texas Project Units	$2,750^{47}$

Although the size of a resource contingency that can be sustained by an interconnection should be tested through dynamic simulations, that test can currently be done only for the Western and ERCOT Interconnections.

Recommendation - Dynamic simulation testing of the Western and ERCOT Resource Contingency Protection Criteria should be conducted as soon as possible.

Recommendation - Dynamic simulation testing of the Eastern Interconnection Resource Contingency Protection Criteria should be conducted when the dynamic simulation models of the interconnection are capable of performing the analysis.

[^111]
Comparison of Alternative I FRO Calculations

Each of the proposed resource loss criteria alternatives were compared through development of the corresponding IFROs. The following tables show the calculation of an IFRO for each alternative for the Eastern, Western, and ERCOT Interconnections. The criterion for the Québec Interconnection was kept constant throughout.

IFRO Formulae

The following are the formulae that comprise the calculation of the IFROs.

Where:

- $\mathrm{DF}_{\text {Base }}$ is the base delta frequency.
- $\mathrm{F}_{\text {Start }}$ is the starting frequency determined by the statistical analysis.
- UFLS is the highest UFLS trip setpoint for the interconnection.
- $C^{A D J}$ is the adjustment for the differences between 1-second and sub-second Point C observations for frequency events. A positive value indicates that the sub-second C data is lower than the 1-second data.
- $\mathrm{DF}_{\mathrm{Cc}}$ is the delta frequency adjusted for the differences between 1-second and subsecond Point C observations for frequency events.
- CB_{R} is the statistically determined ratio of the Point C to Value B .
- $\quad D F_{C B R}$ is the delta frequency adjusted for the ratio of the Point C to Value B.
- $\mathrm{BC}^{\prime}{ }_{\text {ADJ }}$ is the statistically determined adjustment for the event nadir occurring below the Value B (Eastern Interconnection only) during primary frequency response withdrawal.
- MDF is the maximum allowable delta frequency.
- RLPC is the resource loss protection criteria.
- CLR is the credit for load resources.
- ARLPC is the adjusted resource loss protection criteria adjusted for the credit for load resources.
- IFRO is the interconnection frequency response obligation.

Determination of Maximum Delta Frequencies

Because of the limitation of measurement of the Balancing Authority-level frequency response performance using Value B, the Interconnection Frequency Obligations must be calculated in "Value B space." Protection from tripping UFLS for the interconnections based on Point C (the nadir defined as occurring between $T=0$ and $T+12$ seconds in BAL-003-1), Value B (defined as occurring from $\mathrm{T}+20$ seconds to $\mathrm{T}+52$ seconds), or any nadir occurring after point C , within Value B, or after $T+52$ seconds must be reflected in the maximum allowable delta frequency for IFRO calculations expressed as a Value B.

Table 12: Determination of Maximum Delta Frequencies					
	Eastern	Western	ERCOT	Québec	Units
Starting Frequency	59.974	59.976	59.963	59.972	Hz
Minimum Frequency Limit	59.500^{48}	59.500	59.300	58.500	Hz
Base Delta Frequency	0.474	0.476	0.663	1.472	Hz
$\mathrm{CC}_{\mathrm{ADJ}}$	0.007	0.004	0.012	$\mathrm{~N} / \mathrm{A}$	Hz
Delta Frequency (DF ${ }_{\mathrm{CC}}$)	0.467	0.472	0.651	1.472	Hz
CB_{R}	1.000^{49}	1.625	1.377	1.550^{50}	Hz
Delta Frequency (DF $\left._{\mathrm{CBR}}\right)^{51}$	0.467	0.291	0.473	0.949	Hz
$\mathrm{BC}^{\prime}{ }_{\text {ADJ }}$.018	$\mathrm{~N} / \mathrm{A}$	N / A	N / A	Hz
Max. Delta Frequency	0.449	0.291	0.473	0.949	Hz

Table 12 shows the calculation of the maximum allowable delta frequencies for each of the interconnections. All adjustments to the maximum allowable change in frequency are made to include:

- adjustments for the differences between 1-second and sub-second Point C observations for frequency events,
- adjustments for the differences between Point C and Value B, and

[^112]- adjustments for the event nadir being below the Value B (Eastern Interconnection only) due to primary frequency response withdrawal.

Recommendation - The determination for the Maximum Delta Frequencies should be calculated in accordance with the methods embodied in Table 12 - Determination of Maximum Delta Frequencies.

Largest N-2 Event

Table 13 shows the determination of IFROs based on a resource loss equivalent to the largest $\mathrm{N}-2$ event in each interconnection. This calculation has been adjusted to include the recommended adjustment for the differences between Value B and Point C, and for the differences in measurement of Point C using 1-second and sub-second data.

Table 13: Largest N-2 Event					
	Eastern	Western	ERCOT	Québec	Units
Starting Frequency	59.974	59.976	59.963	59.972	Hz
Max. Delta Frequency	0.449	0.291	0.473	0.949	Hz
Resource Contingency Protection Criteria	3,854	2,740	2,750	1,700	MW
Credit for LR		300	1,400		MW
IFRO ${ }^{52}$					

[^113]
Largest Total Plant with Common Voltage Switchyard

Table 14 shows the determination of IFROs based on a resource loss equivalent to the largest total plant with common voltage switchyard in each interconnection. This calculation has been adjusted to include the recommended adjustment for the differences between Value B and Point C, and for the differences in measurement of Point C using 1 -second and sub-second data.

Table 14: Largest Total Plant with Common Voltage Switchyard					
	Eastern	Western	ERCOT	Québec	Units
Starting Frequency	59.974	59.976	59.963	59.972	Hz
Max. Delta Frequency	0.449	0.291	0.473	0.949	Hz
Resource Contingency Protection Criteria	3,524	3,575	2,750	1,700	MW
Credit for LR		300	1,400		MW
IFRO					

[^114]
Largest Resource Event in Last 10 Years

Table 15 shows the determination of IFROs based on a resource loss equivalent to the largest resource event in the last 10 years in each interconnection. This calculation has been adjusted to include the recommended adjustment for the differences between Value B and Point C, and for the differences in measurement of Point C using 1 -second and sub-second data.

Table 15: Largest Resource Event in Last 10 Years					
	Eastern	Western	ERCOT	Québec	Units
Starting Frequency	59.974	59.976	59.963	59.972	Hz
Max. Delta Frequency	0.449	0.291	0.473	0.949	Hz
Resource Contingency Protection Criteria	4,500	5,000	3,400	1,700	MW
Credit for LR		300	1,400		MW
IFRO 58	$-1,002$	$-1,721$	-423	-179	$\mathrm{MW} / 0.1 \mathrm{~Hz}$
Absolute Value of IFRO	1,002	1,721	423	179	$\mathrm{MW} / 0.1 \mathrm{~Hz}$
\% of Current Interconnection Performance	40.6%	146.0%	72.2%	23.9%	
\% of Interconnection Load	0.17%	1.16%	0.66%	0.50%	

[^115]
Recommended IFROs

Table 16 shows the determination of IFROs based on a resource loss equivalent to the recommended criteria in each interconnection. This calculation has been adjusted to include the recommended adjustment for the differences between Value B and Point C, and for the differences in measurement of Point C using 1-second and sub-second data.

Recommendation - The Interconnection Frequency Response Obligations should be calculated as shown in Table 16 - Recommended IFROs.

Table 16: Recommended IFROs					
	Eastern	Western	ERCOT	Québec	Units
Starting Frequency	59.974	59.976	59.963	59.972	Hz
Max. Delta Frequency	0.449	0.291	0.473	0.949	Hz
Resource Contingency Protection Criteria	4,500	2,740	2,750	1,700	MW
Credit for LR		300	1,400		MW
IFRO 61	$-1,002$	-840	-286	-179	$\mathrm{MW} / 0.1 \mathrm{~Hz}$
Absolute Value of IFRO	1,002	840	286	179	$\mathrm{MW} / 0.1 \mathrm{~Hz}$
\% of Current Interconnection Performance	40.6%	71.2%	48.7%	23.9%	
\% of Interconnection Load 63	0.17%	0.56%	0.45%	0.50%	

Special I FRO Considerations

The IFRO calculation scenarios for the Western Interconnection do not take into account intentional tripping of generation during the operation of remedial action schemes (RAS). A key example is the Pacific Northwest RAS for loss of the Pacific DC Intertie (PDCI), which trips up to 3,200 MW of generation in the Pacific Northwest when the PDCI trips, depending on the loading of the PDCI. The RAS is intended to avoid system instability, tripping generation, inserting the Chief Joseph braking resistor (for up to 30 cycles), and other reactive configuration

[^116]changes. However, because the generation in the Pacific Norwest is some of the most responsive to frequency deviations in the Western Interconnection, the RAS also blocks frequency response by a number of generators and Balancing Authorities to avoid overloading the Pacific AC ties (such as the California-Oregon Interface (COI)).

Frequency events caused by the 3,200 MW generation trips from that RAS have not been considered historically as candidate events for the Western Interconnection calculation of frequency bias settings by the Balancing Authorities because of the response blocking. However, from an interconnection perspective, the frequency of the interconnection still must be maintained as a whole, regardless of which Balancing Authorities are responding to the event. This creates a dilemma when calculating an IFRO for the interconnection-the resultant resource loss is larger than the design loss criteria of two Palo Verde units ($2,440 \mathrm{MW}$). Table 17 shows a comparison of the two resource losses in calculating the IFRO for the Western Interconnection.

Table 17: Western Interconnection IFRO Comparison			
	2-PV	PNW RAS	Units
Starting Frequency	59.976	59.976	Hz
Max. Delta Frequency	0.291	0.291	Hz
Resource Contingency Protection Criteria	2,740	3,200	MW
Credit for LR	300		MW
IFRO 64	-840	$-1,101$	$\mathrm{MW} / 0.1 \mathrm{~Hz}$
Absolute Value of IFRO $^{\text {\% of Current Interconnection Performance }}{ }^{65}$	71.2%	93.4%	
\% of Interconnection Load ${ }^{66}$	0.56%	0.74%	

Using a 3,200 MW resource loss criterion in the IFRO calculation increases the obligation by 260 MW but is further complicated when that obligation is allocated to the Balancing Authorities in the interconnection; allocation of FRO to Balancing Authorities whose response is blocked by the RAS is inappropriate. Therefore, a different FRO allocation would be necessary for that IFRO.

Recommendation - NERC and the Western Interconnection should analyze the FRO allocation implications of the Pacific Northwest RAS generation tripping of 3,200 MW.

[^117]
Comparison of I FRO Calculations

Table 18 shows a comparison of the four criteria analyzed by the TIS, as well as the criteria recommended by the NERC Resources Subcommittee (RS) in their white paper on frequency response. The table also compares the IFROs to current levels of frequency response performance ${ }^{67}$ for each of the interconnections. A comparison is also made to IFROs adjusted to include the recommended adjustment for the differences between Value B and Point C.

Table 18: IFRO Calculation Comparison					
	Eastern	Western	ERCOT	Québec	Units
Current Interconnection Frequency Response Performance	-2,467	-1,179	-586	N/A	MW/0.1Hz
Largest N-2 Event					
Resource Loss Criteria	3,854	2,740	2,750	1,700	MW
IFRO	-858	-840	-286	-179	MW/0.1Hz
IFRO as \% of Current Performance	34.8\%	71.2\%	48.7\%	23.9\%	
IFRO as \% of Load ${ }^{68}$	0.14\%	0.56\%	0.45\%	0.50\%	
Largest Total Plant with Common Voltage Switchyard					
Resource Loss Criteria	3,524	3,575	2,750	1,700	MW
IFRO	-785	-1,127	-286	-179	MW/0.1Hz
IFRO as \% of Current Performance	31.8\%	95.6\%	48.7\%	23.9\%	
IFRO as \% of Load	0.13\%	0.76\%	0.45\%	0.50\%	
Largest Resource Event in Last 10 Years					
Resource Loss Criteria	4,500	5,000	3,400	1,700	MW
IFRO	-1,002	-1,716	-423	-179	MW/0.1Hz
IFRO as \% of Current Performance	40.6\%	146.0\%	72.2\%	23.9\%	
IFRO as \% of Load	0.17\%	1.16\%	0.66\%	0.50\%	

[^118]Table 19 compares the recommended IFROs with those recommended by the Resources Subcommittee.

Table 19: IFRO Calculation Comparison						
	Eastern	Western	ERCOT	Québec	Units	
Current Interconnection Frequency Response Performance	$-2,467$	$-1,179$	-586	N/A	MW/0.1 Hz	
Recommended IFROs						
Resource Loss Criteria	4,500	2,740	2,750	1,700	MW	
IFRO	$-1,692$	-838	-286	-417	$\mathrm{MW} / 0.1 \mathrm{~Hz}$	
IFRO as \% of Load	0.28%	0.56%	0.45%	2.03%		
	RS Recommendation					
Resource Loss Criteria	4,500	2,740	2,750	1,700	MW	
Base IFRO	$-1,125$	-548	-229	-113	$\mathrm{MW} / 0.1 \mathrm{~Hz}$	
25 \% Margin	-281	-137	-57	-28	$\mathrm{MW} / 0.1 \mathrm{~Hz}$	
IFRO	$-1,406$	-685	-286	-141	$\mathrm{MW} / 0.1 \mathrm{~Hz}$	
IFRO as \% of Load	0.23%	0.46%	0.45%	0.68%		

Allocation of I FRO to Balancing Authorities

The allocation of the IFRO to individual Balancing Authorities in a multi-Balancing Authority interconnection will be done in accordance with the "Attachment A - BAL-003-1 Frequency Response and Frequency Bias Setting Supporting Document," which can be found at:
http://www.nerc.com/docs/standards/sar/Att A Freq Response Standard Support Documen t 100611.pdf)

The process is paraphrased here for brevity.
Once the IFROs have been calculated by the ERO, the FRO for each Balancing Authority in a multi-Balancing Authority interconnection is allocated based on the Balancing Authority's annual load and annual generation to each Balancing Authority by the following formula:

$$
F R O_{B A}=F R O_{\text {Int }} X \frac{\text { AnnualGen }_{B A}+\text { AnnualLoad }_{B A}}{\text { AnnualGen }_{\text {Int }}+\text { AnnualLoad }_{\text {Int }}}
$$

Where:

- Annual Gen $_{\text {BA }}$ is the total annual "Output of Generating Plants" within the Balancing Authority Area (BAA), on FERC Form 714, column C of Part II - Schedule 3.
- Annual Load ${ }_{B A}$ is total annual load within the BAA, on FERC Form 714, column E of Part II - Schedule 3.
- Annual Gen $_{\text {Int }}$ is the sum of all Annual Gen $_{B A}$ values reported in that interconnection.
- Annual Load ${ }_{\text {Int }}$ is the sum of all Annual Load $_{B A}$ values reported in that interconnection.

The data used for this calculation is from the most recently filed Form 714. As an example, a report to NERC in January 2013 would use the Form 714 data filed in 2012, which used data from 2011. Balancing Authorities that are not FERC-jurisdictional will use the Form 714 instructions to assemble and submit equivalent data to the ERO for use in the FRO allocation process.

Balancing Authorities that elect to form a Frequency Response Sharing Group (FRSG) will calculate an FRSG FRO by summing the individual Balancing Authority FROs. Balancing Authorities that elect to form an FRSG as a means to jointly meet the FRO will calculate their FRM performance for the FRS Form 1 as follows:

- calculate a group NI_{A} and measure the group response to all events in the reporting year on a single FRS Form 1, or
- jointly submit each Balancing Authority's Form 1 with a summary spreadsheet that sums each participant's individual event performance.

Balancing Authorities that merge or transfer load or generation are encouraged to notify the ERO of the change in footprint and corresponding changes in allocation such that the net obligation to the interconnection remains the same and so that Control Performance Standard (CPS) limits can be adjusted.

Each Balancing Authority reports its previous year's Frequency Response Measure (FRM), frequency bias setting and frequency bias type (fixed or variable) to the ERO each year to allow the ERO to validate the revised frequency bias settings on FRS Form 1. If the ERO posts the official list of events after the date specified in the timeline below, Balancing Authorities will be given 30 days from the date the ERO posts the official list of events to submit FRS Form 1.

Once the ERO reviews the data submitted in FRS Form 1 and FRS Form 2 for all Balancing Authorities, the ERO will use FRS Form 1 data to post the following information for each Balancing Authority for the upcoming year:

- frequency bias setting
- Frequency Response Obligation (FRO)

A Balancing Authority providing Overlap Regulation will report the historic peak demand and generation of its combined Balancing Authorities' areas on FRS Form 1 as described in Requirement R4 of the BAL-003-1 standard.

Frequency Response Performance Measurement

I nterconnection Process

The process for detection of candidate interconnection frequency events for use in frequency response metrics is described in the ALR1-12 Metric Event Selection Process contained in Appendix W. It is paraphrased here for brevity.

Frequency Event Detection, Analysis, and Trending (for Metrics and Analysis)

Interconnection frequency events are detected through a number of systems, including:

- FNet (Frequency monitoring Network) - FNet is a wide-area power system frequency measurement system that uses a type of phasor measurement unit (PMU) known as a Frequency Disturbance Recorder (FDR). FNet is able to measure the power system frequency, voltage, and angle very accurately at a rate of 10 samplers per second. The FNet system is currently operated by the Power Information Technology Laboratory at Virginia Tech and the University of Tennessee, Knoxville. FNet alarms are received by the NERC Situational Awareness staff and contain an estimate of the size of the resource or load loss and general location description based on triangulation between FDRs.
- CERTS-EPG Resource Adequacy Tool Intelligent Alarms - The Electric Power Group (EPG) operates the Resource Adequacy (RA) tool developed under the auspices of the Consortium for Electric Reliability Technology Solutions (CERTS). The RA tool uses 1minute frequency and area control error (ACE) SCADA data transmitted to a NERC central database. The RA tool constantly monitors frequency and produces many Smart Alarms for a number of frequency change conditions, but most useful for frequency event detection is the short-term frequency deviation alarm, which indicates when there has been a significant change in frequency over the last few minutes, typically indicating a resource loss.
- CERTS-EPG Frequency Monitoring and Analysis (FMA) Tool - EPG also developed and operates the FMA tool that allows rapid analysis of frequency events, calculating the A, B, and C values for a frequency event in accordance with parameters set by the Frequency Working Group (FWG). Event selection criteria are further discussed in Appendix E of this report.

Those three systems are used in combination by NERC staff to detect and collect data about frequency excursions in the four North American interconnections. The size of resource losses is verified with the Regional Entities for events where FNet estimates of resource loss meet the following criteria:

- Eastern: >1,000 MW (60 mHz excursion)
- Western: >700 MW (80 mHz excursion)
- ERCOT: >450 MW (100 mHz excursion)

Events that are detected and meet the ALR1-12 metric criteria are then considered to be "candidate events" and are used by NERC to calculate interconnection frequency response metrics and trends. Those candidate events are also presented to the Frequency Working Group for consideration to be used as events for calculation of Balancing Authority frequency response and bias setting calculations in accordance with NERC Standard BAL-003-1.

Ongoing Evaluation

The process for detection of frequency events and the calculation of Values A, B, and C and the associated interconnection level metrics will undergo constant review in an effort to improve the process. NERC staff and the Frequency Working Group will perform that review at least annually.

Recommendation -NERC staff and the Frequency Working Group should annually review the process for detection of frequency events and the method for calculating A and B Values and Point C. The associated interconnection frequency event database, methods for calculating interconnection metrics on risks to reliability, the associated probabilities, and the calculation of the IFROs using updated data should also undergo review in an effort to improve the process. Throughout this process, NERC should strive to improve the quality and consistency of the data measurements.

Balancing Authority Level Measurements

A statistical analysis and evaluation was performed on field trial data with similar sample sizes to those specified in the draft Standard BAL-003-1 Frequency Response and Frequency Bias Setting. Field trial data was provided on FRS Form 1 for 2011 for 60 Balancing Authorities on the Eastern and Western Interconnections; the analysis was not performed for either of the single Balancing Authority interconnections, (i.e., ERCOT or Québec). Of the 60 Balancing Authorities that provided data, only 50 provided data of sufficient quality to be used in the analysis. Balancing Authorities that were excluded provided frequency data that was either obviously incorrect (i.e., frequency data in hertz instead of change in hertz) or frequency data that was uncorrelated to the frequency measured in an interconnection.

To protect the confidential nature of the data, the Form 1 data was normalized by dividing the change in actual net interchange by the Frequency Response Obligation (FRO) for each Balancing Authority, based on Interconnection Frequency Response Obligations (IFROs) of $-1,215 \mathrm{MW} / 0.1 \mathrm{~Hz}$ and $-836 \mathrm{MW} / 0.1 \mathrm{~Hz}$ for the Eastern and Western Interconnections, respectively. ${ }^{69}$ This normalization method converts all of the data from the actual frequency response of the Balancing Authority to a per-unit frequency response value where 1.0 indicates that the frequency response is exactly equal to the Balancing Authority's FRO. The process also required the development of the some of the data that would appear on the equivalent of the CPS2 Bounds Report under this revised standard. The required data was extracted from FERC Form 714 reports for the year 2009 and was estimated for those Balancing Authorities that did

[^119]not submit 714 reports from equivalent data based on other sources. The validity of this analysis is not dependent upon the accuracy of the FRO estimates. It is only necessary for these estimates to be close to the actual values for firm conclusions to be drawn from the results and put the results in the proper context. Once the FROs were estimated for all of the Balancing Authorities on the Eastern and Western Interconnections, they were transcribed onto the FRS Form 1 for each Balancing Authority included in the analysis.

Single-Event Compliance

The question was posed whether or not a Balancing Authority's compliance with the proposed BAL-003-1 standard should be measured on each event, through use of the mean, median, or a regression analysis for a 12 -month period. The variability of the measurement of frequency response for an individual Balancing Authority for an individual disturbance event was evaluated to determine its suitability for use as a compliance measure. The individual Balancing Authorities' performance disturbance events were normalized and plotted for each Balancing Authority on the Eastern and Western Interconnections.

Figure 34: 2011 Normalized Frequency Response Events by BA Eastern Interconnection

On Figures 34 and 35 , events that had a measured Balancing Authority's frequency response above its FRO were shown as blue dots, and events that had a measured frequency response below its FRO were shown as red dots.

Analysis of this data indicates that a single-event-based compliance measure is unsuitable for compliance evaluation when the data has the large degree of variability shown in the charts in Appendix 1. Based on the field trial data provided, only three out of 19 Balancing Authorities in the sample (16\%) would be compliant for all events with a standard based on a single event
measure on the Western Interconnection. Only one out of 31 Balancing Authorities in the sample (3\%) would be compliant for all events with a standard based on a single-event measure on the Eastern Interconnection.

Figure 35: 2011 Normalized Frequency Response Events by BA Western Interconnection

Finding - Analysis of the field trial data indicates that a single-event-based compliance measure is unsuitable for compliance evaluation when the data has a large degree of variability.

Recommendation - Balancing Authority compliance with BAL-003-1 should not be judged on a per-event basis. Doing so would cause almost 90% of the Balancing Authorities to be out of compliance.

Balancing Authority Frequency Response Performance Measurement Analysis

Data provided by the Balancing Authorities from the field trial were also analyzed to determine: 1) if the sample size minimum of 20-25 frequency events, as specified for FRM calculation of the draft BAL-003-1 standard, is sufficient to provide stable measurements results; and 2) which of the three candidate FRM measurement methods is most appropriate. These analyses were carried out using the normalized data provided by a number of Balancing Authorities during the field trial.

Event Sample Size

Previous studies have recommended a sample size sufficient to provide a stable measure of frequency response of 20-25 events. These previous studies were performed on limited data and a limited number of Balancing Authorities. The field trial data set is sufficiently large to allow conclusions to be drawn with respect to that sample size recommendation specified for FRM calculation in the draft standard.

Review of the full set of graphs (Appendix H) indicates that the outlier problem, as previously described, did not present itself. There were no Balancing Authorities that had a small degree of variability in the measured single-event frequency response for most of the events that contained a few outliers.

The variability appeared similar for all events for each Balancing Authority, which indicates that the sample size of 20-25 events was sufficient to stabilize the result and eliminate any undue influence from potential outliers. In those Balancing Authorities with large variations in measured single-event response, the sample size was large enough that no single outliers unduly influenced the result. Balancing Authorities with large measurement variation still had enough samples to mitigate the risk associated with outliers. This demonstrates that the sample size chosen was sufficient to stabilize all three methods of measuring FRM. Therefore, it can be concluded that none of the methods are unduly influenced by outliers and the selection of the measurement method should be based on other factors.

Finding - Analysis of data submitted by the Balancing Authorities during the field trial confirms that the sample size selected (a minimum of 20-25 frequency events) is sufficient to stabilize the result and alleviate the perceived problem associated with outliers in the measurement of Balancing Authority frequency response performance.

Measurement Methods - Median, Mean, or Regression Results

All of the normalized data were analyzed using all three candidate methods for measuring FRM.
median - Median is the numerical value separating the higher half of a one-dimensional sample, a one-dimensional population, or a one-dimensional probability distribution from the lower half. The median of a finite list of numbers is found by arranging all the observations from lowest value to highest value and picking the middle one. When the number of observations is even, there is no single middle value; the median is arbitrarily defined as the mean of the two middle values.

In a sample of data, or a finite population, there may be no member of the sample whose value is identical to the median (in the case of an even sample size), and, if there is such a member, there may be more than one so that the median may not uniquely identify a sample member. Nonetheless, the value of the median is uniquely determined with the usual definition. A median is also a central point that minimizes the arithmetic mean of the absolute deviations. However, a median need not be
uniquely defined. Where exactly one median exists, statisticians speak of "the median" correctly; even when no unique median exists, some statisticians speak of "the median" informally.

The median can be used as a measure of location when a distribution is skewed, when end values are not known, or when one requires reduced importance to be attached to outliers; e.g., because they may be measurement errors. A median-unbiased estimator minimizes the risk with respect to the absolute-deviation loss function, as observed by Laplace. ${ }^{70}$ For continuous probability distributions, the difference between the median and the mean is never more than one standard deviation. Calculation of medians is a popular technique in summary statistics and summarizing statistical data, since it is simple to understand and easy to calculate. It also gives a measure that is more robust in the presence of outlier values than the mean.
mean - Mean is the numerical average of a one-dimensional sample, a one-dimensional population, or a one-dimensional probability distribution. A mean-unbiased estimator minimizes the risk (expected loss or estimate error) with respect to the squared-error loss function, as observed by Gauss. ${ }^{71}$ The mean is more sensitive to outliers for the very reason that it is a better estimator; it minimizes the squared-error loss function.
linear regression - Linear regression is the linear average of a multi-dimensional sample, or a multi-dimensional population. A linear regression unbiased estimator minimizes the risk (expected loss or estimate error) with respect to the squared-error loss function in multiple dimensions, as observed by Gauss. ${ }^{72}$ The linear regression is also sensitive to outliers for the very reason that it is a better estimator; it minimizes the squared-error loss function.

Important Considerations

The following issues are important to consider with respect to the selection of the best method for measuring frequency response.
two-dimensional measurement - Two-dimensional measurement of frequency response provides the best representation of the change in MWs divided by the change in frequency and is used to estimate the frequency bias setting, which indicates the frequency response in MWs provided at actual frequency as compared to scheduled frequency.
non-linear attribute of frequency response - The non-linear attribute of frequency response has been demonstrated on all of the North American interconnections and is an important consideration in the representation of frequency response.

[^120]single best estimator - A single best estimator of frequency response is a necessary result for use in compliance evaluation.
linear system - A linear system ${ }^{73}$ is assumed in the development of the individual Frequency Response Obligation for each Balancing Authority on a multiple Balancing Authority interconnection and is used to distribute the Interconnection Frequency Response Obligation among the Balancing Authorities on that interconnection. If the system is non-linear, ${ }^{74}$ then it cannot be assumed that the total required Interconnection Frequency Response Obligation will be achieved when all Balancing Authorities provide their individual Frequency Response Obligations.
bi-modal distributions - Bi-modal distributions occur whenever a reconfiguration of Balancing Authorities occurs within a compliance year. Unless the method chosen can correctly represent bi-modal distributions, reconfigured Balancing Authorities cannot be effectively measured for compliance.
quality statistics - Quality statistics should be available for use in compliance evaluation. Frequency response is used to determine compliance with minimum provision of the Balancing Authority's obligation for providing its share of frequency response for the interconnection. When using a measure for compliance, one must ensure that the measure fairly represents the Balancing Authority's performance. There is still a presumption that an indication of non-compliance should not occur due to pure chance.
reducing influence of noise - Reducing influence of noise in the data is considered an important attribute in the measurement method. All measurements of frequency response will be affected by noise in the measurement process.
reducing influence of outliers - Reducing influence of outliers in the data is considered the most important attribute in the measurement method. All measurements of frequency response will be affected by true outliers. The risk associated with the reduction in the influence of outliers is that valid information about the measure is also lost when an outlier reduction method is used.
ease of calculation and familiar indicators - Ease of calculation and familiar indicators are important considerations for communication and to promote ease of understanding by the industry.

Appendix H presents the series of graphs indicating results for each Balancing Authority. Each graph shows all of the individual data points use to determine the median, mean, and regression lines.

[^121]The median line is green, the mean line is blue, and the regression line is red. The value of the normalized frequency response (vertical axis) where the line intercepts the value of frequency (horizontal axis) at a value of 0.1 Hz indicates compliance. Values above 1.0 indicate an FRM above the FRO, and values below 1.0 indicate an FRM below the FRO.

Figure 36 shows an example of a Balancing Authority with a small degree of variability in the measured frequency response for each individual event.

Figure 36: BA with Small Degree of Variability in Measured Frequency Response

Figure 37 shows an example of a Balancing Authority with a large degree of variability in the measured frequency response for each individual event.

During the analysis, the graphs appeared to show that the regression provided a higher estimate of FRM than the median. Consequently, a comparison was made between the FRM as measured by the median and the FRM as measured by the regression. The results of the regression analysis demonstrate a performance for all samples that is 0.087% of their FRO higher than the median's performance on the Eastern Interconnection and 0.117% of their FRO higher than the median's performance on the Western Interconnection. In an unbiased analysis, one would expect the median and regression to yield the same result. This indicates there is an unknown statistical bias affecting the results of the analysis.

Figure 37: BA with Large Degree of Variability in Measured Frequency Response

The bias causing the difference between the median and regression results can be explained by an attribute of frequency response. As the frequency deviation increases for larger disturbance events, the frequency response increases, but it does so disproportionately, shown in figure 38. This attribute of frequency response has been demonstrated in technical papers. ${ }^{75}$ It has also been implemented in the variable frequency bias settings used by ERCOT, BPA and BC Hydro. In simple terms, the regression includes the effect of this non-linear attribute and the median does not.

The regression accommodates the disproportion on the slope of the regression line. In this case the effect tends to be upward-ever bigger MWs per increment in size of larger frequency error. The median is biased against any disproportionate increase in response per increase in size of frequency error as part of the median's blindness to outliers. The median will give no credit for the ever-growing amount of MWs deployed per added increment in size of frequency error. All the median does is count the number of MW responses regardless of size and, to represent all the MW responses, choose the one that occurred half-way in the sequence of decreasingly negative and increasingly positive frequency errors. Therefore, the median underestimates the FRM because it cannot evaluate the non-linear attribute correctly. It does not see or notice that attribute at all through its blinders regardless of numerical order or placement in a sequence. Regression is the only measurement method that captures the nonlinear frequency response correctly.

[^122]Figure 38: Typical Non-Linear Frequency Response

The advantages of each method of measurement are presented in Table 20 - Median, Mean and Regression Comparison. The alphabetic key is below.

Table 20: Median, Mean, and Regression Comparison			
Attribute	Median	Mean	Regression
Provides two-dimensional measurement	A	A	Yes
Represents non-linear attributes	B	B	Yes
Provides a single best estimator (single value)	C	Yes	Yes
Is part of a linear system		Yes	Yes
Represents bi-modal distributions	D	Yes	Yes
Quality statistics available	E	Yes	Yes
Reducing influence of noise	Yes (F)		Partial (G)
Reducing influence of outliers	Yes		Partial (H)
Easy to calculate	Yes	Yes	I
Familiar indicator	Yes	Yes (J)	No
Currently used as the measure in BAL-003-1	No	Yes	No

A. Neither median nor mean can evaluate the two-dimensional nature of frequency response.
B. Neither median nor mean can capture the non-linear attribute of frequency response. Both underestimate the typical non-linear frequency response.
C. Median is arbitrarily defined as the average of the two central values when there is an even number of values in the data set. The decision to further constrain this central range of values to a single value that is the average of the ends of that range is unsupported by any mathematical construct. It is only the desire of those looking for simplicity in the result that supports this singular definition of median.
D. The median fails to provide a valid estimate of frequency response when the distribution of frequency event responses is bi-modal due to Balancing Authority reconfiguration or changes in responsibility for control such as partial-period overlap of supplemental control.
E. The median fails to provide any methods to determine the quality, significance, or confidence associated with the measure.
F. The median reduces the influence of noise in the data, but that noise reduction comes with the cost of eliminating the availability of any quality statistics.
G. Linear regression provides a result that weights the data according to the change in frequency. Since the noise in the data is independent of change in frequency, linear regression provides a method superior to the mean for reducing the influence of noise in the resulting estimate of frequency response.
H. Linear regression is less sensitive to outliers and large data errors than the mean.
I. Linear regression is more complex and requires more effort to calculate, but that additional effort is small when the evaluation process has been automated.
J. Mean is currently used as the measure in the proposed draft BAL-003-1 standard.

After consideration of the mitigating effects of the sample size with respect to outliers, the linear regression method is the preferred method for calculating the frequency response Measure (FRM) for Balancing Authorities for compliance with proposed NERC Standard BAL-003-1 - Frequency Response.

Recommendation - Linear regression is the method that should be used for calculating Balancing Authority Frequency Response Measure (FRM) for compliance with Standard BAL-003-1 - Frequency Response.

Role of Governors

Deadband and Droop

Turbine-generator units use turbine speed control systems, called governors, to control shaft speed by sensing turbine shaft speed deviations and initiating adjustments to the mechanical input power to the turbine. This control action results in a shaft speed change (increase or decrease). Since turbine-generators rotate at a variety of speeds, outside the power plant it is more appropriate to generally relate shaft speed to system frequency and throttle valve position to generator output power (MW).

The expected response of a turbine-generator's governor to frequency deviations is often plotted on what is known as a governor droop characteristic curve or a droop curve. The curve shows the relationship between the generator output and system frequency. The curve droops from left to right. Simply stated, as the frequency decreases, the generator's output will increase in accordance with its size.

Figure 39: Sample Droop Characteristic Curve

Droop settings on governors are necessary to enable multiple generators to operate in parallel while on governor control while not competing with each other for load changes. Droop is expressed as a percentage of the frequency change required for a governor to move a unit from no-load to full-load or from full-load to no-load. Prior to 2004, NERC Operating Policy 1, Generation Control and Performance, recommended generators with governor control (typically 10 MW and larger) to have a droop setting of 5\% for steam turbine (and 4\% for combustion turbines, although not explicitly stated in the policy). This means that a $3 \mathrm{~Hz}(5 \%$ of 60.00 Hz) change in system frequency is required to move a generator across its full range. Normally governors respond only to substantial frequency deviations.

Guidelines of the 2004 NERC Operating Policy 1, Generation Control and Performance, section C, stated:

1. Governor installation - Generating units with nameplate ratings of 10 MW or greater should be equipped with governors operational for frequency response unless restricted by regulatory mandates.
2. Governors free to respond - Governors should be allowed to respond to system frequency deviation unless there is a temporary operating problem.
3. Governor droop - All turbine-generators equipped with governors should be capable of providing immediate and sustained response to abnormal frequency excursions. Governors should provide a 5\% droop characteristic. Governors should, at a minimum, be fully responsive to frequency deviations exceeding $\pm 0.036 \mathrm{~Hz}$ ($\pm 36 \mathrm{mHz}$).
4. Governor limits - Turbine control systems that provide adjustable limits to governor valve movement (valve position limit or equivalent) should not restrict travel more than necessary to coordinate boiler and turbine response characteristics.

Within the Frequency Response Initiative, NERC is considering modifications to those parameters based on the recent advances in frequency response performance in ERCOT and revised governor control parameters.

In 2010, NERC conducted a survey of governor status and settings through Generator Owners and Generators Operators. The results of that survey are summarized in the Generator Governor Survey section of this report. A complete set of the summary graphics of the survey is contained in Appendix K.

ERCOT Experience

The general decline in primary frequency response in all interconnections has prompted regulatory entities to address the issue. Electric grids such as the one in Texas are especially sensitive to frequency regulation and response due to their relatively small overall interconnected capacity compared to the other interconnections. The Texas Regional Entity (TRE) is actively working on a regional standard for frequency regulation.

Frequency Regulation

Electric grid frequency regulation is attained by the response of the turbine governors to deviations from nominal synchronous speed, the operation of the boilers-turbine controls in response to the frequency change, and the actions of the dispatching system.

Frequency regulation success for any given boiler-turbine plant depends on many factors, primarily:

- steady state and dynamic stability of the unit
- load following capability
- linearization of turbine governor valves' steam flow characteristics
- proper calibration and coordination of the boiler and turbine frequency regulation parameters
- proper high and low limiting of the boiler and turbine frequency regulation based on unit conditions
- proper dispatching actions to restore the frequency to its normal operating value

Another factor that influences a unit's capability for frequency regulation is the available boiler energy storage. The larger the storage, the less the initial pressure drop caused by the quick opening of the governor valves, and the better the initial unit frequency regulation.

The standard speed regulation setting for the turbine governors of the boiler-turbine generating units is 5%. This is a $\pm 5 \%$ change from rated speed $(0.05 * 3,600=180$ RPM $)$, which causes the turbine governor to change its valves' position demand ± 100 percent. It is also generalized industry practice to add a small deadband (DB) to the calibration of the governor speed error bias in order to minimize the movement for very small speed deviations. The selection of the DB affects the fidelity of the regulation, as shown in figure 40.

Figure 40: Regulation versus RPM Deadbands

The regulation curves of figure 40 are for the noted speed regulation at constant pressure. They are calculated by developing the equation $\triangle G V D=f(\triangle R P M)$ for each $D B$, where $\Delta G V D$ is the change in the turbine Governor Valve Demand as a function of the change in RPM.

Knowing the \triangle GVD for any given \triangle RPM enables the regulation calculation via the equation:

$$
\text { REG }(\%)=(100 * \Delta R P M / \Delta G V D)^{*}(100 / 3,600)
$$

ERCOT Nodal Operating Guides Section 2 has specific requirements for governor deadband settings. The maximum allowable deadband is $\pm 0.036 \mathrm{~Hz}$, which has been the industry standard for mechanical "fly-ball" governors on steam turbines for many years. With the development
of energy markets in the early 2000s, generators with electronic or digital governors began implementing this same deadband in their primary frequency response implementation. Unfortunately, the Guides were not clear on how to implement the droop curve at the deadband. Since the Guides required 5\% droop performance, many generators introduced a "step function" or modified "step" once the deadband was reached in order to achieve near 5\% droop performance outside the deadband.

As can be seen in figure 40, a 2 rpm deadband on a $3,600 \mathrm{rpm}$ turbine is equivalent to $+/-0.033$ Hz . Based on the corresponding droop (regulation percent) for this deadband, a generator's performance to typical frequency deviations during disturbances would be much greater than 5% without some "step" function. These governor settings resulted in an abnormal frequency profile for the interconnection.

Figure 41: Frequency Profile for March and September 2008 (in 5 mHz bins)

Figure 41 is the ERCOT frequency profile for March and September of 2008. It is clear that the "flat top" of the profile is centered on the $\pm 0.036 \mathrm{~Hz}$ deadband. This flat frequency profile created significant problems because frequency spent as much time at the governor deadband points as it did at any point in between. This made it difficult to employ Frequency Regulation to correct frequency to 60 Hz , and for ERCOT to meet the NERC BAL-001-0 - Real Power Balancing Control Performance Requirement 1 (aka, CPS1), since ERCOT had an epsilon-1 limit of 0.030 Hz . The frequency profile also contributed to generator instability at the deadbands with the implementation of the various "step" functions in the governors.

If generators that had implemented governor step functions were to be electrically separated from the grid during an islanding event, they would experience extreme instability. This would be caused by the governor providing excessive frequency response to the island to small generation load imbalances, resulting in large frequency swings and unit instability.

The ERCOT Performance Disturbance and Compliance Working Group (PDCWG) became increasingly concerned about the frequency instability and the realization of the risk of the step function in the governors (see figure 42). Because of their analysis, a member of the PDCWG discussed the issues with one large generating facility that was willing to try different deadband settings along with a specific droop curve implementation. This implementation required a straight linear curve from the deadband to full range of the governor, eliminating any step function shown in figure 43.

Figure 42: Frequency Response of 600 MW Unit ± 36.0 mHz Deadband and Step Response

After brief testing of a number of different deadbands, a 1-rpm deadband ($\pm 0.01666 \mathrm{~Hz}$) was chosen. Four turbine governors were set in this manner on November 3, 2008 (about 2,500 MW capacity or 7.5% of the average grid capacity in November).

Figure 43: Frequency Response of 600 MW Unit $\pm 16.67 \mathrm{mHz}$ Deadband and No-Step Response

The possibility of leaving the deadband at $\pm 0.036 \mathrm{~Hz}$ and just eliminating the stepped droop response was considered. Analysis showed that the droop performance at 59.900 Hz would be around 7.72% with a $\pm 0.036 \mathrm{~Hz}$ deadband but only 5.97% droop with the $\pm 0.0166 \mathrm{~Hz}$ deadband. That difference increases at 59.950 Hz , with a 17.64% droop performance for the $\pm 0.036 \mathrm{~Hz}$ deadband and a 7.46% droop performance for the $\pm 0.0166 \mathrm{~Hz}$ deadband. However, without the primary frequency response of the lower deadband, the frequency profile would return to the "flat top" frequency profile spanning the $\pm 0.036 \mathrm{~Hz}$ deadbands, which is a less reliable state (less stable) for the interconnection. Also, with the larger deadband the interconnection or Balancing Authority may not have been able to meet the minimum frequency response requirements.

Turbine-Generator Performance with Reduced Deadbands

The general purpose for using governor deadbands is to minimize generator movement due to frequency regulation. In an interconnection where generators have various deadband settings, the diversity of settings creates diversity in responses to frequency changes. However, when a majority of the generators in an interconnection set the deadband the same and with a step function, the diversity of responses disappears, and frequency will move to the deadband frequently as demonstrated in the profile in figure 41. When the frequency exceeds the deadband, all units react with a stepped response simultaneously.

The amount of generator movement expected for a specific set of deadband settings can be compared by calculating the MW-minute average movement of a hypothetical generator exposed to actual measured frequency using the different governor settings.

Table 21 compares the movement of two generators with different governor settings: one with a $\pm 0.036 \mathrm{~Hz}$ deadband and droop step function, and one with a $\pm 0.01666 \mathrm{~Hz}$ deadband and no droop step function.

Table 21: Comparison of MW Movement for Response of Different Governor Settings

	$\pm 0.036 \mathrm{~Hz}$ Deadband with Droop Step Function	$\pm 0.01666 \mathrm{~Hz}$ Deadband with No Droop Step Function	Percent Increase for Smaller Deadband
2008 Frequency Profile	$662,574.0 \mathrm{MW}-\mathrm{min}$.	$893,164.2 \mathrm{MW}-\mathrm{min}$.	34.80%
2009 Frequency Profile	$446,244.0 \mathrm{MW}-\mathrm{min}$.	$692,039.8 \mathrm{MW}-\mathrm{min}$.	55.08%

Using the 2008 1-minute average frequency data, the generator with the lower deadband would have had $893,164.2 \mathrm{MW}$-minutes of primary frequency response while the generator with the larger deadband unit would have had $662,574.0 \mathrm{MW}$-minutes of primary frequency response. This is a 34.80% increase in movement for the lower deadband generator.

However, if the exact same comparison is made for ERCOT frequency data from 2009, where the new deadbands had an actual impact on frequency, the following observation scan be made. The lower deadband generator would have had $692,039.8 \mathrm{MW}$-minutes of primary frequency response compared to the larger deadband generator with 446,244.0 MW-minutes, a 55.08% increase in movement for the lower deadband. One observation is that the MWminute movement of the lower deadband generator is only 4.45% higher than the movement of the larger deadband generator of the previous year ($692,039.8 \mathrm{MW}$-minutes versus 662,574.0 MW-minutes).

Having the lower deadband in service for the entire year greatly reduced the frequency movement of the interconnection and reduced the primary frequency response movement as well. The lower deadband generator MW-minute movement decreased 201,124.4 MWminutes, or 22.518%, between 2008 and 2009. This indicates the reduced impact on the generator movement with the smaller deadband and the non-step governor droop implementation when the governor becomes active, as compared to the "step" implementation.

Figure 44: MW-Minute Movement of a 600 MW Unit with 5\% Droop

This benefit is further emphasized by the comparison in Figure 44, which shows the response of a theoretical 600 MW unit for the 2008 ERCOT frequency profile with a $\pm 0.036 \mathrm{~Hz}$ deadband versus the same unit with a $\pm 0.01666 \mathrm{~Hz}$ deadband for the 2010 frequency profile. Using the lower deadband, there is a savings of $140,641 \mathrm{MW}$-minutes of regulation movement because there were a larger number of generators using the $\pm 0.01666 \mathrm{~Hz}$ deadband in 2010 , which greatly influenced the frequency profile. Figure 45 shows a comparison of the actual JanuarySeptember ERCOT frequency profiles for 2010 and 2008. The profile changed from a flat response between the $\pm 0.036 \mathrm{~Hz}$ deadband to a more normal distribution.

Figure 45: ERCOT 2010 versus 2008 Frequency Profile (Jan.-Sept.)

Conclusion - The benefits of using the smaller $\pm 0.01666 \mathrm{~Hz}$ deadband coupled with a non-step governor droop implementation results in the following:

- improved frequency response for small disturbances
- generators responding more often in smaller increments, saving fuel and wear and tear on turbines
- more stable operation when near boundary conditions of deadbands

Recommendation - NERC should embark immediately on the development of a Frequency Response Resource Guideline to define the performance characteristics expected of those resources for supporting reliability. That guideline should address appropriate parameters for: Existing generator fleet - In order to retain or regain frequency response capabilities of the existing generator fleet, adopt:
deadbands of $\pm 16.67 \mathrm{mHz}$,
droop settings of 3\%-5\% depending on turbine type,
continuous, proportional (non-step) implementation of the response,
appropriate operating modes to provide frequency response, and
appropriate outer-loop controls modifications to avoid primary frequency response withdrawal at a plant level.

```
Other frequency-responsive resources - Augment existing generation response with fast-
acting electronically coupled frequency responsive resources, particularly for the arresting and
rebound periods of a frequency event:
contractual high-speed demand-side response,
wind and photo-voltaic - particularly for over-frequency response,
storage - automatic high-speed energy retrieval and injection, and
variable speed drives - non-critical, short time load reduction.
```


Generator Governor Survey

On September 9, 2010, NERC issued a Generator Governor Information and Setting Alert (the alert) recommending that Generator Owners (GOs) and Generator Operators (GOPs) provide information and settings for turbine governors for all generators rated at 20 MVA or greater, or plants that aggregate to a total of 75 MVA or greater net rating at the point of interconnection (i.e., wind farms, PV farms, etc.). The alert was issued as a recommendation to industry, which requires reporting obligations (as specified in Section 810 of the Rules of Procedures) from industry to NERC and, subsequently, from NERC to FERC. Balancing Authorities in North America were the only functional group required to respond to this alert. A copy of the survey instructions is located in Appendix J of this report.

The survey requested three types of information:

1. policies on installation and maintenance, and testing procedures and testing frequency for governors;
2. unit-specific characteristics and governor settings; and
3. unit-specific performance information for a recent, single event.

NERC sent the survey instrument and instructions to 799 GOs and 748 GOPs in North America. Of the 794 GOs that acknowledged receipt of the survey, 749 developed and provided a response. Of the 743 GOPs that acknowledged receipt of the survey, 721 developed and provided a response.

Administrative Findings

NERC staff first reviewed the information submitted by the GOs and GOPs. This initial review led to the following findings from the administration of the survey:

1. There is a wide variety of levels of understanding among GOs and GOPs of the role of turbine governors in maintaining frequency response, including confusion in terminology and a lack of understanding of governor control settings. This indicates a need for education on settings and performance of turbine governors and the governor's role in interconnection frequency response.

Recommendation - NERC should address improving the level of understanding of the role of turbine governors through seminars and webinars, with educational materials available to GOs and GOPs on an ongoing basis.
2. There was a significant amount of duplication of reporting. This was mostly due to dual submittals by entities that are registered both as GOs and as GOPs. NERC staff sought to eliminate as much duplication as possible. However, eliminating duplication was difficult when the entities that own and operate a generator differ, yet both submitted information on the same generator. Hence, there remains some duplication in this analysis.

Summary of the Survey Responses

Table 22 summarizes, by interconnection, the aggregate characteristics of the generators analyzed.

Table 22: Number of Generators as Reported			
Interconnection	Total	With Governors	Without Governors
Eastern	$4,372(648.7 \mathrm{GW})$	$4,217(630.2 \mathrm{GW})$	$152(18.5 \mathrm{GW})$
Western	$1,560(171.6 \mathrm{GW})$	$1,445(162.9 \mathrm{GW})$	$114(8.7 \mathrm{GW})$
ERCOT	$503(95.6 \mathrm{GW})$	$446(85.6 \mathrm{GW})$	$53(9.0 \mathrm{GW})$
Totals	$6,435(915.9 \mathrm{GW})$	$6,110(878.7 \mathrm{GW})$	$319(36.2 \mathrm{GW})$

Figures 46-48 summarize the responses on turbine governors for three of the interconnections. Data for the Québec Interconnection is not summarized in this report. The GOs and GOPs reported that governors were operational for $95 \%, 97 \%$, and 99% of the total number of generating units that were reported as having governors in the Eastern, Western, and Texas Interconnections, respectively.

Figure 46: Eastern Interconnection Generator Responses

Figure 47: Western Interconnection Generator Responses

Figure 48: ERCOT Interconnection Generator Responses

Reported Deadband Settings

The deadband setting of a governor establishes a minimum frequency deviation that must be exceeded before the governor will act. Frequency deviations that are less than the setting will not cause the governor to act. Of the information provided by the GOs and GOPs on governor deadbands, $51 \%, 63 \%$, and 79% of the number of units in the Eastern, Western, and Texas Interconnections, respectively, was usable. Figure 49 summarizes the usability of the deadband data submitted in the survey.

Figure 49: Usability of Information Provided on Governor Deadbands

Figure 50 summarizes the range of deadband settings reported by generating unit size for all three interconnections. The simple average, or mean, of the frequency response values calculated is indicated by the orange dot. A horizontal line inside the green box indicates the median of these values. The upper and lower boundaries of the box are the inter-quartile range, which is the range that contains half the calculated frequency response values. Finally, the end points of the upper and lower vertical lines indicate the lowest and highest calculated frequency response values, respectively.

The use of these descriptive statistics provides additional information on the distribution of values. For example, if the average is lower than the median, it means that the distribution has a small number of low values compared to the main body of values. Similarly, the height of the inter-quartile range (the top and bottom of the box) provides a measure of how widely the values are distributed. The location of the median within the box indicates whether values are evenly distributed on either side of the median (when the median is close to the center of the box) or whether values are disproportionately on one or the other side of the median (when the median is closer to the top or the bottom of the box).

Figure 50: Reported Governor Deadband Settings

Figure 50 indicates:

- Eastern Interconnection - Half of the deadband settings are between 0 and 100 mHz , with the smallest generating units having the lowest settings, followed by the mid-size, and then the largest units. The figure also indicates that there are a number of units in all size ranges with very high deadband settings ($>200 \mathrm{mHz}$).
- Western Interconnection - Half of the deadband settings are between 0 and 50 mHz for the smallest and mid-size generating units. However, the range is considerably broader for the largest units, with half of the settings lying between 0 and more than 300 mHz . The very large deadbands on units greater than 1,000 MW are attributable to the nuclear units.
- Texas Interconnection - The deadband settings are generally less than 50 mHz . There appears to be at least one very high deadband setting for a small generating unit.

Reported Droop Settings

Governor droop expresses the effect of changes in generating unit speed in terms of changes in power output as a function of the amount of frequency deviation from the reference frequency. Of the information provided by the GOs and GOPs on governor droop settings, 89%, 94%, and 87% of the number of units in the Eastern, Western, and Texas Interconnections, respectively, was usable.

Figure 51 summarizes the range of governor droop settings for the interconnections. Generally, the droop settings were in the range of expected values.

Figure 51: Range of Governor Droop Settings by Generating Unit Size

Governor Status and Operational Parameters

A number of the survey questions addressed the operational status and parameters of the governor fleet. As shown in Figure 52, the vast majority of the GOs and GOPs reported that their governors are operational.

Figure 53 shows that the governors also were reported to be able to sustain primary frequency response for longer than 1 minute if the frequency remains outside of its deadband. However, as shown in Figure 54, roughly half of the governors are expected to be overridden or limited by plant-level control schemes. This factor heavily influences the sustainability of primary frequency response, contributing to the withdrawal symptom often observed in the Eastern Interconnection, especially during light load periods.

Figure 52: Operational Status of Governors

Figure 53: Response Sustainable for More Than 1 Minute if Outside Deadband

Figure 54: Unit-Level or Plant-Level Control Schemes that Override or Limit Governor Performance

Response to Selected Frequency Events

The GOs and GOPs were asked to provide information on the performance of turbine governors during a selected event in each interconnection. Table 23 lists the date and time of the events selected for the Eastern, Western, and Texas Interconnections (data was not requested from the Québec Interconnection).

Table 23: Selected Events for Provision of Generator Governor Performance Information			
Interconnection	Basis		Frequency
Eastern	$8 / 16 / 2010$	$1: 06: 15 \mathrm{CST}$	$1,200 \mathrm{MW}$
Western	$8 / 12 / 2010$	$14: 44: 03 \mathrm{CST}$	$1,260 \mathrm{MW}$
ERCOT	$8 / 20 / 2010$	$14: 25: 29$ CST	$1,320 \mathrm{MW}$

Of the interconnections' total generating capacity, $64 \%, 58 \%$, and 75% of the units were on-line at the time of the event for the Eastern, Western, and Texas Interconnections, respectively.

Figure 55: Governor Response by Total Generating Capacity On-Line

Figure 55 shows:

- Of the total generating capacity on-line, $30 \%, 44 \%$, and 53% reported responding in the expected direction of response (i.e., to correct the change in frequency) for the Eastern, Western, and Texas Interconnections, respectively.
- Some generation reported no response to the frequency deviations (38\%, 35\%, and 13\% for the Eastern, Western, and Texas Interconnections, respectively).
- Notably, 19\%, 17%, and 20% were reported as responding in the opposite direction of the expected response (i.e., not in opposition to the change in frequency) for the Eastern, Western, and Texas Interconnections, respectively.

The values reported for the Eastern Interconnection for capacity providing expected response are in keeping with those calculated from the generic governor simulation of the frequency response to the August 4, 2007 Eastern Interconnection Frequency Disturbance. Those simulations showed that 30% of the capacity on-line responded, and 20% of the capacity online withdrew primary support, leaving only 10% of the capacity on-line providing sustained primary frequency response.

Figure 56 shows that for the Eastern Interconnection, total response in the expected direction was 973 MW , while response in the direction opposite expectations was -361 MW , for a total net response of 613 MW . Steam coal and combined-cycle gas turbine units, accounting for 327 MW and 244 MW of the net response, respectively, made the largest contributions. These contributions were made by steam coal and combine-cycle with a total on-line generating capacity of about 180 GW steam coal and about 60 GW combined-cycle gas turbine units, of which about 80 GW and about 10 GW of capacity provided response in the expected direction, respectively.

Figure 56: Eastern Interconnection Generator Governor Performance

Figure 57 shows that for the Western Interconnection, total response in the expected direction was 1040 MW , while response in the direction opposite expectations was -180 MW , for a total net response of 860 MW . Hydro units, accounting for 727 MW of the net response, made the largest contribution. Hydro units made this contribution with a total on-line generating capacity of about 50 GW , of which about 19 GW of capacity provided response in the expected direction.

Figure 57: Western Interconnection Generator Governor Performance

Figure 58 shows that for the ERCOT Interconnection, total response in the expected direction was 896 MW , while response in the direction opposite expectations was -50 MW , for a total net response of 845 MW . Steam gas units, accounting for 490 MW of the net response, made the largest contribution. Steam gas units made this contribution with a total on-line generating capacity of about 11 GW , of which $\sim 10 \mathrm{GW}$ of capacity provided response in the expected direction.

Figure 58: ERCOT Interconnection Generator Governor Performance

Future Analysis Work Recommendations

Testing of Eastern I nterconnection Maximum Allowable Frequency Deviations

The stability simulation testing of the Eastern Interconnection resource loss criteria used in the determination of the IFRO was limited to analysis using the generic governor stability case developed by the NERC Model Validation Working Group and the Eastern Interconnection Reliability Assessment Group (ERAG) Multi-Regional Modeling Working Group (MMWG) in December 2011 (based on the August 4, 2007 Eastern Interconnection Frequency Disturbance). Simulations using that stability simulation indicated a maximum sustainable generation loss of about 8,500 MW for the Eastern Interconnection. However, that simulation case was not for the light load conditions where system inertia and load response would be expected to be lower than in the generic case.

```
Recommendation - Dynamic simulation testing of the Western and ERCOT Resource Contingency Protection Criteria should be conducted as soon as possible.
Recommendation - When ERAG MMWG completes its review of turbine governor modeling, a new light-load case should be developed, and the resource loss criterion for the Eastern Interconnection's IFRO should be re-simulated.
```


Eastern I nterconnection Inter-area Oscillations - Potential for Large Resource Losses

During the spring of 2012, a number of inter-area oscillations were observed between the upper Midwest and the New England/New Brunswick areas in the 0.25 Hz family. During one such event, a large generation outage in Georgia instigated that oscillation mode and was interpreted by the FNet frequency monitoring and event detection program as an 1,800 MW resource loss in the upper Midwest. Immediately, the FNet Oscillation Monitoring system detected the 0.025 Hz family oscillations between the upper Midwest and New England/New Brunswick. Investigation into the event showed that it occurred while the Dorsey - Forbes 500 kV transmission line was out of service for maintenance. During that line outage, the transfers on the Dorsey DC line from Northern Manitoba were significantly curtailed, and the oscillation of the Dorsey DC terminal capabilities for damping the 0.025 Hz oscillations were greatly reduced. This made the system more susceptible to such oscillations. In all instances, the energy magnitude under the oscillations was small, well-damped, and of little danger to the reliability of the Eastern Interconnection.

However, the instigation of those oscillations by a generator trip in Georgia seemed unlikely until reviewed in light of the inter-area oscillations detected following the South Florida disturbance of February 26, 2008. During that disturbance, a family of 0.22 Hz oscillations was detected between the Southeast and the upper Midwest. In both cases, the same generation
in the upper Midwest has a strong participation in both mode shapes, and since both oscillation modes are close in frequency, the 0.25 Hz family was easily perturbed by an instance of the 0.22 Hz mode oscillations caused by the Georgia generator tripping.

Recommendation - Eastern Interconnection inter-area oscillatory behavior should be further investigated by NERC, including during the testing of large resource loss analysis for IFRO validation.

Appendices Table of Contents

Appendix A - ContributorsAppendix B - AbbreviationsAppendix C - Definitions and TerminologyAppendix D - Interconnection Frequency Deviation Duration Plots
Appendix E - ALR1-12 Metric Event Selection ProcessAppendix F - Procedure for ERO Support of Frequency Response and Frequency BiasSetting Standard (BAL-003-1)Appendix G - Statistical Analysis of Frequency Response (Eastern Interconnection)Statistical Analysis of Frequency Response
Appendix H - Frequency Response Field Trial Analysis Graphs
Appendix I - Derivation of the Median, Mean, and Linear Regression
Appendix J - Generator Governor Survey Instructions
Appendix K - Generator Governor Survey Summary
Appendix L - References

Appendix A - Contributors

Principal - Robert W. Cummings - Director of Reliability Initiatives and System Analysis, NERC
Gregory P. Henry - Performance and Analysis Engineer, NERC
Eric H. Allen - Senior Performance and Analysis Engineer, NERC
Neil Burbure - Engineer of Reliability Initiatives and System Analysis, NERC
Matthew Varghese - Senior Performance Analysis Engineer, NERC
Svetlana Ekisheva - Senior Statistician, NERC
Stacey Tyrewala - Attorney, NERC
Mark G. Lauby - Vice President and Director of Standards, NERC
Howard F. Illian ${ }^{1}$ - President, Energy Mark, Inc.
John Undrill ${ }^{1}$ - John Undrill, LLC
Carlos A. Martinez ${ }^{1}$ - Advanced Systems Researchers (ASR)
Sydney L. Niemeyer - Control System Specialist, NRG Texas LP
Joseph H. Eto ${ }^{1}$ - Staff Scientist, Ernest Orlando Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division

NERC Frequency Response Standard Drafting Team
NERC Frequency Working Group
NERC Resources Subcommittee
NERC System Analysis and Modeling Subcommittee (formerly the Transmission Issues Subcommittee)

[^123]
Appendix B - Abbreviations

ACE	Area Control Error
ADF	Adjusted Delta Frequency
AGC	Automatic Generator Control
ALR	Acceptable Level of Reliability
ARLPC	Adjusted resource loss protection criteria adjusted for the credit for load resources
BA	Balancing Authority
BAA	Balancing Authority Area
CERTS	Consortium for Electric Reliability Technology Solutions
CPS	Control Performance Standard
CB $_{\text {R }}$	Ratio of the Point C to Value B to adjust the allowable delta frequency to account for that difference.
CC	Adjustment to Point C for the differences between 1-second and sub-second measurements
COI	California-Oregon Interface (ac)
D	Load damping factor
dc	Direct current
DCS	Disturbance Control Standard
DF	Base
Base delta frequency	
DFC	Delta frequency adjusted for the differences between 1-second and sub-second Point C observations for frequency events
EMS	Energy Management System
EPG	Electric Power Group
ERAG	Eastern Interconnection Reliability Assessment Group
ERCOT	Electric Reliability Council of Texas
ERO	Electric Reliability Organization
Fstart $^{\text {FERC }}$	Starting Frequency
FDR	The U.S. Federal Energy Regulatory Commission
FMA	Frequency Disturbance Recorder
FNet	Frequency Monitoring Network (University of Tennessee, Knoxville, and Virginia Tech)
FRC	Frequency Response Characteristic
FRCC	Florida Reliability Coordinating Council
FRM	Frequency Response Measure
FRO	Frequency Response Obligation (FRO ${ }_{\text {BA }}$)
FRRSDT	Frequency Response Standard Drafting Team

FR	Frequency Response
FRS	Frequency Response Standard
FRSG	Frequency Response Sharing Group
FWG	Frequency Working Group
GOs	Generator Owners
GOPs	Generator Operators
GVD	Governor Valve Demand
GW	gigawatts (thousands of megawatts)
H	Inertial constant (of the interconnection)
Hz	hertz (cycles per second)
IFRO	Interconnection Frequency Response Obligation (FRO ${ }_{\text {Int }}$)
LaaR	Load Acting as a Resource
LBNL	Ernest Orlando Lawrence Berkeley National Laboratory
mHz	millihertz
MMWG	Multi-Regional Modeling Working Group
MVA	megavoltampere
MW	megawatts
N-1	Loss of one system element
N-2	Loss of two system elements
NI	Net Interchange Actual
NI	Net Interchange Scheduled
PAS	Performance Analysis Subcommittee
PDCI	Pacific Direct Current Intertie
PDCWG	Performance Disturbance and Compliance Working Group (ERCOT)
PMU	Phasor Measurement Unit
PV	Photovoltaic
RA	Resource Adequacy Tool
RARF	ERCOT Resource Asset Registration Form
RAS	Remedial Action Scheme (also known as a Special Protection Scheme - SPS)
RLPC	Resource Loss Protection Criteria
RPM	Revolutions per Minute
RC	Resources Subcommittee
SAMS	System Analysis and Modeling Subcommittee (formerly TIS)
SCADA	System Control and Data Acquisition
SEFRD	Single Event Frequency Response Data
SEFRD	Single Event Frequency Response Data
TIS	Transmission Issues Subcommittee (now SAMS)
TRE	Texas Regional Entity

UFLS Under-Frequency Load Shedding

Appendix C - Definitions and Terminology

Definitions used in Standard BAL-003-1

Frequency Response Measure (FRM)
The median of all the Frequency Response observations reported annually by Balancing Authorities or Frequency Response Sharing Groups for frequency events specified by the ERO. This will be calculated as $\mathrm{MW} / 0.1 \mathrm{~Hz}$.

Frequency Response Obligation (FRO)

The Balancing Authority's share of the required Frequency Response needed for the reliable operation of an Interconnection. This will be calculated as MW/0.1 Hz .

Frequency Bias Setting

A number, either fixed or variable, usually expressed in MW/0.1 Hz, included in a Balancing Authority's Area Control Error equation to account for the Balancing Authority's inverse Frequency Response contribution to the interconnection, and discourage response withdrawal through secondary control systems.

Frequency Response Sharing Group (FRSG)

Groups, whose members consist of two or more Balancing Authorities, that collectively maintain, allocate, and supply operating resources required to jointly meet the sum of the Frequency Response Obligations of its members.

Area Control Error (ACE)*: The instantaneous difference between a Balancing Authority's net actual and scheduled interchange, taking into account the effects of Frequency Bias and correction for meter error.

Arrested Frequency - Value C - Point C - Frequency Nadir: The point of maximum frequency excursion in the first swing of the frequency excursion between time zero (Point A) and time zero plus 20 seconds.

Arresting Period: The period of time from time zero (Point A) to the time of Point C.
Arresting Period Frequency Response: A combination of load damping and the initial Primary Control Response acting together to limit the duration and magnitude of frequency change during the Arresting Period.

Automatic Generation Control (AGC)*: Equipment that automatically adjusts generation in a Balancing Authority Area from a central location to maintain the Balancing Authority's
interchange schedule plus Frequency Bias. AGC may also accommodate automatic inadvertent payback and time error correction.
Balancing Authority (BA)*: The responsible entity that integrates resource plans ahead of time, maintains load-interchange-generation balance within a Balancing Authority Area, and supports interconnection frequency in real time.
Beta: The factor by which the frequency deviation is multiplied by in the ACE equation to adjust the ACE to protect a BA's Frequency Response.

Contingency Protection Criteria of an interconnection: The selected capacity contingency that an interconnection must withstand at all times without the activation of the first tier of UFLS.

Contingency Reserve*: The provision of capacity deployed by the Balancing Authority to meet the Disturbance Control Standard (DCS) and other NERC and Regional Reliability Organization contingency requirements.

Frequency ${ }^{i}$: The rate at which a repeating waveform repeats itself. Frequency is measured in cycles per second or in hertz (Hz). The symbol is "F."

Frequency Bias Setting: The term of the ACE equation that is multiplied by frequency deviation portion. This is a corrective term to offset the tie-line flow error caused by generation/load responding to a frequency deviation.

Frequency Deviation*: A change in interconnection frequency.
Frequency Response*: (Equipment) The ability of a system or elements of the system to react or respond to a change in system frequency. (System) The sum of the change in demand, plus the change in generation, divided by the change in frequency, expressed in megawatts per 0.1 hertz ($\mathrm{MW} / 0.1 \mathrm{~Hz}$).

Frequency Responsive Reserve (a.k.a., dynamic headroom): The capacity of Governor Response and/or Frequency-Responsive Demand Response that will be deployed for any frequency excursion.

Frequency-Responsive Demand Response: Voluntary load shedding that complements governor response. This load reduction is typically triggered by relays that are activated by frequency.
Frequency Sensitive Load: Customer loads that vary directly with changes in frequency or would trip as a result of frequency deviations.
Governor response ${ }^{\S}$: The control response of turbine-governors to sensing a change in speed of the turbine as frequency increases or declines, causing an adjustment to the energy input of the turbine's prime mover.
Headroom: The difference between the current operating point of a generator and its maximum operating capability.
Inertia : The property of an object that resists changes to the motion of an object. For example, the inertia of a rotating object resists changes to the object's speed of rotation. The inertia of a rotating object is a function of its mass, diameter, and speed of rotation.

Load damping ${ }^{*}$: The damping effect of the load to a change in frequency due to the physical aspects of the load such as the inertia of motors and the physical load to which they are connected.

Load followingi: Commitment of energy based resources (generation or energy schedule) to match the forecast load level for a given period. This is a form of course control for moment-by-moment resource/load matching.

Non-spinning reserve*: 1. That generating reserve not connected to the system but capable of serving demand within a specified time. 2. Interruptible load that can be removed from the system in a specified time.

Off-line Reserve ${ }^{\S}$: The off-line capability above firm system demand required to provide for regulation, load forecasting error, equipment forced and scheduled outages, and local area protection.

On-line Reserve ${ }^{\S}$: The on-line capability above firm system demand required to provide for regulation, load forecasting error, equipment forced and scheduled outages, and local area protection. This can consist of spinning reserve and interruptible load that can act as a resource.

Operating Reserve*: That capability above firm system demand required to provide for regulation, load forecasting error, equipment forced and scheduled outages, and local area protection. It consists of spinning and non-spinning reserves.

Other On-line Reserves ${ }^{\S}$: On-line Resources that can increase their output or connected loads that can decrease their consumption (curtailable loads) in time frames outside the continuum of regulating or spinning reserve (i.e. on four hours' notice).

Other Off-line Reserves ${ }^{\S}$: Resources that can be brought to bear outside the continuum of non-spinning reserve (i.e., on four hours' notice).
Plant secondary control ${ }^{@}$: Secondary control refers to controls affected through commands to a turbine controller issued by external entities not necessarily working in concert with frequency management objectives. It is common for a modern power plant to have several distinct modes of secondary control implemented within the plant and to be able to accept secondary control inputs from sources external to the plant.

Primary Control Response Withdrawal: The withdrawal of previously delivered Primary Control Response, through plant secondary controls.

Primary Frequency Control Response: The power delivered to the interconnection in response to a frequency deviation through generator governor response, load response (typically from motors), demand response (designed to arrest frequency excursions), and other devices that provide an immediate response to frequency based on local (device-level) control systems, without human or remote intervention.

Primary Frequency Control Reserves: Frequency-responsive reserves that respond nearly instantaneously (starting in less than 1 second) to oppose any changes in power system frequency.

Quick Start Reserve: A form of non-spinning reserve that can be put on-line and the capacity that can be deployed in ten minutes.

Recovery Period: The period of time from when Secondary Control Response are deployed (typically about zero plus 53 seconds) to the time of the return of frequency to within pre-established ranges of reliable continuous operation.
Regulation ${ }^{*}$: Controllable resources necessary to provide for the continuous balancing of resources (generation and interchange) with load and for maintaining scheduled interchange and interconnection scheduled frequency. Regulation is accomplished by committing on-line generation whose output is raised or lowered (predominantly through the use of automatic generating control equipment) as necessary to follow the moment-by-moment changes actual net interchange.

Regulating reserve*: An amount of reserve responsive to Automatic Generation Control, which is sufficient to provide a normal regulating margin.

Settling frequency ${ }^{\neq, \#}$: Refers to the third key event during a disturbance when the frequency stabilizes following a frequency excursion. Point B represents the interconnected system frequency at the point immediately after the frequency stabilizes due to governor action but before the contingent control area takes corrective AGC action.

Secondary Control Response: The power delivered by a Balancing Authority or Reserve Sharing Group in response to a frequency deviation through Secondary Control actions, such as manual or automated dispatch from a centralized control system. Secondary control actions are intended to restore Primary Control Response and restore frequency from the Arrested Frequency back to Scheduled Frequency, or maintain Scheduled Frequency.

Secondary Frequency Control: Actions provided by an individual BA or its Reserve Sharing Group intended to restore Primary Control Response and restore frequency from the Arrested Frequency back to Scheduled Frequency, or to maintain Scheduled Frequency deployed in the "minutes" time frame. Secondary Control comes from either manual or automated dispatch from a centralized control system. Secondary Control also includes initial reserve deployment for disturbances and maintains the minute-to-minute balance throughout the day and is used to restore frequency to normal following a disturbance and is provided by both spinning and non-spinning reserves.

Secondary Frequency Control Reserves: Frequency-responsive reserves that respond over slightly longer time frames (starting in 20-30 seconds). Following the sudden loss of generation, they assist in restoring frequency to the scheduled value after Primary Frequency Control Reserves have been deployed. They also safeguard Primary Frequency Control Reserves (so that primary reserves remain available to respond to these sudden events) by controlling frequency in response to slower imbalances that arise between electricity demand and generation such as the normal rise and fall of system load over the course of a day.

Spinning reserve*: Unloaded generation that is synchronized and ready to serve additional demand.

Tertiary frequency control ${ }^{\S}$: Encompasses actions taken to get resources in place to handle current and future changes in load or contingencies. Reserve deployment and Reserve restoration following a disturbance is a common type of Tertiary frequency control.

Under-frequency load shedding': The tripping of customer load based on magnitudes of system frequency. For example, a utility may dump 5% of their connected load if frequency falls below 59.3 Hz , dump an additional 10% if frequency falls below 58.9 Hz , and dump a final 10% if frequency falls below 58.5 Hz . These three steps of load shedding would form this utility's UFLS plan. The purpose of UFLS is a final effort (safety net) to arrest a frequency decline.

Sources:

* NERC Glossary of Terms Used in Reliability Standards, http://www.nerc.com/files/Glossary of Terms.pdf
${ }^{*}$ NERC Reference Document Understand and Calculating Frequency Response (June 19, 2008)
${ }^{\S}$ NERC Balancing and Frequency Control (July 5, 2009)
\# NERC Frequency Response Characteristic Survey Training Document, http://www.nerc.com/docs/standards/sar/opman 1213Mar08 FrequencyResponseCharacteristicSurveyTrainingDocument.pdf (January 1, 1989)
@ Undrill, J.M. 2010. Power and Frequency Control as it Relates to Wind-Powered Generation. LBNL-4143E. Berkeley: Lawrence Berkeley National Laboratory
${ }^{i}$ Definitions taken from the EPRI Power Systems Dynamics Tutorial. EPRI, Palo Alto, CA: 2009. 1016042

Appendix D - Interconnection Frequency Deviation Duration Plots

Figure D1: Summary of Eastern Interconnection Frequency 2007-2011

Figure D2: Eastern Interconnection 2007-2011 Frequency Histogram

Figure D3: Eastern Interconnection Frequency 2007-2011 Cumulative Distribution

Figure D4: Summary of Western Interconnection Frequency 2007-2011

Figure D5: Western Interconnection 2007-2011 Frequency Histogram

Figure D6: Western Interconnection Frequency 2007-2011 Cumulative Distribution

Figure D7: Summary of ERCOT Interconnection Frequency 2007-2011

Figure D8: ERCOT Interconnection 2007-2011 Frequency Histogram

Figure D9: ERCOT Interconnection Frequency 2007-2011 Cumulative Distribution

Figure D10: Summary of Québec Interconnection Frequency 2010-2011

Figure D11: Québec Interconnection 2010-2011 Frequency Histogram

Figure D12: Québec Interconnection Frequency 2010-2011 Cumulative Distribution

Appendix E - ALR1-12 Metric Event Selection Process

1. CERTS-EPG produces a monthly spreadsheet for four interconnections (Eastern Interconnection or EI, Western or WI, ERCOT Interconnection or TI, and Québec). The spreadsheet captures significant frequency events based on the Resources Subcommittee (RS) specified threshold. The Frequency Monitoring and Analysis tool (FMA) gathers and stores the raw data.
2. The spreadsheet is sent by CERTS-EPG to the Frequency Working Group (FWG) on the 15th of each month for the previous month's raw data.
3. The FNET application uses automatic e-mails to flag frequency deviations. Generation loss is estimated.
4. The actual generation loss for the FNET flagged frequency events is determined by the NERC Situation Awareness Coordinator from the Regional Entities and sent to the FWG.
5. The FWG members validate the data and add the actual generation loss values into the spreadsheet.
6. FWG sends the validated monthly sheet to the Resource Subcommittee (RS) and the Performance Analysis Subcommittee (PAS) on the 30th of each month for the previous month's raw data.
7. NERC staff will update the candidate event list on the NERC website that will be used to support the standard. The final official event list for a year will be identified as a subset of the posted candidate list.
8. PAS publishes the quarterly Frequency Response metric data on NERC's Reliability Indicators webpage. The initial trending will be based on annual median/mean and rolling 12 month values.

Background Information

The frequency delta thresholds recommended by RS for the Eastern, Western, ERCOT and Québec Interconnections are shown in Table E1.

Table E1: Frequency delta thresholds recommended by RS			
Interconnections	Frequency Delta for events captured in (mHz)	Frequency Delta for Significant events that have a higher Delta	Time Window (Seconds)
Eastern	24	36	15
Western	40	70	15
ERCOT	45	90	15
Québec	140	200	15

The raw statistics for events in 2008, 2009, 2010 and the first half of 2011 are listed in Table E2 below. This was sent by CERTS-EPG to the FWG on August 31, 2011.

Table E2: Raw Statistics for frequency events from 2008 to July 2011				
Interconnection	Eastern	Western	ERCOT	Québec
2008	195	102	26	No Data
2009	78	72	85	No Data
2010	132	85	122	No Data
2011 (until July)	70	37	61	159

The statistics for TI from 2008 to 2011 were validated and modified by the FWG. Table E3 shows the statistics for Tl that were sent by the FWG to the RS on September 02, 2011.

Table E3: Validated Statistics for TI frequency events	
from 2008 to July 2011	

The FWG Lead members who will validate the data and add the actual generation loss values into the spreadsheet for the four interconnections are listed in Table E4.

Table E4: Lead members for the four interconnections

Terry L. Bilke	Eastern Interconnection
Don E. Badley	Western Interconnection
Sydney L. Niemeyer	ERCOT Interconnection
Michael Potishnak	Québec Interconnection

In July 2011, CERTS-EPG produced the first of the monthly reports for the FWG. July 2011 has 22 frequency events and a summary is shown in Table E5.

Table E5: Summary of the 1st monthly report produced by CERTS-EPG for the FWG in July 2011

NERC INTERCONNECTION JULY, 2011 FREQUENCY EVENTS - SUMMARY DATA

Eastern Interconnection

	Event Time					Event Freque	Data			Interconnection		surce info	formation	Candidate	ndi	Reso	
			Time	A Value	A Value	BValue	H2 Delta		Point C	Bias Setting	IWW L		Name BA	for	for	Tripped	
UTC (1.0)	Local Time (to)	Day	Zone	Frea Error	(l.16tot2)	($1+20$ tol+52)		(winin 8	3 sec after t.0)		Gross	Net		BA List	beta	Betore	Point C
$\begin{gathered} \text { Date /Time } \\ \text { (MMODNY HHMMSS) } \end{gathered}$	$\begin{gathered} \text { Date / Time } \\ \text { (MMDDNY HHIMM.SS) } \end{gathered}$		Pull Dn	(from 60)	average	average	B.A		delta from Aave	IWW0.1 Hz				Yorll	calc	Value B	MWV.1 1 Hz
07/022011 6:45:21	07/02220112.45.21	Sat	EDT	0.004	60.004	59.956	-0.048	59.969	-0.035	6349		-975	EES				-2024
07/022011 14.57:18	07/0222011 10.57:18	Sat	EDT	-0.003	59.997	59.967	-0.031	59.958	-0.039	6349		. 496	TVA				-1600
07/16/20117:07:00	07/16/20113:07:00	Sat	EDT	-0.007	59.993	59.948	-0.045	59.952	-0.041	6349		. 613	TVA				- 1370
07/2120111:28:03	07/201201121:28:03	Wed	EDT	0.009	60.009	59.967	-0.042	59.968	-0.041	6349		. 902	TVA				-2167
07125/2011 18:39:08	07/25/2011 14.39:08	Mon	EDT	0.019	60.019	59.989	-0.030	59.978	-0.041	6349		. 985	PJM				. 3242
07/2882011 18:47:52	0712812011 14:47:52	Thu	EDT	-0.004	59.995	59.946	-0, 050	59.947	-0.049	6349		-1242	PIM				. 2486
07/3012011 13:41:21	07/30120119.4121	Sat	EDT	-0.013	59.987	59.945	-0.042	59.947	-0.040	6349		. 1386	PIM				-3337

Western Interconnection

ERCOT Interconnection

EventID	Event ITme						Event frequency Data					Interconnection Bias Setting	Resource information				Candidate Candioate Load Resources			
	Event \#	UTC (t0) (MMDON HHNM:SS)		Day	$\begin{aligned} & \text { Time } \\ & \text { Zone } \\ & \text { Pull Dn } \end{aligned}$	A Value FreqEnor (from 60)	$\begin{gathered} \text { A Valve } \\ \text { (} 1.16 \text { to } 1.2 \text {) } \\ \text { average } \end{gathered}$	$\begin{gathered} \text { B Value } \\ (t+20 \text { to } t+52) \\ \text { average } \end{gathered}$	Hz Dalla BA	Point C (win 8 sec after t.0) detita from A an			$\begin{gathered} \quad \text { WWV Lost } \\ \text { Gross } \end{gathered}$		Name	BA	for BAList Yorl	for beta calc	Tripped Before Value E	PointC MNO. $1 \mathrm{~Hz}_{2}$
		07/142011 20.53.55	07/14201115:53.55	Thu	CDT	0.023	60.023	59.923	0.100	59.917	-0.106	653		-259		ERCOT				. 259
		07/17712011 15:18.00	074772011 10:1800	Sun	COT	-0.005	59.995	59.894	-0.101	59.879	-0.115	653		-144		encot				-143
		071482011 14:1300	07/18/20119:13:00	Hon	CDT	-0,042	59958	59.863	-4,094	59.879	-0.079	653		-127		ERCOT				-134
		07/2120110:17:10	$07 / 201201119.17 .10$	Wed	CDT	0.006	60006	59.811	0.194	59.799	-0206	653		. 892		ERCOT				. 459
		07124201116.5924	07/242011 1150.24	Sun	CDT	0025	59.975	59.872	0.102	59.846	-0.128	653		- 167		ERCOT				. 163
		07/25:12011 22:57.12	072552011 1757.12	Mon	CDT	0.013	60013	59.929	-0084	59.918	$8 \quad-0.095$	653		. 306		ticot				-363

Hydro Quebec

Appendix F - Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard (BAL-003-1)

Event Selection Process

This procedure outlines the ERO process for supporting the Frequency Response Standard (FRS). A procedure revision request may be submitted to the ERO for consideration. The revision request must provide a technical justification for the suggested modification. The ERO will post the suggested modification for a 45-day comment period and discuss the revision request in a public meeting. The ERO will make a recommendation to the NERC BOT, which may adopt the revision request, adopt it with modifications, or reject it. Any approved revision to this procedure will be filed with FERC for informational purposes.

Event Selection Objectives

The goals of this procedure are to outline a transparent, repeatable process to annually identify a list of frequency events to be used by Balancing Authorities (BA) to calculate their Frequency Response to determine:

- whether the BA met its Frequency Response Obligation; and
- an appropriate fixed bias setting.

Event Selection Criteria

1. The ERO will use the following criteria to select FRS frequency excursion events for analysis. The events that best fit the criteria will be used to support the FRS. The evaluation period for performing the annual Frequency Bias Setting and the Frequency Response Measure (FRM) calculation is December 1 of the prior year through November 30 of the current year.
2. The ERO will identify 20-35 frequency excursion events in each interconnection for calculating the Frequency Bias Setting and the FRM. If the ERO cannot identify 20 frequency excursion events in a 12-month evaluation period satisfying the criteria below, then similar acceptable events from the subsequent year's evaluation period will be included with the data set by the ERO for determining FRS compliance.
3. The ERO will use three criteria to determine if an acceptable frequency excursion event for the FRM has occurred:
a. The change in frequency as defined by the difference from the A Value to Point C and the arrested frequency Point C exceeds the excursion threshold values specified for the interconnection in Table F1 below.
i. The A Value is computed as an average over the period from -16 seconds to 0 seconds before the frequency transient begins to decline.
ii. Point C is the arrested value of frequency observed within 12 seconds following the start of the excursion.

Table F1: Interconnection Frequency Excursion			
Threshold Values (Hz)			

b. The time from the start of the rapid change in frequency until the point at which frequency has stabilized within a narrow range should be less than 18 seconds.
c. If any data point in the B Value average recovers to the A Value, the event will not be included.
4. Pre-disturbance frequency should be relatively steady and near 60.000 Hz for the A Value. The A Value is computed as an average over the period from -16 seconds to 0 seconds before the frequency transient begins to decline. For example, given the choice of the two events below, the one on the right is preferred as the pre-disturbance frequency is stable and also closer to 60 Hz .

5. Excursions that include two or more events that do not stabilize within 18 seconds will not be considered.
6. Frequency excursion events occurring during periods when large interchange schedule ramping or load change is happening, and frequency excursion events occurring within 5
minutes of the top of the hour, will be excluded from consideration if other acceptable frequency excursion events from the same quarter are available.
7. The ERO will select the largest (A Value to Point C) two or three frequency excursion events occurring each month. If there are not two frequency excursion events that satisfy the selection criteria in a month, then other frequency excursion events should be picked in the following order of priority:

1) from the same event quarter of the year
2) from an adjacent month
3) from a similar load season in the year (shoulder vs. summer/winter)
4) the largest unused event

As noted earlier, if a total of 20 events are not available in an evaluation year, then similar acceptable events from the next year's evaluation period will be included with the data set by the ERO for determining FRO compliance. The first year's small set of data will be reported and used for Bias Setting purposes, but compliance evaluation on the FRO will be done using a 24 month data set.

To assist Balancing Authority preparation for complying with this standard, the ERO will provide quarterly posting of candidate frequency excursion events for the current year FRM calculation. The ERO will post the final list of frequency excursion events used for standard compliance as specified in Attachment A of BAL-003-1. The following is a general description of the process that the ERO will use to ensure that BAs can evaluate events during the year in order to monitor their performance throughout the year.

Monthly

Candidate events will be initially screened by the "Frequency Event Detection Methodology" shown on the following link located on the NERC Resources Subcommittee area of the NERC website:
http://www.nerc.com/docs/oc/rs/Frequency Event Detection Methodology and Criteria Oc t 2011.pdf.

Each month's list will be posted by the end of the following month on the NERC website, http://www.nerc.com/filez/rs.html and listed under "Candidate Frequency Events."

Quarterly

The monthly event lists will be reviewed quarterly with the quarters defined as:

- December through February
- March through May
- June through August
- September through November

Based on criteria established in the "Procedure for ERO Support of Frequency Response and Frequency Bias Setting Standard," events will be selected to populate the FRS Form 1 for each interconnection. Each interconnection's Form 1 will be posted on the NERC website, in the Resources Subcommittee area under the title "Frequency Response Standard Resources." The updated Form 1 documents will be posted at the end of each quarter listed above after a review by the NERC RS Frequency Working Group. While the events on this list are expected to be final, as outlined in the selection criteria, additional events may be considered, if the number of events throughout the year do not create a list of at least 20 events. It is intended that this quarterly posting of updates to the FRS Form 1 would allow BAs to evaluate the events throughout the year, lessening the burden when the yearly posting is made.

Annually

The final FRS Form 1 for each interconnection, which will contain the events from all four quarters listed above, will be posted as specified in Attachment A. Each Balancing Authority reports its previous year's Frequency Response Measure (FRM), Frequency Bias Setting and Frequency Bias type (fixed or variable) to the ERO as specified in Attachment A using the final FRS Form 1. The ERO will error check and use the FRS Form 1 data to calculate CPS limits and FROs for the upcoming year.

Once the data listed above is fully reviewed, the ERO may adjust the implementation specified in Attachment A for changing the Frequency Bias Settings and CPS limits. This allows flexibility in when each BA implements its settings.

Appendix G - Statistical Analysis of Frequency Response (Eastern I nterconnection)

Statistical Analysis of Frequency Response

Eastern Interconnection August 7, 2012

Introduction

An interconnected electric power system is a complex system that must be operated within a safe frequency range to reliably maintain the instantaneous balance between generation and load, and is directly reflected in the frequency of the interconnection. Frequency Response is one measurement of how a power system has performed in response to the sudden loss of generation or load. This white paper analyzes the Frequency Response data for the Eastern Interconnection using statistical methods to study the probability distribution of the Frequency Response and its changes from year-to-year, as well as construct a set of variables that strongly influence Frequency Response.

Objectives and Method

The main goals of the statistical analysis of the Frequency Response data for the Eastern Interconnection are to study the:

1. time trend of Frequency Response by selecting an appropriate model describing the relationship between a point in time when an event happens and the absolute value of Frequency Response for this event, and to use this model for Frequency Response forecasting with a given confidence level;
2. probability distribution of the Frequency Response and its changes over the years;
3. seasonal changes in Frequency Response distribution and correlation between Frequency Response value and season when the event happened (summer/non-summer);
4. impact of pre-disturbance frequency on Frequency Response;
5. impact of on-peak/off-peak hours on Frequency Response;
6. impact of interconnection load on Frequency Response; and
7. hierarchy of these explanatory factors of Frequency Response.

The analysis uses the Frequency Response dataset for the Eastern Interconnection for the calendar years 2009-2011 and the first three months of 2012. The size of this dataset is 163 frequency events (with 44 observations for the year of 2009, 49 for 2010, 65 for 2011, and 5 for 2012). Since interconnection load data are not yet available for 2012, the part of the study involving interconnection load deals with the 158 Frequency Response events occurred in 20092011. For purposes of this whitepaper, Frequency Response pertains to the absolute value of Frequency Response.

Key Findings

1. A linear regression equation with the parameters defined in the Appendix of this whitepaper is an adequate statistical model to describe a relationship between time (predictor) and Frequency Response (response variable). The graph of the linear regression line and Frequency Response scatter plot is given in Figure G1. For the dataset, the regression line has a small positive slope estimate, meaning that the Frequency Response variable has a slowly increasing general trend in time. The value of the slope estimate is 0.00000303805 (the time unit is a second). This means that, on average, Frequency Response increases daily by $0.26 \mathrm{MW} / 0.1 \mathrm{~Hz}$, monthly by $7.87 \mathrm{MW} / 0.1 \mathrm{~Hz}$, and annually by $95.81 \mathrm{MW} / 0.1 \mathrm{~Hz}$ (for a month with 30 days, and a year with 365 days). A 90% confidence interval for slope, $\mathrm{Cl}=[-0.00000041605,0.00000649214]$, has a negative left-end point (the same is true for a $95 \% \mathrm{Cl}$ and a $99 \% \mathrm{CI}$. With new data available the trend line can (a) increase its positive slope, (b) change the positive slope to a slight negative one, or (c) become essentially flat that will correspond to an absence of a correlation between time and Frequency Response.

Figure G1: Frequency Response Scatter Plot

2. The probability distribution of the whole Frequency Response dataset is approximately normal with the expected Frequency Response of $2363 \mathrm{MW} / 0.1 \mathrm{~Hz}$ and the standard deviation of $605.7 \mathrm{MW} / 0.1 \mathrm{~Hz}$ as shown in Figure G2. The comparative statistical analysis for every pair of years shows that the changes in the 2010 data versus the 2009 data (and in the 2011 data versus the 2010 data) are not statistically significant enough to lead to the conclusion that the mean value of Frequency Response for any two consecutive years changes. However, the data for 2009 and 2011 differ at the level that results in accepting
the hypothesis that the expected value of Frequency Response for 2011 is greater than for 2009.

Figure G2: Probability Distribution of the Entire Frequency Response Data Set

3. A season (summer/non-summer) is a significant contributor to the variability of Frequency Response. There is a positive correlation of 0.24 between the indicator function for summer (defined as 1 for events that occur in June-August and 0 otherwise) and Frequency Response: summer events have a statistically significantly greater expected Frequency Response (the sample mean equals to $2598 \mathrm{MW} / 0.1 \mathrm{~Hz}$) than non-summer events (the mean equals to $2271 \mathrm{MW} / 0.1 \mathrm{~Hz}$).
4. Pre-disturbance (average) frequency (A) is another significant contributor to the variability of Frequency Response. There is a negative correlation of -0.27 between the indicator function of $A>60 \mathrm{~Hz}$ and Frequency Response: the events with $A>60 \mathrm{~Hz}$ have a statistically significantly smaller expected Frequency Response (the sample mean equals to $2188 \mathrm{MW} / 0.1 \mathrm{~Hz}$) than the events with $\mathrm{A} \leq 60 \mathrm{~Hz}$ (the mean equals to $2513 \mathrm{MW} / 0.1 \mathrm{~Hz}$).
5. According the NERC definition, for Eastern Interconnection on-peak hours are designated as follows: Monday to Saturday hours from 0700 to 2200 (Central Time) excluding six holidays (New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day and Christmas Day). It turns out that on-peak/off-peak variable is not a statistically significant
contributor to the variability of Frequency Response. There is a positive correlation of 0.06 between the indicator function of on-peak hours and Frequency Response; however, difference in average Frequency Response between on-peak events and off-peak events is not statistically significant and could occur by chance (P -value is 0.49).
6. There is a strong positive correlation of 0.364 between interconnection load and Frequency Response for the 2009-2011 events; this correlation indicates to a statistically significant linear relationship between interconnection load (predictor) and Frequency Response (response variable). The graph of the linear regression line and Frequency Response scatter plot is given in Figure G3. For the dataset, the regression line has a positive slope estimate of 0.00349 ; thus, the Frequency Response variable increases when interconnection load grows. On average, when interconnection load changes by 1000 MW, Frequency Response changes by $3.5 \mathrm{MW} / 0.1 \mathrm{~Hz}$.

Figure G3: Linear Regression for Frequency Response and Interconnection Load

7. For the 2009-2011 dataset, five variables (time, summer, high pre-disturbance frequency, on-peak/off-peak hour, interconnection load) have been involved in the statistical analysis of Frequency Response. Four of these (time, summer, on-peak hours, and interconnection load) have a positive correlation with Frequency Response ($0.16,0.24,0.06$, and 0.36 ,
respectively), and the high pre-disturbance frequency has a negative correlation with Frequency Response (-0.26). The corresponding coefficients of determination R^{2} are 2.6%, $5.8 \%, 0.4 \%, 13.3 \%$ and 6.9%. These values indicate that about 2.6% in variability of Frequency Response can be explained by the changes in time, about 5.8% of Frequency Response variability is seasonal, 0.4% is due to on-peak/off-peak changes, 13.3% is the effect of the interconnection load variability, and about 6.9% can be accounted for by a high predisturbance frequency. However, the correlation between Frequency Response and On-Peak hours is not statistically significant and with the probability about 0.44 occurred by mere chance (the same holds true for the corresponding R^{2}). Therefore, out of the five parameters, interconnection load has the biggest impact on Frequency Response followed by the indicator of high pre-disturbance frequency. A multivariate regression with interconnection load and $\mathrm{A}>60$ as the explanatory variables for Frequency Response yields a linear model with the best fit (it has the smallest mean square error among the linear models with any other set of explanatory variables selected from the five studied). Still, together these two factors can account for about 20\% in variability of Frequency Response. Therefore, there are other parameters that affect Frequency Response, have a low correlation with those studied, together account for a remaining share in Frequency Response variability, and minimize a random error variance. Note that interconnection load is positively correlated with summer (0.55), on-peak hours (0.45), and Date (0.20) but uncorrelated with $A>60$ (P value of the test on zero correlation is 0.90).

Explanatory Variables for El Frequency Response (2009-2011)				
Variable X Correlation (X,FR)	P-value	Linear Regression Statistically Significant?	Coefficient of Determination R^2 (Single Regression)	
Interconnection Load	0.36	<0.0001	Yes	13.3%
A>60	-0.26	0.0008	Yes	6.9%
Summer	0.24	0.0023	Yes	5.8%
Date	0.16	0.044	Yes	2.6\%
On-Peak Hours	0.06	0.438	No	N/A

Appendix - Background Materials

Frequency Response is a metric used to track and monitor Interconnection Frequency Response. Frequency Response ${ }^{2}$ is a measure of an interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load. It is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. The metric measures the average Frequency Response for all events where frequency drops more than the interconnection's defined threshold as shown in Table 1.

Frequency Response Definition

For a given interconnection, Frequency Response is defined as the sum of the change in demand, plus the change in generation, divided by the change in frequency, expressed in megawatts per 0.1 hertz ($\mathrm{MW} / 0.1 \mathrm{~Hz}$).

Table 1: Frequency Event Triggers for Data Collection			
Interconnection	Δ Frequency (mHz)	MW Loss Threshold	Rolling Windows (seconds)
Eastern	40	800	15
Western	70	700	15
ERCOT	90	450	15
Québec	300	450	15

The change in frequency is the difference between pre-disturbance frequencies A and setting frequency B. Figure 3 shows the criteria for calculating average values A and B. The event starts at time $t \pm 0$. Value A is the average from $t-16$ to $t-2$ and Value B is the average from $t+20$ to t +52 . These lengths of time used to calculate these values accounts for the variability in Supervisory Control and Data Acquisition (SCADA) scan rates that vary from 2 to 6 seconds in the multiple-Balancing Authority interconnections. For Balancing Authority SCADA data, $t \pm 0$ represents the first scan of data that is part of the disturbance. Value A is the average of all SCADA scans between 2 and 16 seconds before $t \pm 0$. Value B is the average of all SCADA scans between 20 and 52 seconds after $t \pm 0$.

[^124]Figure 3: Criteria for Calculating Value A and Value B

The actual MW loss for the flagged frequency events is determined jointly by NERC and Regional Entity situation awareness staff. Both the change in frequency and the MW loss determine whether the event qualifies for further consideration in the monthly frequency event candidate list.

Statistical Analysis

Linear Regression for Time Trend

Assumptions: Frequency Response and time are related by the following regression equation:

$$
F R=A * \text { Time }+B+\varepsilon
$$

Where:

- Time variable represents a time (year, month, day, hour, minute, second) when a Frequency Response event happened. For each event the Frequency Response is calculated and recorded. This record represents an observation from the dataset. Time is an explanatory variable (predictor, regressor) of the linear regression;
- $F R$ is the Frequency Response value measured in $\mathrm{MW} / 0.1 \mathrm{~Hz}$ (response variable of the model);
- A is a slope of the regression line;
- $\quad B$ is an intercept of the regression line; and
- ε is a random error which has a centered normal distribution with variance σ^{2}.

A SAS program for the linear regression analysis yields the following results shown in figure G3.
(a) The equation of the regression line derived by the least squares method is $y=0.00000304 x-2493.41315$ with $x=$ Time (sec) elapsed between midnight of January 1, 1960 (the time origin for the date format in SAS) and the time of a FR event;
(b) Estimate for the variance σ^{2} of the random error ε is 362,383 and for the standard deviation of ε is 601.98255;
(c) Statistical test for significance of the_regression (based on the analysis of variance approach) is an important part of assessing the adequacy of the linear regression model for time and FR variables. The procedure tests a null-hypothesis that the slope $A=0$ versus an alternative hypothesis that it is not 0 . Sample value of F -statistic, 3.0170, has P-value of 0.0843 implying that the null hypothesis should be rejected (and the alternative hypothesis accepted) at any significance level above 0.0843 . Therefore, the data are statistically significant to support a hypothesis about a linear relationship between time and Frequency Response assuming that the 8.43% significance level (i.e., the probability to reject the null hypothesis when it is true) is appropriate for the model selection. Alternatively, the hypothesis about the correlation coefficient $\rho($ time, FR) can be tested (with the null hypothesis $\rho=0$). These tests are equivalent and result in the same P-values for their test statistics.

Another important part of the verification of the linear regression model is testing the assumptions on the random error ε. Student's t-test on location and goodness-of-fit test for normality both result in acceptance the corresponding null-hypothesis (with P-values of 1.0000 and 0.881, respectively).

The linear regression equation with the parameters defined above is an adequate statistical model to describe the relationship between variables time of a FR event and Frequency Response value for this event. For the dataset, the regression line has a small positive slope estimate, meaning that Frequency Response variable has a slowly increasing general trend in time. However, the value of this slope estimate is very small, and confidence intervals for slope at $90 \%, 95 \%$ and 99% levels all have a negative left-end point. By using T-distribution for the slope estimator, we estimate that the probability that the slope of the regression is negative is below 5\%.

The coefficient of determination R^{2} for the linear regression model equals to 0.0184 . This small value indicates very low degree of dependence of Frequency Response on time variable. Essentially, the linear regression model connecting FR and time accounts for 1.8% of variability in the Frequency Response data.

The random error ε has a large estimated variance that makes the "error" term of the linear regression equation a major component of the Frequency Response value. Our next goal is to consider the Frequency Response data as observations of a random variable independent of time and to study properties of its distribution.

Distribution of Frequency Response

Goodness-of-Fit test for normality of the distribution of the Frequency Response data results in acceptance on the null hypothesis at a significance level below 0.177 (including the standard levels of $1 \%, 5 \%$ and $10 \%)$. The sample estimate for the expected Frequency Response equals to $2363 \mathrm{MW} / 0.1 \mathrm{~Hz}$ and the sample standard deviation is $605.7 \mathrm{MW} / 0.1 \mathrm{~Hz}$.

Since for each full year (2009, 2010, and 2011) the sample size of the Frequency Response data exceeds 40, we ran a large-sample test for the difference in the mean Frequency Response for 2009 versus 2010, 2010 versus 2011, and 2009 versus 2011. The null hypothesis that the difference is zero is accepted when the 2009 data are compared to the 2010 data, and when the 2010 data are compared to the 2011 data at any standard significance level (P -values of the two-sided tests are 0.54 and 0.28 , respectively). For the 2009 versus 2011 comparison, the test result is not that conclusive (its P -value equals to 0.03 and, therefore, the null hypothesis should be rejected at the 5% and 10% significance levels but is accepted at the 1% level if tested versus an alternative hypothesis that the 2011 mean value is greater than the 2009 mean value).

Seasonal Variability of Frequency Response

Let a function summer be defined as follows: it equals to 1 for Frequency Response events that occur in June-August and 0 otherwise. The FR dataset is therefore divided in two subsets: the Frequency Response data for summer events and non-summer events, respectively. Summer Frequency Response set has 46 observations and non-summer set has 117 observations. The sample mean and the sample variance for the first dataset are $2597.7 \mathrm{MW} / 0.1 \mathrm{~Hz}$ and 675.5 $\mathrm{MW} / 0.1 \mathrm{~Hz}$, respectively. The sample mean and the sample variance for the second dataset are 2270.9 MW/0.1 Hz and 552.2 MW/0.1 Hz. A large-sample test for the difference in the mean Frequency Response for these distributions results in rejection of the null hypothesis that the difference is zero and acceptance of an alternative hypothesis that the expected Frequency Response for summer events is greater than for other events (P -value of the one-sided z -test is 0.0018).

Variables summer and Frequency Response are positively correlated (with the correlation equal to 0.24351), and the coefficient of determination R^{2} of the linear regression model is 0.0593 . The null hypothesis about zero correlation (no linear relationship between FR and summer) should be rejected (P -value is 0.0017). This analysis indicates that seasonality is a significant factor affecting Frequency Response: almost 6\% of its variability is the seasonal variability.

Impact of Pre-Disturbance Frequency

Let a function high pre-disturbance frequency be defined as follows: it equals to 1 for Frequency Response events with $\mathrm{A}>60 \mathrm{~Hz}$ and 0 otherwise. The FR dataset is therefore divided in two subsets: the Frequency Response data for events with $A>60 \mathrm{~Hz}$ and events with $A \leq 60 \mathrm{~Hz}$, respectively. High pre-disturbance frequency set has 75 observations and its complement has 88 observations. The sample mean and the sample variance for the first dataset are 2187.6 $\mathrm{MW} / 0.1 \mathrm{~Hz}$ and $531.5 \mathrm{MW} / 0.1 \mathrm{~Hz}$, respectively. The sample mean and the sample variance for the second dataset are $2512.8 \mathrm{MW} / 0.1 \mathrm{~Hz}$ and $627.4 \mathrm{MW} / 0.1 \mathrm{~Hz}$. A large-sample test for the difference in the mean Frequency Response for these distributions results in rejection of the null hypothesis that the difference is zero and acceptance of an alternative hypothesis that the
expected Frequency Response for events with $A>60 \mathrm{~Hz}$ is smaller than for other events (P -value of the one-sided z-test is 0.0002).

Variables high pre-disturbance frequency and Frequency Response are negatively correlated (with the correlation equal to -0.26844), and the coefficient of determination R^{2} of the linear regression model is 0.0721 . The null hypothesis about zero correlation (no linear relationship between FR and high pre-disturbance frequency) should be rejected (P -value is 0.0005). This analysis indicates that the high pre-disturbance frequency is a factor that accounts for 7.2% of the Frequency Response variability. In fact, out of the four variables involved in this study (time, summer, high pre-disturbance frequency, on-peak/off-peak hours), it is the biggest contributor to the variability of Frequency Response.

Impact of On-Peak/ Off-Peak hours

Let a function on-peak hour be defined as follows: it equals to 1 for Frequency Response events occurred during an on-peak hour and 0 otherwise. The FR dataset is therefore divided in two subsets: the Frequency Response data for on-peak hours and off-peak hours, respectively. Onpeak set contains 108 observations, and off-peak set has 55 observations. The sample mean and the sample variance for the first dataset are $2386.9 \mathrm{MW} / 0.1 \mathrm{~Hz}$ and $602.9 \mathrm{MW} / 0.1 \mathrm{~Hz}$, respectively. The sample mean and the sample variance for the second dataset are 2316.6 $\mathrm{MW} / 0.1 \mathrm{~Hz}$ and $614.1 \mathrm{MW} / 0.1 \mathrm{~Hz}$. A large-sample test for the difference in the expected Frequency Response for these distributions results in acceptance of the null hypothesis that the difference is zero and rejection of an alternative hypothesis that the expected Frequency Responses for on-peak events and off-peak events are different (P-value of the two-sided z-test is 0.49).

Variables on-peak hour and Frequency Response are positively correlated (with the correlation equal to 0.005505), and the coefficient of determination R^{2} of the linear regression model is 0.0030 . However, the correlation is not statistically significant since the null hypothesis about zero correlation (no linear relationship between FR and on-peak hour) should be accepted (P value is 0.4852). The same is true for the coefficient of determination: there is a high probability that on-peak hours have no explanatory power in the Frequency Response variability. Out of the four variables involved in this study (time, summer, high pre-disturbance frequency, on-peak/off-peak hours), it is the only factor with no statistically significant impact on Frequency Response.

Linear Model that relates Frequency Response to Interconnection Load

Assumptions: Frequency Response and interconnection load are related by the following regression equation:

$$
F R=C * I L+D+\varepsilon
$$

Where:

- $I L$ is the value of interconnection load (in MW) for a Frequency Response event.
- $\quad F R$ is the Frequency Response value measured in MW/0.1 Hz (response variable of the model);
- $\quad C$ is a slope of the regression line;
- D is an intercept of the regression line; and
- ε is a random error which has a zero mean and variance of σ^{2}.

A SAS program for the linear regression analysis yields the following results shown in figure G3.:
(a) The equation of the regression line derived by the least squares method is

$$
y=0.00349 x+1174.09949
$$

(b) Estimate for the variance σ^{2} of the random error ε is 327,416 and for the standard deviation of ε is 572.2; and
(c) Statistical test for significance of the regression (based on the analysis of variance approach) is an important part of assessing the adequacy of the linear regression model for interconnection load and FR variables. The procedure tests a nullhypothesis that the slope $C=0$ versus an alternative hypothesis that it is not 0 . Sample value of F -statistic, 23.83, has P -value of 0.0001 implying that the null hypothesis should be rejected (and the alternative hypothesis accepted) at any significance level above 0.0001 . Therefore, the data are statistically significant to support a hypothesis about linear relationship between interconnection load and Frequency Response. Alternatively, the hypothesis about the correlation coefficient ρ between interconnection load and Frequency Response can tested (with the null hypothesis $\rho=0$). These tests are equivalent and result in the same P-values for their test statistics.

The coefficient of determination R^{2} for the linear regression model equals to 0.1325 . This value indicates high degree of dependence of Frequency Response on interconnection load. Essentially, the linear regression model connecting FR and interconnection load accounts for about 13.3\% of variability in the Frequency Response data.

Multiple Linear Regression

A statistically significant linear regression model connects interconnection load and high predisturbance frequency (regressors) and Frequency Response (response variable). The estimates of the linear regression coefficients are listed in the Table 2 (P -value of the model is below 0.0001). An error term, ε, has a zero mean and the standard deviation of $551 \mathrm{MW} / 0.1 \mathrm{~Hz}$. This multiple regression model accounts for 19.96% of the variability in Frequency Response data.

Table 2: Parameter Estimates of Multiple Regression						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > \|t	
Intercept	1	1325.96255	243.49079	5.45	$<.0001$	
A>60	1	-317.95091	88.191	-3.61	0.0004	
Interconnection Load	1	0.00347	0.00068929	5.03	$<.0001$	

Note that even though time and summer both have a statistically significant positive correlation with Frequency Response, adding one or both of them to the set of explanatory variables does not improve the linear model. This can be explained by a high correlation between interconnection load and summer (0.55) and time (0.20), respectively: addition of these variables does not increase the explanatory power of the model enough to offset an increase of its cumulative error.

Appendix H - Frequency Response Field Trial Analysis Graphs

NOTE: These are the background graphics of the Frequency Response Field Trial Analysis of BA performance measurements.

Appendix I - Derivation of the Median, Mean, and Linear Regression

Median

The median best represents a uniform one-dimensional dataset.

Uniform Distribution

In probability theory and statistics, the continuous uniform distribution or rectangular distribution is a family of probability distributions such that for each member of the family, all intervals of the same length on the distribution's support are equally probable. The support is defined by the two parameters, a and b, which are its minimum and maximum values.

Median

We have been taught in statistics that minimizing the sum of the differences error term provides the best estimate for the value for a uniform data set. Define a data set as one dimensional with values $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right\}$. The objective is to select a single value that best represents this data set by minimizing the sum of the residuals.

$$
S D E=\sum_{i=1}^{n}\left(x_{i}-x_{m}\right)
$$

Where: $\quad \boldsymbol{x}_{\boldsymbol{m}}=\quad$ Best single value to represent the data set.
The result is undefined using calculus. Therefore, other logic must be used.
Organize the data from smallest to largest. Then investigate the change in total difference as the candidate median value is raised from the smallest to the largest value in the data set.

When the candidate median value is raised above the smallest data value the difference between the candidate median value and the smallest value increases, but the difference between the candidate median value and all other data values decreases by an amount equal to the increase in the difference for the smallest value times the number of data values above the candidate median value. As the candidate median value increases, the total difference from all values will decrease until exactly one half of the data values are above the candidate median value and exactly one half of the data values are below the candidate median value. If there are an even number of data values in the set, any change in the candidate median value between the data value immediately below the half and the data point immediately above the half will not change the total difference because the difference change in the increasing direction and the difference change in the decreasing direction offset each other. However, if there are an odd number of data values in the data set, the candidate median value equal to the center data value will result in a minimum of the differences.

This demonstrates that the medianis the best estimate for a set of uniform data because it minimizes the sum of the error terms for the data set.

The real question is not whether the median is an appropriate estimator, but whether the median is an appropriate estimator for the data being analyzed.

Mean

The mean best represents a normal one dimensional dataset.

Normal (Gaussian) Distribution

In probability theory, the normal (or Gaussian) distribution is a continuous probability distribution that has a bell-shaped probability density function, known as the Gaussian function or informally the bell curve, where parameter μ is the mean or expectation (location of the peak) and σ^{2} is the variance, the mean of the squared deviation, (a "measure" of the width of the distribution). σ is the standard deviation. The distribution with $\mu=0$ and $\sigma^{2}=1$ is called the standard normal. A normal distribution is often used as a first approximation to describe real-valued random variables that cluster around a single mean value.

The normal distribution is considered the most prominent probability distribution in statistics. There are several reasons for this:

- First, the normal distribution is very tractable analytically, that is, a large number of results involving this distribution can be derived in explicit form.
- Second, the normal distribution arises as the outcome of the central limit theorem, which states that under mild conditions the sum of a large number of random variables is distributed approximately normally.
- Third, the bell shape of the normal distribution makes it a convenient choice for modeling a large variety of random variables encountered in practice.

For this reason, the normal distribution is commonly encountered in practice, and is used throughout statistics, natural sciences, and social sciences as a simple model for complex phenomena. For example, the observational error in an experiment is usually assumed to follow a normal distribution, and the propagation of uncertainty is computed using this assumption. Note that a normally-distributed variable has a symmetric distribution about its mean. Quantities that grow exponentially, such as prices, incomes or populations, are often skewed to the right, and hence may be better described by other distributions, such as the lognormal distribution or Pareto distribution. In addition, the probability of seeing a normallydistributed value that is far (i.e., more than a few standard deviations) from the mean drops off extremely rapidly. As a result, statistical inference using a normal distribution is not robust to the presence of outliers (data that is unexpectedly far from the mean, due to exceptional circumstances, observational error, etc.). When outliers are expected, data may be better described using a heavy-tailed distribution such as the Student's t-distribution.

Mean

We have been taught in statistics that minimizing the sum of the squares of the error term provides the best estimate for the value for a normal data set. Let's define a data set as one dimensional with values $\quad\left\{\boldsymbol{x}_{1}, \mathbf{x}_{\mathbf{2}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right\}$. The objective is to select a single value that best represents this data set by minimizing the sum of the squares of the residuals.

$$
S S E=\sum_{i=1}^{n}\left(x_{i}-x_{m}\right)^{2}
$$

Where: $\quad \boldsymbol{x}_{\boldsymbol{m}}=\quad$ Best single value to represent the data set.

$$
\begin{aligned}
& S S E=\sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} x_{m}+x_{m}^{2}\right) \\
& S S E=\sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} 2 x_{i} x_{m}+\sum_{i=1}^{n} x_{m}^{2} \\
& S S E=\sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} 2 x_{i} x_{m}+n x_{m}^{2}
\end{aligned}
$$

Take the derivative of SSE with respect to $\boldsymbol{x}_{\boldsymbol{m}}$, and set that derivative equal to zero.

$$
\begin{aligned}
& \frac{\partial}{\partial x_{m}} S S E=\frac{\partial}{\partial x_{m}}\left(\sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} 2 x_{i} x_{m}+n x_{m}^{2}\right) \\
& \frac{\partial}{\partial x_{m}} S S E=\frac{\partial}{\partial x_{m}}\left(\sum_{i=1}^{n} x_{i}^{2}\right)-\frac{\partial}{\partial x_{m}}\left(\sum_{i=1}^{n} 2 x_{i} x_{m}\right)+\frac{\partial}{\partial x_{m}}\left(n x_{m}^{2}\right) \\
& \frac{\partial}{\partial x_{m}} S S E=-2 \sum_{i=1}^{n} x_{i}+2 n x_{m}=0 \\
& \frac{1}{n} \sum_{i=1}^{n} x_{i}=x_{m}=\bar{x}
\end{aligned}
$$

This demonstrates that the mean is the best estimate for a set of normal data because it minimizes the sum of the squares of the error terms for the data set.

Linear Regression

A linear regression best represents a normal two dimensional dataset.
As with the one dimensional data set, the objective is to minimize the sum of the squares of the error terms. However, there may be differences that depend upon how we define the error terms.

vertieal effists

perpenditulat affisets

There are three alternatives available for defining the error term. It can be defined with respect to the dependent variable alone as shown in the vertical offsets plot above. The second is to define the error in terms of the horizontal offsets (not shown). That alternative is the same as the first alternative when the independent variable is exchanged with the dependent variable. The third alternative is to define the error as the perpendicular distance from the best fit line. This is shown in the perpendicular offsets plot above. When the regression is solved using the perpendicular offsets, both variables are considered equal with respect to contribution to error, and the ranking of variables is not necessary.

Solution assuming an independent/ dependent variable relationship

In the first example the error term is defined as one dimensional on the dependent variable axis. This is based on the vertical offsets shown above. The result is derived as follows:
$S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$
Where: $\quad \hat{\boldsymbol{y}}_{\boldsymbol{i}}=\quad$ Best \boldsymbol{y} value to represent the data set at a given \boldsymbol{x} value.
Substitute a linear equation, $\hat{\boldsymbol{y}}_{\boldsymbol{i}}=\boldsymbol{a} \boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{b}$, for the estimated \boldsymbol{y} value.
$\operatorname{SSE}=\sum_{i=1}^{n}\left(\boldsymbol{y}_{i}-a x_{i}-b\right)^{2}$
Since we now have two variables, \boldsymbol{a} and \boldsymbol{b}, the derivative must be taken with respect to each variable. Setting each derivative equal to zero will provide two equations that can be solved for the two unknowns, \boldsymbol{a} and \boldsymbol{b}.

$$
\begin{aligned}
& \frac{\partial}{\partial b} S S E=\frac{\partial}{\partial b} \sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}=-2 \sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)=0 \\
& \frac{\partial}{\partial a} S S E=\frac{\partial}{\partial a} \sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}=-2 \sum_{i=1}^{n}\left(x_{i} y_{i}-a x_{i}^{2}-b x_{i}\right)=0
\end{aligned}
$$

Rearrange terms and solve the two equations. Solve for \boldsymbol{b} first.

$$
-\sum_{i=1}^{n} y_{i}+a \sum_{i=1}^{n} x_{i}+n b=0 \quad \Rightarrow \quad b=\frac{1}{n} \sum_{i=1}^{n} y_{i}-a \frac{1}{n} \sum_{i=1}^{n} x_{i} \Rightarrow \quad b=\bar{y}-a \bar{x}
$$

Substitute the result for \boldsymbol{b} into the second equation and solve for \boldsymbol{a}.

$$
-\sum_{i=1}^{n} x_{i} y_{i}+a \sum_{i=1}^{n} x_{i}^{2}+(\bar{y}-a \bar{x}) \sum_{i=1}^{n} x_{i}=0 \quad \Rightarrow \quad a=\frac{\sum_{i=1}^{n} x_{i} y_{i}-n \bar{y} \bar{x}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}
$$

Calculate the value of \boldsymbol{a} and substitute into the first equation to get the value of \boldsymbol{b}. These are the most common equations used for linear regression. However, they assume that the dependent and independent variables can be identified and that the error in the dependent variable is more important than the error in the independent variable.

Solution without the independent/ dependent variable relationship assumption

In this section, the problem is solved using the perpendicular offsets to determine the error terms. This provides a solution that is not dependent upon any assumption concerning the relationship between the variables.
The first step in this solution is to determine the square of the perpendicular offset from the regression line that represents the error term.

$$
S S E=\sum_{i=1}^{n}\left(\frac{\left[y_{i}-\left(a x_{i}+b\right)\right]^{2}}{1+a^{2}}\right)
$$

Since we again have two variables, \boldsymbol{a} and \boldsymbol{b}, the derivative must be taken with respect to each variable. Setting each derivative equal to zero will provide two equations that can be solved for the two unknowns, \boldsymbol{a} and \boldsymbol{b}.

$$
\frac{\partial}{\partial b} S S E=\frac{\partial}{\partial b} \sum_{i=1}^{n}\left(\frac{\left[y_{i}-\left(a x_{i}+b\right)\right]^{2}}{1+a^{2}}\right)=\frac{-2}{1+a^{2}} \sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)=0
$$

$$
\begin{aligned}
\frac{\partial}{\partial a} S S E & =\frac{\partial}{\partial a} \sum_{i=1}^{n}\left(\frac{\left[y_{i}-\left(a x_{i}+b\right)\right]^{2}}{1+a^{2}}\right) \\
\frac{\partial}{\partial a} S S E & =\frac{-2}{1+a^{2}} \sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right) x_{i}-\sum_{i=1}^{n} \frac{\left(y_{i}-a x_{i}-b\right)^{2}(2 a)}{\left(1+a^{2}\right)^{2}}=0
\end{aligned}
$$

Rearrange terms and solve the two equations. Solve for \boldsymbol{b} first.

$$
-\sum_{i=1}^{n} y_{i}+a \sum_{i=1}^{n} x_{i}+n b=0 \quad \Rightarrow \quad b=\frac{1}{n} \sum_{i=1}^{n} y_{i}-a \frac{1}{n} \sum_{i=1}^{n} x_{i} \Rightarrow \quad b=\bar{y}-a \bar{x}
$$

This is the same result as before. Substitute the result for \boldsymbol{b} into the second equation and solve for \boldsymbol{a}. The detailed intermediate equations for this solution can be found at http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html. After much manipulation the following equations result:

$$
A=\frac{1}{2} \frac{\left(\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}\right)-\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)}{n \bar{y} \bar{x}-\sum_{i=1}^{n} x_{i} y_{i}} \quad \Rightarrow \quad a=-A \pm \sqrt{A^{2}+1}
$$

This solution is somewhat more complex than the vertical offset solution. That is the reason that the vertical offset solution is commonly used. In most cases, the vertical offset solution provides an adequate answer to the problem without the added complexity of the perpendicular offset solution. However, when the vertical offset solution is used, it makes a difference which variable is considered the independent variable and the dependent variable. This can significantly affect the results when the slope is large.

Additional information requires a special case linear regression

The calculation of Frequency Response requires the use of a special case linear regression. Frequency Response is defined as to be equal to zero when the frequency error is equal to zero. This information requires the modification of the linear regression used to provide the best representation of the data. The appropriate linear regression for representing Frequency Response is a regression where the regression line crosses the origin of the axis representing the two variables, frequency and Frequency Response (MW). Therefore, the previously developed general solution to the problem requires modification. This is done by setting the variable that represents the \boldsymbol{y}-intercept to zero. In the above examples, the \boldsymbol{b} term must be set to zero.

Special case solution assuming an independent/ dependent variable relationship

In the first example the error term is defined as one dimensional on the dependent variable axis. This is based on the vertical offsets but in this case the variable representing the intercept is eliminated. The result is derived as follows:

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

Where: $\quad \hat{\boldsymbol{y}}_{i}=$ Best \boldsymbol{y} value to represent the data set at a given \boldsymbol{x} value.
Substitute a linear equation, $\hat{\boldsymbol{y}}_{\boldsymbol{i}}=\boldsymbol{a} \boldsymbol{x}_{\boldsymbol{i}}$, for the estimated \boldsymbol{y} value.

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}\right)^{2}
$$

Since we now have a single variables, \boldsymbol{a}, the derivative must be taken with respect to that variable. Setting the derivative equal to zero will provide an equation that can be solved for the unknown, \boldsymbol{a}.

$$
\frac{\partial}{\partial a} S S E=\frac{\partial}{\partial a} \sum_{i=1}^{n}\left(y_{i}-a x_{i}\right)^{2}=-2 \sum_{i=1}^{n}\left(x_{i} y_{i}-a x_{i}^{2}\right)=0
$$

Rearrange terms and solve the equation.

$$
-\sum_{i=1}^{n} x_{i} y_{i}+a \sum_{i=1}^{n} x_{i}^{2}=0 \quad \Rightarrow \quad a=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

This equation is somewhat simpler than the equation using a non-zero intercept. In the specific case that we are considering, the estimate of Frequency Response, the slope of the regression line is not expected to be large, near vertical. Therefore, the assumption of dependent and independent variables is not important to the solution. In this case, the additional complexity added by considering the horizontal offsets is not significant to the solution and has been eliminated from consideration.

Appendix J - Generator Governor Survey I nstructions

NOTE: These were the instructions for the Generators Governor Survey conducted in September 2010.

Frequency Response Initiative

Generator Governor Survey

For the purposes of this survey, governors are defined as any device that implements Primary Frequency Response (speed regulation) for generators.

The survey will be sent to Generator Owners and Generator Operators.

- The survey includes all generators rated 20 MVA or higher, or plants that aggregate to a total of 75 MVA or greater net rating at the point of interconnection (i.e., wind farms, PV farms, etc.), accordance with the Statement of Compliance Registry Criteria, Rev. 5.0.
- Jointly-owned units should be reported by the operating entity.
- For combined-cycle plants, the combustion turbines and heat-recovery (steam turbine) units should be reported separately.
- Wind farms should report on a point-of-interconnection basis.
- If the unit is operable in more than one interconnection, complete the survey for operation in each of the interconnections.
NOTE: The 256-character limitation noted on the spreadsheet is a Microsoft Excel limitation on characters in a cell. If additional space is needed, please supply supplemental documentation as necessary.

When responding, please upload your response and any supporting documentation through the NERC Secure Alerts System

General Questions

1. Does your organization have a formal policy on the installation and operation of generator governors?
2. Does your organization have a testing procedure for governors? If so, how often are they tested?

Unit-Specific Questions

The following questions will all apply to each generator:

1. Unit name and number.
2. Balancing Authority (BA) in which the generator is operated (pull-down).
a. If operable in more than one, please note all applicable BAs.
b. If operable in more than one interconnection, complete the survey for operation in each of the interconnections.
3. Unit seasonal Net MW ratings normally reported to NERC for resource adequacy analyses:
a. Summer Net MW rating
b. Winter Net MW rating
4. Prime mover (steam turbine, combustion turbine, wind turbine, etc. - pull-down)
5. Fuel type (coal, oil, nuclear, etc. - pull-down)
6. Unit inertia constant (H) as modeled in dynamics analyses - the combined kinetic energy of the generator and prime-mover in watt-seconds at rated speed divided by the VA (Volt-Ampere) base.
7. What are the annual run hours for the unit (data for each of the last 3 years)?
8. What is the continuous MW rating (Pmax) of the unit?
9. What percent of time does the unit run at Pmax or valves wide-open?
a. 0 to 30%
b. 31% to 60%
c. 61% to 100%
10. Equipped with a Governor? (Y / N) If not, no further answers are necessary.
11. If yes, is the governor operational? (Y / N with a comment box) If not, please explain.
a. Is the governor normally in operation? (Y / N with a comment box) (even if not normally operated, the data on the governor is still needed)
b. What is the normal governor mode of operation? (pull-down)
c. Is the governor response sustainable for more than one minute if conditions remain outside of the deadband? (Y/N)
d. Are there any regulatory restrictions regarding the operation of the governor? This should cover nuclear regulation, environmental restrictions (water temperature, emissions), water flow, etc.
e. Does the governor respond beyond the high/low operating limit (boiler blocks)? (Y/N)
f. Is the governor response limited by the rate of change? (Y / N)
g. Are there any other unit-level or plant-level control schemes that would override or limit governor performance? If yes, please explain.
12. Governor Type?

- Electronic (analog electro-hydraulic);
- DEH (digital electro hydraulic);
- Mechanical;
- Other - please specify.

13. Governor manufacturer and model?
a. If mixed vendor equipment is installed, please explain.
14. Governor Deadband setting?
a. Deadband in(+/-) mHz
i. If in mHz is the deadband centered around a frequency reference $(60 \mathrm{~Hz}$ or current frequency)?
b. Deadband in (+/-) RPM
i. For RPM specify number of machine poles
ii. If in RPM, is the RPM reference nominal or current RPM?
c. What is the basis for this setting?
d. Once activated, what are the conditions for which the governor action is reset?
15. What is the percentage (\%) droop setting on the governor?
a. What is the basis for the droop setting?
16. Does the unit Frequency Response step into the droop curve or is it linear from the deadband?

Step Implementation (step): When frequency crosses the governor dead-band setting the output of the governor "steps" into the 5% droop curve as if the deadband did not exist.

Without Step Implementation (linear): When frequency crosses the governor deadband setting the output of the governor adds proportional output toward the droop curve end point.
17. Prime mover control mode - What is the normally used Turbine Control mode(s)? If more than one is prevalently used, select a primary and explain.

- Turbine manual
- Thermally-limited
- Turbine following
- Boiler following
- Part-load
- Pre-select
- MW set point
- Coordinated control
- Other (please explain) If more than one is prevalently used, select a primary and explain.

18. Do market rules restrict or override governor speed controls? (Y / N) If yes, please explain.

For steam generator controls (boiler controls) or combined cycle central station controls:

19. Does the boiler control or combined cycle central station control have a frequency input? (Y / N) If yes, answer the following questions:
a. Deadband in(+/-) mHz
i. If in mHz is the deadband centered around a frequency reference $(60 \mathrm{~Hz}$ or current frequency)?
b. Deadband in (+/-) RPM
i. For RPM specify number of machine Poles
ii. If in RPM, is the RPM reference nominal or current RPM?
c. What is the basis for this setting?
20. Does the control's Frequency Response step into the droop curve or is it linear from the deadband?
21. What is the steam turbine control mode? (boiler following, turbine following, coordinated control)
22. Do the unit or plant controls over-ride governor speed control or are the control parameters supportive? (Y / N)
23. Does the boiler operate under variable/sliding pressure? $(\mathrm{Y} / \mathrm{N})$
a. What is the control/governor valve position percentage (\%) during variable pressure operation?
24. Do unit or plant economic controls over-ride governor speed control? $(\mathrm{Y} / \mathrm{N})$

Event Performance Data

The following five questions are to be answered for each generator to ascertain its performance during the specified frequency events (one per interconnection). The frequency events data to be reported are:

Interconnection	Date	Time	Time Zone
Eastern	$8 / 16 / 2010$	$14: 25: 29$	CST
Western	$8 / 12 / 2010$	$1: 06: 15$	CST
Texas	$8 / 20 / 2010$	$14: 44: 03$	CST
Québec	$12 / 10 / 2009$	$15: 09: 31$	EST

25. Was the unit on-line during the event? (Y/N)
26. Pre-event generation (MW) - Enter the MW output of the generator at the time just before the event began.
27. Post-event generation (MW) - Enter the MW output of the generator after the event that was reflects the response by the governor to the frequency deviation.
28. Time to achieve post-event response (seconds) - Enter the time (in seconds) it took to achieve the MW response noted in question 27.
29. Comments (256 characters) - Enter any comments necessary. If no data is available for the event, note that here.

Appendix K - Generator Governor Survey Summary

The following are slides that summarize the responses of the 2010 Generator Governor Survey.

Deadband Settings

NERC

NORTH AMERICAN ELECTRIC
RELIAGILITY CORPORATION

NERC 2010 GO/GOP Survey

NERC

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Interconnection Dead Bands Range and Size of Units

Droop Settings

NERC 2010 GO/GOP Survey

NERC

NORTH AMERICAN ELECTRIC
RELIALLTY CORPRATION

Droop Settings by Capacity

12

Results of Other Survey Questions

NERC 2010 GO/GOP Survey
NERC 2010 GO/GOP Survey
NERC 2010 GO/GOP Survey
NERC 2010 GO/GOP Survey

Survey Question: Does governor respond beyond the high/low
operating limit (boiler blocks)?

2014, 49%

NERC $2010 \mathrm{GO} / \mathrm{GOP}$ Survey

Survey Event Data

Appendix L - References

Training Document - Policy 1 Generation Control and Performance, February 24, 2003. NERC
Niemeyer, S. Frequency Regulation—Is Your Plant Compliant?
Ibrahim Abdur-Rahman, Sydney \& Ricardo Vera, PE
Eto, J.H. et al. 2010. Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation. LBNL-4143E. Berkeley: Lawrence Berkeley National Laboratory

Analysis of Eastern Interconnection Frequency Response, February 2011. NERC

Step 1 Enter data in all green cells on the "Data Entry" worksheet. Cell G 1 with the BA name. Cells R11 through R13 with contact information. Cell R24 with BA Bias Type, Fixed or Variable.
Step 2 For identified events in column C of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list.
Detailed Instructions for utilizing the "Adjustments" are located on the "Adjustments" worksheet below the table.
Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list.
Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells C 7 through D18. Use Copy/PasteSpecial/Values to enter data Your current year's Frequency Response Obligation will be calculated in cell R20 of the "Data Entry" worksheet

Step 5 a) If a Fixed Bias was selected, cell R27 will calculate the minimum Bias (least negative) allowed based on your Peak Demand or Peak Generation for Generation only BAs b) If a Fixed Bias was selected, cell R28 will calculate the minimum (in absolute terms) Bias allowed based on 100% of your FRM
() If R29 was more negative than the value in R27, you may choose a Bias setting that is between R29 and the lesser of R27 or R28 and enter it here. Based on your choice, your Bias Setting will appear in cell R33.

Step 6 a) If a Variable Bias was selected, cell R27 will indicate "not applcable" where there is no maximum or minimum Bias Setting) If a Variable Bias was selected, enter "Variable" in cell R31.
If a V average Variable Bias setting when frequency is lower than 59.964 Hz or higher than 60.036 Hz and enter these monthly values on the "Variable Bias Supplemental Info" worksheet in cells B2 through
d) If the "average annual Variable Bias Setting" in cell D14 on the "Variable Bias Supplemental Info" worksheet is less negative than cell E14 of this worksheet, R3 of the standard has not been met and cell D14 on the "Variable Bias Supplementa Info" worksheet will turn red. The average minimum Bias Setting will cover two different reporting periods and Cells J3 through K10 require past year's data from those year's Form 1 s for this evaluation.
 The comparison to the FBS minimum will be from two previous year's analysis prior to the current year and the dates in the table starting at J 3 will indicate the appropriate year's data to use. For xample, if it is Feb 1,2013 and you are calculating your 2012 FBS time weigted average, the minimum FBS value wif be determ.ed from your FRM that you calculated in Feb of 2012 and based on Peak Demand/Peak Gen reported in June of 2011 for 2010 data. Enter each field in green using the appropriate year's data

Step 7 Two FRMs are calculated. One for the BA Bias Setting and one for meeting R1 of the standard.
The FRM for the BA Bias Setting will use all selected events and all SEFRD values will use the delta frequency as measured
he FRM for the BA compliance to R1 will limit the delta frequency to no greater than those listed in Table 2 of Attachment A for each Interconnection. (Eastern $+/-0.500 \mathrm{~Hz}$, Western $+/-0.500 \mathrm{~Hz}$, ERCOT $+1-0.700 \mathrm{~Hz}$ and $\mathrm{HQ}+1-1.500 \mathrm{~Hz}$.)

Report 714 Data (in MW) Part II Schedule 3 Column (b) Month	
JanuaryColumn (j) Peak Demand	
February	
March	
April	
May	
June	
July	
August	
September	
October	
November	
December	

Average	\#DIV/0!
Maximum	

	Balancing Authority	МувА	Jou Dynamic Schedules		Non conforming Load		Pumped Hydro		Not Used		Transferred Frequency Response		Contingent BAAdjustment		Net Total Adjustments Value B 20 to 52 seconds
Event	Date/Time (t-0) (Central Prevailing)	Delfreq		Adiustment	$\underset{\text { adjustment }}{\text { Value A }}$	${ }_{\text {a }}^{\text {Value B B }}$	Adiustment	Adiustment	Adiastment	${ }_{\text {a }}^{\text {Value B B }}$	$\underset{\text { Adiustment }}{\substack{\text { Value }}}$	${ }_{\text {adjustment }}^{\text {Value B }}$	Adilustment	Avalue B	
1			0.0	0.0	${ }^{0.0}$	${ }^{0.0}$	0.0	0.0	${ }^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	0.0
2			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{4}^{3}$			0.0 0.0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	0.0 0.0	0.0 0.0	0.0	0.0 0.0	0.0 0	${ }_{0}^{0.0}$	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
5			0.0	${ }^{0.0}$	0.0	0.0	0.0	0.0	${ }^{0.0}$	0.0	0.0	${ }^{0.0}$	0.0	0.0	0.0
${ }^{6}$			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0
9			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{12}^{11}$			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
13			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15 16			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
17			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{20}^{19}$			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
21			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{2}^{22}$			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{24}^{23}$			0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
25			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{27}^{26}$			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28			${ }_{0}^{0.0}$	${ }_{0.0}^{0.0}$	0.0	0.0 0.0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	0.0	0.0	0.0	${ }_{0.0}$	${ }_{0}^{0.0}$	${ }_{0.0}^{0.0}$	0.0 0.0
${ }^{29}$			0.0	${ }^{0.0}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }^{32}$			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	${ }^{0.0}$	0.0	0.0	0.0
${ }_{34}^{33}$			0.0 0.0	${ }_{0}^{0.0}$	${ }_{0.0}^{0.0}$	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	0.0 0.0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$
${ }^{35}$			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{37}^{36}$			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{38}^{37}$			${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0.0}^{0.0}$	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	0.0	0.0 0.0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$
39			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }^{41}$			0.0	${ }^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	${ }^{0.0}$	0.0	${ }^{0.0}$	${ }^{0.0}$	0.0
42			0.0	0.0	${ }^{0.0}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Sign Convention for data collected in Fo	$\begin{aligned} & \text { scan } \\ & \operatorname{rm} 2 \end{aligned}$	Imports: Exports:	mws are MWs are +	Loads	WW as -	$\begin{array}{r} \text { Load M1 } \\ \text { Generation } \end{array}$	w as. nW as +	Enter Gen	MW as +		sactional nt in er enters Data sheet		urs due to gen V as - at value	

Instructions for utilizing Adjustments:

1) Baancing Authorties making adjustments must reain evidence to verify.

Only utired for the events that you are contengent during that event.
Adjusments are includued consistenty for al events
2) Dynanic Schedules
-Adiussmens scheduls should inincude convenyity dynamic schedulus accounting for joint-owned units. Other dynamic schedulues should be ignored.
3) Noncontoming Loads: $\begin{aligned} & \text { Values must be negative numbers }\end{aligned}$
4) Punped Hydro:

Values for genenaraing must be ne begative positive values
5) Ramping Units: $\begin{gathered}\text {-values are positive values. }\end{gathered}$

- - Transiereded Frequency vesponsed

-Values sor the enity clivering the response must be entered as a positive numbe
Values between entities musts sum to zero.

Month	Minimum FBS* for month	Maximum FBS* for month	Time weighted ${ }^{* *}$ average FBS* for month	Time weighted ${ }^{* *}$ minimum average FBS* for month
January				
Feburary				
March				
April				
May				
June				
July				
August				
September				
October				
November				
December				

Balancing Authority: MyBA

 1899 Reporting period FRS Form 1 data0.001899 Reporting period: Balancinig Authority FRM MW/0.1 Hz, enter from FRS Form 1 for that year's FRM. If not know enter zero.
1.00\% 1899 Reporting period: Interconnection Minimum Fixed Frequency Bias Setting \% of Peak Demand or Peak Generation (Set by ERO)

1899 Reporting period: Your BA's Annual Peak Demand or Peak Gen for Gen only BAs from your BA Form 714.
0.00 Your BA's lowest absolute Fixed Frequency Bias Setting based on BA Peak Demand (Peak Generation for Generation only BA) MW/0.1 Hz.
.0. Your BA's lowest absolute Fixed Frequency Bias Setting based on 100\% of FRM
0.001900 Minimum, lowest absolute, conditional average Frequency Bias Setting MW/0.1 Hz

1900 Average Annual Bias MW/0.1 Hz
*Frequency Bias Setting (FBS)
${ }^{* *}$ Based on the one minute values used in BAL 001 when frequency is greater than $\mathbf{6 0 . 0 3 6} \mathrm{Hz}$ or less than 59.964 Hz .

Full name	Abbreviat ion	Offset	Time zone
Atlantic Daylight Time	ADT	3:00	UTC - 3 hours
Atlantic Standard Time	AST	4:00	UTC - 4 hours
Central Daylight Time	CDT	5:00	UTC - 5 hours
Central Standard Time	CST	6:00	UTC - 6 hours
Eastern Daylight Time	EDT	4:00	UTC - 4 hours
Eastern Standard Time	EST	5:00	UTC - 5 hours
Mountain Daylight Time	MDT	6:00	UTC - 6 hours
Mountain Standard Time	MST	7:00	UTC - 7 hours
Pacific Daylight Time	PDT	7:00	UTC - 7 hours
Pacific Standard Time	PST	8:00	UTC - 8 hours

50.020 Monday, January 30, 2012

Friday, March 23, 2012

Saturday, April 14, 2012

Friday, May 04, 2012

FRI- NERC Freauency Response nitiadive

Some basico obsevaions trom hisis dala

Step 1 Enter data in all green cells on the "Data Entry" worksheet. Cell G 1 with the BA name. Cells R11 through R13 with contact information. Cell R24 with BA Bias Type, Fixed or Variable.
Step 2 For identified events in column C of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list.
Detailed Instructions for utilizing the "Adjustments" are located on the "Adjustments" worksheet below the table.
Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list.
Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells C 7 through D18. Use Copy/PasteSpecial/Values to enter data Your current year's Frequency Response Obligation will be calculated in cell R20 of the "Data Entry" worksheet

Step 5 a) If a Fixed Bias was selected, cell R27 will calculate the minimum Bias (least negative) allowed based on your Peak Demand or Peak Generation for Generation only BAs b) If a Fixed Bias was selected, cell R28 will calculate the minimum (in absolute terms) Bias allowed based on 100% of your FRM
() If R29 was more negative than the value in R27, you may choose a Bias setting that is between R29 and the lesser of R27 or R28 and enter it here. Based on your choice, your Bias Setting will appear in cell R33.

Step 6 a) If a Variable Bias was selected, cell R27 will indicate "not applcable" where there is no maximum or minimum Bias Setting) If a Variable Bias was selected, enter "Variable" in cell R31.
If a V average Variable Bias setting when frequency is lower than 59.964 Hz or higher than 60.036 Hz and enter these monthly values on the "Variable Bias Supplemental Info" worksheet in cells B2 through
d) If the "average annual Variable Bias Setting" in cell D14 on the "Variable Bias Supplemental Info" worksheet is less negative than cell E14 of this worksheet, R3 of the standard has not been met and cell D14 on the "Variable Bias Supplementa Info" worksheet will turn red. The average minimum Bias Setting will cover two different reporting periods and Cells J3 through K10 require past year's data from those year's Form 1 s for this evaluation.
 The comparison to the FBS minimum will be from two previous year's analysis prior to the current year and the dates in the table starting at J 3 will indicate the appropriate year's data to use. For xample, if it is Feb 1,2013 and you are calculating your 2012 FBS time weigted average, the minimum FBS value wif be determ.ed from your FRM that you calculated in Feb of 2012 and based on Peak Demand/Peak Gen reported in June of 2011 for 2010 data. Enter each field in green using the appropriate year's data

Step 7 Two FRMs are calculated. One for the BA Bias Setting and one for meeting R1 of the standard.
The FRM for the BA Bias Setting will use all selected events and all SEFRD values will use the delta frequency as measured
he FRM for the BA compliance to R1 will limit the delta frequency to no greater than those listed in Table 2 of Attachment A for each Interconnection. (Eastern $+/-0.500 \mathrm{~Hz}$, Western $+/-0.500 \mathrm{~Hz}$, ERCOT $+1-0.700 \mathrm{~Hz}$ and $\mathrm{HQ}+1-1.500 \mathrm{~Hz}$.)

$\underset{\substack{\text { Fived } \\ \text { varibele }}}{ }$

Report 714 Data (in MW) Part II Schedule 3 Column (b) Month	
January	Column (j) Peak Demand
February	
March	
April	
May	
June	
July	
August	
September	
October	
November	
December	

Instructions for utilizing Adjustments:

1) Balancing Authorties making adjustments must reain evidence to verify.

2) Dynamic Schedulus:
-Adiustments shouldd include onvyly dynamic schedules accounting for jointoowned units. Other dynamic schedulues should be ignored.
3) Noncontorming Loads: $\begin{gathered}\text {-Values must te engative numbers. }\end{gathered}$
4) Pumped Hydro:
-Values tor genmerating must be ne ne begivitive values.
5) Ramping Units: $\begin{gathered}\text {-values are positive values. }\end{gathered}$
6) Transtered Frequency Response;

- Values tor the entily reciving the response must be entered as anegative number

Values between entities must sum to zero.

- Data tor Value A is the pre-contingency scan rate generation (+MW values) fom the contingent units).
- Data for value B is usually 0 MW, but may be the demand (-MW values) that remains on the system tha

Month	Minimum FBS* for month	Maximum FBS* for month	Time weighted ${ }^{* *}$ average FBS* for month	Time weighted ${ }^{* *}$ minimum average FBS* for month
January				
Feburary				
March				
April				
May				
June				
July				
August				
September				
October				
November				
December				

Balancing Authority: ERCOT 1899 Reporting period FRS Form 1 data
0.001899 Reporting period: Balancinig Authority FRM MW/0.1 Hz, enter from FRS Form 1 for that year's FRM. If not know enter zero.
$1.00 \% 1899$ Reporting period: Interconnection Minimum Fixed Frequency Bias Setting \% of Peak Demand or Peak Generation (Set by ERO)

1899 Reporting period: Your BA's Annual Peak Demand or Peak Gen for Gen only BAs from your BA Form 714.
0.00 Your BA's lowest absolute Fixed Frequency Bias Setting based on BA Peak Demand (Peak Generation for Generation only BA) MW/0.1 HZ.
0.00 Your BA's lowest absolute Fixed Frequency Bias Setting based on BA Peak Deman.
0.00 Your BA's lowest absolute Fixed Frequency Bias Setting based on 100% of FRM.
0.001900 Minimum, lowest absolute, conditional average Frequency Bias Setting MW/0.1 Hz

1900 Average Annual Bias MW/0.1 Hz
*Frequency Bias Setting (FBS)
${ }^{* *}$ Based on the one minute values used in BAL 001 when frequency is greater than 60.036 Hz or less than 59.964 Hz .

,										\#ovo	movo:	\#DVV0:	\#ovoi	\#DVVO!	\#ovvo	\#DVIV:	\#ovo	\#ovol	\#ovivo		
											Frequenc	y Response	Initiative-	Additional Pr	rimary Freq	ency Respo	nse Evaluatio	on Points			
$\xrightarrow[\substack{\text { Spare } \\ \text { ww }}]{ }$	$\substack{\text { Spare } \\ \text { wiv }}$	$\underset{\substack{\text { Spare } \\ \text { Mw }}}{\text { and }}$				$\begin{gathered} \text { BA } \\ \text { Bear } \\ \text { Seling } \\ \text { Mwlo. } \\ \hline \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { Mv } \end{gathered}$	$\begin{gathered} \text { Bias } \\ \text { Sefing } \\ \text { Sefrep } \\ \text { MN } \\ \hline \end{gathered}$													$\begin{aligned} & \text { Minimum } \\ & \text { as Setting } \\ & \text { MW/0.1 Hz } \end{aligned}$

Full name	Abbreviat ion	Offset	Time zone
Atlantic Daylight Time	ADT	3:00	UTC - 3 hours
Atlantic Standard Time	AST	4:00	UTC - 4 hours
Central Daylight Time	CDT	5:00	UTC - 5 hours
Central Standard Time	CST	6:00	UTC - 6 hours
Eastern Daylight Time	EDT	4:00	UTC - 4 hours
Eastern Standard Time	EST	5:00	UTC - 5 hours
Mountain Daylight Time	MDT	6:00	UTC - 6 hours
Mountain Standard Time	MST	7:00	UTC - 7 hours
Pacific Daylight Time	PDT	7:00	UTC - 7 hours
Pacific Standard Time	PST	8:00	UTC - 8 hours

 Some basic obsenveioust tom tuis sata

$T+166$ Performance Adjusted P.U. Based on Bias Setting

Instructions

Step 1 Enter data in all green cells on the "Data Entry" worksheet. Cell G1 with the BA name. Cells R11 through R13 with contact information. Cell R24 with BA Bias Type, Fixed or Variable
Step 2 For identified events in column C of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list. Detailed Instructions for utilizing the "Adjustments" are located on the "Adjustments" worksheet below the table.

Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list.
Step 4 Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells C7 through D18. Use Copy/PasteSpecial/Values to enter data Your current year's Frequency Response Obligation will be calculated in cell R20 of the "Data Entry" worksheet

Step 5 a) If a Fixed Bias was selected, cell R27 will calculate the minimum Bias (least negative) allowed based on your Peak Demand or Peak Generation for Generation only BAs b) If a Fixed Bias was selected, cell R28 will calculate the minimum (in absolute terms) Bias allowed based on 100% of your FRM
c) If R29 was more negative than the value in R27, you may choose a Bias setting that is between R29 and the lesser of R27 or R28 and enter it here. Based on your choice, your Bias Setting will appear in cell R33.

Step 6 a) If a Variable Bias was selected, cell R27 will indicate "not applicable" where there is no maximum or minimum Bias Setting
b) If a Variable Bias was selected, enter "Variable" in cell R31.
c) If a Variable Bias was selected, cell R30 will calculate the minimum Bias (in absolute terms) allowed based on your FRM and Peak Demand/Peak Generation. Calculate your monthly one minute average Variable Bias setting when frequency is lower than 59.964 Hz or higher than 60.036 Hz and enter these monthly values on the "Variable Bias Supplemental Info" worksheet in cells B2 through D1
d) If the "average annual Variable Bias Setting" in cell D14 on the "Variable Bias Supplemental Info" worksheet is less negative than cell E14 of this worksheet, R3 of the standard has not been met and cell D14 on the "Variable Bias Supplementa Into" worksheet will turn red. The average minimum Bias Setting will cover two different reporting periods and Cells J3 through K10 require past year's data
e) Depending on completed by the ERO before each year's FRS Form 1 is published.
f) The comparison to the FBS minimum will be from two previous year's analysis prior to the current year and the dates in the table starting at J3 will indicate the appropriate year's data to use. For example, if it is Feb 1, 2013 and you are calculating your 2012 FBS time weigted average, the minimum FBS value will be determined from your FRM that you calculated in Feb of 2012 and based on the Peak Demand/Peak Gen reported in June of 2011 for 2010 data. Enter each field in green using the appropriate year's data.

Step 7 Two FRMs are calculated. One for the BA Bias Setting and one for meeting R1 of the standard.
The FRM for the BA Bias Setting will use all selected events and all SEFRD values will use the delta frequency as measured.
The FRM for the BA compliance to R1 will limit the delta frequency to no greater than those listed in Table 2 of Attachment A for each Interconnection. (Eastern $+/-0.500 \mathrm{~Hz}$, Western $+/-0.500 \mathrm{~Hz}$, ERCOT $+/-0.700 \mathrm{~Hz}$ and $\mathrm{HQ}+/-1.500 \mathrm{~Hz}$.)

Step 8 Send completed Form 1 and each Form 2 to NERC.

Report 714 Data (in MW) Part II Schedule 3	
Column (b) Month	Column (j) Peak Demand
January	
February	
March	
April	
May	
June	
July	
August	
September	
October	
November	
December	
Average	\#DIV/0!
Maximum	

	Balancing Authority	HQT	Load Resources Tripped		Non conforming Load		Not Used		Not Used		Not Used		Not Used		Net Total Adjustments
Event Number	Date/Time (t-0) (Central Prevailing)	DelFreq	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value B 20 to 52 seconds
1			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
32			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
33			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
34			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
36			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
37			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
42			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Sign Convention for scan
 data collected in Form 2
 mports: MWs are Exports: MWs are
 Loads in MW as -
 Load MW as -
 Generation MW as +
 Enter Gen MW as +

Instructions for utilizing Adjustments

1) Balancing Authorities making adjustments must retain evidence to verify

Adjustment values are determined from scan-cycle data using Value A and Value B averaging periods. Scan-cycle data must be available if adjustments are made.
Adjustments are necessary to improve accuracy of calculations compared to using Net Actual Interchange solely,
Said differently, unless an adjustment compensates for significant known error, it should not be made. However, as noted in the next item, once a decision to include an
adjustment for one or more of the five types is made for one event, the entity must calculate adjustments for that (those) type(s) for all events except for the Contengent BA Adjustmen which is only utilized for the events that you are contengent during that event.

Adjustments are included consistently for all events (e.g. if adjustments for nonconforming load are made for one event, the load must be included for all events, etc.).
2) Dynamic Schedules

Adjustments should include only dynamic schedules accounting for joint-owned units. Other dynamic schedules should be ignored
3) Nonconforming Loads:

- Values must be negative numbers.

4) Pumped Hydro:

Values for pumping must be negative values.
Values for generating must be positive values
5) Rampling Units:

Values are positive values
6) Transferred Frequency Response:

This value is the amount agreed upon between the entities expressed in $\mathrm{MW} / 0.1 \mathrm{~Hz}$. Form 2 will adjust this amount for the frequency deviation experienced .g. If an entity agrees to provide $20 \mathrm{MW} / 0.1 \mathrm{~Hz}$ to another entity and a frequency event with a deviation of 50 mHz occurs, the delivering entity should enter +20 in the data column of Form 2 and the receiving entity should enter - 20. The spreadsheet will adjust the SEFRD for each entity by the 10 for this event.)
Values for the entity receiving the response must be entered as a negative number
Values for the entity delivering the response must be entered as a positive number.
Values between entities must sum to zero
7) Contingent Balancing Authority Adjustment:

Data for Value A is the pre-contingency scan rate generation (+MW values) from the contingent unit(s).
Data for Value B is usually 0 MW , but may be the demand (-MW values) that remains on the system that was "netted" out by the now offline generation.

PasteSpecialvalues the data copied from FRS Form 2 for each event

Full name	Abbreviat ion	Offset	Time zone
Atlantic Daylight Time	ADT	3:00	UTC - 3 hours
Atlantic Standard Time	AST	4:00	UTC - 4 hours
Central Daylight Time	CDT	5:00	UTC - 5 hours
Central Standard Time	CST	6:00	UTC - 6 hours
Eastern Daylight Time	EDT	4:00	UTC - 4 hours
Eastern Standard Time	EST	5:00	UTC - 5 hours
Mountain Daylight Time	MDT	6:00	UTC - 6 hours
Mountain Standard Time	MST	7:00	UTC - 7 hours
Pacific Daylight Time	PDT	7:00	UTC - 7 hours
Pacific Standard Time	PST	8:00	UTC - 8 hours

HQT Performance based on Hz at $\mathrm{T}+106$ T+106 Performance Adjusted P.U. Based on Bias Setting

■ Adjusted PFR Performance @ $\mathrm{T}(+106)$ P.U

HQT Performance based on Hz at $\mathrm{T}+136$

FRI - NERC Frequency Response Initiative

The FRI Report made recommendations to evaluate Primary Frequency Response at additional time intervals during the event recovery period
Additional evaluations have been added to both Form 1 and Form 2 to evaluate PFR delivery for these suggested time periods.
These evaluations utilize Interconnection frequency at specific times during the recovery period and calculates the BA's delivery of PFR for each selection These evaluations are not part of BAL-003 and will not impact compliance to R1 of the draft standard
The following time selections are evaluated: $T+46, T+76, T+106, T+136$ and $T+166$
Each evaluation is a P.U. measure based on the BA's Bias setting at each of these times.
Performance is the "best" performance at the specific time through 10 seconds past each time
This is intended to account for any delay in data in the measurement. This measurement may be changed as experience in this effort increases.
Also included is the measure of PFR delivery during the $T+20$ to $T+52$ second period, the same as $R 1$ of the standard.
The measure (P.U.) here is based on the BA Bias setting and not the FRO. This was done to provide comparison to the additional measurement times.
Some basic observations from this data:

1) If the P.U. value is close to 1.0 , the BA delivered the full amount of PFR equal to its Bias setting
2) The average performance of the Eastern Interconnection in PFR is about 40% of the total Interconnection Bias setting. If the BA's average score is greater than 0.40 P.U. then they are providing more PFR than the average BA. If the P.U. is less than 40% then they are providing less than average PFR.
3) If the P.U. value at $T+46$ is consistently less than the P.U. value at $T+20$ to $T+52$, then the PFR of the BA is not being sustained
4) If the P.U. value at later time interval measures is consistently less, then withdrawal of PFR is occurring at a slower rate, but still being withdrawn.
5) If the P.U. value at $T+20$ to $T+52, T+46$, or $T+76$ is consistently greater than 1.0 , this indicates that the BA Bias setting is too low.

	Balancing Authority	MyBA	JOU Dynamic Schedules		Non conforming Load		Pumped Hydro		Not Used		Transferred Frequency Response		Contingent BA Adjustment		Net Total Adjustments
Event Number	Date/Time (t-0) (Central Prevailing)	DelFreq	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value B 20 to 52 seconds
1			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
32			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
33			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
34			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
36			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
37			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
42			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Sign Convention for scan data collected in Form 2
mports: MWs are Exports: MWs are

Load MW as -
Generation MW as +

Instructions for utilizing Adjustments:

1) Balancing Authorities making adjustments must retain evidence to verify;

- Adjustment values are determined from scan-cycle data using Value A and Value B averaging periods. Scan-cycle data must be available if adjustments are made Adjustments are necessary to improve accuracy of calculations compared to using Net Actual Interchange solely.
Said differently, unless an adjustment compensates for significant known error, it should not be made. However, as noted in the next item, once a decision to include an adjustment for one or more of the five types is made for one event, the entity must calculate adjustments for that (those) type(s) for all events except for the Contengent BA Adjustment which is only utilized for the events that you are contengent during that event.
Adjustments are included consistently for all events (e.g. if adjustments for nonconforming load are made for one event, the load must be included for all events, etc.)
) Dynamic Schedules:
- Values use schedule sign convention. - Adjustments should include only dynamic schedules accounting for joint-owned units. Other dynamic schedules should be ignored

3) Nonconforming Loads:

Values must be negative numbers.
4) Pumped Hydro

Values for pumping must be negative values.

- Values for generating must be positive values.

5) Rampling Units:

Values are positive values.
6) Transferred Frequency Response:

- This value is the amount agreed upon between the entities expressed in MW/0.1 Hz. Form 2 will adjust this amount for the frequency deviation experienced. (e.g. if an entity agrees to provide $20 \mathrm{MW} / 0.1 \mathrm{~Hz}$ to another entity and a frequency event with a deviation of 50 mHz occurs, the delivering entity should enter +20 in the data column of Form 2 and the receiving entity should enter - 20. The spreadsheet will adjust the SEFRD for each entity by the 10 for this event.)
Values for the entity receiving the response must be entered as a negative number
Values for the entity delivering the response must be entered as a positive number.
Values between entities must sum to zero.

7) Contingent Balancing Authority Adjustment:

Data for Value A is the pre-contingency scan rate generation (+MW values) from the contingent unit(s).
Data for Value B is usually 0 MW, but may be the demand (-MW values) that remains on the system that was "netted" out by the now offline generation.

Step 1 Enter data in all green cells on the "Data Entry" worksheet. Cell G1 with the BA name. Cells R11 through R13 with contact information. Cell R24 with BA Bias Type, Fixed or Variable.
Step 2 For identified events in column C of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list. Detailed Instructions for utilizing the "Adjustments" are located on the "Adjustments" worksheet below the table.

Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list.
Step 4 Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells C7 through D18. Use Copy/PasteSpecial/Values to enter data. Your current year's Frequency Response Obligation will be calculated in cell R20 of the "Data Entry" worksheet.

Step 5 a) If a Fixed Bias was selected, cell R27 will calculate the minimum Bias (least negative) allowed based on your Peak Demand or Peak Generation for Generation only BAs b) If Fixed Bias was selected, cell R28 will calculate the minimum (in absolute terms) Bias allowed based on 100% of your FRM.
c) If a Fixed Bias was selected, cell R29 will calculate the maximum Bias (in absolute terms) allowed based on 125% of your FRM.
d) If R29 was more negative than the value in R27, you may choose a Bias setting that is between R29 and the lesser of R27 or R28 and enter it here. Based on your choice, your Bias Setting will appear in cell R33.
Step 6 a) If a Variable Bias was selected, cell R27 will indicate "not applicable" where there is no maximum or minimum Bias Setting. b) If a Variable Bias was selected, enter "Variable" in cell R31.
c) If a Variable Bias was selected, cell R30 will calculate the minimum Bias (in absolute terms) allowed based on your FRM and Peak Demand/Peak Generation. Calculate your monthly one minute average Variable Bias setting when frequency is lower than 59.964 Hz or higher than 60.036 Hz and enter these monthly values on the "Variable Bias Supplemental Info" worksheet in cells B2 through D13.
d) If the "average annual Variable Bias Setting" in cell D14 on the "Variable Bias Supplemental Info" worksheet is less negative than cell E14 of this worksheet, R3 of the standard has not been met and cell D14 on the "Variable Bias Supplementa Info" worksheet will turn red. The average minimum Bias Setting will cover two different reporting periods and Cells J3 through K10 require past year's data from those year's Form 1s for this evaluation
e) Depending on when the Implementation date is each year for the annual Bias Setting, the ERO may be required to edit the selection of each months' minimum average FBS value. This should be completed by the ERO before each year's FRS Form 1 is published.
f) The comparison to the FBS minimum will be from two previous year's analysis prior to the current year and the dates in the table starting at J 3 will indicate the appropriate year's data to use. For example, if it is Feb 1, 2013 and you are calculating your 2012 FBS time weigted average, the minimum FBS value will be determined from your FRM that you calculated in Feb of 2012 and based on the Peak Demand/Peak Gen reported in June of 2011 for 2010 data. Enter each field in green using the appropriate year's data.

Step 7 Two FRMs are calculated. One for the BA Bias Setting and one for meeting R1 of the standard
The FRM for the BA Bias Setting will use all selected events and all SEFRD values will use the delta frequency as measured.
The FRM for the BA compliance to R1 will limit the delta frequency to no greater than those listed in Table 2 of Attachment A for each Interconnection. (Eastern $+/-0.500 \mathrm{~Hz}, \mathrm{Western}+/-0.500 \mathrm{~Hz}$ ERCOT $+/-0.700 \mathrm{~Hz}$ and $\mathrm{HQ}+/-1.500 \mathrm{~Hz}$.)
Step 7 Save this workbook using the following file name format:NYISO_yyyy_FRS_Form_1.9.xlsx. (where NYISO is replaced with your Balancing Authority abbreviation). See cell "G74" on the Data Entry worksheet for your exact file name.
Step 8 Send completed Form 1 and each Form 2 to NERC

Report 714 Data (in MW) Part II Schedule 3	
Column (b) Month	Column (j) Peak Demand
January	
February	
March	
April	
May	
June	
July	
August	
September	
October	
November	
December	
Average	\#DIV/0!
Maximum	

Instructions for utilizing Adjustments:

Value B averaging periods. Scan-cycle data must be available if adjustments are made. Adjustments are necessary to improve accuracy of calculations compared to using Net Actual Interchange solely.
Said differently, unless an adjustment compensates for significant known error, it should not be made. However, as noted in the next item, once a decision to include an adjustment for one or more of the five types is made for one event, the entity must calculate adjustments for that (those) type(s) for all events except for the Contengent BA Adjustment hich is only utilized for the events that you are contengent during that event.
Adjustments are included consistently for all events (e.g. if adjustments for nonconforming load are made for one event, the load must be included for all events, etc.).
2) Dynamic Schedules

Values use schedule sign convention.
Adjustments should include only dynamic schedules accounting for joint-owned units. Other dynamic schedules should be ignored.
3) Nonconforming Loads:

Values must be negative numbers.
4) Pumped Hydro:

Values for pumping must be negative values. Values for generating must be positive values.
5) Rampling Units:

Values are positive values.
6) Transferred Frequency Response

This value is the amount agreed upon between the entities expressed in MW/0.1 Hz. Form 2 will adjust this amount for the frequency deviation experienced (e.g. if an entity agrees to provide $20 \mathrm{MW} / 0.1 \mathrm{~Hz}$ to another entity and a frequency event with a deviation of 50 mHz occurs, the delivering entity should enter +20 in the data column of Form 2 and the receiving entity should enter - 20. The spreadsheet will adjust the SEFRD for each entity by the 10 for this event.)
Values for the entity receiving the response must be entered as a negative number.
Values for the entity delivering the response must be entered as a positive number.
Values between entities must sum to zero
7) Contingent Balancing Authority Adjustment:

Data for Value A is the pre-contingency scan rate generation (+MW values) from the contingent unit(s).
Data for Value B is usually 0 MW, but may be the demand (-MW values) that remains on the system that was "netted" out by the now offline generation.

PasteSpecialvalues the data copied from FRS Form 2 for each event

Full name	Abbreviat ion	Offset	Time zone
Atlantic Daylight Time	ADT	3:00	UTC - 3 hours
Atlantic Standard Time	AST	4:00	UTC - 4 hours
Central Daylight Time	CDT	5:00	UTC - 5 hours
Central Standard Time	CST	6:00	UTC - 6 hours
Eastern Daylight Time	EDT	4:00	UTC - 4 hours
Eastern Standard Time	EST	5:00	UTC - 5 hours
Mountain Daylight Time	MDT	6:00	UTC - 6 hours
Mountain Standard Time	MST	7:00	UTC - 7 hours
Pacific Daylight Time	PDT	7:00	UTC - 7 hours
Pacific Standard Time	PST	8:00	UTC - 8 hours

ERCOT T20 to T52 Average Performance Initial Performance Adjusted P.U. Based on Bias Setting

```
#DIV/0! MW/0.1 Hz Median #DIV/0 Average P.U. Performance
```


Initial Performance Adjusted P.U.

ERCOT Performance based on Hz at $\mathrm{T}+46$

ERCOT Event Recovery Period Average Performance

ERCOT Performance based on Hz at $\mathrm{T}+76$

ERCOT Performance based on Hz at $\mathrm{T}+106$

■ Adjusted PFR Performance @ T(+106) P.U.
ERCOT Performance based on Hz at $\mathrm{T}+166$

ERCOT Performance based on Hz at $\mathrm{T}+136$

FRI - NERC Frequency Response Initiative
he FRI Report made recommendations to evaluate Primary Frequency Response at additional time intervals during the event recovery period. Additional evaluations have been added to both Form 1 and Form 2 to evaluate PFR delivery for these suggested time periods.
These evaluations utilize Interconnection frequency at specific times during the recovery period and calculates the BA's delivery of PFR for each selection These evaluations are not part of BAL-003 and will not impact compliance to R1 of the draft standard.
The following time selections are evaluated: T+46, T+76, T+106, T+136 and T+166.
Each evaluation is a P.U. measure based on the BA's Bias setting at each of these times.
Performance is the "best" performance at the specific time through 10 seconds past each time
This is intended to account for any delay in data in the measurement. This measurement may be changed as experience in this effort increases.
Also included is the measure of PFR delivery during the $\mathrm{T}+20$ to $\mathrm{T}+52$ second period, the same as R 1 of the standard.
The measure (P.U.) here is based on the BA Bias setting and not the FRO. This was done to provide comparison to the additional measurement times.
Some basic observations from this data:
) If the P.U. value is close to 1.0 , the BA delivered the full amount of PFR equal to its Bias setting
2) The average performance of the Eastern Interconnection in PFR is about 40% of the total Interconnection Bias setting. If the BA's average score is greater han 0.40 P.U. then they are providing more PFR than the average BA. If the P.U. is less than 40% then they are providing less than average PFR.
3) If the P.U. value at $T+46$ is consistently less than the P.U. value at $T+20$ to $T+52$, then the PFR of the BA is not being sustained.
4) If the P.U. value at later time interval measures is consistently less, then withdrawal of PFR is occurring at a slower rate, but still being withdrawn.
5) If the P.U. value at $T+20$ to $T+52, T+46$, or $T+76$ is consistently greater than 1.0 , this indicates that the BA Bias setting is too low.

Step 1 Enter data in all green cells on the "Data Entry" worksheet. Cell G1 with the BA name. Cells R11 through R13 with contact information. Cell R24 with BA Bias Type, Fixed or Variable
Step 2 For identified events in column C of the "Data Entry" worksheet, collect data and complete one FRS Form 2 workbook for each event in the list. Detailed Instructions for utilizing the "Adjustments" are located on the "Adjustments" worksheet below the table
Step 3 PasteSpecial/Values data from FRS Form 2 "Form 1 Summary Data" worksheet into "BA Form 2 Event Data" worksheet of this workbook. Do this for each event in the list.
Step 4 Enter FERC Form 714 data from the most recent completed Form 714 in the worksheet "Form 714 Data" in cells C7 through D18. Use Copy/PasteSpecial/Values to enter data. Your current year's Frequency Response Obligation will be calculated in cell R20 of the "Data Entry" worksheet.

Step 5 a) If a Fixed Bias was selected, cell R27 will calculate the minimum Bias (least negative) allowed based on your Peak Demand or Peak Generation for Generation only BAs b) If a Fixed Bias was selected, cell R28 will calculate the minimum (in absolute terms) Bias allowed based on 100% of your FRM.
c) If a Fixed Bias was selected, cell R29 will calculate the maximum Bias (in absolute terms) allowed based on 125% of your FRM.
d) If R29 was more negative than the value in R27, you may choose a Bias setting that is between R29 and the lesser of R27 or R28 and enter it here. Based on your choice, your Bias Setting will appear in cell R33

Step 6 a) If a Variable Bias was selected, cell R27 will indicate "not applicable" where there is no maximum or minimum Bias Setting b) If a Variable Bias was selected, enter "Variable" in cell R31
c) If a Variable Bias was selected, cell R30 will calculate the minimum Bias (in absolute terms) allowed based on your FRM and Peak Demand/Peak Generation. Calculate your monthly one minute average Variable Bias setting when frequency is lower than 59.964 Hz or higher than 60.036 Hz and enter these monthly values on the "Variable Bias Supplemental Info" worksheet in cells B2 throug
d) If the "average annual Variable Bias Setting" in cell D14 on the "Variable Bias Supplemental Info" worksheet is less negative than cell E14 of this worksheet, R3 of the standard has not been met and cell D14 on the "Variable Bias Supplementa Info" worksheet will turn red. The average minimum Bias Setting will cover two different reporting periods and Cells J3 through K10 require past year's data from those year's form 1s for this evaluation
e) Depending on when the Implementation date is each year for the annual Bias Setting, the ERO may be required to edit the selection of each months' minimum average FBS value. This should be completed by the ERO before each year's FRS Form 1 is published.
f) The comparison to the FBS minimum will be from two previous year's analysis prior to the current year and the dates in the table starting at J3 will indicate the appropriate year's data to use. For example, if it is Feb 1, 2013 and you are calculating your 2012 FBS time weigted average, the minimum FBS value will be determined from your FRM that you calculated in Feb of 2012 and based on the Peak Demand/Peak Gen reported in June of 2011 for 2010 data. Enter each field in green using the appropriate year's data.

Step 7 Two FRMs are calculated. One for the BA Bias Setting and one for meeting R1 of the standard.
The FRM for the BA Bias Setting will use all selected events and all SEFRD values will use the delta frequency as measured.
The FRM for the BA compliance to R1 will limit the delta frequency to no greater than those listed in Table 2 of Attachment A for each Interconnection. (Eastern $+/-0.500 \mathrm{~Hz}, \mathrm{Western}+/-0.500 \mathrm{~Hz}$, ERCOT +-0.700 Hz and $\mathrm{HQ}++-1.500 \mathrm{~Hz}$.

Step 8 Send completed Form 1 and each Form 2 to NERC.

Report 714 Data (in MW) Part II Schedule 3	
Column (b) Month	Column (j) Peak Demand
January	
February	
March	
April	
May	
June	
July	
August	
September	
October	
November	
December	
Average	\#DIV/0!
Maximum	

	Balancing Authority	HQT	Load Resources Tripped		Non conforming Load		Not Used		Not Used		Not Used		Not Used		Net Total Adjustments
Event Number	Date/Time (t-0) (Central Prevailing)	DelFreq	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	Value B Adjustment	Value A Adjustment	$\begin{array}{\|c\|} \hline \text { Value B } \\ \text { Adjustment } \\ \hline \end{array}$	Value B 20 to 52 seconds
1			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
18			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
19			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
21			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
22			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
23			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
32			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
33			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
34			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
36			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
37			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
38			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
39			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
42			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Sign Convention for scan

 data collected in Form 2mports: MWs are Exports: MWs are

Load MW as Generation MW as +

Instructions for utilizing Adjustments:

1) Balancing Authorities making adjustments must retain evidence to verify:

Adjustment values are determined from scan-cycle data using Value A and Value B averaging periods. Scan-cycle data must be available if adjustments are made. Adjustments are necessary to improve accuracy of calculations compared to using Net Actual Interchange solely.
Said differently, unless an adjustment compensates for significant known error, it should not be made. However, as noted in the next item, once a decision to include an adjustment for one or more of the five types is made for one event, the entity must calculate adjustments for that (those) type(s) for all events except for the Contengent BA Adjustment which is only utilized for the events that you are contengent during that event.

Adjustments are included consistently for all events (e.g. if adjustments for nonconforming load are made for one event, the load must be included for all events, etc.).
2) Dynamic Schedules:

- Values use schedule sign convention.

Adjustments should include only dynamic schedules accounting for joint-owned units. Other dynamic schedules should be ignored
3) Nonconforming Loads:

Values must be negative numbers.
4) Pumped Hydro:

Values for pumping must be negative values. Values for generating must be positive values
5) Rampling Units:

Values are positive values.
6) Transferred Frequency Response:

- This value is the amount agreed upon between the entities expressed in MW/0.1 Hz. Form 2 will adjust this amount for the frequency deviation experienced.
(e.g. if an entity agrees to provide $20 \mathrm{MW} / 0.1 \mathrm{~Hz}$ to another entity and a frequency event with a deviation of 50 mHz occurs, the delivering entity should enter +20 in the data column of Form 2 and the receiving entity should enter - 20 . The spreadsheet will adjust the SEFRD for each entity by the 10 for this event.)
Values for the entity receiving the response must be entered as a negative number
Values for the entity delivering the response must be entered as a positive number
Values between entities must sum to zero.

7) Contingent Balancing Authority Adjustment:

- Data for Value A is the pre-contingency scan rate generation (+MW values) from the contingent unit(s).

Data for Value B is usually 0 MW, but may be the demand (-MW values) that remains on the system that was "netted" out by the now offline generation.

* Frequency Bias Setting (FBS)
** Based on the one minute values used in BAL 001 when frequency is greater than 60.036 Hz or less than 59.964 Hz .

Full name	Abbreviat ion	Offset	Time zone
Atlantic Daylight Time	ADT	3:00	UTC - 3 hours
Atlantic Standard Time	AST	4:00	UTC - 4 hours
Central Daylight Time	CDT	5:00	UTC - 5 hours
Central Standard Time	CST	6:00	UTC - 6 hours
Eastern Daylight Time	EDT	4:00	UTC - 4 hours
Eastern Standard Time	EST	5:00	$\begin{aligned} & \text { UTC - } 5 \\ & \text { hours } \end{aligned}$
Mountain Daylight Time	MDT	6:00	UTC - 6 hours
Mountain Standard Time	MST	7:00	UTC - 7 hours
Pacific Daylight Time	PDT	7:00	UTC - 7 hours
Pacific Standard Time	PST	8:00	$\begin{aligned} & \text { UTC - } 8 \\ & \text { hours } \end{aligned}$

HQT T20 to T52 Average Performance
Initial Performance Adjusted P.U. Based on Bias Setting

HQT Performance based on Hz at $\mathrm{T}+46$ T+46 Performance Adjusted P.U. Based on Bias Setting

HQT
Event Recovery Period Average Performance

HQT Performance based on Hz at $\mathrm{T}+76$

FRI - NERC Frequency Response Initiative
The FRI Report made recommendations to evaluate Primary Frequency Response at additional time intervals during the event recovery period. Additional evaluations have been added to both Form 1 and Form 2 to evaluate PFR delivery for these suggested time periods.
These evaluations utilize Interconnection frequency at specific times during the recovery period and calculates the BA's delivery of PFR for each selection.
hese evaluations are not part of BAL-003 and will not impact compliance to R1 of the draft standard.
The following time selections are evaluated: $\mathrm{T}+46, \mathrm{~T}+76, \mathrm{~T}+106, \mathrm{~T}+136$ and $\mathrm{T}+166$.
Each evaluation is a P.U. measure based on the BA's Bias setting at each of these times.
Performance is the "best" performance at the specific time through 10 seconds past each time.
This is intended to account for any delay in data in the measurement. This measurement may be changed as experience in this effort increases.
Also included is the measure of PFR delivery during the $\mathrm{T}+20$ to $\mathrm{T}+52$ second period, the same as R1 of the standard.
The measure (P.U.) here is based on the BA Bias setting and not the FRO. This was done to provide comparison to the additional measurement times.
Some basic observations from this data

1) If the P.U. value is close to 1.0 , the BA delivered the full amount of PFR equal to its Bias setting
2) The average performance of the Eastern Interconnection in PFR is about 40% of the total Interconnection Bias setting. If the BA's average score is greater than 0.40 P.U. then they are providing more PFR than the average BA. If the P.U. is less than 40% then they are providing less than average PFR.
3) If the P.U. value at $T+46$ is consistently less than the P.U. value at $T+20$ to $T+52$, then the PFR of the BA is not being sustained.
4) If the P.U. value at later time interval measures is consistently less, then withdrawal of PFR is occurring at a slower rate, but still being withdrawn.
5) If the P.U. value at $T+20$ to $T+52, T+46$, or $T+76$ is consistently greater than 1.0 , this indicates that the BA Bias setting is too low.

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) $\operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{aligned} & \text { Recovery } \\ & \text { Target Freq: } \\ & \text { 60.000 } \\ & \text { 2:27:26 } \\ & \text { 2:33:00 } \\ & \text { 05:34 } \end{aligned}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
10/12/09 02:17:26	60.007	3679.946	350	-331.852966	0	81.5	10	15	-103	7553.79		0				
10/12/09 02:17:28	60.009	3679.44	350	-331.852966	0	82	10	15	-103	7554.12	0	0	0	0.002	0.002	
10/12/09 02:17:30	60.009	3679.912	350	-331.852966	0	82.5	10	15	-103	7554.45	0	0	0	0.000	0.000	
10/12/09 02:17:32	60.006	3679.517	350	-331.852966	0	83	10	15	-103	7554.78	0	0	0	-0.003	0.003	
10/12/09 02:17:34	60.006	3679.888	350	-331.852966	0	83.5	10	15	-103	7555.11	0	0	0	0.000	0.000	
10/12/09 02:17:36	60.009	3679.608	350	-329.98822	0	84	10	15	-103	7555.44	0	0	0	0.003	0.003	
10/12/09 02:17:38	60.009	3679.06	350	-329.98822	0	84.5	10	15	-103	7555.77	0	0	0	0.000	0.000	
10/12/09 02:17:40	60.008	3679.261	350	-329.98822	0	85	10	15	-103	7556.1	0	0	0	-0.001	0.001	
10/12/09 02:17:42	60.009	3679.164	350	-329.98822	0	85.5	10	15	-103	7556.43	0	0	0	0.001	0.001	
10/12/09 02:17:44	60.009	3679.025	350	-329.98822	0	86	10	15	-103	7556.76	0	0	0	0.000	0.000	
10/12/09 02:17:46	60.005	3679.152	350	-255.444168	0	86.5	10	15	-103	7557.09	0	0	0	-0.004	0.004	
10/12/09 02:17:48	60.004	3678.572	350	-255.444168	0	87	10	15	-103	7557.42	0	0	0	-0.001	0.001	
10/12/09 02:17:50	60.001	3678.295	350	-255.444168	0	87.5	10	15	-103	7557.75	0	0	0	-0.003	0.003	
10/12/09 02:17:52	59.999	3678.249	350	-255.444168	0	88	10	15	-103	7558.08	0	0	0	-0.002	0.002	
10/12/09 02:17:54	59.993	3678.236	350	-255.444168	0	88.5	10	15	-103	7558.41	0	0	0	-0.006	0.006	
10/12/09 02:17:56	59.991	3677.83	350	-254.838303	0	89	10	15	-103	7558.74	0	0	0	-0.002	0.002	
10/12/09 02:17:58	59.994	3677.955	350	-254.838303	0	89.5	10	15	-103	7559.07	0	0	0	0.003	0.003	
10/12/09 02:18:00	59.992	3677.772	350	-254.838303	0	90	10	15	-103	7559.4	0	0	0	-0.002	0.002	
10/12/09 02:18:02	59.994	3676.666	350	-254.838303	0	90.5	10	15	-103	7559.73	0	0	0	0.002	0.002	
10/12/09 02:18:04	59.992	3677.093	350	-254.838303	0	91	10	15	-103	7560.06	0	0	0	-0.002	0.002	
10/12/09 02:18:06	59.994	3677.141	350	-257.146973	0	91.5	10	15	-103	7560.39	0	0	0	0.002	0.002	
10/12/09 02:18:08	59.995	3676.401	350	-257.146973	0	92	10	15	-103	7560.72	0	0	0	0.001	0.001	
10/12/09 02:18:10	59.993	3678.516	350	-257.146973	0	92.5	10	15	-103	7561.05	0	0	0	-0.002	0.002	
10/12/09 02:18:12	59.99	3679.872	350	-257.146973	0	93	10	15	-103	7561.38	0	0	0	-0.003	0.003	
10/12/09 02:18:14	59.99	3680.197	350	-257.146973	0	93.5	10	15	-103	7561.71	0	0	0	0.000	0.000	
10/12/09 02:18:16	59.987	3678.743	350	-262.289368	0	94	10	15	-103	7562.04	0	0	0	-0.003	0.003	
10/12/09 02:18:18	59.983	3678.428	350	-262.289368	0	94.5	10	15	-103	7562.37	0	0	0	-0.004	0.004	
10/12/09 02:18:20	59.977	3677.921	350	-262.289368	0	95	10	15	-103	7562.7	0	0	0	-0.006	0.006	
10/12/09 02:18:22	59.977	3680.254	350	-262.289368	0	95.5	10	15	-103	7563.03	0	0	0	0.000	0.000	
10/12/09 02:18:24	59.989	3682.07	350	-262.289368	0	96	10	15	-103	7563.36	0	0	0	0.012	0.012	
10/12/09 02:18:26	59.995	3681.329	350	-256.647949	0	96.5	10	15	-103	7563.69	0	0	0	0.006	0.006	
10/12/09 02:18:28	59.999	3678.656	350	-256.647949	0	97	10	15	-103	7564.02	0	0	0	0.004	0.004	
10/12/09 02:18:30	59.994	3678.077	350	-256.647949	0	97.5	10	15	-103	7564.35	0	0	0	-0.005	0.005	
10/12/09 02:18:32	59.989	3677.78	350	-256.647949	0	98	10	15	-103	7564.68	0	0	0	-0.005	0.005	
10/12/09 02:18:34	59.987	3678.427	350	-256.647949	0	98.5	10	15	-103	7565.01	0	0	0	-0.002	0.002	
10/12/09 02:18:36	59.986	3678.473	350	-256.307251	0	99	10	15	-103	7565.34	0	0	0	-0.001	0.001	
10/12/09 02:18:38	59.984	3678.278	350	-256.307251	0	99.5	10	15	-103	7565.67	0	0	0	-0.002	0.002	
10/12/09 02:18:40	59.983	3677.822	350	-256.307251	0	100	10	15	-103	7566	0	0	0	-0.001	0.001	
10/12/09 02:18:42	59.985	3676.615	350	-256.307251	0	100.5	10	15	-103	7566.33	0	0	0	0.002	0.002	
10/12/09 02:18:44	59.986	3677.397	350	-256.307251	0	101	10	15	-103	7566.66	0	0	0	0.001	0.001	
10/12/09 02:18:46	59.985	3677.917	350	-249.086395	0	101.5	10	15	-103	7566.99	0	0	0	-0.001	0.001	
10/12/09 02:18:48	59.986	3677.95	350	-249.086395	0	102	10	15	-103	7567.32	0	0	0	0.001	0.001	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:18:50	59.98	3678.617	350	-249.086395	0	102.5	10	15	-103	7567.65	0	0	0	-0.006	0.006	
10/12/09 02:18:52	59.981	3678.963	350	-249.086395	0	103	10	15	-103	7567.98	0	0	0	0.001	0.001	
10/12/09 02:18:54	59.981	3681.252	350	-249.086395	0	103.5	10	15	-103	7568.31	0	0	0	0.000	0.000	
10/12/09 02:18:56	59.989	3680.737	350	-253.742477	0	104	10	15	-103	7568.64	0	0	0	0.008	0.008	
10/12/09 02:18:58	59.998	3680.045	350	-253.742477	0	104.5	10	15	-103	7568.97	0	0	0	0.009	0.009	
10/12/09 02:19:00	60.007	3678.161	350	-253.742477	0	105	10	15	-103	7569.3	0	0	0	0.009	0.009	
10/12/09 02:19:02	60.007	3674.076	350	-253.742477	0	105.5	10	15	-103	7569.63	0	0	0	0.000	0.000	
10/12/09 02:19:04	59.997	3676.222	350	-253.742477	0	106	10	15	-103	7569.96	0	0	0	-0.010	0.010	
10/12/09 02:19:06	59.986	3676.669	350	-257.421204	0	106.5	10	15	-103	7570.29	0	0	0	-0.011	0.011	
10/12/09 02:19:08	59.981	3677.497	350	-257.421204	0	107	10	15	-103	7570.62	0	0	0	-0.005	0.005	
10/12/09 02:19:10	59.977	3677.49	350	-257.421204	0	107.5	10	15	-103	7570.95	0	0	0	-0.004	0.004	
10/12/09 02:19:12	59.974	3675.186	350	-257.421204	0	108	10	15	-103	7571.28	0	0	0	-0.003	0.003	
10/12/09 02:19:14	59.976	3675.437	350	-257.421204	0	108.5	10	15	-103	7571.61	0	0	0	0.002	0.002	
10/12/09 02:19:16	59.974	3680.451	350	-261.73822	0	109	10	15	-103	7571.94	0	0	0	-0.002	0.002	
10/12/09 02:19:18	59.974	3682.032	350	-261.73822	0	109.5	10	15	-103	7572.27	0	0	0	0.000	0.000	
10/12/09 02:19:20	59.977	3683.829	350	-261.73822	0	110	10	15	-103	7572.6	0	0	0	0.003	0.003	
10/12/09 02:19:22	59.979	3682.843	350	-261.73822	0	110.5	10	15	-103	7572.93	0	0	0	0.002	0.002	
10/12/09 02:19:24	59.979	3681.108	350	-261.73822	0	111	10	15	-103	7573.26	0	0	0	0.000	0.000	
10/12/09 02:19:26	59.982	3680.566	350	-271.875977	0	111.5	10	15	-103	7573.59	0	0	0	0.003	0.003	
10/12/09 02:19:28	59.984	3678.229	350	-271.875977	0	112	10	15	-103	7573.92	0	0	0	0.002	0.002	
10/12/09 02:19:30	59.987	3676.752	350	-271.875977	0	112.5	10	15	-103	7574.25	0	0	0	0.003	0.003	
10/12/09 02:19:32	59.988	3675.759	350	-271.875977	0	113	10	15	-103	7574.58	0	0	0	0.001	0.001	
10/12/09 02:19:34	59.988	3671.942	350	-271.875977	0	113.5	10	15	-103	7574.91	0	0	0	0.000	0.000	
10/12/09 02:19:36	59.987	3671.166	350	-262.073486	0	114	10	15	-103	7575.24	0	0	0	-0.001	0.001	
10/12/09 02:19:38	59.987	3670.476	350	-262.073486	0	114.5	10	15	-103	7575.57	0	0	0	0.000	0.000	
10/12/09 02:19:40	59.987	3670.129	350	-262.073486	0	115	10	15	-103	7575.9	0	0	0	0.000	0.000	
10/12/09 02:19:42	59.985	3671.542	350	-262.073486	0	115.5	10	15	-103	7576.23	0	0	0	-0.002	0.002	
10/12/09 02:19:44	59.984	3672.048	350	-262.073486	0	116	10	15	-103	7576.56	0	0	0	-0.001	0.001	
10/12/09 02:19:46	59.982	3671.576	350	-260.36441	0	116.5	10	15	-103	7576.89	0	0	0	-0.002	0.002	
10/12/09 02:19:48	59.983	3672.104	350	-260.36441	0	117	10	15	-103	7577.22	0	0	0	0.001	0.001	
10/12/09 02:19:50	59.989	3672.414	350	-260.36441	0	117.5	10	15	-103	7577.55	0	0	0	0.006	0.006	
10/12/09 02:19:52	59.989	3671.882	350	-260.36441	0	118	10	15	-103	7577.88	0	0	0	0.000	0.000	
10/12/09 02:19:54	59.988	3671.837	350	-260.36441	0	118.5	10	15	-103	7578.21	0	0	0	-0.001	0.001	
10/12/09 02:19:56	59.984	3671.336	350	-352.644379	0	119	10	15	-103	7578.54	0	0	0	-0.004	0.004	
10/12/09 02:19:58	59.982	3670.726	350	-352.644379	0	119.5	10	15	-103	7578.87	0	0	0	-0.002	0.002	
10/12/09 02:20:00	59.983	3670.372	350	-352.644379	0	120	10	15	-103	7579.2	0	0	0	0.001	0.001	
10/12/09 02:20:02	59.981	3671.364	350	-352.644379	0	120.5	10	15	-103	7579.53	0	0	0	-0.002	0.002	
10/12/09 02:20:04	59.982	3671.401	350	-352.644379	0	121	10	15	-103	7579.86	0	0	0	0.001	0.001	
10/12/09 02:20:06	59.983	3672.156	350	-354.89566	0	121.5	10	15	-103	7580.19	0	0	0	0.001	0.001	
10/12/09 02:20:08	59.986	3672.181	350	-354.89566	0	122	10	15	-103	7580.52	0	0	0	0.003	0.003	
10/12/09 02:20:10	59.989	3670.296	350	-354.89566	0	122.5	10	15	-103	7580.85	0	0	0	0.003	0.003	
10/12/09 02:20:12	59.987	3668.071	350	-354.89566	0	123	10	15	-103	7581.18	0	0	0	-0.002	0.002	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row306473307	Recovery Target Freq: 60.000 2:27:26 2:33:00 $05: 34$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$
10/12/09 02:20:14	59.985	3668.59	350	-354.89566	0	123.5	10	15	-103	7581.51	0	0	0	-0.002	0.002	
10/12/09 02:20:16	59.98	3669.908	350	-340.46936	0	124	10	15	-103	7581.84	0	0	0	-0.005	0.005	
10/12/09 02:20:18	59.98	3670.399	350	-340.46936	0	124.5	10	15	-103	7582.17	0	0	0	0.000	0.000	
10/12/09 02:20:20	59.983	3670.263	350	-340.46936	0	125	10	15	-103	7582.5	0	0	0	0.003	0.003	
10/12/09 02:20:22	59.98	3669.382	350	-340.46936	0	125.5	10	15	-103	7582.83	0	0	0	-0.003	0.003	
10/12/09 02:20:24	59.979	3670.102	350	-340.46936	0	126	10	15	-103	7583.16	0	0	0	-0.001	0.001	
10/12/09 02:20:26	59.979	3670.438	350	-337.642914	0	126.5	10	15	-103	7583.49	0	0	0	0.000	0.000	
10/12/09 02:20:28	59.981	3671.403	350	-337.642914	0	127	10	15	-103	7583.82	0	0	0	0.002	0.002	
10/12/09 02:20:30	59.981	3672.442	350	-337.642914	0	127.5	10	15	-103	7584.15	0	0	0	0.000	0.000	
10/12/09 02:20:32	59.98	3672.372	350	-337.642914	0	128	10	15	-103	7584.48	0	0	0	-0.001	0.001	
10/12/09 02:20:34	59.98	3671.947	350	-337.642914	0	128.5	10	15	-103	7584.81	0	0	0	0.000	0.000	
10/12/09 02:20:36	59.981	3670.938	350	-284.36084	0	129	10	15	-103	7585.14	0	0	0	0.001	0.001	
10/12/09 02:20:38	59.98	3670.705	350	-284.36084	0	129.5	10	15	-103	7585.47	0	0	0	-0.001	0.001	
10/12/09 02:20:40	59.98	3670.137	350	-284.36084	0	130	10	15	-103	7585.8	0	0	0	0.000	0.000	
10/12/09 02:20:42	59.977	3669.279	350	-284.36084	0	130.5	10	15	-103	7586.13	0	0	0	-0.003	0.003	
10/12/09 02:20:44	59.979	3672.391	350	-284.36084	0	131	10	15	-103	7586.46	0	0	0	0.002	0.002	
10/12/09 02:20:46	59.981	3672.558	350	-260.467987	0	131.5	10	15	-103	7586.79	0	0	0	0.002	0.002	
10/12/09 02:20:48	59.979	3674.052	350	-260.467987	0	132	10	15	-103	7587.12	0	0	0	-0.002	0.002	
10/12/09 02:20:50	59.976	3672.626	350	-260.467987	0	132.5	10	15	-103	7587.45	0	0	0	-0.003	0.003	
10/12/09 02:20:52	59.977	3671.8	350	-260.467987	0	133	10	15	-103	7587.78	0	0	0	0.001	0.001	
10/12/09 02:20:54	59.972	3673.183	350	-260.467987	0	133.5	10	15	-103	7588.11	0	0	0	-0.005	0.005	
10/12/09 02:20:56	59.971	3673.874	350	-253.141541	0	134	10	15	-103	7588.44	0	0	0	-0.001	0.001	
10/12/09 02:20:58	59.973	3676.263	350	-253.141541	0	134.5	10	15	-103	7588.77	0	0	0	0.002	0.002	
10/12/09 02:21:00	59.973	3676.623	350	-253.141541	0	135	10	15	-103	7589.1	0	0	0	0.000	0.000	
10/12/09 02:21:02	59.973	3676.87	350	-253.141541	0	135.5	10	15	-103	7589.43	0	0	0	0.000	0.000	
10/12/09 02:21:04	59.974	3676.543	350	-253.141541	0	136	10	15	-103	7589.76	0	0	0	0.001	0.001	
10/12/09 02:21:06	59.971	3675.464	350	-251.929871	0	136.5	10	15	-103	7590.09	0	0	0	-0.003	0.003	
10/12/09 02:21:08	59.975	3675.752	350	-251.929871	0	137	10	15	-103	7590.42	0	0	0	0.004	0.004	
10/12/09 02:21:10	59.977	3675.256	350	-251.929871	0	137.5	10	15	-103	7590.75	0	0	0	0.002	0.002	
10/12/09 02:21:12	59.977	3674.87	350	-251.929871	0	138	10	15	-103	7591.08	0	0	0	0.000	0.000	
10/12/09 02:21:14	59.975	3671.277	350	-251.929871	0	138.5	10	15	-103	7591.41	0	0	0	-0.002	0.002	
10/12/09 02:21:16	59.976	3671.593	350	-250.674194	0	139	10	15	-103	7591.74	0	0	0	0.001	0.001	
10/12/09 02:21:18	59.98	3670.587	350	-250.674194	0	139.5	10	15	-103	7592.07	0	0	0	0.004	0.004	
10/12/09 02:21:20	59.979	3669.963	350	-250.674194	0	140	10	15	-103	7592.4	0	0	0	-0.001	0.001	
10/12/09 02:21:22	59.981	3669.54	350	-250.674194	0	140.5	10	15	-103	7592.73	0	0	0	0.002	0.002	
10/12/09 02:21:24	59.982	3669.497	350	-250.674194	0	141	10	15	-103	7593.06	0	0	0	0.001	0.001	
10/12/09 02:21:26	59.982	3668.706	350	-253.631866	0	141.5	10	15	-103	7593.39	0	0	0	0.000	0.000	
10/12/09 02:21:28	59.982	3667.677	350	-253.631866	0	142	10	15	-103	7593.72	0	0	0	0.000	0.000	
10/12/09 02:21:30	59.982	3666.482	350	-253.631866	0	142.5	10	15	-103	7594.05	0	0	0	0.000	0.000	
10/12/09 02:21:32	59.981	3666.599	350	-253.631866	0	143	10	15	-103	7594.38	0	0	0	-0.001	0.001	
10/12/09 02:21:34	59.982	3666.911	350	-253.631866	0	143.5	10	15	-103	7594.71	0	0	0	0.001	0.001	
10/12/09 02:21:36	59.984	3666.442	350	-246.957306	0	144	10	15	-103	7595.04	0	0	0	0.002	0.002	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules Imp(-) Exp (+) MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(\mathrm{O})$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
10/12/09 02:21:38	59.985	3666.405	350	-246.957306	0	144.5	10	15	-103	7595.37	0	0	0	0.001	0.001	
10/12/09 02:21:40	59.987	3667.456	350	-246.957306	0	145	10	15	-103	7595.7	0	0	0	0.002	0.002	
10/12/09 02:21:42	59.989	3666.38	350	-246.957306	0	145.5	10	15	-103	7596.03	0	0	0	0.002	0.002	
10/12/09 02:21:44	59.993	3665.262	350	-246.957306	0	146	10	15	-103	7596.36	0	0	0	0.004	0.004	
10/12/09 02:21:46	59.996	3664.031	350	-254.541779	0	146.5	10	15	-103	7596.69	0	0	0	0.003	0.003	
10/12/09 02:21:48	59.998	3663.825	350	-254.541779	0	147	10	15	-103	7597.02	0	0	0	0.002	0.002	
10/12/09 02:21:50	59.998	3663.229	350	-254.541779	0	147.5	10	15	-103	7597.35	0	0	0	0.000	0.000	
10/12/09 02:21:52	60.004	3662.055	350	-254.541779	0	148	10	15	-103	7597.68	0	0	0	0.006	0.006	
10/12/09 02:21:54	60.007	3661.695	350	-254.541779	0	148.5	10	15	-103	7598.01	0	0	0	0.003	0.003	
10/12/09 02:21:56	60.01	3662.076	350	-256.571594	0	149	10	15	-103	7598.34	0	0	0	0.003	0.003	
10/12/09 02:21:58	60.013	3662.224	350	-256.571594	0	149.5	10	15	-103	7598.67	0	0	0	0.003	0.003	
10/12/09 02:22:00	60.014	3662.959	350	-256.571594	0	150	10	15	-103	7599	0	0	0	0.001	0.001	
10/12/09 02:22:02	60.013	3663.794	350	-256.571594	0	150.5	10	15	-103	7599.33	0	0	0	-0.001	0.001	
10/12/09 02:22:04	60.008	3664.139	350	-256.571594	0	151	10	15	-103	7599.66	0	0	0	-0.005	0.005	
10/12/09 02:22:06	60.008	3665.278	350	-258.37262	0	151.5	10	15	-103	7599.99	0	0	0	0.000	0.000	
10/12/09 02:22:08	60.01	3664.159	350	-258.37262	0	152	10	15	-103	7600.32	0	0	0	0.002	0.002	
10/12/09 02:22:10	60.019	3663.265	350	-258.37262	0	152.5	10	15	-103	7600.65	0	0	0	0.009	0.009	
10/12/09 02:22:12	60.019	3663.184	350	-258.37262	0	153	10	15	-103	7600.98	0	0	0	0.000	0.000	
10/12/09 02:22:14	60.023	3661.929	350	-258.37262	0	153.5	10	15	-103	7601.31	0	0	0	0.004	0.004	
10/12/09 02:22:16	60.021	3661.512	350	-263.047363	0	154	10	15	-103	7601.64	0	0	0	-0.002	0.002	
10/12/09 02:22:18	60.02	3659.172	350	-263.047363	0	154.5	10	15	-103	7601.97	0	0	0	-0.001	0.001	
10/12/09 02:22:20	60.021	3658.661	350	-263.047363	0	155	10	15	-103	7602.3	0	0	0	0.001	0.001	
10/12/09 02:22:22	60.021	3656.785	350	-263.047363	0	155.5	10	15	-103	7602.63	0	0	0	0.000	0.000	
10/12/09 02:22:24	60.02	3657.571	350	-263.047363	0	156	10	15	-103	7602.96	0	0	0	-0.001	0.001	
10/12/09 02:22:26	60.019	3658.126	350	-260.984375	0	156.5	10	15	-103	7603.29	0	0	0	-0.001	0.001	
10/12/09 02:22:28	60.019	3657.71	350	-260.984375	0	157	10	15	-103	7603.62	0	0	0	0.000	0.000	
10/12/09 02:22:30	60.022	3658.015	350	-260.984375	0	157.5	10	15	-103	7603.95	0	0	0	0.003	0.003	
10/12/09 02:22:32	60.025	3660.228	350	-260.984375	0	158	10	15	-103	7604.28	0	0	0	0.003	0.003	
10/12/09 02:22:34	60.025	3659.224	350	-260.984375	0	158.5	10	15	-103	7604.61	0	0	0	0.000	0.000	
10/12/09 02:22:36	60.026	3658.698	350	-261.318329	0	159	10	15	-103	7604.94	0	0	0	0.001	0.001	
10/12/09 02:22:38	60.02	3658.669	350	-261.318329	0	159.5	10	15	-103	7605.27	0	0	0	-0.006	0.006	
10/12/09 02:22:40	60.02	3658.155	350	-261.318329	0	160	10	15	-103	7605.6	0	0	0	0.000	0.000	
10/12/09 02:22:42	60.018	3659.13	350	-261.318329	0	160.5	10	15	-103	7605.93	0	0	0	-0.002	0.002	
10/12/09 02:22:44	60.018	3659.778	350	-261.318329	0	161	10	15	-103	7606.26	0	0	0	0.000	0.000	
10/12/09 02:22:46	60.02	3660.82	350	-262.1026	0	161.5	10	15	-103	7606.59	0	0	0	0.002	0.002	
10/12/09 02:22:48	60.019	3662.531	350	-262.1026	0	162	10	15	-103	7606.92	0	0	0	-0.001	0.001	
10/12/09 02:22:50	60.019	3662.387	350	-262.1026	0	162.5	10	15	-103	7607.25	0	0	0	0.000	0.000	
10/12/09 02:22:52	60.023	3662.079	350	-262.1026	0	163	10	15	-103	7607.58	0	0	0	0.004	0.004	
10/12/09 02:22:54	60.022	3662.39	350	-262.1026	0	163.5	10	15	-103	7607.91	0	0	0	-0.001	0.001	
10/12/09 02:22:56	60.022	3662.678	350	-262.71701	0	164	10	15	-103	7608.24	0	0	0	0.000	0.000	
10/12/09 02:22:58	60.025	3663.577	350	-262.71701	0	164.5	10	15	-103	7608.57	0	0	0	0.003	0.003	
10/12/09 02:23:00	60.02	3663.539	350	-262.71701	0	165	10	15	-103	7608.9	0	0	0	-0.005	0.005	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:24:26	59.984	3671.228	350	-249.33757	0	186.5	10	15	-103	7623.09	0	0	0	0.002	0.002	
10/12/09 02:24:28	59.982	3670.25	350	-249.33757	0	187	10	15	-103	7623.42	0	0	0	-0.002	0.002	
10/12/09 02:24:30	59.978	3670.265	350	-249.33757	0	187.5	10	15	-103	7623.75	0	0	0	-0.004	0.004	
10/12/09 02:24:32	59.978	3671.549	350	-249.33757	0	188	10	15	-103	7624.08	0	0	0	0.000	0.000	
10/12/09 02:24:34	59.976	3673.243	350	-249.33757	0	188.5	10	15	-103	7624.41	0	0	0	-0.002	0.002	
10/12/09 02:24:36	59.975	3674.263	350	-258.278168	0	189	10	15	-103	7624.74	0	0	0	-0.001	0.001	
10/12/09 02:24:38	59.974	3675.824	350	-258.278168	0	189.5	10	15	-103	7625.07	0	0	0	-0.001	0.001	
10/12/09 02:24:40	59.974	3676.418	350	-258.278168	0	190	10	15	-103	7625.4	0	0	0	0.000	0.000	
10/12/09 02:24:42	59.979	3676.306	350	-258.278168	0	190.5	10	15	-103	7625.73	0	0	0	0.005	0.005	
10/12/09 02:24:44	59.98	3674.637	350	-258.278168	0	191	10	15	-103	7626.06	0	0	0	0.001	0.001	
10/12/09 02:24:46	59.981	3675.329	350	-258.406372	0	191.5	10	15	-103	7626.39	0	0	0	0.001	0.001	
10/12/09 02:24:48	59.98	3675.226	350	-258.406372	0	192	10	15	-103	7626.72	0	0	0	-0.001	0.001	
10/12/09 02:24:50	59.984	3674.768	350	-258.406372	0	192.5	10	15	-103	7627.05	0	0	0	0.004	0.004	
10/12/09 02:24:52	59.987	3674.399	350	-258.406372	0	193	10	15	-103	7627.38	0	0	0	0.003	0.003	
10/12/09 02:24:54	59.988	3673.514	350	-258.406372	0	193.5	10	15	-103	7627.71	0	0	0	0.001	0.001	
10/12/09 02:24:56	59.988	3673.04	350	-260.538879	0	194	10	15	-103	7628.04	0	0	0	0.000	0.000	
10/12/09 02:24:58	59.99	3672.442	350	-260.538879	0	194.5	10	15	-103	7628.37	0	0	0	0.002	0.002	
10/12/09 02:25:00	59.992	3673.056	350	-260.538879	0	195	10	15	-103	7628.7	0	0	0	0.002	0.002	
10/12/09 02:25:02	59.991	3671.68	350	-260.538879	0	195.5	10	15	-103	7629.03	0	0	0	-0.001	0.001	
10/12/09 02:25:04	59.991	3671.493	350	-260.538879	0	196	10	15	-103	7629.36	0	0	0	0.000	0.000	
10/12/09 02:25:06	59.991	3669.53	350	-257.88208	0	196.5	10	15	-103	7629.69	0	0	0	0.000	0.000	
10/12/09 02:25:08	59.993	3670.066	350	-257.88208	0	197	10	15	-103	7630.02	0	0	0	0.002	0.002	
10/12/09 02:25:10	59.993	3670.028	350	-257.88208	0	197.5	10	15	-103	7630.35	0	0	0	0.000	0.000	
10/12/09 02:25:12	59.996	3671.744	350	-257.88208	0	198	10	15	-103	7630.68	0	0	0	0.003	0.003	
10/12/09 02:25:14	60.002	3671.578	350	-257.88208	0	198.5	10	15	-103	7631.01	0	0	0	0.006	0.006	
10/12/09 02:25:16	60.002	3672.625	350	-258.588654	0	199	10	15	-103	7631.34	0	0	0	0.000	0.000	
10/12/09 02:25:18	60.003	3672.674	350	-258.588654	0	199.5	10	15	-103	7631.67	0	0	0	0.001	0.001	
10/12/09 02:25:20	60.004	3673.819	350	-258.588654	0	200	10	15	-103	7632	0	0	0	0.001	0.001	
10/12/09 02:25:22	60.005	3673.25	350	-258.588654	0	200.5	10	15	-103	7632.33	0	0	0	0.001	0.001	
10/12/09 02:25:24	60.004	3673.182	350	-258.588654	0	201	10	15	-103	7632.66	0	0	0	-0.001	0.001	
10/12/09 02:25:26	60.002	3673.496	350	-261.906158	0	201.5	10	15	-103	7632.99	0	0	0	-0.002	0.002	
10/12/09 02:25:28	60.004	3672.418	350	-261.906158	0	202	10	15	-103	7633.32	0	0	0	0.002	0.002	
10/12/09 02:25:30	60.008	3672.363	350	-261.906158	0	202.5	10	15	-103	7633.65	0	0	0	0.004	0.004	
10/12/09 02:25:32	60.01	3672.217	350	-261.906158	0	203	10	15	-103	7633.98	0	0	0	0.002	0.002	
10/12/09 02:25:34	60.01	3672.261	350	-261.906158	0	203.5	10	15	-103	7634.31	0	0	0	0.000	0.000	
10/12/09 02:25:36	60.01	3673.182	350	-256.747803	0	204	10	15	-103	7634.64	0	0	0	0.000	0.000	
10/12/09 02:25:38	60.011	3673.603	350	-256.747803	0	204.5	10	15	-103	7634.97	0	0	0	0.001	0.001	
10/12/09 02:25:40	60.013	3673.553	350	-256.747803	0	205	10	15	-103	7635.3	0	0	0	0.002	0.002	
10/12/09 02:25:42	60.014	3674.312	350	-256.747803	0	205.5	10	15	-103	7635.63	0	0	0	0.001	0.001	
10/12/09 02:25:44	60.013	3674.537	350	-256.747803	0	206	10	15	-103	7635.96	0	0	0	-0.001	0.001	
10/12/09 02:25:46	60.012	3673.813	350	-167.431976	0	206.5	10	15	-103	7636.29	0	0	0	-0.001	0.001	
10/12/09 02:25:48	60.011	3673.204	350	-167.431976	0	207	10	15	-103	7636.62	0	0	0	-0.001	0.001	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:25:50	60.011	3672.563	350	-167.431976	0	207.5	10	15	-103	7636.95	0	0	0	0.000	0.000	
10/12/09 02:25:52	60.017	3673.068	350	-167.431976	0	208	10	15	-103	7637.28	0	0	0	0.006	0.006	
10/12/09 02:25:54	60.022	3672.388	350	-167.431976	0	208.5	10	15	-103	7637.61	0	0	0	0.005	0.005	
10/12/09 02:25:56	60.017	3672.52	350	-164.973404	0	209	10	15	-103	7637.94	0	0	0	-0.005	0.005	
10/12/09 02:25:58	60.014	3671.25	350	-164.973404	0	209.5	10	15	-103	7638.27	0	0	0	-0.003	0.003	
10/12/09 02:26:00	60.013	3671.288	350	-164.973404	0	210	10	15	-103	7638.6	0	0	0	-0.001	0.001	
10/12/09 02:26:02	60.014	3672.989	350	-164.973404	0	210.5	10	15	-103	7638.93	0	0	0	0.001	0.001	
10/12/09 02:26:04	60.017	3672.982	350	-164.973404	0	211	10	15	-103	7639.26	0	0	0	0.003	0.003	
10/12/09 02:26:06	60.017	3672.915	350	-157.628082	0	211.5	10	15	-103	7639.59	0	0	0	0.000	0.000	
10/12/09 02:26:08	60.019	3671.952	350	-157.628082	0	212	10	15	-103	7639.92	0	0	0	0.002	0.002	
10/12/09 02:26:10	60.019	3671.193	350	-157.628082	0	212.5	10	15	-103	7640.25	0	0	0	0.000	0.000	
10/12/09 02:26:12	60.019	3671.627	350	-157.628082	0	213	10	15	-103	7640.58	0	0	0	0.000	0.000	
10/12/09 02:26:14	60.027	3671.189	350	-157.628082	0	213.5	10	15	-103	7640.91	0	0	0	0.008	0.008	
10/12/09 02:26:16	60.026	3668.611	350	-155.531708	0	214	10	15	-103	7641.24	0	0	0	-0.001	0.001	
10/12/09 02:26:18	60.026	3665.232	350	-155.531708	0	214.5	10	15	-103	7641.57	0	0	0	0.000	0.000	
10/12/09 02:26:20	60.022	3664.495	350	-155.531708	0	215	10	15	-103	7641.9	0	0	0	-0.004	0.004	
10/12/09 02:26:22	60.019	3666.062	350	-155.531708	0	215.5	10	15	-103	7642.23	0	0	0	-0.003	0.003	
10/12/09 02:26:24	60.017	3666.821	350	-155.531708	0	216	10	15	-103	7642.56	0	0	0	-0.002	0.002	
10/12/09 02:26:26	60.019	3666.787	350	-160.447235	0	216.5	10	15	-103	7642.89	0	0	0	0.002	0.002	
10/12/09 02:26:28	60.02	3670.454	350	-160.447235	0	217	10	15	-103	7643.22	0	0	0	0.001	0.001	
10/12/09 02:26:30	60.019	3670.267	350	-160.447235	0	217.5	10	15	-103	7643.55	0	0	0	-0.001	0.001	
10/12/09 02:26:32	60.021	3671.668	350	-160.447235	0	218	10	15	-103	7643.88	0	0	0	0.002	0.002	
10/12/09 02:26:34	60.021	3672.493	350	-160.447235	0	218.5	10	15	-103	7644.21	0	0	0	0.000	0.000	
10/12/09 02:26:36	60.021	3672.685	350	-163.958603	0	219	10	15	-103	7644.54	0	0	0	0.000	0.000	
10/12/09 02:26:38	60.019	3672.857	350	-163.958603	0	219.5	10	15	-103	7644.87	0	0	0	-0.002	0.002	
10/12/09 02:26:40	60.018	3672.164	350	-163.958603	0	220	10	15	-103	7645.2	0	0	0	-0.001	0.001	
10/12/09 02:26:42	60.022	3671.413	350	-163.958603	0	220.5	10	15	-103	7645.53	0	0	0	0.004	0.004	
10/12/09 02:26:44	60.031	3669.983	350	-163.958603	0	221	10	15	-103	7645.86	0	0	0	0.009	0.009	
10/12/09 02:26:46	60.037	3666.467	350	-166.072449	0	221.5	10	15	-103	7646.19	0	0	0	0.006	0.006	
10/12/09 02:26:48	60.037	3663.758	350	-166.072449	0	222	10	15	-103	7646.52	0	0	0	0.000	0.000	
10/12/09 02:26:50	60.036	3661.599	350	-166.072449	0	222.5	10	15	-103	7646.85	0	0	0	-0.001	0.001	
10/12/09 02:26:52	60.037	3660.672	350	-166.072449	0	223	10	15	-103	7647.18	0	0	0	0.001	0.001	
10/12/09 02:26:54	60.046	3651.492	350	-166.072449	0	223.5	10	15	-103	7647.51	0	0	0	0.009	0.009	
10/12/09 02:26:56	60.048	3649.19	350	-163.766586	0	224	10	15	-103	7647.84	0	0	0	0.002	0.002	
10/12/09 02:26:58	60.048	3650.025	350	-163.766586	0	224.5	10	15	-103	7648.17	0	0	0	0.000	0.000	
10/12/09 02:27:00	60.043	3648.246	350	-163.766586	0	225	10	15	-103	7648.5	0	0	0	-0.005	0.005	
10/12/09 02:27:02	60.041	3649.512	350	-163.766586	0	225.5	10	15	-103	7648.83	0	0	0	-0.002	0.002	
10/12/09 02:27:04	60.041	3654.294	350	-163.766586	0	226	10	15	-103	7649.16	0	0	0	0.000	0.000	
10/12/09 02:27:06	60.041	3655.007	350	-165.101685	0	226.5	10	15	-103	7649.49	0	0	0	0.000	0.000	
10/12/09 02:27:08	60.039	3651.874	350	-165.101685	0	227	10	15	-103	7649.82	0	0	0	-0.002	0.002	
10/12/09 02:27:10	60.041	3651.059	350	-165.101685	0	227.5	10	15	-103	7650.15	0	0	0	0.002	0.002	
10/12/09 02:27:12	60.043	3649.187	350	-165.101685	0	228	10	15	-103	7650.48	0	0	0	0.002	0.002	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event DetectionRow306473307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\begin{aligned} & \quad \mathrm{Hz} \\ & \quad 0.126 \\ & \mathrm{t}(0) \\ & \mathrm{t}(\text { Recovery }) \\ & \text { Event Length mm:ss } \\ & \hline \end{aligned}$	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:27:14	60.045	3648.236	350	-165.101685	0	228.5	10	15	-103	7650.81	0	0	0	0.002	0.002	
10/12/09 02:27:16	60.046	3645.387	350	-165.476395	0	229	10	15	-103	7651.14	0	0	0	0.001	0.001	
10/12/09 02:27:18	60.041	3644.628	350	-165.476395	0	229.5	10	15	-103	7651.47	0	0	0	-0.005	0.005	
10/12/09 02:27:20	60.041	3645.446	350	-165.476395	0	230	10	15	-103	7651.8	0	0	0	0.000	0.000	
10/12/09 02:27:22	60.041	3640.682	350	-165.476395	0	230.5	10	15	-103	7652.13	0	0	0	0.000	0.000	
10/12/09 02:27:24	60.039	3641.191	350	-165.476395	0	231	10	15	-103	7652.46	0	0	0	-0.002	0.002	
10/12/09 02:27:26	59.978	3659.465	350	-206.459106	0	231.5	10	15	-103	7652.79	0	0	1	-0.061	0.061	
10/12/09 02:27:28	59.852	3696.362	350	-206.459106	0	232	10	0	-103	7616	1	0	1	-0.126	0.126	
10/12/09 02:27:30	59.836	3734.904	335	-206.459106	0	232.5	10	0	-103	7626	1	0	1	-0.016	0.016	
10/12/09 02:27:32	59.869	3734.673	335	-206.459106	0	233	10	0	-103	7632	1	0	1	0.033	0.033	
10/12/09 02:27:34	59.892	3737.157	335	-206.459106	0	233.5	10	0	-103	7632	1	0	1	0.023	0.023	
10/12/09 02:27:36	59.891	3761.25	335	-211.256042	0	234	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:27:38	59.88	3766.113	335	-211.256042	1	234.5	10	0	-103	7632	1	0	1	-0.011	0.011	
10/12/09 02:27:40	59.876	3766.194	335	-211.256042	1	235	10	0	-103	7632	1	0	1	-0.004	0.004	
10/12/09 02:27:42	59.875	3768.877	335	-211.256042	1	235.5	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:27:44	59.883	3769.925	335	-211.256042	1	236	10	0	-103	7632	1	0	1	0.008	0.008	
10/12/09 02:27:46	59.887	3780.621	335	-214.346695	1	236.5	10	0	-103	7632	1	0	1	0.004	0.004	
10/12/09 02:27:48	59.886	3781.592	335	-214.346695	1	237	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:27:50	59.885	3782.5	335	-214.346695	1	237.5	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:27:52	59.887	3784.962	335	-214.346695	2	238	10	0	-103	7632	1	0	1	0.002	0.002	
10/12/09 02:27:54	59.888	3784.73	335	-214.346695	3	238.5	10	0	-103	7632	1	0	1	0.001	0.001	
10/12/09 02:27:56	59.89	3784.419	335	-212.172699	4	239	10	0	-103	7632	1	0	1	0.002	0.002	
10/12/09 02:27:58	59.895	3788.072	335	-212.172699	5	239.5	10	0	-103	7632	1	0	1	0.005	0.005	
10/12/09 02:28:00	59.894	3788.328	335	-212.172699	6	240	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:28:02	59.893	3788.868	335	-212.172699	7	240.5	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:28:04	59.894	3788.472	335	-212.172699	8	241	10	0	-103	7632	1	0	1	0.001	0.001	
10/12/09 02:28:06	59.894	3792.276	335	-215.598175	9	241.5	10	0	-103	7632	1	0	1	0.000	0.000	
10/12/09 02:28:08	59.891	3793.074	335	-215.598175	10	242	10	0	-103	7632	1	0	1	-0.003	0.003	
10/12/09 02:28:10	59.89	3794.374	335	-215.598175	11	242.5	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:28:12	59.885	3799.428	335	-215.598175	12	243	10	0	-103	7632	1	0	1	-0.005	0.005	
10/12/09 02:28:14	59.885	3800.427	335	-215.598175	13	243.5	10	0	-103	7632	1	0	1	0.000	0.000	
10/12/09 02:28:16	59.888	3799.959	335	-218.327255	14	244	10	0	-103	7632	1	0	1	0.003	0.003	
10/12/09 02:28:18	59.887	3803.625	335	-218.327255	15	244.5	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:28:20	59.888	3802.925	335	-218.327255	16	245	10	0	-103	7632	1	0	1	0.001	0.001	
10/12/09 02:28:22	59.888	3802.951	335	-218.327255	16	245.5	10	0	-103	7632	1	0	1	0.000	0.000	
10/12/09 02:28:24	59.89	3804.388	335	-218.327255	16	246	10	0	-103	7632	1	0	1	0.002	0.002	
10/12/09 02:28:26	59.889	3805.496	335	-217.379425	16	246.5	10	0	-103	7632	1	0	1	-0.001	0.001	
10/12/09 02:28:28	59.882	3805.617	335	-217.379425	16	247	10	0	-103	7632	1	0	1	-0.007	0.007	
10/12/09 02:28:30	59.873	3809.237	335	-217.379425	16	247.5	10	0	-103	7631	1	0	1	-0.009	0.009	
10/12/09 02:28:32	59.857	3811.503	335	-217.379425	16	248	10	0	-103	7625	1	0	1	-0.016	0.016	
10/12/09 02:28:34	59.849	3814.862	335	-217.379425	16	248.5	10	0	-103	7623	1	0	1	-0.008	0.008	
10/12/09 02:28:36	59.852	3815.889	335	-214.830353	16	249	10	0	-103	7621	1	0	1	0.003	0.003	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event DetectionRow306473307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\begin{aligned} & \quad \mathrm{Hz} \\ & \quad 0.126 \\ & \mathrm{t}(0) \\ & \mathrm{t}(\text { Recovery }) \\ & \text { Event Length mm:ss } \\ & \hline \end{aligned}$	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:28:38	59.858	3825.643	335	-214.830353	16	249.5	10	0	-103	7623	1	0	1	0.006	0.006	
10/12/09 02:28:40	59.863	3826.053	335	-214.830353	16	250	10	0	-103	7625	1	0	1	0.005	0.005	
10/12/09 02:28:42	59.866	3826.002	335	-214.830353	16	250.5	10	0	-103	7627	1	0	1	0.003	0.003	
10/12/09 02:28:44	59.865	3827.524	335	-214.830353	16	251	10	0	-103	7628	1	0	1	-0.001	0.001	
10/12/09 02:28:46	59.867	3826.753	335	-227.655914	16	251.5	10	0	-103	7628	1	0	1	0.002	0.002	
10/12/09 02:28:48	59.866	3826.783	335	-227.655914	16	252	10	0	-103	7629	1	0	1	-0.001	0.001	
10/12/09 02:28:50	59.871	3826.454	335	-227.655914	16	252.5	10	0	-103	7630	1	0	1	0.005	0.005	
10/12/09 02:28:52	59.874	3825.713	335	-227.655914	16	253	10	0	-103	7631	1	0	1	0.003	0.003	
10/12/09 02:28:54	59.879	3823.826	335	-227.655914	16	253.5	10	0	-103	7635	1	0	1	0.005	0.005	
10/12/09 02:28:56	59.88	3822.505	335	-225.018082	16	254	10	0	-103	7638	1	0	1	0.001	0.001	
10/12/09 02:28:58	59.883	3819.081	335	-225.018082	16	254.5	10	0	-103	7639	1	0	1	0.003	0.003	
10/12/09 02:29:00	59.886	3818.055	335	-225.018082	16	255	10	0	-103	7642	1	0	1	0.003	0.003	
10/12/09 02:29:02	59.89	3816.815	335	-225.018082	16	255.5	10	0	-103	7644	1	0	1	0.004	0.004	
10/12/09 02:29:04	59.892	3815.01	335	-225.018082	16	256	10	0	-103	7645	1	0	1	0.002	0.002	
10/12/09 02:29:06	59.889	3813.783	335	-228.365158	16	256.5	10	0	-103	7647	1	0	1	-0.003	0.003	
10/12/09 02:29:08	59.893	3811.838	335	-228.365158	16	257	10	0	-103	7648	1	0	1	0.004	0.004	
10/12/09 02:29:10	59.899	3809.652	335	-228.365158	16	257.5	10	0	-103	7649	1	0	1	0.006	0.006	
10/12/09 02:29:12	59.903	3806.972	335	-228.365158	16	258	10	0	-103	7650	1	0	1	0.004	0.004	
10/12/09 02:29:14	59.902	3805.593	335	-228.365158	16	258.5	10	0	-103	7651	1	0	1	-0.001	0.001	
10/12/09 02:29:16	59.902	3804.188	335	-234.075333	16	259	10	0	-103	7652	1	0	1	0.000	0.000	
10/12/09 02:29:18	59.904	3796.078	335	-234.075333	16	259.5	10	0	-103	7653	1	0	1	0.002	0.002	
10/12/09 02:29:20	59.907	3793.975	335	-234.075333	16	260	10	0	-103	7654	1	0	1	0.003	0.003	
10/12/09 02:29:22	59.911	3792.169	335	-234.075333	16	260.5	10	0	-103	7655	1	0	1	0.004	0.004	
10/12/09 02:29:24	59.916	3791.502	335	-234.075333	16	261	10	0	-103	7655	1	0	1	0.005	0.005	
10/12/09 02:29:26	59.916	3789.534	335	-228.798157	16	261.5	10	0	-103	7656	1	0	1	0.000	0.000	
10/12/09 02:29:28	59.917	3788.132	335	-228.798157	16	262	10	0	-103	7656	1	0	1	0.001	0.001	
10/12/09 02:29:30	59.918	3784.563	335	-228.798157	16	262.5	10	0	-103	7657	1	0	1	0.001	0.001	
10/12/09 02:29:32	59.92	3783.028	335	-228.798157	16	263	10	0	-103	7657	1	0	1	0.002	0.002	
10/12/09 02:29:34	59.921	3781.701	335	-228.798157	16	263.5	10	0	-103	7658	1	0	1	0.001	0.001	
10/12/09 02:29:36	59.92	3776.358	335	-229.466965	16	264	10	0	-103	7658	1	0	1	-0.001	0.001	
10/12/09 02:29:38	59.917	3775.635	335	-229.466965	16	264.5	10	0	-103	7659	1	0	1	-0.003	0.003	
10/12/09 02:29:40	59.92	3774.604	335	-229.466965	16	265	10	0	-103	7659	1	0	1	0.003	0.003	
10/12/09 02:29:42	59.921	3773.334	335	-229.466965	16	265.5	10	0	-103	7659	1	0	1	0.001	0.001	
10/12/09 02:29:44	59.923	3773.958	335	-229.466965	16	266	10	0	-103	7660	1	0	1	0.002	0.002	
10/12/09 02:29:46	59.926	3772.722	335	-228.980164	16	266.5	10	0	-103	7660	1	0	1	0.003	0.003	
10/12/09 02:29:48	59.925	3771.67	335	-228.980164	16	267	10	0	-103	7661	1	0	1	-0.001	0.001	
10/12/09 02:29:50	59.928	3769.63	335	-228.980164	16	267.5	10	0	-103	7661	1	0	1	0.003	0.003	
10/12/09 02:29:52	59.927	3768.707	335	-228.980164	16	268	10	0	-103	7662	1	0	1	-0.001	0.001	
10/12/09 02:29:54	59.932	3767.643	335	-228.980164	16	268.5	10	0	-103	7662	1	0	1	0.005	0.005	
10/12/09 02:29:56	59.927	3767.021	335	-219.975555	16	269	10	0	-103	7663	1	0	1	-0.005	0.005	
10/12/09 02:29:58	59.928	3767.408	335	-219.975555	16	269.5	10	0	-103	7663	1	0	1	0.001	0.001	
10/12/09 02:30:00	59.931	3766.788	335	-219.975555	16	270	10	0	-103	7664	1	0	1	0.003	0.003	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event DetectionRow306473307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\begin{aligned} & \quad \mathrm{Hz} \\ & \quad 0.126 \\ & \mathrm{t}(0) \\ & \mathrm{t}(\text { Recovery }) \\ & \text { Event Length mm:ss } \\ & \hline \end{aligned}$	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:30:02	59.929	3766.259	335	-219.975555	16	270.5	10	0	-103	7664	1	0	1	-0.002	0.002	
10/12/09 02:30:04	59.931	3765.672	335	-219.975555	16	271	10	0	-103	7665	1	0	1	0.002	0.002	
10/12/09 02:30:06	59.933	3766.123	335	-229.089249	16	271.5	10	0	-103	7666	1	0	1	0.002	0.002	
10/12/09 02:30:08	59.937	3764.243	335	-229.089249	16	272	10	0	-103	7666	1	0	1	0.004	0.004	
10/12/09 02:30:10	59.937	3765.105	335	-229.089249	16	272.5	10	0	-103	7667	1	0	1	0.000	0.000	
10/12/09 02:30:12	59.945	3762.935	335	-229.089249	16	273	10	0	-103	7668	1	0	1	0.008	0.008	
10/12/09 02:30:14	59.949	3758.387	335	-229.089249	16	273.5	10	0	-103	7668	1	0	1	0.004	0.004	
10/12/09 02:30:16	59.947	3753.922	335	-229.663269	16	274	10	0	-103	7669	1	0	1	-0.002	0.002	
10/12/09 02:30:18	59.942	3749.867	335	-229.663269	16	274.5	10	0	-103	7669	1	0	1	-0.005	0.005	
10/12/09 02:30:20	59.941	3746.889	335	-229.663269	16	275	10	0	-103	7670	1	0	1	-0.001	0.001	
10/12/09 02:30:22	59.942	3747.875	335	-229.663269	16	275.5	10	0	-103	7670	1	0	1	0.001	0.001	
10/12/09 02:30:24	59.945	3749.593	335	-229.663269	16	276	10	0	-103	7671	1	0	1	0.003	0.003	
10/12/09 02:30:26	59.948	3748.661	335	-229.233856	16	276.5	10	0	-103	7671	1	0	1	0.003	0.003	
10/12/09 02:30:28	59.947	3746.706	335	-229.233856	16	277	10	0	-103	7672	1	0	1	-0.001	0.001	
10/12/09 02:30:30	59.949	3749.077	335	-229.233856	16	277.5	10	0	-103	7673	1	0	1	0.002	0.002	
10/12/09 02:30:32	59.951	3742.741	335	-229.233856	16	278	10	0	-103	7673	1	0	1	0.002	0.002	
10/12/09 02:30:34	59.952	3740.259	350	-229.233856	16	278.5	10	0	-103	7673	1	0	1	0.001	0.001	
10/12/09 02:30:36	59.953	3736.139	350	-231.409882	16	279	10	0	-103	7673	1	0	1	0.001	0.001	
10/12/09 02:30:38	59.951	3731.382	350	-231.409882	16	279.5	10	0	-103	7673	1	0	1	-0.002	0.002	
10/12/09 02:30:40	59.952	3727.838	350	-231.409882	16	280	10	0	-103	7673	1	0	1	0.001	0.001	
10/12/09 02:30:42	59.952	3725.952	350	-231.409882	16	280.5	10	0	-103	7673	1	0	1	0.000	0.000	
10/12/09 02:30:44	59.952	3722.649	350	-231.409882	16	281	10	0	-103	7673	1	0	1	0.000	0.000	
10/12/09 02:30:46	59.955	3720.578	350	-218.622284	16	281.5	10	0	-103	7673	1	0	1	0.003	0.003	
10/12/09 02:30:48	59.952	3717.996	350	-218.622284	16	282	10	0	-103	7673	1	0	1	-0.003	0.003	
10/12/09 02:30:50	59.954	3718.142	350	-218.622284	16	282.5	10	0	-103	7673	1	0	1	0.002	0.002	
10/12/09 02:30:52	59.952	3715.753	350	-218.622284	16	283	10	0	-103	7673	1	0	1	-0.002	0.002	
10/12/09 02:30:54	59.953	3713.694	350	-218.622284	16	283.5	10	0	-103	7673	1	0	1	0.001	0.001	
10/12/09 02:30:56	59.953	3713.484	350	-213.535858	16	284	10	0	-103	7673	1	0	1	0.000	0.000	
10/12/09 02:30:58	59.952	3710.848	350	-213.535858	16	284.5	10	0	-103	7673	1	0	1	-0.001	0.001	
10/12/09 02:31:00	59.954	3710.81	350	-213.535858	16	285	10	0	-103	7673	1	0	1	0.002	0.002	
10/12/09 02:31:02	59.954	3712.092	350	-213.535858	16	285.5	10	0	-103	7674	1	0	1	0.000	0.000	
10/12/09 02:31:04	59.959	3714.623	350	-213.535858	16	286	10	0	-103	7675	1	0	1	0.005	0.005	
10/12/09 02:31:06	59.957	3715.13	350	-225.651855	16	286.5	10	0	-103	7676	1	0	1	-0.002	0.002	
10/12/09 02:31:08	59.956	3716.168	350	-225.651855	16	287	10	0	-103	7677	1	0	1	-0.001	0.001	
10/12/09 02:31:10	59.954	3716.461	350	-225.651855	16	287.5	10	0	-103	7678	1	0	1	-0.002	0.002	
10/12/09 02:31:12	59.956	3716.98	350	-225.651855	16	288	10	0	-103	7679	1	0	1	0.002	0.002	
10/12/09 02:31:14	59.955	3717.759	350	-225.651855	16	288.5	10	0	-103	7680	1	0	1	-0.001	0.001	
10/12/09 02:31:16	59.958	3722.361	350	-212.573639	16	289	10	0	-103	7681	1	0	1	0.003	0.003	
10/12/09 02:31:18	59.961	3721.973	350	-212.573639	16	289.5	10	0	-103	7682	1	0	1	0.003	0.003	
10/12/09 02:31:20	59.962	3722.658	350	-212.573639	16	290	10	0	-103	7684	1	0	1	0.001	0.001	
10/12/09 02:31:22	59.962	3722.267	350	-212.573639	16	290.5	10	0	-103	7685	1	0	1	0.000	0.000	
10/12/09 02:31:24	59.968	3722.278	350	-212.573639	16	291	10	0	-103	7687	1	0	1	0.006	0.006	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event DetectionRow306473307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\begin{aligned} & \quad \mathrm{Hz} \\ & \quad 0.126 \\ & \mathrm{t}(0) \\ & \mathrm{t}(\text { Recovery }) \\ & \text { Event Length mm:ss } \\ & \hline \end{aligned}$	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:31:26	59.966	3721.787	350	-219.897293	16	291.5	10	0	-103	7689	1	0	1	-0.002	0.002	
10/12/09 02:31:28	59.966	3723.091	350	-219.897293	16	292	10	0	-103	7690	1	0	1	0.000	0.000	
10/12/09 02:31:30	59.968	3723.984	350	-219.897293	16	292.5	10	0	-103	7692	1	0	1	0.002	0.002	
10/12/09 02:31:32	59.97	3723.435	350	-219.897293	16	293	10	0	-103	7692	1	0	1	0.002	0.002	
10/12/09 02:31:34	59.974	3723.893	350	-219.897293	16	293.5	10	0	-103	7693	1	0	1	0.004	0.004	
10/12/09 02:31:36	59.97	3725.403	350	-231.1754	16	294	10	0	-103	7693	1	0	1	-0.004	0.004	
10/12/09 02:31:38	59.969	3727.121	350	-231.1754	16	294.5	10	0	-103	7694	1	0	1	-0.001	0.001	
10/12/09 02:31:40	59.969	3728.053	350	-231.1754	16	295	10	0	-103	7694	1	0	1	0.000	0.000	
10/12/09 02:31:42	59.97	3731.13	350	-231.1754	16	295.5	10	0	-103	7695	1	0	1	0.001	0.001	
10/12/09 02:31:44	59.971	3732.53	350	-231.1754	16	296	10	0	-103	7695	1	0	1	0.001	0.001	
10/12/09 02:31:46	59.973	3733.327	350	-226.634125	16	296.5	10	0	-103	7695	1	0	1	0.002	0.002	
10/12/09 02:31:48	59.973	3736.535	350	-226.634125	16	297	10	0	-103	7696	1	0	1	0.000	0.000	
10/12/09 02:31:50	59.976	3736.907	350	-226.634125	16	297.5	10	0	-103	7696	1	0	1	0.003	0.003	
10/12/09 02:31:52	59.978	3736.822	350	-226.634125	16	298	10	0	-103	7697	1	0	1	0.002	0.002	
10/12/09 02:31:54	59.978	3738.699	350	-226.634125	16	298.5	10	0	-103	7697	1	0	1	0.000	0.000	
10/12/09 02:31:56	59.976	3739.944	350	-227.255066	16	299	10	0	-103	7697	1	0	1	-0.002	0.002	
10/12/09 02:31:58	59.978	3740.877	350	-227.255066	16	299.5	10	0	-103	7698	1	0	1	0.002	0.002	
10/12/09 02:32:00	59.976	3741.794	350	-227.255066	16	300	10	0	-103	7698	1	0	1	-0.002	0.002	
10/12/09 02:32:02	59.978	3745.234	350	-227.255066	16	300.5	10	0	-103	7698.33	1	0	1	0.002	0.002	
10/12/09 02:32:04	59.977	3746.608	350	-227.255066	16	301	10	0	-103	7698.66	1	0	1	-0.001	0.001	
10/12/09 02:32:06	59.98	3748.3	350	-229.290222	16	301.5	10	0	-103	7698.99	1	0	1	0.003	0.003	
10/12/09 02:32:08	59.982	3750.716	350	-229.290222	16	302	10	0	-103	7699.32	1	0	1	0.002	0.002	
10/12/09 02:32:10	59.981	3751.558	350	-229.290222	16	302.5	10	0	-103	7699.65	1	0	1	-0.001	0.001	
10/12/09 02:32:12	59.98	3752.748	350	-229.290222	16	303	10	0	-103	7699.98	1	0	1	-0.001	0.001	
10/12/09 02:32:14	59.979	3755.599	350	-229.290222	16	303.5	10	0	-103	7700.31	1	0	1	-0.001	0.001	
10/12/09 02:32:16	59.98	3756.407	350	-221.461365	16	304	10	0	-103	7700.64	1	0	1	0.001	0.001	
10/12/09 02:32:18	59.979	3756.975	350	-221.461365	16	304.5	10	0	-103	7700.97	1	0	1	-0.001	0.001	
10/12/09 02:32:20	59.983	3760.405	350	-221.461365	16	305	10	0	-103	7701.3	1	0	1	0.004	0.004	
10/12/09 02:32:22	59.983	3760.982	350	-221.461365	16	305.5	10	0	-103	7701.63	1	0	1	0.000	0.000	
10/12/09 02:32:24	59.984	3761.407	350	-221.461365	16	306	10	0	-103	7701.96	1	0	1	0.001	0.001	
10/12/09 02:32:26	59.988	3762.737	350	-241.274368	16	306.5	10	0	-103	7702.29	1	0	1	0.004	0.004	
10/12/09 02:32:28	59.989	3763.212	350	-241.274368	16	307	10	0	-103	7702.62	1	0	1	0.001	0.001	
10/12/09 02:32:30	59.987	3764.958	350	-241.274368	16	307.5	10	0	-103	7702.95	1	0	1	-0.002	0.002	
10/12/09 02:32:32	59.987	3766.085	350	-241.274368	16	308	10	0	-103	7703.28	1	0	1	0.000	0.000	
10/12/09 02:32:34	59.991	3766.433	350	-241.274368	16	308.5	10	0	-103	7703.61	1	0	1	0.004	0.004	
10/12/09 02:32:36	59.993	3767.251	350	-243.071854	16	309	10	0	-103	7703.94	1	0	1	0.002	0.002	
10/12/09 02:32:38	59.992	3767.792	350	-243.071854	16	309.5	10	0	-103	7704.27	1	0	1	-0.001	0.001	
10/12/09 02:32:40	59.991	3768.634	350	-243.071854	16	310	10	0	-103	7704.6	1	0	1	-0.001	0.001	
10/12/09 02:32:42	59.989	3771.146	350	-243.071854	16	310.5	10	0	-103	7704.93	1	0	1	-0.002	0.002	
10/12/09 02:32:44	59.986	3772.445	350	-243.071854	16	311	10	0	-103	7705.26	1	0	1	-0.003	0.003	
10/12/09 02:32:46	59.983	3773.695	350	-241.670212	16	311.5	10	0	-103	7705.59	1	0	1	-0.003	0.003	
10/12/09 02:32:48	59.983	3774.668	350	-241.670212	16	312	10	0	-103	7705.92	1	0	1	0.000	0.000	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) $\operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event DetectionRow306473307	Recovery Target Freq: 60.000 2:27:26 2:33:00 $05: 34$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$
10/12/09 02:32:50	59.988	3775.841	350	-241.670212	16	312.5	10	0	-103	7706.25	1	0	1	0.005	0.005	
10/12/09 02:32:52	59.993	3775.363	350	-241.670212	16	313	10	0	-103	7706.58	1	0	1	0.005	0.005	
10/12/09 02:32:54	59.996	3774.866	350	-241.670212	16	313.5	10	0	-103	7706.91	1	0	1	0.003	0.003	
10/12/09 02:32:56	59.998	3775.492	350	-228.149307	16	314	10	0	-103	7707.24	1	0	1	0.002	0.002	
10/12/09 02:32:58	59.999	3776.42	350	-228.149307	16	314.5	10	0	-103	7707.57	1	0	1	0.001	0.001	
10/12/09 02:33:00	60.001	3778.554	350	-228.149307	16	315	10	0	-103	7707.9	1	1	1	0.002	0.002	
10/12/09 02:33:02	59.999	3779.692	350	-228.149307	16	315.5	10	0	-103	7708.23	1	0	1	-0.002	0.002	
10/12/09 02:33:04	59.999	3781.256	350	-228.149307	16	316	10	0	-103	7708.56	1	0	1	0.000	0.000	
10/12/09 02:33:06	59.999	3780.595	350	-235.128983	16	316.5	10	0	-103	7708.89	1	0	1	0.000	0.000	
10/12/09 02:33:08	60.002	3783.092	350	-235.128983	16	317	10	0	-103	7709.22	1	1	1	0.003	0.003	
10/12/09 02:33:10	60.005	3783.896	350	-235.128983	16	317.5	10	0	-103	7709.55	1	1	1	0.003	0.003	
10/12/09 02:33:12	60.007	3784.421	350	-235.128983	16	318	10	0	-103	7709.88	1	1	1	0.002	0.002	
10/12/09 02:33:14	60.008	3785.768	350	-235.128983	16	318.5	10	0	-103	7710.21	1	1	1	0.001	0.001	
10/12/09 02:33:16	60.011	3785.463	350	-246.433136	16	319	10	0	-103	7710.54	1	1	1	0.003	0.003	
10/12/09 02:33:18	60.014	3786.85	350	-246.433136	16	319.5	10	0	-103	7710.87	1	1	1	0.003	0.003	
10/12/09 02:33:20	60.017	3786.304	350	-246.433136	16	320	10	0	-103	7711.2	1	1	1	0.003	0.003	
10/12/09 02:33:22	60.019	3787.259	350	-246.433136	16	320.5	10	0	-103	7711.53	1	1	1	0.002	0.002	
10/12/09 02:33:24	60.021	3787.516	350	-246.433136	16	321	10	0	-103	7711.86	1	1	1	0.002	0.002	
10/12/09 02:33:26	60.017	3787.955	350	-236.553543	16	321.5	10	0	-103	7712.19	1	1	1	-0.004	0.004	
10/12/09 02:33:28	60.017	3788.03	350	-236.553543	16	322	10	0	-103	7712.52	1	1	1	0.000	0.000	
10/12/09 02:33:30	60.019	3788.607	350	-236.553543	16	322.5	10	0	-103	7712.85	1	1	1	0.002	0.002	
10/12/09 02:33:32	60.023	3789.216	350	-236.553543	16	323	10	0	-103	7713.18	1	1	1	0.004	0.004	
10/12/09 02:33:34	60.024	3787.537	350	-236.553543	16	323.5	10	0	-103	7713.51	1	1	1	0.001	0.001	
10/12/09 02:33:36	60.025	3785.842	350	-230.297562	16	324	10	0	-103	7713.84	1	1	1	0.001	0.001	
10/12/09 02:33:38	60.021	3786.077	350	-230.297562	16	324.5	10	0	-103	7714.17	1	1	1	-0.004	0.004	
10/12/09 02:33:40	60.019	3787.93	350	-230.297562	16	325	10	0	-103	7714.5	1	1	1	-0.002	0.002	
10/12/09 02:33:42	60.024	3788.76	350	-230.297562	16	325.5	10	0	-103	7714.83	1	1	1	0.005	0.005	
10/12/09 02:33:44	60.024	3786.875	350	-230.297562	16	326	10	0	-103	7715.16	1	1	1	0.000	0.000	
10/12/09 02:33:46	60.021	3786.55	350	-231.175537	16	326.5	10	0	-103	7715.49	1	1	1	-0.003	0.003	
10/12/09 02:33:48	60.02	3787.358	350	-231.175537	16	327	10	0	-103	7715.82	1	1	1	-0.001	0.001	
10/12/09 02:33:50	60.025	3785.018	350	-231.175537	16	327.5	10	0	-103	7716.15	1	1	1	0.005	0.005	
10/12/09 02:33:52	60.024	3785.614	350	-231.175537	16	328	10	0	-103	7716.48	1	1	1	-0.001	0.001	
10/12/09 02:33:54	60.02	3785.949	350	-231.175537	16	328.5	10	0	-103	7716.81	1	1	1	-0.004	0.004	
10/12/09 02:33:56	60.02	3785.804	350	-225.61763	16	329	10	0	-103	7717.14	1	1	1	0.000	0.000	
10/12/09 02:33:58	60.022	3786.864	350	-225.61763	16	329.5	10	0	-103	7717.47	1	1	1	0.002	0.002	
10/12/09 02:34:00	60.022	3786.877	350	-225.61763	16	330	10	0	-103	7717.8	1	1	1	0.000	0.000	
10/12/09 02:34:02	60.022	3785.254	350	-225.61763	16	330.5	10	0	-103	7718.13	1	1	1	0.000	0.000	
10/12/09 02:34:04	60.021	3785.726	350	-225.61763	16	331	10	0	-103	7718.46	1	1	1	-0.001	0.001	
10/12/09 02:34:06	60.021	3786.347	350	-230.734421	16	331.5	10	0	-103	7718.79	1	1	1	0.000	0.000	
10/12/09 02:34:08	60.023	3785.821	350	-230.734421	16	332	10	0	-103	7719.12	1	1	1	0.002	0.002	
10/12/09 02:34:10	60.023	3785.798	350	-230.734421	16	332.5	10	0	-103	7719.45	1	1	1	0.000	0.000	
10/12/09 02:34:12	60.022	3786.284	350	-230.734421	16	333	10	0	-103	7719.78	1	1	1	-0.001	0.001	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:34:14	60.019	3786.939	350	-230.734421	16	333.5	10	0	-103	7720.11	1	1	1	-0.003	0.003	
10/12/09 02:34:16	60.016	3787.627	350	-234.847107	16	334	10	0	-103	7720.44	1	1	1	-0.003	0.003	
10/12/09 02:34:18	60.018	3789.444	350	-234.847107	16	334.5	10	0	-103	7720.77	1	1	1	0.002	0.002	
10/12/09 02:34:20	60.018	3789.673	350	-234.847107	16	335	10	0	-103	7721.1	1	1	1	0.000	0.000	
10/12/09 02:34:22	60.018	3789.404	350	-234.847107	16	335.5	10	0	-103	7721.43	1	1	1	0.000	0.000	
10/12/09 02:34:24	60.019	3788.479	350	-234.847107	16	336	10		-103	7721.76	1	1	1	0.001	0.001	
10/12/09 02:34:26	60.019	3789.183	350	-228.960922	16	336.5	10	0	-103	7722.09	1	1	1	0.000	0.000	
10/12/09 02:34:28	60.016	3789.369	350	-228.960922	16	337	10	0	-103	7722.42	1	1	1	-0.003	0.003	
10/12/09 02:34:30	60.015	3789.005	350	-228.960922	16	337.5	10	0	-103	7722.75	1	1	1	-0.001	0.001	
10/12/09 02:34:32	60.016	3788.665	350	-228.960922	16	338	10	0	-103	7723.08	1	1	1	0.001	0.001	
10/12/09 02:34:34	60.014	3788.933	350	-228.960922	16	338.5	10	0	-103	7723.41	1	1	1	-0.002	0.002	
10/12/09 02:34:36	60.013	3790.667	350	-231.177917	16	339	10	0	-103	7723.74	1	1	1	-0.001	0.001	
10/12/09 02:34:38	60.012	3790.805	350	-231.177917	16	339.5	10	0	-103	7724.07	1	1	1	-0.001	0.001	
10/12/09 02:34:40	60.012	3790.411	350	-231.177917	16	340	10	0	-103	7724.4	1	1	1	0.000	0.000	
10/12/09 02:34:42	60.01	3789.769	350	-231.177917	16	340.5	10	0	-103	7724.73	1	1	1	-0.002	0.002	
10/12/09 02:34:44	60.007	3791.54	350	-231.177917	16	341	10	0	-103	7725.06	1	1	1	-0.003	0.003	
10/12/09 02:34:46	60.007	3792.945	350	-236.489288	16	341.5	10	0	-103	7725.39	1	1	1	0.000	0.000	
10/12/09 02:34:48	60.009	3791.027	350	-236.489288	16	342	10	0	-103	7725.72	1	1	1	0.002	0.002	
10/12/09 02:34:50	60.009	3791.443	350	-236.489288	16	342.5	10	0	-103	7726.05	1	1	1	0.000	0.000	
10/12/09 02:34:52	60.01	3791.426	350	-236.489288	16	343	10	0	-103	7726.38	1	1	1	0.001	0.001	
10/12/09 02:34:54	60.003	3790.603	350	-236.489288	16	343.5	10	0	-103	7726.71	1	1	1	-0.007	0.007	
10/12/09 02:34:56	59.999	3790.457	350	-245.038925	16	344	10	0	-103	7727.04	1	0	1	-0.004	0.004	
10/12/09 02:34:58	59.995	3790.216	350	-245.038925	16	344.5	10	0	-103	7727.37	1	0	1	-0.004	0.004	
10/12/09 02:35:00	59.992	3789.585	350	-245.038925	16	345	10	0	-103	7727.7	1	0	1	-0.003	0.003	
10/12/09 02:35:02	59.991	3788.457	350	-245.038925	16	345.5	10	0	-103	7728.03	1	0	1	-0.001	0.001	
10/12/09 02:35:04	59.992	3788.105	350	-245.038925	16	346	10	0	-103	7728.36	1	0	1	0.001	0.001	
10/12/09 02:35:06	59.992	3788.057	350	-223.605682	16	346.5	10	0	-103	7728.69	1	0	1	0.000	0.000	
10/12/09 02:35:08	59.988	3788.189	350	-223.605682	16	347	10	0	-103	7729.02	1	0	1	-0.004	0.004	
10/12/09 02:35:10	59.986	3788.497	350	-223.605682	16	347.5	10	0	-103	7729.35	1	0	1	-0.002	0.002	
10/12/09 02:35:12	59.985	3788.54	350	-223.605682	16	348	10	0	-103	7729.68	1	0	1	-0.001	0.001	
10/12/09 02:35:14	59.984	3788.571	350	-223.605682	16	348.5	10	0	-103	7730.01	1	0	1	-0.001	0.001	
10/12/09 02:35:16	59.985	3788.101	350	-231.119354	16	349	10	0	-103	7730.34	1	0	1	0.001	0.001	
10/12/09 02:35:18	59.984	3787.133	350	-231.119354	16	349.5	10	0	-103	7730.67	1	0	1	-0.001	0.001	
10/12/09 02:35:20	59.982	3786.453	350	-231.119354	16	350	10	0	-103	7731	1	0	1	-0.002	0.002	
10/12/09 02:35:22	59.981	3787.732	350	-231.119354	16	350.5	10	0	-103	7731.33	1	0	1	-0.001	0.001	
10/12/09 02:35:24	59.982	3788.813	350	-231.119354	16	351	10	0	-103	7731.66	1	0	1	0.001	0.001	
10/12/09 02:35:26	59.979	3789.285	350	-237.20665	16	351.5	10	0	-103	7731.99	1	0	1	-0.003	0.003	
10/12/09 02:35:28	59.977	3788.256	350	-237.20665	16	352	10	0	-103	7732.32	1	0	1	-0.002	0.002	
10/12/09 02:35:30	59.976	3788.41	350	-237.20665	16	352.5	10	0	-103	7732.65	1	0	1	-0.001	0.001	
10/12/09 02:35:32	59.976	3790.467	350	-237.20665	16	353	10	0	-103	7732.98	1	0	1	0.000	0.000	
10/12/09 02:35:34	59.979	3790.665	350	-237.20665	16	353.5	10	0	-103	7733.31	1	0	1	0.003	0.003	
10/12/09 02:35:36	59.982	3790.42	350	-240.516373	16	354	10	0	-103	7733.64	1	0	1	0.003	0.003	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\begin{aligned} & \quad \mathrm{Hz} \\ & \quad 0.126 \\ & \mathrm{t}(0) \\ & \mathrm{t}(\text { Recovery }) \\ & \text { Event Length mm:ss } \\ & \hline \end{aligned}$	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:35:38	59.978	3789.674	350	-240.516373	16	354.5	10	0	-103	7733.97	1	0	1	-0.004	0.004	
10/12/09 02:35:40	59.976	3789.267	350	-240.516373	16	355	10	0	-103	7734.3	1	0	1	-0.002	0.002	
10/12/09 02:35:42	59.974	3789.148	350	-240.516373	16	355.5	10	0	-103	7734.63	1	0	1	-0.002	0.002	
10/12/09 02:35:44	59.976	3790.43	350	-240.516373	16	356	10	0	-103	7734.96	1	0	1	0.002	0.002	
10/12/09 02:35:46	59.977	3789.914	350	-237.566055	16	356.5	10	0	-103	7735.29	1	0	1	0.001	0.001	
10/12/09 02:35:48	59.977	3786.243	350	-237.566055	16	357	10	0	-103	7735.62	1	0	1	0.000	0.000	
10/12/09 02:35:50	59.975	3787.442	350	-237.566055	16	357.5	10	0	-103	7735.95	1	0	1	-0.002	0.002	
10/12/09 02:35:52	59.973	3788.963	350	-237.566055	16	358	10	0	-103	7736.28	1	0	1	-0.002	0.002	
10/12/09 02:35:54	59.969	3790.602	350	-237.566055	16	358.5	10	0	-103	7736.61	1	0	1	-0.004	0.004	
10/12/09 02:35:56	59.97	3791.877	350	-231.581421	16	359	10	0	-103	7736.94	1	0	1	0.001	0.001	
10/12/09 02:35:58	59.971	3792.911	350	-231.581421	16	359.5	10	0	-103	7737.27	1	0	1	0.001	0.001	
10/12/09 02:36:00	59.973	3792.311	350	-231.581421	16	360	10	0	-103	7737.6	1	0	1	0.002	0.002	
10/12/09 02:36:02	59.978	3789.125	350	-231.581421	16	360.5	10	0	-103	7737.93	1	0	1	0.005	0.005	
10/12/09 02:36:04	59.981	3788.08	350	-231.581421	16	361	10	0	-103	7738.26	1	0	1	0.003	0.003	
10/12/09 02:36:06	59.978	3787.844	350	-235.850845	16	361.5	10	0	-103	7738.59	1	0	1	-0.003	0.003	
10/12/09 02:36:08	59.975	3787.135	350	-235.850845	16	362	10	0	-103	7738.92	1	0	1	-0.003	0.003	
10/12/09 02:36:10	59.972	3787.164	350	-235.850845	16	362.5	10	0	-103	7739.25	1	0	1	-0.003	0.003	
10/12/09 02:36:12	59.976	3786.996	350	-235.850845	16	363	10	0	-103	7739.58	1	0	1	0.004	0.004	
10/12/09 02:36:14	59.975	3787.405	350	-235.850845	16	363.5	10	0	-103	7739.91	1	0	1	-0.001	0.001	
10/12/09 02:36:16	59.973	3786.487	350	-233.559982	16	364	10	0	-103	7740.24	1	0	1	-0.002	0.002	
10/12/09 02:36:18	59.969	3787.079	350	-233.559982	16	364.5	10	0	-103	7740.57	1	0	1	-0.004	0.004	
10/12/09 02:36:20	59.966	3789.214	350	-233.559982	16	365	10	0	-103	7740.9	1	0	1	-0.003	0.003	
10/12/09 02:36:22	59.965	3790.512	350	-233.559982	16	365.5	10	0	-103	7741.23	1	0	1	-0.001	0.001	
10/12/09 02:36:24	59.966	3791.221	350	-233.559982	16	366	10	0	-103	7741.56	1	0	1	0.001	0.001	
10/12/09 02:36:26	59.969	3792.218	350	-219.009995	16	366.5	10	0	-103	7741.89	1	0	1	0.003	0.003	
10/12/09 02:36:28	59.97	3790.959	350	-219.009995	16	367	10	0	-103	7742.22	1	0	1	0.001	0.001	
10/12/09 02:36:30	59.968	3788.824	350	-219.009995	16	367.5	10	0	-103	7742.55	1	0	1	-0.002	0.002	
10/12/09 02:36:32	59.965	3789.026	350	-219.009995	16	368	10	0	-103	7742.88	1	0	1	-0.003	0.003	
10/12/09 02:36:34	59.964	3789.167	350	-219.009995	16	368.5	10	0	-103	7743.21	1	0	1	-0.001	0.001	
10/12/09 02:36:36	59.97	3787.394	350	-205.338913	16	369	10	0	-103	7743.54	1	0	1	0.006	0.006	
10/12/09 02:36:38	59.972	3785.69	350	-205.338913	16	369.5	10	0	-103	7743.87	1	0	1	0.002	0.002	
10/12/09 02:36:40	59.967	3784.831	350	-205.338913	16	370	10	0	-103	7744.2	1	0	1	-0.005	0.005	
10/12/09 02:36:42	59.967	3785.01	350	-205.338913	16	370.5	10	0	-103	7744.53	1	0	1	0.000	0.000	
10/12/09 02:36:44	59.969	3784.32	350	-205.338913	16	371	10	0	-103	7744.86	1	0	1	0.002	0.002	
10/12/09 02:36:46	59.968	3782.809	350	-236.285355	16	371.5	10	0	-103	7745.19	1	0	1	-0.001	0.001	
10/12/09 02:36:48	59.969	3782.11	350	-236.285355	16	372	10	0	-103	7745.52	1	0	1	0.001	0.001	
10/12/09 02:36:50	59.967	3779.352	350	-236.285355	16	372.5	10	0	-103	7745.85	1	0	1	-0.002	0.002	
10/12/09 02:36:52	59.967	3779.056	350	-236.285355	16	373	10	0	-103	7746.18	1	0	1	0.000	0.000	
10/12/09 02:36:54	59.966	3778.633	350	-236.285355	16	373.5	10	0	-103	7746.51	1	0	1	-0.001	0.001	
10/12/09 02:36:56	59.965	3779.212	350	-223.015732	16	374	10	0	-103	7746.84	1	0	1	-0.001	0.001	
10/12/09 02:36:58	59.971	3779.335	350	-223.015732	16	374.5	10	0	-103	7747.17	1	0	1	0.006	0.006	
10/12/09 02:37:00	59.967	3776.429	350	-223.015732	16	375	10	0	-103	7747.5	1	0	1	-0.004	0.004	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event DetectionRow306473307	Recovery Target Freq: 60.000 2:27:26 2:33:00 05:34	Max Absolute Delta $\begin{aligned} & \quad \mathrm{Hz} \\ & \quad 0.126 \\ & \mathrm{t}(0) \\ & \mathrm{t}(\text { Recovery }) \\ & \text { Event Length mm:ss } \\ & \hline \end{aligned}$	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:38:26	59.963	3758.522	350	-223.015732	16	396.5	10	0	-103	7761.69	1	0	1	0.000	0.000	
10/12/09 02:38:28	59.965	3752.429	350	-223.015732	16	397	10	0	-103	7762.02	1	0	1	0.002	0.002	
10/12/09 02:38:30	59.968	3750.102	350	-223.015732	16	397.5	10	0	-103	7762.35	1	0	1	0.003	0.003	
10/12/09 02:38:32	59.968	3753.83	350	-223.015732	16	398	10	0	-103	7762.68	1	0	1	0.000	0.000	
10/12/09 02:38:34	59.968	3753.51	350	-223.015732	16	398.5	10	0	-103	7763.01	1	0	1	0.000	0.000	
10/12/09 02:38:36	59.97	3753.523	350	-223.015732	16	399	10	0	-103	7763.34	1	0	1	0.002	0.002	
10/12/09 02:38:38	59.973	3752.741	350	-223.015732	16	399.5	10	0	-103	7763.67	1	0	1	0.003	0.003	
10/12/09 02:38:40	59.971	3753.178	350	-223.015732	16	400	10	0	-103	7764	1	0	1	-0.002	0.002	
10/12/09 02:38:42	59.965	3752.729	350	-223.015732	16	400.5	10	0	-103	7764.33	1	0	1	-0.006	0.006	
10/12/09 02:38:44	59.967	3753.291	350	-223.015732	16	401	10	0	-103	7764.66	1	0	1	0.002	0.002	
10/12/09 02:38:46	59.967	3752.872	350	-223.015732	16	401.5	10	0	-103	7764.99	1	0	1	0.000	0.000	
10/12/09 02:38:48	59.972	3752.359	350	-223.015732	16	402	10	0	-103	7765.32	1	0	1	0.005	0.005	
10/12/09 02:38:50	59.976	3749.398	350	-223.015732	16	402.5	10	0	-103	7765.65	1	0	1	0.004	0.004	
10/12/09 02:38:52	59.975	3747.476	350	-223.015732	16	403	10	0	-103	7765.98	1	0	1	-0.001	0.001	
10/12/09 02:38:54	59.969	3740.37	350	-223.015732	16	403.5	10	0	-103	7766.31	1	0	1	-0.006	0.006	
10/12/09 02:38:56	59.973	3741.285	350	-223.015732	16	404	10	0	-103	7766.64	1	0	1	0.004	0.004	
10/12/09 02:38:58	59.974	3746.651	350	-223.015732	16	404.5	10	0	-103	7766.97	1	0	1	0.001	0.001	
10/12/09 02:39:00	59.978	3745.738	350	-223.015732	16	405	10	0	-103	7767.3	1	0	1	0.004	0.004	
10/12/09 02:39:02	59.981	3743.351	350	-223.015732	16	405.5	10	0	-103	7767.63	1	0	1	0.003	0.003	
10/12/09 02:39:04	59.981	3741.618	350	-223.015732	16	406	10	0	-103	7767.96	1	0	1	0.000	0.000	
10/12/09 02:39:06	59.981	3740.306	350	-223.015732	16	406.5	10	0	-103	7768.29	1	0	1	0.000	0.000	
10/12/09 02:39:08	59.982	3738.484	350	-223.015732	16	407	10	0	-103	7768.62	1	0	1	0.001	0.001	
10/12/09 02:39:10	59.982	3738.901	350	-223.015732	16	407.5	10	0	-103	7768.95	1	0	1	0.000	0.000	
10/12/09 02:39:12	59.984	3737.404	350	-223.015732	16	408	10	0	-103	7769.28	1	0	1	0.002	0.002	
10/12/09 02:39:14	59.982	3737.273	350	-223.015732	16	408.5	10	0	-103	7769.61	1	0	1	-0.002	0.002	
10/12/09 02:39:16	59.981	3736.308	350	-223.015732	16	409	10	0	-103	7769.94	1	0	1	-0.001	0.001	
10/12/09 02:39:18	59.979	3736.272	350	-223.015732	16	409.5	10	0	-103	7770.27	1	0	1	-0.002	0.002	
10/12/09 02:39:20	59.98	3735.448	350	-223.015732	16	410	10	0	-103	7770.6	1	0	1	0.001	0.001	
10/12/09 02:39:22	59.978	3735.65	350	-223.015732	16	410.5	10	0	-103	7770.93	1	0	1	-0.002	0.002	
10/12/09 02:39:24	59.978	3737.541	350	-223.015732	16	411	10	0	-103	7771.26	1	0	1	0.000	0.000	
10/12/09 02:39:26	59.98	3738.012	350	-223.015732	16	411.5	10	0	-103	7771.59	1	0	1	0.002	0.002	
10/12/09 02:39:28	59.981	3736.748	350	-223.015732	16	412	10	0	-103	7771.92	1	0	1	0.001	0.001	
10/12/09 02:39:30	59.98	3736.693	350	-223.015732	16	412.5	10	0	-103	7772.25	1	0	1	-0.001	0.001	
10/12/09 02:39:32	59.978	3736.067	350	-223.015732	16	413	10	0	-103	7772.58	1	0	1	-0.002	0.002	
10/12/09 02:39:34	59.976	3736.094	350	-223.015732	16	413.5	10	0	-103	7772.91	1	0	1	-0.002	0.002	
10/12/09 02:39:36	59.972	3736.575	350	-223.015732	16	414	10	0	-103	7773.24	1	0	1	-0.004	0.004	
10/12/09 02:39:38	59.971	3738.571	350	-223.015732	16	414.5	10	0	-103	7773.57	1	0	1	-0.001	0.001	
10/12/09 02:39:40	59.969	3738.875	350	-223.015732	16	415	10	0	-103	7773.9	1	0	1	-0.002	0.002	
10/12/09 02:39:42	59.974	3738.935	350	-223.015732	16	415.5	10	0	-103	7774.23	1	0	1	0.005	0.005	
10/12/09 02:39:44	59.975	3738.647	350	-223.015732	16	416	10	0	-103	7774.56	1	0	1	0.001	0.001	
10/12/09 02:39:46	59.976	3737.684	350	-223.015732	16	416.5	10	0	-103	7774.89	1	0	1	0.001	0.001	
10/12/09 02:39:48	59.972	3737.382	350	-223.015732	16	417	10	0	-103	7775.22	1	0	1	-0.004	0.004	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:39:50	59.969	3737.892	350	-223.015732	16	417.5	10	0	-103	7775.55	1	0	1	-0.003	0.003	
10/12/09 02:39:52	59.971	3740.017	350	-223.015732	16	418	10	0	-103	7775.88	1	0	1	0.002	0.002	
10/12/09 02:39:54	59.974	3740.329	350	-223.015732	16	418.5	10	0	-103	7776.21	1	0	1	0.003	0.003	
10/12/09 02:39:56	59.972	3742.053	350	-223.015732	16	419	10	0	-103	7776.54	1	0	1	-0.002	0.002	
10/12/09 02:39:58	59.972	3742.424	350	-223.015732	16	419.5	10	0	-103	7776.87	1	0	1	0.000	0.000	
10/12/09 02:40:00	59.972	3742.524	350	-223.015732	16	420	10	0	-103	7777.2	1	0	1	0.000	0.000	
10/12/09 02:40:02	59.977	3742.245	350	-223.015732	16	420.5	10	0	-103	7777.53	1	0	1	0.005	0.005	
10/12/09 02:40:04	59.982	3741.723	350	-223.015732	16	421	10	0	-103	7777.86	1	0	1	0.005	0.005	
10/12/09 02:40:06	59.978	3740.085	350	-223.015732	16	421.5	10	0	-103	7778.19	1	0	1	-0.004	0.004	
10/12/09 02:40:08	59.976	3740.629	350	-223.015732	16	422	10	0	-103	7778.52	1	0	1	-0.002	0.002	
10/12/09 02:40:10	59.973	3739.964	350	-223.015732	16	422.5	10	0	-103	7778.85	1	0	1	-0.003	0.003	
10/12/09 02:40:12	59.974	3740.775	350	-223.015732	16	423	10	0	-103	7779.18	1	0	1	0.001	0.001	
10/12/09 02:40:14	59.977	3742.833	350	-223.015732	16	423.5	10	0	-103	7779.51	1	0	1	0.003	0.003	
10/12/09 02:40:16	59.977	3741.268	350	-223.015732	16	424	10	0	-103	7779.84	1	0	1	0.000	0.000	
10/12/09 02:40:18	59.978	3739.776	350	-223.015732	16	424.5	10	0	-103	7780.17	1	0	1	0.001	0.001	
10/12/09 02:40:20	59.979	3738.966	350	-223.015732	16	425	10	0	-103	7780.5	1	0	1	0.001	0.001	
10/12/09 02:40:22	59.981	3738.706	350	-223.015732	16	425.5	10	0	-103	7780.83	1	0	1	0.002	0.002	
10/12/09 02:40:24	59.977	3738.879	350	-223.015732	16	426	10		-103	7781.16	1	0	1	-0.004	0.004	
10/12/09 02:40:26	59.974	3739.86	350	-223.015732	16	426.5	10	0	-103	7781.49	1	0	1	-0.003	0.003	
10/12/09 02:40:28	59.971	3738.102	350	-223.015732	16	427	10	0	-103	7781.82	1	0	1	-0.003	0.003	
10/12/09 02:40:30	59.971	3738.558	350	-223.015732	16	427.5	10	0	-103	7782.15	1	0	1	0.000	0.000	
10/12/09 02:40:32	59.971	3743.507	350	-223.015732	16	428	10	0	-103	7782.48	1	0	1	0.000	0.000	
10/12/09 02:40:34	59.972	3743.419	350	-223.015732	16	428.5	10	0	-103	7782.81	1	0	1	0.001	0.001	
10/12/09 02:40:36	59.968	3745.251	350	-223.015732	16	429	10	0	-103	7783.14	1	0	1	-0.004	0.004	
10/12/09 02:40:38	59.966	3745.744	350	-223.015732	16	429.5	10	0	-103	7783.47	1	0	1	-0.002	0.002	
10/12/09 02:40:40	59.966	3747.34	350	-223.015732	16	430	10	0	-103	7783.8	1	0	1	0.000	0.000	
10/12/09 02:40:42	59.971	3750.7	350	-223.015732	16	430.5	10	0	-103	7784.13	1	0	1	0.005	0.005	
10/12/09 02:40:44	59.973	3749.75	350	-223.015732	16	431	10	0	-103	7784.46	1	0	1	0.002	0.002	
10/12/09 02:40:46	59.972	3746.217	350	-223.015732	16	431.5	10	0	-103	7784.79	1	0	1	-0.001	0.001	
10/12/09 02:40:48	59.969	3744.683	350	-223.015732	16	432	10	0	-103	7785.12	1	0	1	-0.003	0.003	
10/12/09 02:40:50	59.972	3743.745	350	-223.015732	16	432.5	10	0	-103	7785.45	1	0	1	0.003	0.003	
10/12/09 02:40:52	59.974	3743.149	350	-223.015732	16	433	10	0	-103	7785.78	1	0	1	0.002	0.002	
10/12/09 02:40:54	59.973	3740.299	350	-223.015732	16	433.5	10	0	-103	7786.11	1	0	1	-0.001	0.001	
10/12/09 02:40:56	59.97	3739.453	350	-223.015732	16	434	10	0	-103	7786.44	1	0	1	-0.003	0.003	
10/12/09 02:40:58	59.971	3733.376	350	-223.015732	16	434.5	10	0	-103	7786.77	1	0	1	0.001	0.001	
10/12/09 02:41:00	59.974	3731.83	350	-223.015732	16	435	10	0	-103	7787.1	1	0	1	0.003	0.003	
10/12/09 02:41:02	59.982	3737.583	350	-223.015732	16	435.5	10	0	-103	7787.43	1	0	1	0.008	0.008	
10/12/09 02:41:04	59.985	3736.229	350	-223.015732	16	436	10	0	-103	7787.76	1	0	1	0.003	0.003	
10/12/09 02:41:06	59.985	3734.897	350	-223.015732	16	436.5	10	0	-103	7788.09	1	0	1	0.000	0.000	
10/12/09 02:41:08	59.985	3733.434	350	-223.015732	16	437	10	0	-103	7788.42	1	0	1	0.000	0.000	
10/12/09 02:41:10	59.987	3733.115	350	-223.015732	16	437.5	10	0	-103	7788.75	1	0	1	0.002	0.002	
10/12/09 02:41:12	59.989	3730.51	350	-223.015732	16	438	10	0	-103	7789.08	1	0	1	0.002	0.002	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:42:38	60.036	3699.712	350	-223.015732	16	459.5	10	0	-103	7803.27	1	1	1	-0.003	0.003	
10/12/09 02:42:40	60.038	3700.106	350	-223.015732	16	460	10	0	-103	7803.6	1	1	1	0.002	0.002	
10/12/09 02:42:42	60.033	3699.968	350	-223.015732	16	460.5	10	0	-103	7803.93	1	1	1	-0.005	0.005	
10/12/09 02:42:44	60.034	3701.122	350	-223.015732	16	461	10	0	-103	7804.26	1	1	1	0.001	0.001	
10/12/09 02:42:46	60.037	3701.865	350	-223.015732	16	461.5	10	0	-103	7804.59	1	1	1	0.003	0.003	
10/12/09 02:42:48	60.037	3701.614	350	-223.015732	16	462	10	0	-103	7804.92	1	1	1	0.000	0.000	
10/12/09 02:42:50	60.035	3701.998	350	-223.015732	16	462.5	10	0	-103	7805.25	1	1	1	-0.002	0.002	
10/12/09 02:42:52	60.03	3702.913	350	-223.015732	16	463	10	0	-103	7805.58	1	1	1	-0.005	0.005	
10/12/09 02:42:54	60.033	3703.909	350	-223.015732	16	463.5	10	0	-103	7805.91	1	1	1	0.003	0.003	
10/12/09 02:42:56	60.036	3705.522	350	-223.015732	16	464	10	0	-103	7806.24	1	1	1	0.003	0.003	
10/12/09 02:42:58	60.033	3704.967	350	-223.015732	16	464.5	10	0	-103	7806.57	1	1	1	-0.003	0.003	
10/12/09 02:43:00	60.034	3704.087	350	-223.015732	16	465	10	0	-103	7806.9	1	1	1	0.001	0.001	
10/12/09 02:43:02	60.032	3702.771	350	-223.015732	16	465.5	10	0	-103	7807.23	1	1	1	-0.002	0.002	
10/12/09 02:43:04	60.032	3703.706	350	-223.015732	16	466	10	0	-103	7807.56	1	1	1	0.000	0.000	
10/12/09 02:43:06	60.034	3704.905	350	-223.015732	16	466.5	10	0	-103	7807.89	1	1	1	0.002	0.002	
10/12/09 02:43:08	60.033	3705.435	350	-223.015732	16	467	10	0	-103	7808.22	1	1	1	-0.001	0.001	
10/12/09 02:43:10	60.037	3704.36	350	-223.015732	16	467.5	10	0	-103	7808.55	1	1	1	0.004	0.004	
10/12/09 02:43:12	60.035	3702.588	350	-223.015732	16	468	10		-103	7808.88	1	1	1	-0.002	0.002	
10/12/09 02:43:14	60.035	3702.204	350	-223.015732	16	468.5	10	0	-103	7809.21	1	1	1	0.000	0.000	
10/12/09 02:43:16	60.036	3701.942	350	-223.015732	16	469	10	0	-103	7809.54	1	1	1	0.001	0.001	
10/12/09 02:43:18	60.039	3702.25	350	-223.015732	16	469.5	10	0	-103	7809.87	1	1	1	0.003	0.003	
10/12/09 02:43:20	60.037	3703.318	350	-223.015732	16	470	10	0	-103	7810.2	1	1	1	-0.002	0.002	
10/12/09 02:43:22	60.039	3702.457	350	-223.015732	16	470.5	10	0	-103	7810.53	1	1	1	0.002	0.002	
10/12/09 02:43:24	60.036	3702.525	350	-223.015732	16	471	10	0	-103	7810.86	1	1	1	-0.003	0.003	
10/12/09 02:43:26	60.034	3703.269	350	-223.015732	16	471.5	10	0	-103	7811.19	1	1	1	-0.002	0.002	
10/12/09 02:43:28	60.038	3703.844	350	-223.015732	16	472	10	0	-103	7811.52	1	1	1	0.004	0.004	
10/12/09 02:43:30	60.037	3702.865	350	-223.015732	16	472.5	10	0	-103	7811.85	1	1	1	-0.001	0.001	
10/12/09 02:43:32	60.037	3702.518	350	-223.015732	16	473	10	0	-103	7812.18	1	1	1	0.000	0.000	
10/12/09 02:43:34	60.037	3702.28	350	-223.015732	16	473.5	10	0	-103	7812.51	1	1	1	0.000	0.000	
10/12/09 02:43:36	60.038	3692.427	350	-223.015732	16	474	10	0	-103	7812.84	1	1	1	0.001	0.001	
10/12/09 02:43:38	60.04	3692.178	350	-223.015732	16	474.5	10	0	-103	7813.17	1	1	1	0.002	0.002	
10/12/09 02:43:40	60.043	3700.276	350	-223.015732	16	475	10	0	-103	7813.5	1	1	1	0.003	0.003	
10/12/09 02:43:42	60.045	3698.755	350	-223.015732	16	475.5	10	0	-103	7813.83	1	1	1	0.002	0.002	
10/12/09 02:43:44	60.045	3697.729	350	-223.015732	16	476	10	0	-103	7814.16	1	1	1	0.000	0.000	
10/12/09 02:43:46	60.042	3696.916	350	-223.015732	16	476.5	10	0	-103	7814.49	1	1	1	-0.003	0.003	
10/12/09 02:43:48	60.043	3697.368	350	-223.015732	16	477	10	0	-103	7814.82	1	1	1	0.001	0.001	
10/12/09 02:43:50	60.04	3697.346	350	-223.015732	16	477.5	10	0	-103	7815.15	1	1	1	-0.003	0.003	
10/12/09 02:43:52	60.044	3698.429	350	-223.015732	16	478	10	0	-103	7815.48	1	1	1	0.004	0.004	
10/12/09 02:43:54	60.046	3694.763	350	-223.015732	16	478.5	10	0	-103	7815.81	1	1	1	0.002	0.002	
10/12/09 02:43:56	60.042	3693.584	350	-223.015732	16	479	10	0	-103	7816.14	1	1	1	-0.004	0.004	
10/12/09 02:43:58	60.034	3693.241	350	-223.015732	16	479.5	10	0	-103	7816.47	1	1	1	-0.008	0.008	
10/12/09 02:44:00	60.039	3696.798	350	-223.015732	16	480	10	0	-103	7816.8	1	1	1	0.005	0.005	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:44:02	60.039	3699.364	350	-223.015732	16	480.5	10	0	-103	7817.13	1	1	1	0.000	0.000	
10/12/09 02:44:04	60.036	3701.791	350	-223.015732	16	481	10	0	-103	7817.46	1	1	1	-0.003	0.003	
10/12/09 02:44:06	60.037	3700.708	350	-223.015732	16	481.5	10	0	-103	7817.79	1	1	1	0.001	0.001	
10/12/09 02:44:08	60.034	3700.753	350	-223.015732	16	482	10	0	-103	7818.12	1	1	1	-0.003	0.003	
10/12/09 02:44:10	60.033	3702.148	350	-223.015732	16	482.5	10	0	-103	7818.45	1	1	1	-0.001	0.001	
10/12/09 02:44:12	60.032	3705.213	350	-223.015732	16	483	10		-103	7818.78	1	1	1	-0.001	0.001	
10/12/09 02:44:14	60.031	3707.521	350	-223.015732	16	483.5	10	0	-103	7819.11	1	1	1	-0.001	0.001	
10/12/09 02:44:16	60.033	3707.287	350	-223.015732	16	484	10	0	-103	7819.44	1	1	1	0.002	0.002	
10/12/09 02:44:18	60.027	3706.988	350	-223.015732	16	484.5	10	0	-103	7819.77	1	1	1	-0.006	0.006	
10/12/09 02:44:20	60.031	3707.34	350	-223.015732	16	485	10	0	-103	7820.1	1	1	1	0.004	0.004	
10/12/09 02:44:22	60.032	3707.917	350	-223.015732	16	485.5	10	0	-103	7820.43	1	1	1	0.001	0.001	
10/12/09 02:44:24	60.031	3707.384	350	-223.015732	16	486	10	0	-103	7820.76	1	1	1	-0.001	0.001	
10/12/09 02:44:26	60.031	3706.857	350	-223.015732	16	486.5	10	0	-103	7821.09	1	1	1	0.000	0.000	
10/12/09 02:44:28	60.033	3707.615	350	-223.015732	16	487	10	0	-103	7821.42	1	1	1	0.002	0.002	
10/12/09 02:44:30	60.039	3706.823	350	-223.015732	16	487.5	10	0	-103	7821.75	1	1	1	0.006	0.006	
10/12/09 02:44:32	60.039	3703.746	350	-223.015732	16	488	10	0	-103	7822.08	1	1	1	0.000	0.000	
10/12/09 02:44:34	60.038	3701.582	350	-223.015732	16	488.5	10		-103	7822.41	1	1	1	-0.001	0.001	
10/12/09 02:44:36	60.037	3700.847	350	-223.015732	16	489	10	0	-103	7822.74	1	1	1	-0.001	0.001	
10/12/09 02:44:38	60.035	3701.208	350	-223.015732	16	489.5	10	0	-103	7823.07	1	1	1	-0.002	0.002	
10/12/09 02:44:40	60.037	3702.212	350	-223.015732	16	490	10	0	-103	7823.4	1	1	1	0.002	0.002	
10/12/09 02:44:42	60.04	3701.686	350	-223.015732	16	490.5	10	0	-103	7823.73	1	1	1	0.003	0.003	
10/12/09 02:44:44	60.042	3700.397	350	-223.015732	16	491	10	0	-103	7824.06	1	1	1	0.002	0.002	
10/12/09 02:44:46	60.035	3699.69	350	-223.015732	16	491.5	10	0	-103	7824.39	1	1	1	-0.007	0.007	
10/12/09 02:44:48	60.036	3700.366	350	-223.015732	16	492	10	0	-103	7824.72	1	1	1	0.001	0.001	
10/12/09 02:44:50	60.04	3700.827	350	-223.015732	16	492.5	10	0	-103	7825.05	1	1	1	0.004	0.004	
10/12/09 02:44:52	60.045	3700.662	350	-223.015732	16	493	10	0	-103	7825.38	1	1	1	0.005	0.005	
10/12/09 02:44:54	60.045	3696.935	350	-223.015732	16	493.5	10	0	-103	7825.71	1	1	1	0.000	0.000	
10/12/09 02:44:56	60.048	3695.688	350	-223.015732	16	494	10	0	-103	7826.04	1	1	1	0.003	0.003	
10/12/09 02:44:58	60.042	3695.819	350	-223.015732	16	494.5	10	0	-103	7826.37	1	1	1	-0.006	0.006	
10/12/09 02:45:00	60.044	3693.824	350	-223.015732	16	495	10	0	-103	7826.7	1	1	1	0.002	0.002	
10/12/09 02:45:02	60.044	3694.799	350	-223.015732	16	495.5	10	0	-103	7827.03	1	1	1	0.000	0.000	
10/12/09 02:45:04	60.044	3696.897	350	-223.015732	16	496	10	0	-103	7827.36	1	1	1	0.000	0.000	
10/12/09 02:45:06	60.041	3696.023	350	-223.015732	16	496.5	10	0	-103	7827.69	1	1	1	-0.003	0.003	
10/12/09 02:45:08	60.04	3697.502	350	-223.015732	16	497	10	0	-103	7828.02	1	1	1	-0.001	0.001	
10/12/09 02:45:10	60.04	3698.424	350	-223.015732	16	497.5	10	0	-103	7828.35	1	1	1	0.000	0.000	
10/12/09 02:45:12	60.045	3699.427	350	-223.015732	16	498	10	0	-103	7828.68	1	1	1	0.005	0.005	
10/12/09 02:45:14	60.044	3700.177	350	-223.015732	16	498.5	10	0	-103	7829.01	1	1	1	-0.001	0.001	
10/12/09 02:45:16	60.042	3699.806	350	-223.015732	16	499	10	0	-103	7829.34	1	1	1	-0.002	0.002	
10/12/09 02:45:18	60.039	3697.577	350	-223.015732	16	499.5	10	0	-103	7829.67	1	1	1	-0.003	0.003	
10/12/09 02:45:20	60.042	3697.681	350	-223.015732	16	500	10	0	-103	7830	1	1	1	0.003	0.003	
10/12/09 02:45:22	60.042	3698.507	350	-223.015732	16	500.5	10	0	-103	7830.33	1	1	1	0.000	0.000	
10/12/09 02:45:24	60.041	3698.359	350	-223.015732	16	501	10	0	-103	7830.66	1	1	1	-0.001	0.001	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:45:26	60.038	3698.466	350	-223.015732	16	501.5	10	0	-103	7830.99	1	1	1	-0.003	0.003	
10/12/09 02:45:28	60.036	3699.077	350	-223.015732	16	502	10	0	-103	7831.32	1	1	1	-0.002	0.002	
10/12/09 02:45:30	60.037	3700.262	350	-223.015732	16	502.5	10	0	-103	7831.65	1	1	1	0.001	0.001	
10/12/09 02:45:32	60.039	3701.592	350	-223.015732	16	503	10	0	-103	7831.98	1	1	1	0.002	0.002	
10/12/09 02:45:34	60.038	3700.902	350	-223.015732	16	503.5	10	0	-103	7832.31	1	1	1	-0.001	0.001	
10/12/09 02:45:36	60.04	3700.143	350	-223.015732	16	504	10	0	-103	7832.64	1	1	1	0.002	0.002	
10/12/09 02:45:38	60.039	3700.27	350	-223.015732	16	504.5	10	0	-103	7832.97	1	1	1	-0.001	0.001	
10/12/09 02:45:40	60.037	3701.139	350	-223.015732	16	505	10	0	-103	7833.3	1	1	1	-0.002	0.002	
10/12/09 02:45:42	60.038	3701.586	350	-223.015732	16	505.5	10	0	-103	7833.63	1	1	1	0.001	0.001	
10/12/09 02:45:44	60.039	3700.264	350	-223.015732	16	506	10	0	-103	7833.96	1	1	1	0.001	0.001	
10/12/09 02:45:46	60.04	3699.458	350	-223.015732	16	506.5	10	0	-103	7834.29	1	1	1	0.001	0.001	
10/12/09 02:45:48	60.037	3699.721	350	-223.015732	16	507	10	0	-103	7834.62	1	1	1	-0.003	0.003	
10/12/09 02:45:50	60.037	3700.458	350	-223.015732	16	507.5	10	0	-103	7834.95	1	1	1	0.000	0.000	
10/12/09 02:45:52	60.037	3699.505	350	-223.015732	16	508	10	0	-103	7835.28	1	1	1	0.000	0.000	
10/12/09 02:45:54	60.039	3698.794	350	-223.015732	16	508.5	10	0	-103	7835.61	1	1	1	0.002	0.002	
10/12/09 02:45:56	60.038	3699.216	350	-223.015732	16	509	10	0	-103	7835.94	1	1	1	-0.001	0.001	
10/12/09 02:45:58	60.036	3699.4	350	-223.015732	16	509.5	10		-103	7836.27	1	1	1	-0.002	0.002	
10/12/09 02:46:00	60.035	3700.661	350	-223.015732	16	510	10	,	-103	7836.6	1	1	1	-0.001	0.001	
10/12/09 02:46:02	60.033	3702.173	350	-223.015732	16	510.5	10	0	-103	7836.93	1	1	1	-0.002	0.002	
10/12/09 02:46:04	60.031	3702.968	350	-223.015732	16	511	10	0	-103	7837.26	1	1	1	-0.002	0.002	
10/12/09 02:46:06	60.03	3705.195	350	-223.015732	16	511.5	10	0	-103	7837.59	1	1	1	-0.001	0.001	
10/12/09 02:46:08	60.032	3704.952	350	-223.015732	16	512	10	0	-103	7837.92	1	1	1	0.002	0.002	
10/12/09 02:46:10	60.032	3705.775	350	-223.015732	16	512.5	10	0	-103	7838.25	1	1	1	0.000	0.000	
10/12/09 02:46:12	60.037	3705.621	350	-223.015732	16	513	10	0	-103	7838.58	1	1	1	0.005	0.005	
10/12/09 02:46:14	60.042	3703.744	350	-223.015732	16	513.5	10	0	-103	7838.91	1	1	1	0.005	0.005	
10/12/09 02:46:16	60.041	3701.981	350	-223.015732	16	514	10	0	-103	7839.24	1	1	1	-0.001	0.001	
10/12/09 02:46:18	60.036	3700.756	350	-223.015732	16	514.5	10	0	-103	7839.57	1	1	1	-0.005	0.005	
10/12/09 02:46:20	60.031	3700.747	350	-223.015732	16	515	10	0	-103	7839.9	1	1	1	-0.005	0.005	
10/12/09 02:46:22	60.032	3702.213	350	-223.015732	16	515.5	10	0	-103	7840.23	1	1	1	0.001	0.001	
10/12/09 02:46:24	60.031	3705.059	350	-223.015732	16	516	10	0	-103	7840.56	1	1	1	-0.001	0.001	
10/12/09 02:46:26	60.034	3705.514	350	-223.015732	16	516.5	10	0	-103	7840.89	1	1	1	0.003	0.003	
10/12/09 02:46:28	60.034	3704.449	350	-223.015732	16	517	10	0	-103	7841.22	1	1	1	0.000	0.000	
10/12/09 02:46:30	60.032	3703.831	350	-223.015732	16	517.5	10	0	-103	7841.55	1	1	1	-0.002	0.002	
10/12/09 02:46:32	60.038	3703.62	350	-223.015732	16	518	10	0	-103	7841.88	1	1	1	0.006	0.006	
10/12/09 02:46:34	60.043	3702.795	350	-223.015732	16	518.5	10	0	-103	7842.21	1	1	1	0.005	0.005	
10/12/09 02:46:36	60.044	3701.432	350	-223.015732	16	519	10	0	-103	7842.54	1	1	1	0.001	0.001	
10/12/09 02:46:38	60.042	3697.38	350	-223.015732	16	519.5	10	0	-103	7842.87	1	1	1	-0.002	0.002	
10/12/09 02:46:40	60.045	3696.25	350	-223.015732	16	520	10	0	-103	7843.2	1	1	1	0.003	0.003	
10/12/09 02:46:42	60.04	3696.302	350	-223.015732	16	520.5	10	0	-103	7843.53	1	1	1	-0.005	0.005	
10/12/09 02:46:44	60.04	3693.518	350	-223.015732	16	521	10	0	-103	7843.86	1	1	1	0.000	0.000	
10/12/09 02:46:46	60.043	3693.577	350	-223.015732	16	521.5	10	0	-103	7844.19	1	1	1	0.003	0.003	
10/12/09 02:46:48	60.043	3695.197	350	-223.015732	16	522	10	0	-103	7844.52	1	1	1	0.000	0.000	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:46:50	60.041	3695.186	350	-223.015732	16	522.5	10	0	-103	7844.85	1	1	1	-0.002	0.002	
10/12/09 02:46:52	60.04	3693.786	350	-223.015732	16	523	10	0	-103	7845.18	1	1	1	-0.001	0.001	
10/12/09 02:46:54	60.038	3694.753	350	-223.015732	16	523.5	10	0	-103	7845.51	1	1	1	-0.002	0.002	
10/12/09 02:46:56	60.043	3694.926	350	-223.015732	16	524	10	0	-103	7845.84	1	1	1	0.005	0.005	
10/12/09 02:46:58	60.044	3694.938	350	-223.015732	16	524.5	10	0	-103	7846.17	1	1	1	0.001	0.001	
10/12/09 02:47:00	60.042	3694.159	350	-223.015732	16	525	10	0	-103	7846.5	1	1	1	-0.002	0.002	
10/12/09 02:47:02	60.036	3691.33	350	-223.015732	16	525.5	10	0	-103	7846.83	1	1	1	-0.006	0.006	
10/12/09 02:47:04	60.043	3692.686	350	-223.015732	16	526	10	0	-103	7847.16	1	1	1	0.007	0.007	
10/12/09 02:47:06	60.041	3693.238	350	-223.015732	16	526.5	10	0	-103	7847.49	1	1	1	-0.002	0.002	
10/12/09 02:47:08	60.042	3693.39	350	-223.015732	16	527	10	0	-103	7847.82	1	1	1	0.001	0.001	
10/12/09 02:47:10	60.043	3692.357	350	-223.015732	16	527.5	10	0	-103	7848.15	1	1	1	0.001	0.001	
10/12/09 02:47:12	60.043	3690.951	350	-223.015732	16	528	10	0	-103	7848.48	1	1	1	0.000	0.000	
10/12/09 02:47:14	60.036	3690.836	350	-223.015732	16	528.5	10	0	-103	7848.81	1	1	1	-0.007	0.007	
10/12/09 02:47:16	60.039	3692.042	350	-223.015732	16	529	10	0	-103	7849.14	1	1	1	0.003	0.003	
10/12/09 02:47:18	60.039	3693.114	350	-223.015732	16	529.5	10	0	-103	7849.47	1	1	1	0.000	0.000	
10/12/09 02:47:20	60.037	3694.117	350	-223.015732	16	530	10	0	-103	7849.8	1	1	1	-0.002	0.002	
10/12/09 02:47:22	60.034	3695.258	350	-223.015732	16	530.5	10	0	-103	7850.13	1	1	1	-0.003	0.003	
10/12/09 02:47:24	60.035	3695.581	350	-223.015732	16	531	10	0	-103	7850.46	1	1	1	0.001	0.001	
10/12/09 02:47:26	60.035	3695.949	350	-223.015732	16	531.5	10	0	-103	7850.79	1	1	1	0.000	0.000	
10/12/09 02:47:28	60.035	3695.491	350	-223.015732	16	532	10	0	-103	7851.12	1	1	1	0.000	0.000	
10/12/09 02:47:30	60.036	3696.305	350	-223.015732	16	532.5	10	0	-103	7851.45	1	1	1	0.001	0.001	
10/12/09 02:47:32	60.03	3696.486	350	-223.015732	16	533	10	0	-103	7851.78	1	1	1	-0.006	0.006	
10/12/09 02:47:34	60.03	3697.336	350	-223.015732	16	533.5	10	0	-103	7852.11	1	1	1	0.000	0.000	
10/12/09 02:47:36	60.03	3699.171	350	-223.015732	16	534	10	0	-103	7852.44	1	1	1	0.000	0.000	
10/12/09 02:47:38	60.031	3699.357	350	-223.015732	16	534.5	10	0	-103	7852.77	1	1	1	0.001	0.001	
10/12/09 02:47:40	60.031	3699.251	350	-223.015732	16	535	10	0	-103	7853.1	1	1	1	0.000	0.000	
10/12/09 02:47:42	60.032	3699.117	350	-223.015732	16	535.5	10	0	-103	7853.43	1	1	1	0.001	0.001	
10/12/09 02:47:44	60.031	3699.105	350	-223.015732	16	536	10	0	-103	7853.76	1	1	1	-0.001	0.001	
10/12/09 02:47:46	60.032	3699.126	350	-223.015732	16	536.5	10	0	-103	7854.09	1	1	1	0.001	0.001	
10/12/09 02:47:48	60.032	3698.954	350	-223.015732	16	537	10	0	-103	7854.42	1	1	1	0.000	0.000	
10/12/09 02:47:50	60.032	3698.136	350	-223.015732	16	537.5	10	0	-103	7854.75	1	1	1	0.000	0.000	
10/12/09 02:47:52	60.033	3698.277	350	-223.015732	16	538	10	0	-103	7855.08	1	1	1	0.001	0.001	
10/12/09 02:47:54	60.037	3697.412	350	-223.015732	16	538.5	10	0	-103	7855.41	1	1	1	0.004	0.004	
10/12/09 02:47:56	60.04	3695.94	350	-223.015732	16	539	10	0	-103	7855.74	1	1	1	0.003	0.003	
10/12/09 02:47:58	60.039	3693.736	350	-223.015732	16	539.5	10	0	-103	7856.07	1	1	1	-0.001	0.001	
10/12/09 02:48:00	60.042	3693.224	350	-223.015732	16	540	10	0	-103	7856.4	1	1	1	0.003	0.003	
10/12/09 02:48:02	60.036	3691.759	350	-223.015732	16	540.5	10	0	-103	7856.73	1	1	1	-0.006	0.006	
10/12/09 02:48:04	60.039	3691.919	350	-223.015732	16	541	10	0	-103	7857.06	1	1	1	0.003	0.003	
10/12/09 02:48:06	60.041	3692.798	350	-223.015732	16	541.5	10	0	-103	7857.39	1	1	1	0.002	0.002	
10/12/09 02:48:08	60.04	3691.582	350	-223.015732	16	542	10	0	-103	7857.72	1	1	1	-0.001	0.001	
10/12/09 02:48:10	60.035	3692.374	350	-223.015732	16	542.5	10	0	-103	7858.05	1	1	1	-0.005	0.005	
10/12/09 02:48:12	60.036	3693.302	350	-223.015732	16	543	10	0	-103	7858.38	1	1	1	0.001	0.001	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) $\operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event DetectionRow306473307	Recovery Target Freq: 60.000 2:27:26 2:33:00 $05: 34$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$
10/12/09 02:48:14	60.038	3694.71	350	-223.015732	16	543.5	10	0	-103	7858.71	1	1	1	0.002	0.002	
10/12/09 02:48:16	60.037	3694.331	350	-223.015732	16	544	10	0	-103	7859.04	1	1	1	-0.001	0.001	
10/12/09 02:48:18	60.041	3693.815	350	-223.015732	16	544.5	10	0	-103	7859.37	1	1	1	0.004	0.004	
10/12/09 02:48:20	60.04	3693.617	350	-223.015732	16	545	10	0	-103	7859.7	1	1	1	-0.001	0.001	
10/12/09 02:48:22	60.036	3694.324	350	-223.015732	16	545.5	10	0	-103	7860.03	1	1	1	-0.004	0.004	
10/12/09 02:48:24	60.033	3694.27	350	-223.015732	16	546	10	0	-103	7860.36	1	1	1	-0.003	0.003	
10/12/09 02:48:26	60.034	3694.66	350	-223.015732	16	546.5	10	0	-103	7860.69	1	1	1	0.001	0.001	
10/12/09 02:48:28	60.038	3693.748	350	-223.015732	16	547	10	0	-103	7861.02	1	1	1	0.004	0.004	
10/12/09 02:48:30	60.04	3692.532	350	-223.015732	16	547.5	10	0	-103	7861.35	1	1	1	0.002	0.002	
10/12/09 02:48:32	60.041	3691.445	350	-223.015732	16	548	10	0	-103	7861.68	1	1	1	0.001	0.001	
10/12/09 02:48:34	60.037	3691.012	350	-223.015732	16	548.5	10	0	-103	7862.01	1	1	1	-0.004	0.004	
10/12/09 02:48:36	60.037	3691.799	350	-223.015732	16	549	10	0	-103	7862.34	1	1	1	0.000	0.000	
10/12/09 02:48:38	60.036	3693.077	350	-223.015732	16	549.5	10	0	-103	7862.67	1	1	1	-0.001	0.001	
10/12/09 02:48:40	60.037	3693.727	350	-223.015732	16	550	10	0	-103	7863	1	1	1	0.001	0.001	
10/12/09 02:48:42	60.038	3693.117	350	-223.015732	16	550.5	10	0	-103	7863.33	1	1	1	0.001	0.001	
10/12/09 02:48:44	60.039	3692.641	350	-223.015732	16	551	10	0	-103	7863.66	1	1	1	0.001	0.001	
10/12/09 02:48:46	60.038	3688.159	350	-223.015732	16	551.5	10	0	-103	7863.99	1	1	1	-0.001	0.001	
10/12/09 02:48:48	60.034	3689.02	350	-223.015732	16	552	10	0	-103	7864.32	1	1	1	-0.004	0.004	
10/12/09 02:48:50	60.033	3688.208	350	-223.015732	16	552.5	10	0	-103	7864.65	1	1	1	-0.001	0.001	
10/12/09 02:48:52	60.031	3690.092	350	-223.015732	16	553	10	0	-103	7864.98	1	1	1	-0.002	0.002	
10/12/09 02:48:54	60.034	3693.172	350	-223.015732	16	553.5	10	0	-103	7865.31	1	1	1	0.003	0.003	
10/12/09 02:48:56	60.029	3693.321	350	-223.015732	16	554	10	0	-103	7865.64	1	1	1	-0.005	0.005	
10/12/09 02:48:58	60.029	3694.593	350	-223.015732	16	554.5	10	0	-103	7865.97	1	1	1	0.000	0.000	
10/12/09 02:49:00	60.031	3695.225	350	-223.015732	16	555	10	0	-103	7866.3	1	1	1	0.002	0.002	
10/12/09 02:49:02	60.03	3694.609	350	-223.015732	16	555.5	10	0	-103	7866.63	1	1	1	-0.001	0.001	
10/12/09 02:49:04	60.03	3693.412	350	-223.015732	16	556	10	0	-103	7866.96	1	1	1	0.000	0.000	
10/12/09 02:49:06	60.026	3693.509	350	-223.015732	16	556.5	10	0	-103	7867.29	1	1	1	-0.004	0.004	
10/12/09 02:49:08	60.022	3696.026	350	-223.015732	16	557	10	0	-103	7867.62	1	1	1	-0.004	0.004	
10/12/09 02:49:10	60.021	3698.012	350	-223.015732	16	557.5	10	0	-103	7867.95	1	1	1	-0.001	0.001	
10/12/09 02:49:12	60.024	3699.062	350	-223.015732	16	558	10	0	-103	7868.28	1	1	1	0.003	0.003	
10/12/09 02:49:14	60.023	3699.414	350	-223.015732	16	558.5	10	0	-103	7868.61	1	1	1	-0.001	0.001	
10/12/09 02:49:16	60.02	3698.935	350	-223.015732	16	559	10	0	-103	7868.94	1	1	1	-0.003	0.003	
10/12/09 02:49:18	60.021	3700.084	350	-223.015732	16	559.5	10	0	-103	7869.27	1	1	1	0.001	0.001	
10/12/09 02:49:20	60.023	3700.544	350	-223.015732	16	560	10	0	-103	7869.6	1	1	1	0.002	0.002	
10/12/09 02:49:22	60.025	3700.486	350	-223.015732	16	560.5	10	0	-103	7869.93	1	1	1	0.002	0.002	
10/12/09 02:49:24	60.026	3698.596	350	-223.015732	16	561	10	0	-103	7870.26	1	1	1	0.001	0.001	
10/12/09 02:49:26	60.026	3697.961	350	-223.015732	16	561.5	10	0	-103	7870.59	1	1	1	0.000	0.000	
10/12/09 02:49:28	60.025	3699.914	350	-223.015732	16	562	10	0	-103	7870.92	1	1	1	-0.001	0.001	
10/12/09 02:49:30	60.024	3700.802	350	-223.015732	16	562.5	10	0	-103	7871.25	1	1	1	-0.001	0.001	
10/12/09 02:49:32	60.024	3701.301	350	-223.015732	16	563	10	0	-103	7871.58	1	1	1	0.000	0.000	
10/12/09 02:49:34	60.025	3701.45	350	-223.015732	16	563.5	10	0	-103	7871.91	1	1	1	0.001	0.001	
10/12/09 02:49:36	60.023	3701.349	350	-223.015732	16	564	10	0	-103	7872.24	1	1	1	-0.002	0.002	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:49:38	60.023	3701.094	350	-223.015732	16	564.5	10	0	-103	7872.57	1	1	1	0.000	0.000	
10/12/09 02:49:40	60.022	3701.702	350	-223.015732	16	565	10	0	-103	7872.9	1	1	1	-0.001	0.001	
10/12/09 02:49:42	60.026	3702.07	350	-223.015732	16	565.5	10	0	-103	7873.23	1	1	1	0.004	0.004	
10/12/09 02:49:44	60.029	3701.965	350	-223.015732	16	566	10	0	-103	7873.56	1	1	1	0.003	0.003	
10/12/09 02:49:46	60.026	3700.269	350	-223.015732	16	566.5	10	0	-103	7873.89	1	1	1	-0.003	0.003	
10/12/09 02:49:48	60.024	3700.241	350	-223.015732	16	567	10	0	-103	7874.22	1	1	1	-0.002	0.002	
10/12/09 02:49:50	60.021	3701.09	350	-223.015732	16	567.5	10	0	-103	7874.55	1	1	1	-0.003	0.003	
10/12/09 02:49:52	60.025	3701.268	350	-223.015732	16	568	10	0	-103	7874.88	1	1	1	0.004	0.004	
10/12/09 02:49:54	60.025	3701.205	350	-223.015732	16	568.5	10	0	-103	7875.21	1	1	1	0.000	0.000	
10/12/09 02:49:56	60.025	3700.587	350	-223.015732	16	569	10	0	-103	7875.54	1	1	1	0.000	0.000	
10/12/09 02:49:58	60.023	3700.532	350	-223.015732	16	569.5	10	0	-103	7875.87	1	1	1	-0.002	0.002	
10/12/09 02:50:00	60.026	3700.177	350	-223.015732	16	570	10	0	-103	7876.2	1	1	1	0.003	0.003	
10/12/09 02:50:02	60.024	3700.295	350	-223.015732	16	570.5	10	0	-103	7876.53	1	1	1	-0.002	0.002	
10/12/09 02:50:04	60.022	3700.277	350	-223.015732	16	571	10	0	-103	7876.86	1	1	1	-0.002	0.002	
10/12/09 02:50:06	60.023	3700.841	350	-223.015732	16	571.5	10	0	-103	7877.19	1	1	1	0.001	0.001	
10/12/09 02:50:08	60.026	3700.863	350	-223.015732	16	572	10	0	-103	7877.52	1	1	1	0.003	0.003	
10/12/09 02:50:10	60.025	3700.26	350	-223.015732	16	572.5	10	0	-103	7877.85	1	1	1	-0.001	0.001	
10/12/09 02:50:12	60.02	3700.052	350	-223.015732	16	573	10		-103	7878.18	1	1	1	-0.005	0.005	
10/12/09 02:50:14	60.02	3699.926	350	-223.015732	16	573.5	10	0	-103	7878.51	1	1	1	0.000	0.000	
10/12/09 02:50:16	60.019	3700.965	350	-223.015732	16	574	10	0	-103	7878.84	1	1	1	-0.001	0.001	
10/12/09 02:50:18	60.015	3702.581	350	-223.015732	16	574.5	10	0	-103	7879.17	1	1	1	-0.004	0.004	
10/12/09 02:50:20	60.016	3703.516	350	-223.015732	16	575	10	0	-103	7879.5	1	1	1	0.001	0.001	
10/12/09 02:50:22	60.017	3703.824	350	-223.015732	16	575.5	10	0	-103	7879.83	1	1	1	0.001	0.001	
10/12/09 02:50:24	60.015	3703.672	350	-223.015732	16	576	10	0	-103	7880.16	1	1	1	-0.002	0.002	
10/12/09 02:50:26	60.015	3703.689	350	-223.015732	16	576.5	10	0	-103	7880.49	1	1	1	0.000	0.000	
10/12/09 02:50:28	60.017	3703.003	350	-223.015732	16	577	10	0	-103	7880.82	1	1	1	0.002	0.002	
10/12/09 02:50:30	60.017	3702.921	350	-223.015732	16	577.5	10	0	-103	7881.15	1	1	1	0.000	0.000	
10/12/09 02:50:32	60.012	3703	350	-223.015732	16	578	10	0	-103	7881.48	1	1	1	-0.005	0.005	
10/12/09 02:50:34	60.01	3703.167	350	-223.015732	16	578.5	10	0	-103	7881.81	1	1	1	-0.002	0.002	
10/12/09 02:50:36	60.008	3703.918	350	-223.015732	16	579	10	0	-103	7882.14	1	1	1	-0.002	0.002	
10/12/09 02:50:38	60.002	3703.616	350	-223.015732	16	579.5	10	0	-103	7882.47	1	1	1	-0.006	0.006	
10/12/09 02:50:40	59.999	3703.775	350	-223.015732	16	580	10	0	-103	7882.8	1	0	1	-0.003	0.003	
10/12/09 02:50:42	59.999	3703.751	350	-223.015732	16	580.5	10	0	-103	7883.13	1	0	1	0.000	0.000	
10/12/09 02:50:44	60.002	3701.534	350	-223.015732	16	581	10	0	-103	7883.46	1	1	1	0.003	0.003	
10/12/09 02:50:46	60.003	3700.617	350	-223.015732	16	581.5	10	0	-103	7883.79	1	1	1	0.001	0.001	
10/12/09 02:50:48	60.004	3700.88	350	-223.015732	16	582	10	0	-103	7884.12	1	1	1	0.001	0.001	
10/12/09 02:50:50	60.001	3700.625	350	-223.015732	16	582.5	10	0	-103	7884.45	1	1	1	-0.003	0.003	
10/12/09 02:50:52	59.996	3701.389	350	-223.015732	16	583	10	0	-103	7884.78	1	0	1	-0.005	0.005	
10/12/09 02:50:54	59.993	3701.737	350	-223.015732	16	583.5	10	0	-103	7885.11	1	0	1	-0.003	0.003	
10/12/09 02:50:56	59.992	3700.671	350	-223.015732	16	584	10	0	-103	7885.44	1	0	1	-0.001	0.001	
10/12/09 02:50:58	59.989	3700.826	350	-223.015732	16	584.5	10	0	-103	7885.77	1	0	1	-0.003	0.003	
10/12/09 02:51:00	59.987	3700.977	350	-223.015732	16	585	10	0	-103	7886.1	1	0	1	-0.002	0.002	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) $\operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event DetectionRow306473307	Recovery Target Freq: 60.000 2:27:26 2:33:00 $05: 34$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$
10/12/09 02:52:26	60.003	3702.071	350	-223.015732	16	606.5	10		-103	7900.29	1	1	1	0.004	0.004	
10/12/09 02:52:28	60.005	3699.51	350	-223.015732	16	607	10	0	-103	7900.62	1	1	1	0.002	0.002	
10/12/09 02:52:30	60.005	3698.658	350	-223.015732	16	607.5	10	0	-103	7900.95	1	1	1	0.000	0.000	
10/12/09 02:52:32	60.01	13698.137	350	-223.015732	16	608	10	0	-103	7901.28	1	1	1	0.005	0.005	
10/12/09 02:52:34	60.013	3697.882	350	-223.015732	16	608.5	10	0	-103	7901.61	1	1	1	0.003	0.003	
10/12/09 02:52:36	60.02	3698.668	350	-223.015732	16	609	10	0	-103	7901.94	1	1	1	0.007	0.007	
10/12/09 02:52:38	60.022	3698.604	350	-223.015732	16	609.5	10	0	-103	7902.27	1	1	1	0.002	0.002	
10/12/09 02:52:40	60.024	3697.868	350	-223.015732	16	610	10	0	-103	7902.6	1	1	1	0.002	0.002	
10/12/09 02:52:42	60.025	3694.672	350	-223.015732	16	610.5	10	0	-103	7902.93	1	1	1	0.001	0.001	
10/12/09 02:52:44	60.025	3693.912	350	-223.015732	16	611	10	0	-103	7903.26	1	1	1	0.000	0.000	
10/12/09 02:52:46	60.024	3693.418	350	-223.015732	16	611.5	10	0	-103	7903.59	1	1	1	-0.001	0.001	
10/12/09 02:52:48	60.023	3688.301	350	-223.015732	16	612	10	0	-103	7903.92	1	1	1	-0.001	0.001	
10/12/09 02:52:50	60.029	3688.021	350	-223.015732	16	612.5	10	0	-103	7904.25	1	1	1	0.006	0.006	
10/12/09 02:52:52	60.029	3689.143	350	-223.015732	16	613	10	0	-103	7904.58	1	1	1	0.000	0.000	
10/12/09 02:52:54	60.029	3688.237	350	-223.015732	16	613.5	10	0	-103	7904.91	1	1	1	0.000	0.000	
10/12/09 02:52:56	60.028	3687.878	350	-223.015732	16	614	10	0	-103	7905.24	1	1	1	-0.001	0.001	
10/12/09 02:52:58	60.028	3687.026	350	-223.015732	16	614.5	10	0	-103	7905.57	1	1	1	0.000	0.000	
10/12/09 02:53:00	60.031	3686.683	350	-223.015732	16	615	10	0	-103	7905.9	1	1	1	0.003	0.003	
10/12/09 02:53:02	60.032	3685.276	350	-223.015732	16	615.5	10	0	-103	7906.23	1	1	1	0.001	0.001	
10/12/09 02:53:04	60.033	3685.576	350	-223.015732	16	616	10	0	-103	7906.56	1	1	1	0.001	0.001	
10/12/09 02:53:06	60.031	3685.985	350	-223.015732	16	616.5	10	0	-103	7906.89	1	1	1	-0.002	0.002	
10/12/09 02:53:08	60.03	3686.418	350	-223.015732	16	617	10	0	-103	7907.22	1	1	1	-0.001	0.001	
10/12/09 02:53:10	60.022	3687.159	350	-223.015732	16	617.5	10	0	-103	7907.55	1	1	1	-0.008	0.008	
10/12/09 02:53:12	60.021	3687.873	350	-223.015732	16	618	10	0	-103	7907.88	1	1	1	-0.001	0.001	
10/12/09 02:53:14	60.019	3688.997	350	-223.015732	16	618.5	10	0	-103	7908.21	1	1	1	-0.002	0.002	
10/12/09 02:53:16	60.017	3690.426	350	-223.015732	16	619	10	0	-103	7908.54	1	1	1	-0.002	0.002	
10/12/09 02:53:18	60.017	3690.776	350	-223.015732	16	619.5	10	0	-103	7908.87	1	1	1	0.000	0.000	
10/12/09 02:53:20	60.017	3692.715	350	-223.015732	16	620	10	0	-103	7909.2	1	1	1	0.000	0.000	
10/12/09 02:53:22	60.016	3692.578	350	-223.015732	16	620.5	10	0	-103	7909.53	1	1	1	-0.001	0.001	
10/12/09 02:53:24	60.015	3692.462	350	-223.015732	16	621	10	0	-103	7909.86	1	1	1	-0.001	0.001	
10/12/09 02:53:26	60.015	3693.173	350	-223.015732	16	621.5	10	0	-103	7910.19	1	1	1	0.000	0.000	
10/12/09 02:53:28	60.012	3693.249	350	-223.015732	16	622	10	0	-103	7910.52	1	1	1	-0.003	0.003	
10/12/09 02:53:30	60.009	3693.743	350	-223.015732	16	622.5	10		-103	7910.85	1	1	1	-0.003	0.003	
10/12/09 02:53:32	60.008	3695.124	350	-223.015732	16	623	10	0	-103	7911.18	1	1	1	-0.001	0.001	
10/12/09 02:53:34	60.008	3694.681	350	-223.015732	16	623.5	10		-103	7911.51	1	1	1	0.000	0.000	
10/12/09 02:53:36	60.005	3694.741	350	-223.015732	16	624	10	0	-103	7911.84	1	1	1	-0.003	0.003	
10/12/09 02:53:38	60.005	3694.199	350	-223.015732	16	624.5	10	0	-103	7912.17	1	1	1	0.000	0.000	
10/12/09 02:53:40	60.003	3693.75	350	-223.015732	16	625	10	0	-103	7912.5	1	1	1	-0.002	0.002	
10/12/09 02:53:42	59.999	3693.624	350	-223.015732	16	625.5	10	0	-103	7912.83	1	0	1	-0.004	0.004	
10/12/09 02:53:44	59.997	3692.806	350	-223.015732	16	626	10	0	-103	7913.16	1	0	1	-0.002	0.002	
10/12/09 02:53:46	59.999	3691.15	350	-223.015732	16	626.5	10	0	-103	7913.49	1	0	1	0.002	0.002	
10/12/09 02:53:48	60	3691.407	350	-223.015732	16	627	10	0	-103	7913.82	1	0	1	0.001	0.001	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:53:50	59.998	3691.077	350	-223.015732	16	627.5	10	0	-103	7914.15	1	0	1	-0.002	0.002	
10/12/09 02:53:52	59.995	3690.588	350	-223.015732	16	628	10	0	-103	7914.48	1	0	1	-0.003	0.003	
10/12/09 02:53:54	59.994	3689.797	350	-223.015732	16	628.5	10	0	-103	7914.81	1	0	1	-0.001	0.001	
10/12/09 02:53:56	59.992	3688.483	350	-223.015732	16	629	10	0	-103	7915.14	1	0	1	-0.002	0.002	
10/12/09 02:53:58	59.993	3689.445	350	-223.015732	16	629.5	10	0	-103	7915.47	1	0	1	0.001	0.001	
10/12/09 02:54:00	59.988	3689.553	350	-223.015732	16	630	10	0	-103	7915.8	1	0	1	-0.005	0.005	
10/12/09 02:54:02	59.985	3689.525	350	-223.015732	16	630.5	10	0	-103	7916.13	1	0	1	-0.003	0.003	
10/12/09 02:54:04	59.986	3689.736	350	-223.015732	16	631	10	0	-103	7916.46	1	0	1	0.001	0.001	
10/12/09 02:54:06	59.988	3688.853	350	-223.015732	16	631.5	10	0	-103	7916.79	1	0	1	0.002	0.002	
10/12/09 02:54:08	59.988	3688.24	350	-223.015732	16	632	10	0	-103	7917.12	1	0	1	0.000	0.000	
10/12/09 02:54:10	59.985	3687.494	350	-223.015732	16	632.5	10	0	-103	7917.45	1	0	1	-0.003	0.003	
10/12/09 02:54:12	59.983	3687.475	350	-223.015732	16	633	10	0	-103	7917.78	1	0	1	-0.002	0.002	
10/12/09 02:54:14	59.983	3686.707	350	-223.015732	16	633.5	10	0	-103	7918.11	1	0	1	0.000	0.000	
10/12/09 02:54:16	59.985	3685.66	350	-223.015732	16	634	10	0	-103	7918.44	1	0	1	0.002	0.002	
10/12/09 02:54:18	59.986	3684.51	350	-223.015732	16	634.5	10	0	-103	7918.77	1	0	1	0.001	0.001	
10/12/09 02:54:20	59.987	3684.333	350	-223.015732	16	635	10	0	-103	7919.1	1	0	1	0.001	0.001	
10/12/09 02:54:22	59.99	3683.911	350	-223.015732	16	635.5	10	0	-103	7919.43	1	0	1	0.003	0.003	
10/12/09 02:54:24	59.986	3683.735	350	-223.015732	16	636	10	0	-103	7919.76	1	0	1	-0.004	0.004	
10/12/09 02:54:26	59.985	3684.208	350	-223.015732	16	636.5	10	0	-103	7920.09	1	0	1	-0.001	0.001	
10/12/09 02:54:28	59.984	3683.811	350	-223.015732	16	637	10	0	-103	7920.42	1	0	1	-0.001	0.001	
10/12/09 02:54:30	59.983	3683.473	350	-223.015732	16	637.5	10	0	-103	7920.75	1	0	1	-0.001	0.001	
10/12/09 02:54:32	59.982	3684.258	350	-223.015732	16	638	10	0	-103	7921.08	1	0	1	-0.001	0.001	
10/12/09 02:54:34	59.982	3684.884	350	-223.015732	16	638.5	10	0	-103	7921.41	1	0	1	0.000	0.000	
10/12/09 02:54:36	59.98	3685.092	350	-223.015732	16	639	10	0	-103	7921.74	1	0	1	-0.002	0.002	
10/12/09 02:54:38	59.978	3685.654	350	-223.015732	16	639.5	10	0	-103	7922.07	1	0	1	-0.002	0.002	
10/12/09 02:54:40	59.977	3685.087	350	-223.015732	16	640	10	0	-103	7922.4	1	0	1	-0.001	0.001	
10/12/09 02:54:42	59.975	3685.491	350	-223.015732	16	640.5	10	0	-103	7922.73	1	0	1	-0.002	0.002	
10/12/09 02:54:44	59.973	3685.196	350	-223.015732	16	641	10	0	-103	7923.06	1	0	1	-0.002	0.002	
10/12/09 02:54:46	59.975	3687.412	350	-223.015732	16	641.5	10	0	-103	7923.39	1	0	1	0.002	0.002	
10/12/09 02:54:48	59.976	3688.417	350	-223.015732	16	642	10	0	-103	7923.72	1	0	1	0.001	0.001	
10/12/09 02:54:50	59.976	3688.599	350	-223.015732	16	642.5	10	0	-103	7924.05	1	0	1	0.000	0.000	
10/12/09 02:54:52	59.979	3687.848	350	-223.015732	16	643	10	0	-103	7924.38	1	0	1	0.003	0.003	
10/12/09 02:54:54	59.982	3686.678	350	-223.015732	16	643.5	10	0	-103	7924.71	1	0	1	0.003	0.003	
10/12/09 02:54:56	59.979	3685.782	350	-223.015732	16	644	10	0	-103	7925.04	1	0	1	-0.003	0.003	
10/12/09 02:54:58	59.979	3684.89	350	-223.015732	16	644.5	10	0	-103	7925.37	1	0	1	0.000	0.000	
10/12/09 02:55:00	59.977	3685.143	350	-223.015732	16	645	10	0	-103	7925.7	1	0	1	-0.002	0.002	
10/12/09 02:55:02	59.977	3684.549	350	-223.015732	16	645.5	10	0	-103	7926.03	1	0	1	0.000	0.000	
10/12/09 02:55:04	59.978	3684.093	350	-223.015732	16	646	10	0	-103	7926.36	1	0	1	0.001	0.001	
10/12/09 02:55:06	59.978	3684.555	350	-223.015732	16	646.5	10	0	-103	7926.69	1	0	1	0.000	0.000	
10/12/09 02:55:08	59.978	3682.814	350	-223.015732	16	647	10	0	-103	7927.02	1	0	1	0.000	0.000	
10/12/09 02:55:10	59.979	3682.318	350	-223.015732	16	647.5	10	0	-103	7927.35	1	0	1	0.001	0.001	
10/12/09 02:55:12	59.983	3682.366	350	-223.015732	16	648	10	0	-103	7927.68	1	0	1	0.004	0.004	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 02:59:26	60.011	3679.932	350	-223.015732	16	711.5	10	0	-103	7969.59	1	1	1	0.001	0.001	
10/12/09 02:59:28	60.013	3679.138	350	-223.015732	16	712	10	0	-103	7969.92	1	1	1	0.002	0.002	
10/12/09 02:59:30	60.016	3678.469	350	-223.015732	16	712.5	10	0	-103	7970.25	1	1	1	0.003	0.003	
10/12/09 02:59:32	60.018	3678.499	350	-223.015732	16	713	10	0	-103	7970.58	1	1	1	0.002	0.002	
10/12/09 02:59:34	60.019	3678.456	350	-223.015732	16	713.5	10	0	-103	7970.91	1	1	1	0.001	0.001	
10/12/09 02:59:36	60.019	3677.615	350	-223.015732	16	714	10	0	-103	7971.24	1	1	1	0.000	0.000	
10/12/09 02:59:38	60.019	3677.446	350	-223.015732	16	714.5	10	0	-103	7971.57	1	1	1	0.000	0.000	
10/12/09 02:59:40	60.02	3677.431	350	-223.015732	16	715	10	0	-103	7971.9	1	1	1	0.001	0.001	
10/12/09 02:59:42	60.02	3677.451	350	-223.015732	16	715.5	10	0	-103	7972.23	1	1	1	0.000	0.000	
10/12/09 02:59:44	60.018	3677.315	350	-223.015732	16	716	10	0	-103	7972.56	1	1	1	-0.002	0.002	
10/12/09 02:59:46	60.018	3678.151	350	-223.015732	16	716.5	10	0	-103	7972.89	1	1	1	0.000	0.000	
10/12/09 02:59:48	60.016	3678.362	350	-223.015732	16	717	10	0	-103	7973.22	1	1	1	-0.002	0.002	
10/12/09 02:59:50	60.016	3678.874	350	-223.015732	16	717.5	10	0	-103	7973.55	1	1	1	0.000	0.000	
10/12/09 02:59:52	60.019	3680.771	350	-223.015732	16	718	10	0	-103	7973.88	1	1	1	0.003	0.003	
10/12/09 02:59:54	60.023	3681.058	350	-223.015732	16	718.5	10	0	-103	7974.21	1	1	1	0.004	0.004	
10/12/09 02:59:56	60.022	3680.353	350	-223.015732	16	719	10	0	-103	7974.54	1	1	1	-0.001	0.001	
10/12/09 02:59:58	60.018	3679.167	350	-223.015732	16	719.5	10	0	-103	7974.87	1	1	1	-0.004	0.004	
10/12/09 03:00:00	60.015	3679.553	350	-223.015732	16	720	10	0	-103	7975.2	1	1	1	-0.003	0.003	
10/12/09 03:00:02	60.016	3680.672	350	-223.015732	16	720.5	10	0	-103	7975.53	1	1	1	0.001	0.001	
10/12/09 03:00:04	60.017	3682.73	350	-223.015732	16	721	10	0	-103	7975.86	1	1	1	0.001	0.001	
10/12/09 03:00:06	60.015	3682.714	350	-223.015732	16	721.5	10	0	-103	7976.19	1	1	1	-0.002	0.002	
10/12/09 03:00:08	60.01	3681.915	350	-223.015732	16	722	10	0	-103	7976.52	1	1	1	-0.005	0.005	
10/12/09 03:00:10	60.004	3682.01	350	-223.015732	16	722.5	10	0	-103	7976.85	1	1	1	-0.006	0.006	
10/12/09 03:00:12	59.999	3682.483	350	-223.015732	16	723	10	0	-103	7977.18	1	0	1	-0.005	0.005	
10/12/09 03:00:14	59.995	3683.813	350	-223.015732	16	723.5	10	0	-103	7977.51	1	0	1	-0.004	0.004	
10/12/09 03:00:16	59.99	3685.306	350	-223.015732	16	724	10	0	-103	7977.84	1	0	1	-0.005	0.005	
10/12/09 03:00:18	59.982	3684.846	350	-223.015732	16	724.5	10	0	-103	7978.17	1	0	1	-0.008	0.008	
10/12/09 03:00:20	59.974	3684.643	350	-223.015732	16	725	10	0	-103	7978.5	1	0	1	-0.008	0.008	
10/12/09 03:00:22	59.97	3687.527	350	-223.015732	16	725.5	10	0	-103	7978.83	1	0	1	-0.004	0.004	
10/12/09 03:00:24	59.97	3689.404	350	-223.015732	16	726	10	0	-103	7979.16	1	0	1	0.000	0.000	
10/12/09 03:00:26	59.968	3692.287	350	-223.015732	16	726.5	10	0	-103	7979.49	1	0	1	-0.002	0.002	
10/12/09 03:00:28	59.968	3692.966	350	-223.015732	16	727	10	0	-103	7979.82	1	0	1	0.000	0.000	
10/12/09 03:00:30	59.968	3693.793	350	-223.015732	16	727.5	10	0	-103	7980.15	1	0	1	0.000	0.000	
10/12/09 03:00:32	59.972	3694.397	350	-223.015732	16	728	10	0	-103	7980.48	1	0	1	0.004	0.004	
10/12/09 03:00:34	59.967	3694.974	350	-223.015732	16	728.5	10	0	-103	7980.81	1	0	1	-0.005	0.005	
10/12/09 03:00:36	59.966	3697.407	350	-223.015732	16	729	10	0	-103	7981.14	1	0	1	-0.001	0.001	
10/12/09 03:00:38	59.964	3698.502	350	-223.015732	16	729.5	10	0	-103	7981.47	1	0	1	-0.002	0.002	
10/12/09 03:00:40	59.965	3698.617	350	-223.015732	16	730	10	0	-103	7981.8	1	0	1	0.001	0.001	
10/12/09 03:00:42	59.966	3698.992	350	-223.015732	16	730.5	10	0	-103	7982.13	1	0	1	0.001	0.001	
10/12/09 03:00:44	59.963	3699.85	350	-223.015732	16	731	10	0	-103	7982.46	1	0	1	-0.003	0.003	
10/12/09 03:00:46	59.963	3702.645	350	-223.015732	16	731.5	10	0	-103	7982.79	1	0	1	0.000	0.000	
10/12/09 03:00:48	59.965	3701.989	350	-223.015732	16	732	10	0	-103	7983.12	1	0	1	0.002	0.002	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:00:50	59.968	3702.218	350	-223.015732	16	732.5	10	0	-103	7983.45	1	0	1	0.003	0.003	
10/12/09 03:00:52	59.97	3704.023	350	-223.015732	16	733	10	0	-103	7983.78	1	0	1	0.002	0.002	
10/12/09 03:00:54	59.97	3703.365	350	-223.015732	16	733.5	10	0	-103	7984.11	1	0	1	0.000	0.000	
10/12/09 03:00:56	59.97	3702.988	350	-223.015732	16	734	10	0	-103	7984.44	1	0	1	0.000	0.000	
10/12/09 03:00:58	59.973	3703.814	350	-223.015732	16	734.5	10	0	-103	7984.77	1	0	1	0.003	0.003	
10/12/09 03:01:00	59.972	3704.899	350	-223.015732	16	735	10	0	-103	7985.1	1	0	1	-0.001	0.001	
10/12/09 03:01:02	59.976	3705.625	350	-223.015732	16	735.5	10	0	-103	7985.43	1	0	1	0.004	0.004	
10/12/09 03:01:04	59.975	3704.293	350	-223.015732	16	736	10	0	-103	7985.76	1	0	1	-0.001	0.001	
10/12/09 03:01:06	59.975	3702.094	350	-223.015732	16	736.5	10	0	-103	7986.09	1	0	1	0.000	0.000	
10/12/09 03:01:08	59.977	3701.944	350	-223.015732	16	737	10	0	-103	7986.42	1	0	1	0.002	0.002	
10/12/09 03:01:10	59.976	3703.142	350	-223.015732	16	737.5	10	0	-103	7986.75	1	0	1	-0.001	0.001	
10/12/09 03:01:12	59.976	3704.669	350	-223.015732	16	738	10	0	-103	7987.08	1	0	1	0.000	0.000	
10/12/09 03:01:14	59.974	3705.376	350	-223.015732	16	738.5	10	0	-103	7987.41	1	0	1	-0.002	0.002	
10/12/09 03:01:16	59.975	3705.662	350	-223.015732	16	739	10	0	-103	7987.74	1	0	1	0.001	0.001	
10/12/09 03:01:18	59.974	3705.855	350	-223.015732	16	739.5	10	0	-103	7988.07	1	0	1	-0.001	0.001	
10/12/09 03:01:20	59.974	3706.776	350	-223.015732	16	740	10	0	-103	7988.4	1	0	1	0.000	0.000	
10/12/09 03:01:22	59.976	3707.514	350	-223.015732	16	740.5	10	0	-103	7988.73	1	0	1	0.002	0.002	
10/12/09 03:01:24	59.977	3706.928	350	-223.015732	16	741	10		-103	7989.06	1	0	1	0.001	0.001	
10/12/09 03:01:26	59.979	3706.446	350	-223.015732	16	741.5	10	0	-103	7989.39	1	0	1	0.002	0.002	
10/12/09 03:01:28	59.981	3706.335	350	-223.015732	16	742	10	0	-103	7989.72	1	0	1	0.002	0.002	
10/12/09 03:01:30	59.983	3706.771	350	-223.015732	16	742.5	10	0	-103	7990.05	1	0	1	0.002	0.002	
10/12/09 03:01:32	59.985	3705.943	350	-223.015732	16	743	10	0	-103	7990.38	1	0	1	0.002	0.002	
10/12/09 03:01:34	59.983	3704.127	350	-223.015732	16	743.5	10	0	-103	7990.71	1	0	1	-0.002	0.002	
10/12/09 03:01:36	59.98	3704.777	350	-223.015732	16	744	10	0	-103	7991.04	1	0	1	-0.003	0.003	
10/12/09 03:01:38	59.979	3705.974	350	-223.015732	16	744.5	10	0	-103	7991.37	1	0	1	-0.001	0.001	
10/12/09 03:01:40	59.983	3705.968	350	-223.015732	16	745	10	0	-103	7991.7	1	0	1	0.004	0.004	
10/12/09 03:01:42	59.987	3705.356	350	-223.015732	16	745.5	10	0	-103	7992.03	1	0	1	0.004	0.004	
10/12/09 03:01:44	59.986	3704.683	350	-223.015732	16	746	10	0	-103	7992.36	1	0	1	-0.001	0.001	
10/12/09 03:01:46	59.984	3703.913	350	-223.015732	16	746.5	10	0	-103	7992.69	1	0	1	-0.002	0.002	
10/12/09 03:01:48	59.98	3704.361	350	-223.015732	16	747	10	0	-103	7993.02	1	0	1	-0.004	0.004	
10/12/09 03:01:50	59.982	3704.988	350	-223.015732	16	747.5	10	0	-103	7993.35	1	0	1	0.002	0.002	
10/12/09 03:01:52	59.984	3705.05	350	-223.015732	16	748	10	0	-103	7993.68	1	0	1	0.002	0.002	
10/12/09 03:01:54	59.985	3704.893	350	-223.015732	16	748.5	10	0	-103	7994.01	1	0	1	0.001	0.001	
10/12/09 03:01:56	59.987	3703.741	350	-223.015732	16	749	10	0	-103	7994.34	1	0	1	0.002	0.002	
10/12/09 03:01:58	59.989	3701.831	350	-223.015732	16	749.5	10	0	-103	7994.67	1	0	1	0.002	0.002	
10/12/09 03:02:00	59.992	3701.795	350	-223.015732	16	750	10	0	-103	7995	1	0	1	0.003	0.003	
10/12/09 03:02:02	59.996	3700.07	350	-223.015732	16	750.5	10	0	-103	7995.33	1	0	1	0.004	0.004	
10/12/09 03:02:04	59.999	3701.308	350	-223.015732	16	751	10	0	-103	7995.66	1	0	1	0.003	0.003	
10/12/09 03:02:06	59.997	3700.429	350	-223.015732	16	751.5	10	0	-103	7995.99	1	0	1	-0.002	0.002	
10/12/09 03:02:08	59.997	3700.913	350	-223.015732	16	752	10	0	-103	7996.32	1	0	1	0.000	0.000	
10/12/09 03:02:10	59.997	3700.541	350	-223.015732	16	752.5	10	0	-103	7996.65	1	0	1	0.000	0.000	
10/12/09 03:02:12	59.997	3699.927	350	-223.015732	16	753	10	0	-103	7996.98	1	0	1	0.000	0.000	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:02:14	59.996	3700.858	350	-223.015732	16	753.5	10	0	-103	7997.31	1	0	1	-0.001	0.001	
10/12/09 03:02:16	59.997	3700.549	350	-223.015732	16	754	10	0	-103	7997.64	1	0	1	0.001	0.001	
10/12/09 03:02:18	59.996	3700.614	350	-223.015732	16	754.5	10	0	-103	7997.97	1	0	1	-0.001	0.001	
10/12/09 03:02:20	59.998	3700.224	350	-223.015732	16	755	10	0	-103	7998.3	1	0	1	0.002	0.002	
10/12/09 03:02:22	60.003	3699.5	350	-223.015732	16	755.5	10	0	-103	7998.63	1	1	1	0.005	0.005	
10/12/09 03:02:24	60.009	3698.032	350	-223.015732	16	756	10		-103	7998.96	1	1	1	0.006	0.006	
10/12/09 03:02:26	60.01	3697.96	350	-223.015732	16	756.5	10	0	-103	7999.29	1	1	1	0.001	0.001	
10/12/09 03:02:28	60.008	3699.409	350	-223.015732	16	757	10	0	-103	7999.62	1	1	1	-0.002	0.002	
10/12/09 03:02:30	60.005	3699.241	350	-223.015732	16	757.5	10	0	-103	7999.95	1	1	1	-0.003	0.003	
10/12/09 03:02:32	60.004	3700.738	350	-223.015732	16	758	10	0	-103	8000.28	1	1	1	-0.001	0.001	
10/12/09 03:02:34	60.006	3701.11	350	-223.015732	16	758.5	10	0	-103	8000.61	1	1	1	0.002	0.002	
10/12/09 03:02:36	60.003	3701.238	350	-223.015732	16	759	10	0	-103	8000.94	1	1	1	-0.003	0.003	
10/12/09 03:02:38	60.001	3699.998	350	-223.015732	16	759.5	10	0	-103	8001.27	1	1	1	-0.002	0.002	
10/12/09 03:02:40	60.002	3700.22	350	-223.015732	16	760	10	0	-103	8001.6	1	1	1	0.001	0.001	
10/12/09 03:02:42	60.004	3701.823	350	-223.015732	16	760.5	10	0	-103	8001.93	1	1	1	0.002	0.002	
10/12/09 03:02:44	60.007	3702.554	350	-223.015732	16	761	10	0	-103	8002.26	1	1	1	0.003	0.003	
10/12/09 03:02:46	60.007	3702.276	350	-223.015732	16	761.5	10	0	-103	8002.59	1	1	1	0.000	0.000	
10/12/09 03:02:48	60.008	3701.026	350	-223.015732	16	762	10	0	-103	8002.92	1	1	1	0.001	0.001	
10/12/09 03:02:50	60.008	3701.923	350	-223.015732	16	762.5	10	0	-103	8003.25	1	1	1	0.000	0.000	
10/12/09 03:02:52	60.006	3702.943	350	-223.015732	16	763	10	0	-103	8003.58	1	1	1	-0.002	0.002	
10/12/09 03:02:54	60.006	3704.093	350	-223.015732	16	763.5	10	0	-103	8003.91	1	1	1	0.000	0.000	
10/12/09 03:02:56	60.006	3703.96	350	-223.015732	16	764	10	0	-103	8004.24	1	1	1	0.000	0.000	
10/12/09 03:02:58	60.005	3703.819	350	-223.015732	16	764.5	10	0	-103	8004.57	1	1	1	-0.001	0.001	
10/12/09 03:03:00	60	3704.455	350	-223.015732	16	765	10	0	-103	8004.9	1	0	1	-0.005	0.005	
10/12/09 03:03:02	59.999	3704.346	350	-223.015732	16	765.5	10	0	-103	8005.23	1	0	1	-0.001	0.001	
10/12/09 03:03:04	60	3705.329	350	-223.015732	16	766	10	0	-103	8005.56	1	0	1	0.001	0.001	
10/12/09 03:03:06	60	3704.93	350	-223.015732	16	766.5	10	0	-103	8005.89	1	0	1	0.000	0.000	
10/12/09 03:03:08	60.004	3704.405	350	-223.015732	16	767	10	0	-103	8006.22	1	1	1	0.004	0.004	
10/12/09 03:03:10	60.008	3703.675	350	-223.015732	16	767.5	10	0	-103	8006.55	1	1	1	0.004	0.004	
10/12/09 03:03:12	60.013	3702.748	350	-223.015732	16	768	10	0	-103	8006.88	1	1	1	0.005	0.005	
10/12/09 03:03:14	60.015	3702.669	350	-223.015732	16	768.5	10	0	-103	8007.21	1	1	1	0.002	0.002	
10/12/09 03:03:16	60.015	3703.017	350	-223.015732	16	769	10	0	-103	8007.54	1	1	1	0.000	0.000	
10/12/09 03:03:18	60.012	3703.416	350	-223.015732	16	769.5	10	0	-103	8007.87	1	1	1	-0.003	0.003	
10/12/09 03:03:20	60.009	3703.297	350	-223.015732	16	770	10	0	-103	8008.2	1	1	1	-0.003	0.003	
10/12/09 03:03:22	60.005	3705.189	350	-223.015732	16	770.5	10	0	-103	8008.53	1	1	1	-0.004	0.004	
10/12/09 03:03:24	60.008	3705.279	350	-223.015732	16	771	10	0	-103	8008.86	1	1	1	0.003	0.003	
10/12/09 03:03:26	60.011	3704.646	350	-223.015732	16	771.5	10	0	-103	8009.19	1	1	1	0.003	0.003	
10/12/09 03:03:28	60.011	3704.051	350	-223.015732	16	772	10	0	-103	8009.52	1	1	1	0.000	0.000	
10/12/09 03:03:30	60.013	3703.438	350	-223.015732	16	772.5	10	0	-103	8009.85	1	1	1	0.002	0.002	
10/12/09 03:03:32	60.016	3704.255	350	-223.015732	16	773	10	0	-103	8010.18	1	1	1	0.003	0.003	
10/12/09 03:03:34	60.018	3703.708	350	-223.015732	16	773.5	10	0	-103	8010.51	1	1	1	0.002	0.002	
10/12/09 03:03:36	60.018	3703.83	350	-223.015732	16	774	10	0	-103	8010.84	1	1	1	0.000	0.000	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta $$	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:03:38	60.019	3704.524	350	-223.015732	16	774.5	10	0	-103	8011.17	1	1	1	0.001	0.001	
10/12/09 03:03:40	60.018	3704.139	350	-223.015732	16	775	10	0	-103	8011.5	1	1	1	-0.001	0.001	
10/12/09 03:03:42	60.013	3704.27	350	-223.015732	16	775.5	10	0	-103	8011.83	1	1	1	-0.005	0.005	
10/12/09 03:03:44	60.011	3705.429	350	-223.015732	16	776	10	0	-103	8012.16	1	1	1	-0.002	0.002	
10/12/09 03:03:46	60.009	3705.942	350	-223.015732	16	776.5	10	0	-103	8012.49	1	1	1	-0.002	0.002	
10/12/09 03:03:48	60.009	3705.54	350	-223.015732	16	777	10	0	-103	8012.82	1	1	1	0.000	0.000	
10/12/09 03:03:50	60.008	3705.634	350	-223.015732	16	777.5	10	0	-103	8013.15	1	1	1	-0.001	0.001	
10/12/09 03:03:52	60.009	3705.749	350	-223.015732	16	778	10	0	-103	8013.48	1	1	1	0.001	0.001	
10/12/09 03:03:54	60.011	3707.267	350	-223.015732	16	778.5	10	0	-103	8013.81	1	1	1	0.002	0.002	
10/12/09 03:03:56	60.015	3706.945	350	-223.015732	16	779	10	0	-103	8014.14	1	1	1	0.004	0.004	
10/12/09 03:03:58	60.02	3706.63	350	-223.015732	16	779.5	10	0	-103	8014.47	1	1	1	0.005	0.005	
10/12/09 03:04:00	60.021	3705.655	350	-223.015732	16	780	10	0	-103	8014.8	1	1	1	0.001	0.001	
10/12/09 03:04:02	60.018	3703.895	350	-223.015732	16	780.5	10	0	-103	8015.13	1	1	1	-0.003	0.003	
10/12/09 03:04:04	60.017	3704.224	350	-223.015732	16	781	10	0	-103	8015.46	1	1	1	-0.001	0.001	
10/12/09 03:04:06	60.019	3703.887	350	-223.015732	16	781.5	10	0	-103	8015.79	1	1	1	0.002	0.002	
10/12/09 03:04:08	60.019	3704.648	350	-223.015732	16	782	10	0	-103	8016.12	1	1	1	0.000	0.000	
10/12/09 03:04:10	60.021	3704.795	350	-223.015732	16	782.5	10	0	-103	8016.45	1	1	1	0.002	0.002	
10/12/09 03:04:12	60.022	3704.167	350	-223.015732	16	783	10		-103	8016.78	1	1	1	0.001	0.001	
10/12/09 03:04:14	60.025	3702.764	350	-223.015732	16	783.5	10	0	-103	8017.11	1	1	1	0.003	0.003	
10/12/09 03:04:16	60.027	3702.008	350	-223.015732	16	784	10	0	-103	8017.44	1	1	1	0.002	0.002	
10/12/09 03:04:18	60.03	3700.36	350	-223.015732	16	784.5	10	0	-103	8017.77	1	1	1	0.003	0.003	
10/12/09 03:04:20	60.027	3701.063	350	-223.015732	16	785	10	0	-103	8018.1	1	1	1	-0.003	0.003	
10/12/09 03:04:22	60.023	3700.34	350	-223.015732	16	785.5	10	0	-103	8018.43	1	1	1	-0.004	0.004	
10/12/09 03:04:24	60.021	3699.369	350	-223.015732	16	786	10	0	-103	8018.76	1	1	1	-0.002	0.002	
10/12/09 03:04:26	60.023	3701.568	350	-223.015732	16	786.5	10	0	-103	8019.09	1	1	1	0.002	0.002	
10/12/09 03:04:28	60.023	3702.959	350	-223.015732	16	787	10	0	-103	8019.42	1	1	1	0.000	0.000	
10/12/09 03:04:30	60.02	3704.25	350	-223.015732	16	787.5	10	0	-103	8019.75	1	1	1	-0.003	0.003	
10/12/09 03:04:32	60.024	3703.621	350	-223.015732	16	788	10	0	-103	8020.08	1	1	1	0.004	0.004	
10/12/09 03:04:34	60.024	3703.374	350	-223.015732	16	788.5	10	0	-103	8020.41	1	1	1	0.000	0.000	
10/12/09 03:04:36	60.022	3703.036	350	-223.015732	16	789	10	0	-103	8020.74	1	1	1	-0.002	0.002	
10/12/09 03:04:38	60.022	3703.931	350	-223.015732	16	789.5	10	0	-103	8021.07	1	1	1	0.000	0.000	
10/12/09 03:04:40	60.024	3704.947	350	-223.015732	16	790	10	0	-103	8021.4	1	1	1	0.002	0.002	
10/12/09 03:04:42	60.025	3704.208	350	-223.015732	16	790.5	10	0	-103	8021.73	1	1	1	0.001	0.001	
10/12/09 03:04:44	60.023	3703.541	350	-223.015732	16	791	10	0	-103	8022.06	1	1	1	-0.002	0.002	
10/12/09 03:04:46	60.024	3703.16	350	-223.015732	16	791.5	10	0	-103	8022.39	1	1	1	0.001	0.001	
10/12/09 03:04:48	60.02	3703.397	350	-223.015732	16	792	10	0	-103	8022.72	1	1	1	-0.004	0.004	
10/12/09 03:04:50	60.018	3704.376	350	-223.015732	16	792.5	10	0	-103	8023.05	1	1	1	-0.002	0.002	
10/12/09 03:04:52	60.013	3705.441	350	-223.015732	16	793	10	0	-103	8023.38	1	1	1	-0.005	0.005	
10/12/09 03:04:54	60.008	3706.995	350	-223.015732	16	793.5	10	0	-103	8023.71	1	1	1	-0.005	0.005	
10/12/09 03:04:56	60.012	3710.072	350	-223.015732	16	794	10	0	-103	8024.04	1	1	1	0.004	0.004	
10/12/09 03:04:58	60.017	3707.971	350	-223.015732	16	794.5	10	0	-103	8024.37	1	1	1	0.005	0.005	
10/12/09 03:05:00	60.019	3707.767	350	-223.015732	16	795	10	0	-103	8024.7	1	1	1	0.002	0.002	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:05:02	60.019	3707.609	350	-223.015732	16	795.5	10	0	-103	8025.03	1	1	1	0.000	0.000	
10/12/09 03:05:04	60.015	3708.831	350	-223.015732	16	796	10	0	-103	8025.36	1	1	1	-0.004	0.004	
10/12/09 03:05:06	60.016	3709.465	350	-223.015732	16	796.5	10	0	-103	8025.69	1	1	1	0.001	0.001	
10/12/09 03:05:08	60.015	3709.813	350	-223.015732	16	797	10	0	-103	8026.02	1	1	1	-0.001	0.001	
10/12/09 03:05:10	60.016	3709.817	350	-223.015732	16	797.5	10	0	-103	8026.35	1	1	1	0.001	0.001	
10/12/09 03:05:12	60.014	3709.99	350	-223.015732	16	798	10		-103	8026.68	1	1	1	-0.002	0.002	
10/12/09 03:05:14	60.016	3709.094	350	-223.015732	16	798.5	10	0	-103	8027.01	1	1	1	0.002	0.002	
10/12/09 03:05:16	60.018	3709.642	350	-223.015732	16	799	10	0	-103	8027.34	1	1	1	0.002	0.002	
10/12/09 03:05:18	60.019	3709.812	350	-223.015732	16	799.5	10	0	-103	8027.67	1	1	1	0.001	0.001	
10/12/09 03:05:20	60.016	3709.933	350	-223.015732	16	800	10	0	-103	8028	1	1	1	-0.003	0.003	
10/12/09 03:05:22	60.014	3710.677	350	-223.015732	16	800.5	10	0	-103	8028.33	1	1	1	-0.002	0.002	
10/12/09 03:05:24	60.014	3710.591	350	-223.015732	16	801	10	0	-103	8028.66	1	1	1	0.000	0.000	
10/12/09 03:05:26	60.018	3709.354	350	-223.015732	16	801.5	10	0	-103	8028.99	1	1	1	0.004	0.004	
10/12/09 03:05:28	60.022	3707.696	350	-223.015732	16	802	10	0	-103	8029.32	1	1	1	0.004	0.004	
10/12/09 03:05:30	60.023	3707.38	350	-223.015732	16	802.5	10	0	-103	8029.65	1	1	1	0.001	0.001	
10/12/09 03:05:32	60.024	3707.12	350	-223.015732	16	803	10	0	-103	8029.98	1	1	1	0.001	0.001	
10/12/09 03:05:34	60.026	3706.99	350	-223.015732	16	803.5	10	0	-103	8030.31	1	1	1	0.002	0.002	
10/12/09 03:05:36	60.026	3705.848	350	-223.015732	16	804	10	0	-103	8030.64	1	1	1	0.000	0.000	
10/12/09 03:05:38	60.024	3704.185	350	-223.015732	16	804.5	10	0	-103	8030.97	1	1	1	-0.002	0.002	
10/12/09 03:05:40	60.022	3704.406	350	-223.015732	16	805	10	0	-103	8031.3	1	1	1	-0.002	0.002	
10/12/09 03:05:42	60.02	3704.963	350	-223.015732	16	805.5	10	0	-103	8031.63	1	1	1	-0.002	0.002	
10/12/09 03:05:44	60.019	3706.567	350	-223.015732	16	806	10	0	-103	8031.96	1	1	1	-0.001	0.001	
10/12/09 03:05:46	60.022	3705.516	350	-223.015732	16	806.5	10	0	-103	8032.29	1	1	1	0.003	0.003	
10/12/09 03:05:48	60.025	3704.869	350	-223.015732	16	807	10	0	-103	8032.62	1	1	1	0.003	0.003	
10/12/09 03:05:50	60.028	3704.428	350	-223.015732	16	807.5	10	0	-103	8032.95	1	1	1	0.003	0.003	
10/12/09 03:05:52	60.03	3704.773	350	-223.015732	16	808	10	0	-103	8033.28	1	1	1	0.002	0.002	
10/12/09 03:05:54	60.031	3703.532	350	-223.015732	16	808.5	10	0	-103	8033.61	1	1	1	0.001	0.001	
10/12/09 03:05:56	60.029	3702.686	350	-223.015732	16	809	10	0	-103	8033.94	1	1	1	-0.002	0.002	
10/12/09 03:05:58	60.026	3702.093	350	-223.015732	16	809.5	10	0	-103	8034.27	1	1	1	-0.003	0.003	
10/12/09 03:06:00	60.026	3703.169	350	-223.015732	16	810	10	0	-103	8034.6	1	1	1	0.000	0.000	
10/12/09 03:06:02	60.029	3703.676	350	-223.015732	16	810.5	10	0	-103	8034.93	1	1	1	0.003	0.003	
10/12/09 03:06:04	60.03	3701.52	350	-223.015732	16	811	10	0	-103	8035.26	1	1	1	0.001	0.001	
10/12/09 03:06:06	60.033	3700.106	350	-223.015732	16	811.5	10	0	-103	8035.59	1	1	1	0.003	0.003	
10/12/09 03:06:08	60.03	3698.222	350	-223.015732	16	812	10	0	-103	8035.92	1	1	1	-0.003	0.003	
10/12/09 03:06:10	60.022	3698.009	350	-223.015732	16	812.5	10	0	-103	8036.25	1	1	1	-0.008	0.008	
10/12/09 03:06:12	60.016	3700.28	350	-223.015732	16	813	10	0	-103	8036.58	1	1	1	-0.006	0.006	
10/12/09 03:06:14	60.019	3703.192	350	-223.015732	16	813.5	10	0	-103	8036.91	1	1	1	0.003	0.003	
10/12/09 03:06:16	60.03	3703.815	350	-223.015732	16	814	10	0	-103	8037.24	1	1	1	0.011	0.011	
10/12/09 03:06:18	60.028	3701.863	350	-223.015732	16	814.5	10	0	-103	8037.57	1	1	1	-0.002	0.002	
10/12/09 03:06:20	60.021	3699.956	350	-223.015732	16	815	10	0	-103	8037.9	1	1	1	-0.007	0.007	
10/12/09 03:06:22	60.015	3700.816	350	-223.015732	16	815.5	10	0	-103	8038.23	1	1	1	-0.006	0.006	
10/12/09 03:06:24	60.015	3703.802	350	-223.015732	16	816	10	0	-103	8038.56	1	1	1	0.000	0.000	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:06:26	60.012	3706.943	350	-223.015732	16	816.5	10	0	-103	8038.89	1	1	1	-0.003	0.003	
10/12/09 03:06:28	60.011	3708.527	350	-223.015732	16	817	10	0	-103	8039.22	1	1	1	-0.001	0.001	
10/12/09 03:06:30	60.014	3707.49	350	-223.015732	16	817.5	10	0	-103	8039.55	1	1	1	0.003	0.003	
10/12/09 03:06:32	60.013	3707.647	350	-223.015732	16	818	10	0	-103	8039.88	1	1	1	-0.001	0.001	
10/12/09 03:06:34	60.014	3706.991	350	-223.015732	16	818.5	10	0	-103	8040.21	1	1	1	0.001	0.001	
10/12/09 03:06:36	60.016	3707.495	350	-223.015732	16	819	10	0	-103	8040.54	1	1	1	0.002	0.002	
10/12/09 03:06:38	60.016	3705.584	350	-223.015732	16	819.5	10	0	-103	8040.87	1	1	1	0.000	0.000	
10/12/09 03:06:40	60.015	3705.398	350	-223.015732	16	820	10	0	-103	8041.2	1	1	1	-0.001	0.001	
10/12/09 03:06:42	60.013	3707.12	350	-223.015732	16	820.5	10	0	-103	8041.53	1	1	1	-0.002	0.002	
10/12/09 03:06:44	60.007	3709.144	350	-223.015732	16	821	10	0	-103	8041.86	1	1	1	-0.006	0.006	
10/12/09 03:06:46	59.997	3708.99	350	-223.015732	16	821.5	10	0	-103	8042.19	1	0	1	-0.010	0.010	
10/12/09 03:06:48	59.994	3708.291	350	-223.015732	16	822	10	0	-103	8042.52	1	0	1	-0.003	0.003	
10/12/09 03:06:50	59.993	3706.193	350	-223.015732	16	822.5	10	0	-103	8042.85	1	0	1	-0.001	0.001	
10/12/09 03:06:52	59.99	3707.304	350	-223.015732	16	823	10	0	-103	8043.18	1	0	1	-0.003	0.003	
10/12/09 03:06:54	59.993	3707.903	350	-223.015732	16	823.5	10	0	-103	8043.51	1	0	1	0.003	0.003	
10/12/09 03:06:56	59.994	3706.76	350	-223.015732	16	824	10	0	-103	8043.84	1	0	1	0.001	0.001	
10/12/09 03:06:58	59.993	3706.921	350	-223.015732	16	824.5	10	0	-103	8044.17	1	0	1	-0.001	0.001	
10/12/09 03:07:00	59.994	3706.683	350	-223.015732	16	825	10	0	-103	8044.5	1	0	1	0.001	0.001	
10/12/09 03:07:02	59.993	3706.888	350	-223.015732	16	825.5	10	0	-103	8044.83	1	0	1	-0.001	0.001	
10/12/09 03:07:04	59.996	3704.934	350	-223.015732	16	826	10	0	-103	8045.16	1	0	1	0.003	0.003	
10/12/09 03:07:06	59.988	3705.678	350	-223.015732	16	826.5	10	0	-103	8045.49	1	0	1	-0.008	0.008	
10/12/09 03:07:08	59.985	3706.481	350	-223.015732	16	827	10	0	-103	8045.82	1	0	1	-0.003	0.003	
10/12/09 03:07:10	59.983	3707.071	350	-223.015732	16	827.5	10	0	-103	8046.15	1	0	1	-0.002	0.002	
10/12/09 03:07:12	59.982	3706.696	350	-223.015732	16	828	10	0	-103	8046.48	1	0	1	-0.001	0.001	
10/12/09 03:07:14	59.98	3707.479	350	-223.015732	16	828.5	10	0	-103	8046.81	1	0	1	-0.002	0.002	
10/12/09 03:07:16	59.977	3708.246	350	-223.015732	16	829	10	0	-103	8047.14	1	0	1	-0.003	0.003	
10/12/09 03:07:18	59.981	3709.436	350	-223.015732	16	829.5	10	0	-103	8047.47	1	0	1	0.004	0.004	
10/12/09 03:07:20	59.982	3710.419	350	-223.015732	16	830	10	0	-103	8047.8	1	0	1	0.001	0.001	
10/12/09 03:07:22	59.978	3710.134	350	-223.015732	16	830.5	10	0	-103	8048.13	1	0	1	-0.004	0.004	
10/12/09 03:07:24	59.98	3708.708	350	-223.015732	16	831	10	0	-103	8048.46	1	0	1	0.002	0.002	
10/12/09 03:07:26	59.98	3710.024	350	-223.015732	16	831.5	10	0	-103	8048.79	1	0	1	0.000	0.000	
10/12/09 03:07:28	59.977	3709.192	350	-223.015732	16	832	10	0	-103	8049.12	1	0	1	-0.003	0.003	
10/12/09 03:07:30	59.98	3708.335	350	-223.015732	16	832.5	10	0	-103	8049.45	1	0	1	0.003	0.003	
10/12/09 03:07:32	59.983	3709.399	350	-223.015732	16	833	10	0	-103	8049.78	1	0	1	0.003	0.003	
10/12/09 03:07:34	59.984	3707.911	350	-223.015732	16	833.5	10	0	-103	8050.11	1	0	1	0.001	0.001	
10/12/09 03:07:36	59.981	3709.004	350	-223.015732	16	834	10	0	-103	8050.44	1	0	1	-0.003	0.003	
10/12/09 03:07:38	59.981	3707.638	350	-223.015732	16	834.5	10	0	-103	8050.77	1	0	1	0.000	0.000	
10/12/09 03:07:40	59.98	3709.689	350	-223.015732	16	835	10	0	-103	8051.1	1	0	1	-0.001	0.001	
10/12/09 03:07:42	59.981	3708.945	350	-223.015732	16	835.5	10	0	-103	8051.43	1	0	1	0.001	0.001	
10/12/09 03:07:44	59.981	3706.541	350	-223.015732	16	836	10	0	-103	8051.76	1	0	1	0.000	0.000	
10/12/09 03:07:46	59.981	3711.256	350	-223.015732	16	836.5	10	0	-103	8052.09	1	0	1	0.000	0.000	
10/12/09 03:07:48	59.98	3711.362	350	-223.015732	16	837	10	0	-103	8052.42	1	0	1	-0.001	0.001	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting $\mathrm{MW} / 0.1 \mathrm{~Hz}$	BA Load MW	Event DetectionRow306473307	Recovery Target Freq: 60.000 2:27:26 2:33:00 $05: 34$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
10/12/09 03:07:50	59.978	3712.303	350	-223.015732	16	837.5	10	0	-103	8052.75	1	0	1	-0.002	0.002	
10/12/09 03:07:52	59.978	3712.012	350	-223.015732	16	838	10	0	-103	8053.08	1	0	1	0.000	0.000	
10/12/09 03:07:54	59.979	3711.703	350	-223.015732	16	838.5	10	0	-103	8053.41	1	0	1	0.001	0.001	
10/12/09 03:07:56	59.978	3712.093	350	-223.015732	16	839	10	0	-103	8053.74	1	0	1	-0.001	0.001	
10/12/09 03:07:58	59.976	3713.992	350	-223.015732	16				-103	8054.07	1	0	1	-0.002	0.002	
10/12/09 03:08:00	59.976	3714.612	350	-223.015732	16				-103	8054.4	1	0	1	0.000	0.000	
10/12/09 03:08:02	59.975	3715.083	350	-223.015732	16				-103	8054.73	1	0	1	-0.001	0.001	
10/12/09 03:08:04	59.976	3715.323	350	-223.015732	16				-103	8055.06	1	0	1	0.001	0.001	
10/12/09 03:08:06	59.975	3714.794	350	-223.015732	16				-103	8055.39	1	0	1	-0.001	0.001	
10/12/09 03:08:08	59.979	3714.717	350	-223.015732	16				-103	8055.72	1	0	1	0.004	0.004	
10/12/09 03:08:10	59.978	3715.161	350	-223.015732	16				-103	8056.05	1	0	1	-0.001	0.001	
10/12/09 03:08:12	59.975	3715.001	350	-223.015732	16				-103	8056.38	1	0	1	-0.003	0.003	
10/12/09 03:08:14	59.976	3713.996	350	-223.015732	16				-103	8056.71	1	0	1	0.001	0.001	
10/12/09 03:08:16	59.981	3714.063	350	-223.015732	16				-103	8057.04	1	0	1	0.005	0.005	
10/12/09 03:08:18	59.977	3714.335	350	-223.015732	16				-103	8057.37	1	0	1	-0.004	0.004	
10/12/09 03:08:20	59.975	3715.631	350	-223.015732	16				-103	8057.7	1	0	1	-0.002	0.002	
10/12/09 03:08:22	59.976	3715.688	350	-223.015732	16				-103	8058.03	1	0	1	0.001	0.001	
10/12/09 03:08:24	59.979	3715.567	350	-223.015732	16				-103	8058.36	1	0	1	0.003	0.003	
10/12/09 03:08:26	59.98	3715.725	350	-223.015732	16				-103	8058.69	1	0	1	0.001	0.001	
10/12/09 03:08:28	59.979	3714.848	350	-223.015732	16				-103	8059.02	1	0	1	-0.001	0.001	
10/12/09 03:08:30	59.978	3713.142	350	-223.015732	16				-103	8059.35	1	0	1	-0.001	0.001	
10/12/09 03:08:32	59.979	3713.358	350	-223.015732	16				-103	8059.68	1	0	1	0.001	0.001	
10/12/09 03:08:34	59.982	3712.275	350	-223.015732	16				-103	8060.01	1	0	1	0.003	0.003	
10/12/09 03:08:36	59.983	3712.619	350	-223.015732	16				-103	8060.34	1	0	1	0.001	0.001	
10/12/09 03:08:38	59.987	3712.153	350	-223.015732	16				-103	8060.67	1	0	1	0.004	0.004	
10/12/09 03:08:40	59.988	3710.05	350	-223.015732	16				-103	8061	1	0	1	0.001	0.001	
10/12/09 03:08:42	59.984	3709.082	350	-223.015732	16				-103	8061.33	1	0	1	-0.004	0.004	
10/12/09 03:08:44	59.98	3710.472	350	-223.015732	16				-103	8061.66	1	0	1	-0.004	0.004	
10/12/09 03:08:46	59.979	3710.624	350	-223.015732	16				-103	8061.99	1	0	1	-0.001	0.001	
10/12/09 03:08:48	59.98	3710.946	350	-223.015732	16				-103	8062.32	1	0	1	0.001	0.001	
10/12/09 03:08:50	59.979	3710.2	350	-223.015732	16				-103	8062.65	1	0	1	-0.001	0.001	
10/12/09 03:08:52	59.978	3710.475	350	-223.015732	16				-103	8062.98	1	0	1	-0.001	0.001	
10/12/09 03:08:54	59.975	3709.462	350	-223.015732	16				-103	8063.31	1	0	1	-0.003	0.003	
10/12/09 03:08:56	59.979	3710.803	350	-223.015732	16				-103	8063.64	1	0	1	0.004	0.004	
10/12/09 03:08:58	59.982	3709.286	350	-223.015732	16				-103	8063.97	1	0	1	0.003	0.003	
10/12/09 03:09:00	59.983	3710.573	350	-223.015732	16				-103	8064.3	1	0	1	0.001	0.001	
10/12/09 03:09:02	59.983	3709.525	350	-223.015732	16				-103	8064.63	1	0	1	0.000	0.000	
10/12/09 03:09:04	59.985	3708.371	350	-223.015732	16				-103	8064.96	1	0	1	0.002	0.002	
10/12/09 03:09:06	59.99	3708.527	350	-223.015732	16				-103	8065.29	1	0	1	0.005	0.005	
10/12/09 03:09:08	59.987	3706.512	350	-223.015732	16				-103	8065.62	1	0	1	-0.003	0.003	
10/12/09 03:09:10	59.984	3707.49	350	-223.015732	16				-103	8065.95	1	0	1	-0.003	0.003	
10/12/09 03:09:12	59.976	3708.962	350	-223.015732	16				-103	8066.28	1	0	1	-0.008	0.008	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	```Pumped Hydro Load (-) Gen (+) MW```	Not Used	Transferred Frequency Response $\operatorname{Rec}(-) \operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event DetectionRow306473307	Recovery Target Freq: 60.000 2:27:26 2:33:00 $05: 34$	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.126$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$
10/12/09 03:09:14	59.979	3709.894	350	-223.015732	16				-103	8066.61	1	0	1	0.003	0.003	
10/12/09 03:09:16	59.985	3712.303	350	-223.015732	16				-103	8066.94	1	0	1	0.006	0.006	
10/12/09 03:09:18	59.983	3711.35	350	-223.015732	16				-103	8067.27	1	0	1	-0.002	0.002	
10/12/09 03:09:20	59.979	3711.627	350	-223.015732	16				-103	8067.6	1	0	1	-0.004	0.004	
10/12/09 03:09:22	59.981	3712.076	350	-223.015732	16				-103	8067.93	1	0	1	0.002	0.002	
10/12/09 03:09:24	59.978	3712.393	350	-223.015732	16				-103	8068.26	1	0	1	-0.003	0.003	
10/12/09 03:09:26	59.975	3712.999	350	-223.015732	16				-103	8068.59	1	0	1	-0.003	0.003	
10/12/09 03:09:28	59.978	3713.51	350	-223.015732	16				-103	8068.92	1	0	1	0.003	0.003	
10/12/09 03:09:30	59.989	3716.626	350	-223.015732	16				-103	8069.25	1	0	1	0.011	0.011	
10/12/09 03:09:32	59.999	3715.443	350	-223.015732	16				-103	8069.58	1	0	1	0.010	0.010	
10/12/09 03:09:34	59.994	3712.092	350	-223.015732	16				-103	8069.91	1	0	1	-0.005	0.005	
10/12/09 03:09:36	59.989	3713.906	350	-223.015732	16				-103	8070.24	1	0	1	-0.005	0.005	
10/12/09 03:09:38	59.986	3714.894	350	-223.015732	16				-103	8070.57	1	0	1	-0.003	0.003	
10/12/09 03:09:40	59.984	3714.953	350	-223.015732	16				-103	8070.9	1	0	1	-0.002	0.002	
10/12/09 03:09:42	59.983	3716.122	350	-223.015732	16				-103	8071.23	1	0	1	-0.001	0.001	
10/12/09 03:09:44	59.982	3716.308	350	-223.015732	16				-103	8071.56	1	0	1	-0.001	0.001	
10/12/09 03:09:46	59.98	3715.438	350	-223.015732	16				-103	8071.89	1	0	1	-0.002	0.002	
10/12/09 03:09:48	59.99	3714.764	350	-223.015732	16				-103	8072.22	1	0	1	0.010	0.010	
10/12/09 03:09:50	59.995	3714.714	350	-223.015732	16				-103	8072.55	1	0	1	0.005	0.005	
10/12/09 03:09:52	59.995	3715.068	350	-223.015732	16				-103	8072.88	1	0	1	0.000	0.000	
10/12/09 03:09:54	59.99	3715.927	350	-223.015732	16				-103	8073.21	1	0	1	-0.005	0.005	
10/12/09 03:09:56	59.989	3715.791	350	-223.015732	16				-103	8073.54	1	0	1	-0.001	0.001	
10/12/09 03:09:58	59.991	3716.285	350	-223.015732	16				-103	8073.87	1	0	1	0.002	0.002	
10/12/09 03:10:00	59.996	3715.324	350	-223.015732	16				-103	8074.2	1	0	1	0.005	0.005	
10/12/09 03:10:02	60	3714.46	350	-223.015732	16				-103	8074.53	1	0	1	0.004	0.004	
10/12/09 03:10:04	60.002	3711.708	350	-223.015732	16				-103	8074.86	1	1	1	0.002	0.002	
10/12/09 03:10:06	60.004	3712.698	350	-223.015732	16				-103	8075.19	1	1	1	0.002	0.002	
10/12/09 03:10:08	60.004	3712.851	350	-223.015732	16				-103	8075.52	1	1	1	0.000	0.000	
10/12/09 03:10:10	60.002	3713.362	350	-223.015732	16				-103	8075.85	1	1	1	-0.002	0.002	
10/12/09 03:10:12	59.999	3716.641	350	-223.015732	16				-103	8076.18	1	0	1	-0.003	0.003	
10/12/09 03:10:14	59.998	3718.292	350	-223.015732	16				-103	8076.51	1	0	1	-0.001	0.001	
10/12/09 03:10:16	59.995	3719.079	350	-223.015732	16				-103	8076.84	1	0	1	-0.003	0.003	
10/12/09 03:10:18	59.996	3718.233	350	-223.015732	16				-103	8077.17	1	0	1	0.001	0.001	
10/12/09 03:10:20	60.001	3717.815	350	-223.015732	16				-103	8077.5	1	1	1	0.005	0.005	
10/12/09 03:10:22	60.002	3717.889	350	-223.015732	16				-103	8077.83	1	1	1	0.001	0.001	
10/12/09 03:10:24	60.001	3718.56	350	-223.015732	16				-103	8078.16	1	1	1	-0.001	0.001	
10/12/09 03:10:26	60.003	3718.195	350	-223.015732	16				-103	8078.49	1	1	1	0.002	0.002	
10/12/09 03:10:28	60.005	3719.021	350	-223.015732	16				-103	8078.82	1	1	1	0.002	0.002	
10/12/09 03:10:30	60.004	3718.821	350	-223.015732	16				-103	8079.15	1	1	1	-0.001	0.001	
10/12/09 03:10:32	60.004	3719.897	350	-223.015732	16				-103	8079.48	1	1	1	0.000	0.000	
10/12/09 03:10:34	60.004	3719.299	350	-223.015732	16				-103	8079.81	1	1	1	0.000	0.000	
10/12/09 03:10:36	60.006	3719.643	350	-223.015732	16				-103	8080.14	1	1	1	0.002	0.002	

Time (T)	Hz	Net Actual Interchang MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:10:38	60.003	3719.527	350	-223.015732	16				-103	8080.47	1	1	1	-0.003	0.003	
10/12/09 03:10:40	60.005	3719.731	350	-223.015732	16				-103	8080.8	1	1	1	0.002	0.002	
10/12/09 03:10:42	60.006	3720.279	350	-223.015732	16				-103	8081.13	1	1	1	0.001	0.001	
10/12/09 03:10:44	60.009	3718.58	350	-223.015732	16				-103	8081.46	1	1	1	0.003	0.003	
10/12/09 03:10:46	60.009	3718.976	350	-223.015732	16				-103	8081.79	1	1	1	0.000	0.000	
10/12/09 03:10:48	60.01	3718.982	350	-223.015732	16				-103	8082.12	1	1	1	0.001	0.001	
10/12/09 03:10:50	60.009	3720.034	350	-223.015732	16				-103	8082.45	1	1	1	-0.001	0.001	
10/12/09 03:10:52	60.013	3720.609	350	-223.015732	16				-103	8082.78	1	1	1	0.004	0.004	
10/12/09 03:10:54	60.015	3720.811	350	-223.015732	16				-103	8083.11	1	1	1	0.002	0.002	
10/12/09 03:10:56	60.014	3721.239	350	-223.015732	16				-103	8083.44	1	1	1	-0.001	0.001	
10/12/09 03:10:58	60.009	3720.38	350	-223.015732	16				-103	8083.77	1	1	1	-0.005	0.005	
10/12/09 03:11:00	60.009	3719.447	350	-223.015732	16				-103	8084.1	1	1	1	0.000	0.000	
10/12/09 03:11:02	60.008	3720.807	350	-223.015732	16				-103	8084.43	1	1	1	-0.001	0.001	
10/12/09 03:11:04	60.011	3721.272	350	-223.015732	16				-103	8084.76	1	1	1	0.003	0.003	
10/12/09 03:11:06	60.01	3720.592	350	-223.015732	16				-103	8085.09	1	1	1	-0.001	0.001	
10/12/09 03:11:08	60.009	3721.245	350	-223.015732	16				-103	8085.42	1	1	1	-0.001	0.001	
10/12/09 03:11:10	60.013	3721.594	350	-223.015732	16				-103	8085.75	1	1	1	0.004	0.004	
10/12/09 03:11:12	60.013	3722.176	350	-223.015732	16				-103	8086.08	1	1	1	0.000	0.000	
10/12/09 03:11:14	60.014	3721.999	350	-223.015732	16				-103	8086.41	1	1	1	0.001	0.001	
10/12/09 03:11:16	60.014	3721.646	350	-223.015732	16				-103	8086.74	1	1	1	0.000	0.000	
10/12/09 03:11:18	60.012	3721.678	350	-223.015732	16				-103	8087.07	1	1	1	-0.002	0.002	
10/12/09 03:11:20	60.01	3720.86	350	-223.015732	16				-103	8087.4	1	1	1	-0.002	0.002	
10/12/09 03:11:22	60.011	3721.645	350	-223.015732	16				-103	8087.73	1	1	1	0.001	0.001	
10/12/09 03:11:24	60.007	3723.816	350	-223.015732	16				-103	8088.06	1	1	1	-0.004	0.004	
10/12/09 03:11:26	60.003	3725.07	350	-223.015732	16				-103	8088.39	1	1	1	-0.004	0.004	
10/12/09 03:11:28	60.001	3724.656	350	-223.015732	16				-103	8088.72	1	1	1	-0.002	0.002	
10/12/09 03:11:30	60	3724.869	350	-223.015732	16				-103	8089.05	1	0	1	-0.001	0.001	
10/12/09 03:11:32	59.998	3724.661	350	-223.015732	16				-103	8089.38	1	0	1	-0.002	0.002	
10/12/09 03:11:34	59.998	3723.696	350	-223.015732	16				-103	8089.71	1	0	1	0.000	0.000	
10/12/09 03:11:36	59.999	3723.58	350	-223.015732	16				-103	8090.04	1	0	1	0.001	0.001	
10/12/09 03:11:38	60.002	3723.405	350	-223.015732	16				-103	8090.37	1	1	1	0.003	0.003	
10/12/09 03:11:40	60.003	3721.879	350	-223.015732	16				-103	8090.7	1	1	1	0.001	0.001	
10/12/09 03:11:42	60.003	3722.401	350	-223.015732	16				-103	8091.03	1	1	1	0.000	0.000	
10/12/09 03:11:44	59.999	3722.906	350	-223.015732	16				-103	8091.36	1	0	1	-0.004	0.004	
10/12/09 03:11:46	59.998	3724.142	350	-223.015732	16				-103	8091.69	1	0	1	-0.001	0.001	
10/12/09 03:11:48	60.001	3723.65	350	-223.015732	16				-103	8092.02	1	1	1	0.003	0.003	
10/12/09 03:11:50	59.995	3723.201	350	-223.015732	16				-103	8092.35	1	0	1	-0.006	0.006	
10/12/09 03:11:52	59.989	3723.639	350	-223.015732	16				-103	8092.68	1	0	1	-0.006	0.006	
10/12/09 03:11:54	59.987	3723.881	350	-223.015732	16				-103	8093.01	1	0	1	-0.002	0.002	
10/12/09 03:11:56	59.988	3724.654	350	-223.015732	16				-103	8093.34	1	0	1	0.001	0.001	
10/12/09 03:11:58	59.988	3725.361	350	-223.015732	16				-103	8093.67	1	0	1	0.000	0.000	
10/12/09 03:12:00	59.99	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.002	0.002	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:12:02	59.999	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.009	0.009	
10/12/09 03:12:04	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:12:06	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:12:08	60.0005	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:12:10	59.998	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:12:12	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:14	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:16	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:18	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:20	59.995	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:22	59.994	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:24	59.993	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:26	59.992	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:28	59.991	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:30	59.99	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:12:32	59.991	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:34	59.992	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:36	59.993	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:38	59.994	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:40	59.995	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:42	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:44	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:46	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:48	59.9965	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:50	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:12:52	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:54	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:56	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:12:58	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:13:00	59.999	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.002	0.002	
10/12/09 03:13:02	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:13:04	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:06	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:08	60.004	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.003	0.003	
10/12/09 03:13:10	60.007	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.003	0.003	
10/12/09 03:13:12	60.009	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:13:14	60.011	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:13:16	60.0085	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.003	0.003	
10/12/09 03:13:18	60.006	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:13:20	60.007	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:13:22	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:13:24	60.01	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	

Time (T)	Hz	Net Actual Interchang ϵ MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:13:26	60.012	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:13:28	60.012	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:30	60.012	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:32	60.01	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:13:34	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:13:36	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:38	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:40	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:42	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:44	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:46	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:48	60.007	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:13:50	60.006	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:13:52	60.005	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:13:54	60.004	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:13:56	60.004	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:13:58	60.004	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:14:00	60.0025	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:14:02	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:14:04	59.9995	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:14:06	59.998	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:14:08	59.9965	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:14:10	59.995	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:14:12	59.995	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:14	59.995	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:16	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:14:18	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:14:20	59.995	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:14:22	59.993	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:14:24	59.9925	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:26	59.992	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:28	59.9905	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:14:30	59.989	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:14:32	59.99	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:14:34	59.991	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:14:36	59.989	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:14:38	59.987	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:14:40	59.9875	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:42	59.988	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:44	59.988	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:46	59.988	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:48	59.987	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response Rec (-) Del (+) MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:14:50	59.986	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:14:52	59.9855	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:54	59.985	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:56	59.9845	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:14:58	59.984	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:15:00	59.984	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:15:02	59.984	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:15:04	59.985	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:15:06	59.986	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:15:08	59.987	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:15:10	59.988	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:15:12	59.992	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.004	0.004	
10/12/09 03:15:14	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.004	0.004	
10/12/09 03:15:16	59.9975	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:15:18	59.999	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.002	0.002	
10/12/09 03:15:20	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:15:22	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:15:24	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:15:26	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:15:28	60.0055	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.003	0.003	
10/12/09 03:15:30	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:15:32	60.01	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:15:34	60.012	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:15:36	60.0105	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:15:38	60.009	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:15:40	60.01	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:15:42	60.011	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:15:44	60.012	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:15:46	60.013	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:15:48	60.013	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:15:50	60.013	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:15:52	60.0145	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:15:54	60.016	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:15:56	60.0155	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:15:58	60.015	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:15:59	60.014	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:01	60.013	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:03	60.012	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:05	60.011	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:07	60.0105	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:09	60.01	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:16:11	60.008	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	

Time (T)	Hz	Net Actual Interchange MW	JOU Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	Not Used	Transferred Frequency Response $\operatorname{Rec}(-) \operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{aligned} & \text { Recovery } \\ & \text { Target Freq: } \\ & \text { 60.000 } \\ & \text { 2:27:26 } \\ & \text { 2:33:00 } \\ & \text { 05:34 } \end{aligned}$	Max Absolute Delta Hz 0.126 (0) (Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
10/12/09 03:16:13	60.006	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:16:15	60.006	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:16:17	60.006	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:16:19	60.0045	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:21	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:16:23	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:16:25	60.003	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:16:27	60.0035	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:16:29	60.004	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:16:31	60.0025	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.001	0.001	
10/12/09 03:16:33	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	-0.002	0.002	
10/12/09 03:16:35	59.999	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:16:37	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.002	0.002	
10/12/09 03:16:39	59.9965	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:16:41	59.996	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:16:43	59.9965	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:16:45	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:16:47	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:16:49	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:16:51	59.998	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:16:53	59.999	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:16:55	59.9985	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:16:57	59.998	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:16:59	59.9985	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:17:01	59.999	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.000	0.000	
10/12/09 03:17:03	59.998	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:17:05	59.997	3724.944	350	-223.015732	16				-103	8094	1	0	1	-0.001	0.001	
10/12/09 03:17:07	59.9985	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:17:09	60	3724.944	350	-223.015732	16				-103	8094	1	0	1	0.001	0.001	
10/12/09 03:17:11	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:17:13	60.002	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.001	0.001	
10/12/09 03:17:15	60.0015	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:17:17	60.001	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/12/09 03:17:19	60.0035	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.003	0.003	
10/12/09 03:17:21	60.006	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.002	0.002	
10/12/09 03:17:23	60.0055	3724.944	350	-223.015732	16				-103	8094	1	1	1	0.000	0.000	
10/1	60.005	37	350	-223.015732	16				-103	8094	1	1	1			

Balancing Authority Name: MyBA

Step 1.	Copy and Paste Event Data into the appropriate cells of the "Data" worksheet. Maintain date and time format of $\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$ hh:mm:ss.
Step 2.	Data must star a t least 2 full minutes before the begining of the event. Collect the same amount of data for each event. Suggest 2 to 3 minutes before to 15 minutes atter (up to 60 minutes total). Delete unused rows of data in the Data worksheet below your data, colum
$\begin{aligned} & \text { Step } 3 \\ & \text { Step } 4 . \end{aligned}$	Enter your BA name in cell B1 of this worksheet. Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on graph to the right to that on Form 1 for this event. If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the begining and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process.
Step 5.	Verify that the "Auto" selection of $\mathrm{T}(0)$ is correct by observing "Graph 20 to 52s". The very first frequency data point of the event on the graph must not be included in the "A Value" average. This is accomplished when the first frequency data point of the event is dead center of the graph on the center vertical grid line. The Auto event detection will select the single largest event in the data provided. An adjustment for $\mathrm{T}(0)$ alignment is provided in Cell Q3 on the Graph 20 to 52s.
Step 6	When $\mathrm{T}(0)$ is properly aligned. Hit the big blue button to copy your data for pasting into FRS Form 1 "BA Event Data" worksheet. Copy Form 2 data for Pasting into Form 1
Step 7.	Paste data into "FRS Form 1" in the appropriate row on the "BA Event Data" worksheet. Be sure to use the latest version of Form 1. This is Form 2.9 so use Form 1.9.
Step 8.5	Save this workook using the following file name in bold below:

MyBA_091012_0227_FRS_Form2.9.xlsm

为

A zero value aligns the data to the hightest Frequency change value Usually the event begins one or two data scans earlier than this scan.

Increasing this value shifts graph data to the right.
Decreasing this value shifts graph data to the left.

Note: The P.U. Performance values indicate performance as a P.U. value of BA Bias setting. For BAs that utilize a variable Bias, the Bias average during $\mathrm{T}(+20)$ to $\mathrm{T}(+52)$ is used
P.U. values above 1.0 indicate that the Bias setting was below measured Frequency Response. P.U. values below 1.0 indicate that the Bias setting was above measured Frequency Response.

$T \mathrm{~T}(0)$

First change in frequency of the event should occur here on the vertical grid line.
It is important that the pre-event frequency average to NOT contain frequency data of the event, "Average Frequency" trend to the left of center of the graph
To shift the data on the graph left or right, adjust the value in cell Q 3 highlighted in yellow above.

Value A Data	BA Performance		Value B	20 to 52 second Average Period Evaluation
	JoU \quad Non-	Transferred	Contingent	JoU

BA BA BA Bias Net Dynamic Conforming Pumped Not
 $\stackrel{\text { Not }}{\text { Used }}$ MW $\begin{array}{ccc}\text { MW } & \text { Load (-) } & \text { Load (}- \text {) Gen (}(+) \\ \text { MW }\end{array}$
$\operatorname{Rec}(-) \operatorname{Del}(+) \quad$ Load (-) Gen (+) Setting $\quad 1 \quad$ EPFR
$\begin{array}{cccccc}\text { Frequency } \\ \mathrm{Hz} & \begin{array}{c}\text { Interchange } \\ \mathrm{MW}\end{array} & \begin{array}{c}\operatorname{Imp(-)Exp}(+) \\ \mathrm{MW}\end{array} & \mathrm{MW} & \mathrm{MW}\end{array}$
$\begin{array}{lllll}\text { Monday, October 12, 2009 } & \text { 2:27:26 } & 60.039 & 60.042 & \text { 2:27:26 }\end{array}$

Steps To be completed for each event evaluated
Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order
Column A: Date and Time in this format, mm/dd/yy HH:MM:SS
Column B: Frequency Hz
Column C: Net Actual Interchange
Column D: Joint Owned Unit dynamic schedule
Column E: Non Conforming Load
Column F: Pumped Hydro
Column G: Not Used
Column H: Transferred Frequency Response
Column I: Contingent BA Lost load or generation
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D, E, F and H are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign (+/-) convention defined in FRS Form 1.
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must start a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event with up to 60 minutes of data
Be sure the "Data" worksheet is clear of any old data. Collect the same total minutes of data for each event evaluated to minimize your effort and time.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data.
$5 \quad$ Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on the graph on the "Copy Results" worksheet.
If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process.

6 Once data is in place in the "Data" worksheet, confirm the Auto selection of the beginning of the event by observing the "Graph 20 to 52 s " worksheet. Adjust the selection if necessary To make an adjustment, change the value in cell "Q3" on the "Graph 20 to 52 s " worksheet. Usually a 0,1 or 2 will achive the correct alignment of $\mathrm{T}(0)$.

7 If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency (red trend) of the event on the center vertical grid line of the graph.
8 The end of the event will be Auto selected based on the frequency value in cell "N2" on the Data worksheet. This will be the frequency at the beginning of the event or 60 Hz , whichever is lower. (for low Hz events) This value controls the end of the "Sustained Frequency Response" evaluation period
Primary Frequency Response should be sustained during the event recovery period. This evaluation determines how well you achieved this goal.
 in the correct order on worksheet "Form 1 Summary Data".
10 Use PasteSpecial/Values and paste the copied data into FRS Form 1 on the appropriate event row. Be sure to use the latest version of Form 1, currently Form 1.9 .
11 Save this Form 2 using the file name convention on the "Copy Results" worksheet. The complete file name is in bold in cell B38. Return all completed Form 2 s with your Form 1 to NERC.

Steps To be completed the first time you use Form 2 for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Copy Results" worksheet. For example: "NYISO".
 The time constant is located in cell "L13" of the "Evaluation" spreadsheet and should be edited for the types of generators in your BA. Presently this time constant is set at 0.35
 This time constant is only used in the "Sustained" evaluation and is not used for the Field Trial evaluation of performance to the FRO.
A typical setting for this time constant is 0.08 to 0.15 for hydro units, 0.10 to 0.20 for large steam turbines and 0.20 to 0.40 for combustion turbines.
By observing the slope of your "Interchange Actual" on the "Sustained" Graph, adjust the time constant until the initial slope of the "Target" is similar to the slope of the NAI data
When set appropriately, the "Target" trend on the "Sustained" graph will model what the Net Actua Interchange should have done during the event recovery period based on your Bias setting during the event.

МувA
jou

To be completed for each event evaluated.
Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Column A: Date and Time in this format, mm/dd/yy HH:MM:SS
Column B: Frequency Hz
Column C: Contingent Resouce Lost MW or Lost Load
Column D: Load Resources tripped during the event.
Column E: Non Conforming Load
Column F: Spare
Column G: Not Used
Column H: Spare
Column I: Spare
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D \& E are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign (+/-) convention defined in FRS Form 1.
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must start a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event with up to 60 minutes of data.
Be sure the "Data" worksheet is clear of any old data. Collect the same total minutes of data for each event evaluated to minimize your effort and time.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data.
5 Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on the graph on the "Copy Results" worksheet.
If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6" Only rarely should you have to use the "Manual" process.
6 Once data is in place in the "Data" worksheet, confirm the Auto selection of the beginning of the event by observing the "Graph 20 to 52 s " worksheet. Adjust the selection if necessary. To make an adjustment, change the value in cell "Q3" on the "Graph 20 to 52 s " worksheet. Usually a 0,1 or 2 will achive the correct alignment of $\mathrm{T}(0)$.

7 If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency (red trend) of the event on the center vertical grid line of the graph
 This value controls the end of the "Sustained Frequency Response" evaluation period.
Primary Frequency Response should be sustained during the event recovery period. This evaluation determines how well you achieved this goal
 in the correct order on worksheet "Form 1 Summary Data".
10 Use PasteSpecial/Values and paste the copied data into FRS Form 1 on the appropriate event row. Be sure to use the latest version of Form 1, currently Form 1.9.
11 Save this Form 2 using the file name convention on the "Copy Results" worksheet. The complete file name is in bold in cell B38. Return all completed Form $2 s$ with your Form 1 to NERC.

Steps To be completed the first time you use Form 2 for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Copy Results" worksheet. For example: "ERCOT".
marized

teps To be completed for each event evaluated.

1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Column A: Date and Time in this format, $\mathrm{mm} / \mathrm{dd} / \mathrm{yy} \mathrm{HH}: \mathrm{MM}: \mathrm{SS}$
Column B: Frequency Hz
Column C: Contingent Resouce Lost MW or Lost Load
Column D: Load Resources tripped during the event.
Column E: Non Conforming Load
Column F: Spare
Column G: Not Used
Column H: Spare
Column I: Spare
Column J: BA Bias Setting
Column K: BA Load

2 Note: Columns D \& E are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign (+/-) convention defined in FRS Form 1
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must start a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event with up to 60 minutes of data
Be sure the "Data" worksheet is clear of any old data. Collect the same total minutes of data for each event evaluated to minimize your effort and time.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data.
5 Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on the graph on the "Copy Results" worksheet.
If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6"
Only rarely should you have to use the "Manual" process.
6 Once data is in place in the "Data" worksheet, confirm the Auto selection of the beginning of the event by observing the "Graph 20 to $52 s$ s" worksheet. Adjust the selection if necessary. To make an adjustment, change the value in cell "Q3" on the "Graph 20 to 52 s " worksheet. Usually a 0,1 or 2 will achive the correct alignment of $T(0)$.

7 If the correct row is selected, the "Graph 20 to 52s" worksheet will indicate the first change in frequency (red trend) of the event on the center vertical grid line of the graph
8 The end of the event will be Auto selected based on the frequency value in cell " N 2 " on the Data worksheet. This will be the frequency at the beginning of the event or 60 Hz , whichever is lower. (for low Hz events) This value controls the end of the "Sustained Frequency Response" evaluation period.
Primary Frequency Response should be sustained during the event recovery period. This evaluation determines how well you achieved this goal.
 in the correct order on worksheet "Form 1 Summary Data"
10 Use PasteSpecial/Values and paste the copied data into FRS Form 1 on the appropriate event row. Be sure to use the latest version of Form 1, currently Form 1.9
11 Save this Form 2 using the file name convention on the "Copy Results" worksheet. The complete file name is in bold in cell B38. Return all completed Form 2 s with your Form 1 to NERC.

Steps To be completed the first time you use Form 2 for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Copy Results" worksheet. For example: "ERCOT".

Time (T)	Hz	Net Actual Interchange MW	jou Dynamic Schedules $\operatorname{Imp}(-) \operatorname{Exp}(+)$ MW	NonConforming Load Load (-) MW	Pumped Hydro Load (-) Gen (+) MW	$\begin{gathered} \text { Not } \\ \text { Used } \end{gathered}$	Transferred Frequency Response $\operatorname{Rec}(-) \operatorname{Del}(+)$ MW/0.1 Hz	Contingent BA Lost Generation Load (-) Gen (+) MW	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 306 473 307	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 60.000 } \\ \text { 2:27:26 } \\ \text { 2:33:00 } \\ 05: 34 \\ \hline \end{gathered}$	Max Absolute Delta Hz 0.126 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.126 Delta Hz	Highest Delta Hz 0.033 Absolute Delta Hz	$\begin{gathered} \hline \text { Rows of } \\ \text { data to } \\ \text { shift to } \\ \text { align } \mathrm{T}(0) \\ 1 \end{gathered}$
10/12/09 02:17:26	60.007	3679.946	350	-331.852966	0	81.5	10	15	-103	7553.79		0				
10/12/09 02:17:28	60.009	3679.44	350	-331.852966	0	82	10	15	-103	7554.12	0	0	0	0.002	0.002	
10/12/09 02:17:30	60.009	3679.912	350	-331.852966	0	82.5	10	15	-103	7554.45	0	0	0	0.000	0.000	
10/12/09 02:17:32	60.006	3679.517	350	-331.852966	0	83	10	15	-103	7554.78	0	0	0	-0.003	0.003	
10/12/09 02:17:34	60.006	3679.888	350	-331.852966	0	83.5	10	15	-103	7555.11	0	0	0	0.000	0.000	
10/12/09 02:17:36	60.009	3679.608	350	-329.98822	0	84	10	15	-103	7555.44	0	0	0	0.003	0.003	
10/12/09 02:17:38	60.009	3679.06	350	-329.98822	0	84.5	10	15	-103	7555.77	0	0	0	0.000	0.000	
10/12/09 02:17:40	60.008	3679.261	350	-329.98822	0	85	10	15	-103	7556.1	0	0	0	-0.001	0.001	
10/12/09 02:17:42	60.009	3679.164	350	-329.98822	0	85.5	10	15	-103	7556.43	0	0	0	0.001	0.001	
10/12/09 02:17:44	60.009	3679.025	350	-329.98822	0	86	10	15	-103	7556.76	0	0	0	0.000	0.000	
10/12/09 02:17:46	60.005	3679.152	350	-255.444168	0	86.5	10	15	-103	7557.09	0	0	0	-0.004	0.004	
10/12/09 02:17:48	60.004	3678.572	350	-255.444168	0	87	10	15	-103	7557.42	0	0	0	-0.001	0.001	
10/12/09 02:17:50	60.001	3678.295	350	-255.444168	0	87.5	10	15	-103	7557.75	0	0	0	-0.003	0.003	
10/12/09 02:17:52	59.999	3678.249	350	-255.444168	0	88	10	15	-103	7558.08	0	0	0	-0.002	0.002	
10/12/09 02:17:54	59.993	3678.236	350	-255.444168	0	88.5	10	15	-103	7558.41	0	0	0	-0.006	0.006	
10/12/09 02:17:56	59.991	3677.83	350	-254.838303	0	89	10	15	-103	7558.74	0	0	0	-0.002	0.002	
10/12/09 02:17:58	59.994	3677.955	350	-254.838303	0	89.5	10	15	-103	7559.07	0	0	0	0.003	0.003	
10/12/09 02:18:00	59.992	3677.772	350	-254.838303	0	90	10	15	-103	7559.4	0	0	0	-0.002	0.002	
10/12/09 02:18:02	59.994	3676.666	350	-254.838303	0	90.5	10	15	-103	7559.73	0	0	0	0.002	0.002	
10/12/09 02:18:04	59.992	3677.093	350	-254.838303	0	91	10	15	-103	7560.06	0	0	0	-0.002	0.002	
10/12/09 02:18:06	59.994	3677.141	350	-257.146973	0	91.5	10	15	-103	7560.39	0	0	0	0.002	0.002	
10/12/09 02:18:08	59.995	3676.401	350	-257.146973	0	92	10	15	-103	7560.72	0	0	0	0.001	0.001	
10/12/09 02:18:10	59.993	3678.516	350	-257.146973	0	92.5	10	15	-103	7561.05	0	0	0	-0.002	0.002	
10/12/09 02:18:12	59.99	3679.872	350	-257.146973	0	93	10	15	-103	7561.38	0	0	0	-0.003	0.003	
10/12/09 02:18:14	59.99	3680.197	350	-257.146973	0	93.5	10	15	-103	7561.71	0	0	0	0.000	0.000	
10/12/09 02:18:16	59.987	3678.743	350	-262.289368	0	94	10	15	-103	7562.04	0	0	0	-0.003	0.003	
10/12/09 02:18:18	59.983	3678.428	350	-262.289368	0	94.5	10	15	-103	7562.37	0	0	0	-0.004	0.004	
10/12/09 02:18:20	59.977	3677.921	350	-262.289368	0	95	10	15	-103	7562.7	0	0	0	-0.006	0.006	
10/12/09 02:18:22	59.977	3680.254	350	-262.289368	0	95.5	10	15	-103	7563.03	0	0	0	0.000	0.000	
10/12/09 02:18:24	59.989	3682.07	350	-262.289368	0	96	10	15	-103	7563.36	0	0	0	0.012	0.012	
10/12/09 02:18:26	59.995	3681.329	350	-256.647949	0	96.5	10	15	-103	7563.69	0	0	0	0.006	0.006	
10/12/09 02:18:28	59.999	3678.656	350	-256.647949	0	97	10	15	-103	7564.02	0	0	0	0.004	0.004	
10/12/09 02:18:30	59.994	3678.077	350	-256.647949	0	97.5	10	15	-103	7564.35	0	0	0	-0.005	0.005	
10/12/09 02:18:32	59.989	3677.78	350	-256.647949	0	98	10	15	-103	7564.68	0	0	0	-0.005	0.005	
10/12/09 02:18:34	59.987	3678.427	350	-256.647949	0	98.5	10	15	-103	7565.01	0	0	0	-0.002	0.002	
10/12/09 02:18:36	59.986	3678.473	350	-256.307251	0	99	10	15	-103	7565.34	0	0	0	-0.001	0.001	
10/12/09 02:18:38	59.984	3678.278	350	-256.307251	0	99.5	10	15	-103	7565.67	0	0	0	-0.002	0.002	
10/12/09 02:18:40	59.983	3677.822	350	-256.307251	0	100	10	15	-103	7566	0	0	0	-0.001	0.001	
10/12/09 02:18:42	59.985	3676.615	350	-256.307251	0	100.5	10	15	-103	7566.33	0	0	0	0.002	0.002	
10/12/09 02:18:44	59.986	3677.397	350	-256.307251	0	101	10	15	-103	7566.66	0	0	0	0.001	0.001	
10/12/09 02:18:46	59.985	3677.917	350	-249.086395	0	101.5	10	15	-103	7566.99	0	0	0	-0.001	0.001	

10/12/09 02:18:48	59.986	3677.95	350	-249.086395	0	102	10	15	-103	7567.32	0	0	0	0.001	0.001
10/12/09 02:18:50	59.98	3678.617	350	-249.086395	0	102.5	10	15	-103	7567.65	0	0	0	-0.006	0.006
10/12/09 02:18:52	59.981	3678.963	350	-249.086395	0	103	10	15	-103	7567.98	0	0	0	0.001	0.001
10/12/09 02:18:54	59.981	3681.252	350	-249.086395	0	103.5	10	15	-103	7568.31	0	0	0	0.000	0.000
10/12/09 02:18:56	59.989	3680.737	350	-253.742477	0	104	10	15	-103	7568.64	0	0	0	0.008	0.008
10/12/09 02:18:58	59.998	3680.045	350	-253.742477	0	104.5	10	15	-103	7568.97	0	0	0	0.009	0.009
10/12/09 02:19:00	60.007	3678.161	350	-253.742477	0	105	10	15	-103	7569.3	0	0	0	0.009	0.009
10/12/09 02:19:02	60.007	3674.076	350	-253.742477	0	105.5	10	15	-103	7569.63	0	0	0	0.000	0.000
10/12/09 02:19:04	59.997	3676.222	350	-253.742477	0	106	10	15	-103	7569.96	0	0	0	-0.010	0.010
10/12/09 02:19:06	59.986	3676.669	350	-257.421204	0	106.5	10	15	-103	7570.29	0	0	0	-0.011	0.011
10/12/09 02:19:08	59.981	3677.497	350	-257.421204	0	107	10	15	-103	7570.62	0	0	0	-0.005	0.005
10/12/09 02:19:10	59.977	3677.49	350	-257.421204	0	107.5	10	15	-103	7570.95	0	0	0	-0.004	0.004
10/12/09 02:19:12	59.974	3675.186	350	-257.421204	0	108	10	15	-103	7571.28	0	0	0	-0.003	0.003
10/12/09 02:19:14	59.976	3675.437	350	-257.421204	0	108.5	10	15	-103	7571.61	0	0	0	0.002	0.002
10/12/09 02:19:16	59.974	3680.451	350	-261.73822	0	109	10	15	-103	7571.94	0	0	0	-0.002	0.002
10/12/09 02:19:18	59.974	3682.032	350	-261.73822	0	109.5	10	15	-103	7572.27	0	0	0	0.000	0.000
10/12/09 02:19:20	59.977	3683.829	350	-261.73822	0	110	10	15	-103	7572.6	0	0	0	0.003	0.003
10/12/09 02:19:22	59.979	3682.843	350	-261.73822	0	110.5	10	15	-103	7572.93	0	0	0	0.002	0.002
10/12/09 02:19:24	59.979	3681.108	350	-261.73822	0	111	10	15	-103	7573.26	0	0	0	0.000	0.000
10/12/09 02:19:26	59.982	3680.566	350	-271.875977	0	111.5	10	15	-103	7573.59	0	0	0	0.003	0.003
10/12/09 02:19:28	59.984	3678.229	350	-271.875977	0	112	10	15	-103	7573.92	0	0	0	0.002	0.002
10/12/09 02:19:30	59.987	3676.752	350	-271.875977	0	112.5	10	15	-103	7574.25	0	0	0	0.003	0.003
10/12/09 02:19:32	59.988	3675.759	350	-271.875977	0	113	10	15	-103	7574.58	0	0	0	0.001	0.001
10/12/09 02:19:34	59.988	3671.942	350	-271.875977	0	113.5	10	15	-103	7574.91	0	0	0	0.000	0.000
10/12/09 02:19:36	59.987	3671.166	350	-262.073486	0	114	10	15	-103	7575.24	0	0	0	-0.001	0.001
10/12/09 02:19:38	59.987	3670.476	350	-262.073486	0	114.5	10	15	-103	7575.57	0	0	0	0.000	0.000
10/12/09 02:19:40	59.987	3670.129	350	-262.073486	0	115	10	15	-103	7575.9	0	0	0	0.000	0.000
10/12/09 02:19:42	59.985	3671.542	350	-262.073486	0	115.5	10	15	-103	7576.23	0	0	0	-0.002	0.002
10/12/09 02:19:44	59.984	3672.048	350	-262.073486	0	116	10	15	-103	7576.56	0	0	0	-0.001	0.001
10/12/09 02:19:46	59.982	3671.576	350	-260.36441	0	116.5	10	15	-103	7576.89	0	0	0	-0.002	0.002
10/12/09 02:19:48	59.983	3672.104	350	-260.36441	0	117	10	15	-103	7577.22	0	0	0	0.001	0.001
10/12/09 02:19:50	59.989	3672.414	350	-260.36441	0	117.5	10	15	-103	7577.55	0	0	0	0.006	0.006
10/12/09 02:19:52	59.989	3671.882	350	-260.36441	0	118	10	15	-103	7577.88	0	0	0	0.000	0.000
10/12/09 02:19:54	59.988	3671.837	350	-260.36441	0	118.5	10	15	-103	7578.21	0	0	0	-0.001	0.001
10/12/09 02:19:56	59.984	3671.336	350	-352.644379	0	119	10	15	-103	7578.54	0	0	0	-0.004	0.004
10/12/09 02:19:58	59.982	3670.726	350	-352.644379	0	119.5	10	15	-103	7578.87	0	0	0	-0.002	0.002
10/12/09 02:20:00	59.983	3670.372	350	-352.644379	0	120	10	15	-103	7579.2	0	0	0	0.001	0.001
10/12/09 02:20:02	59.981	3671.364	350	-352.644379	0	120.5	10	15	-103	7579.53	0	0	0	-0.002	0.002
10/12/09 02:20:04	59.982	3671.401	350	-352.644379	0	121	10	15	-103	7579.86	0	0	0	0.001	0.001
10/12/09 02:20:06	59.983	3672.156	350	-354.89566	0	121.5	10	15	-103	7580.19	0	0	0	0.001	0.001
10/12/09 02:20:08	59.986	3672.181	350	-354.89566	0	122	10	15	-103	7580.52	0	0	0	0.003	0.003
10/12/09 02:20:10	59.989	3670.296	350	-354.89566	0	122.5	10	15	-103	7580.85	0	0	0	0.003	0.003
10/12/09 02:20:12	59.987	3668.071	350	-354.89566	0	123	10	15	-103	7581.18	0	0	0	-0.002	0.002
10/12/09 02:20:14	59.985	3668.59	350	-354.89566	0	123.5	10	15	-103	7581.51	0	0	0	-0.002	0.002
10/12/09 02:20:16	59.98	3669.908	350	-340.46936	0	124	10	15	-103	7581.84	0	0	0	-0.005	0.005
10/12/09 02:20:18	59.98	3670.399	350	-340.46936	0	124.5	10	15	-103	7582.17	0	0	0	0.000	0.000
10/12/09 02:20:20	59.983	3670.263	350	-340.46936	0	125	10	15	-103	7582.5	0	0	0	0.003	0.003
10/12/09 02:20:22	59.98	3669.382	350	-340.46936	0	125.5	10	15	-103	7582.83	0	0	0	-0.003	0.003
10/12/09 02:20:24	59.979	3670.102	350	-340.46936	0	126	10	15	-103	7583.16	0	0	0	-0.001	0.001

10/12/09 02:20:26	59.979	3670.438	350	-337.642914	0	126.5	10	15	-103	7583.49	0	0	0	0.000	0.000
10/12/09 02:20:28	59.981	3671.403	350	-337.642914	0	127	10	15	-103	7583.82	0	0	0	0.002	0.002
10/12/09 02:20:30	59.981	3672.442	350	-337.642914	0	127.5	10	15	-103	7584.15	0	0	0	0.000	0.000
10/12/09 02:20:32	59.98	3672.372	350	-337.642914	0	128	10	15	-103	7584.48	0	0	0	-0.001	0.001
10/12/09 02:20:34	59.98	3671.947	350	-337.642914	0	128.5	10	15	-103	7584.81	0	0	0	0.000	0.000
10/12/09 02:20:36	59.981	3670.938	350	-284.36084	0	129	10	15	-103	7585.14	0	0	0	0.001	0.001
10/12/09 02:20:38	59.98	3670.705	350	-284.36084	0	129.5	10	15	-103	7585.47	0	0	0	-0.001	0.001
10/12/09 02:20:40	59.98	3670.137	350	-284.36084	0	130	10	15	-103	7585.8	0	0	0	0.000	0.000
10/12/09 02:20:42	59.977	3669.279	350	-284.36084	0	130.5	10	15	-103	7586.13	0	0	0	-0.003	0.003
10/12/09 02:20:44	59.979	3672.391	350	-284.36084	0	131	10	15	-103	7586.46	0	0	0	0.002	0.002
10/12/09 02:20:46	59.981	3672.558	350	-260.467987	0	131.5	10	15	-103	7586.79	0	0	0	0.002	0.002
10/12/09 02:20:48	59.979	3674.052	350	-260.467987	0	132	10	15	-103	7587.12	0	0	0	-0.002	0.002
10/12/09 02:20:50	59.976	3672.626	350	-260.467987	0	132.5	10	15	-103	7587.45	0	0	0	-0.003	0.003
10/12/09 02:20:52	59.977	3671.8	350	-260.467987	0	133	10	15	-103	7587.78	0	0	0	0.001	0.001
10/12/09 02:20:54	59.972	3673.183	350	-260.467987	0	133.5	10	15	-103	7588.11	0	0	0	-0.005	0.005
10/12/09 02:20:56	59.971	3673.874	350	-253.141541	0	134	10	15	-103	7588.44	0	0	0	-0.001	0.001
10/12/09 02:20:58	59.973	3676.263	350	-253.141541	0	134.5	10	15	-103	7588.77	0	0	0	0.002	0.002
10/12/09 02:21:00	59.973	3676.623	350	-253.141541	0	135	10	15	-103	7589.1	0	0	0	0.000	0.000
10/12/09 02:21:02	59.973	3676.87	350	-253.141541	0	135.5	10	15	-103	7589.43	0	0	0	0.000	0.000
10/12/09 02:21:04	59.974	3676.543	350	-253.141541	0	136	10	15	-103	7589.76	0	0	0	0.001	0.001
10/12/09 02:21:06	59.971	3675.464	350	-251.929871	0	136.5	10	15	-103	7590.09	0	0	0	-0.003	0.003
10/12/09 02:21:08	59.975	3675.752	350	-251.929871	0	137	10	15	-103	7590.42	0	0	0	0.004	0.004
10/12/09 02:21:10	59.977	3675.256	350	-251.929871	0	137.5	10	15	-103	7590.75	0	0	0	0.002	0.002
10/12/09 02:21:12	59.977	3674.87	350	-251.929871	0	138	10	15	-103	7591.08	0	0	0	0.000	0.000
10/12/09 02:21:14	59.975	3671.277	350	-251.929871	0	138.5	10	15	-103	7591.41	0	0	0	-0.002	0.002
10/12/09 02:21:16	59.976	3671.593	350	-250.674194	0	139	10	15	-103	7591.74	0	0	0	0.001	0.001
10/12/09 02:21:18	59.98	3670.587	350	-250.674194	0	139.5	10	15	-103	7592.07	0	0	0	0.004	0.004
10/12/09 02:21:20	59.979	3669.963	350	-250.674194	0	140	10	15	-103	7592.4	0	0	0	-0.001	0.001
10/12/09 02:21:22	59.981	3669.54	350	-250.674194	0	140.5	10	15	-103	7592.73	0	0	0	0.002	0.002
10/12/09 02:21:24	59.982	3669.497	350	-250.674194	0	141	10	15	-103	7593.06	0	0	0	0.001	0.001
10/12/09 02:21:26	59.982	3668.706	350	-253.631866	0	141.5	10	15	-103	7593.39	0	0	0	0.000	0.000
10/12/09 02:21:28	59.982	3667.677	350	-253.631866	0	142	10	15	-103	7593.72	0	0	0	0.000	0.000
10/12/09 02:21:30	59.982	3666.482	350	-253.631866	0	142.5	10	15	-103	7594.05	0	0	0	0.000	0.000
10/12/09 02:21:32	59.981	3666.599	350	-253.631866	0	143	10	15	-103	7594.38	0	0	0	-0.001	0.001
10/12/09 02:21:34	59.982	3666.911	350	-253.631866	0	143.5	10	15	-103	7594.71	0	0	0	0.001	0.001
10/12/09 02:21:36	59.984	3666.442	350	-246.957306	0	144	10	15	-103	7595.04	0	0	0	0.002	0.002
10/12/09 02:21:38	59.985	3666.405	350	-246.957306	0	144.5	10	15	-103	7595.37	0	0	0	0.001	0.001
10/12/09 02:21:40	59.987	3667.456	350	-246.957306	0	145	10	15	-103	7595.7	0	0	0	0.002	0.002
10/12/09 02:21:42	59.989	3666.38	350	-246.957306	0	145.5	10	15	-103	7596.03	0	0	0	0.002	0.002
10/12/09 02:21:44	59.993	3665.262	350	-246.957306	0	146	10	15	-103	7596.36	0	0	0	0.004	0.004
10/12/09 02:21:46	59.996	3664.031	350	-254.541779	0	146.5	10	15	-103	7596.69	0	0	0	0.003	0.003
10/12/09 02:21:48	59.998	3663.825	350	-254.541779	0	147	10	15	-103	7597.02	0	0	0	0.002	0.002
10/12/09 02:21:50	59.998	3663.229	350	-254.541779	0	147.5	10	15	-103	7597.35	0	0	0	0.000	0.000
10/12/09 02:21:52	60.004	3662.055	350	-254.541779	0	148	10	15	-103	7597.68	0	0	0	0.006	0.006
10/12/09 02:21:54	60.007	3661.695	350	-254.541779	0	148.5	10	15	-103	7598.01	0	0	0	0.003	0.003
10/12/09 02:21:56	60.01	3662.076	350	-256.571594	0	149	10	15	-103	7598.34	0	0	0	0.003	0.003
10/12/09 02:21:58	60.013	3662.224	350	-256.571594	0	149.5	10	15	-103	7598.67	0	0	0	0.003	0.003
10/12/09 02:22:00	60.014	3662.959	350	-256.571594	0	150	10	15	-103	7599	0	0	0	0.001	0.001
10/12/09 02:22:02	60.013	3663.794	350	-256.571594	0	150.5	10	15	-103	7599.33	0	0	0	-0.001	0.001

10/12/09 02:22:04	60.008	3664.139	350	-256.571594	0	151	10	15	-103	7599.66	0	0	0	-0.005	0.005
10/12/09 02:22:06	60.008	3665.278	350	-258.37262	0	151.5	10	15	-103	7599.99	0	0	0	0.000	0.000
10/12/09 02:22:08	60.01	3664.159	350	-258.37262	0	152	10	15	-103	7600.32	0	0	0	0.002	0.002
10/12/09 02:22:10	60.019	3663.265	350	-258.37262	0	152.5	10	15	-103	7600.65	0	0	0	0.009	0.009
10/12/09 02:22:12	60.019	3663.184	350	-258.37262	0	153	10	15	-103	7600.98	0	0	0	0.000	0.000
10/12/09 02:22:14	60.023	3661.929	350	-258.37262	0	153.5	10	15	-103	7601.31	0	0	0	0.004	0.004
10/12/09 02:22:16	60.021	3661.512	350	-263.047363	0	154	10	15	-103	7601.64	0	0	0	-0.002	0.002
10/12/09 02:22:18	60.02	3659.172	350	-263.047363	0	154.5	10	15	-103	7601.97	0	0	0	-0.001	0.001
10/12/09 02:22:20	60.021	3658.661	350	-263.047363	0	155	10	15	-103	7602.3	0	0	0	0.001	0.001
10/12/09 02:22:22	60.021	3656.785	350	-263.047363	0	155.5	10	15	-103	7602.63	0	0	0	0.000	0.000
10/12/09 02:22:24	60.02	3657.571	350	-263.047363	0	156	10	15	-103	7602.96	0	0	0	-0.001	0.001
10/12/09 02:22:26	60.019	3658.126	350	-260.984375	0	156.5	10	15	-103	7603.29	0	0	0	-0.001	0.001
10/12/09 02:22:28	60.019	3657.71	350	-260.984375	0	157	10	15	-103	7603.62	0	0	0	0.000	0.000
10/12/09 02:22:30	60.022	3658.015	350	-260.984375	0	157.5	10	15	-103	7603.95	0	0	0	0.003	0.003
10/12/09 02:22:32	60.025	3660.228	350	-260.984375	0	158	10	15	-103	7604.28	0	0	0	0.003	0.003
10/12/09 02:22:34	60.025	3659.224	350	-260.984375	0	158.5	10	15	-103	7604.61	0	0	0	0.000	0.000
10/12/09 02:22:36	60.026	3658.698	350	-261.318329	0	159	10	15	-103	7604.94	0	0	0	0.001	0.001
10/12/09 02:22:38	60.02	3658.669	350	-261.318329	0	159.5	10	15	-103	7605.27	0	0	0	-0.006	0.006
10/12/09 02:22:40	60.02	3658.155	350	-261.318329	0	160	10	15	-103	7605.6	0	0	0	0.000	0.000
10/12/09 02:22:42	60.018	3659.13	350	-261.318329	0	160.5	10	15	-103	7605.93	0	0	0	-0.002	0.002
10/12/09 02:22:44	60.018	3659.778	350	-261.318329	0	161	10	15	-103	7606.26	0	0	0	0.000	0.000
10/12/09 02:22:46	60.02	3660.82	350	-262.1026	0	161.5	10	15	-103	7606.59	0	0	0	0.002	0.002
10/12/09 02:22:48	60.019	3662.531	350	-262.1026	0	162	10	15	-103	7606.92	0	0	0	-0.001	0.001
10/12/09 02:22:50	60.019	3662.387	350	-262.1026	0	162.5	10	15	-103	7607.25	0	0	0	0.000	0.000
10/12/09 02:22:52	60.023	3662.079	350	-262.1026	0	163	10	15	-103	7607.58	0	0	0	0.004	0.004
10/12/09 02:22:54	60.022	3662.39	350	-262.1026	0	163.5	10	15	-103	7607.91	0	0	0	-0.001	0.001
10/12/09 02:22:56	60.022	3662.678	350	-262.71701	0	164	10	15	-103	7608.24	0	0	0	0.000	0.000
10/12/09 02:22:58	60.025	3663.577	350	-262.71701	0	164.5	10	15	-103	7608.57	0	0	0	0.003	0.003
10/12/09 02:23:00	60.02	3663.539	350	-262.71701	0	165	10	15	-103	7608.9	0	0	0	-0.005	0.005
10/12/09 02:23:02	60.02	3662.959	350	-262.71701	0	165.5	10	15	-103	7609.23	0	0	0	0.000	0.000
10/12/09 02:23:04	60.02	3662.552	350	-262.71701	0	166	10	15	-103	7609.56	0	0	0	0.000	0.000
10/12/09 02:23:06	60.02	3662.543	350	-260.016479	0	166.5	10	15	-103	7609.89	0	0	0	0.000	0.000
10/12/09 02:23:08	60.02	3663.601	350	-260.016479	0	167	10	15	-103	7610.22	0	0	0	0.000	0.000
10/12/09 02:23:10	60.021	3663.91	350	-260.016479	0	167.5	10	15	-103	7610.55	0	0	0	0.001	0.001
10/12/09 02:23:12	60.021	3663.69	350	-260.016479	0	168	10	15	-103	7610.88	0	0	0	0.000	0.000
10/12/09 02:23:14	60.018	3662.791	350	-260.016479	0	168.5	10	15	-103	7611.21	0	0	0	-0.003	0.003
10/12/09 02:23:16	60.014	3663.396	350	-263.87323	0	169	10	15	-103	7611.54	0	0	0	-0.004	0.004
10/12/09 02:23:18	60.014	3663.698	350	-263.87323	0	169.5	10	15	-103	7611.87	0	0	0	0.000	0.000
10/12/09 02:23:20	60.014	3664.315	350	-263.87323	0	170	10	15	-103	7612.2	0	0	0	0.000	0.000
10/12/09 02:23:22	60.013	3665.313	350	-263.87323	0	170.5	10	15	-103	7612.53	0	0	0	-0.001	0.001
10/12/09 02:23:24	60.013	3665.798	350	-263.87323	0	171	10	15	-103	7612.86	0	0	0	0.000	0.000
10/12/09 02:23:26	60.01	3666.141	350	-264.5979	0	171.5	10	15	-103	7613.19	0	0	0	-0.003	0.003
10/12/09 02:23:28	60.008	3666.726	350	-264.5979	0	172	10	15	-103	7613.52	0	0	0	-0.002	0.002
10/12/09 02:23:30	60.011	3667.677	350	-264.5979	0	172.5	10	15	-103	7613.85	0	0	0	0.003	0.003
10/12/09 02:23:32	60.011	3667.545	350	-264.5979	0	173	10	15	-103	7614.18	0	0	0	0.000	0.000
10/12/09 02:23:34	60.012	3666.688	350	-264.5979	0	173.5	10	15	-103	7614.51	0	0	0	0.001	0.001
10/12/09 02:23:36	60.012	3666.449	350	-262.415924	0	174	10	15	-103	7614.84		0	0	0.000	0.000
10/12/09 02:23:38	60.009	3666.71	350	-262.415924	0	174.5	10	15	-103	7615.17	0	0	0	-0.003	0.003
10/12/09 02:23:40	60.009	3667.696	350	-262.415924	O	175	10	15	-103	7615.5	0	0	0	0.000	0.000

10/12/09 02:23:42	60.009	3667.398	350	-262.415924	0	175.5	10	15	-103	7615.83	0	0	0	0.000	0.000
10/12/09 02:23:44	60.009	3667.043	350	-262.415924	0	176	10	15	-103	7616.16	0	0	0	0.000	0.000
10/12/09 02:23:46	60.005	3666.624	350	-259.685242	0	176.5	10	15	-103	7616.49	0	0	0	-0.004	0.004
10/12/09 02:23:48	60.002	3666.223	350	-259.685242	0	177	10	15	-103	7616.82	0	0	0	-0.003	0.003
10/12/09 02:23:50	59.999	3665.88	350	-259.685242	0	177.5	10	15	-103	7617.15	0	0	0	-0.003	0.003
10/12/09 02:23:52	59.996	3665.403	350	-259.685242	0	178	10	15	-103	7617.48	0	0	0	-0.003	0.003
10/12/09 02:23:54	59.995	3665.802	350	-259.685242	0	178.5	10	15	-103	7617.81	0	0		-0.001	0.001
10/12/09 02:23:56	59.997	3665.68	350	-255.911011	0	179	10	15	-103	7618.14	0	0	0	0.002	0.002
10/12/09 02:23:58	59.998	3665.352	350	-255.911011	0	179.5	10	15	-103	7618.47	0	0	0	0.001	0.001
10/12/09 02:24:00	59.998	3664.948	350	-255.911011	0	180	10	15	-103	7618.8	0	0	0	0.000	0.000
10/12/09 02:24:02	59.998	3665.065	350	-255.911011	0	180.5	10	15	-103	7619.13	0	0	0	0.000	0.000
10/12/09 02:24:04	59.998	3666.133	350	-255.911011	0	181	10	15	-103	7619.46	0	0	0	0.000	0.000
10/12/09 02:24:06	59.995	3666.64	350	-258.148193	0	181.5	10	15	-103	7619.79	0	0	0	-0.003	0.003
10/12/09 02:24:08	59.995	3666.735	350	-258.148193	0	182	10	15	-103	7620.12	0	0	0	0.000	0.000
10/12/09 02:24:10	59.992	3667.084	350	-258.148193	0	182.5	10	15	-103	7620.45	0	0	0	-0.003	0.003
10/12/09 02:24:12	59.993	3667.557	350	-258.148193	0	183	10	15	-103	7620.78	0	0	0	0.001	0.001
10/12/09 02:24:14	59.988	3667.337	350	-258.148193	0	183.5	10	15	-103	7621.11	0	0	0	-0.005	0.005
10/12/09 02:24:16	59.988	3667.853	350	-258.873596	0	184	10	15	-103	7621.44	0	0	0	0.000	0.000
10/12/09 02:24:18	59.982	3668.116	350	-258.873596	0	184.5	10	15	-103	7621.77	0	0	0	-0.006	0.006
10/12/09 02:24:20	59.982	3668.691	350	-258.873596	0	185	10	15	-103	7622.1	0	0	0	0.000	0.000
10/12/09 02:24:22	59.982	3669.399	350	-258.873596	0	185.5	10	15	-103	7622.43	0	0	0	0.000	0.000
10/12/09 02:24:24	59.982	3669.606	350	-258.873596	0	186	10	15	-103	7622.76	0	0	0	0.000	0.000
10/12/09 02:24:26	59.984	3671.228	350	-249.33757	0	186.5	10	15	-103	7623.09	0	0	0	0.002	0.002
10/12/09 02:24:28	59.982	3670.25	350	-249.33757	0	187	10	15	-103	7623.42	0	0	0	-0.002	0.002
10/12/09 02:24:30	59.978	3670.265	350	-249.33757	0	187.5	10	15	-103	7623.75	0	0	0	-0.004	0.004
10/12/09 02:24:32	59.978	3671.549	350	-249.33757	0	188	10	15	-103	7624.08	0	0	0	0.000	0.000
10/12/09 02:24:34	59.976	3673.243	350	-249.33757	0	188.5	10	15	-103	7624.41	0	0	0	-0.002	0.002
10/12/09 02:24:36	59.975	3674.263	350	-258.278168	0	189	10	15	-103	7624.74	0	0	0	-0.001	0.001
10/12/09 02:24:38	59.974	3675.824	350	-258.278168	0	189.5	10	15	-103	7625.07	0	0	0	-0.001	0.001
10/12/09 02:24:40	59.974	3676.418	350	-258.278168	0	190	10	15	-103	7625.4	0	0	0	0.000	0.000
10/12/09 02:24:42	59.979	3676.306	350	-258.278168	0	190.5	10	15	-103	7625.73	0	0	0	0.005	0.005
10/12/09 02:24:44	59.98	3674.637	350	-258.278168	0	191	10	15	-103	7626.06	0	0	0	0.001	0.001
10/12/09 02:24:46	59.981	3675.329	350	-258.406372	0	191.5	10	15	-103	7626.39	0	0	0	0.001	0.001
10/12/09 02:24:48	59.98	3675.226	350	-258.406372	0	192	10	15	-103	7626.72	0	0	0	-0.001	0.001
10/12/09 02:24:50	59.984	3674.768	350	-258.406372	0	192.5	10	15	-103	7627.05	0	0	0	0.004	0.004
10/12/09 02:24:52	59.987	3674.399	350	-258.406372	0	193	10	15	-103	7627.38	0	0	0	0.003	0.003
10/12/09 02:24:54	59.988	3673.514	350	-258.406372	0	193.5	10	15	-103	7627.71	0	0	0	0.001	0.001
10/12/09 02:24:56	59.988	3673.04	350	-260.538879	0	194	10	15	-103	7628.04	0	0	0	0.000	0.000
10/12/09 02:24:58	59.99	3672.442	350	-260.538879	0	194.5	10	15	-103	7628.37	0	0	0	0.002	0.002
10/12/09 02:25:00	59.992	3673.056	350	-260.538879	0	195	10	15	-103	7628.7	0	0	0	0.002	0.002
10/12/09 02:25:02	59.991	3671.68	350	-260.538879	0	195.5	10	15	-103	7629.03	0	0	0	-0.001	0.001
10/12/09 02:25:04	59.991	3671.493	350	-260.538879	0	196	10	15	-103	7629.36	0	0	0	0.000	0.000
10/12/09 02:25:06	59.991	3669.53	350	-257.88208	0	196.5	10	15	-103	7629.69	0	0	0	0.000	0.000
10/12/09 02:25:08	59.993	3670.066	350	-257.88208	0	197	10	15	-103	7630.02	0	0	0	0.002	0.002
10/12/09 02:25:10	59.993	3670.028	350	-257.88208	0	197.5	10	15	-103	7630.35	0	0	0	0.000	0.000
10/12/09 02:25:12	59.996	3671.744	350	-257.88208	0	198	10	15	-103	7630.68	0	0	0	0.003	0.003
10/12/09 02:25:14	60.002	3671.578	350	-257.88208	0	198.5	10	15	-103	7631.01	0	0	0	0.006	0.006
10/12/09 02:25:16	60.002	3672.625	350	-258.588654	0	199	10	15	-103	7631.34	0	0	0	0.000	0.000
10/12/09 02:25:18	60.003	3672.674	350	-258.588654	0	199.5	10	15	-103	7631.67	0	0	0	0.001	0.001

10/12/09 02:25:20	60.004	3673.819	350	-258.588654	0	200	10	15	-103	7632	0	0	0	0.001	0.001
10/12/09 02:25:22	60.005	3673.25	350	-258.588654	0	200.5	10	15	-103	7632.33	0	0	0	0.001	0.001
10/12/09 02:25:24	60.004	3673.182	350	-258.588654	0	201	10	15	-103	7632.66	0	0	0	-0.001	0.001
10/12/09 02:25:26	60.002	3673.496	350	-261.906158		201.5	10	15	-103	7632.99	0	0	0	-0.002	0.002
10/12/09 02:25:28	60.004	3672.418	350	-261.906158	0	202	10	15	-103	7633.32	0	0	0	0.002	0.002
10/12/09 02:25:30	60.008	3672.363	350	-261.906158	0	202.5	10	15	-103	7633.65	0	0	0	0.004	0.004
10/12/09 02:25:32	60.01	3672.217	350	-261.906158	0	203	10	15	-103	7633.98	0	0	0	0.002	0.002
10/12/09 02:25:34	60.01	3672.261	350	-261.906158	0	203.5	10	15	-103	7634.31	0	0	0	0.000	0.000
10/12/09 02:25:36	60.01	3673.182	350	-256.747803	0	204	10	15	-103	7634.64	0	0	0	0.000	0.000
10/12/09 02:25:38	60.011	3673.603	350	-256.747803	0	204.5	10	15	-103	7634.97	0	0	0	0.001	0.001
10/12/09 02:25:40	60.013	3673.553	350	-256.747803	0	205	10	15	-103	7635.3	0	0	0	0.002	0.002
10/12/09 02:25:42	60.014	3674.312	350	-256.747803	0	205.5	10	15	-103	7635.63	0	0	0	0.001	0.001
10/12/09 02:25:44	60.013	3674.537	350	-256.747803	0	206	10	15	-103	7635.96	0	0	0	-0.001	0.001
10/12/09 02:25:46	60.012	3673.813	350	-167.431976	0	206.5	10	15	-103	7636.29	0	0	0	-0.001	0.001
10/12/09 02:25:48	60.011	3673.204	350	-167.431976	0	207	10	15	-103	7636.62	0	0	0	-0.001	0.001
10/12/09 02:25:50	60.011	3672.563	350	-167.431976	0	207.5	10	15	-103	7636.95	0	0	0	0.000	0.000
10/12/09 02:25:52	60.017	3673.068	350	-167.431976	0	208	10	15	-103	7637.28	0	0	0	0.006	0.006
10/12/09 02:25:54	60.022	3672.388	350	-167.431976	0	208.5	10	15	-103	7637.61	0	0	0	0.005	0.005
10/12/09 02:25:56	60.017	3672.52	350	-164.973404	0	209	10	15	-103	7637.94	0	0	0	-0.005	0.005
10/12/09 02:25:58	60.014	3671.25	350	-164.973404	0	209.5	10	15	-103	7638.27	0	0	0	-0.003	0.003
10/12/09 02:26:00	60.013	3671.288	350	-164.973404	0	210	10	15	-103	7638.6	0	0	0	-0.001	0.001
10/12/09 02:26:02	60.014	3672.989	350	-164.973404	0	210.5	10	15	-103	7638.93	0	0	0	0.001	0.001
10/12/09 02:26:04	60.017	3672.982	350	-164.973404	0	211	10	15	-103	7639.26	0	0	0	0.003	0.003
10/12/09 02:26:06	60.017	3672.915	350	-157.628082	0	211.5	10	15	-103	7639.59	0	0	0	0.000	0.000
10/12/09 02:26:08	60.019	3671.952	350	-157.628082	0	212	10	15	-103	7639.92	0	0	0	0.002	0.002
10/12/09 02:26:10	60.019	3671.193	350	-157.628082	0	212.5	10	15	-103	7640.25	0	0	0	0.000	0.000
10/12/09 02:26:12	60.019	3671.627	350	-157.628082	0	213	10	15	-103	7640.58	0	0	0	0.000	0.000
10/12/09 02:26:14	60.027	3671.189	350	-157.628082	0	213.5	10	15	-103	7640.91	0	0	0	0.008	0.008
10/12/09 02:26:16	60.026	3668.611	350	-155.531708	0	214	10	15	-103	7641.24	0	0	0	-0.001	0.001
10/12/09 02:26:18	60.026	3665.232	350	-155.531708	0	214.5	10	15	-103	7641.57	0	0	0	0.000	0.000
10/12/09 02:26:20	60.022	3664.495	350	-155.531708	0	215	10	15	-103	7641.9	0	0	0	-0.004	0.004
10/12/09 02:26:22	60.019	3666.062	350	-155.531708	0	215.5	10	15	-103	7642.23	0	0	0	-0.003	0.003
10/12/09 02:26:24	60.017	3666.821	350	-155.531708	0	216	10	15	-103	7642.56	0	0	0	-0.002	0.002
10/12/09 02:26:26	60.019	3666.787	350	-160.447235	0	216.5	10	15	-103	7642.89	0	0	0	0.002	0.002
10/12/09 02:26:28	60.02	3670.454	350	-160.447235	0	217	10	15	-103	7643.22	0	0	0	0.001	0.001
10/12/09 02:26:30	60.019	3670.267	350	-160.447235	0	217.5	10	15	-103	7643.55	0	0	0	-0.001	0.001
10/12/09 02:26:32	60.021	3671.668	350	-160.447235	0	218	10	15	-103	7643.88	0	0	0	0.002	0.002
10/12/09 02:26:34	60.021	3672.493	350	-160.447235	0	218.5	10	15	-103	7644.21	0	0	0	0.000	0.000
10/12/09 02:26:36	60.021	3672.685	350	-163.958603	0	219	10	15	-103	7644.54	0	0	0	0.000	0.000
10/12/09 02:26:38	60.019	3672.857	350	-163.958603	0	219.5	10	15	-103	7644.87	0	0	0	-0.002	0.002
10/12/09 02:26:40	60.018	3672.164	350	-163.958603	0	220	10	15	-103	7645.2	0	0	0	-0.001	0.001
10/12/09 02:26:42	60.022	3671.413	350	-163.958603	0	220.5	10	15	-103	7645.53	0	0	0	0.004	0.004
10/12/09 02:26:44	60.031	3669.983	350	-163.958603	0	221	10	15	-103	7645.86	0	0	0	0.009	0.009
10/12/09 02:26:46	60.037	3666.467	350	-166.072449	0	221.5	10	15	-103	7646.19	0	0	0	0.006	0.006
10/12/09 02:26:48	60.037	3663.758	350	-166.072449	0	222	10	15	-103	7646.52	0	0	0	0.000	0.000
10/12/09 02:26:50	60.036	3661.599	350	-166.072449	0	222.5	10	15	-103	7646.85	0	0	0	-0.001	0.001
10/12/09 02:26:52	60.037	3660.672	350	-166.072449	0	223	10	15	-103	7647.18	0	0	0	0.001	0.001
10/12/09 02:26:54	60.046	3651.492	350	-166.072449	0	223.5	10	15	-103	7647.51	0	0	0	0.009	0.009
10/12/09 02:26:56	60.048	3649.19	350	-163.766586	0	224	10	15	-103	7647.84	0	0	0	0.002	0.002

10/12/09 02:26:58	60.048	3650.025	350	-163.766586	0	224.5	10	15	-103	7648.17	0	0	0	0.000	0.000
10/12/09 02:27:00	60.043	3648.246	350	-163.766586	0	225	10	15	-103	7648.5	0	0	0	-0.005	0.005
10/12/09 02:27:02	60.041	3649.512	350	-163.766586	0	225.5	10	15	-103	7648.83	0	0	0	-0.002	0.002
10/12/09 02:27:04	60.041	3654.294	350	-163.766586	-	226	10	15	-103	7649.16	0	0	0	0.000	0.000
10/12/09 02:27:06	60.041	3655.007	350	-165.101685	0	226.5	10	15	-103	7649.49	0	0	0	0.000	0.000
10/12/09 02:27:08	60.039	3651.874	350	-165.101685	0	227	10	15	-103	7649.82	0	0	0	-0.002	0.002
10/12/09 02:27:10	60.041	3651.059	350	-165.101685	0	227.5	10	15	-103	7650.15	0	0	0	0.002	0.002
10/12/09 02:27:12	60.043	3649.187	350	-165.101685	0	228	10	15	-103	7650.48	0	0	0	0.002	0.002
10/12/09 02:27:14	60.045	3648.236	350	-165.101685	0	228.5	10	15	-103	7650.81	0	0	0	0.002	0.002
10/12/09 02:27:16	60.046	3645.387	350	-165.476395	0	229	10	15	-103	7651.14	0	0	0	0.001	0.001
10/12/09 02:27:18	60.041	3644.628	350	-165.476395	0	229.5	10	15	-103	7651.47	0	0	0	-0.005	0.005
10/12/09 02:27:20	60.041	3645.446	350	-165.476395	0	230	10	15	-103	7651.8	0	0	0	0.000	0.000
10/12/09 02:27:22	60.041	3640.682	350	-165.476395	0	230.5	10	15	-103	7652.13	0	0	0	0.000	0.000
10/12/09 02:27:24	60.039	3641.191	350	-165.476395	0	231	10	15	-103	7652.46	0	0	0	-0.002	0.002
10/12/09 02:27:26	59.978	3659.465	350	-206.459106	0	231.5	10	15	-103	7652.79	0	0	1	-0.061	0.061
10/12/09 02:27:28	59.852	3696.362	350	-206.459106	0	232	10	0	-103	7616	1	0	1	-0.126	0.126
10/12/09 02:27:30	59.836	3734.904	335	-206.459106	0	232.5	10	0	-103	7626	1	0	1	-0.016	0.016
10/12/09 02:27:32	59.869	3734.673	335	-206.459106	0	233	10	0	-103	7632	1	0	1	0.033	0.033
10/12/09 02:27:34	59.892	3737.157	335	-206.459106	0	233.5	10	0	-103	7632	1	0	1	0.023	0.023
10/12/09 02:27:36	59.891	3761.25	335	-211.256042	0	234	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:27:38	59.88	3766.113	335	-211.256042	1	234.5	10	0	-103	7632	1	0	1	-0.011	0.011
10/12/09 02:27:40	59.876	3766.194	335	-211.256042	1	235	10	0	-103	7632	1	0	1	-0.004	0.004
10/12/09 02:27:42	59.875	3768.877	335	-211.256042	1	235.5	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:27:44	59.883	3769.925	335	-211.256042	1	236	10	0	-103	7632	1	0	1	0.008	0.008
10/12/09 02:27:46	59.887	3780.621	335	-214.346695	1	236.5	10	0	-103	7632	1	0	1	0.004	0.004
10/12/09 02:27:48	59.886	3781.592	335	-214.346695	1	237	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:27:50	59.885	3782.5	335	-214.346695	1	237.5	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:27:52	59.887	3784.962	335	-214.346695	2	238	10	0	-103	7632	1	0	1	0.002	0.002
10/12/09 02:27:54	59.888	3784.73	335	-214.346695	3	238.5	10	0	-103	7632	1	0	1	0.001	0.001
10/12/09 02:27:56	59.89	3784.419	335	-212.172699	4	239	10	0	-103	7632	1	0	1	0.002	0.002
10/12/09 02:27:58	59.895	3788.072	335	-212.172699	5	239.5	10	0	-103	7632	1	0	1	0.005	0.005
10/12/09 02:28:00	59.894	3788.328	335	-212.172699	6	240	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:28:02	59.893	3788.868	335	-212.172699	7	240.5	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:28:04	59.894	3788.472	335	-212.172699	8	241	10	0	-103	7632	1	0	1	0.001	0.001
10/12/09 02:28:06	59.894	3792.276	335	-215.598175	9	241.5	10	0	-103	7632	1	0	1	0.000	0.000
10/12/09 02:28:08	59.891	3793.074	335	-215.598175	10	242	10	0	-103	7632	1	0	1	-0.003	0.003
10/12/09 02:28:10	59.89	3794.374	335	-215.598175	11	242.5	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:28:12	59.885	3799.428	335	-215.598175	12	243	10	0	-103	7632	1	0	1	-0.005	0.005
10/12/09 02:28:14	59.885	3800.427	335	-215.598175	13	243.5	10	0	-103	7632	1	0	1	0.000	0.000
10/12/09 02:28:16	59.888	3799.959	335	-218.327255	14	244	10	0	-103	7632	1	0	1	0.003	0.003
10/12/09 02:28:18	59.887	3803.625	335	-218.327255	15	244.5	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:28:20	59.888	3802.925	335	-218.327255	16	245	10	0	-103	7632	1	0	1	0.001	0.001
10/12/09 02:28:22	59.888	3802.951	335	-218.327255	16	245.5	10	0	-103	7632	1	0	1	0.000	0.000
10/12/09 02:28:24	59.89	3804.388	335	-218.327255	16	246	10	0	-103	7632	1	0	1	0.002	0.002
10/12/09 02:28:26	59.889	3805.496	335	-217.379425	16	246.5	10	0	-103	7632	1	0	1	-0.001	0.001
10/12/09 02:28:28	59.882	3805.617	335	-217.379425	16	247	10	0	-103	7632	1	0	1	-0.007	0.007
10/12/09 02:28:30	59.873	3809.237	335	-217.379425	16	247.5	10	0	-103	7631	1	0	1	-0.009	0.009
10/12/09 02:28:32	59.857	3811.503	335	-217.379425	16	248	10	0	-103	7625	1	0	1	-0.016	0.016
10/12/09 02:28:34	59.849	3814.862	335	-217.379425	16	248.5	10	0	-103	7623	1	0	1	-0.008	0.008

10/12/09 02:28:36	59.852	3815.889	335	-214.830353	16	249	10	0	-103	7621	1	0	1	0.003	0.003
10/12/09 02:28:38	59.858	3825.643	335	-214.830353	16	249.5	10	0	-103	7623	1	0	1	0.006	0.006
10/12/09 02:28:40	59.863	3826.053	335	-214.830353	16	250	10	0	-103	7625	1	0	1	0.005	0.005
10/12/09 02:28:42	59.866	3826.002	335	-214.830353	16	250.5	10	0	-103	7627	1	0	1	0.003	0.003
10/12/09 02:28:44	59.865	3827.524	335	-214.830353	16	251	10	0	-103	7628	1	0	1	-0.001	0.001
10/12/09 02:28:46	59.867	3826.753	335	-227.655914	16	251.5	10	0	-103	7628	1	0	1	0.002	0.002
10/12/09 02:28:48	59.866	3826.783	335	-227.655914	16	252	10	0	-103	7629	1	0	1	-0.001	0.001
10/12/09 02:28:50	59.871	3826.454	335	-227.655914	16	252.5	10	0	-103	7630	1	0	1	0.005	0.005
10/12/09 02:28:52	59.874	3825.713	335	-227.655914	16	253	10	0	-103	7631	1	0	1	0.003	0.003
10/12/09 02:28:54	59.879	3823.826	335	-227.655914	16	253.5	10	0	-103	7635	1	0	1	0.005	0.005
10/12/09 02:28:56	59.88	3822.505	335	-225.018082	16	254	10	0	-103	7638	1	0	1	0.001	0.001
10/12/09 02:28:58	59.883	3819.081	335	-225.018082	16	254.5	10	0	-103	7639	1	0	1	0.003	0.003
10/12/09 02:29:00	59.886	3818.055	335	-225.018082	16	255	10	0	-103	7642	1	0	1	0.003	0.003
10/12/09 02:29:02	59.89	3816.815	335	-225.018082	16	255.5	10	0	-103	7644	1	0	1	0.004	0.004
10/12/09 02:29:04	59.892	3815.01	335	-225.018082	16	256	10	0	-103	7645	1	0	1	0.002	0.002
10/12/09 02:29:06	59.889	3813.783	335	-228.365158	16	256.5	10	0	-103	7647	1	0	1	-0.003	0.003
10/12/09 02:29:08	59.893	3811.838	335	-228.365158	16	257	10	0	-103	7648	1	0	1	0.004	0.004
10/12/09 02:29:10	59.899	3809.652	335	-228.365158	16	257.5	10	0	-103	7649	1	0	1	0.006	0.006
10/12/09 02:29:12	59.903	3806.972	335	-228.365158	16	258	10	0	-103	7650	1	0	1	0.004	0.004
10/12/09 02:29:14	59.902	3805.593	335	-228.365158	16	258.5	10	0	-103	7651	1	0	1	-0.001	0.001
10/12/09 02:29:16	59.902	3804.188	335	-284.075333	16	259	10	0	-103	7652	1	0	1	0.000	0.000
10/12/09 02:29:18	59.904	3796.078	335	-234.075333	16	259.5	10	0	-103	7653	1	0	1	0.002	0.002
10/12/09 02:29:20	59.907	3793.975	335	-234.075333	16	260	10	0	-103	7654	1	0	1	0.003	0.003
10/12/09 02:29:22	59.911	3792.169	335	-234.075333	16	260.5	10	0	-103	7655	1	0	1	0.004	0.004
10/12/09 02:29:24	59.916	3791.502	335	-234.075333	16	261	10	0	-103	7655	1	0	1	0.005	0.005
10/12/09 02:29:26	59.916	3789.534	335	-228.798157	16	261.5	10	0	-103	7656	1	0	1	0.000	0.000
10/12/09 02:29:28	59.917	3788.132	335	-228.798157	16	262	10	0	-103	7656	1	0	1	0.001	0.001
10/12/09 02:29:30	59.918	3784.563	335	-228.798157	16	262.5	10	0	-103	7657	1	0	1	0.001	0.001
10/12/09 02:29:32	59.92	3783.028	335	-228.798157	16	263	10	0	-103	7657	1	0	1	0.002	0.002
10/12/09 02:29:34	59.921	3781.701	335	-228.798157	16	263.5	10	0	-103	7658	1	0	1	0.001	0.001
10/12/09 02:29:36	59.92	3776.358	335	-229.466965	16	264	10	0	-103	7658	1	0	1	-0.001	0.001
10/12/09 02:29:38	59.917	3775.635	335	-229.466965	16	264.5	10	0	-103	7659	1	0	1	-0.003	0.003
10/12/09 02:29:40	59.92	3774.604	335	-229.466965	16	265	10	0	-103	7659	1	0	1	0.003	0.003
10/12/09 02:29:42	59.921	3773.334	335	-229.466965	16	265.5	10	0	-103	7659	1	0	1	0.001	0.001
10/12/09 02:29:44	59.923	3773.958	335	-229.466965	16	266	10	0	-103	7660	1	0	1	0.002	0.002
10/12/09 02:29:46	59.926	3772.722	335	-228.980164	16	266.5	10	0	-103	7660	1	0	1	0.003	0.003
10/12/09 02:29:48	59.925	3771.67	335	-228.980164	16	267	10	0	-103	7661	1	0	1	-0.001	0.001
10/12/09 02:29:50	59.928	3769.63	335	-228.980164	16	267.5	10	0	-103	7661	1	0	1	0.003	0.003
10/12/09 02:29:52	59.927	3768.707	335	-228.980164	16	268	10	0	-103	7662	1	0	1	-0.001	0.001
10/12/09 02:29:54	59.932	3767.643	335	-228.980164	16	268.5	10	0	-103	7662	1	0	1	0.005	0.005
10/12/09 02:29:56	59.927	3767.021	335	-219.975555	16	269	10	0	-103	7663	1	0	1	-0.005	0.005
10/12/09 02:29:58	59.928	3767.408	335	-219.975555	16	269.5	10	0	-103	7663	1	0	1	0.001	0.001
10/12/09 02:30:00	59.931	3766.788	335	-219.975555	16	270	10	0	-103	7664	1	0	1	0.003	0.003
10/12/09 02:30:02	59.929	3766.259	335	-219.975555	16	270.5	10	0	-103	7664	1	0	1	-0.002	0.002
10/12/09 02:30:04	59.931	3765.672	335	-219.975555	16	271	10	0	-103	7665	1	0	1	0.002	0.002
10/12/09 02:30:06	59.933	3766.123	335	-229.089249	16	271.5	10	0	-103	7666	1	0	1	0.002	0.002
10/12/09 02:30:08	59.937	3764.243	335	-229.089249	16	272	10	0	-103	7666	1	0	1	0.004	0.004
10/12/09 02:30:10	59.937	3765.105	335	-229.089249	16	272.5	10	0	-103	7667	1	0	1	0.000	0.000
10/12/09 02:30:12	59.945	3762.935	335	-229.089249	16	273	10	0	-103	7668	1	0	1	0.008	0.008

10/12/09 02:30:14	59.949	3758.387	335	-229.089249	16	273.5	10	0	-103	7668	1	0	1	0.004	0.004
10/12/09 02:30:16	59.947	3753.922	335	-229.663269	16	274	10	0	-103	7669	1	0	1	-0.002	0.002
10/12/09 02:30:18	59.942	3749.867	335	-229.663269	16	274.5	10	0	-103	7669	1	0	1	-0.005	0.005
10/12/09 02:30:20	59.941	3746.889	335	-229.663269	16	275	10	0	-103	7670	1	0	1	-0.001	0.001
10/12/09 02:30:22	59.942	3747.875	335	-229.663269	16	275.5	10	0	-103	7670	1	0	1	0.001	0.001
10/12/09 02:30:24	59.945	3749.593	335	-229.663269	16	276	10	0	-103	7671	1	0	1	0.003	0.003
10/12/09 02:30:26	59.948	3748.661	335	-229.233856	16	276.5	10	0	-103	7671	1	0	1	0.003	0.003
10/12/09 02:30:28	59.947	3746.706	335	-229.233856	16	277	10	0	-103	7672	1	0	1	-0.001	0.001
10/12/09 02:30:30	59.949	3749.077	335	-229.233856	16	277.5	10	0	-103	7673	1	0	1	0.002	0.002
10/12/09 02:30:32	59.951	3742.741	335	-229.233856	16	278	10	0	-103	7673	1	0	1	0.002	0.002
10/12/09 02:30:34	59.952	3740.259	350	-229.233856	16	278.5	10	0	-103	7673	1	0	1	0.001	0.001
10/12/09 02:30:36	59.953	3736.139	350	-231.409882	16	279	10	0	-103	7673	1	0	1	0.001	0.001
10/12/09 02:30:38	59.951	3731.382	350	-231.409882	16	279.5	10	0	-103	7673	1	0	1	-0.002	0.002
10/12/09 02:30:40	59.952	3727.838	350	-231.409882	16	280	10	0	-103	7673	1	0	1	0.001	0.001
10/12/09 02:30:42	59.952	3725.952	350	-231.409882	16	280.5	10	0	-103	7673	1	0	1	0.000	0.000
10/12/09 02:30:44	59.952	3722.649	350	-231.409882	16	281	10	0	-103	7673	1	0	1	0.000	0.000
10/12/09 02:30:46	59.955	3720.578	350	-218.622284	16	281.5	10	0	-103	7673	1	0	1	0.003	0.003
10/12/09 02:30:48	59.952	3717.996	350	-218.622284	16	282	10	0	-103	7673	1	0	1	-0.003	0.003
10/12/09 02:30:50	59.954	3718.142	350	-218.622284	16	282.5	10	0	-103	7673	1	0	1	0.002	0.002
10/12/09 02:30:52	59.952	3715.753	350	-218.622284	16	283	10	0	-103	7673	1	0	1	-0.002	0.002
10/12/09 02:30:54	59.953	3713.694	350	-218.622284	16	283.5	10	0	-103	7673	1	0	1	0.001	0.001
10/12/09 02:30:56	59.953	3713.484	350	-213.535858	16	284	10	0	-103	7673	1	0	1	0.000	0.000
10/12/09 02:30:58	59.952	3710.848	350	-213.535858	16	284.5	10	0	-103	7673	1	0	1	-0.001	0.001
10/12/09 02:31:00	59.954	3712.81	350	-213.535858	16	285	10	0	-103	7673	1	0	1	0.002	0.002
10/12/09 02:31:02	59.954	3712.092	350	-213.535858	16	285.5	10	0	-103	7674	1	0	1	0.000	0.000
10/12/09 02:31:04	59.959	3714.623	350	-213.535858	16	286	10	0	-103	7675	1	0	1	0.005	0.005
10/12/09 02:31:06	59.957	3715.13	350	-225.651855	16	286.5	10	0	-103	7676	1	0	1	-0.002	0.002
10/12/09 02:31:08	59.956	3716.168	350	-225.651855	16	287	10	0	-103	7677	1	0	1	-0.001	0.001
10/12/09 02:31:10	59.954	3716.461	350	-225.651855	16	287.5	10	0	-103	7678	1	0	1	-0.002	0.002
10/12/09 02:31:12	59.956	3716.98	350	-225.651855	16	288	10	0	-103	7679	1	0	1	0.002	0.002
10/12/09 02:31:14	59.955	3717.759	350	-225.651855	16	288.5	10	0	-103	7680	1	0	1	-0.001	0.001
10/12/09 02:31:16	59.958	3722.361	350	-212.573639	16	289	10	0	-103	7681	1	0	1	0.003	0.003
10/12/09 02:31:18	59.961	3721.973	350	-212.573639	16	289.5	10	0	-103	7682	1	0	1	0.003	0.003
10/12/09 02:31:20	59.962	3722.658	350	-212.573639	16	290	10	0	-103	7684	1	0	1	0.001	0.001
10/12/09 02:31:22	59.962	3722.267	350	-212.573639	16	290.5	10	0	-103	7685	1	0	1	0.000	0.000
10/12/09 02:31:24	59.968	3722.278	350	-212.573639	16	291	10	0	-103	7687	1	0	1	0.006	0.006
10/12/09 02:31:26	59.966	3721.787	350	-219.897293	16	291.5	10	0	-103	7689	1	0	1	-0.002	0.002
10/12/09 02:31:28	59.966	3723.091	350	-219.897293	16	292	10	0	-103	7690	1	-	1	0.000	0.000
10/12/09 02:31:30	59.968	3723.984	350	-219.897293	16	292.5	10	0	-103	7692	1	0	1	0.002	0.002
10/12/09 02:31:32	59.97	3723.435	350	-219.897293	16	293	10	0	-103	7692	1	0	1	0.002	0.002
10/12/09 02:31:34	59.974	3723.893	350	-219.897293	16	293.5	10	0	-103	7693	1	0	1	0.004	0.004
10/12/09 02:31:36	59.97	3725.403	350	-231.1754	16	294	10	0	-103	7693	1	0	1	-0.004	0.004
10/12/09 02:31:38	59.969	3727.121	350	-231.1754	16	294.5	10	0	-103	7694	1		1	-0.001	0.001
10/12/09 02:31:40	59.969	3728.053	350	-231.1754	16	295	10	0	-103	7694	1	0	1	0.000	0.000
10/12/09 02:31:42	59.97	3731.13	350	-231.1754	16	295.5	10	0	-103	7695	1	0	1	0.001	0.001
10/12/09 02:31:44	59.971	3732.53	350	-231.1754	16	296	10	0	-103	7695	1	0	1	0.001	0.001
10/12/09 02:31:46	59.973	3733.327	350	-226.634125	16	296.5	10	0	-103	7695	1	0	1	0.002	0.002
10/12/09 02:31:48	59.973	3736.535	350	-226.634125	16	297	10	0	-103	7696	1	0	1	0.000	0.000
10/12/09 02:31:50	59.976	3736.907	350	-226.634125	16	297.5	10	0	-103	7696	1	0	1	0.003	0.003

10/12/09 02:31:52	59.978	3736.822	350	-226.634125	16	298	10	0	-103	7697	1	0	1	0.002	0.002
10/12/09 02:31:54	59.978	3738.699	350	-226.634125	16	298.5	10	0	-103	7697	1	0	1	0.000	0.000
10/12/09 02:31:56	59.976	3739.944	350	-227.255066	16	299	10	0	-103	7697	1	0	1	-0.002	0.002
10/12/09 02:31:58	59.978	3740.877	350	-227.255066	16	299.5	10	0	-103	7698	1	0	1	0.002	0.002
10/12/09 02:32:00	59.976	3741.794	350	-227.255066	16	300	10	0	-103	7698	1	0	1	-0.002	0.002
10/12/09 02:32:02	59.978	3745.234	350	-227.255066	16	300.5	10	0	-103	7698.33	1	0	1	0.002	0.002
10/12/09 02:32:04	59.977	3746.608	350	-227.255066	16	301	10	0	-103	7698.66	1	0	1	-0.001	0.001
10/12/09 02:32:06	59.98	3748.3	350	-229.290222	16	301.5	10	0	-103	7698.99	1	0	1	0.003	0.003
10/12/09 02:32:08	59.982	3750.716	350	-229.290222	16	302	10	0	-103	7699.32	1	0	1	0.002	0.002
10/12/09 02:32:10	59.981	3751.558	350	-229.290222	16	302.5	10	0	-103	7699.65	1	0	1	-0.001	0.001
10/12/09 02:32:12	59.98	3752.748	350	-229.290222	16	303	10	0	-103	7699.98	1	0	1	-0.001	0.001
10/12/09 02:32:14	59.979	3755.599	350	-229.290222	16	303.5	10	0	-103	7700.31	1	0	1	-0.001	0.001
10/12/09 02:32:16	59.98	3756.407	350	-221.461365	16	304	10	0	-103	7700.64	1	0	1	0.001	0.001
10/12/09 02:32:18	59.979	3756.975	350	-221.461365	16	304.5	10	0	-103	7700.97	1	0	1	-0.001	0.001
10/12/09 02:32:20	59.983	3760.405	350	-221.461365	16	305	10	0	-103	7701.3	1	0	1	0.004	0.004
10/12/09 02:32:22	59.983	3760.982	350	-221.461365	16	305.5	10	0	-103	7701.63	1	0	1	0.000	0.000
10/12/09 02:32:24	59.984	3761.407	350	-221.461365	16	306	10	0	-103	7701.96	1	0	1	0.001	0.001
10/12/09 02:32:26	59.988	3762.737	350	-241.274368	16	306.5	10	0	-103	7702.29	1	0	1	0.004	0.004
10/12/09 02:32:28	59.989	3763.212	350	-241.274368	16	307	10	0	-103	7702.62	1	0	1	0.001	0.001
10/12/09 02:32:30	59.987	3764.958	350	-241.274368	16	307.5	10	0	-103	7702.95	1	0	1	-0.002	0.002
10/12/09 02:32:32	59.987	3766.085	350	-241.274368	16	308	10	0	-103	7703.28	1	0	1	0.000	0.000
10/12/09 02:32:34	59.991	3766.433	350	-241.274368	16	308.5	10	0	-103	7703.61	1	0	1	0.004	0.004
10/12/09 02:32:36	59.993	3767.251	350	-243.071854	16	309	10	0	-103	7703.94	1	0	1	0.002	0.002
10/12/09 02:32:38	59.992	3767.792	350	-243.071854	16	309.5	10	0	-103	7704.27	1	0	1	-0.001	0.001
10/12/09 02:32:40	59.991	3768.634	350	-243.071854	16	310	10	0	-103	7704.6	1	0	1	-0.001	0.001
10/12/09 02:32:42	59.989	3771.146	350	-243.071854	16	310.5	10	0	-103	7704.93	1	0	1	-0.002	0.002
10/12/09 02:32:44	59.986	3772.445	350	-243.071854	16	311	10	0	-103	7705.26	1	0	1	-0.003	0.003
10/12/09 02:32:46	59.983	3773.695	350	-241.670212	16	311.5	10	0	-103	7705.59	1	0	1	-0.003	0.003
10/12/09 02:32:48	59.983	3774.668	350	-241.670212	16	312	10	0	-103	7705.92	1		1	0.000	0.000
10/12/09 02:32:50	59.988	3775.841	350	-241.670212	16	312.5	10	0	-103	7706.25	1	0	1	0.005	0.005
10/12/09 02:32:52	59.993	3775.363	350	-241.670212	16	313	10	0	-103	7706.58	1	0	1	0.005	0.005
10/12/09 02:32:54	59.996	3774.866	350	-241.670212	16	313.5	10	0	-103	7706.91	1	0	1	0.003	0.003
10/12/09 02:32:56	59.998	3775.492	350	-228.149307	16	314	10	0	-103	7707.24	1	0	1	0.002	0.002
10/12/09 02:32:58	59.999	3776.42	350	-228.149307	16	314.5	10	0	-103	7707.57	1	-	1	0.001	0.001
10/12/09 02:33:00	60.001	3778.554	350	-228.149307	16	315	10	0	-103	7707.9	1	1	1	0.002	0.002
10/12/09 02:33:02	59.999	3779.692	350	-228.149307	16	315.5	10	0	-103	7708.23	1	0	1	-0.002	0.002
10/12/09 02:33:04	59.999	3781.256	350	-228.149307	16	316	10	0	-103	7708.56	1	0	1	0.000	0.000
10/12/09 02:33:06	59.999	3780.595	350	-235.128983	16	316.5	10	0	-103	7708.89	1	0	1	0.000	0.000
10/12/09 02:33:08	60.002	3783.092	350	-235.128983	16	317	10	0	-103	7709.22	1	1	1	0.003	0.003
10/12/09 02:33:10	60.005	3783.896	350	-235.128983	16	317.5	10	0	-103	7709.55	1	1	1	0.003	0.003
10/12/09 02:33:12	60.007	3784.421	350	-235.128983	16	318	10	0	-103	7709.88	1	1	1	0.002	0.002
10/12/09 02:33:14	60.008	3785.768	350	-235.128983	16	318.5	10	0	-103	7710.21	1	1	1	0.001	0.001
10/12/09 02:33:16	60.011	3785.463	350	-246.433136	16	319	10	0	-103	7710.54	1	1	1	0.003	0.003
10/12/09 02:33:18	60.014	3786.85	350	-246.433136	16	319.5	10	0	-103	7710.87	1	1	1	0.003	0.003
10/12/09 02:33:20	60.017	3786.304	350	-246.433136	16	320	10	0	-103	7711.2	1	1	1	0.003	0.003
10/12/09 02:33:22	60.019	3787.259	350	-246.433136	16	320.5	10	0	-103	7711.53	1	1	1	0.002	0.002
10/12/09 02:33:24	60.021	3787.516	350	-246.433136	16	321	10	0	-103	7711.86	1	1	1	0.002	0.002
10/12/09 02:33:26	60.017	3787.955	350	-236.553543	16	321.5	10	0	-103	7712.19	1	1	1	-0.004	0.004
10/12/09 02:33:28	60.017	3788.03	350	-236.553543	16	322	10	0	-103	7712.52	1	1	1	0.000	0.000

10/12/09 02:33:30	60.019	3788.607	350	-236.553543	16	322.5	10	0	-103	7712.85	1	1	1	0.002	0.002
10/12/09 02:33:32	60.023	3789.216	350	-236.553543	16	323	10	0	-103	7713.18	1	1	1	0.004	0.004
10/12/09 02:33:34	60.024	3787.537	350	-236.553543	16	323.5	10	0	-103	7713.51	1	1	1	0.001	0.001
10/12/09 02:33:36	60.025	3785.842	350	-230.297562	16	324	10	0	-103	7713.84	1	1	1	0.001	0.001
10/12/09 02:33:38	60.021	3786.077	350	-230.297562	16	324.5	10	0	-103	7714.17	1	1	1	-0.004	0.004
10/12/09 02:33:40	60.019	3787.93	350	-230.297562	16	325	10	0	-103	7714.5	1	1	1	-0.002	0.002
10/12/09 02:33:42	60.024	3788.76	350	-230.297562	16	325.5	10	0	-103	7714.83	1	1	1	0.005	0.005
10/12/09 02:33:44	60.024	3786.875	350	-230.297562	16	326	10	0	-103	7715.16	1	1	1	0.000	0.000
10/12/09 02:33:46	60.021	3786.55	350	-231.175537	16	326.5	10	0	-103	7715.49	1	1	1	-0.003	0.003
10/12/09 02:33:48	60.02	3787.358	350	-231.175537	16	327	10	0	-103	7715.82	1	1	1	-0.001	0.001
10/12/09 02:33:50	60.025	3785.018	350	-231.175537	16	327.5	10	0	-103	7716.15	1	1	1	0.005	0.005
10/12/09 02:33:52	60.024	3785.614	350	-231.175537	16	328	10	0	-103	7716.48	1	1	1	-0.001	0.001
10/12/09 02:33:54	60.02	3785.949	350	-231.175537	16	328.5	10	0	-103	7716.81	1	1	1	-0.004	0.004
10/12/09 02:33:56	60.02	3785.804	350	-225.61763	16	329	10	0	-103	7717.14	1	1	1	0.000	0.000
10/12/09 02:33:58	60.022	3786.864	350	-225.61763	16	329.5	10	0	-103	7717.47	1	1	1	0.002	0.002
10/12/09 02:34:00	60.022	3786.877	350	-225.61763	16	330	10	0	-103	7717.8	1	1	1	0.000	0.000
10/12/09 02:34:02	60.022	3785.254	350	-225.61763	16	330.5	10	0	-103	7718.13	1	1	1	0.000	0.000
10/12/09 02:34:04	60.021	3785.726	350	-235.61763	16	331	10	0	-103	7718.46	1	1	1	-0.001	0.001
10/12/09 02:34:06	60.021	3786.347	350	-230.734421	16	331.5	10	0	-103	7718.79	1	1	1	0.000	0.000
10/12/09 02:34:08	60.023	3785.821	350	-230.734421	16	332	10	0	-103	7719.12	1	1	1	0.002	0.002
10/12/09 02:34:10	60.023	3785.798	350	-230.734421	16	332.5	10	0	-103	7719.45	1	1	1	0.000	0.000
10/12/09 02:34:12	60.022	3786.284	350	-230.734421	16	333	10	0	-103	7719.78	1	1	1	-0.001	0.001
10/12/09 02:34:14	60.019	3786.939	350	-230.734421	16	333.5	10	0	-103	7720.11	1	1	1	-0.003	0.003
10/12/09 02:34:16	60.016	3787.627	350	-234.847107	16	334	10	0	-103	7720.44	1	1	1	-0.003	0.003
10/12/09 02:34:18	60.018	3789.444	350	-234.847107	16	334.5	10	0	-103	7720.77	1	1	1	0.002	0.002
10/12/09 02:34:20	60.018	3789.673	350	-234.847107	16	335	10	0	-103	7721.1	1	1	1	0.000	0.000
10/12/09 02:34:22	60.018	3789.404	350	-234.847107	16	335.5	10	0	-103	7721.43	1	1	1	0.000	0.000
10/12/09 02:34:24	60.019	3788.479	350	-234.847107	16	336	10	0	-103	7721.76	1	1	1	0.001	0.001
10/12/09 02:34:26	60.019	3789.183	350	-228.960922	16	336.5	10	0	-103	7722.09	1	1	1	0.000	0.000
10/12/09 02:34:28	60.016	3789.369	350	-228.960922	16	337	10	0	-103	7722.42	1	1	1	-0.003	0.003
10/12/09 02:34:30	60.015	3789.005	350	-228.960922	16	337.5	10	0	-103	7722.75	1	1	1	-0.001	0.001
10/12/09 02:34:32	60.016	3788.665	350	-228.960922	16	338	10	0	-103	7723.08	1	1	1	0.001	0.001
10/12/09 02:34:34	60.014	3788.933	350	-228.960922	16	338.5	10	0	-103	7723.41	1	1	1	-0.002	0.002
10/12/09 02:34:36	60.013	3790.667	350	-231.177917	16	339	10	0	-103	7723.74	1	1	1	-0.001	0.001
10/12/09 02:34:38	60.012	3790.805	350	-231.177917	16	339.5	10	0	-103	7724.07	1	1	1	-0.001	0.001
10/12/09 02:34:40	60.012	3790.411	350	-231.177917	16	340	10	0	-103	7724.4	1	1	1	0.000	0.000
10/12/09 02:34:42	60.01	3789.769	350	-231.177917	16	340.5	10	0	-103	7724.73	1	1	1	-0.002	0.002
10/12/09 02:34:44	60.007	3791.54	350	-231.177917	16	341	10	0	-103	7725.06	1	1	1	-0.003	0.003
10/12/09 02:34:46	60.007	3792.945	350	-236.489288	16	341.5	10	0	-103	7725.39	1	1	1	0.000	0.000
10/12/09 02:34:48	60.009	3791.027	350	-236.489288	16	342	10	0	-103	7725.72	1	1	1	0.002	0.002
10/12/09 02:34:50	60.009	3791.443	350	-236.489288	16	342.5	10	0	-103	7726.05	1		1	0.000	0.000
10/12/09 02:34:52	60.01	3791.426	350	-236.489288	16	343	10	0	-103	7726.38	1	1	1	0.001	0.001
10/12/09 02:34:54	60.003	3790.603	350	-236.489288	16	343.5	10	0	-103	7726.71	1	1	1	-0.007	0.007
10/12/09 02:34:56	59.999	3790.457	350	-245.038925	16	344	10	0	-103	7727.04	1	0	1	-0.004	0.004
10/12/09 02:34:58	59.995	3790.216	350	-245.038925	16	344.5	10	0	-103	7727.37	1	0	1	-0.004	0.004
10/12/09 02:35:00	59.992	3789.585	350	-245.038925	16	345	10	0	-103	7727.7	1	0	1	-0.003	0.003
10/12/09 02:35:02	59.991	3788.457	350	-245.038925	16	345.5	10	0	-103	7728.03	1	0	1	-0.001	0.001
10/12/09 02:35:04	59.992	3788.105	350	-245.038925	16	346	10	0	-103	7728.36	1	0	1	0.001	0.001
10/12/09 02:35:06	59.992	3788.057	350	-223.605682	16	346.5	10	0	-103	7728.69	1	0	1	0.000	0.000

10/12/09 02:35:08	59.988	3788.189	350	-223.605682	16	347	10	0	-103	7729.02	1	0	1	-0.004	0.004
10/12/09 02:35:10	59.986	3788.497	350	-223.605682	16	347.5	10	0	-103	7729.35	1	0	1	-0.002	0.002
10/12/09 02:35:12	59.985	3788.54	350	-223.605682	16	348	10	0	-103	7729.68	1	0	1	-0.001	0.001
10/12/09 02:35:14	59.984	3788.571	350	-223.605682	16	348.5	10	0	-103	7730.01	1	0	1	-0.001	0.001
10/12/09 02:35:16	59.985	3788.101	350	-231.119354	16	349	10	0	-103	7730.34	1	0	1	0.001	0.001
10/12/09 02:35:18	59.984	3787.133	350	-231.119354	16	349.5	10	0	-103	7730.67	1	0	1	-0.001	0.001
10/12/09 02:35:20	59.982	3786.453	350	-231.119354	16	350	10	0	-103	7731	1	0	1	-0.002	0.002
10/12/09 02:35:22	59.981	3787.732	350	-231.119354	16	350.5	10	0	-103	7731.33	1	0	1	-0.001	0.001
10/12/09 02:35:24	59.982	3788.813	350	-231.119354	16	351	10	0	-103	7731.66	1	0	1	0.001	0.001
10/12/09 02:35:26	59.979	3789.285	350	-237.20665	16	351.5	10	0	-103	7731.99	1	0	1	-0.003	0.003
10/12/09 02:35:28	59.977	3788.256	350	-237.20665	16	352	10	0	-103	7732.32	1	0	1	-0.002	0.002
10/12/09 02:35:30	59.976	3788.41	350	-237.20665	16	352.5	10	0	-103	7732.65	1	0	1	-0.001	0.001
10/12/09 02:35:32	59.976	3790.467	350	-237.20665	16	353	10	0	-103	7732.98	1	0	1	0.000	0.000
10/12/09 02:35:34	59.979	3790.665	350	-237.20665	16	353.5	10	0	-103	7733.31	1	0	1	0.003	0.003
10/12/09 02:35:36	59.982	3790.42	350	-240.516373	16	354	10	0	-103	7733.64	1	0	1	0.003	0.003
10/12/09 02:35:38	59.978	3789.674	350	-240.516373	16	354.5	10	0	-103	7733.97	1	0	1	-0.004	0.004
10/12/09 02:35:40	59.976	3789.267	350	-240.516373	16	355	10	0	-103	7734.3	1	0	1	-0.002	0.002
10/12/09 02:35:42	59.974	3789.148	350	-240.516373	16	355.5	10	0	-103	7734.63	1	0	1	-0.002	0.002
10/12/09 02:35:44	59.976	3790.43	350	-240.516373	16	356	10	0	-103	7734.96	1	0	1	0.002	0.002
10/12/09 02:35:46	59.977	3789.914	350	-237.566055	16	356.5	10	0	-103	7735.29	1	0	1	0.001	0.001
10/12/09 02:35:48	59.977	3786.243	350	-237.566055	16	357	10	0	-103	7735.62	1	0	1	0.000	0.000
10/12/09 02:35:50	59.975	3787.442	350	-237.566055	16	357.5	10	0	-103	7735.95	1	0	1	-0.002	0.002
10/12/09 02:35:52	59.973	3788.963	350	-237.566055	16	358	10	0	-103	7736.28	1	0	1	-0.002	0.002
10/12/09 02:35:54	59.969	3790.602	350	-237.566055	16	358.5	10	0	-103	7736.61	1	0	1	-0.004	0.004
10/12/09 02:35:56	59.97	3791.877	350	-231.581421	16	359	10	0	-103	7736.94	1	0	1	0.001	0.001
10/12/09 02:35:58	59.971	3792.911	350	-231.581421	16	359.5	10	0	-103	7737.27	1	0	1	0.001	0.001
10/12/09 02:36:00	59.973	3792.311	350	-231.581421	16	360	10	0	-103	7737.6	1	0	1	0.002	0.002
10/12/09 02:36:02	59.978	3789.125	350	-231.581421	16	360.5	10	0	-103	7737.93	1	0	1	0.005	0.005
10/12/09 02:36:04	59.981	3788.08	350	-231.581421	16	361	10	0	-103	7738.26	1	0	1	0.003	0.003
10/12/09 02:36:06	59.978	3787.844	350	-235.850845	16	361.5	10	0	-103	7738.59	1	0	1	-0.003	0.003
10/12/09 02:36:08	59.975	3787.135	350	-235.850845	16	362	10	0	-103	7738.92	1	0	1	-0.003	0.003
10/12/09 02:36:10	59.972	3787.164	350	-235.850845	16	362.5	10	0	-103	7739.25	1	0	1	-0.003	0.003
10/12/09 02:36:12	59.976	3786.996	350	-235.850845	16	363	10	0	-103	7739.58	1	0	1	0.004	0.004
10/12/09 02:36:14	59.975	3787.405	350	-235.850845	16	363.5	10	0	-103	7739.91	1	0	1	-0.001	0.001
10/12/09 02:36:16	59.973	3786.487	350	-233.559982	16	364	10	0	-103	7740.24	1	0	1	-0.002	0.002
10/12/09 02:36:18	59.969	3787.079	350	-233.559982	16	364.5	10	0	-103	7740.57	1	0	1	-0.004	0.004
10/12/09 02:36:20	59.966	3789.214	350	-233.559982	16	365	10	0	-103	7740.9	1	0	1	-0.003	0.003
10/12/09 02:36:22	59.965	3790.512	350	-233.559982	16	365.5	10	0	-103	7741.23	1	0	1	-0.001	0.001
10/12/09 02:36:24	59.966	3791.221	350	-233.559982	16	366	10	0	-103	7741.56	1	0	1	0.001	0.001
10/12/09 02:36:26	59.969	3792.218	350	-219.009995	16	366.5	10	0	-103	7741.89	1	0	1	0.003	0.003
10/12/09 02:36:28	59.97	3790.959	350	-219.009995	16	367	10	0	-103	7742.22	1	0	1	0.001	0.001
10/12/09 02:36:30	59.968	3788.824	350	-219.009995	16	367.5	10	0	-103	7742.55	1	0	1	-0.002	0.002
10/12/09 02:36:32	59.965	3789.026	350	-219.009995	16	368	10	0	-103	7742.88	1	0	1	-0.003	0.003
10/12/09 02:36:34	59.964	3789.167	350	-219.009995	16	368.5	10	0	-103	7743.21	1	0	1	-0.001	0.001
10/12/09 02:36:36	59.97	3787.394	350	-205.338913	16	369	10	0	-103	7743.54	1	0	1	0.006	0.006
10/12/09 02:36:38	59.972	3785.69	350	-205.338913	16	369.5	10	0	-103	7743.87	1	0	1	0.002	0.002
10/12/09 02:36:40	59.967	3784.831	350	-205.338913	16	370	10	0	-103	7744.2	1	0	1	-0.005	0.005
10/12/09 02:36:42	59.967	3785.01	350	-205.338913	16	370.5	10	0	-103	7744.53	1	0	1	0.000	0.000
10/12/09 02:36:44	59.969	3784.32	350	-205.338913	16	371	10	0	-103	7744.86	1	0	1	0.002	0.002

10/12/09 02:36:46	59.968	3782.809	350	-236.285355	16	371.5	10	0	-103	7745.19	1	0	1	-0.001	0.001
10/12/09 02:36:48	59.969	3782.11	350	-236.285355	16	372	10	0	-103	7745.52	1	0	1	0.001	0.001
10/12/09 02:36:50	59.967	3779.352	350	-236.285355	16	372.5	10	0	-103	7745.85	1	0	1	-0.002	0.002
10/12/09 02:36:52	59.967	3779.056	350	-236.285355	16	373	10	0	-103	7746.18	1	0	1	0.000	0.000
10/12/09 02:36:54	59.966	3778.633	350	-236.285355	16	373.5	10	0	-103	7746.51	1	0	1	-0.001	0.001
10/12/09 02:36:56	59.965	3779.212	350	-223.015732	16	374	10	0	-103	7746.84	1	0	1	-0.001	0.001
10/12/09 02:36:58	59.971	3779.335	350	-223.015732	16	374.5	10	0	-103	7747.17	1	0	1	0.006	0.006
10/12/09 02:37:00	59.967	3776.429	350	-223.015732	16	375	10	0	-103	7747.5	1	0	1	-0.004	0.004
10/12/09 02:37:02	59.965	3775.647	350	-223.015732	16	375.5	10	0	-103	7747.83	1	0	1	-0.002	0.002
10/12/09 02:37:04	59.962	3776.597	350	-223.015732	16	376	10	0	-103	7748.16	1	0	1	-0.003	0.003
10/12/09 02:37:06	59.964	3776.559	350	-223.015732	16	376.5	10	0	-103	7748.49	1	0	1	0.002	0.002
10/12/09 02:37:08	59.97	3776.023	350	-223.015732	16	377	10	0	-103	7748.82	1	0	1	0.006	0.006
10/12/09 02:37:10	59.967	3773.17	350	-223.015732	16	377.5	10	0	-103	7749.15	1	0	1	-0.003	0.003
10/12/09 02:37:12	59.969	3771.73	350	-223.015732	16	378	10	0	-103	7749.48	1	0	1	0.002	0.002
10/12/09 02:37:14	59.968	3768.793	350	-223.015732	16	378.5	10	0	-103	7749.81	1	0	1	-0.001	0.001
10/12/09 02:37:16	59.963	3768.503	350	-223.015732	16	379	10	0	-103	7750.14	1	0	1	-0.005	0.005
10/12/09 02:37:18	59.965	3768.917	350	-223.015732	16	379.5	10	0	-103	7750.47	1	0	1	0.002	0.002
10/12/09 02:37:20	59.97	3767.366	350	-223.015732	16	380	10	0	-103	7750.8	1	0	1	0.005	0.005
10/12/09 02:37:22	59.973	3764.786	350	-223.015732	16	380.5	10	0	-103	7751.13	1	0	1	0.003	0.003
10/12/09 02:37:24	59.968	3760.295	350	-223.015732	16	381	10	0	-103	7751.46	1	0	1	-0.005	0.005
10/12/09 02:37:26	59.965	3759.592	350	-223.015732	16	381.5	10	0	-103	7751.79	1	0	1	-0.003	0.003
10/12/09 02:37:28	59.968	3761.894	350	-223.015732	16	382	10	0	-103	7752.12	1	0	1	0.003	0.003
10/12/09 02:37:30	59.969	3761.777	350	-223.015732	16	382.5	10	0	-103	7752.45	1	0	1	0.001	0.001
10/12/09 02:37:32	59.967	3760.583	350	-223.015732	16	383	10	0	-103	7752.78	1	0	1	-0.002	0.002
10/12/09 02:37:34	59.964	3760.157	350	-223.015732	16	383.5	10	0	-103	7753.11	1	0	1	-0.003	0.003
10/12/09 02:37:36	59.966	3759.781	350	-223.015732	16	384	10	0	-103	7753.44	1	0	1	0.002	0.002
10/12/09 02:37:38	59.979	3759.495	350	-223.015732	16	384.5	10	0	-103	7753.77	1	0	1	0.013	0.013
10/12/09 02:37:40	59.99	3757.773	350	-223.015732	16	385	10	0	-103	7754.1	1	0	1	0.011	0.011
10/12/09 02:37:42	59.983	3753.277	350	-223.015732	16	385.5	10	0	-103	7754.43	1	0	1	-0.007	0.007
10/12/09 02:37:44	59.974	3753.087	350	-223.015732	16	386	10	0	-103	7754.76	1	0	1	-0.009	0.009
10/12/09 02:37:46	59.967	3751.637	350	-223.015732	16	386.5	10	0	-103	7755.09	1	0	1	-0.007	0.007
10/12/09 02:37:48	59.965	3753.751	350	-223.015732	16	387	10	0	-103	7755.42	1	0	1	-0.002	0.002
10/12/09 02:37:50	59.962	3758.225	350	-223.015732	16	387.5	10	0	-103	7755.75	1	0	1	-0.003	0.003
10/12/09 02:37:52	59.962	3759.25	350	-223.015732	16	388	10	0	-103	7756.08	1	0	1	0.000	0.000
10/12/09 02:37:54	59.961	3758.041	350	-223.015732	16	388.5	10	0	-103	7756.41	1	0	1	-0.001	0.001
10/12/09 02:37:56	59.961	3760.965	350	-223.015732	16	389	10	0	-103	7756.74	1	0	1	0.000	0.000
10/12/09 02:37:58	59.96	3762.022	350	-223.015732	16	389.5	10	0	-103	7757.07	1	0	1	-0.001	0.001
10/12/09 02:38:00	59.963	3763.822	350	-223.015732	16	390	10	0	-103	7757.4	1	0	1	0.003	0.003
10/12/09 02:38:02	59.959	3763.1	350	-223.015732	16	390.5	10	0	-103	7757.73	1	0	1	-0.004	0.004
10/12/09 02:38:04	59.956	3763.858	350	-223.015732	16	391	10	0	-103	7758.06	1	0	1	-0.003	0.003
10/12/09 02:38:06	59.951	3764.158	350	-223.015732	16	391.5	10	0	-103	7758.39	1	0	1	-0.005	0.005
10/12/09 02:38:08	59.953	3766.127	350	-223.015732	16	392	10	0	-103	7758.72	1	0	1	0.002	0.002
10/12/09 02:38:10	59.954	3768.339	350	-223.015732	16	392.5	10	0	-103	7759.05	1	0	1	0.001	0.001
10/12/09 02:38:12	59.957	3767.972	350	-223.015732	16	393	10	0	-103	7759.38	1	0	1	0.003	0.003
10/12/09 02:38:14	59.956	3767.438	350	-223.015732	16	393.5	10	0	-103	7759.71	1	0	1	-0.001	0.001
10/12/09 02:38:16	59.961	3765.606	350	-223.015732	16	394	10	0	-103	7760.04	1	0	1	0.005	0.005
10/12/09 02:38:18	59.963	3762.688	350	-223.015732	16	394.5	10	0	-103	7760.37	1	0	1	0.002	0.002
10/12/09 02:38:20	59.961	3761.57	350	-223.015732	16	395	10	0	-103	7760.7	1	0	1	-0.002	0.002
10/12/09 02:38:22	59.959	3761.92	350	-223.015732	16	395.5	10	0	-103	7761.03	1	0	1	-0.002	0.002

10/12/09 02:38:24	59.963	3759.627	350	-223.015732	16	396	10	0	-103	7761.36	1	0	1	0.004	0.004
10/12/09 02:38:26	59.963	3758.522	350	-223.015732	16	396.5	10	0	-103	7761.69	1	0	1	0.000	0.000
10/12/09 02:38:28	59.965	3752.429	350	-223.015732	16	397	10	0	-103	7762.02	1	0	1	0.002	0.002
10/12/09 02:38:30	59.968	3750.102	350	-223.015732	16	397.5	10	0	-103	7762.35	1	0	1	0.003	0.003
10/12/09 02:38:32	59.968	3753.83	350	-223.015732	16	398	10	0	-103	7762.68	1	0	1	0.000	0.000
10/12/09 02:38:34	59.968	3753.51	350	-223.015732	16	398.5	10	0	-103	7763.01	1	0	1	0.000	0.000
10/12/09 02:38:36	59.97	3753.523	350	-223.015732	16	399	10	0	-103	7763.34	1	0	1	0.002	0.002
10/12/09 02:38:38	59.973	3752.741	350	-223.015732	16	399.5	10	0	-103	7763.67	1	0	1	0.003	0.003
10/12/09 02:38:40	59.971	3753.178	350	-223.015732	16	400	10	0	-103	7764	1	0	1	-0.002	0.002
10/12/09 02:38:42	59.965	3752.729	350	-223.015732	16	400.5	10	0	-103	7764.33	1	0	1	-0.006	0.006
10/12/09 02:38:44	59.967	3753.291	350	-223.015732	16	401	10	0	-103	7764.66	1	0	1	0.002	0.002
10/12/09 02:38:46	59.967	3752.872	350	-223.015732	16	401.5	10	0	-103	7764.99	1	0	1	0.000	0.000
10/12/09 02:38:48	59.972	3752.359	350	-223.015732	16	402	10	0	-103	7765.32	1	0	1	0.005	0.005
10/12/09 02:38:50	59.976	3749.398	350	-223.015732	16	402.5	10	0	-103	7765.65	1	0	1	0.004	0.004
10/12/09 02:38:52	59.975	3747.476	350	-223.015732	16	403	10	0	-103	7765.98	1	0	1	-0.001	0.001
10/12/09 02:38:54	59.969	3740.37	350	-223.015732	16	403.5	10	0	-103	7766.31	1	0	1	-0.006	0.006
10/12/09 02:38:56	59.973	3741.285	350	-223.015732	16	404	10	0	-103	7766.64	1	0	1	0.004	0.004
10/12/09 02:38:58	59.974	3746.651	350	-223.015732	16	404.5	10	0	-103	7766.97	1	0	1	0.001	0.001
10/12/09 02:39:00	59.978	3745.738	350	-223.015732	16	405	10	0	-103	7767.3	1	0	1	0.004	0.004
10/12/09 02:39:02	59.981	3743.351	350	-223.015732	16	405.5	10	0	-103	7767.63	1	0	1	0.003	0.003
10/12/09 02:39:04	59.981	3741.618	350	-223.015732	16	406	10	0	-103	7767.96	1	0	1	0.000	0.000
10/12/09 02:39:06	59.981	3740.306	350	-223.015732	16	406.5	10	0	-103	7768.29	1	0	1	0.000	0.000
10/12/09 02:39:08	59.982	3738.484	350	-223.015732	16	407	10	0	-103	7768.62	1	0	1	0.001	0.001
10/12/09 02:39:10	59.982	3738.901	350	-223.015732	16	407.5	10	0	-103	7768.95	1	0	1	0.000	0.000
10/12/09 02:39:12	59.984	3737.404	350	-223.015732	16	408	10	0	-103	7769.28	1	0	1	0.002	0.002
10/12/09 02:39:14	59.982	3737.273	350	-223.015732	16	408.5	10	0	-103	7769.61	1	0	1	-0.002	0.002
10/12/09 02:39:16	59.981	3736.308	350	-223.015732	16	409	10	0	-103	7769.94	1	0	1	-0.001	0.001
10/12/09 02:39:18	59.979	3736.272	350	-223.015732	16	409.5	10	0	-103	7770.27	1	0	1	-0.002	0.002
10/12/09 02:39:20	59.98	3735.448	350	-223.015732	16	410	10	0	-103	7770.6	1	0	1	0.001	0.001
10/12/09 02:39:22	59.978	3735.65	350	-223.015732	16	410.5	10	0	-103	7770.93	1	0	1	-0.002	0.002
10/12/09 02:39:24	59.978	3737.541	350	-223.015732	16	411	10	0	-103	7771.26	1	0	1	0.000	0.000
10/12/09 02:39:26	59.98	3738.012	350	-223.015732	16	411.5	10	0	-103	7771.59	1	0	1	0.002	0.002
10/12/09 02:39:28	59.981	3736.748	350	-223.015732	16	412	10	0	-103	7771.92	1	0	1	0.001	0.001
10/12/09 02:39:30	59.98	3736.693	350	-223.015732	16	412.5	10	0	-103	7772.25	1	0	1	-0.001	0.001
10/12/09 02:39:32	59.978	3736.067	350	-223.015732	16	413	10	0	-103	7772.58	1	0	1	-0.002	0.002
10/12/09 02:39:34	59.976	3736.094	350	-223.015732	16	413.5	10	0	-103	7772.91	1	0	1	-0.002	0.002
10/12/09 02:39:36	59.972	3736.575	350	-223.015732	16	414	10	0	-103	7773.24	1	0	1	-0.004	0.004
10/12/09 02:39:38	59.971	3738.571	350	-223.015732	16	414.5	10	0	-103	7773.57	1	0	1	-0.001	0.001
10/12/09 02:39:40	59.969	3738.875	350	-223.015732	16	415	10	0	-103	7773.9		0	1	-0.002	0.002
10/12/09 02:39:42	59.974	3738.935	350	-223.015732	16	415.5	10	0	-103	7774.23	1	0	1	0.005	0.005
10/12/09 02:39:44	59.975	3738.647	350	-223.015732	16	416	10	0	-103	7774.56	1	0	1	0.001	0.001
10/12/09 02:39:46	59.976	3737.684	350	-223.015732	16	416.5	10	0	-103	7774.89	1	0	1	0.001	0.001
10/12/09 02:39:48	59.972	3737.382	350	-223.015732	16	417	10	0	-103	7775.22		0	1	-0.004	0.004
10/12/09 02:39:50	59.969	3737.892	350	-223.015732	16	417.5	10	0	-103	7775.55	1	0	1	-0.003	0.003
10/12/09 02:39:52	59.971	3740.017	350	-223.015732	16	418	10	0	-103	7775.88	1	0	1	0.002	0.002
10/12/09 02:39:54	59.974	3740.329	350	-223.015732	16	418.5	10	0	-103	7776.21	1	0	1	0.003	0.003
10/12/09 02:39:56	59.972	3742.053	350	-223.015732	16	419	10	0	-103	7776.54	1	0	1	-0.002	0.002
10/12/09 02:39:58	59.972	3742.424	350	-223.015732	16	419.5	10	0	-103	7776.87	1	0	1	0.000	0.000
10/12/09 02:40:00	59.972	3742.524	350	-223.015732	16	420	10	0	-103	7777.2	1	0	1	0.000	0.000

10/12/09 02:40:02	59.977	3742.245	350	-223.015732	16	420.5	10	0	-103	7777.53	1	0	1	0.005	0.005
10/12/09 02:40:04	59.982	3741.723	350	-223.015732	16	421	10	0	-103	7777.86	1	0	1	0.005	0.005
10/12/09 02:40:06	59.978	3740.085	350	-223.015732	16	421.5	10	0	-103	7778.19	1	0	1	-0.004	0.004
10/12/09 02:40:08	59.976	3740.629	350	-223.015732	16	422	10	0	-103	7778.52	1	0	1	-0.002	0.002
10/12/09 02:40:10	59.973	3739.964	350	-223.015732	16	422.5	10	0	-103	7778.85	1	0	1	-0.003	0.003
10/12/09 02:40:12	59.974	3740.775	350	-223.015732	16	423	10	0	-103	7779.18	1	0	1	0.001	0.001
10/12/09 02:40:14	59.977	3742.833	350	-223.015732	16	423.5	10	0	-103	7779.51	1	0	1	0.003	0.003
10/12/09 02:40:16	59.977	3741.268	350	-223.015732	16	424	10	0	-103	7779.84	1	0	1	0.000	0.000
10/12/09 02:40:18	59.978	3739.776	350	-223.015732	16	424.5	10	0	-103	7780.17	1	0	1	0.001	0.001
10/12/09 02:40:20	59.979	3738.966	350	-223.015732	16	425	10	0	-103	7780.5	1	0	1	0.001	0.001
10/12/09 02:40:22	59.981	3738.706	350	-223.015732	16	425.5	10	0	-103	7780.83	1	0	1	0.002	0.002
10/12/09 02:40:24	59.977	3738.879	350	-223.015732	16	426	10	0	-103	7781.16	1	0	1	-0.004	0.004
10/12/09 02:40:26	59.974	3739.86	350	-223.015732	16	426.5	10	0	-103	7781.49	1	0	1	-0.003	0.003
10/12/09 02:40:28	59.971	3738.102	350	-223.015732	16	427	10	0	-103	7781.82	1	0	1	-0.003	0.003
10/12/09 02:40:30	59.971	3738.558	350	-223.015732	16	427.5	10	0	-103	7782.15	1	0	1	0.000	0.000
10/12/09 02:40:32	59.971	3743.507	350	-223.015732	16	428	10	0	-103	7782.48	1	0	1	0.000	0.000
10/12/09 02:40:34	59.972	3743.419	350	-223.015732	16	428.5	10	0	-103	7782.81	1	0	1	0.001	0.001
10/12/09 02:40:36	59.968	3745.251	350	-223.015732	16	429	10	0	-103	7783.14	1	0	1	-0.004	0.004
10/12/09 02:40:38	59.966	3745.744	350	-223.015732	16	429.5	10	0	-103	7783.47	1	0	1	-0.002	0.002
10/12/09 02:40:40	59.966	3747.34	350	-223.015732	16	430	10	0	-103	7783.8	1	0	1	0.000	0.000
10/12/09 02:40:42	59.971	3750.7	350	-223.015732	16	430.5	10	0	-103	7784.13	1	0	1	0.005	0.005
10/12/09 02:40:44	59.973	3749.75	350	-223.015732	16	431	10	0	-103	7784.46	1	0	1	0.002	0.002
10/12/09 02:40:46	59.972	3746.217	350	-223.015732	16	431.5	10	0	-103	7784.79	1	0	1	-0.001	0.001
10/12/09 02:40:48	59.969	3744.683	350	-223.015732	16	432	10	0	-103	7785.12	1	0	1	-0.003	0.003
10/12/09 02:40:50	59.972	3743.745	350	-223.015732	16	432.5	10	0	-103	7785.45	1	0	1	0.003	0.003
10/12/09 02:40:52	59.974	3743.149	350	-223.015732	16	433	10	0	-103	7785.78	1	0	1	0.002	0.002
10/12/09 02:40:54	59.973	3740.299	350	-223.015732	16	433.5	10	0	-103	7786.11	1	0	1	-0.001	0.001
10/12/09 02:40:56	59.97	3739.453	350	-223.015732	16	434	10	0	-103	7786.44	1	0	1	-0.003	0.003
10/12/09 02:40:58	59.971	3733.376	350	-223.015732	16	434.5	10	0	-103	7786.77	1	0	1	0.001	0.001
10/12/09 02:41:00	59.974	3731.83	350	-223.015732	16	435	10	0	-103	7787.1	1	0	1	0.003	0.003
10/12/09 02:41:02	59.982	3737.583	350	-223.015732	16	435.5	10	0	-103	7787.43	1	0	1	0.008	0.008
10/12/09 02:41:04	59.985	3736.229	350	-223.015732	16	436	10	0	-103	7787.76	1	0	1	0.003	0.003
10/12/09 02:41:06	59.985	3734.897	350	-223.015732	16	436.5	10	0	-103	7788.09	1	0	1	0.000	0.000
10/12/09 02:41:08	59.985	3733.434	350	-223.015732	16	437	10	0	-103	7788.42	1	0	1	0.000	0.000
10/12/09 02:41:10	59.987	3733.115	350	-223.015732	16	437.5	10	0	-103	7788.75	1	0	1	0.002	0.002
10/12/09 02:41:12	59.989	3730.51	350	-223.015732	16	438	10	0	-103	7789.08	1	0	1	0.002	0.002
10/12/09 02:41:14	59.989	3729.18	350	-223.015732	16	438.5	10	0	-103	7789.41	1	0	1	0.000	0.000
10/12/09 02:41:16	59.986	3725.459	350	-223.015732	16	439	10	0	-103	7789.74	1	0	1	-0.003	0.003
10/12/09 02:41:18	59.987	3724.785	350	-223.015732	16	439.5	10	0	-103	7790.07	1	0	1	0.001	0.001
10/12/09 02:41:20	59.99	3720.108	350	-223.015732	16	440	10	0	-103	7790.4	1	0	1	0.003	0.003
10/12/09 02:41:22	59.994	3720.938	350	-223.015732	16	440.5	10	0	-103	7790.73	1	0	1	0.004	0.004
10/12/09 02:41:24	59.996	3725.661	350	-223.015732	16	441	10	0	-103	7791.06	1	0	1	0.002	0.002
10/12/09 02:41:26	60.001	3725.677	350	-223.015732	16	441.5	10	0	-103	7791.39	1	1	1	0.005	0.005
10/12/09 02:41:28	60.003	3727.754	350	-223.015732	16	442	10	0	-103	7791.72	1	1	1	0.002	0.002
10/12/09 02:41:30	60.004	3727.825	350	-223.015732	16	442.5	10	0	-103	7792.05	1	1	1	0.001	0.001
10/12/09 02:41:32	60.006	3727.683	350	-223.015732	16	443	10	0	-103	7792.38	1	1	1	0.002	0.002
10/12/09 02:41:34	60.012	3727.231	350	-223.015732	16	443.5	10	0	-103	7792.71	1	1	1	0.006	0.006
10/12/09 02:41:36	60.014	3725.012	350	-223.015732	16	444	10	0	-103	7793.04	1	1	1	0.002	0.002
10/12/09 02:41:38	60.019	3726.446	350	-223.015732	16	444.5	10	0	-103	7793.37	1	1	1	0.005	0.005

10/12/09 02:41:40	60.021	3726.016	350	-223.015732	16	445	10	0	-103	7793.7	1	1	1	0.002	0.002
10/12/09 02:41:42	60.025	3719.123	350	-223.015732	16	445.5	10	0	-103	7794.03	1	1	1	0.004	0.004
10/12/09 02:41:44	60.026	3716.375	350	-223.015732	16	446	10	0	-103	7794.36	1	1	1	0.001	0.001
10/12/09 02:41:46	60.027	3717.333	350	-223.015732	16	446.5	10	0	-103	7794.69	1	1	1	0.001	0.001
10/12/09 02:41:48	60.029	3717.56	350	-223.015732	16	447	10	0	-103	7795.02	1	1	1	0.002	0.002
10/12/09 02:41:50	60.029	3717.142	350	-223.015732	16	447.5	10	0	-103	7795.35	1	1	1	0.000	0.000
10/12/09 02:41:52	60.037	3715.166	350	-223.015732	16	448	10	0	-103	7795.68	1	1	1	0.008	0.008
10/12/09 02:41:54	60.036	3713.632	350	-223.015732	16	448.5	10	0	-103	7796.01	1	1	1	-0.001	0.001
10/12/09 02:41:56	60.037	3710.283	350	-223.015732	16	449	10	0	-103	7796.34	1	1	1	0.001	0.001
10/12/09 02:41:58	60.037	3710.158	350	-223.015732	16	449.5	10	0	-103	7796.67	1	1	1	0.000	0.000
10/12/09 02:42:00	60.036	3699.356	350	-223.015732	16	450	10	0	-103	7797	1	1	1	-0.001	0.001
10/12/09 02:42:02	60.041	3698.591	350	-223.015732	16	450.5	10	0	-103	7797.33	1	1	1	0.005	0.005
10/12/09 02:42:04	60.043	3704.591	350	-223.015732	16	451	10	0	-103	7797.66	1	1	1	0.002	0.002
10/12/09 02:42:06	60.044	3703.275	350	-223.015732	16	451.5	10	0	-103	7797.99	1	1	1	0.001	0.001
10/12/09 02:42:08	60.043	3702.482	350	-223.015732	16	452	10	0	-103	7798.32	1	1	1	-0.001	0.001
10/12/09 02:42:10	60.046	3701.316	350	-223.015732	16	452.5	10	0	-103	7798.65	1	1	1	0.003	0.003
10/12/09 02:42:12	60.048	3700.826	350	-223.015732	16	453	10	0	-103	7798.98	1	1	1	0.002	0.002
10/12/09 02:42:14	60.046	3699.529	350	-223.015732	16	453.5	10	0	-103	7799.31	1	1	1	-0.002	0.002
10/12/09 02:42:16	60.046	3699.726	350	-223.015732	16	454	10	0	-103	7799.64	1	1	1	0.000	0.000
10/12/09 02:42:18	60.043	3690.1	350	-223.015732	16	454.5	10	0	-103	7799.97	1	1	1	-0.003	0.003
10/12/09 02:42:20	60.043	3690.477	350	-223.015732	16	455	10	0	-103	7800.3	1	1	1	0.000	0.000
10/12/09 02:42:22	60.044	3696.865	350	-223.015732	16	455.5	10	0	-103	7800.63	1	1	1	0.001	0.001
10/12/09 02:42:24	60.043	3696.877	350	-223.015732	16	456	10	0	-103	7800.96	1	1	1	-0.001	0.001
10/12/09 02:42:26	60.043	3696.182	350	-223.015732	16	456.5	10	0	-103	7801.29	1	1	1	0.000	0.000
10/12/09 02:42:28	60.045	3696.541	350	-223.015732	16	457	10	0	-103	7801.62	1	1	1	0.002	0.002
10/12/09 02:42:30	60.04	3696.968	350	-223.015732	16	457.5	10	0	-103	7801.95	1	1	1	-0.005	0.005
10/12/09 02:42:32	60.041	3698.686	350	-223.015732	16	458	10	0	-103	7802.28	1	1	1	0.001	0.001
10/12/09 02:42:34	60.039	3699.631	350	-223.015732	16	458.5	10	0	-103	7802.61	1	1	1	-0.002	0.002
10/12/09 02:42:36	60.039	3698.787	350	-223.015732	16	459	10	0	-103	7802.94	1	1	1	0.000	0.000
10/12/09 02:42:38	60.036	3699.712	350	-223.015732	16	459.5	10	0	-103	7803.27	1	1	1	-0.003	0.003
10/12/09 02:42:40	60.038	3700.106	350	-223.015732	16	460	10	0	-103	7803.6	1	1	1	0.002	0.002
10/12/09 02:42:42	60.033	3699.968	350	-223.015732	16	460.5	10	0	-103	7803.93	1	1	1	-0.005	0.005
10/12/09 02:42:44	60.034	3701.122	350	-223.015732	16	461	10	0	-103	7804.26	1	1	1	0.001	0.001
10/12/09 02:42:46	60.037	3701.865	350	-223.015732	16	461.5	10	0	-103	7804.59	1	1	1	0.003	0.003
10/12/09 02:42:48	60.037	3701.614	350	-223.015732	16	462	10	0	-103	7804.92	1	1	1	0.000	0.000
10/12/09 02:42:50	60.035	3701.998	350	-223.015732	16	462.5	10	0	-103	7805.25	1	1	1	-0.002	0.002
10/12/09 02:42:52	60.03	3702.913	350	-223.015732	16	463	10	0	-103	7805.58	1	1	1	-0.005	0.005
10/12/09 02:42:54	60.033	3703.909	350	-223.015732	16	463.5	10	0	-103	7805.91	1	1	1	0.003	0.003
10/12/09 02:42:56	60.036	3705.522	350	-223.015732	16	464	10	0	-103	7806.24	1	1	1	0.003	0.003
10/12/09 02:42:58	60.033	3704.967	350	-223.015732	16	464.5	10	0	-103	7806.57	1	1	1	-0.003	0.003
10/12/09 02:43:00	60.034	3704.087	350	-223.015732	16	465	10	0	-103	7806.9	1	1	1	0.001	0.001
10/12/09 02:43:02	60.032	3702.771	350	-223.015732	16	465.5	10	0	-103	7807.23	1	1	1	-0.002	0.002
10/12/09 02:43:04	60.032	3703.706	350	-223.015732	16	466	10	0	-103	7807.56	1	1	1	0.000	0.000
10/12/09 02:43:06	60.034	3704.905	350	-223.015732	16	466.5	10	0	-103	7807.89	1	1	1	0.002	0.002
10/12/09 02:43:08	60.033	3705.435	350	-223.015732	16	467	10	0	-103	7808.22	1	1	1	-0.001	0.001
10/12/09 02:43:10	60.037	3704.36	350	-223.015732	16	467.5	10	0	-103	7808.55	1	1	1	0.004	0.004
10/12/09 02:43:12	60.035	3702.588	350	-223.015732	16	468	10	0	-103	7808.88	1	1	1	-0.002	0.002
10/12/09 02:43:14	60.035	3702.204	350	-223.015732	16	468.5	10	0	-103	7809.21	1	1	1	0.000	0.000
10/12/09 02:43:16	60.036	3701.942	350	-223.015732	16	469	10	0	-103	7809.54	1	1	1	0.001	0.001

10/12/09 02:43:18	60.039	3702.25	350	-223.015732	16	469.5	10	0	-103	7809.87	1	1	1	0.003	0.003
10/12/09 02:43:20	60.037	3703.318	350	-223.015732	16	470	10	0	-103	7810.2	1	1	1	-0.002	0.002
10/12/09 02:43:22	60.039	3702.457	350	-223.015732	16	470.5	10	0	-103	7810.53	1	1	1	0.002	0.002
10/12/09 02:43:24	60.036	3702.525	350	-223.015732	16	471	10	0	-103	7810.86	1	1	1	-0.003	0.003
10/12/09 02:43:26	60.034	3703.269	350	-223.015732	16	471.5	10	0	-103	7811.19	1	1	1	-0.002	0.002
10/12/09 02:43:28	60.038	3703.844	350	-223.015732	16	472	10	0	-103	7811.52	1	1	1	0.004	0.004
10/12/09 02:43:30	60.037	3702.865	350	-223.015732	16	472.5	10	0	-103	7811.85	1	1	1	-0.001	0.001
10/12/09 02:43:32	60.037	3702.518	350	-223.015732	16	473	10	0	-103	7812.18	1	1	1	0.000	0.000
10/12/09 02:43:34	60.037	3702.28	350	-223.015732	16	473.5	10	0	-103	7812.51	1	1	1	0.000	0.000
10/12/09 02:43:36	60.038	3692.427	350	-223.015732	16	474	10	0	-103	7812.84	1	1	1	0.001	0.001
10/12/09 02:43:38	60.04	3692.178	350	-223.015732	16	474.5	10	0	-103	7813.17	1	1	1	0.002	0.002
10/12/09 02:43:40	60.043	3700.276	350	-223.015732	16	475	10	0	-103	7813.5	1	1	1	0.003	0.003
10/12/09 02:43:42	60.045	3698.755	350	-223.015732	16	475.5	10	0	-103	7813.83	1	1	1	0.002	0.002
10/12/09 02:43:44	60.045	3697.729	350	-223.015732	16	476	10	0	-103	7814.16	1	1	1	0.000	0.000
10/12/09 02:43:46	60.042	3696.916	350	-223.015732	16	476.5	10	0	-103	7814.49	1	1	1	-0.003	0.003
10/12/09 02:43:48	60.043	3697.368	350	-223.015732	16	477	10	0	-103	7814.82	1	1	1	0.001	0.001
10/12/09 02:43:50	60.04	3697.346	350	-223.015732	16	477.5	10	0	-103	7815.15	1	1	1	-0.003	0.003
10/12/09 02:43:52	60.044	3698.429	350	-223.015732	16	478	10	0	-103	7815.48	1	1	1	0.004	0.004
10/12/09 02:43:54	60.046	3694.763	350	-223.015732	16	478.5	10	0	-103	7815.81	1	1	1	0.002	0.002
10/12/09 02:43:56	60.042	3693.584	350	-223.015732	16	479	10	0	-103	7816.14	1	1	1	-0.004	0.004
10/12/09 02:43:58	60.034	3693.241	350	-223.015732	16	479.5	10	0	-103	7816.47	1	1	1	-0.008	0.008
10/12/09 02:44:00	60.039	3696.798	350	-223.015732	16	480	10		-103	7816.8	1	1	1	0.005	0.005
10/12/09 02:44:02	60.039	3699.364	350	-223.015732	16	480.5	10	0	-103	7817.13	1	1	1	0.000	0.000
10/12/09 02:44:04	60.036	3701.791	350	-223.015732	16	481	10	0	-103	7817.46	1	1	1	-0.003	0.003
10/12/09 02:44:06	60.037	3700.708	350	-223.015732	16	481.5	10	0	-103	7817.79	1	1	1	0.001	0.001
10/12/09 02:44:08	60.034	3700.753	350	-223.015732	16	482	10	0	-103	7818.12	1	1	1	-0.003	0.003
10/12/09 02:44:10	60.033	3702.148	350	-223.015732	16	482.5	10	0	-103	7818.45	1	1	1	-0.001	0.001
10/12/09 02:44:12	60.032	3705.213	350	-223.015732	16	483	10	0	-103	7818.78	1	1	1	-0.001	0.001
10/12/09 02:44:14	60.031	3707.521	350	-223.015732	16	483.5	10	0	-103	7819.11	1	1	1	-0.001	0.001
10/12/09 02:44:16	60.033	3707.287	350	-223.015732	16	484	10	0	-103	7819.44	1	1	1	0.002	0.002
10/12/09 02:44:18	60.027	3706.988	350	-223.015732	16	484.5	10	0	-103	7819.77	1	1	1	-0.006	0.006
10/12/09 02:44:20	60.031	3707.34	350	-223.015732	16	485	10	0	-103	7820.1	1	1	1	0.004	0.004
10/12/09 02:44:22	60.032	3707.917	350	-223.015732	16	485.5	10	0	-103	7820.43	1	1	1	0.001	0.001
10/12/09 02:44:24	60.031	3707.384	350	-223.015732	16	486	10	0	-103	7820.76	1	1	1	-0.001	0.001
10/12/09 02:44:26	60.031	3706.857	350	-223.015732	16	486.5	10	0	-103	7821.09	1	1	1	0.000	0.000
10/12/09 02:44:28	60.033	3707.615	350	-223.015732	16	487	10	0	-103	7821.42	1		1	0.002	0.002
10/12/09 02:44:30	60.039	3706.823	350	-223.015732	16	487.5	10	0	-103	7821.75	1	1	1	0.006	0.006
10/12/09 02:44:32	60.039	3703.746	350	-223.015732	16	488	10	0	-103	7822.08	1	1	1	0.000	0.000
10/12/09 02:44:34	60.038	3701.582	350	-223.015732	16	488.5	10	0	-103	7822.41	1	1	1	-0.001	0.001
10/12/09 02:44:36	60.037	3700.847	350	-223.015732	16	489	10	0	-103	7822.74	1	1	1	-0.001	0.001
10/12/09 02:44:38	60.035	3701.208	350	-223.015732	16	489.5	10	0	-103	7823.07	1	1	1	-0.002	0.002
10/12/09 02:44:40	60.037	3702.212	350	-223.015732	16	490	10	0	-103	7823.4	1	1	1	0.002	0.002
10/12/09 02:44:42	60.04	3701.686	350	-223.015732	16	490.5	10	0	-103	7823.73	1	1	1	0.003	0.003
10/12/09 02:44:44	60.042	3700.397	350	-223.015732	16	491	10	0	-103	7824.06	1	1	1	0.002	0.002
10/12/09 02:44:46	60.035	3699.69	350	-223.015732	16	491.5	10	0	-103	7824.39	1	1	1	-0.007	0.007
10/12/09 02:44:48	60.036	3700.366	350	-223.015732	16	492	10	0	-103	7824.72	1	1		0.001	0.001
10/12/09 02:44:50	60.04	3700.827	350	-223.015732	16	492.5	10	0	-103	7825.05	1	1	1	0.004	0.004
10/12/09 02:44:52	60.045	3700.662	350	-223.015732	16	493	10	0	-103	7825.38	1	1	1	0.005	0.005
10/12/09 02:44:54	60.045	3696.935	350	-223.015732	16	493.5	10	0	-103	7825.71	1	1	1	0.000	0.000

10/12/09 02:44:56	60.048	3695.688	350	-223.015732	16	494	10	0	-103	7826.04	1	1	1	0.003	0.003
10/12/09 02:44:58	60.042	3695.819	350	-223.015732	16	494.5	10	0	-103	7826.37	1	1	1	-0.006	0.006
10/12/09 02:45:00	60.044	3693.824	350	-223.015732	16	495	10	0	-103	7826.7	1	1	1	0.002	0.002
10/12/09 02:45:02	60.044	3694.799	350	-223.015732	16	495.5	10	0	-103	7827.03	1	1	1	0.000	0.000
10/12/09 02:45:04	60.044	3696.897	350	-223.015732	16	496	10	0	-103	7827.36	1	1	1	0.000	0.000
10/12/09 02:45:06	60.041	3696.023	350	-223.015732	16	496.5	10	0	-103	7827.69	1	1	1	-0.003	0.003
10/12/09 02:45:08	60.04	3697.502	350	-223.015732	16	497	10	0	-103	7828.02	1	1	1	-0.001	0.001
10/12/09 02:45:10	60.04	3698.424	350	-223.015732	16	497.5	10	0	-103	7828.35	1	1	1	0.000	0.000
10/12/09 02:45:12	60.045	3699.427	350	-223.015732	16	498	10	0	-103	7828.68	1	1	1	0.005	0.005
10/12/09 02:45:14	60.044	3700.177	350	-223.015732	16	498.5	10	0	-103	7829.01	1	1	1	-0.001	0.001
10/12/09 02:45:16	60.042	3699.806	350	-223.015732	16	499	10	0	-103	7829.34	1	1	1	-0.002	0.002
10/12/09 02:45:18	60.039	3697.577	350	-223.015732	16	499.5	10	0	-103	7829.67	1	1	1	-0.003	0.003
10/12/09 02:45:20	60.042	3697.681	350	-223.015732	16	500	10	0	-103	7830	1	1	1	0.003	0.003
10/12/09 02:45:22	60.042	3698.507	350	-223.015732	16	500.5	10	0	-103	7830.33	1	1	1	0.000	0.000
10/12/09 02:45:24	60.041	3698.359	350	-223.015732	16	501	10	0	-103	7830.66	1	1	1	-0.001	0.001
10/12/09 02:45:26	60.038	3698.466	350	-223.015732	16	501.5	10	0	-103	7830.99	1	1	1	-0.003	0.003
10/12/09 02:45:28	60.036	3699.077	350	-223.015732	16	502	10	0	-103	7831.32	1	1	1	-0.002	0.002
10/12/09 02:45:30	60.037	3700.262	350	-223.015732	16	502.5	10	0	-103	7831.65	1	1	1	0.001	0.001
10/12/09 02:45:32	60.039	3701.592	350	-223.015732	16	503	10	0	-103	7831.98	1	1	1	0.002	0.002
10/12/09 02:45:34	60.038	3700.902	350	-223.015732	16	503.5	10	0	-103	7832.31	1	1	1	-0.001	0.001
10/12/09 02:45:36	60.04	3700.143	350	-223.015732	16	504	10	0	-103	7832.64	1	1	1	0.002	0.002
10/12/09 02:45:38	60.039	3700.27	350	-223.015732	16	504.5	10	0	-103	7832.97	1	1	1	-0.001	0.001
10/12/09 02:45:40	60.037	3701.139	350	-223.015732	16	505	10	0	-103	7833.3	1	1	1	-0.002	0.002
10/12/09 02:45:42	60.038	3701.586	350	-223.015732	16	505.5	10	0	-103	7833.63	1	1	1	0.001	0.001
10/12/09 02:45:44	60.039	3700.264	350	-223.015732	16	506	10	0	-103	7833.96	1	1	1	0.001	0.001
10/12/09 02:45:46	60.04	3699.458	350	-223.015732	16	506.5	10	0	-103	7834.29	1	1	1	0.001	0.001
10/12/09 02:45:48	60.037	3699.721	350	-223.015732	16	507	10	0	-103	7834.62	1	1	1	-0.003	0.003
10/12/09 02:45:50	60.037	3700.458	350	-223.015732	16	507.5	10	0	-103	7834.95	1	1	1	0.000	0.000
10/12/09 02:45:52	60.037	3699.505	350	-223.015732	16	508	10	0	-103	7835.28	1	1	1	0.000	0.000
10/12/09 02:45:54	60.039	3698.794	350	-223.015732	16	508.5	10	0	-103	7835.61	1	1	1	0.002	0.002
10/12/09 02:45:56	60.038	3699.216	350	-223.015732	16	509	10	0	-103	7835.94	1	1	1	-0.001	0.001
10/12/09 02:45:58	60.036	3699.4	350	-223.015732	16	509.5	10	0	-103	7836.27	1	1	1	-0.002	0.002
10/12/09 02:46:00	60.035	3700.661	350	-223.015732	16	510	10	0	-103	7836.6	1	1	1	-0.001	0.001
10/12/09 02:46:02	60.033	3702.173	350	-223.015732	16	510.5	10	0	-103	7836.93	1	1	1	-0.002	0.002
10/12/09 02:46:04	60.031	3702.968	350	-223.015732	16	511	10	0	-103	7837.26	1	1	1	-0.002	0.002
10/12/09 02:46:06	60.03	3705.195	350	-223.015732	16	511.5	10	0	-103	7837.59	1	1	1	-0.001	0.001
10/12/09 02:46:08	60.032	3704.952	350	-223.015732	16	512	10	0	-103	7837.92	1	1	1	0.002	0.002
10/12/09 02:46:10	60.032	3705.775	350	-223.015732	16	512.5	10	0	-103	7838.25	1	1	1	0.000	0.000
10/12/09 02:46:12	60.037	3705.621	350	-223.015732	16	513	10	0	-103	7838.58	1	1	1	0.005	0.005
10/12/09 02:46:14	60.042	3703.744	350	-223.015732	16	513.5	10	0	-103	7838.91	1	1	1	0.005	0.005
10/12/09 02:46:16	60.041	3701.981	350	-223.015732	16	514	10	0	-103	7839.24	1	1	1	-0.001	0.001
10/12/09 02:46:18	60.036	3700.756	350	-223.015732	16	514.5	10	0	-103	7839.57	1	1	1	-0.005	0.005
10/12/09 02:46:20	60.031	3700.747	350	-223.015732	16	515	10	0	-103	7839.9	1	1	1	-0.005	0.005
10/12/09 02:46:22	60.032	3702.213	350	-223.015732	16	515.5	10	0	-103	7840.23	1	1	1	0.001	0.001
10/12/09 02:46:24	60.031	3705.059	350	-223.015732	16	516	10	0	-103	7840.56	1	1	1	-0.001	0.001
10/12/09 02:46:26	60.034	3705.514	350	-223.015732	16	516.5	10	0	-103	7840.89	1	1	1	0.003	0.003
10/12/09 02:46:28	60.034	3704.449	350	-223.015732	16	517	10	0	-103	7841.22	1	1	1	0.000	0.000
10/12/09 02:46:30	60.032	3703.831	350	-223.015732	16	517.5	10	0	-103	7841.55	1	1	1	-0.002	0.002
10/12/09 02:46:32	60.038	3703.62	350	-223.015732	16	518	10	0	-103	7841.88	1	1	1	0.006	0.006

10/12/09 02:46:34	60.043	3702.795	350	-223.015732	16	518.5	10	0	-103	7842.21	1	1	1	0.005	0.005
10/12/09 02:46:36	60.044	3701.432	350	-223.015732	16	519	10	0	-103	7842.54	1	1	1	0.001	0.001
10/12/09 02:46:38	60.042	3697.38	350	-223.015732	16	519.5	10	0	-103	7842.87	1	1	1	-0.002	0.002
10/12/09 02:46:40	60.045	3696.25	350	-223.015732	16	520	10	0	-103	7843.2	1	1	1	0.003	0.003
10/12/09 02:46:42	60.04	3696.302	350	-223.015732	16	520.5	10	0	-103	7843.53	1	1	1	-0.005	0.005
10/12/09 02:46:44	60.04	3693.518	350	-223.015732	16	521	10	0	-103	7843.86	1	1	1	0.000	0.000
10/12/09 02:46:46	60.043	3693.577	350	-223.015732	16	521.5	10	0	-103	7844.19	1	1	1	0.003	0.003
10/12/09 02:46:48	60.043	3695.197	350	-223.015732	16	522	10	0	-103	7844.52	1	1	1	0.000	0.000
10/12/09 02:46:50	60.041	3695.186	350	-223.015732	16	522.5	10	0	-103	7844.85	1	1	1	-0.002	0.002
10/12/09 02:46:52	60.04	3693.786	350	-223.015732	16	523	10	0	-103	7845.18	1	1	1	-0.001	0.001
10/12/09 02:46:54	60.038	3694.753	350	-223.015732	16	523.5	10	0	-103	7845.51	1	1	1	-0.002	0.002
10/12/09 02:46:56	60.043	3694.926	350	-223.015732	16	524	10	0	-103	7845.84	1	1	1	0.005	0.005
10/12/09 02:46:58	60.044	3694.938	350	-223.015732	16	524.5	10	0	-103	7846.17	1	1	1	0.001	0.001
10/12/09 02:47:00	60.042	3694.159	350	-223.015732	16	525	10	0	-103	7846.5	1	1	1	-0.002	0.002
10/12/09 02:47:02	60.036	3691.33	350	-223.015732	16	525.5	10	0	-103	7846.83	1	1	1	-0.006	0.006
10/12/09 02:47:04	60.043	3692.686	350	-223.015732	16	526	10	0	-103	7847.16	1	1	1	0.007	0.007
10/12/09 02:47:06	60.041	3693.238	350	-223.015732	16	526.5	10	0	-103	7847.49	1	1	1	-0.002	0.002
10/12/09 02:47:08	60.042	3693.39	350	-223.015732	16	527	10	0	-103	7847.82	1	1	1	0.001	0.001
10/12/09 02:47:10	60.043	3692.357	350	-223.015732	16	527.5	10	0	-103	7848.15	1	1	1	0.001	0.001
10/12/09 02:47:12	60.043	3690.951	350	-223.015732	16	528	10	0	-103	7848.48	1	1	1	0.000	0.000
10/12/09 02:47:14	60.036	3690.836	350	-223.015732	16	528.5	10	0	-103	7848.81	1	1	1	-0.007	0.007
10/12/09 02:47:16	60.039	3692.042	350	-223.015732	16	529	10	0	-103	7849.14	1	1	1	0.003	0.003
10/12/09 02:47:18	60.039	3693.114	350	-223.015732	16	529.5	10	0	-103	7849.47	1	1	1	0.000	0.000
10/12/09 02:47:20	60.037	3694.117	350	-223.015732	16	530	10	0	-103	7849.8	1	1	1	-0.002	0.002
10/12/09 02:47:22	60.034	3695.258	350	-223.015732	16	530.5	10	0	-103	7850.13	1	1	1	-0.003	0.003
10/12/09 02:47:24	60.035	3695.581	350	-223.015732	16	531	10	0	-103	7850.46	1	1	1	0.001	0.001
10/12/09 02:47:26	60.035	3695.949	350	-223.015732	16	531.5	10	0	-103	7850.79	1	1	1	0.000	0.000
10/12/09 02:47:28	60.035	3695.491	350	-223.015732	16	532	10	0	-103	7851.12	1	1	1	0.000	0.000
10/12/09 02:47:30	60.036	3696.305	350	-223.015732	16	532.5	10	0	-103	7851.45	1	1	1	0.001	0.001
10/12/09 02:47:32	60.03	3696.486	350	-223.015732	16	533	10	0	-103	7851.78	1	1	1	-0.006	0.006
10/12/09 02:47:34	60.03	3697.336	350	-223.015732	16	533.5	10	0	-103	7852.11	1	1	1	0.000	0.000
10/12/09 02:47:36	60.03	3699.171	350	-223.015732	16	534	10	0	-103	7852.44	1	1	1	0.000	0.000
10/12/09 02:47:38	60.031	3699.357	350	-223.015732	16	534.5	10	0	-103	7852.77	1	1	1	0.001	0.001
10/12/09 02:47:40	60.031	3699.251	350	-223.015732	16	535	10	0	-103	7853.1	1	1	1	0.000	0.000
10/12/09 02:47:42	60.032	3699.117	350	-223.015732	16	535.5	10	0	-103	7853.43	1	1	1	0.001	0.001
10/12/09 02:47:44	60.031	3699.105	350	-223.015732	16	536	10	0	-103	7853.76	1	1	1	-0.001	0.001
10/12/09 02:47:46	60.032	3699.126	350	-223.015732	16	536.5	10	0	-103	7854.09	1	1	1	0.001	0.001
10/12/09 02:47:48	60.032	3698.954	350	-223.015732	16	537	10	0	-103	7854.42	1	1	1	0.000	0.000
10/12/09 02:47:50	60.032	3698.136	350	-223.015732	16	537.5	10	0	-103	7854.75	1	1	1	0.000	0.000
10/12/09 02:47:52	60.033	3698.277	350	-223.015732	16	538	10	0	-103	7855.08	1	1	1	0.001	0.001
10/12/09 02:47:54	60.037	3697.412	350	-223.015732	16	538.5	10	0	-103	7855.41	1	1	1	0.004	0.004
10/12/09 02:47:56	60.04	3695.94	350	-223.015732	16	539	10	0	-103	7855.74	1	1	1	0.003	0.003
10/12/09 02:47:58	60.039	3693.736	350	-223.015732	16	539.5	10	0	-103	7856.07	1	1	1	-0.001	0.001
10/12/09 02:48:00	60.042	3693.224	350	-223.015732	16	540	10	0	-103	7856.4	1	1	1	0.003	0.003
10/12/09 02:48:02	60.036	3691.759	350	-223.015732	16	540.5	10	0	-103	7856.73	1	1	1	-0.006	0.006
10/12/09 02:48:04	60.039	3691.919	350	-223.015732	16	541	10	0	-103	7857.06	1	1	1	0.003	0.003
10/12/09 02:48:06	60.041	3692.798	350	-223.015732	16	541.5	10	0	-103	7857.39	1	1	1	0.002	0.002
10/12/09 02:48:08	60.04	3691.582	350	-223.015732	16	542	10	0	-103	7857.72	1	1	1	-0.001	0.001
10/12/09 02:48:10	60.035	3692.374	350	-223.015732	16	542.5	10	0	-103	7858.05	1	1	1	-0.005	0.005

10/12/09 02:48:12	60.036	3693.302	350	-223.015732	16	543	10	0	-103	7858.38	1	1	1	0.001	0.001
10/12/09 02:48:14	60.038	3694.71	350	-223.015732	16	543.5	10	0	-103	7858.71	1	1	1	0.002	0.002
10/12/09 02:48:16	60.037	3694.331	350	-223.015732	16	544	10	0	-103	7859.04	1	1	1	-0.001	0.001
10/12/09 02:48:18	60.041	3693.815	350	-223.015732	16	544.5	10	0	-103	7859.37	1	1	1	0.004	0.004
10/12/09 02:48:20	60.04	3693.617	350	-223.015732	16	545	10	0	-103	7859.7	1	1	1	-0.001	0.001
10/12/09 02:48:22	60.036	3694.324	350	-223.015732	16	545.5	10	0	-103	7860.03	1	1	1	-0.004	0.004
10/12/09 02:48:24	60.033	3694.27	350	-223.015732	16	546	10	0	-103	7860.36	1	1	1	-0.003	0.003
10/12/09 02:48:26	60.034	3694.66	350	-223.015732	16	546.5	10	0	-103	7860.69	1	1	1	0.001	0.001
10/12/09 02:48:28	60.038	3693.748	350	-223.015732	16	547	10	0	-103	7861.02	1	1	1	0.004	0.004
10/12/09 02:48:30	60.04	3692.532	350	-223.015732	16	547.5	10	0	-103	7861.35	1	1	1	0.002	0.002
10/12/09 02:48:32	60.041	3691.445	350	-223.015732	16	548	10	0	-103	7861.68	1	1	1	0.001	0.001
10/12/09 02:48:34	60.037	3691.012	350	-223.015732	16	548.5	10	0	-103	7862.01	1	1	1	-0.004	0.004
10/12/09 02:48:36	60.037	3691.799	350	-223.015732	16	549	10	0	-103	7862.34	1	1	1	0.000	0.000
10/12/09 02:48:38	60.036	3693.077	350	-223.015732	16	549.5	10	0	-103	7862.67	1	1	1	-0.001	0.001
10/12/09 02:48:40	60.037	3693.727	350	-223.015732	16	550	10	0	-103	7863	1	1	1	0.001	0.001
10/12/09 02:48:42	60.038	3693.117	350	-223.015732	16	550.5	10	0	-103	7863.33	1	1	1	0.001	0.001
10/12/09 02:48:44	60.039	3692.641	350	-223.015732	16	551	10	0	-103	7863.66	1	1	1	0.001	0.001
10/12/09 02:48:46	60.038	3688.159	350	-223.015732	16	551.5	10	0	-103	7863.99	1	1	1	-0.001	0.001
10/12/09 02:48:48	60.034	3689.02	350	-223.015732	16	552	10	0	-103	7864.32	1	1	1	-0.004	0.004
10/12/09 02:48:50	60.033	3688.208	350	-223.015732	16	552.5	10	0	-103	7864.65	1	1	1	-0.001	0.001
10/12/09 02:48:52	60.031	3690.092	350	-223.015732	16	553	10	0	-103	7864.98	1	1	1	-0.002	0.002
10/12/09 02:48:54	60.034	3693.172	350	-223.015732	16	553.5	10	0	-103	7865.31	1	1	1	0.003	0.003
10/12/09 02:48:56	60.029	3693.321	350	-223.015732	16	554	10	0	-103	7865.64	1	1	1	-0.005	0.005
10/12/09 02:48:58	60.029	3694.593	350	-223.015732	16	554.5	10	0	-103	7865.97	1	1	1	0.000	0.000
10/12/09 02:49:00	60.031	3695.225	350	-223.015732	16	555	10	0	-103	7866.3	1	1	1	0.002	0.002
10/12/09 02:49:02	60.03	3694.609	350	-223.015732	16	555.5	10	0	-103	7866.63	1	1	1	-0.001	0.001
10/12/09 02:49:04	60.03	3693.412	350	-223.015732	16	556	10	0	-103	7866.96	1	1	1	0.000	0.000
10/12/09 02:49:06	60.026	3693.509	350	-223.015732	16	556.5	10	0	-103	7867.29	1	1	1	-0.004	0.004
10/12/09 02:49:08	60.022	3696.026	350	-223.015732	16	557	10	0	-103	7867.62	1	1	1	-0.004	0.004
10/12/09 02:49:10	60.021	3698.012	350	-223.015732	16	557.5	10	0	-103	7867.95	1	1	1	-0.001	0.001
10/12/09 02:49:12	60.024	3699.062	350	-223.015732	16	558	10	0	-103	7868.28	1	1	1	0.003	0.003
10/12/09 02:49:14	60.023	3699.414	350	-223.015732	16	558.5	10	0	-103	7868.61	1	1	1	-0.001	0.001
10/12/09 02:49:16	60.02	3698.935	350	-223.015732	16	559	10	0	-103	7868.94	1	1	1	-0.003	0.003
10/12/09 02:49:18	60.021	3700.084	350	-223.015732	16	559.5	10	0	-103	7869.27	1	1	1	0.001	0.001
10/12/09 02:49:20	60.023	3700.544	350	-223.015732	16	560	10	0	-103	7869.6	1	1	1	0.002	0.002
10/12/09 02:49:22	60.025	3700.486	350	-223.015732	16	560.5	10	0	-103	7869.93	1	1	1	0.002	0.002
10/12/09 02:49:24	60.026	3698.596	350	-223.015732	16	561	10	0	-103	7870.26	1	1	1	0.001	0.001
10/12/09 02:49:26	60.026	3697.961	350	-223.015732	16	561.5	10	0	-103	7870.59	1	1	1	0.000	0.000
10/12/09 02:49:28	60.025	3699.914	350	-223.015732	16	562	10	0	-103	7870.92	1	1	1	-0.001	0.001
10/12/09 02:49:30	60.024	3700.802	350	-223.015732	16	562.5	10	0	-103	7871.25	1	1	1	-0.001	0.001
10/12/09 02:49:32	60.024	3701.301	350	-223.015732	16	563	10	0	-103	7871.58	1	1	1	0.000	0.000
10/12/09 02:49:34	60.025	3701.45	350	-223.015732	16	563.5	10	0	-103	7871.91	1	1	1	0.001	0.001
10/12/09 02:49:36	60.023	3701.349	350	-223.015732	16	564	10	0	-103	7872.24	1	1	1	-0.002	0.002
10/12/09 02:49:38	60.023	3701.094	350	-223.015732	16	564.5	10	0	-103	7872.57	1	1	1	0.000	0.000
10/12/09 02:49:40	60.022	3701.702	350	-223.015732	16	565	10	0	-103	7872.9	1	1	1	-0.001	0.001
10/12/09 02:49:42	60.026	3702.07	350	-223.015732	16	565.5	10	0	-103	7873.23	1	1	1	0.004	0.004
10/12/09 02:49:44	60.029	3701.965	350	-223.015732	16	566	10	0	-103	7873.56	1	1	1	0.003	0.003
10/12/09 02:49:46	60.026	3700.269	350	-223.015732	16	566.5	10	0	-103	7873.89	1	1	1	-0.003	0.003
10/12/09 02:49:48	60.024	3700.241	350	-223.015732	16	567	10	0	-103	7874.22	1	1	1	-0.002	0.002

10/12/09 02:49:50	60.021	3701.09	350	-223.015732	16	567.5	10	0	-103	7874.55	1	1	1	-0.003	0.003
10/12/09 02:49:52	60.025	3701.268	350	-223.015732	16	568	10	0	-103	7874.88	1	1	1	0.004	0.004
10/12/09 02:49:54	60.025	3701.205	350	-223.015732	16	568.5	10	0	-103	7875.21	1	1	1	0.000	0.000
10/12/09 02:49:56	60.025	3700.587	350	-223.015732	16	569	10	0	-103	7875.54	1	1	1	0.000	0.000
10/12/09 02:49:58	60.023	3700.532	350	-223.015732	16	569.5	10	0	-103	7875.87	1	1	1	-0.002	0.002
10/12/09 02:50:00	60.026	3700.177	350	-223.015732	16	570	10	0	-103	7876.2	1	1	1	0.003	0.003
10/12/09 02:50:02	60.024	3700.295	350	-223.015732	16	570.5	10	0	-103	7876.53	1	1	1	-0.002	0.002
10/12/09 02:50:04	60.022	3700.277	350	-223.015732	16	571	10	0	-103	7876.86	1	1	1	-0.002	0.002
10/12/09 02:50:06	60.023	3700.841	350	-223.015732	16	571.5	10	0	-103	7877.19	1	1	1	0.001	0.001
10/12/09 02:50:08	60.026	3700.863	350	-223.015732	16	572	10	0	-103	7877.52	1	1	1	0.003	0.003
10/12/09 02:50:10	60.025	3700.26	350	-223.015732	16	572.5	10	0	-103	7877.85	1	1	1	-0.001	0.001
10/12/09 02:50:12	60.02	3700.052	350	-223.015732	16	573	10	0	-103	7878.18	1	1	1	-0.005	0.005
10/12/09 02:50:14	60.02	3699.926	350	-223.015732	16	573.5	10	0	-103	7878.51	1	1	1	0.000	0.000
10/12/09 02:50:16	60.019	3700.965	350	-223.015732	16	574	10	0	-103	7878.84	1	1	1	-0.001	0.001
10/12/09 02:50:18	60.015	3702.581	350	-223.015732	16	574.5	10	0	-103	7879.17	1	1	1	-0.004	0.004
10/12/09 02:50:20	60.016	3703.516	350	-223.015732	16	575	10	0	-103	7879.5	1	1	1	0.001	0.001
10/12/09 02:50:22	60.017	3703.824	350	-223.015732	16	575.5	10	0	-103	7879.83	1	1	1	0.001	0.001
10/12/09 02:50:24	60.015	3703.672	350	-223.015732	16	576	10	0	-103	7880.16	1	1	1	-0.002	0.002
10/12/09 02:50:26	60.015	3703.689	350	-223.015732	16	576.5	10	0	-103	7880.49	1	1	1	0.000	0.000
10/12/09 02:50:28	60.017	3703.003	350	-223.015732	16	577	10	0	-103	7880.82	1	1	1	0.002	0.002
10/12/09 02:50:30	60.017	3702.921	350	-223.015732	16	577.5	10	0	-103	7881.15	1	1	1	0.000	0.000
10/12/09 02:50:32	60.012	3703	350	-223.015732	16	578	10	0	-103	7881.48	1	1	1	-0.005	0.005
10/12/09 02:50:34	60.01	3703.167	350	-223.015732	16	578.5	10	0	-103	7881.81	1	1	1	-0.002	0.002
10/12/09 02:50:36	60.008	3703.918	350	-223.015732	16	579	10	0	-103	7882.14	1	1	1	-0.002	0.002
10/12/09 02:50:38	60.002	3703.616	350	-223.015732	16	579.5	10	0	-103	7882.47	1	1	1	-0.006	0.006
10/12/09 02:50:40	59.999	3703.775	350	-223.015732	16	580	10	0	-103	7882.8	1	0	1	-0.003	0.003
10/12/09 02:50:42	59.999	3703.751	350	-223.015732	16	580.5	10	0	-103	7883.13	1	0	1	0.000	0.000
10/12/09 02:50:44	60.002	3701.534	350	-223.015732	16	581	10	0	-103	7883.46	1	1	1	0.003	0.003
10/12/09 02:50:46	60.003	3700.617	350	-223.015732	16	581.5	10	0	-103	7883.79	1	1	1	0.001	0.001
10/12/09 02:50:48	60.004	3700.88	350	-223.015732	16	582	10	0	-103	7884.12	1	1	1	0.001	0.001
10/12/09 02:50:50	60.001	3700.625	350	-223.015732	16	582.5	10	0	-103	7884.45	1	1	1	-0.003	0.003
10/12/09 02:50:52	59.996	3701.389	350	-223.015732	16	583	10	0	-103	7884.78	1	0	1	-0.005	0.005
10/12/09 02:50:54	59.993	3701.737	350	-223.015732	16	583.5	10	0	-103	7885.11	1	0	1	-0.003	0.003
10/12/09 02:50:56	59.992	3700.671	350	-223.015732	16	584	10	0	-103	7885.44	1	0	1	-0.001	0.001
10/12/09 02:50:58	59.989	3700.826	350	-223.015732	16	584.5	10	0	-103	7885.77	1	0	1	-0.003	0.003
10/12/09 02:51:00	59.987	3700.977	350	-223.015732	16	585	10	0	-103	7886.1	1	0	1	-0.002	0.002
10/12/09 02:51:02	59.985	3700.7	350	-223.015732	16	585.5	10	0	-103	7886.43	1	0	1	-0.002	0.002
10/12/09 02:51:04	59.985	3699.854	350	-223.015732	16	586	10	0	-103	7888.76	1	0	1	0.000	0.000
10/12/09 02:51:06	59.986	3700.237	350	-223.015732	16	586.5	10	0	-103	7888.09	1	0	1	0.001	0.001
10/12/09 02:51:08	59.984	3700.342	350	-223.015732	16	587	10	0	-103	7887.42	1	0	1	-0.002	0.002
10/12/09 02:51:10	59.981	3700.77	350	-223.015732	16	587.5	10	0	-103	7887.75	1	0	1	-0.003	0.003
10/12/09 02:51:12	59.98	3700.789	350	-223.015732	16	588	10	0	-103	7888.08	1	0	1	-0.001	0.001
10/12/09 02:51:14	59.977	3701.625	350	-223.015732	16	588.5	10	0	-103	7888.41	1	0	1	-0.003	0.003
10/12/09 02:51:16	59.975	3703.166	350	-223.015732	16	589	10	0	-103	7888.74	1	0	1	-0.002	0.002
10/12/09 02:51:18	59.976	3704.187	350	-223.015732	16	589.5	10	0	-103	7889.07	1	0	1	0.001	0.001
10/12/09 02:51:20	59.972	3704.785	350	-223.015732	16	590	10	0	-103	7889.4	1	0	1	-0.004	0.004
10/12/09 02:51:22	59.974	3705.811	350	-223.015732	16	590.5	10	0	-103	7889.73	1	0	1	0.002	0.002
10/12/09 02:51:24	59.977	3706.958	350	-223.015732	16	591	10	0	-103	7890.06	1	0	1	0.003	0.003
10/12/09 02:51:26	59.975	3706.688	350	-223.015732	16	591.5	10	0	-103	7890.39	1	0	1	-0.002	0.002

10/12/09 02:51:28	59.973	3706.543	350	-223.015732	16	592	10	0	-103	7890.72	1	0	1	-0.002	0.002
10/12/09 02:51:30	59.971	3706.257	350	-223.015732	16	592.5	10	0	-103	7891.05	1	0	1	-0.002	0.002
10/12/09 02:51:32	59.971	3707.027	350	-223.015732	16	593	10	0	-103	7891.38	1	0	1	0.000	0.000
10/12/09 02:51:34	59.976	3710.118	350	-223.015732	16	593.5	10	0	-103	7891.71	1	0	1	0.005	0.005
10/12/09 02:51:36	59.979	3710.531	350	-223.015732	16	594	10	0	-103	7892.04	1	0	1	0.003	0.003
10/12/09 02:51:38	59.98	3708.701	350	-223.015732	16	594.5	10	0	-103	7892.37	1	0	1	0.001	0.001
10/12/09 02:51:40	59.979	3708.018	350	-223.015732	16	595	10	0	-103	7892.7	1	0	1	-0.001	0.001
10/12/09 02:51:42	59.982	3706.942	350	-223.015732	16	595.5	10	0	-103	7893.03	1	0	1	0.003	0.003
10/12/09 02:51:44	59.982	3706.343	350	-223.015732	16	596	10	0	-103	7893.36	1	0	1	0.000	0.000
10/12/09 02:51:46	59.983	3706.125	350	-223.015732	16	596.5	10	0	-103	7893.69	1	0	1	0.001	0.001
10/12/09 02:51:48	59.981	3706.311	350	-223.015732	16	597	10	0	-103	7894.02	1	0	1	-0.002	0.002
10/12/09 02:51:50	59.979	3706.119	350	-223.015732	16	597.5	10	0	-103	7894.35	1	0	1	-0.002	0.002
10/12/09 02:51:52	59.978	3706.19	350	-223.015732	16	598	10	0	-103	7894.68	1	0	1	-0.001	0.001
10/12/09 02:51:54	59.976	3707.721	350	-223.015732	16	598.5	10	0	-103	7895.01	1	0	1	-0.002	0.002
10/12/09 02:51:56	59.978	3709.409	350	-223.015732	16	599	10	0	-103	7895.34	1	0	1	0.002	0.002
10/12/09 02:51:58	59.977	3708.971	350	-223.015732	16	599.5	10	0	-103	7895.67	1	0	1	-0.001	0.001
10/12/09 02:52:00	59.976	3708.531	350	-223.015732	16	600	10	0	-103	7896	1	0	1	-0.001	0.001
10/12/09 02:52:02	59.978	3708.071	350	-223.015732	16	600.5	10	0	-103	7896.33	1	0	1	0.002	0.002
10/12/09 02:52:04	59.975	3707.24	350	-223.015732	16	601	10	0	-103	7896.66	1	0	1	-0.003	0.003
10/12/09 02:52:06	59.971	3709.213	350	-223.015732	16	601.5	10	0	-103	7896.99	1	0	1	-0.004	0.004
10/12/09 02:52:08	59.97	3709.961	350	-223.015732	16	602	10	0	-103	7897.32	1	0	1	-0.001	0.001
10/12/09 02:52:10	59.97	3711.75	350	-223.015732	16	602.5	10	0	-103	7897.65	1	0	1	0.000	0.000
10/12/09 02:52:12	59.971	3711.98	350	-223.015732	16	603	10	0	-103	7897.98	1	0	1	0.001	0.001
10/12/09 02:52:14	59.99	3710.695	350	-223.015732	16	603.5	10	0	-103	7898.31	1	0	1	0.019	0.019
10/12/09 02:52:16	59.998	3707.867	350	-223.015732	16	604	10	0	-103	7898.64	1	0	1	0.008	0.008
10/12/09 02:52:18	59.999	3704.912	350	-223.015732	16	604.5	10	0	-103	7898.97	1	0	1	0.001	0.001
10/12/09 02:52:20	59.999	3705.639	350	-223.015732	16	605	10	0	-103	7899.3	1	0	1	0.000	0.000
10/12/09 02:52:22	59.998	3703.787	350	-223.015732	16	605.5	10	0	-103	7899.63	1	0	1	-0.001	0.001
10/12/09 02:52:24	59.999	3703.191	350	-223.015732	16	606	10	0	-103	7899.96	1	0	1	0.001	0.001
10/12/09 02:52:26	60.003	3702.071	350	-223.015732	16	606.5	10	0	-103	7900.29	1	1	1	0.004	0.004
10/12/09 02:52:28	60.005	3699.51	350	-223.015732	16	607	10	0	-103	7900.62	1	1	1	0.002	0.002
10/12/09 02:52:30	60.005	3698.658	350	-223.015732	16	607.5	10	0	-103	7900.95	1	1	1	0.000	0.000
10/12/09 02:52:32	60.01	3698.137	350	-223.015732	16	608	10	0	-103	7901.28	1	1	1	0.005	0.005
10/12/09 02:52:34	60.013	3697.882	350	-223.015732	16	608.5	10	0	-103	7901.61	1	1	1	0.003	0.003
10/12/09 02:52:36	60.02	3698.668	350	-223.015732	16	609	10	0	-103	7901.94	1	1	1	0.007	0.007
10/12/09 02:52:38	60.022	3698.604	350	-223.015732	16	609.5	10	0	-103	7902.27	1	1	1	0.002	0.002
10/12/09 02:52:40	60.024	3697.868	350	-223.015732	16	610	10	0	-103	7902.6	1	1	1	0.002	0.002
10/12/09 02:52:42	60.025	3694.672	350	-223.015732	16	610.5	10	0	-103	7902.93	1	1	1	0.001	0.001
10/12/09 02:52:44	60.025	3693.912	350	-223.015732	16	611	10	0	-103	7903.26	1	1	1	0.000	0.000
10/12/09 02:52:46	60.024	3693.418	350	-223.015732	16	611.5	10	0	-103	7903.59	1	1	1	-0.001	0.001
10/12/09 02:52:48	60.023	3688.301	350	-223.015732	16	612	10	0	-103	7903.92	1	1	1	-0.001	0.001
10/12/09 02:52:50	60.029	3688.021	350	-223.015732	16	612.5	10	0	-103	7904.25	1	1	1	0.006	0.006
10/12/09 02:52:52	60.029	3689.143	350	-223.015732	16	613	10	0	-103	7904.58	1	1	1	0.000	0.000
10/12/09 02:52:54	60.029	3688.237	350	-223.015732	16	613.5	10	0	-103	7904.91	1	1	1	0.000	0.000
10/12/09 02:52:56	60.028	3687.878	350	-223.015732	16	614	10	0	-103	7905.24	1	1	1	-0.001	0.001
10/12/09 02:52:58	60.028	3687.026	350	-223.015732	16	614.5	10	0	-103	7905.57	1	1	1	0.000	0.000
10/12/09 02:53:00	60.031	3686.683	350	-223.015732	16	615	10	0	-103	7905.9	1	1	1	0.003	0.003
10/12/09 02:53:02	60.032	3685.276	350	-223.015732	16	615.5	10	0	-103	7906.23		1	1	0.001	0.001
10/12/09 02:53:04	60.033	3685.576	350	-223.015732	16	616	10	0	-103	7906.56	1	1	1	0.001	0.001

10/12/09 02:53:06	60.031	3685.985	350	-223.015732	16	616.5	10	0	-103	7906.89	1	1	1	-0.002	0.002
10/12/09 02:53:08	60.03	3686.418	350	-223.015732	16	617	10	0	-103	7907.22	1	1	1	-0.001	0.001
10/12/09 02:53:10	60.022	3687.159	350	-223.015732	16	617.5	10	0	-103	7907.55	1	1	1	-0.008	0.008
10/12/09 02:53:12	60.021	3687.873	350	-223.015732	16	618	10	0	-103	7907.88	1	1	1	-0.001	0.001
10/12/09 02:53:14	60.019	3688.997	350	-223.015732	16	618.5	10	0	-103	7908.21	1	1	1	-0.002	0.002
10/12/09 02:53:16	60.017	3690.426	350	-223.015732	16	619	10	0	-103	7908.54	1	1	1	-0.002	0.002
10/12/09 02:53:18	60.017	3690.776	350	-223.015732	16	619.5	10	0	-103	7908.87	1	1	1	0.000	0.000
10/12/09 02:53:20	60.017	3692.715	350	-223.015732	16	620	10	0	-103	7909.2	1	1	1	0.000	0.000
10/12/09 02:53:22	60.016	3692.578	350	-223.015732	16	620.5	10	0	-103	7909.53	1	1	1	-0.001	0.001
10/12/09 02:53:24	60.015	3692.462	350	-223.015732	16	621	10	0	-103	7909.86	1	1	1	-0.001	0.001
10/12/09 02:53:26	60.015	3693.173	350	-223.015732	16	621.5	10	0	-103	7910.19	1	1	1	0.000	0.000
10/12/09 02:53:28	60.012	3693.249	350	-223.015732	16	622	10	0	-103	7910.52	1	1	1	-0.003	0.003
10/12/09 02:53:30	60.009	3693.743	350	-223.015732	16	622.5	10	0	-103	7910.85	1	1	1	-0.003	0.003
10/12/09 02:53:32	60.008	3695.124	350	-223.015732	16	623	10	0	-103	7911.18	1	1	1	-0.001	0.001
10/12/09 02:53:34	60.008	3694.681	350	-223.015732	16	623.5	10	0	-103	7911.51	1	1	1	0.000	0.000
10/12/09 02:53:36	60.005	3694.741	350	-223.015732	16	624	10	0	-103	7911.84	1	1	1	-0.003	0.003
10/12/09 02:53:38	60.005	3694.199	350	-223.015732	16	624.5	10	0	-103	7912.17	1	1	1	0.000	0.000
10/12/09 02:53:40	60.003	3693.75	350	-223.015732	16	625	10	0	-103	7912.5	1	1	1	-0.002	0.002
10/12/09 02:53:42	59.999	3693.624	350	-223.015732	16	625.5	10	0	-103	7912.83	1	0	1	-0.004	0.004
10/12/09 02:53:44	59.997	3692.806	350	-223.015732	16	626	10	0	-103	7913.16	1	0	1	-0.002	0.002
10/12/09 02:53:46	59.999	3691.15	350	-223.015732	16	626.5	10	0	-103	7913.49	1	0	1	0.002	0.002
10/12/09 02:53:48	60	3691.407	350	-223.015732	16	627	10	0	-103	7913.82	1	0	1	0.001	0.001
10/12/09 02:53:50	59.998	3691.077	350	-223.015732	16	627.5	10	0	-103	7914.15	1	0	1	-0.002	0.002
10/12/09 02:53:52	59.995	3690.588	350	-223.015732	16	628	10	0	-103	7914.48	1	0	1	-0.003	0.003
10/12/09 02:53:54	59.994	3689.797	350	-223.015732	16	628.5	10	0	-103	7914.81	1	0	1	-0.001	0.001
10/12/09 02:53:56	59.992	3688.483	350	-223.015732	16	629	10	0	-103	7915.14	1	0	1	-0.002	0.002
10/12/09 02:53:58	59.993	3689.445	350	-223.015732	16	629.5	10	0	-103	7915.47	1	0	1	0.001	0.001
10/12/09 02:54:00	59.988	3689.553	350	-223.015732	16	630	10	0	-103	7915.8	1	0	1	-0.005	0.005
10/12/09 02:54:02	59.985	3689.525	350	-223.015732	16	630.5	10	0	-103	7916.13	1	0	1	-0.003	0.003
10/12/09 02:54:04	59.986	3689.736	350	-223.015732	16	631	10	0	-103	7916.46	1	0	1	0.001	0.001
10/12/09 02:54:06	59.988	3688.853	350	-223.015732	16	631.5	10	0	-103	7916.79	1	0	1	0.002	0.002
10/12/09 02:54:08	59.988	3688.24	350	-223.015732	16	632	10	0	-103	7917.12	1	0	1	0.000	0.000
10/12/09 02:54:10	59.985	3687.494	350	-223.015732	16	632.5	10	0	-103	7917.45	1	0	1	-0.003	0.003
10/12/09 02:54:12	59.983	3687.475	350	-223.015732	16	633	10	0	-103	7917.78	1	0	1	-0.002	0.002
10/12/09 02:54:14	59.983	3686.707	350	-223.015732	16	633.5	10	0	-103	7918.11	1	0	1	0.000	0.000
10/12/09 02:54:16	59.985	3685.66	350	-223.015732	16	634	10	0	-103	7918.44	1	0	1	0.002	0.002
10/12/09 02:54:18	59.986	3684.51	350	-223.015732	16	634.5	10	0	-103	7918.77	1	0	1	0.001	0.001
10/12/09 02:54:20	59.987	3684.333	350	-223.015732	16	635	10	0	-103	7919.1	1	0	1	0.001	0.001
10/12/09 02:54:22	59.99	3683.911	350	-223.015732	16	635.5	10	0	-103	7919.43	1	0	1	0.003	0.003
10/12/09 02:54:24	59.986	3683.735	350	-223.015732	16	636	10	0	-103	7919.76	1	0	1	-0.004	0.004
10/12/09 02:54:26	59.985	3684.208	350	-223.015732	16	636.5	10	0	-103	7920.09	1	0	1	-0.001	0.001
10/12/09 02:54:28	59.984	3683.811	350	-223.015732	16	637	10	0	-103	7920.42	1	0	1	-0.001	0.001
10/12/09 02:54:30	59.983	3683.473	350	-223.015732	16	637.5	10	0	-103	7920.75	1	0	1	-0.001	0.001
10/12/09 02:54:32	59.982	3684.258	350	-223.015732	16	638	10	0	-103	7921.08	1	0	1	-0.001	0.001
10/12/09 02:54:34	59.982	3684.884	350	-223.015732	16	638.5	10	0	-103	7921.41	1		1	0.000	0.000
10/12/09 02:54:36	59.98	3685.092	350	-223.015732	16	639	10	0	-103	7921.74	1	0	1	-0.002	0.002
10/12/09 02:54:38	59.978	3685.654	350	-223.015732	16	639.5	10	0	-103	7922.07	1	0	1	-0.002	0.002
10/12/09 02:54:40	59.977	3685.087	350	-223.015732	16	640	10	0	-103	7922.4	1	0	1	-0.001	0.001
10/12/09 02:54:42	59.975	3685.491	350	-223.015732	16	640.5	10	0	-103	7922.73	1	0	1	-0.002	0.002

10/12/09 02:54:44	59.973	3685.196	350	-223.015732	16	641	10	0	-103	7923.06	1	0	1	-0.002	0.002
10/12/09 02:54:46	59.975	3687.412	350	-223.015732	16	641.5	10	0	-103	7923.39	1	0	1	0.002	0.002
10/12/09 02:54:48	59.976	3688.417	350	-223.015732	16	642	10	0	-103	7923.72	1	0	1	0.001	0.001
10/12/09 02:54:50	59.976	3688.599	350	-223.015732	16	642.5	10	0	-103	7924.05	1	0	1	0.000	0.000
10/12/09 02:54:52	59.979	3687.848	350	-223.015732	16	643	10	0	-103	7924.38	1	0	1	0.003	0.003
10/12/09 02:54:54	59.982	3686.678	350	-223.015732	16	643.5	10	0	-103	7924.71	1	0	1	0.003	0.003
10/12/09 02:54:56	59.979	3685.782	350	-223.015732	16	644	10	0	-103	7925.04	1	0	1	-0.003	0.003
10/12/09 02:54:58	59.979	3684.89	350	-223.015732	16	644.5	10	0	-103	7925.37	1	0	1	0.000	0.000
10/12/09 02:55:00	59.977	3685.143	350	-223.015732	16	645	10	0	-103	7925.7	1	0	1	-0.002	0.002
10/12/09 02:55:02	59.977	3684.549	350	-223.015732	16	645.5	10	0	-103	7926.03	1	0	1	0.000	0.000
10/12/09 02:55:04	59.978	3684.093	350	-223.015732	16	646	10	0	-103	7926.36	1	0	1	0.001	0.001
10/12/09 02:55:06	59.978	3684.555	350	-223.015732	16	646.5	10	0	-103	7926.69	1	0	1	0.000	0.000
10/12/09 02:55:08	59.978	3682.814	350	-223.015732	16	647	10	0	-103	7927.02	1	0	1	0.000	0.000
10/12/09 02:55:10	59.979	3682.318	350	-223.015732	16	647.5	10	0	-103	7927.35	1	0	1	0.001	0.001
10/12/09 02:55:12	59.983	3682.366	350	-223.015732	16	648	10	0	-103	7927.68	1	0	1	0.004	0.004
10/12/09 02:55:14	59.981	3682.647	350	-223.015732	16	648.5	10	0	-103	7928.01	1	0	1	-0.002	0.002
10/12/09 02:55:16	59.98	3682.855	350	-223.015732	16	649	10	0	-103	7928.34	1	0	1	-0.001	0.001
10/12/09 02:55:18	59.978	3683.557	350	-223.015732	16	649.5	10	0	-103	7928.67	1	0	1	-0.002	0.002
10/12/09 02:55:20	59.979	3684.052	350	-223.015732	16	650	10	0	-103	7929	1	0	1	0.001	0.001
10/12/09 02:55:22	59.978	3684.318	350	-223.015732	16	650.5	10	0	-103	7929.33	1	0	1	-0.001	0.001
10/12/09 02:55:24	59.979	3686.049	350	-223.015732	16	651	10	0	-103	7929.66	1	0	1	0.001	0.001
10/12/09 02:55:26	59.983	3686.629	350	-223.015732	16	651.5	10	0	-103	7929.99	1	0	1	0.004	0.004
10/12/09 02:55:28	59.987	3685.286	350	-223.015732	16	652	10	0	-103	7930.32	1	0	1	0.004	0.004
10/12/09 02:55:30	59.99	3683.415	350	-223.015732	16	652.5	10	0	-103	7930.65	1	0	1	0.003	0.003
10/12/09 02:55:32	59.992	3682.416	350	-223.015732	16	653	10	0	-103	7930.98	1	0	1	0.002	0.002
10/12/09 02:55:34	59.993	3681.403	350	-223.015732	16	653.5	10	0	-103	7931.31	1	0	1	0.001	0.001
10/12/09 02:55:36	59.99	3679.012	350	-223.015732	16	654	10	0	-103	7931.64	1	0	1	-0.003	0.003
10/12/09 02:55:38	59.988	3679.436	350	-223.015732	16	654.5	10	0	-103	7931.97	1	0	1	-0.002	0.002
10/12/09 02:55:40	59.988	3671.761	350	-223.015732	16	655	10	0	-103	7932.3	1	0	1	0.000	0.000
10/12/09 02:55:42	59.99	3670.717	350	-223.015732	16	655.5	10	0	-103	7932.63	1	0	1	0.002	0.002
10/12/09 02:55:44	59.993	3670.159	350	-223.015732	16	656	10	0	-103	7932.96	1	0	1	0.003	0.003
10/12/09 02:55:46	59.994	3679	350	-223.015732	16	656.5	10	0	-103	7933.29	1	0	1	0.001	0.001
10/12/09 02:55:48	59.993	3680.176	350	-223.015732	16	657	10	0	-103	7933.62	1	0	1	-0.001	0.001
10/12/09 02:55:50	59.994	3681.799	350	-223.015732	16	657.5	10	0	-103	7933.95	1	0	1	0.001	0.001
10/12/09 02:55:52	59.994	3682.7	350	-223.015732	16	658	10	0	-103	7934.28	1	0	1	0.000	0.000
10/12/09 02:55:54	59.993	3684.116	350	-223.015732	16	658.5	10	0	-103	7934.61	1	0	1	-0.001	0.001
10/12/09 02:55:56	59.989	3685.03	350	-223.015732	16	659	10	0	-103	7934.94	1	0	1	-0.004	0.004
10/12/09 02:55:58	59.984	3684.878	350	-223.015732	16	659.5	10	0	-103	7935.27	1	0	1	-0.005	0.005
10/12/09 02:56:00	59.986	3684.165	350	-223.015732	16	660	10	0	-103	7935.6	1	0	1	0.002	0.002
10/12/09 02:56:02	59.985	3684.478	350	-223.015732	16	660.5	10	0	-103	7935.93	1	0	1	-0.001	0.001
10/12/09 02:56:04	59.988	3685.584	350	-223.015732	16	661	10	0	-103	7936.26	1	0	1	0.003	0.003
10/12/09 02:56:06	59.987	3685.148	350	-223.015732	16	661.5	10	0	-103	7936.59	1	0	1	-0.001	0.001
10/12/09 02:56:08	59.986	3684.587	350	-223.015732	16	662	10	0	-103	7936.92	1	0	1	-0.001	0.001
10/12/09 02:56:10	59.987	3684.976	350	-223.015732	16	662.5	10	0	-103	7937.25	1	0	1	0.001	0.001
10/12/09 02:56:12	59.985	3683.674	350	-223.015732	16	663	10	0	-103	7937.58	1	0	1	-0.002	0.002
10/12/09 02:56:14	59.982	3684.872	350	-223.015732	16	663.5	10	0	-103	7937.91	1	0	1	-0.003	0.003
10/12/09 02:56:16	59.981	3684.245	350	-223.015732	16	664	10	0	-103	7938.24	1	0	1	-0.001	0.001
10/12/09 02:56:18	59.982	3684.711	350	-223.015732	16	664.5	10	0	-103	7938.57	1	0	1	0.001	0.001
10/12/09 02:56:20	59.987	3685.589	350	-223.015732	16	665	10	0	-103	7938.9	1	0	1	0.005	0.005

10/12/09 02:56:22	59.992	3683.736	350	-223.015732	16	665.5	10	0	-103	7939.23	1	0	1	0.005	0.005
10/12/09 02:56:24	59.997	3682.579	350	-223.015732	16	666	10	0	-103	7939.56	1	0	1	0.005	0.005
10/12/09 02:56:26	60	3682.234	350	-223.015732	16	666.5	10	0	-103	7939.89	1	0	1	0.003	0.003
10/12/09 02:56:28	60.003	3682.138	350	-223.015732	16	667	10	0	-103	7940.22	1	1	1	0.003	0.003
10/12/09 02:56:30	60.003	3682.224	350	-223.015732	16	667.5	10	0	-103	7940.55	1	1	1	0.000	0.000
10/12/09 02:56:32	60.003	3681.689	350	-223.015732	16	668	10	0	-103	7940.88	1	1	1	0.000	0.000
10/12/09 02:56:34	60.002	3681.458	350	-223.015732	16	668.5	10	0	-103	7941.21	1	1	1	-0.001	0.001
10/12/09 02:56:36	60.003	3681.65	350	-223.015732	16	669	10	0	-103	7941.54	1	1	1	0.001	0.001
10/12/09 02:56:38	60.002	3681.013	350	-223.015732	16	669.5	10	0	-103	7941.87	1	1	1	-0.001	0.001
10/12/09 02:56:40	60.003	3680.167	350	-223.015732	16	670	10	0	-103	7942.2	1	1	1	0.001	0.001
10/12/09 02:56:42	60.004	3679.943	350	-223.015732	16	670.5	10	0	-103	7942.53	1	1	1	0.001	0.001
10/12/09 02:56:44	60.005	3679.429	350	-223.015732	16	671	10	0	-103	7942.86	1	1	1	0.001	0.001
10/12/09 02:56:46	60.006	3679.669	350	-223.015732	16	671.5	10	0	-103	7943.19	1	1	1	0.001	0.001
10/12/09 02:56:48	60.009	3678.981	350	-223.015732	16	672	10	0	-103	7943.52	1	1	1	0.003	0.003
10/12/09 02:56:50	60.012	3678.267	350	-223.015732	16	672.5	10	0	-103	7943.85	1	1	1	0.003	0.003
10/12/09 02:56:52	60.017	3676.796	350	-223.015732	16	673	10	0	-103	7944.18	1	1	1	0.005	0.005
10/12/09 02:56:54	60.021	3676.81	350	-223.015732	16	673.5	10	0	-103	7944.51	1	1	1	0.004	0.004
10/12/09 02:56:56	60.022	3674.798	350	-223.015732	16	674	10	0	-103	7944.84	1	1	1	0.001	0.001
10/12/09 02:56:58	60.021	3673.906	350	-223.015732	16	674.5	10	0	-103	7945.17	1	1	1	-0.001	0.001
10/12/09 02:57:00	60.02	3671.145	350	-223.015732	16	675	10	0	-103	7945.5	1	1	1	-0.001	0.001
10/12/09 02:57:02	60.018	3670.51	350	-223.015732	16	675.5	10	0	-103	7945.83	1	1	1	-0.002	0.002
10/12/09 02:57:04	60.021	3673.648	350	-223.015732	16	676	10	0	-103	7946.16	1	1	1	0.003	0.003
10/12/09 02:57:06	60.02	3673.684	350	-223.015732	16	676.5	10	0	-103	7946.49	1	1	1	-0.001	0.001
10/12/09 02:57:08	60.02	3675.865	350	-223.015732	16	677	10	0	-103	7946.82	1	1	1	0.000	0.000
10/12/09 02:57:10	60.018	3676.676	350	-223.015732	16	677.5	10	0	-103	7947.15	1	1	1	-0.002	0.002
10/12/09 02:57:12	60.018	3676.404	350	-223.015732	16	678	10	0	-103	7947.48	1	1	1	0.000	0.000
10/12/09 02:57:14	60.019	3676.437	350	-223.015732	16	678.5	10	0	-103	7947.81	1	1	1	0.001	0.001
10/12/09 02:57:16	60.019	3677.185	350	-223.015732	16	679	10	0	-103	7948.14	1	1	1	0.000	0.000
10/12/09 02:57:18	60.018	3677.659	350	-223.015732	16	679.5	10	0	-103	7948.47	1	1	1	-0.001	0.001
10/12/09 02:57:20	60.017	3678.828	350	-223.015732	16	680	10	0	-103	7948.8	1	1	1	-0.001	0.001
10/12/09 02:57:22	60.016	3679.289	350	-223.015732	16	680.5	10	0	-103	7949.13	1	1	1	-0.001	0.001
10/12/09 02:57:24	60.016	3678.915	350	-223.015732	16	681	10	0	-103	7949.46	1	1	1	0.000	0.000
10/12/09 02:57:26	60.016	3679.276	350	-223.015732	16	681.5	10	0	-103	7949.79	1	1	1	0.000	0.000
10/12/09 02:57:28	60.015	3678.599	350	-223.015732	16	682	10	0	-103	7950.12	1	1	1	-0.001	0.001
10/12/09 02:57:30	60.014	3678.367	350	-223.015732	16	682.5	10	0	-103	7950.45	1	1	1	-0.001	0.001
10/12/09 02:57:32	60.014	3678.25	350	-223.015732	16	683	10	0	-103	7950.78	1	1	1	0.000	0.000
10/12/09 02:57:34	60.013	3678.589	350	-223.015732	16	683.5	10	0	-103	7951.11	1	1	1	-0.001	0.001
10/12/09 02:57:36	60.013	3677.251	350	-223.015732	16	684	10	0	-103	7951.44	1	1	1	0.000	0.000
10/12/09 02:57:38	60.015	3675.698	350	-223.015732	16	684.5	10	0	-103	7951.77	1	1	1	0.002	0.002
10/12/09 02:57:40	60.017	3674.669	350	-223.015732	16	685	10	0	-103	7952.1	1	1	1	0.002	0.002
10/12/09 02:57:42	60.016	3674.87	350	-223.015732	16	685.5	10	0	-103	7952.43	1	1	1	-0.001	0.001
10/12/09 02:57:44	60.019	3674.402	350	-223.015732	16	686	10	0	-103	7952.76	1	1	1	0.003	0.003
10/12/09 02:57:46	60.021	3674.546	350	-223.015732	16	686.5	10	0	-103	7953.09	1	1	1	0.002	0.002
10/12/09 02:57:48	60.021	3672.969	350	-223.015732	16	687	10	0	-103	7953.42	1	1	1	0.000	0.000
10/12/09 02:57:50	60.02	3671.914	350	-223.015732	16	687.5	10	0	-103	7953.75	1	1	1	-0.001	0.001
10/12/09 02:57:52	60.022	3671.982	350	-223.015732	16	688	10	0	-103	7954.08	1	1	1	0.002	0.002
10/12/09 02:57:54	60.024	3670.946	350	-223.015732	16	688.5	10	0	-103	7954.41	1	1	1	0.002	0.002
10/12/09 02:57:56	60.026	3670.821	350	-223.015732	16	689	10	0	-103	7954.74	1	1	1	0.002	0.002
10/12/09 02:57:58	60.025	3671.06	350	-223.015732	16	689.5	10	0	-103	7955.07	1	1	1	-0.001	0.001

10/12/09 02:58:00	60.026	3671.539	350	-223.015732	16	690	10	0	-103	7955.4	1	1	1	0.001	0.001
10/12/09 02:58:02	60.022	3673.794	350	-223.015732	16	690.5	10	0	-103	7955.73	1	1	1	-0.004	0.004
10/12/09 02:58:04	60.021	3674.01	350	-223.015732	16	691	10	0	-103	7956.06	1	1	1	-0.001	0.001
10/12/09 02:58:06	60.022	3675.102	350	-223.015732	16	691.5	10	0	-103	7956.39	1	1	1	0.001	0.001
10/12/09 02:58:08	60.024	3675.284	350	-223.015732	16	692	10	0	-103	7956.72	1	1	1	0.002	0.002
10/12/09 02:58:10	60.027	3676.051	350	-223.015732	16	692.5	10	0	-103	7957.05	1	1	1	0.003	0.003
10/12/09 02:58:12	60.029	3675.704	350	-223.015732	16	693	10	0	-103	7957.38	1	1	1	0.002	0.002
10/12/09 02:58:14	60.028	3672.583	350	-223.015732	16	693.5	10	0	-103	7957.71	1	1	1	-0.001	0.001
10/12/09 02:58:16	60.028	3671.343	350	-223.015732	16	694	10	0	-103	7958.04	1	1	1	0.000	0.000
10/12/09 02:58:18	60.032	3670.232	350	-223.015732	16	694.5	10	0	-103	7958.37	1	1	1	0.004	0.004
10/12/09 02:58:20	60.035	3668.654	350	-223.015732	16	695	10	0	-103	7958.7	1	1	1	0.003	0.003
10/12/09 02:58:22	60.03	3668.767	350	-223.015732	16	695.5	10	0	-103	7959.03	1	1	1	-0.005	0.005
10/12/09 02:58:24	60.028	3666.312	350	-223.015732	16	696	10	0	-103	7959.36	1	1	1	-0.002	0.002
10/12/09 02:58:26	60.021	3667.322	350	-223.015732	16	696.5	10	0	-103	7959.69	1	1	1	-0.007	0.007
10/12/09 02:58:28	60.021	3657.164	350	-223.015732	16	697	10	0	-103	7960.02	1	1	1	0.000	0.000
10/12/09 02:58:30	60.024	3657.714	350	-223.015732	16	697.5	10	0	-103	7960.35	1	1	1	0.003	0.003
10/12/09 02:58:32	60.025	3668.637	350	-223.015732	16	698	10	0	-103	7960.68	1	1	1	0.001	0.001
10/12/09 02:58:34	60.024	3669.309	350	-223.015732	16	698.5	10	0	-103	7961.01	1	1	1	-0.001	0.001
10/12/09 02:58:36	60.022	3670.112	350	-223.015732	16	699	10	0	-103	7961.34	1	1	1	-0.002	0.002
10/12/09 02:58:38	60.023	3670.735	350	-223.015732	16	699.5	10	0	-103	7961.67	1	1	1	0.001	0.001
10/12/09 02:58:40	60.021	3671.332	350	-223.015732	16	700	10	0	-103	7962	1	1	1	-0.002	0.002
10/12/09 02:58:42	60.02	3672.095	350	-223.015732	16	700.5	10	0	-103	7962.33	1	1	1	-0.001	0.001
10/12/09 02:58:44	60.02	3672.683	350	-223.015732	16	701	10	0	-103	7962.66	1	1	1	0.000	0.000
10/12/09 02:58:46	60.02	3673.833	350	-223.015732	16	701.5	10	0	-103	7962.99	1	1	1	0.000	0.000
10/12/09 02:58:48	60.02	3674.645	350	-223.015732	16	702	10	0	-103	7963.32	1	1	1	0.000	0.000
10/12/09 02:58:50	60.017	3675.641	350	-223.015732	16	702.5	10	0	-103	7963.65	1	1	1	-0.003	0.003
10/12/09 02:58:52	60.014	3675.971	350	-223.015732	16	703	10	0	-103	7963.98	1	1	1	-0.003	0.003
10/12/09 02:58:54	60.012	3677.009	350	-223.015732	16	703.5	10	0	-103	7964.31	1	1	1	-0.002	0.002
10/12/09 02:58:56	60.01	3678.314	350	-223.015732	16	704	10	0	-103	7964.64	1	1	1	-0.002	0.002
10/12/09 02:58:58	60.011	3679.393	350	-223.015732	16	704.5	10	0	-103	7964.97	1	1	1	0.001	0.001
10/12/09 02:59:00	60.01	3680.02	350	-223.015732	16	705	10	0	-103	7965.3	1	1	1	-0.001	0.001
10/12/09 02:59:02	60.01	3679.792	350	-223.015732	16	705.5	10	0	-103	7965.63	1	1	1	0.000	0.000
10/12/09 02:59:04	60.01	3679.597	350	-223.015732	16	706	10	0	-103	7965.96	1	1	1	0.000	0.000
10/12/09 02:59:06	60.012	3680.315	350	-223.015732	16	706.5	10	0	-103	7966.29	1	1	1	0.002	0.002
10/12/09 02:59:08	60.012	3680.11	350	-223.015732	16	707	10	0	-103	7966.62	1	1	1	0.000	0.000
10/12/09 02:59:10	60.013	3679.062	350	-223.015732	16	707.5	10	0	-103	7966.95	1	1	1	0.001	0.001
10/12/09 02:59:12	60.014	3679.127	350	-223.015732	16	708	10	0	-103	7967.28	1	1	1	0.001	0.001
10/12/09 02:59:14	60.013	3679.587	350	-223.015732	16	708.5	10	0	-103	7967.61	1	1	1	-0.001	0.001
10/12/09 02:59:16	60.012	3679.637	350	-223.015732	16	709	10	0	-103	7967.94	1	1	1	-0.001	0.001
10/12/09 02:59:18	60.011	3679.02	350	-223.015732	16	709.5	10	0	-103	7968.27	1	1	1	-0.001	0.001
10/12/09 02:59:20	60.01	3678.418	350	-223.015732	16	710	10	0	-103	7968.6	1	1	1	-0.001	0.001
10/12/09 02:59:22	60.008	3679.383	350	-223.015732	16	710.5	10	0	-103	7968.93	1	1	1	-0.002	0.002
10/12/09 02:59:24	60.01	3679.681	350	-223.015732	16	711	10	0	-103	7969.26	1	1	1	0.002	0.002
10/12/09 02:59:26	60.011	3679.932	350	-223.015732	16	711.5	10	0	-103	7969.59	1	1	1	0.001	0.001
10/12/09 02:59:28	60.013	3679.138	350	-223.015732	16	712	10	0	-103	7969.92	1	1	1	0.002	0.002
10/12/09 02:59:30	60.016	3678.469	350	-223.015732	16	712.5	10	0	-103	7970.25	1	1	1	0.003	0.003
10/12/09 02:59:32	60.018	3678.499	350	-223.015732	16	713	10	0	-103	7970.58	1	1	1	0.002	0.002
10/12/09 02:59:34	60.019	3678.456	350	-223.015732	16	713.5	10	0	-103	7970.91	1	1	1	0.001	0.001
10/12/09 02:59:36	60.019	3677.615	350	-223.015732	16	714	10	0	-103	7971.24	1	1	1	0.000	0.000

10/12/09 02:59:38	60.019	3677.446	350	-223.015732	16	714.5	10	0	-103	7971.57	1	1	1	0.000	0.000
10/12/09 02:59:40	60.02	3677.431	350	-223.015732	16	715	10	0	-103	7971.9	1	1	1	0.001	0.001
10/12/09 02:59:42	60.02	3677.451	350	-223.015732	16	715.5	10	0	-103	7972.23	1	1	1	0.000	0.000
10/12/09 02:59:44	60.018	3677.315	350	-223.015732	16	716	10	0	-103	7972.56	1	1	1	-0.002	0.002
10/12/09 02:59:46	60.018	3678.151	350	-223.015732	16	716.5	10	0	-103	7972.89	1	1	1	0.000	0.000
10/12/09 02:59:48	60.016	3678.362	350	-223.015732	16	717	10	0	-103	7973.22	1	1	1	-0.002	0.002
10/12/09 02:59:50	60.016	3678.874	350	-223.015732	16	717.5	10	0	-103	7973.55	1	1	1	0.000	0.000
10/12/09 02:59:52	60.019	3680.771	350	-223.015732	16	718	10	0	-103	7973.88	1	1	1	0.003	0.003
10/12/09 02:59:54	60.023	3681.058	350	-223.015732	16	718.5	10	0	-103	7974.21	1	1	1	0.004	0.004
10/12/09 02:59:56	60.022	3680.353	350	-223.015732	16	719	10	0	-103	7974.54	1	1	1	-0.001	0.001
10/12/09 02:59:58	60.018	3679.167	350	-223.015732	16	719.5	10	0	-103	7974.87	1	1	1	-0.004	0.004
10/12/09 03:00:00	60.015	3679.553	350	-223.015732	16	720	10	0	-103	7975.2	1	1	1	-0.003	0.003
10/12/09 03:00:02	60.016	3680.672	350	-223.015732	16	720.5	10	0	-103	7975.53	1	1	1	0.001	0.001
10/12/09 03:00:04	60.017	3682.73	350	-223.015732	16	721	10	0	-103	7975.86	1	1	1	0.001	0.001
10/12/09 03:00:06	60.015	3682.714	350	-223.015732	16	721.5	10	0	-103	7976.19	1	1	1	-0.002	0.002
10/12/09 03:00:08	60.01	3681.915	350	-223.015732	16	722	10	0	-103	7976.52	1	1	1	-0.005	0.005
10/12/09 03:00:10	60.004	3682.01	350	-223.015732	16	722.5	10	0	-103	7976.85	1	1	1	-0.006	0.006
10/12/09 03:00:12	59.999	3682.483	350	-223.015732	16	723	10	0	-103	7977.18	1	0	1	-0.005	0.005
10/12/09 03:00:14	59.995	3683.813	350	-223.015732	16	723.5	10	0	-103	7977.51	1	0	1	-0.004	0.004
10/12/09 03:00:16	59.99	3685.306	350	-223.015732	16	724	10	0	-103	7977.84	1	0	1	-0.005	0.005
10/12/09 03:00:18	59.982	3684.846	350	-223.015732	16	724.5	10	0	-103	7978.17	1	0	1	-0.008	0.008
10/12/09 03:00:20	59.974	3684.643	350	-223.015732	16	725	10	0	-103	7978.5	1	0	1	-0.008	0.008
10/12/09 03:00:22	59.97	3687.527	350	-223.015732	16	725.5	10	0	-103	7978.83	1	0	1	-0.004	0.004
10/12/09 03:00:24	59.97	3689.404	350	-223.015732	16	726	10	0	-103	7979.16	1	0	1	0.000	0.000
10/12/09 03:00:26	59.968	3692.287	350	-223.015732	16	726.5	10	0	-103	7979.49	1	0	1	-0.002	0.002
10/12/09 03:00:28	59.968	3692.966	350	-223.015732	16	727	10	0	-103	7979.82	1	0	1	0.000	0.000
10/12/09 03:00:30	59.968	3693.793	350	-223.015732	16	727.5	10	0	-103	7980.15	1	0	1	0.000	0.000
10/12/09 03:00:32	59.972	3694.397	350	-223.015732	16	728	10	0	-103	7980.48	1	0	1	0.004	0.004
10/12/09 03:00:34	59.967	3694.974	350	-223.015732	16	728.5	10	0	-103	7980.81	1	0	1	-0.005	0.005
10/12/09 03:00:36	59.966	3697.407	350	-223.015732	16	729	10	0	-103	7981.14	1	0	1	-0.001	0.001
10/12/09 03:00:38	59.964	3698.502	350	-223.015732	16	729.5	10	0	-103	7981.47	1	0	1	-0.002	0.002
10/12/09 03:00:40	59.965	3698.617	350	-223.015732	16	730	10	0	-103	7981.8	1	0	1	0.001	0.001
10/12/09 03:00:42	59.966	3698.992	350	-223.015732	16	730.5	10	0	-103	7982.13	1	0	1	0.001	0.001
10/12/09 03:00:44	59.963	3699.85	350	-223.015732	16	731	10	0	-103	7982.46	1	0	1	-0.003	0.003
10/12/09 03:00:46	59.963	3702.645	350	-223.015732	16	731.5	10	0	-103	7982.79	1	0	1	0.000	0.000
10/12/09 03:00:48	59.965	3701.989	350	-223.015732	16	732	10	0	-103	7983.12	1	0	1	0.002	0.002
10/12/09 03:00:50	59.968	3702.218	350	-223.015732	16	732.5	10	0	-103	7983.45	1	0	1	0.003	0.003
10/12/09 03:00:52	59.97	3704.023	350	-223.015732	16	733	10	0	-103	7983.78	1	0	1	0.002	0.002
10/12/09 03:00:54	59.97	3703.365	350	-223.015732	16	733.5	10	0	-103	7984.11	1	0	1	0.000	0.000
10/12/09 03:00:56	59.97	3702.988	350	-223.015732	16	734	10	0	-103	7984.44	1	0	1	0.000	0.000
10/12/09 03:00:58	59.973	3703.814	350	-223.015732	16	734.5	10	0	-103	7984.77	1	0	1	0.003	0.003
10/12/09 03:01:00	59.972	3704.899	350	-223.015732	16	735	10	0	-103	7985.1	1	0	1	-0.001	0.001
10/12/09 03:01:02	59.976	3705.625	350	-223.015732	16	735.5	10	0	-103	7985.43	1	0	1	0.004	0.004
10/12/09 03:01:04	59.975	3704.293	350	-223.015732	16	736	10	0	-103	7985.76	1	0	1	-0.001	0.001
10/12/09 03:01:06	59.975	3702.094	350	-223.015732	16	736.5	10	0	-103	7986.09	1	0	1	0.000	0.000
10/12/09 03:01:08	59.977	3701.944	350	-223.015732	16	737	10	0	-103	7986.42	1	0	1	0.002	0.002
10/12/09 03:01:10	59.976	3703.142	350	-223.015732	16	737.5	10	0	-103	7986.75	1	0	1	-0.001	0.001
10/12/09 03:01:12	59.976	3704.669	350	-223.015732	16	738	10	0	-103	7987.08	1	0	1	0.000	0.000
10/12/09 03:01:14	59.974	3705.376	350	-223.015732	16	738.5	10	0	-103	7987.41	1	0	1	-0.002	0.002

10/12/09 03:01:16	59.975	3705.662	350	-223.015732	16	739	10	0	-103	7987.74	1	0	1	0.001	0.001
10/12/09 03:01:18	59.974	3705.855	350	-223.015732	16	739.5	10	0	-103	7988.07	1	0	1	-0.001	0.001
10/12/09 03:01:20	59.974	3706.776	350	-223.015732	16	740	10	0	-103	7988.4	1	0	1	0.000	0.000
10/12/09 03:01:22	59.976	3707.514	350	-223.015732	16	740.5	10	0	-103	7988.73	1	0	1	0.002	0.002
10/12/09 03:01:24	59.977	3706.928	350	-223.015732	16	741	10	0	-103	7989.06	1	0	1	0.001	0.001
10/12/09 03:01:26	59.979	3706.446	350	-223.015732	16	741.5	10	0	-103	7989.39	1	0	1	0.002	0.002
10/12/09 03:01:28	59.981	3706.335	350	-223.015732	16	742	10	0	-103	7989.72	1	0	1	0.002	0.002
10/12/09 03:01:30	59.983	3706.771	350	-223.015732	16	742.5	10	0	-103	7990.05	1	0	1	0.002	0.002
10/12/09 03:01:32	59.985	3705.943	350	-223.015732	16	743	10	0	-103	7990.38	1	0	1	0.002	0.002
10/12/09 03:01:34	59.983	3704.127	350	-223.015732	16	743.5	10	0	-103	7990.71	1	0	1	-0.002	0.002
10/12/09 03:01:36	59.98	3704.777	350	-223.015732	16	744	10	0	-103	7991.04	1	0	1	-0.003	0.003
10/12/09 03:01:38	59.979	3705.974	350	-223.015732	16	744.5	10	0	-103	7991.37	1	0	1	-0.001	0.001
10/12/09 03:01:40	59.983	3705.968	350	-223.015732	16	745	10	0	-103	7991.7	1	0	1	0.004	0.004
10/12/09 03:01:42	59.987	3705.356	350	-223.015732	16	745.5	10	0	-103	7992.03	1	0	1	0.004	0.004
10/12/09 03:01:44	59.986	3704.683	350	-223.015732	16	746	10	0	-103	7992.36	1	0	1	-0.001	0.001
10/12/09 03:01:46	59.984	3703.913	350	-223.015732	16	746.5	10	0	-103	7992.69	1	0	1	-0.002	0.002
10/12/09 03:01:48	59.98	3704.361	350	-223.015732	16	747	10	0	-103	7993.02	1	0	1	-0.004	0.004
10/12/09 03:01:50	59.982	3704.988	350	-223.015732	16	747.5	10	0	-103	7993.35	1	0	1	0.002	0.002
10/12/09 03:01:52	59.984	3705.05	350	-223.015732	16	748	10	0	-103	7993.68	1	0	1	0.002	0.002
10/12/09 03:01:54	59.985	3704.893	350	-223.015732	16	748.5	10	0	-103	7994.01	1	0	1	0.001	0.001
10/12/09 03:01:56	59.987	3703.741	350	-223.015732	16	749	10	0	-103	7994.34	1	0	1	0.002	0.002
10/12/09 03:01:58	59.989	3701.831	350	-223.015732	16	749.5	10	0	-103	7994.67	1	0	1	0.002	0.002
10/12/09 03:02:00	59.992	3701.795	350	-223.015732	16	750	10	0	-103	7995	1	0	1	0.003	0.003
10/12/09 03:02:02	59.996	3700.07	350	-223.015732	16	750.5	10	0	-103	7995.33	1	0	1	0.004	0.004
10/12/09 03:02:04	59.999	3701.308	350	-223.015732	16	751	10	0	-103	7995.66	1	0	1	0.003	0.003
10/12/09 03:02:06	59.997	3700.429	350	-223.015732	16	751.5	10	0	-103	7995.99	1	0	1	-0.002	0.002
10/12/09 03:02:08	59.997	3700.913	350	-223.015732	16	752	10	0	-103	7996.32	1	0	1	0.000	0.000
10/12/09 03:02:10	59.997	3700.541	350	-223.015732	16	752.5	10	0	-103	7996.65	1	0	1	0.000	0.000
10/12/09 03:02:12	59.997	3699.927	350	-223.015732	16	753	10	0	-103	7996.98	1	0	1	0.000	0.000
10/12/09 03:02:14	59.996	3700.858	350	-223.015732	16	753.5	10	0	-103	7997.31	1	0	1	-0.001	0.001
10/12/09 03:02:16	59.997	3700.549	350	-223.015732	16	754	10	0	-103	7997.64	1	0	1	0.001	0.001
10/12/09 03:02:18	59.996	3700.614	350	-223.015732	16	754.5	10	0	-103	7997.97	1	0	1	-0.001	0.001
10/12/09 03:02:20	59.998	3700.224	350	-223.015732	16	755	10	0	-103	7998.3	1	0	1	0.002	0.002
10/12/09 03:02:22	60.003	3699.5	350	-223.015732	16	755.5	10	0	-103	7998.63	1	1	1	0.005	0.005
10/12/09 03:02:24	60.009	3698.032	350	-223.015732	16	756	10	0	-103	7998.96	1	1	1	0.006	0.006
10/12/09 03:02:26	60.01	3697.96	350	-223.015732	16	756.5	10	0	-103	7999.29	1	1	1	0.001	0.001
10/12/09 03:02:28	60.008	3699.409	350	-223.015732	16	757	10	0	-103	7999.62	1	1	1	-0.002	0.002
10/12/09 03:02:30	60.005	3699.241	350	-223.015732	16	757.5	10	0	-103	7999.95	1	1	1	-0.003	0.003
10/12/09 03:02:32	60.004	3700.738	350	-223.015732	16	758	10	0	-103	8000.28	1	1	1	-0.001	0.001
10/12/09 03:02:34	60.006	3701.11	350	-223.015732	16	758.5	10	0	-103	8000.61	1	1	1	0.002	0.002
10/12/09 03:02:36	60.003	3701.238	350	-223.015732	16	759	10	0	-103	8000.94	1	1	1	-0.003	0.003
10/12/09 03:02:38	60.001	3699.998	350	-223.015732	16	759.5	10	0	-103	8001.27	1	1	1	-0.002	0.002
10/12/09 03:02:40	60.002	3700.22	350	-223.015732	16	760	10	0	-103	8001.6	1	1	1	0.001	0.001
10/12/09 03:02:42	60.004	3701.823	350	-223.015732	16	760.5	10	0	-103	8001.93	1	1	1	0.002	0.002
10/12/09 03:02:44	60.007	3702.554	350	-223.015732	16	761	10	0	-103	8002.26	1	1	1	0.003	0.003
10/12/09 03:02:46	60.007	3702.276	350	-223.015732	16	761.5	10	0	-103	8002.59	1	1	1	0.000	0.000
10/12/09 03:02:48	60.008	3701.026	350	-223.015732	16	762	10	0	-103	8002.92	1	1	1	0.001	0.001
10/12/09 03:02:50	60.008	3701.923	350	-223.015732	16	762.5	10	0	-103	8003.25	1	1	1	0.000	0.000
10/12/09 03:02:52	60.006	3702.943	350	-223.015732	16	763	10	0	-103	8003.58	1	1	1	-0.002	0.002

10/12/09 03:02:54	60.006	3704.093	350	-223.015732	16	763.5	10	0	-103	8003.91	1	1	1	0.000	0.000
10/12/09 03:02:56	60.006	3703.96	350	-223.015732	16	764	10	0	-103	8004.24	1	1	1	0.000	0.000
10/12/09 03:02:58	60.005	3703.819	350	-223.015732	16	764.5	10	0	-103	8004.57	1	1	1	-0.001	0.001
10/12/09 03:03:00	60	3704.455	350	-223.015732	16	765	10	0	-103	8004.9	1	0	1	-0.005	0.005
10/12/09 03:03:02	59.999	3704.346	350	-223.015732	16	765.5	10	0	-103	8005.23	1	0	1	-0.001	0.001
10/12/09 03:03:04	60	3705.329	350	-223.015732	16	766	10	0	-103	8005.56	1	0	1	0.001	0.001
10/12/09 03:03:06	60	3704.93	350	-223.015732	16	766.5	10	0	-103	8005.89	1	0	1	0.000	0.000
10/12/09 03:03:08	60.004	3704.405	350	-223.015732	16	767	10	0	-103	8006.22	1	1	1	0.004	0.004
10/12/09 03:03:10	60.008	3703.675	350	-223.015732	16	767.5	10	0	-103	8006.55	1	1	1	0.004	0.004
10/12/09 03:03:12	60.013	3702.748	350	-223.015732	16	768	10	0	-103	8006.88	1	1	1	0.005	0.005
10/12/09 03:03:14	60.015	3702.669	350	-223.015732	16	768.5	10	0	-103	8007.21	1	1	1	0.002	0.002
10/12/09 03:03:16	60.015	3703.017	350	-223.015732	16	769	10	0	-103	8007.54	1	1	1	0.000	0.000
10/12/09 03:03:18	60.012	3703.416	350	-223.015732	16	769.5	10	0	-103	8007.87	1	1	1	-0.003	0.003
10/12/09 03:03:20	60.009	3703.297	350	-223.015732	16	770	10	0	-103	8008.2	1	1	1	-0.003	0.003
10/12/09 03:03:22	60.005	3705.189	350	-223.015732	16	770.5	10	0	-103	8008.53	1	1	1	-0.004	0.004
10/12/09 03:03:24	60.008	3705.279	350	-223.015732	16	771	10	0	-103	8008.86	1	1	1	0.003	0.003
10/12/09 03:03:26	60.011	3704.646	350	-223.015732	16	771.5	10	0	-103	8009.19	1	1	1	0.003	0.003
10/12/09 03:03:28	60.011	3704.051	350	-223.015732	16	772	10	0	-103	8009.52	1	1	1	0.000	0.000
10/12/09 03:03:30	60.013	3703.438	350	-223.015732	16	772.5	10	0	-103	8009.85	1	1	1	0.002	0.002
10/12/09 03:03:32	60.016	3704.255	350	-223.015732	16	773	10	0	-103	8010.18	1	1	1	0.003	0.003
10/12/09 03:03:34	60.018	3703.708	350	-223.015732	16	773.5	10	0	-103	8010.51	1	1	1	0.002	0.002
10/12/09 03:03:36	60.018	3703.83	350	-223.015732	16	774	10	0	-103	8010.84	1	1	1	0.000	0.000
10/12/09 03:03:38	60.019	3704.524	350	-223.015732	16	774.5	10	0	-103	8011.17	1	1	1	0.001	0.001
10/12/09 03:03:40	60.018	3704.139	350	-223.015732	16	775	10	0	-103	8011.5	1	1	1	-0.001	0.001
10/12/09 03:03:42	60.013	3704.27	350	-223.015732	16	775.5	10	0	-103	8011.83	1	1	1	-0.005	0.005
10/12/09 03:03:44	60.011	3705.429	350	-223.015732	16	776	10	0	-103	8012.16	1	1	1	-0.002	0.002
10/12/09 03:03:46	60.009	3705.942	350	-223.015732	16	776.5	10	0	-103	8012.49	1	1	1	-0.002	0.002
10/12/09 03:03:48	60.009	3705.54	350	-223.015732	16	777	10	0	-103	8012.82	1	1	1	0.000	0.000
10/12/09 03:03:50	60.008	3705.634	350	-223.015732	16	777.5	10	0	-103	8013.15	1	1	1	-0.001	0.001
10/12/09 03:03:52	60.009	3705.749	350	-223.015732	16	778	10	0	-103	8013.48	1	1	1	0.001	0.001
10/12/09 03:03:54	60.011	3707.267	350	-223.015732	16	778.5	10	0	-103	8013.81	1	1	1	0.002	0.002
10/12/09 03:03:56	60.015	3706.945	350	-223.015732	16	779	10	0	-103	8014.14	1	1	1	0.004	0.004
10/12/09 03:03:58	60.02	3706.63	350	-223.015732	16	779.5	10	0	-103	8014.47	1	1	1	0.005	0.005
10/12/09 03:04:00	60.021	3705.655	350	-223.015732	16	780	10	0	-103	8014.8	1	1	1	0.001	0.001
10/12/09 03:04:02	60.018	3703.895	350	-223.015732	16	780.5	10	0	-103	8015.13	1	1	1	-0.003	0.003
10/12/09 03:04:04	60.017	3704.224	350	-223.015732	16	781	10	0	-103	8015.46	1	1	1	-0.001	0.001
10/12/09 03:04:06	60.019	3703.887	350	-223.015732	16	781.5	10	0	-103	8015.79	1	1	1	0.002	0.002
10/12/09 03:04:08	60.019	3704.648	350	-223.015732	16	782	10	0	-103	8016.12	1	1	1	0.000	0.000
10/12/09 03:04:10	60.021	3704.795	350	-223.015732	16	782.5	10	0	-103	8016.45	1	1	1	0.002	0.002
10/12/09 03:04:12	60.022	3704.167	350	-223.015732	16	783	10	0	-103	8016.78	1	1	1	0.001	0.001
10/12/09 03:04:14	60.025	3702.764	350	-223.015732	16	783.5	10	0	-103	8017.11	1	1	1	0.003	0.003
10/12/09 03:04:16	60.027	3702.008	350	-223.015732	16	784	10	0	-103	8017.44	1	1	1	0.002	0.002
10/12/09 03:04:18	60.03	3700.36	350	-223.015732	16	784.5	10	0	-103	8017.77	1	1	1	0.003	0.003
10/12/09 03:04:20	60.027	3701.063	350	-223.015732	16	785	10	0	-103	8018.1		1	1	-0.003	0.003
10/12/09 03:04:22	60.023	3700.34	350	-223.015732	16	785.5	10	0	-103	8018.43	1	1	1	-0.004	0.004
10/12/09 03:04:24	60.021	3699.369	350	-223.015732	16	786	10	0	-103	8018.76	1	1	1	-0.002	0.002
10/12/09 03:04:26	60.023	3701.568	350	-223.015732	16	786.5	10	0	-103	8019.09	1	1	1	0.002	0.002
10/12/09 03:04:28	60.023	3702.959	350	-223.015732	16	787	10	0	-103	8019.42	1	1	1	0.000	0.000
10/12/09 03:04:30	60.02	3704.25	350	-223.015732	16	787.5	10	0	-103	8019.75	1	1	1	-0.003	0.003

10/12/09 03:04:32	60.024	3703.621	350	-223.015732	16	788	10	0	-103	8020.08	1	1	1	0.004	0.004
10/12/09 03:04:34	60.024	3703.374	350	-223.015732	16	788.5	10	0	-103	8020.41	1	1	1	0.000	0.000
10/12/09 03:04:36	60.022	3703.036	350	-223.015732	16	789	10	0	-103	8020.74	1	1	1	-0.002	0.002
10/12/09 03:04:38	60.022	3703.931	350	-223.015732	16	789.5	10	0	-103	8021.07	1	1	1	0.000	0.000
10/12/09 03:04:40	60.024	3704.947	350	-223.015732	16	790	10	0	-103	8021.4	1	1	1	0.002	0.002
10/12/09 03:04:42	60.025	3704.208	350	-223.015732	16	790.5	10	0	-103	8021.73	1	1	1	0.001	0.001
10/12/09 03:04:44	60.023	3703.541	350	-223.015732	16	791	10	0	-103	8022.06	1	1	1	-0.002	0.002
10/12/09 03:04:46	60.024	3703.16	350	-223.015732	16	791.5	10	0	-103	8022.39	1	1	1	0.001	0.001
10/12/09 03:04:48	60.02	3703.397	350	-223.015732	16	792	10	0	-103	8022.72	1	1	1	-0.004	0.004
10/12/09 03:04:50	60.018	3704.376	350	-223.015732	16	792.5	10	0	-103	8023.05	1	1	1	-0.002	0.002
10/12/09 03:04:52	60.013	3705.441	350	-223.015732	16	793	10	0	-103	8023.38	1	1	1	-0.005	0.005
10/12/09 03:04:54	60.008	3706.995	350	-223.015732	16	793.5	10	0	-103	8023.71	1	1	1	-0.005	0.005
10/12/09 03:04:56	60.012	3710.072	350	-223.015732	16	794	10	0	-103	8024.04	1	1	1	0.004	0.004
10/12/09 03:04:58	60.017	3707.971	350	-223.015732	16	794.5	10	0	-103	8024.37	1	1	1	0.005	0.005
10/12/09 03:05:00	60.019	3707.767	350	-223.015732	16	795	10	0	-103	8024.7	1	1	1	0.002	0.002
10/12/09 03:05:02	60.019	3707.609	350	-223.015732	16	795.5	10	0	-103	8025.03	1	1	1	0.000	0.000
10/12/09 03:05:04	60.015	3708.831	350	-223.015732	16	796	10	0	-103	8025.36	1	1	1	-0.004	0.004
10/12/09 03:05:06	60.016	3709.465	350	-223.015732	16	796.5	10	0	-103	8025.69	1	1	1	0.001	0.001
10/12/09 03:05:08	60.015	3709.813	350	-223.015732	16	797	10	0	-103	8026.02	1	1	1	-0.001	0.001
10/12/09 03:05:10	60.016	3709.817	350	-223.015732	16	797.5	10	0	-103	8026.35	1	1	1	0.001	0.001
10/12/09 03:05:12	60.014	3709.99	350	-223.015732	16	798	10	0	-103	8026.68	1	1	1	-0.002	0.002
10/12/09 03:05:14	60.016	3709.094	350	-223.015732	16	798.5	10	0	-103	8027.01	1	1	1	0.002	0.002
10/12/09 03:05:16	60.018	3709.642	350	-223.015732	16	799	10	0	-103	8027.34	1	1	1	0.002	0.002
10/12/09 03:05:18	60.019	3709.812	350	-223.015732	16	799.5	10	0	-103	8027.67	1	1	1	0.001	0.001
10/12/09 03:05:20	60.016	3709.933	350	-223.015732	16	800	10	0	-103	8028	1	1	1	-0.003	0.003
10/12/09 03:05:22	60.014	3710.677	350	-223.015732	16	800.5	10	0	-103	8028.33	1	1	1	-0.002	0.002
10/12/09 03:05:24	60.014	3710.591	350	-223.015732	16	801	10	0	-103	8028.66	1	1	1	0.000	0.000
10/12/09 03:05:26	60.018	3709.354	350	-223.015732	16	801.5	10	0	-103	8028.99	1	1	1	0.004	0.004
10/12/09 03:05:28	60.022	3707.696	350	-223.015732	16	802	10	0	-103	8029.32	1	1	1	0.004	0.004
10/12/09 03:05:30	60.023	3707.38	350	-223.015732	16	802.5	10	0	-103	8029.65	1	1	1	0.001	0.001
10/12/09 03:05:32	60.024	3707.12	350	-223.015732	16	803	10	0	-103	8029.98	1	1	1	0.001	0.001
10/12/09 03:05:34	60.026	3706.99	350	-223.015732	16	803.5	10	0	-103	8030.31	1	1	1	0.002	0.002
10/12/09 03:05:36	60.026	3705.848	350	-223.015732	16	804	10	0	-103	8030.64	1	1	1	0.000	0.000
10/12/09 03:05:38	60.024	3704.185	350	-223.015732	16	804.5	10	0	-103	8030.97	1	1	1	-0.002	0.002
10/12/09 03:05:40	60.022	3704.406	350	-223.015732	16	805	10	0	-103	8031.3	1	1	1	-0.002	0.002
10/12/09 03:05:42	60.02	3704.963	350	-223.015732	16	805.5	10	0	-103	8031.63	1	1	1	-0.002	0.002
10/12/09 03:05:44	60.019	3706.567	350	-223.015732	16	806	10	0	-103	8031.96	1	1	1	-0.001	0.001
10/12/09 03:05:46	60.022	3705.516	350	-223.015732	16	806.5	10	0	-103	8032.29	1	1	1	0.003	0.003
10/12/09 03:05:48	60.025	3704.869	350	-223.015732	16	807	10	0	-103	8032.62	1	1	1	0.003	0.003
10/12/09 03:05:50	60.028	3704.428	350	-223.015732	16	807.5	10	0	-103	8032.95	1	1	1	0.003	0.003
10/12/09 03:05:52	60.03	3704.773	350	-223.015732	16	808	10	0	-103	8033.28	1	1	1	0.002	0.002
10/12/09 03:05:54	60.031	3703.532	350	-223.015732	16	808.5	10	0	-103	8033.61	1	1	1	0.001	0.001
10/12/09 03:05:56	60.029	3702.686	350	-223.015732	16	809	10	0	-103	8033.94	1	1	1	-0.002	0.002
10/12/09 03:05:58	60.026	3702.093	350	-223.015732	16	809.5	10	0	-103	8034.27	1	1	1	-0.003	0.003
10/12/09 03:06:00	60.026	3703.169	350	-223.015732	16	810	10	0	-103	8034.6	1	1	1	0.000	0.000
10/12/09 03:06:02	60.029	3703.676	350	-223.015732	16	810.5	10	0	-103	8034.93	1	1	1	0.003	0.003
10/12/09 03:06:04	60.03	3701.52	350	-223.015732	16	811	10	0	-103	8035.26	1	1	1	0.001	0.001
10/12/09 03:06:06	60.033	3700.106	350	-223.015732	16	811.5	10	0	-103	8035.59	1	1	1	0.003	0.003
10/12/09 03:06:08	60.03	3698.222	350	-223.015732	16	812	10	0	-103	8035.92	1	1	1	-0.003	0.003

10/12/09 03:06:10	60.022	3698.009	350	-223.015732	16	812.5	10	0	-103	8036.25	1	1	1	-0.008	0.008
10/12/09 03:06:12	60.016	3700.28	350	-223.015732	16	813	10	0	-103	8036.58	1	1	1	-0.006	0.006
10/12/09 03:06:14	60.019	3703.192	350	-223.015732	16	813.5	10	0	-103	8036.91	1	1	1	0.003	0.003
10/12/09 03:06:16	60.03	3703.815	350	-223.015732	16	814	10	0	-103	8037.24	1	1	1	0.011	0.011
10/12/09 03:06:18	60.028	3701.863	350	-223.015732	16	814.5	10	0	-103	8037.57	1	1	1	-0.002	0.002
10/12/09 03:06:20	60.021	3699.956	350	-223.015732	16	815	10	0	-103	8037.9	1	1	1	-0.007	0.007
10/12/09 03:06:22	60.015	3700.816	350	-223.015732	16	815.5	10	0	-103	8038.23	1	1	1	-0.006	0.006
10/12/09 03:06:24	60.015	3703.802	350	-223.015732	16	816	10	0	-103	8038.56	1	1	1	0.000	0.000
10/12/09 03:06:26	60.012	3706.943	350	-223.015732	16	816.5	10	0	-103	8038.89	1	1	1	-0.003	0.003
10/12/09 03:06:28	60.011	3708.527	350	-223.015732	16	817	10	0	-103	8039.22	1	1	1	-0.001	0.001
10/12/09 03:06:30	60.014	3707.49	350	-223.015732	16	817.5	10	0	-103	8039.55	1	1	1	0.003	0.003
10/12/09 03:06:32	60.013	3707.647	350	-223.015732	16	818	10	0	-103	8039.88	1	1	1	-0.001	0.001
10/12/09 03:06:34	60.014	3706.991	350	-223.015732	16	818.5	10	0	-103	8040.21	1	1	1	0.001	0.001
10/12/09 03:06:36	60.016	3707.495	350	-223.015732	16	819	10	0	-103	8040.54	1	1	1	0.002	0.002
10/12/09 03:06:38	60.016	3705.584	350	-223.015732	16	819.5	10	0	-103	8040.87	1	1	1	0.000	0.000
10/12/09 03:06:40	60.015	3705.398	350	-223.015732	16	820	10	0	-103	8041.2	1	1	1	-0.001	0.001
10/12/09 03:06:42	60.013	3707.12	350	-223.015732	16	820.5	10	0	-103	8041.53	1	1	1	-0.002	0.002
10/12/09 03:06:44	60.007	3709.144	350	-223.015732	16	821	10	0	-103	8041.86	1	1	1	-0.006	0.006
10/12/09 03:06:46	59.997	3708.99	350	-223.015732	16	821.5	10	0	-103	8042.19	1	0	1	-0.010	0.010
10/12/09 03:06:48	59.994	3708.291	350	-223.015732	16	822	10	0	-103	8042.52	1	0	1	-0.003	0.003
10/12/09 03:06:50	59.993	3706.193	350	-223.015732	16	822.5	10	0	-103	8042.85	1	0	1	-0.001	0.001
10/12/09 03:06:52	59.99	3707.304	350	-223.015732	16	823	10	0	-103	8043.18	1	0	1	-0.003	0.003
10/12/09 03:06:54	59.993	3707.903	350	-223.015732	16	823.5	10	0	-103	8043.51	1	0	1	0.003	0.003
10/12/09 03:06:56	59.994	3706.76	350	-223.015732	16	824	10	0	-103	8043.84	1	0	1	0.001	0.001
10/12/09 03:06:58	59.993	3706.921	350	-223.015732	16	824.5	10	0	-103	8044.17	1	0	1	-0.001	0.001
10/12/09 03:07:00	59.994	3706.683	350	-223.015732	16	825	10	0	-103	8044.5	1	0	1	0.001	0.001
10/12/09 03:07:02	59.993	3706.888	350	-223.015732	16	825.5	10	0	-103	8044.83	1	0	1	-0.001	0.001
10/12/09 03:07:04	59.996	3704.934	350	-223.015732	16	826	10	0	-103	8045.16	1	0	1	0.003	0.003
10/12/09 03:07:06	59.988	3705.678	350	-223.015732	16	826.5	10	0	-103	8045.49	1	0	1	-0.008	0.008
10/12/09 03:07:08	59.985	3706.481	350	-223.015732	16	827	10		-103	8045.82	1	0	1	-0.003	0.003
10/12/09 03:07:10	59.983	3707.071	350	-223.015732	16	827.5	10	0	-103	8046.15	1	0	1	-0.002	0.002
10/12/09 03:07:12	59.982	3706.696	350	-223.015732	16	828	10	0	-103	8046.48	1	0	1	-0.001	0.001
10/12/09 03:07:14	59.98	3707.479	350	-223.015732	16	828.5	10	0	-103	8046.81	1	0	1	-0.002	0.002
10/12/09 03:07:16	59.977	3708.246	350	-223.015732	16	829	10	0	-103	8047.14	1	0	1	-0.003	0.003
10/12/09 03:07:18	59.981	3709.436	350	-223.015732	16	829.5	10	0	-103	8047.47	1	0	1	0.004	0.004
10/12/09 03:07:20	59.982	3710.419	350	-223.015732	16	830	10	0	-103	8047.8	1	0	1	0.001	0.001
10/12/09 03:07:22	59.978	3710.134	350	-223.015732	16	830.5	10	0	-103	8048.13	1	0	1	-0.004	0.004
10/12/09 03:07:24	59.98	3708.708	350	-223.015732	16	831	10	0	-103	8048.46	1	0	1	0.002	0.002
10/12/09 03:07:26	59.98	3710.024	350	-223.015732	16	831.5	10	0	-103	8048.79	1	0	1	0.000	0.000
10/12/09 03:07:28	59.977	3709.192	350	-223.015732	16	832	10	0	-103	8049.12	1	0	1	-0.003	0.003
10/12/09 03:07:30	59.98	3708.335	350	-223.015732	16	832.5	10	0	-103	8049.45	1	0	1	0.003	0.003
10/12/09 03:07:32	59.983	3709.399	350	-223.015732	16	833	10	0	-103	8049.78	1	0	1	0.003	0.003
10/12/09 03:07:34	59.984	3707.911	350	-223.015732	16	833.5	10	0	-103	8050.11	1	0	1	0.001	0.001
10/12/09 03:07:36	59.981	3709.004	350	-223.015732	16	834	10	0	-103	8050.44	1	0	1	-0.003	0.003
10/12/09 03:07:38	59.981	3707.638	350	-223.015732	16	834.5	10	0	-103	8050.77	1	0	1	0.000	0.000
10/12/09 03:07:40	59.98	3709.689	350	-223.015732	16	835	10	0	-103	8051.1	1	0	1	-0.001	0.001
10/12/09 03:07:42	59.981	3708.945	350	-223.015732	16	835.5	10	0	-103	8051.43	1	0	1	0.001	0.001
10/12/09 03:07:44	59.981	3706.541	350	-223.015732	16	836	10	0	-103	8051.76	1	0	1	0.000	0.000
10/12/09 03:07:46	59.981	3711.256	350	-223.015732	16	836.5	10	0	-103	8052.09	1	0	1	0.000	0.000

10/12/09 03:07:48	59.98	3711.362	350	-223.015732	16	837	10	0	-103	8052.42	1	0	1	-0.001	0.001
10/12/09 03:07:50	59.978	3712.303	350	-223.015732	16	837.5	10	0	-103	8052.75	1	0	1	-0.002	0.002
10/12/09 03:07:52	59.978	3712.012	350	-223.015732	16	838	10	0	-103	8053.08	1	0	1	0.000	0.000
10/12/09 03:07:54	59.979	3711.703	350	-223.015732	16	838.5	10	0	-103	8053.41	1	0	1	0.001	0.001
10/12/09 03:07:56	59.978	3712.093	350	-223.015732	16	839	10	0	-103	8053.74	1	0	1	-0.001	0.001
10/12/09 03:07:58	59.976	3713.992	350	-223.015732	16				-103	8054.07	1	0	1	-0.002	0.002
10/12/09 03:08:00	59.976	3714.612	350	-223.015732	16				-103	8054.4	1	0	1	0.000	0.000
10/12/09 03:08:02	59.975	3715.083	350	-223.015732	16				-103	8054.73	1	0	1	-0.001	0.001
10/12/09 03:08:04	59.976	3715.323	350	-223.015732	16				-103	8055.06	1	0	1	0.001	0.001
10/12/09 03:08:06	59.975	3714.794	350	-223.015732	16				-103	8055.39	1	0	1	-0.001	0.001
10/12/09 03:08:08	59.979	3714.717	350	-223.015732	16				-103	8055.72	1	0	1	0.004	0.004
10/12/09 03:08:10	59.978	3715.161	350	-223.015732	16				-103	8056.05	1	0	1	-0.001	0.001
10/12/09 03:08:12	59.975	3715.001	350	-223.015732	16				-103	8056.38	1	0	1	-0.003	0.003
10/12/09 03:08:14	59.976	3713.996	350	-223.015732	16				-103	8056.71	1	0	1	0.001	0.001
10/12/09 03:08:16	59.981	3714.063	350	-223.015732	16				-103	8057.04	1	0	1	0.005	0.005
10/12/09 03:08:18	59.977	3714.335	350	-223.015732	16				-103	8057.37	1	0	1	-0.004	0.004
10/12/09 03:08:20	59.975	3715.631	350	-223.015732	16				-103	8057.7	1	0	1	-0.002	0.002
10/12/09 03:08:22	59.976	3715.688	350	-223.015732	16				-103	8058.03	1	0	1	0.001	0.001
10/12/09 03:08:24	59.979	3715.567	350	-223.015732	16				-103	8058.36	1	0	1	0.003	0.003
10/12/09 03:08:26	59.98	3715.725	350	-223.015732	16				-103	8058.69	1	0	1	0.001	0.001
10/12/09 03:08:28	59.979	3714.848	350	-223.015732	16				-103	8059.02	1	0	1	-0.001	0.001
10/12/09 03:08:30	59.978	3713.142	350	-223.015732	16				-103	8059.35	1	0	1	-0.001	0.001
10/12/09 03:08:32	59.979	3713.358	350	-223.015732	16				-103	8059.68	1	0	1	0.001	0.001
10/12/09 03:08:34	59.982	3712.275	350	-223.015732	16				-103	8060.01	1	0	1	0.003	0.003
10/12/09 03:08:36	59.983	3712.619	350	-223.015732	16				-103	8060.34	1	0	1	0.001	0.001
10/12/09 03:08:38	59.987	3712.153	350	-223.015732	16				-103	8060.67	1	0	1	0.004	0.004
10/12/09 03:08:40	59.988	3710.05	350	-223.015732	16				-103	8061	1	0	1	0.001	0.001
10/12/09 03:08:42	59.984	3709.082	350	-223.015732	16				-103	8061.33	1	0	1	-0.004	0.004
10/12/09 03:08:44	59.98	3710.472	350	-223.015732	16				-103	8061.66	1	0	1	-0.004	0.004
10/12/09 03:08:46	59.979	3710.624	350	-223.015732	16				-103	8061.99	1	0	1	-0.001	0.001
10/12/09 03:08:48	59.98	3710.946	350	-223.015732	16				-103	8062.32	1	0	1	0.001	0.001
10/12/09 03:08:50	59.979	3710.2	350	-223.015732	16				-103	8062.65	1	0	1	-0.001	0.001
10/12/09 03:08:52	59.978	3710.475	350	-223.015732	16				-103	8062.98	1	0	1	-0.001	0.001
10/12/09 03:08:54	59.975	3709.462	350	-223.015732	16				-103	8063.31	1	0	1	-0.003	0.003
10/12/09 03:08:56	59.979	3710.803	350	-223.015732	16				-103	8063.64	1	0	1	0.004	0.004
10/12/09 03:08:58	59.982	3709.286	350	-223.015732	16				-103	8063.97	1	0	1	0.003	0.003
10/12/09 03:09:00	59.983	3710.573	350	-223.015732	16				-103	8064.3	1	0	1	0.001	0.001
10/12/09 03:09:02	59.983	3709.525	350	-223.015732	16				-103	8064.63	1	0	1	0.000	0.000
10/12/09 03:09:04	59.985	3708.371	350	-223.015732	16				-103	8064.96	1	0	1	0.002	0.002
10/12/09 03:09:06	59.99	3708.527	350	-223.015732	16				-103	8065.29	1	0	1	0.005	0.005
10/12/09 03:09:08	59.987	3706.512	350	-223.015732	16				-103	8065.62	1	0	1	-0.003	0.003
10/12/09 03:09:10	59.984	3707.49	350	-223.015732	16				-103	8065.95	1	0	1	-0.003	0.003
10/12/09 03:09:12	59.976	3708.962	350	-223.015732	16				-103	8066.28	1	0	1	-0.008	0.008
10/12/09 03:09:14	59.979	3709.894	350	-223.015732	16				-103	8066.61	1	0	1	0.003	0.003
10/12/09 03:09:16	59.985	3712.303	350	-223.015732	16				-103	8066.94	1	0	1	0.006	0.006
10/12/09 03:09:18	59.983	3711.35	350	-223.015732	16				-103	8067.27	1	0	1	-0.002	0.002
10/12/09 03:09:20	59.979	3711.627	350	-223.015732	16				-103	8067.6	1	0	1	-0.004	0.004
10/12/09 03:09:22	59.981	3712.076	350	-223.015732	16				-103	8067.93	1	0	1	0.002	0.002
10/12/09 03:09:24	59.978	3712.393	350	-223.015732	16				-103	8068.26	1	0	1	-0.003	0.003

10/12/09 03:09:26	59.975	3712.999	350	-223.015732	16	-103	8068.59	1	0	1	-0.003	0.003
10/12/09 03:09:28	59.978	3713.51	350	-223.015732	16	-103	8068.92	1	0	1	0.003	0.003
10/12/09 03:09:30	59.989	3716.626	350	-223.015732	16	-103	8069.25	1	0	1	0.011	0.011
10/12/09 03:09:32	59.999	3715.443	350	-223.015732	16	-103	8069.58	1	0	1	0.010	0.010
10/12/09 03:09:34	59.994	3712.092	350	-223.015732	16	-103	8069.91	1	0	1	-0.005	0.005
10/12/09 03:09:36	59.989	3713.906	350	-223.015732	16	-103	8070.24	1	0	1	-0.005	0.005
10/12/09 03:09:38	59.986	3714.894	350	-223.015732	16	-103	8070.57	1	0	1	-0.003	0.003
10/12/09 03:09:40	59.984	3714.953	350	-223.015732	16	-103	8070.9	1	0	1	-0.002	0.002
10/12/09 03:09:42	59.983	3716.122	350	-223.015732	16	-103	8071.23	1	0	1	-0.001	0.001
10/12/09 03:09:44	59.982	3716.308	350	-223.015732	16	-103	8071.56	1	0	1	-0.001	0.001
10/12/09 03:09:46	59.98	3715.438	350	-223.015732	16	-103	8071.89	1	0	1	-0.002	0.002
10/12/09 03:09:48	59.99	3714.764	350	-223.015732	16	-103	8072.22	1	0	1	0.010	0.010
10/12/09 03:09:50	59.995	3714.714	350	-223.015732	16	-103	8072.55	1	0	1	0.005	0.005
10/12/09 03:09:52	59.995	3715.068	350	-223.015732	16	-103	8072.88	1	0	1	0.000	0.000
10/12/09 03:09:54	59.99	3715.927	350	-223.015732	16	-103	8073.21	1	0	1	-0.005	0.005
10/12/09 03:09:56	59.989	3715.791	350	-223.015732	16	-103	8073.54	1	0	1	-0.001	0.001
10/12/09 03:09:58	59.991	3716.285	350	-223.015732	16	-103	8073.87	1	0	1	0.002	0.002
10/12/09 03:10:00	59.996	3715.324	350	-223.015732	16	-103	8074.2	1	0	1	0.005	0.005
10/12/09 03:10:02	60	3714.46	350	-223.015732	16	-103	8074.53	1	0	1	0.004	0.004
10/12/09 03:10:04	60.002	3711.708	350	-223.015732	16	-103	8074.86	1	1	1	0.002	0.002
10/12/09 03:10:06	60.004	3712.698	350	-223.015732	16	-103	8075.19	1	1	1	0.002	0.002
10/12/09 03:10:08	60.004	3712.851	350	-223.015732	16	-103	8075.52	1	1	1	0.000	0.000
10/12/09 03:10:10	60.002	3713.362	350	-223.015732	16	-103	8075.85	1	1	1	-0.002	0.002
10/12/09 03:10:12	59.999	3716.641	350	-223.015732	16	-103	8076.18	1	0	1	-0.003	0.003
10/12/09 03:10:14	59.998	3718.292	350	-223.015732	16	-103	8076.51	1	0	1	-0.001	0.001
10/12/09 03:10:16	59.995	3719.079	350	-223.015732	16	-103	8076.84	1	0	1	-0.003	0.003
10/12/09 03:10:18	59.996	3718.233	350	-223.015732	16	-103	8077.17	1	0	1	0.001	0.001
10/12/09 03:10:20	60.001	3717.815	350	-223.015732	16	-103	8077.5	1	1	1	0.005	0.005
10/12/09 03:10:22	60.002	3717.889	350	-223.015732	16	-103	8077.83	1	1	1	0.001	0.001
10/12/09 03:10:24	60.001	3718.56	350	-223.015732	16	-103	8078.16	1	1	1	-0.001	0.001
10/12/09 03:10:26	60.003	3718.195	350	-223.015732	16	-103	8078.49	1	1	1	0.002	0.002
10/12/09 03:10:28	60.005	3719.021	350	-223.015732	16	-103	8078.82	1	1	1	0.002	0.002
10/12/09 03:10:30	60.004	3718.821	350	-223.015732	16	-103	8079.15	1	1	1	-0.001	0.001
10/12/09 03:10:32	60.004	3719.897	350	-223.015732	16	-103	8079.48	1	1	1	0.000	0.000
10/12/09 03:10:34	60.004	3719.299	350	-223.015732	16	-103	8079.81	1	1	1	0.000	0.000
10/12/09 03:10:36	60.006	3719.643	350	-223.015732	16	-103	8080.14	1	1	1	0.002	0.002
10/12/09 03:10:38	60.003	3719.527	350	-223.015732	16	-103	8080.47	1	1	1	-0.003	0.003
10/12/09 03:10:40	60.005	3719.731	350	-223.015732	16	-103	8080.8	1	1	1	0.002	0.002
10/12/09 03:10:42	60.006	3720.279	350	-223.015732	16	-103	8081.13	1	1	1	0.001	0.001
10/12/09 03:10:44	60.009	3718.58	350	-223.015732	16	-103	8081.46	1	1	1	0.003	0.003
10/12/09 03:10:46	60.009	3718.976	350	-223.015732	16	-103	8081.79	1	1	1	0.000	0.000
10/12/09 03:10:48	60.01	3718.982	350	-223.015732	16	-103	8082.12	1	1	1	0.001	0.001
10/12/09 03:10:50	60.009	3720.034	350	-223.015732	16	-103	8082.45	1	1	1	-0.001	0.001
10/12/09 03:10:52	60.013	3720.609	350	-223.015732	16	-103	8082.78	1	1	1	0.004	0.004
10/12/09 03:10:54	60.015	3720.811	350	-223.015732	16	-103	8083.11	1	1	1	0.002	0.002
10/12/09 03:10:56	60.014	3721.239	350	-223.015732	16	-103	8083.44	1	1	1	-0.001	0.001
10/12/09 03:10:58	60.009	3720.38	350	-223.015732	16	-103	8083.77	1	1	1	-0.005	0.005
10/12/09 03:11:00	60.009	3719.447	350	-223.015732	16	-103	8084.1	1	1	1	0.000	0.000
10/12/09 03:11:02	60.008	3720.807	350	-223.015732	16	-103	8084.43	1	1	1	-0.001	0.001

10/12/09 03:11:04	60.011	3721.272	350	-223.015732	16	-103	8084.76	1	1	1	0.003	0.003
10/12/09 03:11:06	60.01	3720.592	350	-223.015732	16	-103	8085.09	1	1	1	-0.001	0.001
10/12/09 03:11:08	60.009	3721.245	350	-223.015732	16	-103	8085.42	1	1	1	-0.001	0.001
10/12/09 03:11:10	60.013	3721.594	350	-223.015732	16	-103	8085.75	1	1	1	0.004	0.004
10/12/09 03:11:12	60.013	3722.176	350	-223.015732	16	-103	8086.08	1	1	1	0.000	0.000
10/12/09 03:11:14	60.014	3721.999	350	-223.015732	16	-103	8086.41	1	1	1	0.001	0.001
10/12/09 03:11:16	60.014	3721.646	350	-223.015732	16	-103	8086.74	1	1	1	0.000	0.000
10/12/09 03:11:18	60.012	3721.678	350	-223.015732	16	-103	8087.07	1	1	1	-0.002	0.002
10/12/09 03:11:20	60.01	3720.86	350	-223.015732	16	-103	8087.4	1	1	1	-0.002	0.002
10/12/09 03:11:22	60.011	3721.645	350	-223.015732	16	-103	8087.73	1	1	1	0.001	0.001
10/12/09 03:11:24	60.007	3723.816	350	-223.015732	16	-103	8088.06	1	1	1	-0.004	0.004
10/12/09 03:11:26	60.003	3725.07	350	-223.015732	16	-103	8088.39	1	1	1	-0.004	0.004
10/12/09 03:11:28	60.001	3724.656	350	-223.015732	16	-103	8088.72	1	1	1	-0.002	0.002
10/12/09 03:11:30	60	3724.869	350	-223.015732	16	-103	8089.05	1	0	1	-0.001	0.001
10/12/09 03:11:32	59.998	3724.661	350	-223.015732	16	-103	8089.38	1	0	1	-0.002	0.002
10/12/09 03:11:34	59.998	3723.696	350	-223.015732	16	-103	8089.71	1	0	1	0.000	0.000
10/12/09 03:11:36	59.999	3723.58	350	-223.015732	16	-103	8090.04	1	0	1	0.001	0.001
10/12/09 03:11:38	60.002	3723.405	350	-223.015732	16	-103	8090.37	1	1	1	0.003	0.003
10/12/09 03:11:40	60.003	3721.879	350	-223.015732	16	-103	8090.7	1	1	1	0.001	0.001
10/12/09 03:11:42	60.003	3722.401	350	-223.015732	16	-103	8091.03	1	1	1	0.000	0.000
10/12/09 03:11:44	59.999	3722.906	350	-223.015732	16	-103	8091.36	1	0	1	-0.004	0.004
10/12/09 03:11:46	59.998	3724.142	350	-223.015732	16	-103	8091.69	1	0	1	-0.001	0.001
10/12/09 03:11:48	60.001	3723.65	350	-223.015732	16	-103	8092.02	1	1	1	0.003	0.003
10/12/09 03:11:50	59.995	3723.201	350	-223.015732	16	-103	8092.35	1	0	1	-0.006	0.006
10/12/09 03:11:52	59.989	3723.639	350	-223.015732	16	-103	8092.68	1	0	1	-0.006	0.006
10/12/09 03:11:54	59.987	3723.881	350	-223.015732	16	-103	8093.01	1	0	1	-0.002	0.002
10/12/09 03:11:56	59.988	3724.654	350	-223.015732	16	-103	8093.34	1	0	1	0.001	0.001
10/12/09 03:11:58	59.988	3725.361	350	-223.015732	16	-103	8093.67	1	0	1	0.000	0.000
10/12/09 03:12:00	59.99	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.002	0.002
10/12/09 03:12:02	59.999	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.009	0.009
10/12/09 03:12:04	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:12:06	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:12:08	60.0005	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:12:10	59.998	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:12:12	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:14	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:16	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:18	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:20	59.995	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:22	59.994	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:24	59.993	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:26	59.992	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:28	59.991	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:30	59.99	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:12:32	59.991	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:12:34	59.992	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:12:36	59.993	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:12:38	59.994	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:12:40	59.995	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001

10/12/09 03:12:42	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:12:44	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:46	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:48	59.9965	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:50	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:12:52	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:54	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:56	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:12:58	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:13:00	59.999	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.002	0.002
10/12/09 03:13:02	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:13:04	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:06	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:08	60.004	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.003	0.003
10/12/09 03:13:10	60.007	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.003	0.003
10/12/09 03:13:12	60.009	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:13:14	60.011	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:13:16	60.0085	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.003	0.003
10/12/09 03:13:18	60.006	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:13:20	60.007	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:13:22	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:13:24	60.01	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:13:26	60.012	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:13:28	60.012	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:30	60.012	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:32	60.01	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:13:34	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:13:36	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:38	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:40	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:42	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:44	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:46	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:48	60.007	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:13:50	60.006	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:13:52	60.005	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:13:54	60.004	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:13:56	60.004	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:13:58	60.004	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:14:00	60.0025	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:14:02	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:14:04	59.9995	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:14:06	59.998	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:14:08	59.9965	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:14:10	59.995	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:14:12	59.995	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:14	59.995	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:16	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:14:18	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001

10/12/09 03:14:20	59.995	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:14:22	59.993	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:14:24	59.9925	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:26	59.992	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:28	59.9905	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:14:30	59.989	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:14:32	59.99	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:14:34	59.991	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:14:36	59.989	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:14:38	59.987	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:14:40	59.9875	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:42	59.988	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:44	59.988	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:46	59.988	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:48	59.987	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:14:50	59.986	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:14:52	59.9855	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:54	59.985	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:56	59.9845	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:14:58	59.984	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:15:00	59.984	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:15:02	59.984	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:15:04	59.985	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:15:06	59.986	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:15:08	59.987	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:15:10	59.988	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:15:12	59.992	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.004	0.004
10/12/09 03:15:14	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.004	0.004
10/12/09 03:15:16	59.9975	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:15:18	59.999	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.002	0.002
10/12/09 03:15:20	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:15:22	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:15:24	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:15:26	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:15:28	60.0055	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.003	0.003
10/12/09 03:15:30	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:15:32	60.01	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:15:34	60.012	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:15:36	60.0105	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:15:38	60.009	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:15:40	60.01	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:15:42	60.011	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:15:44	60.012	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:15:46	60.013	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:15:48	60.013	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:15:50	60.013	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:15:52	60.0145	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:15:54	60.016	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:15:56	60.0155	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000

10/12/09 03:15:58	60.015	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:15:59	60.014	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:01	60.013	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:03	60.012	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:05	60.011	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:07	60.0105	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:09	60.01	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:16:11	60.008	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:16:13	60.006	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:16:15	60.006	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:16:17	60.006	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:16:19	60.0045	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:21	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:16:23	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:16:25	60.003	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:16:27	60.0035	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:16:29	60.004	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:16:31	60.0025	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.001	0.001
10/12/09 03:16:33	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	-0.002	0.002
10/12/09 03:16:35	59.999	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:16:37	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.002	0.002
10/12/09 03:16:39	59.9965	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:16:41	59.996	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:16:43	59.9965	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:16:45	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:16:47	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:16:49	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:16:51	59.998	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:16:53	59.999	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:16:55	59.9985	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:16:57	59.998	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:16:59	59.9985	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:17:01	59.999	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.000	0.000
10/12/09 03:17:03	59.998	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:17:05	59.997	3724.944	350	-223.015732	16	-103	8094	1	0	1	-0.001	0.001
10/12/09 03:17:07	59.9985	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:17:09	60	3724.944	350	-223.015732	16	-103	8094	1	0	1	0.001	0.001
10/12/09 03:17:11	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:17:13	60.002	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.001	0.001
10/12/09 03:17:15	60.0015	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:17:17	60.001	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:17:19	60.0035	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.003	0.003
10/12/09 03:17:21	60.006	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.002	0.002
10/12/09 03:17:23	60.0055	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000
10/12/09 03:17:25	60.005	3724.944	350	-223.015732	16	-103	8094	1	1	1	0.000	0.000

Balancing Authority Name: MyBA
Interconnection Prevailing UFLS First Step Relay trip poin
terconnection High Relay trip point
Note: See "Instruction" tab for more detailed instructions.

Step 1.	Copy and Paste Event Data into the appropriate cells of the "Data" worksheet. Maintain date and time format of mm/dd/yy hh:mm:ss.
Step 2.	Data must start at least $\mathbf{2}$ full minutes before the beginning of the event. Collect the same amount of data for each event. Suggest 2 to 3 minutes before to 15 minutes after (up to 60 minutes total). Delete unused rows of data in the Data worksheet below your data, columns A through R. You must also delete any un-used event detection formulas in columns N through R as well.
Step 3. Step 4.	Enter your BA name in cell B1 of this worksheet. Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on graph to the right to that on Form 1 for this event. If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process.
Step 5.	Verify that the "Auto" selection of $\mathrm{T}(0)$ is correct by observing "Graph 20 to 52 s ". The very first frequency data point of the event on the graph must not be included in the "A Value" average. This is accomplished when the first frequency data point of the event is dead center of the graph on the center vertical grid line. The Auto event detection will select the single largest event in the data provided. An adjustment for $\mathrm{T}(0)$ alignment is provided in Cell Q 3 on the Graph 20 to 52 s .
Step 6.	When $\mathrm{T}(0)$ is properly aligned. Hit the big blue button to copy your data for pasting into FRS Form 1 "BA Event Data" worksheet. Copy Form 2 data for Pasting into Form 1
Step 7.	Paste data into "FRS Form 1" in the appropriate row on the "BA Event Data" worksheet. Be sure to use the latest version of Form 1. This is Form 2.9 so use Form 1.9.
Step 8.	Save this workbook using the following file name in bold below:

[^125]Event Frequency Data

09/10/12 Date yymmdd
2:27 Time hh:ss of T(0)
Where "MyBA" = your BA mnemonic
E

Time of Frequency Recovery to 60 Hz or Pre-Perturbation Hz Value A Pre-Perturbation Average Frequency $[\mathrm{T}(-2)$ to $\mathrm{T}(-16)$ Value B Post-Perturbation Average Frequency [$T(+20$ to $T(+52)]$ Pre to Post Perturbation Delta Frequency Actual Value A Pre-Perturbation Average Interchange MW [T(-2) to $T(-16)]$ Value B Post-Perturbation Average Interchange MW [T $(+20$ to $T(+52)]$ Pre to Post Perturbation Interchange Delta MW Actul Initial Performance Ramp Magnitude Adjustment

EPFR Pre-Perturbation Average
EPFR Post-Perturbation Averag
EPFR Delta

EPFR = Expected Primary Frequency Response

TC (frequency response filter constant)
0.350 Time Constant for delayed delivery of PFR during Sustained Measure

Low Hz Delta Hz Event
3764.66 Actual Interchange MW Average during frequency recovery period 3804.23 Target Interchange MW Average during frequency recovery period 3719.84 Interchange Average Ramp MW during frequency recovery period 3640.68 Actual MW @ T(-4)
103.04 Starting and Ending Difference in Interchange MW during frequency recovery per 0:05:34 Event Duration (h:mm:ss)

No Target MW Average minus MW @ $\mathrm{T}(-4)$ less than zero
163.55 Interchange Target Relative Average Change - MW (Low Frequency Event) 123.97 Interchange Actual Relative Average Change - MW (Low Frequency Event)

No Interchange Actual Average minus MW @ T(-4) less than zero
No Interchange Actual Average minus MW @ $\mathrm{T}(-4)$ less than zero
Yes Interchange Target MW Average minus MW @ T(-4) greater than zero
60.52 Interchange Target Relative Average Change - MW (High Frequency Event)
20.94 Interchange Actual Relative Average Change - MW (High Frequency Event)

Up Ramp Direction during frequency recovery period
0.758 P.U. Sustianed Response P.U. Performance

					Bias (EPFR)	(TC)	Measure Final			Average Output	Average Target		Average Ramp
			Value B		Expected	Delayed	Expected		Recovery	During	During	Recovery	During
			20 to 52 sec		Primary	Delivery	Primary	Average	Period	Recovery	Recovery	Period	Recovery
	Frequency	Interchange	Average	Average	Frequency	Frequency	Frequency	Ramp	Target	Period	Period	Ramp	Period
T	Hz	MW	Frequency	MW	Response	Response	Response	MW/scan	MW	MW	MW	MW	MW

T-72 sec	$2: 26: 14$	60.027	3671.189	3090	-27.810	-9.734
T-70 sec	$2: 26: 16$	60.026	3668.611	3090	-26.781	-15.700
T-68 sec	$2.26: 18$	60.026	3665.232	3090	-26.781	-19.578

T-66 sec	2:26:20	60.022	3664.495			3090	-22.659	-20.657							
T-64 sec	2:26:22	60.019	3666.062			3090	-19.571	-20.277							
T-62 sec	2:26:24	60.017	3666.821			3090	-17.508	-19.308							
T-60 sec	2:26:26	60.019	3666.787			3090	-19.571	-19.400		-0.102	3666.787				
T-58 sec	2:26:28	60.02	3670.454			3090	-20.600	-19.820		-0.102	3666.265				
T-56 sec	2:26:30	60.019	3670.267			3090	-19.571	-19.733		-0.102	3666.251				
T-54 sec	2:26:32	60.021	3671.668			3090	-21.630	-20.397		-0.102	3665.485				
T-52 sec	2:26:34	60.021	3672.493			3090	-21.630	-20.828		-0.102	3664.952				
T-50 sec	2:26:36	60.021	3672.685			3090	-21.630	-21.109		-0.102	3664.570				
$\mathrm{T}-48 \mathrm{sec}$	2:26:38	60.019	3672.857			3090	-19.571	-20.571		-0.102	3665.006				
$\mathrm{T}-46 \mathrm{sec}$	2:26:40	60.018	3672.164			3090	-18.542	-19.861		-0.102	3665.615				
T-44 sec	2:26:42	60.022	3671.413			3090	-22.659	-20.840		-0.102	3664.533				
T-42 sec	2:26:44	60.031	3669.983			3090	-31.928	-24.721		-0.102	3660.551				
T-40 sec	2:26:46	60.037	3666.467			3090	-38.109	-29.407		-0.102	3655.763				
T-38 sec	2:26:48	60.037	3663.758			3090	-38.109	-32.452		-0.102	3652.616				
T-36 sec	2:26:50	60.036	3661.599			3090	-37.079	-34.072		-0.102	3650.895				
T-34 sec	2:26:52	60.037	3660.672			3090	-38.109	-35.485		-0.102	3649.380				
T-32 sec	2:26:54	60.046	3651.492			3090	-47.381	-39.649		-0.102	3645.114				
T-30 sec	2:26:56	60.048	3649.190			3090	-49.440	-43.076		-0.102	3641.585				
T-28 sec	2:26:58	60.048	3650.025			3090	-49.440	-45.303		-0.102	3639.256				
T-26 sec	2:27:00	60.043	3648.246			3090	-44.289	-44.948		-0.102	3639.509				
T-24 sec	2:27:02	60.041	3649.512			3090	-42.230	-43.997		-0.102	3640.359				
T-22 sec	2:27:04	60.041	3654.294			3090	-42.230	-43.379		-0.102	3640.875				
T-20 sec	2:27:06	60.041	3655.007			3090	-42.230	-42.977		-0.102	3641.176				
T-18 sec	2:27:08	60.039	3651.874			3090	-40.172	-41.995		-0.102	3642.056				
T-16 sec	2:27:10	60.041	3651.059	60.042	3645.73	3090	-42.230	-42.077		-0.102	3641.872				
T-14 sec	2:27:12	60.043	3649.187	60.042	3645.73	3090	-44.289	-42.852		-0.102	3640.996				
T-12 sec	2:27:14	60.045	3648.236	60.042	3645.73	3090	-46.348	-44.075		-0.102	3639.670				
$\mathrm{T}-10 \mathrm{sec}$	2:27:16	60.046	3645.387	60.042	3645.73	3090	-47.381	-45.232		-0.102	3638.411				
T-08 sec	2:27:18	60.041	3644.628	60.042	3645.73	3090	-42.230	-44.182		-0.102	3639.360				
T-06 sec	2:27:20	60.041	3645.446	60.042	3645.73	3090	-42.230	-43.499		-0.102	3639.942				
T-04 sec	2:27:22	60.041	3640.682	60.042	3645.73	3090	-42.230	-43.055		-0.102	3640.284				
T-02 sec	2:27:24	60.039	3641.191	60.042	3645.73	3090	-40.172	-42.046		-0.102	3641.191				
T+0 sec	2:27:26	59.978	3659.465			3090	22.659	-19.399		0.000	3663.838				
T+02 sec	2:27:28	59.852	3696.362			3090	152.439	40.744		0.617	3724.598	3677.914	3694.218	3668.635	3668.635
T+04 sec	2:27:30	59.836	3734.904			3090	168.922	85.606		0.617	3770.077	3696.910	3719.504	3669.252	3668.944
T+06 sec	2:27:32	59.869	3734.673			3090	134.931	102.870		0.617	3787.958	3706.351	3736.618	3669.869	3669.252
T+08 sec	2:27:34	59.869	3734.673			3090	134.931	114.091		0.617	3799.796	3712.015	3749.253	3670.486	3669.561
T+10 sec	2:27:36	59.892	3737.157			3090	111.242	113.094		0.617	3799.415	3716.206	3757.614	3671.103	3669.869
$\mathrm{T}+12 \mathrm{sec}$	2:27:38	59.891	3761.250			3090	112.271	112.806		0.617	3799.745	3722.640	3763.632	3671.720	3670.178
$\mathrm{T}+14 \mathrm{sec}$	2:27:40	59.88	3766.113			3090	123.599	116.583		0.617	3804.139	3728.074	3768.696	3672.337	3670.486
$\mathrm{T}+16 \mathrm{sec}$	2:27:42	59.876	3766.194			3090	127.721	120.481		0.617	3808.654	3732.310	3773.136	3672.954	3670.795
$\mathrm{T}+18 \mathrm{sec}$	2:27:44	59.875	3768.877			3090	128.750	123.375		0.617	3812.165	3735.967	3777.038	3673.571	3671.103
$\mathrm{T}+20 \mathrm{sec}$	2:27:46	59.883	3769.925	59.889	3788.35	3090	120.511	122.373	3803.32	0.617	3811.779	3739.054	3780.197	3674.188	3671.412
$\mathrm{T}+22 \mathrm{sec}$	2:27:48	59.887	3780.621	59.889	3788.35	3090	116.389	120.278	3803.32	0.617	3810.302	3742.518	3782.705	3674.805	3671.720
T+24 sec	2:27:50	59.886	3781.592	59.889	3788.35	3090	117.418	119.277	3803.32	0.617	3809.918	3745.523	3784.799	3675.422	3672.029

T+26 sec	2:27:52	59.885	3782.500	59.889	3788.35	3090	118.452	118.988	3803.32	0.617	3810.246	3748.165	3786.616	3676.039	3672.337
T+28 sec	2:27:54	59.887	3784.962	59.889	3788.35	3090	116.389	118.079	3803.32	0.617	3809.953	3750.618	3788.172	3676.656	3672.646
T+30 sec	2:27:56	59.888	3784.730	59.889	3788.35	3090	115.359	117.127	3803.32	0.617	3809.618	3752.750	3789.513	3677.273	3672.954
T+32 sec	2:27:58	59.89	3784.419	59.889	3788.35	3090	113.301	115.788	3803.32	0.617	3808.896	3754.613	3790.653	3677.890	3673.263
T+34 sec	2:28:00	59.895	3788.072	59.889	3788.35	3090	108.150	113.114	3803.32	0.617	3806.840	3756.471	3791.552	3678.507	3673.571
T+36 sec	2:28:02	59.894	3788.328	59.889	3788.35	3090	109.179	111.737	3803.32	0.617	3806.079	3758.148	3792.317	3679.124	3673.879
T+38 sec	2:28:04	59.893	3788.868	59.889	3788.35	3090	110.208	111.202	3803.32	0.617	3806.161	3759.684	3793.009	3679.741	3674.188
T+40 sec	2:28:06	59.894	3788.472	59.889	3788.35	3090	109.179	110.494	3803.32	0.617	3806.070	3761.055	3793.631	3680.358	3674.496
T+42 sec	2:28:08	59.894	3792.276	59.889	3788.35	3090	109.179	110.034	3803.32	0.617	3806.227	3762.474	3794.203	3680.975	3674.805
T+44 sec	2:28:10	59.891	3793.074	59.889	3788.35	3090	112.271	110.817	3803.32	0.617	3807.627	3763.805	3794.787	3681.592	3675.113
T+46 sec	2:28:12	59.89	3794.374	59.889	3788.35	3090	113.301	111.686	3803.32	0.617	3809.113	3765.078	3795.384	3682.209	3675.422
T+48 sec	2:28:14	59.885	3799.428	59.889	3788.35	3090	118.452	114.054	3803.32	0.617	3812.098	3766.452	3796.053	3682.826	3675.730
T+50 sec	2:28:16	59.885	3800.427	59.889	3788.35	3090	118.452	115.593	3803.32	0.617	3814.254	3767.759	3796.753	3683.443	3676.039
T+52 sec	2:28:18	59.888	3799.959	59.889	3788.35	3090	115.359	115.511	3803.32	0.617	3814.790	3768.952	3797.421	3684.060	3676.347
T+54 sec	2:28:20	59.887	3803.625			3090	116.389	115.819		0.617	3815.714	3770.190	3798.074	3684.677	3676.656
T+56 sec	2:28:22	59.888	3802.925			3090	115.359	115.658		0.617	3816.170	3771.319	3798.698	3685.293	3676.964
T+58 sec	2:28:24	59.888	3802.951			3090	115.359	115.553		0.617	3816.682	3772.373	3799.297	3685.910	3677.273
T+60 sec	2:28:26	59.89	3804.388			3090	113.301	114.765		0.617	3816.511	3773.406	3799.853	3686.527	3677.581
T+62 sec	2:28:28	59.889	3805.496			3090	114.330	114.613		0.617	3816.976	3774.409	3800.388	3687.144	3677.890
T+64 sec	2:28:30	59.882	3805.617			3090	121.540	117.037		0.617	3820.017	3775.354	3800.983	3687.761	3678.198
T+66 sec	2:28:32	59.873	3809.237			3090	130.809	121.857		0.617	3825.454	3776.351	3801.702	3688.378	3678.507
T+68 sec	2:28:34	59.857	3811.503			3090	147.292	130.759		0.617	3834.973	3777.355	3802.653	3688.995	3678.815
T+70 sec	2:28:36	59.849	3814.862			3090	155.531	139.429		0.617	3844.260	3778.397	3803.809	3689.612	3679.124
T+72 sec	2:28:38	59.852	3815.889			3090	152.439	143.983		0.617	3849.431	3779.410	3805.042	3690.229	3679.432
T+74 sec	2:28:40	59.858	3825.643			3090	146.258	144.779		0.617	3850.844	3780.627	3806.247	3690.846	3679.741
T+76 sec	2:28:42	59.863	3826.053			3090	141.111	143.495		0.617	3850.177	3781.792	3807.373	3691.463	3680.049
T+78 sec	2:28:44	59.866	3826.002			3090	138.019	141.579		0.617	3848.877	3782.897	3808.411	3692.080	3680.358
T+80 sec	2:28:46	59.865	3827.524			3090	139.048	140.693		0.617	3848.609	3783.986	3809.392	3692.697	3680.666
T+82 sec	2:28:48	59.867	3826.753			3090	136.989	139.397		0.617	3847.929	3785.004	3810.309	3693.314	3680.975
T+84 sec	2:28:50	59.866	3826.783			3090	138.019	138.914		0.617	3848.064	3785.975	3811.187	3693.931	3681.283
T+86 sec	2:28:52	59.871	3826.454			3090	132.872	136.799		0.617	3846.566	3786.895	3811.991	3694.548	3681.592
T+88 sec	2:28:54	59.874	3825.713			3090	129.779	134.342		0.617	3844.726	3787.758	3812.719	3695.165	3681.900
T+90 sec	2:28:56	59.879	3823.826			3090	124.628	130.943		0.617	3841.943	3788.542	3813.354	3695.782	3682.209
T+92 sec	2:28:58	59.88	3822.505			3090	123.599	128.372		0.617	3839.990	3789.265	3813.921	3696.399	3682.517
T+94 sec	2:29:00	59.883	3819.081			3090	120.511	125.621		0.617	3837.855	3789.886	3814.419	3697.016	3682.826
T+96 sec	2:29:02	59.886	3818.055			3090	117.418	122.750		0.617	3835.601	3790.461	3814.852	3697.633	3683.134
T+98 sec	2:29:04	59.89	3816.815			3090	113.301	119.443		0.617	3832.911	3790.988	3815.213	3698.250	3683.443
$\mathrm{T}+100 \mathrm{sec}$	2:29:06	59.892	3815.010			3090	111.242	116.572		0.617	3830.658	3791.459	3815.516	3698.867	3683.751
$\mathrm{T}+102 \mathrm{sec}$	2:29:08	59.889	3813.783			3090	114.330	115.788		0.617	3830.490	3791.888	3815.804	3699.484	3684.060
T+104 sec	2:29:10	59.893	3811.838			3090	110.208	113.835		0.617	3829.154	3792.265	3816.055	3700.101	3684.368
T+106 sec	2:29:12	59.899	3809.652			3090	104.032	110.404		0.617	3826.340	3792.587	3816.246	3700.718	3684.677
T+108 sec	2:29:14	59.903	3806.972			3090	99.910	106.731		0.617	3823.284	3792.848	3816.374	3701.335	3684.985
$\mathrm{T}+110 \mathrm{sec}$	2:29:16	59.902	3805.593			3090	100.940	104.704		0.617	3821.874	3793.076	3816.472	3701.952	3685.293
$\mathrm{T}+112 \mathrm{sec}$	2:29:18	59.902	3804.188			3090	100.940	103.386		0.617	3821.174	3793.271	3816.555	3702.569	3685.602
T+114 sec	2:29:20	59.904	3796.078			3090	98.881	101.809		0.617	3820.214	3793.319	3816.618	3703.186	3685.910

T+116 sec	2:29:22	59.907	3793.975	3090	95.788	99.702	0.617	3818.723	3793.330	3816.653	3703.803	3686.219
T+118 sec	2:29:24	59.911	3792.169	3090	91.671	96.891	0.617	3816.529	3793.311	3816.651	3704.420	3686.527
T+120 sec	2:29:26	59.916	3791.502	3090	86.520	93.261	0.617	3813.516	3793.281	3816.600	3705.037	3686.836
$\mathrm{T}+122 \mathrm{sec}$	2:29:28	59.916	3789.534	3090	86.520	90.902	0.617	3811.774	3793.221	3816.522	3705.654	3687.144
T+124 sec	2:29:30	59.917	3788.132	3090	85.490	89.008	0.617	3810.497	3793.140	3816.426	3706.271	3687.453
T+126 sec	2:29:32	59.918	3784.563	3090	84.461	87.416	0.617	3809.522	3793.006	3816.319	3706.888	3687.761
T+128 sec	2:29:34	59.92	3783.028	3090	82.402	85.661	0.617	3808.384	3792.853	3816.197	3707.504	3688.070
T+130 sec	2:29:36	59.921	3781.701	3090	81.369	84.159	0.617	3807.499	3792.684	3816.065	3708.121	3688.378
T+132 sec	2:29:38	59.92	3776.358	3090	82.402	83.544	0.617	3807.501	3792.440	3815.937	3708.738	3688.687
T+134 sec	2:29:40	59.917	3775.635	3090	85.490	84.225	0.617	3808.799	3792.193	3815.832	3709.355	3688.995
T+136 sec	2:29:42	59.92	3774.604	3090	82.402	83.587	0.617	3808.778	3791.938	3815.730	3709.972	3689.304
T+138 sec	2:29:44	59.921	3773.334	3090	81.369	82.811	0.617	3808.618	3791.672	3815.628	3710.589	3689.612
T+140 sec	2:29:46	59.923	3773.958	3090	79.310	81.585	0.617	3808.010	3791.423	3815.521	3711.206	3689.921
T+142 sec	2:29:48	59.926	3772.722	3090	76.221	79.708	0.617	3806.750	3791.163	3815.399	3711.823	3690.229
T+144 sec	2:29:50	59.925	3771.670	3090	77.251	78.848	0.617	3806.507	3790.896	3815.277	3712.440	3690.538
T+146 sec	2:29:52	59.928	3769.630	3090	74.159	77.207	0.617	3805.482	3790.608	3815.145	3713.057	3690.846
T+148 sec	2:29:54	59.927	3768.707	3090	75.192	76.501	0.617	3805.394	3790.316	3815.015	3713.674	3691.155
T+150 sec	2:29:56	59.932	3767.643	3090	70.041	74.240	0.617	3803.750	3790.018	3814.867	3714.291	3691.463
T+152 sec	2:29:58	59.927	3767.021	3090	75.192	74.573	0.617	3804.700	3789.719	3814.735	3714.908	3691.772
T+154 sec	2:30:00	59.928	3767.408	3090	74.159	74.428	0.617	3805.172	3789.433	3814.612	3715.525	3692.080
T+156 sec	2:30:02	59.931	3766.788	3090	71.070	73.253	0.617	3804.614	3789.147	3814.485	3716.142	3692.389
T+158 sec	2:30:04	59.929	3766.259	3090	73.129	73.210	0.617	3805.187	3788.861	3814.369	3716.759	3692.697
T+160 sec	2:30:06	59.931	3765.672	3090	71.070	72.461	0.617	3805.055	3788.574	3814.254	3717.376	3693.006
T+162 sec	2:30:08	59.933	3766.123	3090	69.011	71.254	0.617	3804.465	3788.301	3814.135	3717.993	3693.314
T+164 sec	2:30:10	59.937	3764.243	3090	64.890	69.026	0.617	3802.855	3788.011	3813.999	3718.610	3693.623
T+166 sec	2:30:12	59.937	3765.105	3090	64.890	67.578	0.617	3802.024	3787.738	3813.856	3719.227	3693.931
T+168 sec	2:30:14	59.945	3762.935	3090	56.650	63.754	0.617	3798.816	3787.446	3813.679	3719.844	3694.240
T+170 sec	2:30:16	59.949	3758.387	3090	52.529	59.825	0.617	3795.504	3787.108	3813.468	3720.461	3694.548
T+172 sec	2:30:18	59.947	3753.922	3090	54.591	57.993	0.617	3794.290	3786.727	3813.248	3721.078	3694.857
T+174 sec	2:30:20	59.942	3749.867	3090	59.739	58.604	0.617	3795.518	3786.308	3813.046	3721.695	3695.165
T+176 sec	2:30:22	59.941	3746.889	3090	60.768	59.361	0.617	3796.892	3785.865	3812.865	3722.312	3695.474
T+178 sec	2:30:24	59.942	3747.875	3090	59.739	59.493	0.617	3797.641	3785.443	3812.695	3722.929	3695.782
T+180 sec	2:30:26	59.945	3749.593	3090	56.650	58.498	0.617	3797.263	3785.049	3812.526	3723.546	3696.090
	2:30:28	59.948	3748.661	3090	53.558	56.769	0.617	3796.151	3784.654	3812.348	3724.163	3696.399
	2:30:30	59.947	3746.706	3090	54.591	56.007	0.617	3796.005	3784.245	3812.172	3724.780	3696.707
	2:30:32	59.949	3749.077	3090	52.529	54.790	0.617	3795.405	3783.871	3811.994	3725.397	3697.016
	2:30:34	59.951	3742.741	3090	50.470	53.278	0.617	3794.510	3783.438	3811.810	3726.014	3697.324
	2:30:36	59.952	3740.259	3090	49.440	51.935	0.617	3793.784	3782.989	3811.622	3726.631	3697.633
	2:30:38	59.953	3736.139	3090	48.411	50.701	0.617	3793.167	3782.506	3811.432	3727.248	3697.941
	2:30:40	59.951	3731.382	3090	50.470	50.620	0.617	3793.703	3781.984	3811.251	3727.865	3698.250
	2:30:42	59.952	3727.838	3090	49.440	50.207	0.617	3793.907	3781.437	3811.076	3728.482	3698.558
	2:30:44	59.952	3725.952	3090	49.440	49.939	0.617	3794.256	3780.882	3810.907	3729.099	3698.867
	2:30:46	59.952	3722.649	3090	49.440	49.764	0.617	3794.698	3780.306	3810.747	3729.715	3699.175
	2:30:48	59.955	3720.578	3090	46.348	48.569	0.617	3794.120	3779.720	3810.584	3730.332	3699.484
	2:30:50	59.952	3717.996	3090	49.440	48.874	0.617	3795.042	3779.121	3810.433	3730.949	3699.792
	2:30:52	59.954	3718.142	3090	47.381	48.351	0.617	3795.136	3778.534	3810.286	3731.566	3700.101

2:30:54	59.952	3715.753	3090	49.440	48.733
2:30:56	59.953	3713.694	3090	48.411	48.620
2:30:58	59.953	3713.484	3090	48.411	48.547
2:31:00	59.952	3710.848	3090	49.440	48.860
2:31:02	59.954	3710.810	3090	47.381	48.342
2:31:04	59.954	3712.092	3090	47.381	48.006
2:31:06	59.959	3714.623	3090	42.230	45.985
2:31:08	59.957	3715.130	3090	44.289	45.391
2:31:10	59.956	3716.168	3090	45.319	45.366
2:31:12	59.954	3716.461	3090	47.381	46.071
2:31:14	59.956	3716.980	3090	45.319	45.808
2:31:16	59.955	3717.759	3090	46.348	45.997
2:31:18	59.958	3722.361	3090	43.260	45.039
2:31:20	59.961	3721.973	3090	40.172	43.335
2:31:22	59.962	3722.658	3090	39.138	41.866
2:31:24	59.962	3722.267	3090	39.138	40.911
2:31:26	59.968	3722.278	3090	32.962	38.129
2:31:28	59.966	3721.787	3090	35.020	37.041
2:31:30	59.966	3723.091	3090	35.020	36.334
2:31:32	59.968	3723.984	3090	32.962	35.153
2:31:34	59.97	3723.435	3090	30.899	33.664
2:31:36	59.974	3723.893	3090	26.781	31.255
2:31:38	59.97	3725.403	3090	30.899	31.130
2:31:40	59.969	3727.121	3090	31.928	31.410
2:31:42	59.969	3728.053	3090	31.928	31.591
2:31:44	59.97	3731.130	3090	30.899	31.349
2:31:46	59.971	3732.530	3090	29.869	30.831
2:31:48	59.973	3733.327	3090	27.810	29.774
2:31:50	59.973	3736.535	3090	27.810	29.087
2:31:52	59.976	3736.907	3090	24.718	27.558
2:31:54	59.978	3736.822	3090	22.659	25.843
2:31:56	59.978	3738.699	3090	22.659	24.729
2:31:58	59.976	3739.944	3090	24.718	24.725
2:32:00	59.978	3740.877	3090	22.659	24.002
2:32:02	59.976	3741.794	3090	24.718	24.253
2:32:04	59.978	3745.234	3090	22.659	23.695
2:32:06	59.977	3746.608	3090	23.689	23.693
2:32:08	59.98	3748.300	3090	20.600	22.611
2:32:10	59.982	3750.716	3090	18.542	21.186
2:32:12	59.981	3751.558	3090	19.571	20.621
2:32:14	59.98	3752.748	3090	20.600	20.614
2:32:16	59.979	3755.599	3090	21.630	20.969
2:32:18	59.98	3756.407	3090	20.600	20.840
2:32:20	59.979	3756.975	3090	21.630	21.117
2:32:22	59.983	3760.405	3090	17.508	19.854
2:32:24	59.983	3760.982	3090	17.508	19.033

$\begin{array}{llllll}0.617 & 3796.135 & 3777.937 & 3810.151 & 3732.183 & 3700.409\end{array}$ $\begin{array}{llllll}0.617 & 3796.135 & 3777.937 & 3810.151 & 3732.183 & 3700.409 \\ 0.617 & 3796.639 & 3777.330 & 3810.024 & 3732.800 & 3700.718\end{array}$ $\begin{array}{lllllll}0.617 & 3797.183 & 3776.734 & 3809.904 & 3733.417 & 3701.026\end{array}$ $\begin{array}{lllllll}0.617 & 3798.112 & 3776.124 & 3809.795 & 3734.034 & 3701.335\end{array}$ $\begin{array}{lllllll}0.617 & 3798.212 & 3775.525 & 3809.688 & 3734.651 & 3701.643\end{array}$ $\begin{array}{llllll}0.617 & 3798.493 & 3774.948 & 3809.586 & 3735.268 & 3701.952\end{array}$ $\begin{array}{lllllll}0.617 & 3797.088 & 3774.404 & 3809.474 & 3735.885 & 3702.260\end{array}$ $\begin{array}{lllllll}0.617 & 3797.112 & 3773.875 & 3809.364 & 3736.502 & 3702.56\end{array}$ $\begin{array}{lllllll}0.617 & 3797.704 & 3773.364 & 3809.260 & 3737.119 & 3702.877\end{array}$ $\begin{array}{lllllll}0.617 & 3799.026 & 3772.865 & 3809.171 & 3737.736 & 3703.18\end{array}$ $\begin{array}{lllllll}0.617 & 3799.380 & 3772.379 & 3809.085 & 3738.353 & 3703.494\end{array}$ $\begin{array}{llllllllll}0.617 & 3800.186 & 3771.908 & 3809.009 & 3738.970 & 3703.803\end{array}$ $\begin{array}{llllllll}0.617 & 3799.845 & 3771.485 & 3808.930 & 3739.587 & 3704.111\end{array}$ $\begin{array}{llllll}0.617 & 3798.758 & 3771.065 & 3808.844 & 3740.204 & 3704.420\end{array}$ $\begin{array}{llllllll}0.617 & 3797.906 & 3770.659 & 3808.752 & 3740.821 & 3704.728\end{array}$ $\begin{array}{lllllll}0.617 & 3797.568 & 3770.255 & 3808.659 & 3741.438 & 3705.037\end{array}$ $\begin{array}{llllllll}0.617 & 3795.403 & 3769.859 & 3808.549 & 3742.055 & 3705.375\end{array}$ $0.617 \quad 3794.931 \quad 3769.465 \quad 3888.438 \quad 3742.672 \quad 3705.65$ $\begin{array}{lllllll}0.617 & 379.917 & 3769.465 & 3808.438 & 3742.672 & 3705.654\end{array}$ $\begin{array}{lllllll}0.617 & 3794.841 & 3769.088 & 3808.327 & 3743.289 & 3705.962\end{array}$ $\begin{array}{lllllll}0.617 & 3794.278 & 3768.724 & 3808.214 & 3743.906 & 3706.271\end{array}$ $\begin{array}{lllllll}0.617 & 3793.406 & 3768.362 & 3808.096 & 3744.523 & 3706.579\end{array}$ $\begin{array}{lllllll}0.617 & 3791.614 & 3768.009 & 3807.965 & 3745.140 & 3706.888\end{array}$ $\begin{array}{llllllll}0.617 & 3792.106 & 3767.673 & 3807.840 & 3745.757 & 3707.15\end{array}$ $\begin{array}{lllllll}0.617 & 3793.002 & 3767.357 & 3807.724 & 3746.374 & 3707.504\end{array}$ $\begin{array}{lllllll}0.617 & 3793.800 & 3767.052 & 3807.616 & 3746.991 & 3707.813\end{array}$ $\begin{array}{lllllll}0.617 & 3794.175 & 3766.776 & 3807.513 & 3747.608 & 3708.12\end{array}$ $\begin{array}{lllllll}0.617 & 3794.274 & 3766.514 & 3807.412 & 3748.225 & 3708.430\end{array}$ $\begin{array}{lllllll}0.617 & 3793.834 & 3766.263 & 3807.309 & 3748.842 & 3708.738\end{array}$ $\begin{array}{llllllll}0.617 & 3793.764 & 3766.039 & 3807.207 & 3749.459 & 3709.047\end{array}$ $\begin{array}{lllllll}0.617 & 3792.852 & 3765.822 & 3807.100 & 3750.076 & 3709.355\end{array}$ $\begin{array}{llllll}0.617 & 3791.754 & 3765.607 & 3806.986 & 3750.693 & 3709.664\end{array}$ $\begin{array}{llllllll}0.617 & 3791.257 & 3765.409 & 3806.870 & 3751.310 & 3709.972\end{array}$ $\begin{array}{lllllll}0.617 & 3791.870 & 3765.223 & 3806.761 & 3751.927 & 3710.28\end{array}$ $\begin{array}{lllllll}0.617 & 3791.764 & 3765.047 & 3806.652 & 3752.543 & 3710.58\end{array}$ $\begin{array}{lllllll}0.617 & 3792.632 & 3764.880 & 3806.551 & 3753.160 & 3710.898\end{array}$ $\begin{array}{lllllll}0.617 & 3792.691 & 3764.739 & 3806.452 & 3753.777 & 3711.206\end{array}$ $\begin{array}{lllllll}0.617 & 3793.306 & 3764.611 & 3806.359 & 3754.394 & 3711.515\end{array}$ $\begin{array}{lllllll}0.617 & 3792.840 & 3764.496 & 3806.264 & 3755.011 & 3711.823\end{array}$ $\begin{array}{lllllll}0.617 & 3792.033 & 3764.399 & 3806.164 & 3755.628 & 3712.132\end{array}$ $\begin{array}{lllllll}0.617 & 3792.085 & 3764.310 & 3806.067 & 3756.245 & 3712.440\end{array}$ $\begin{array}{lllllll}0.617 & 3792.695 & 3764.230 & 3805.974 & 3756.862 & 3712.74\end{array}$ $\begin{array}{lllllll}0.617 & 3793.667 & 3764.171 & 3805.890 & 3757.479 & 3713.05\end{array}$ $\begin{array}{lllllll}0.617 & 3794.155 & 3764.119 & 3805.810 & 3758.096 & 3713.366\end{array}$ $\begin{array}{lllllll}0.617 & 3795.048 & 3764.070 & 3805.738 & 3758.713 & 3713.674\end{array}$ $\begin{array}{lllllll}0.617 & 3794.402 & 3764.046 & 3805.662 & 3759.330 & 3713.98\end{array}$ $\begin{array}{llllll}0.617 & 3794.199 & 3764.025 & 3805.585 & 3759.947 & 3714.291\end{array}$

$2: 32: 26$	59.984	3761.407	3090	16.479	18.139
$2: 32: 28$	59.988	3762.737	3090	12.361	16.117
$2: 32: 30$	59.989	3763.212	3090	11.332	14.442
$2: 32: 32$	59.987	3764.958	3090	13.391	14.074
$2: 32: 34$	59.987	3766.085	3090	13.391	13.835
$2: 32: 36$	59.991	3766.433	3090	9.269	12.237
$2: 32: 38$	59.993	3767.251	3090	7.210	10.477
$2: 32: 40$	59.992	3767.992	3090	8.239	9.694
$2: 32: 42$	59.991	3768.634	3090	9.269	9.545
$2: 32: 44$	59.989	3771.146	3090	11.332	10.170
$2: 32: 46$	59.986	3772.445	3090	14.420	11.658
$2: 32: 48$	59.983	3773.695	3090	17.508	13.705
$2: 32: 50$	59.983	3774.668	3090	17.508	15.036
$2: 32: 52$	59.988	3775.841	3090	12.361	14.100
$2: 32: 54$	59.993	3775.363	3090	7.210	11.689
$2: 32: 56$	59.996	3774.866	3090	4.122	9.040
$2: 32: 58$	59.998	3775.492	3090	2.059	6.597
$2: 33: 00$	59.999	3776.420	3090	1.029	4.648
$2: 33: 02$	60.001	3778.554	3090	-1.029	2.661
$2: 33: 04$	59.999	3779.692	3090	1.029	2.090
$2: 33: 06$	59.999	3781.256	3090	1.029	1.719
$2: 33: 08$	59.999	3780.595	3090	1.029	1.478
$2: 33: 10$	60.002	3783.092	3090	-2.059	0.240
$2: 33: 12$	60.005	3783.896	3090	-5.151	-1.647
$2: 33: 14$	60.007	3784.421	3090	-7.210	-3.594
$2: 33: 16$	60.008	3785.768	3090	-8.239	-5.220
$2: 33: 18$	60.011	3785.463	3090	-11.332	-7.359
$2: 33: 20$	60.014	3786.850	3090	-14.420	-9.830
$2: 33: 22$	60.017	3786.304	3090	-17.508	-12.518
$2: 33: 24$	60.019	3787.259	3090	-19.571	-14.986
$2: 33: 26$	60.021	3787.516	3090	-21.630	-17.312
$2: 33: 28$	60.017	3787.955	3090	-17.508	-17.380
$2: 33: 30$	60.017	3788.030	3090	-17.508	-17.425
$2: 33: 32$	60.019	3788.607	3090	-19.571	-18.176
$2: 33: 34$	60.023	3789.216	3090	-23.689	-20.106
$2: 33: 36$	60.024	3787.537	3090	-24.718	-21.720
$2: 33: 38$	60.025	3785.842	3090	-25.752	-23.131
$2: 33: 40$	60.021	3786.077	3090	-21.630	-22.606
$2: 33: 42$	60.019	3787.930	3090	-19.571	-21.544
$2: 33: 44$	60.024	3788.760	3090	-24.718	-22.655
$2: 33: 46$	60.024	3786.875	3090	-24.718	-23.377
$2: 33: 48$	60.021	3786.550	3090	-21.630	-22.765
$2: 33: 50$	60.02	3787.358	3090	-20.600	-22.008
$2: 33: 52$	60.025	3785.018	3090	-25.752	-23.318
$2: 33: 54$	60.024	3785.614	3090	-24.718	-23.808
$2: 33: 56$	60.02	3785.949	3090	-20.600	-22.685

$\begin{array}{llllll}0.617 & 3793.922 & 3764.008 & 3805.508 & 3760.564 & 3714.600\end{array}$ $\begin{array}{llllll}0.617 & 3793.922 & 3764.008 & 3805.508 & 3760.564 & 3714.600 \\ 0.617 & 3792.516 & 3764.000 & 3805.422 & 3761.181 & 3714.908\end{array}$ $\begin{array}{lllllll}0.617 & 3791.459 & 3763.994 & 3805.331 & 3761.798 & 3715.21\end{array}$ $\begin{array}{lllllll}0.617 & 3791.708 & 3764.001 & 3805.243 & 3762.415 & 3715.525\end{array}$ $\begin{array}{llllllll}0.617 & 3792.085 & 3764.014 & 3805.158 & 3763.032 & 3715.834\end{array}$ $\begin{array}{lllllll}0.617 & 3791.104 & 3764.030 & 3805.068 & 3763.649 & 3716.142\end{array}$ $\begin{array}{lllllll}0.617 & 3789.962 & 3764.050 & 3804.971 & 3764.266 & 3716.451\end{array}$ $\begin{array}{lllllll}0.617 & 3789.796 & 3764.074 & 3804.875 & 3764.883 & 3716.75\end{array}$ $\begin{array}{llllllll}0.617 & 3790.264 & 3764.102 & 3804.784 & 3765.500 & 3717.068\end{array}$ $\begin{array}{lllllll}0.617 & 3791.506 & 3764.146 & 3804.701 & 3766.117 & 3717.376\end{array}$ $\begin{array}{lllllll}0.617 & 3793.610 & 3764.198 & 3804.632 & 3766.734 & 3717.685\end{array}$ $\begin{array}{llllllll}0.617 & 3796.275 & 3764.257 & 3804.580 & 3767.351 & 3717.993\end{array}$ $\begin{array}{llllllll}0.617 & 3798.223 & 3764.321 & 3804.541 & 3767.968 & 3718.302\end{array}$ $\begin{array}{llllllll}0.617 & 3797.903 & 3764.391 & 3804.501 & 3768.585 & 3718.610\end{array}$ $\begin{array}{llllllll}0.617 & 3796.109 & 3764.457 & 3804.450 & 3769.202 & 3718.918\end{array}$ $0.617 \quad 3794.077 \quad 3764.520 \quad 3804.387 \quad 3799.819 \quad 3719.227$ $\begin{array}{lllllll}0.617 & 3792.251 & 3764.586 & 3804.315 & 3770.436 & 3719.535\end{array}$ $0.617 \quad 3790.9193764 .556$ $\begin{array}{lllllll}0.617 & 3790.919 & 3764.656 & 3804.235 & 3771.053 & 3719.844\end{array}$ $\begin{array}{lllllll}0.000 & 3788.932 & 3764.738 & 3804.144 & 3771.053 & 3720.149\end{array}$ $\begin{array}{lllllll}0.000 & 3788.361 & 3764.826 & 3804.051 & 3771.053 & 3720.450\end{array}$ $\begin{array}{lllllll}0.000 & 3787.990 & 3764.922 & 3803.958 & 3771.053 & 3720.748\end{array}$ $\begin{array}{llllllll}0787.74 & 3765.014 & 3803.863 & 371.053 & 3721.042\end{array}$ $\begin{array}{lllllll}0.000 & 3786.511 & 3765.118 & 3803.763 & 3771.053 & 3721.333\end{array}$ $\begin{array}{lllllll}0.000 & 3784.624 & 3765.226 & 3803.653 & 3771.053 & 3721.620\end{array}$ $\begin{array}{lllllll}0.000 & 3782.677 & 3765.336 & 3803.533 & 3771.053 & 3721.90\end{array}$	0.000	3781.051	3765.452	3803.405	3771.053	3722.18
0						$\begin{array}{lllllll}0.000 & 3778.912 & 3765.565 & 3803.267 & 3771.053 & 3722.463\end{array}$ $\begin{array}{lllllll}0.000 & 3776.441 & 3765.684 & 3803.116 & 3771.053 & 3722.737\end{array}$ $\begin{array}{llllllll}0.000 & 3773.754 & 3765.800 & 3802.952 & 3771.053 & 3723.009\end{array}$ $\begin{array}{llllll}0.000 & 3771.285 & 3765.919 & 3802.776 & 3771.053 & 3723.277\end{array}$ $0.000 \quad 3768.960 \quad 3766.038 \quad 3802.590 \quad 3771.053 \quad 3723.51$ $\begin{array}{llllll}0.000 & 3768.891 & 3766.159 & 3802.404 & 3771.053 & 3723.80\end{array}$ $0.000 \quad 3768.846 \quad 3766.278 \quad 3802.221 \quad 3771.053 \quad 3724.05$ $\begin{array}{lllllll}0 & 0000 & 3768.095 & 3766.399 & 3802.036 & 3771.053 & 3724.321\end{array}$

 $\begin{array}{lllllll}0.000 & 3764.551 & 3766.636 & 3801.641 & 3771.053 & 3724.82\end{array}$ $\begin{array}{lllllll}0.000 & 3763.140 & 3766.738 & 3801.435 & 3771.053 & 3725.075\end{array}$ $\begin{array}{lllllll}0.000 & 3763.666 & 3766.841 & 3801.234 & 3771.053 & 3725.321\end{array}$ $\begin{array}{lllllll}0.000 & 3764.728 & 3766.953 & 3801.041 & 3771.053 & 3725.564\end{array}$ $\begin{array}{lllllll}0.000 & 3763.617 & 3767.068 & 3800.844 & 3711.053 & 3725.805\end{array}$ $\begin{array}{lllllll}0.000 & 3762.894 & 3767.171 & 3800.646 & 3771.053 & 3726.043\end{array}$ $\begin{array}{lllllll}0.000 & 3763.506 & 3767.272 & 3800.452 & 3771.053 & 3726.279\end{array}$ $\begin{array}{lllllll}0.000 & 3764.264 & 3767.376 & 3800.265 & 3771.053 & 3726.512\end{array}$ $\begin{array}{lllllll}0.000 & 3762.953 & 3767.467 & 3800.072 & 3771.053 & 3726.743\end{array}$ $\begin{array}{lllllll}0.000 & 3762.463 & 3767.560 & 3799.879 & 3771.053 & 3726.97\end{array}$ $\begin{array}{llllll}0.000 & 3763.586 & 3767.654 & 3799.694 & 3771.053 & 3727.19\end{array}$

2:33:58	60.02	3785.804	3090	-20.600	-21.956
2:34:00	60.022	3786.864	3090	-22.659	-22.202
2:34:02	60.022	3786.877	3090	-22.659	-22.362
2:34:04	60.022	3785.254	3090	-22.659	-22.466
2:34:06	60.021	3785.726	3090	-21.630	-22.173
2:34:08	60.021	3786.347	3090	-21.630	-21.983
2:34:10	60.023	3785.821	3090	-23.689	-22.580
2:34:12	60.023	3785.798	3090	-23.689	-22.968
2:34:14	60.022	3786.284	3090	-22.659	-22.860
2:34:16	60.019	3786.939	3090	-19.571	-21.709
2:34:18	60.016	3787.627	3090	-16.479	-19.878
2:34:20	60.018	3789.444	3090	-18.542	-19.411
2:34:22	60.018	3789.673	3090	-18.542	-19.106
2:34:24	60.018	3789.404	3090	-18.542	-18.909
2:34:26	60.019	3788.479	3090	-19.571	-19.141
2:34:28	60.019	3789.183	3090	-19.571	-19.291
2:34:30	60.016	3789.369	3090	-16.479	-18.307
2:34:32	60.015	3789.005	3090	-15.449	-17.307
2:34:34	60.016	3788.665	3090	-16.479	-17.017
2:34:36	60.014	3788.933	3090	-14.420	-16.108
2:34:38	60.013	3790.667	3090	-13.391	-15.157
2:34:40	60.012	3790.805	3090	-12.361	-14.178
2:34:42	60.012	3790.411	3090	-12.361	-13.542
2:34:44	60.01	3789.769	3090	-10.298	-12.407
2:34:46	60.007	3791.540	3090	-7.210	-10.588
2:34:48	60.007	3792.945	3090	-7.210	-9.406
2:34:50	60.009	3791.027	3090	-9.269	-9.358
2:34:52	60.009	3791.443	3090	-9.269	-9.327
2:34:54	60.01	3791.426	3090	-10.298	-9.667
2:34:56	60.003	3790.603	3090	-3.088	-7.364
2:34:58	59.999	3790.457	3090	1.029	-4.426
2:35:00	59.995	3790.216	3090	5.151	-1.074
2:35:02	59.992	3789.585	3090	8.239	2.185
2:35:04	59.991	3788.457	3090	9.269	4.665
2:35:06	59.992	3788.105	3090	8.239	5.916
2:35:08	59.992	3788.057	3090	8.239	6.729
2:35:10	59.988	3788.189	3090	12.361	8.700
2:35:12	59.986	3788.497	3090	14.420	10.702
2:35:14	59.985	3788.540	3090	15.449	12.364
2:35:16	59.984	3788.571	3090	16.479	13.804
2:35:18	59.985	3788.101	3090	15.449	14.380
2:35:20	59.984	3787.133	3090	16.479	15.114
2:35:22	59.982	3786.453	3090	18.542	16.314
2:35:24	59.981	3787.732	3090	19.571	17.454
2:35:26	59.982	3788.813	3090	18.542	17.835
2:35:28	59.979	3789.285	3090	21.630	19.163

Abstract

$\begin{array}{llllll}0.000 & 3764.316 & 3767.746 & 3799.515 & 3771.053 & 3727.421 \\ 0.000 & 3764.069 & 3767.843 & 3799.336 & 3771.053 & 3727.642\end{array}$ $\begin{array}{llllll}0.000 & 3764.069 & 3767.843 & 3799.336 & 3771.053 & 3727.642\end{array}$ $\begin{array}{lllllll}0.000 & 3763.909 & 3767.938 & 3799.158 & 3771.053 & 3727.861\end{array}$ $\begin{array}{lllllll}0.000 & 3763.805 & 3768.025 & 3798.981 & 3771.053 & 3728.079\end{array}$ $\begin{array}{lllllll}0.000 & 3764.098 & 3768.113 & 3798.807 & 3771.053 & 3728.293\end{array}$ $\begin{array}{llllll}0.000 & 3764.288 & 3768.203 & 3798.636 & 3771.053 & 3728.506\end{array}$ $\begin{array}{lllllll}0.000 & 3763.691 & 3768.290 & 3798.464 & 3771.053 & 3728.717\end{array}$ $\begin{array}{lllllll}0.000 & 3763.303 & 3768.376 & 3798.292 & 3771.053 & 3728.925\end{array}$ $\begin{array}{lllllll}0.000 & 3763.411 & 3768.463 & 3798.122 & 3771.053 & 3729.132\end{array}$ $\begin{array}{lllllll}0.000 & 3764.562 & 3768.553 & 3797.959 & 3771.053 & 3729.33\end{array}$ $\begin{array}{lllllll}0.000 & 3766.393 & 3768.645 & 3797.806 & 3771.053 & 3729.539\end{array}$ $\begin{array}{lllllll}0.000 & 3766.861 & 3768.745 & 3797.658 & 3771.053 & 3729.739\end{array}$ $\begin{array}{lllllll}0.000 & 3767.165 & 3768.845 & 3797.512 & 3771.053 & 3729.938\end{array}$ | 0 | 0000 | 3767.363 | 3768.943 | 3797.368 | 3771.053 |
| :--- | :--- | :--- | :--- | :--- | :--- | 3730.135 $0000 \quad 3767.13133769 .036 \quad 3797.225 \quad 3771.053 \quad 3730.330$ $\begin{array}{llllll}0 & 0.000 & 3766.980 & 3769.131 & 3797.082 & 3771.053\end{array} 3730.523$ $0.000 \quad 3768.964 \quad 3769.318 \quad 3796.815 \quad 371.053 \quad 3730.90$ $\begin{array}{lllllll}0.000 & 3768.964 & 3769.318 & 3796.815 & 3771.053 & 3730.903\end{array}$ $\begin{array}{lllllll}0.000 & 3769.254 & 3769.408 & 3796.686 & 3771.053 & 3731.091\end{array}$ $\begin{array}{lllllll}0.000 & 3770.163 & 3769.499 & 3796.564 & 3771.053 & 3731.27\end{array}$ $\begin{array}{lllllll}0.000 & 3771.114 & 3769.596 & 3796.446 & 3771.053 & 3731.461\end{array}$ $\begin{array}{lllllll}0.000 & 3772.093 & 3769.693 & 3796.335 & 3771.053 & 3731.643\end{array}$ $\begin{array}{llllllllllllllll}0.000 & 3772.729 & 3769.788 & 3796.227 & 3771.053 & 3731.824\end{array}$ $\begin{array}{lllllll}0.000 & 3773.864 & 3769.879 & 3796.125 & 3771.053 & 3732.003\end{array}$ $\begin{array}{lllllll}0.000 & 3775.683 & 3769.977 & 3796.033 & 3771.053 & 3732.18\end{array}$ $\begin{array}{lllllll}0.000 & 3776.866 & 3770.080 & 3795.946 & 3771.053 & 3732.35\end{array}$ $\begin{array}{lllllll}0.000 & 3776.913 & 3770.174 & 3795.861 & 3771.053 & 3732.531\end{array}$ $\begin{array}{llllllll}0.000 & 3776.945 & 3770.269 & 3795.777 & 3771.053 & 3732.704\end{array}$ $\begin{array}{lllllll}0.000 & 3776.605 & 3770.363 & 3795.691 & 3771.053 & 3732.875\end{array}$ $\begin{array}{lllllll}0 & 0.000 & 3778.907 & 3770.453 & 3795.617 & 3771.053 & 3733\end{array}$ $0.000 \quad 3781.845 \quad 3770.541 \quad 3795.556 \quad 3771.0533733 .213$ $0000 \quad 3785197 \quad 3770.627 \quad 3795.511 \quad 3771.053 \quad 3733.379$ $\begin{array}{lllllllll}0.000 & 3788.457 & 3770.710 & 3795.480 & 3771.053 & 3733.545\end{array}$ $0.000 \quad 379.936 \quad 3710.787 \quad 3795.40 \quad 37110333733.50$ $\begin{array}{llllllllll}0.000 & 3792.187 & 3770.862 & 3795.446 & 3771.053 & 3733.87\end{array}$ $\begin{array}{lllllll}0.000 & 3793.000 & 3770.936 & 3795.436 & 3771.053 & 3734.032\end{array}$ $\begin{array}{llllllll}0.000 & 3794.972 & 3771.010 & 3795.434 & 3771.053 & 3734.191\end{array}$ $\begin{array}{lllllll}0.000 & 3796.973 & 3771.085 & 3795.440 & 3771.053 & 3734.349\end{array}$ $0.000 \quad 3798.635 \quad 3771.159 \quad 3795.454 \quad 371.053-3734.50$ $\begin{array}{lllllll}0.000 & 3800.075 & 3771.233 & 3795.474 & 3771.053 & 3734.662\end{array}$ $\begin{array}{lllllll}0.000 & 3800.651 & 3771.304 & 3795.495 & 3771.053 & 3734.81\end{array}$ $\begin{array}{llllllll}0.000 & 3801.386 & 3771.371 & 3795.520 & 3771.053 & 3734.96\end{array}$ $\begin{array}{lllllll}0.000 & 3802.585 & 3771.434 & 3795.550 & 3771.053 & 3735.120\end{array}$ $\begin{array}{lllllll}0.000 & 3803.725 & 3771.502 & 3795.584 & 3771.053 & 3735.271\end{array}$ $\begin{array}{lllllll}0.000 & 3804.106 & 3771.574 & 3795.619 & 3771.053 & 3735.420\end{array}$ $0.000 \quad 3805.4343771 .647 \quad 3795.660 \quad 3771.053 \quad 3735.56$

2:35:30	59.977	3788.256	3090	23.689	20.747
2:35:32	59.976	3788.410	3090	24.718	22.137
2:35:34	59.976	3790.467	3090	24.718	23.040
2:35:36	59.979	3790.665	3090	21.630	22.547
2:35:38	59.982	3790.420	3090	18.542	21.145
2:35:40	59.978	3789.674	3090	22.659	21.675
2:35:42	59.976	3789.267	3090	24.718	22.740
2:35:44	59.974	3789.148	3090	26.781	24.154
2:35:46	59.976	3790.430	3090	24.718	24.352
2:35:48	59.977	3789.914	3090	23.689	24.120
2:35:50	59.977	3786.243	3090	23.689	23.969
2:35:52	59.975	3787.442	3090	25.752	24.593
2:35:54	59.973	3788.963	3090	27.810	25.719
2:35:56	59.969	3790.602	3090	31.928	27.892
2:35:58	59.97	3791.877	3090	30.899	28.944
2:36:00	59.971	3792.911	3090	29.869	29.268
2:36:02	59.973	3792.311	3090	27.810	28.758
2:36:04	59.978	3789.125	3090	22.659	26.623
2:36:06	59.981	3788.080	3090	19.571	24.155
2:36:08	59.978	3787.844	3090	22.659	23.632
2:36:10	59.975	3787.135	3090	25.752	24.374
2:36:12	59.972	3787.164	3090	28.840	25.937
2:36:14	59.976	3786.996	3090	24.718	25.510
2:36:16	59.975	3787.405	3090	25.752	25.595
2:36:18	59.973	3786.487	3090	27.810	26.370
2:36:20	59.969	3787.079	3090	31.928	28.316
2:36:22	59.966	3789.214	3090	35.020	30.662
2:36:24	59.965	3790.512	3090	36.050	32.548
2:36:26	59.966	3791.221	3090	35.020	33.413
2:36:28	59.969	3792.218	3090	31.928	32.893
2:36:30	59.97	3790.959	3090	30.899	32.195
2:36:32	59.968	3788.824	3090	32.962	32.464
2:36:34	59.965	3789.026	3090	36.050	33.719
2:36:36	59.964	3789.167	3090	37.079	34.895
2:36:38	59.97	3787.394	3090	30.899	33.496
2:36:40	59.972	3785.690	3090	28.840	31.867
2:36:42	59.967	3784.831	3090	33.991	32.610
2:36:44	59.967	3785.010	3090	33.991	33.093
2:36:46	59.969	3784.320	3090	31.928	32.686
2:36:48	59.968	3782.809	3090	32.962	32.782
2:36:50	59.969	3782.110	3090	31.928	32.483
2:36:52	59.967	3779.352	3090	33.991	33.011
2:36:54	59.967	3779.056	3090	33.991	33.354
2:36:56	59.966	3778.633	3090	35.020	33.937
2:36:58	59.965	3779.212	3090	36.050	34.677
2:37:00	59.971	3779.335	3090	29.869	32.994

Abstract

$\begin{array}{llllll}0.000 & 3807.018 & 3771.715 & 3795.706 & 3771.053 & 3735.714\end{array}$ $\begin{array}{llllll}0.000 & 3808.408 & 3771.784 & 3795.758 & 3771.053 & 3735.860\end{array}$ $\begin{array}{lllllll}0.000 & 3809.312 & 3771.860 & 3795.814 & 3771.053 & 3736.00\end{array}$ $\begin{array}{lllllll}0.000 & 3808.818 & 3771.936 & 3795.867 & 3771.053 & 3736.147\end{array}$ $\begin{array}{llllllll}0.000 & 3807.416 & 3772.011 & 3795.913 & 3771.053 & 3736.289\end{array}$ $\begin{array}{lllllll}0.000 & 3807.946 & 3772.082 & 3795.962 & 3771.053 & 3736.430\end{array}$ $\begin{array}{lllllll}0.000 & 3809.011 & 3772.151 & 3796.014 & 3771.053 & 3736.56\end{array}$ $\begin{array}{lllllll}0.000 & 3810.426 & 3772.219 & 3796.072 & 3771.053 & 3736.708\end{array}$ $\begin{array}{lllllll}0.000 & 3810.623 & 3772.292 & 3796.130 & 3771.053 & 3736.845\end{array}$ $\begin{array}{lllllll}0.000 & 3810.391 & 3772.362 & 3796.187 & 3771.053 & 3736.98\end{array}$ $\begin{array}{lllllll}0.000 & 3810.240 & 3772.417 & 3796.242 & 3771.053 & 3737.117\end{array}$ $\begin{array}{lllllll}0.000 & 3810.864 & 3772.476 & 3796.300 & 3771.053 & 3737.251\end{array}$ $\begin{array}{llllllll}0.000 & 3811.990 & 3772.541 & 3796.361 & 3771.053 & 3737.384\end{array}$ $\begin{array}{lllllll}0 & 0.000 & 3814.163 & 3772.611 & 3796.431 & 3771.053 & 3737.516\end{array}$ | 0.000 | 3818.735 | 3773.707 | 3797.631 | 3771.053 | 3739 |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllll}0.000 & 3819.990 & 3773.763 & 3797.712 & 3771.053 & 3739 & 3781\end{array}$ $0.000 \quad 3821.166 \quad 3773.819 \quad 3797.797 \quad 3771.053 \quad 3739.95$ $\begin{array}{lllllllll}0.000 & 3821.166 & 3773.819 & 3797.997 & 371.053 & 3739.955\end{array}$ $\begin{array}{lllllll}0.000 & 3819.767 & 3773.868 & 3797.876 & 3771.053 & 3740.068\end{array}$ $\begin{array}{lllllll}0.000 & 3818.138 & 3773.910 & 3797.949 & 3771.053 & 3740.180\end{array}$ $\begin{array}{lllllll}0.000 & 3818.881 & 3773.950 & 3798.024 & 3771.053 & 3740.291\end{array}$ $\begin{array}{lllllll}0.000 & 3819.365 & 3773.989 & 3798.100 & 3771.053 & 3740.401\end{array}$ $\begin{array}{lllllllllllllllll}0.000 & 3818.957 & 3774.026 & 378.175 & 371.053 & 3740.510\end{array}$ $\begin{array}{llllllll}0.000 & 3819.053 & 3774.057 & 3798.249 & 371.053 & 3740.619\end{array}$ $\begin{array}{lllllll}0.000 & 3818.754 & 3774.085 & 3798.321 & 3771.053 & 3740.727\end{array}$ $\begin{array}{lllllll}0.000 & 3819.282 & 3774.104 & 3798.395 & 3771.053 & 3740.83\end{array}$ $\begin{array}{lllllll}0.000 & 3819.625 & 3774.121 & 3798.469 & 3771.053 & 3740.940\end{array}$ $\begin{array}{lllllll}0.000 & 3820.208 & 3774.137 & 3798.545 & 3771.053 & 3741.046\end{array}$ $\begin{array}{lllllll}0.000 & 3820.948 & 3774.155 & 3798.623 & 3771.053 & 3741.151\end{array}$ $\begin{array}{lllllll}0.000 & 3819.265 & 3774.173 & 3798.695 & 3771.053 & 3741.255\end{array}$

2:37:02	59.967	3776.429	3090	33.991	33.343
2:37:04	59.965	3775.647	3090	36.050	34.290
2:37:06	59.962	3776.597	3090	39.138	35.987
2:37:08	59.964	3776.559	3090	37.079	36.369
2:37:10	59.97	3776.023	3090	30.899	34.455
2:37:12	59.967	3773.170	3090	33.991	34.292
2:37:14	59.969	3771.730	3090	31.928	33.465
2:37:16	59.968	3768.793	3090	32.962	33.289
2:37:18	59.963	3768.503	3090	38.109	34.976
2:37:20	59.965	3768.917	3090	36.050	35.352
2:37:22	59.97	3767.366	3090	30.899	33.793
2:37:24	59.973	3764.786	3090	27.810	31.699
2:37:26	59.968	3760.295	3090	32.962	32.141
2:37:28	59.965	3759.592	3090	36.050	33.509
2:37:30	59.968	3761.894	3090	32.962	33.317
2:37:32	59.969	3761.777	3090	31.928	32.831
2:37:34	59.967	3760.583	3090	33.991	33.237
2:37:36	59.964	3760.157	3090	37.079	34.582
2:37:38	59.966	3759.781	3090	35.020	34.735
2:37:40	59.979	3759.495	3090	21.630	30.148
2:37:42	59.99	3757.773	3090	10.298	23.201
2:37:44	59.983	3753.277	3090	17.508	21.208
2:37:46	59.974	3753.087	3090	26.781	23.159
2:37:48	59.967	3751.637	3090	33.991	26.950
2:37:50	59.965	3753.751	3090	36.050	30.135
2:37:52	59.962	3758.225	3090	39.138	33.286
2:37:54	59.962	3759.250	3090	39.138	35.334
2:37:56	59.961	3758.041	3090	40.172	37.027
2:37:58	59.961	3760.965	3090	40.172	38.128
2:38:00	59.96	3762.022	3090	41.201	39.203
2:38:02	59.963	3763.822	3090	38.109	38.820
2:38:04	59.959	3763.100	3090	42.230	40.014
2:38:06	59.956	3763.858	3090	45.319	41.871
2:38:08	59.951	3764.158	3090	50.470	44.880
2:38:10	59.953	3766.127	3090	48.411	46.116
2:38:12	59.954	3768.339	3090	47.381	46.559
2:38:14	59.957	3767.972	3090	44.289	45.765
2:38:16	59.956	3767.438	3090	45.319	45.608
2:38:18	59.961	3765.606	3090	40.172	43.706
2:38:20	59.963	3762.688	3090	38.109	41.747
2:38:22	59.961	3761.570	3090	40.172	41.195
2:38:24	59.959	3761.920	3090	42.230	41.558
2:38:26	59.963	3759.627	3090	38.109	40.350
2:38:28	59.963	3758.522	3090	38.109	39.566
2:38:30	59.965	3752.429	3090	36.050	38.335
2:38:32	59.968	3750.102	3090	32.962	36.454

$\begin{array}{llllll}0.000 & 3819.614 & 3774.181 & 3798.768 & 3771.053 & 3741.359\end{array}$ $\begin{array}{llllll}0.000 & 3819.614 & 3774.181 & 3798.768 & 3771.053 & 3741.359 \\ 0.000 & 3820.562 & 3774.186 & 3798.843 & 3771.053 & 3741.461\end{array}$ $\begin{array}{llllll}0.000 & 3822.258 & 3774.194 & 3798.923 & 3771.053 & 3741.563\end{array}$ $\begin{array}{lllllll}0.000 & 3822.641 & 3774.202 & 3799.004 & 3771.053 & 3741.665\end{array}$ $\begin{array}{lllllll}0.000 & 3820.726 & 3774.208 & 3799.079 & 3771.053 & 3741.765\end{array}$ $\begin{array}{lllllll}0.000 & 3820.564 & 3774.205 & 3799.152 & 3771.053 & 3741.865\end{array}$ $\begin{array}{lllllll}0.000 & 3819.736 & 3774.196 & 3799.221 & 3771.053 & 3741.965\end{array}$ $\begin{array}{lllllll}0.000 & 3819.560 & 3774.178 & 3799.290 & 3771.053 & 3742.063\end{array}$ $\begin{array}{lllllll}0.000 & 3821.247 & 3774.159 & 3799.364 & 3771.053 & 3742.16\end{array}$ $\begin{array}{lllllll}0.000 & 3821.623 & 3774.141 & 3799.439 & 3771.053 & 3742.259\end{array}$ $\begin{array}{lllllll}0.000 & 3820.064 & 3774.119 & 3799.508 & 3771.053 & 3742.355\end{array}$ $\begin{array}{lllllll}0.000 & 3817.970 & 3774.088 & 3799.569 & 3771.053 & 3742.451\end{array}$ $\begin{array}{lllllll}0.000 & 3818.412 & 3774.042 & 3799.632 & 3771.053 & 3742.546\end{array}$ $\begin{array}{llllll}0.000 & 3819.780 & 3773.994 & 3799.699 & 3771.053 & 3742.641\end{array}$ $\begin{array}{llllllll}0 & 000 & 3819.589 & 3773.954 & 3799.764 & 3771.053 & 3742.735\end{array}$ $\begin{array}{llllllll}0 & 0.000 & 3819.102 & 3773.914 & 3799.828 & 3771.053 & 3742: 829\end{array}$ $\begin{array}{lllllllll}0 & 0.000 & 3819.508 & 3773.870 & 3799892 & 3771.053 & 3742.922\end{array}$ $\begin{array}{lllllllllllll}0 & 0.000 & 3820.853 & 3773.825 & 3799.961 & 3771.053 & 3743.014\end{array}$ $\begin{array}{lllllll}0.000 & 3820.853 & 3773.825 & 3799.961 & 371.053 & 3743.01\end{array}$ $\begin{array}{lllllll}0.000 & 3821.007 & 3773.780 & 3800.029 & 3771.053 & 3743.105\end{array}$ $\begin{array}{lllllll}0.000 & 3816.420 & 3773.733 & 3800.083 & 3771.053 & 3743.196\end{array}$ $\begin{array}{lllllll}0.000 & 3809.472 & 3773.682 & 3800.113 & 3771.053 & 3743.287\end{array}$ $\begin{array}{lllllll}0.000 & 3807.480 & 3773.616 & 3800.137 & 3771.053 & 3743.37\end{array}$ $\begin{array}{lllllll}0.000 & 3809.430 & 3773.550 & 3800.167 & 3771.053 & 3743.466\end{array}$ $\begin{array}{lllllll}0.000 & 3813.221 & 3773.480 & 3800.208 & 3771.053 & 3743.555\end{array}$ $\begin{array}{lllllll}0.000 & 3816.406 & 3773.417 & 3800.260 & 3771.053 & 3743.643\end{array}$ $\begin{array}{lllllll}0.000 & 3819.557 & 3773.368 & 3800.322 & 3771.053 & 3743.730\end{array}$ $\begin{array}{llllllll}0.000 & 3821.606 & 3773.323 & 3800.389 & 3771.053 & 3743.817\end{array}$ $\begin{array}{lllllll}0.000 & 3823.299 & 3773.275 & 3800.462 & 3771.053 & 3743.904\end{array}$ $\begin{array}{lllllll}0.000 & 3824.399 & 3773.236 & 3800.537 & 3771.053 & 3743.990\end{array}$ $\begin{array}{lllll}0.000 & 3825.475 & 3773.201 & 3800.616 & 3771.053 \\ 3744.075\end{array}$ $0.000 \quad 3825.091 \quad 3773.171 \quad 3800.623771 .0533744160$ $0.000 \quad 3826.285 \quad 3773140 \quad 3800.772 \quad 3771.053 \quad 3744.244$ $\begin{array}{llllll}0.000 & 3828.142 & 3773.111 & 3800.858 & 3771.053 & 3744.328\end{array}$ $\begin{array}{lllll}0.000 & 3831.151 & 3773.083 & 3800.952-3711.053 & 3744.41\end{array}$ $\begin{array}{llllllllll}0 & 0.000 & 3832.387 & 3773.062 & 3801.049 & 3771.053 & 374.41\end{array}$ $\begin{array}{llllllll}0.000 & 3832.387 & 3773.062 & 3801.049 & 3771.053 & 3744.49\end{array}$ $\begin{array}{llllllll}0.000 & 3832.830 & 3773.047 & 3801.147 & 3771.053 & 3744.576\end{array}$ $\begin{array}{llllll}0.000 & 3832.036 & 3773.032 & 3801.242 & 3771.053 & 3744.658\end{array}$ $\begin{array}{lllllll}0.00 & 3831.880 & 3773.014 & 3801.336 & 3771.053 & 3744.739\end{array}$ $\begin{array}{lllllll}0.000 & 3829.977 & 3772.992 & 3801.424 & 3771.053 & 3744.82\end{array}$ $\begin{array}{llllllll}0.000 & 3828.018 & 3772.960 & 3801.505 & 3711.053 & 3744.900\end{array}$ $\begin{array}{lllllll}0.000 & 3827.467 & 3772.926 & 3801.584 & 3771.053 & 3744.980\end{array}$ $\begin{array}{lllllll}0.000 & 3827.829 & 3772.892 & 3801.663 & 3771.053 & 3745.059\end{array}$ $\begin{array}{lllllll}0.000 & 3826.622 & 3772.852 & 3801.739 & 3771.053 & 3745.138\end{array}$ $\begin{array}{lllllll}0.000 & 3825.837 & 3772.809 & 3801.811 & 3771.053 & 3745.216\end{array}$ $\begin{array}{llllll}0.000 & 3824.606 & 3772.748 & 3801.880 & 3771.053 & 3745.29\end{array}$ $\begin{array}{llllll}0.000 & 3822.726 & 3772.680 & 3801.942 & 3771.053 & 3745371\end{array}$

2:38:34	59.968	3753.830	3090	32.962	35.232
2:38:36	59.968	3753.510	3090	32.962	34.437
2:38:38	59.97	3753.523	3090	30.899	33.199
2:38:40	59.973	3752.741	3090	27.810	31.313
2:38:42	59.971	3753.178	3090	29.869	30.808
2:38:44	59.965	3752.729	3090	36.050	32.642
2:38:46	59.967	3753.291	3090	33.991	33.114
2:38:48	59.967	3752.872	3090	33.991	33.421
2:38:50	59.972	3752.359	3090	28.840	31.818
2:38:52	59.976	3749.398	3090	24.718	29.333
2:38:54	59.975	3747.476	3090	25.752	28.079
2:38:56	59.969	3740.370	3090	31.928	29.426
2:38:58	59.973	3741.285	3090	27.810	28.861
2:39:00	59.974	3746.651	3090	26.781	28.133
2:39:02	59.978	3745.738	3090	22.659	26.217
2:39:04	59.981	3743.351	3090	19.571	23.891
2:39:06	59.981	3741.618	3090	19.571	22.379
2:39:08	59.981	3740.306	3090	19.571	21.396
2:39:10	59.982	3738.484	3090	18.542	20.397
2:39:12	59.982	3738.901	3090	18.542	19.748
2:39:14	59.984	3737.404	3090	16.479	18.604
2:39:16	59.982	3737.273	3090	18.542	18.582
2:39:18	59.981	3736.308	3090	19.571	18.928
2:39:20	59.979	3736.272	3090	21.630	19.874
2:39:22	59.98	3735.448	3090	20.600	20.128
2:39:24	59.978	3735.650	3090	22.659	21.014
2:39:26	59.978	3737.541	3090	22.659	21.590
2:39:28	59.98	3738.012	3090	20.600	21.244
2:39:30	59.981	3736.748	3090	19.571	20.658
2:39:32	59.98	3736.693	3090	20.600	20.638
2:39:34	59.978	3736.067	3090	22.659	21.345
2:39:36	59.976	3736.094	3090	24.718	22.526
2:39:38	59.972	3736.575	3090	28.840	24.736
2:39:40	59.971	3738.571	3090	29.869	26.533
2:39:42	59.969	3738.875	3090	31.928	28.421
2:39:44	59.974	3738.935	3090	26.781	27.847
2:39:46	59.975	3738.647	3090	25.752	27.114
2:39:48	59.976	3737.684	3090	24.718	26.275
2:39:50	59.972	3737.382	3090	28.840	27.173
2:39:52	59.969	3737.892	3090	31.928	28.837
2:39:54	59.971	3740.017	3090	29.869	29.198
2:39:56	59.974	3740.329	3090	26.781	28.352
2:39:58	59.972	3742.053	3090	28.840	28.523
2:40:00	59.972	3742.424	3090	28.840	28.634
2:40:02	59.972	3742.524	3090	28.840	28.706
2:40:04	59.977	3742.245	3090	23.689	26.950

Abstract

$\begin{array}{llllll}0.000 & 3821.503 & 3772.624 & 3802.001 & 3771.053 & 3745.448\end{array}$ $\begin{array}{llllll}0.000 & 3820.709 & 3772.567 & 3802.056 & 3771.053 & 3745.525\end{array}$ $\begin{array}{llllll}0.000 & 3819.470 & 3772.510 & 3802.108 & 3771.053 & 3745.601\end{array}$ $\begin{array}{llllll}0.000 & 3817.584 & 3772.452 & 3802.154 & 3771.053 & 3745.676\end{array}$ $\begin{array}{lllllll}0.000 & 3817.079 & 3772.395 & 3802.198 & 3771.053 & 3745.751\end{array}$ $\begin{array}{lllllll}0.000 & 3818.914 & 3772.337 & 3802.247 & 3771.053 & 3745.826\end{array}$ $\begin{array}{lllllll}0.000 & 3819.386 & 3772.281 & 3802.297 & 3771.053 & 3745.900\end{array}$ $\begin{array}{llllll}0.000 & 3819.692 & 3772.225 & 3802.348 & 3771.053 & 3745.974\end{array}$ $\begin{array}{lllllll}0.000 & 3818.089 & 3772.167 & 3802.394 & 3771.053 & 3746.047\end{array}$ $\begin{array}{lllllll}0.000 & 3815.604 & 3772.101 & 3802.432 & 3771.053 & 3746.120\end{array}$ $\begin{array}{lllllll}0.000 & 3814.351 & 3772.029 & 3802.467 & 3771.053 & 3746.193\end{array}$ $\begin{array}{lllllll}0.000 & 3815.698 & 3771.938 & 3802.505 & 3771.053 & 3746.265\end{array}$ $\begin{array}{lllllll}0.000 & 3815.132 & 3771.849 & 3802.541 & 3771.053 & 3746.336\end{array}$ $\begin{array}{llllll}0.000 & 3814.404 & 3771.777 & 3802.576 & 3771.053 & 3746.408\end{array}$ $\begin{array}{llllll}0.000 & 3812.488 & 3771.702 & 3802.604 & 3771.053 & 3746.478\end{array}$ $\begin{array}{llllll}0.000 & 3810.162 & 3771.621 & 3802.626 & 3771.053 & 374654\end{array}$ $\begin{array}{lllllll}0.000 & 3808.650 & 3771.536 & 3802.643 & 3771.053 & 3746.619\end{array}$ $\begin{array}{llllllll}0.000 & 3807.667 & 3771.447 & 3802.657 & 3771.053 & 3746.688\end{array}$ $\begin{array}{lllllll}0.000 & 3807.667 & 3771.447 & 3802.657 & 3771.053 & 3746.688\end{array}$ $\begin{array}{lllllll}0.000 & 3806.668 & 3771.354 & 3802.668 & 3771.053 & 3746.758\end{array}$ $\begin{array}{llllllll}0.000 & 3806.019 & 3771.262 & 3802.678 & 3771.053 & 3746.826\end{array}$ $\begin{array}{lllllll}0.000 & 3804.875 & 3771.167 & 3802.684 & 3771.053 & 3746.895\end{array}$ $\begin{array}{lllllll}0.000 & 3804.853 & 3771.071 & 3802.690 & 3771.053 & 3746.963\end{array}$ $\begin{array}{llllllll}0.000 & 3806.145 & 3770.877 & 3802.707 & 3771.053 & 3747.098\end{array}$ $\begin{array}{lllllll}0.000 & 3806.399 & 3770.778 & 3802.717 & 3771.053 & 3747.165\end{array}$ $\begin{array}{lllllll}0.000 & 3807.285 & 3770.681 & 3802.730 & 3771.053 & 3747.23\end{array}$ $\begin{array}{lllllll}0.000 & 3807.861 & 3770.589 & 3802.744 & 3771.053 & 3747.297\end{array}$ $\begin{array}{lllllll}0.000 & 3807.515 & 3770.499 & 3802.757 & 3771.053 & 3747.363\end{array}$ $\begin{array}{lllllll}0.000 & 3806.929 & 3770.406 & 3802.769 & 3771.053 & 3747.429\end{array}$ $0.000 \quad 3806.909 \quad 3770.313 \quad 3802.780 \quad 3771.053 \quad 3747.49$ $0.000 \quad 3807.617 \quad 3770.220 \quad 3802.793 \quad 3771.0533747 .55$ $0.000 \quad 3808.797 \quad 3770.126 \quad 3802.810 \quad 3771.053 \quad 3747.623$ | 0.000 | 3811.007 | 3770.035 | 3802.832 | 3771.053 |
| :--- | :--- | :--- | :--- | :--- | $0.000 \quad 3812.804 \quad 3769.949 \quad 3822.859 \quad 3711.053 \quad 3747.751$ $\begin{array}{llllllllll}0.000 & 3814.892 & 3769.865 & 3802.891 & 3771.053 & 3747.814\end{array}$ $\begin{array}{lllllll}0.000 & 3814.692 & 3769.865 & 3802.891 & 3771.053 & 3747.814\end{array}$ $\begin{array}{lllllll}0.000 & 3814.118 & 3769.782 & 3802.921 & 3771.053 & 3747.877\end{array}$ $\begin{array}{lllllll}0.000 & 3813.385 & 3769.698 & 3802.950 & 3771.053 & 3747.940\end{array}$ $\begin{array}{lllllll}0.000 & 3812.546 & 3769.612 & 3802.975 & 3771.053 & 3748.002\end{array}$ $\begin{array}{lllllll}0.000 & 3813.444 & 3769.525 & 3803.004 & 3771.053 & 3748.064\end{array}$ $0.000 \quad 3815.108 \quad 3769.441 \quad 3803.036 \quad 3771.053 \quad 3748.125$ $\begin{array}{lllllll}0.000 & 3815.470 & 3769.362 & 3803.069 & 3771.053 & 3748.187\end{array}$ $\begin{array}{lllllll}0.000 & 3814.624 & 3769.285 & 3803.100 & 3771.053 & 3748.248\end{array}$ $\begin{array}{lllllll}0.000 & 3814.794 & 3769.213 & 3803.131 & 3771.053 & 3748.308\end{array}$ $\begin{array}{lllllll}0.000 & 3814.905 & 3769.142 & 3803.162 & 3771.053 & 3748.369\end{array}$ $\begin{array}{lllllll}0.000 & 3814.977 & 3769.072 & 3803.193 & 3771.053 & 3748.429\end{array}$ $0.000 \quad 3813.221 \quad 3769.001 \quad 3803.220 \quad 3771.053 \quad 3748.488$

2:40:06	59.982	3741.723	3090	18.542	24.007
2:40:08	59.978	3740.085	3090	22.659	23.535
2:40:10	59.976	3740.629	3090	24.718	23.949
2:40:12	59.973	3739.964	3090	27.810	25.301
2:40:14	59.974	3740.775	3090	26.781	25.819
2:40:16	59.977	3742.833	3090	23.689	25.073
2:40:18	59.977	3741.268	3090	23.689	24.589
2:40:20	59.978	3739.776	3090	22.659	23.913
2:40:22	59.979	3738.966	3090	21.630	23.114
2:40:24	59.981	3738.706	3090	19.571	21.874
2:40:26	59.977	3738.879	3090	23.689	22.509
2:40:28	59.974	3739.860	3090	26.781	24.004
2:40:30	59.971	3738.102	3090	29.869	26.057
2:40:32	59.971	3738.558	3090	29.869	27.391
2:40:34	59.971	3743.507	3090	29.869	28.259
2:40:36	59.972	3743.419	3090	28.840	28.462
2:40:38	59.968	3745.251	3090	32.962	30.037
2:40:40	59.966	3745.744	3090	35.020	31.781
2:40:42	59.966	3747.340	3090	35.020	32.915
2:40:44	59.971	3750.700	3090	29.869	31.849
2:40:46	59.973	3749.750	3090	27.810	30.435
2:40:48	59.972	3746.217	3090	28.840	29.877
2:40:50	59.969	3744.683	3090	31.928	30.595
2:40:52	59.972	3743.745	3090	28.840	29.981
2:40:54	59.974	3743.149	3090	26.781	28.861
2:40:56	59.973	3740.299	3090	27.810	28.493
2:40:58	59.97	3739.453	3090	30.899	29.335
2:41:00	59.971	3733.376	3090	29.869	29.522
2:41:02	59.974	3731.830	3090	26.781	28.563
2:41:04	59.982	3737.583	3090	18.542	25.055
2:41:06	59.985	3736.229	3090	15.449	21.693
2:41:08	59.985	3734.897	3090	15.449	19.508
2:41:10	59.985	3733.434	3090	15.449	18.087
2:41:12	59.987	3733.115	3090	13.391	16.443
2:41:14	59.989	3730.510	3090	11.332	14.654
2:41:16	59.989	3729.180	3090	11.332	13.491
2:41:18	59.986	3725.459	3090	14.420	13.816
2:41:20	59.987	3724.785	3090	13.391	13.667
2:41:22	59.99	3720.108	3090	10.298	12.488
2:41:24	59.994	3720.938	3090	6.181	10.280
2:41:26	59.996	3725.661	3090	4.122	8.125
2:41:28	60.001	3725.677	3090	-1.029	4.921
2:41:30	60.003	3727.754	3090	-3.088	2.118
2:41:32	60.004	3727.825	3090	-4.122	-0.066
2:41:34	60.006	3727.683	3090	-6.181	-2.206
2:41:36	60.012	3727.231	3090	-12.361	-5.760

Abstract

$\begin{array}{lllllll}0.000 & 3810.278 & 3768.930 & 3803.238 & 3771.053 & 3748.548\end{array}$ $\begin{array}{llllll}0.000 & 3809.807 & 3768.854 & 3803.255 & 3771.053 & 3748.607\end{array}$ $\begin{array}{lllllll}0.000 & 3810.221 & 3768.780 & 3803.273 & 3771.053 & 3748.666\end{array}$ $\begin{array}{lllllll}0.000 & 3811.572 & 3768.705 & 3803.295 & 3771.053 & 3748.724\end{array}$ $\begin{array}{lllllll}0.000 & 3812.090 & 3768.633 & 3803.318 & 3771.053 & 3748.782\end{array}$ $\begin{array}{lllllll}0.000 & 3811.345 & 3768.566 & 3803.339 & 3771.053 & 3748.840\end{array}$ $\begin{array}{lllllll}0.000 & 3810.860 & 3768.495 & 3803.358 & 3771.053 & 3748.898\end{array}$ $\begin{array}{lllllll}0.000 & 3810.185 & 3768.421 & 3803.376 & 3771.053 & 3748.95\end{array}$ $\begin{array}{lllllll}0.000 & 3809.385 & 3768.346 & 3803.391 & 3771.053 & 3749.012\end{array}$ $\begin{array}{lllllll}0.000 & 3808.145 & 3768.270 & 3803.403 & 3771.053 & 3749.068\end{array}$ $\begin{array}{lllllll}0.000 & 3808.780 & 3768.194 & 3803.417 & 3771.053 & 3749.125\end{array}$ $\begin{array}{lllllll}0.000 & 3810.276 & 3768.122 & 3803.435 & 3771.053 & 3749.181\end{array}$ $\begin{array}{lllllll}0.000 & 3812.328 & 3768.046 & 3803.457 & 3771.053 & 3749.237\end{array}$ $\begin{array}{lllllll}0.000 & 3813.663 & 3767.971 & 3803.483 & 3771.053 & 3749.292\end{array}$ $\begin{array}{lllllll}0 & 0000 & 3814.530 & 3767.909 & 3803.511 & 3771.053 & 3749.347\end{array}$ $\begin{array}{llllllll}0.000 & 3814.733 & 3767.847 & 3803.539 & 3771.053 & 3749.402\end{array}$ $\begin{array}{lllllllll}0.000 & 3816308 & 3767.790 & 3803.572 & 3771.053 & 3749.457\end{array}$ $\begin{array}{llllll}0.000 & 3818.052 & 3767.735 & 3803.608 & 3771.053 & 3749.51\end{array}$ $\begin{array}{lllllll}0.000 & 3818.052 & 3767.735 & 3803.608 & 3771.053 & 3749.511\end{array}$ $\begin{array}{lllllll}0.000 & 3819.186 & 3767.684 & 3803.647 & 3771.053 & 3749.566\end{array}$ $\begin{array}{lllllll}0.000 & 3818.120 & 3767.641 & 3803.683 & 3771.053 & 3749.619\end{array}$ $\begin{array}{lllllll}0.000 & 3816.707 & 3767.597 & 3803.716 & 3771.053 & 3749.673\end{array}$ $\begin{array}{lllllll}0.000 & 3816.148 & 3767.543 & 3803.747 & 3771.053 & 3749.726\end{array}$ $\begin{array}{lllllll}0.000 & 3816.866 & 3767.487 & 3803.779 & 3771.053 & 3749.779\end{array}$ $\begin{array}{lllllll}0.000 & 3816.252 & 3767.428 & 3803.810 & 3711.053 & 3749.832\end{array}$ $\begin{array}{lllllll}0.000 & 3815.132 & 3767.368 & 3803.838 & 3771.053 & 3749.88\end{array}$ $\begin{array}{lllllll}0.000 & 3814.764 & 3767.301 & 3803.865 & 3771.053 & 3749.937\end{array}$ $\begin{array}{lllllll}0.000 & 3815.606 & 3767.233 & 3803.894 & 3771.053 & 3749.989\end{array}$ $\begin{array}{lllllll}0.000 & 3815.793 & 3767.150 & 3803.923 & 3771.053 & 3750.041\end{array}$ $\begin{array}{lllllll}0.000 & 3814.834 & 3767.064 & 3803.950 & 3771.053 & 3750.092\end{array}$ $\begin{array}{lllll}0 & 000 & 3811.327 & 3766.992 & 3803.968 \\ 3771.053 & 3750143\end{array}$ $\begin{array}{llllll}0 & 000 & 3807.964 & 3766.917 & 3803.977 & 3771.053 \\ 3750\end{array}$ $0.000 \quad 3805.779 \quad 37668393803.982 \quad 3771.053 \quad 3750.245$ $0000 \quad 3804.359 \quad 3766.758 \quad 3803.983 \quad 3711.053 \quad 3750.296$ $0.000 \quad 3802.715 \quad 3766.677 \quad 3803.980 \quad 371.053 \quad 3750.296$ $0.000 \quad 3800.926 \quad 3766.590 \quad 3803.972 \quad 3771.053 \quad 3750.396$ $\begin{array}{lllllll}0.000 & 3800.926 & 3766.590 & 3803.972 & 3771.053 & 3750.39\end{array}$ $\begin{array}{lllllll}0.000 & 3799.763 & 3766.500 & 3803.962 & 3771.053 & 3750.446\end{array}$ $\begin{array}{lllllll}0.000 & 3800.088 & 3766.401 & 3803.953 & 3771.053 & 3750.495\end{array}$ $\begin{array}{lllllll}0.000 & 3799.939 & 3766.302 & 3803.943 & 3771.053 & 3750.545\end{array}$ $\begin{array}{lllllll}0.000 & 3798.759 & 3766.192 & 3803.931 & 371.053 & 3750.59\end{array}$ $\begin{array}{lllllll}0.000 & 3796.552 & 3766.084 & 3803.913 & 3771.053 & 3750.642\end{array}$ $\begin{array}{lllllll}0.000 & 3794.396 & 3765.988 & 3803.891 & 3771.053 & 3750.69\end{array}$ $\begin{array}{lllllll}0.000 & 3791.192 & 3765.892 & 3803.861 & 3771.053 & 3750.739\end{array}$ $\begin{array}{lllllll}0.000 & 3788.389 & 3765.802 & 3803.824 & 3771.053 & 3750.788\end{array}$ $\begin{array}{lllllll}0.000 & 3786.205 & 3765.713 & 3803.782 & 3771.053 & 3750.835\end{array}$ $\begin{array}{lllllll}0.000 & 3784.065 & 3765.623 & 3803.736 & 3771.053 & 3750.88\end{array}$ $\begin{array}{lllllll}0.000 & 3780.511 & 3765.533 & 3803.681 & 3771.053 & 3750.931\end{array}$

$2: 41: 38$	60.014	3725.012	3090	-14.420	-8.791
$2: 41: 40$	60.019	3726.446	3090	-19.571	-12.564
$2: 41: 42$	60.021	3726.016	3090	-21.630	-15.737
$2: 41: 44$	60.025	3719.123	3090	-25.752	-19.242
$2: 41: 46$	60.026	3716.375	3090	-26.781	-21.881
$2: 41: 48$	60.027	3717.333	3090	-27.810	-23.956
$2: 41: 50$	60.029	3717.560	3090	-29.869	-26.026
$2: 41: 52$	60.029	3717.142	3090	-29.869	-27.371
$2: 41: 54$	60.037	3715.166	3090	-38.109	-31.129
$2: 41: 56$	60.036	3713.632	3090	-37.079	-33.212
$2: 41: 58$	60.037	3710.283	3090	-38.109	-34.926
$2: 42: 00$	60.037	3710.158	3090	-38.109	-36.040
$2: 42: 02$	60.036	3699.356	3090	-37.079	-36.404
$2: 42: 04$	60.041	3698.591	3090	-42.230	-38.443
$2: 42: 06$	60.043	3704.591	3090	-44.289	-40.489
$2: 42: 08$	60.044	3703.275	3090	-45.319	-42.179
$2: 42: 10$	60.043	3702.482	3090	-44.289	-42.918
$2: 42: 12$	60.046	3701.316	3090	-47.381	-44.480
$2: 42: 14$	60.048	3700.826	3090	-49.440	-46.216
$2: 42: 16$	60.046	3699.529	3090	-47.381	-46.624
$2: 42: 18$	60.046	3699.726	3090	-47.381	-46.889
$2: 42: 20$	60.043	3690.100	3090	-44.289	-45.979
$2: 42: 22$	60.043	3690.477	3090	-44.289	-45.388
$2: 42: 24$	60.044	3696.865	3090	-45.319	-45.364
$2: 42: 26$	60.043	3696.877	3090	-44.289	-44.988

$\begin{array}{llllll}0.000 & 3777.480 & 3765.438 & 3803.620 & 3771.053 & 3750.978\end{array}$ $\begin{array}{llllll}0.000 & 3777.480 & 3765.438 & 3803.620 & 3771.053 & 3750.978 \\ 0.000 & 3773.707 & 3765.347 & 3803.550 & 3771.053 & 3751.025\end{array}$ $\begin{array}{lllllll}0.000 & 3770.534 & 3765.255 & 3803.473 & 3771.053 & 3751.072\end{array}$ $\begin{array}{lllllll}0.000 & 3767.029 & 3765.148 & 3803.389 & 3771.053 & 3751.118\end{array}$ $\begin{array}{lllllll}0.000 & 3764.390 & 3765.035 & 3803.298 & 3771.053 & 3751.165\end{array}$ $\begin{array}{lllllll}0.000 & 3762.315 & 3764.924 & 3803.203 & 3771.053 & 3751.211\end{array}$ $\begin{array}{llllllll}0.000 & 3760.245 & 3764.815 & 3803.104 & 3771.053 & 3751.257\end{array}$ $\begin{array}{lllllll}0.000 & 3758.900 & 3764.705 & 3803.002 & 3771.053 & 3751.302\end{array}$ $\begin{array}{lllllll}0.000 & 3755.142 & 3764.591 & 3802.892 & 3771.053 & 3751.348\end{array}$ $\begin{array}{lllllll}0.000 & 3753.060 & 3764.474 & 3802.778 & 3771.053 & 3751.393\end{array}$ $\begin{array}{llllllll}0.000 & 3751.346 & 3764.350 & 3802.660 & 3771.053 & 3751.438\end{array}$ $\begin{array}{lllllll}0.000 & 3750.231 & 3764.227 & 3802.540 & 3771.053 & 3751.483\end{array}$ $\begin{array}{lllllll}0.000 & 3749.868 & 3764.079 & 3802.420 & 3771.053 & 3751.528\end{array}$ $\begin{array}{lllllll}0.000 & 3747.828 & 3763.930 & 3802.296 & 3771.053 & 3751.572\end{array}$ $\begin{array}{lllllll}0 & 0.000 & 3745.782 & 3763.796 & 3802.168 & 3771.053 & 3751.617\end{array}$ $\begin{array}{lllllll}0.000 & 3744.092 & 3763.659 & 3802.037 & 371.053 & 3751.661\end{array}$ $\begin{array}{lllllll}0.000 & 3743.353 & 3763.521 & 3801.904 & 3771.053 & 3751.705\end{array}$ $\begin{array}{llllll}0.000 & 3741.791 & 3763.380 & 3801.769 & 3771.053 & 3751.748\end{array}$ $\begin{array}{llllll}0.000 & 3741.791 & 3763.380 & 3801.769 & 3771.053 & 3751.748 \\ 0.000 & 3740.055 & 3763.240 & 3801.630 & 3771.053 & 3751.792\end{array}$ $\begin{array}{llllll}0.000 & 3740.055 & 3763.240 & 3801.630 & 3771.053 & 3751.792 \\ 0.000 & 3739.647 & 3763.097 & 3801.491 & 3771.053 & 3751.835\end{array}$ $\begin{array}{llllll}0.000 & 3739.647 & 3763.097 & 3801.491 & 3771.053 & 3751.835 \\ 0.000 & 3739.382 & 3762.955 & 3801.352 & 3771.053 & 3751.878\end{array}$ $\begin{array}{lllllll}0.000 & 3740.292 & 3762.793 & 3801.216 & 3771.053 & 3751.921\end{array}$ $\begin{array}{lllllll}0.000 & 3740.884 & 3762.632 & 3801.082 & 3771.053 & 3751.964\end{array}$ $\begin{array}{lllllll}0.000 & 3740.908 & 3762.485 & 3800.948 & 3771.053 & 3752.00\end{array}$ $\begin{array}{lllllll}0.000 & 3741.284 & 3762.340 & 3800.816 & 3771.053 & 3752.049\end{array}$

T-66 sec	2:26:20	60.022	3664.50	350.00	155.53	0.00	10.00	15.00	-103.00	7641.90	-22.659	T-66 sec	2:26:20
T-64 sec	2:26:22	60.019	3666.06	350.00	155.53	0.00	10.00	15.00	-103.00	7642.23	-19.571	T-64 sec	2:26:22
T-62 sec	2:26:24	60.017	3666.82	350.00	155.53	0.00	10.00	15.00	-103.00	7642.56	-17.508	T-62 sec	2:26:24
T-60 sec	2:26:26	60.019	3666.79	350.00	160.45	0.00	10.00	15.00	-103.00	7642.89	-19.571	T-60 sec	2:26:26
T-58 sec	2:26:28	60.020	3670.45	350.00	160.45	0.00	10.00	15.00	-103.00	7643.22	-20.600	T-58 sec	2:26:28
T-56 sec	2:26:30	60.019	3670.27	350.00	160.45	0.00	10.00	15.00	-103.00	7643.55	-19.571	T-56 sec	2:26:30
T-54 sec	2:26:32	60.021	3671.67	350.00	160.45	0.00	10.00	15.00	-103.00	7643.88	-21.630	T-54 sec	2:26:32
T-52 sec	2:26:34	60.021	3672.49	350.00	160.45	0.00	10.00	15.00	-103.00	7644.21	-21.630	T-52 sec	2:26:34
T-50 sec	2:26:36	60.021	3672.69	350.00	163.96	0.00	10.00	15.00	-103.00	7644.54	-21.630	T-50 sec	2:26:36
T-48 sec	2:26:38	60.019	3672.86	350.00	163.96	0.00	10.00	15.00	-103.00	7644.87	-19.571	T-48 sec	2:26:38
T-46 sec	2:26:40	60.018	3672.16	350.00	163.96	0.00	10.00	15.00	-103.00	7645.20	-18.542	T-46 sec	2:26:40
T-44 sec	2:26:42	60.022	3671.41	350.00	163.96	0.00	10.00	15.00	-103.00	7645.53	-22.659	T-44 sec	2:26:42
T-42 sec	2:26:44	60.031	3669.98	350.00	163.96	0.00	10.00	15.00	-103.00	7645.86	-31.928	T-42 sec	2:26:44
T-40 sec	2:26:46	60.037	3666.47	350.00	166.07	0.00	10.00	15.00	-103.00	7646.19	-38.109	T-40 sec	2:26:46
T-38 sec	2:26:48	60.037	3663.76	350.00	166.07	0.00	10.00	15.00	-103.00	7646.52	-38.109	T-38 sec	2:26:48
T-36 sec	2:26:50	60.036	3661.60	350.00	166.07	0.00	10.00	15.00	-103.00	7646.85	-37.079	T-36 sec	2:26:50
T-34 sec	2:26:52	60.037	3660.67	350.00	166.07	0.00	10.00	15.00	-103.00	7647.18	-38.109	T-34 sec	2:26:52
T-32 sec	2:26:54	60.046	3651.49	350.00	166.07	0.00	10.00	15.00	-103.00	7647.51	-47.381	T-32 sec	2:26:54
T-30 sec	2:26:56	60.048	3649.19	350.00	163.77	0.00	10.00	15.00	-103.00	7647.84	-49.440	T-30 sec	2:26:56
T-28 sec	2:26:58	60.048	3650.03	350.00	163.77	0.00	10.00	15.00	-103.00	7648.17	-49.440	T-28 sec	2:26:58
T-26 sec	2:27:00	60.043	3648.25	350.00	163.77	0.00	10.00	15.00	-103.00	7648.50	-44.289	T-26 sec	2:27:00
T-24 sec	2:27:02	60.041	3649.51	350.00	163.77	0.00	10.00	15.00	-103.00	7648.83	-42.230	T-24 sec	2:27:02
T-22 sec	2:27:04	60.041	3654.29	350.00	163.77	0.00	10.00	15.00	-103.00	7649.16	-42.230	T-22 sec	2:27:04
T-20 sec	2:27:06	60.041	3655.01	350.00	165.10	0.00	10.00	15.00	-103.00	7649.49	-42.230	T-20 sec	2:27:06
T-18 sec	2:27:08	60.039	3651.87	350.00	165.10	0.00	10.00	15.00	-103.00	7649.82	-40.172	T-18 sec	2:27:08
T-16 sec	2:27:10	60.041	3651.06	350.00	165.10	0.00	10.00	15.00	-103.00	7650.15	-42.230	T-16 sec	2:27:10
T-14 sec	2:27:12	60.043	3649.19	350.00	165.10	0.00	10.00	15.00	-103.00	7650.48	-44.289	T-14 sec	2:27:12
T-12 sec	2:27:14	60.045	3648.24	350.00	165.10	0.00	10.00	15.00	-103.00	7650.81	-46.348	$\mathrm{T}-12 \mathrm{sec}$	2:27:14
T-10 sec	2:27:16	60.046	3645.39	350.00	165.48	0.00	10.00	15.00	-103.00	7651.14	-47.381	T-10 sec	2:27:16
T-08 sec	2:27:18	60.041	3644.63	350.00	165.48	0.00	10.00	15.00	-103.00	7651.47	-42.230	T-08 sec	2:27:18
T-06 sec	2:27:20	60.041	3645.45	350.00	165.48	0.00	10.00	15.00	-103.00	7651.80	-42.230	T-06 sec	2:27:20
T-04 sec	2:27:22	60.041	3640.68	350.00	165.48	0.00	10.00	15.00	-103.00	7652.13	-42.230	T-04 sec	2:27:22
T-02 sec	2:27:24	60.039	3641.19	350.00	165.48	0.00	10.00	15.00	-103.00	7652.46	-40.172	T-02 sec	2:27:24
T+0 sec	2:27:26	59.978	3659.46	350.00	206.46	0.00	10.00	15.00	-103.00	7652.79	22.659	T+0 sec	2:27:26
T+02 sec	2:27:28	59.852	3696.36	350.00	206.46	0.00	10.00	0.00	-103.00	7616.00	152.439	T+02 sec	2:27:28
T+04 sec	2:27:30	59.836	3734.90	335.00	206.46	0.00	10.00	0.00	-103.00	7626.00	168.922	T+04 sec	2:27:30
T+06 sec	2:27:32	59.869	3734.67	335.00	206.46	0.00	10.00	0.00	-103.00	7632.00	134.931	T+06 sec	2:27:32
T+08 sec	2:27:34	59.869	3734.67	335.00	206.46	0.00	10.00	0.00	-103.00	7632.00	134.931	T+08 sec	2:27:34
T+10 sec	2:27:36	59.892	3737.16	335.00	206.46	0.00	10.00	0.00	-103.00	7632.00	111.242	T+10 sec	2:27:36
T+12 sec	2:27:38	59.891	3761.25	335.00	211.26	0.00	10.00	0.00	-103.00	7632.00	112.271	T+12 sec	2:27:38
T+14 sec	2:27:40	59.880	3766.11	335.00	211.26	1.00	10.00	0.00	-103.00	7632.00	123.599	T+14 sec	2:27:40
T+16 sec	2:27:42	59.876	3766.19	335.00	211.26	1.00	10.00	0.00	-103.00	7632.00	127.721	T+16 sec	2:27:42
T+18 sec	2:27:44	59.875	3768.88	335.00	211.26	1.00	10.00	0.00	-103.00	7632.00	128.750	T+18 sec	2:27:44
T+20 sec	2:27:46	59.883	3769.93	335.00	211.26	1.00	10.00	0.00	-103.00	7632.00	120.511	$\mathrm{T}+20 \mathrm{sec}$	2:27:46
T+22 sec	2:27:48	59.887	3780.62	335.00	214.35	1.00	10.00	0.00	-103.00	7632.00	116.389	T+22 sec	2:27:48
T+24 sec	2:27:50	59.886	3781.59	335.00	214.35	1.00	10.00	0.00	-103.00	7632.00	117.418	T+24 sec	2:27:50

T+26 sec	2:27:52	59.885	3782.50	335.00	214.35	1.00	10.00	0.00	-103.00	7632.00	118.452	T+26 sec	2:27:52
T+28 sec	2:27:54	59.887	3784.96	335.00	214.35	2.00	10.00	0.00	-103.00	7632.00	116.389	T+28 sec	2:27:54
T+30 sec	2:27:56	59.888	3784.73	335.00	214.35	3.00	10.00	0.00	-103.00	7632.00	115.359	T+30 sec	2:27:56
T+32 sec	2:27:58	59.890	3784.42	335.00	212.17	4.00	10.00	0.00	-103.00	7632.00	113.301	T+32 sec	2:27:58
T+34 sec	2:28:00	59.895	3788.07	335.00	212.17	5.00	10.00	0.00	-103.00	7632.00	108.150	T+34 sec	2:28:00
T+36 sec	2:28:02	59.894	3788.33	335.00	212.17	6.00	10.00	0.00	-103.00	7632.00	109.179	T+36 sec	2:28:02
T+38 sec	2:28:04	59.893	3788.87	335.00	212.17	7.00	10.00	0.00	-103.00	7632.00	110.208	T+38 sec	2:28:04
T+40 sec	2:28:06	59.894	3788.47	335.00	212.17	8.00	10.00	0.00	-103.00	7632.00	109.179	T+40 sec	2:28:06
T+42 sec	2:28:08	59.894	3792.28	335.00	215.60	9.00	10.00	0.00	-103.00	7632.00	109.179	$\mathrm{T}+42 \mathrm{sec}$	2:28:08
T+44 sec	2:28:10	59.891	3793.07	335.00	215.60	10.00	10.00	0.00	-103.00	7632.00	112.271	T+44 sec	2:28:10
T+46 sec	2:28:12	59.890	3794.37	335.00	215.60	11.00	10.00	0.00	-103.00	7632.00	113.301	$\mathrm{T}+46 \mathrm{sec}$	2:28:12
T+48 sec	2:28:14	59.885	3799.43	335.00	215.60	12.00	10.00	0.00	-103.00	7632.00	118.452	T+48 sec	2:28:14
T+50 sec	2:28:16	59.885	3800.43	335.00	215.60	13.00	10.00	0.00	-103.00	7632.00	118.452	T+50 sec	2:28:16
T+52 sec	2:28:18	59.888	3799.96	335.00	218.33	14.00	10.00	0.00	-103.00	7632.00	115.359	T+52 sec	2:28:18
T+54 sec	2:28:20	59.887	3803.63	335.00	218.33	15.00	10.00	0.00	-103.00	7632.00	116.389	T+54 sec	2:28:20
T+56 sec	2:28:22	59.888	3802.93	335.00	218.33	16.00	10.00	0.00	-103.00	7632.00	115.359	T+56 sec	2:28:22
T+58 sec	2:28:24	59.888	3802.95	335.00	218.33	16.00	10.00	0.00	-103.00	7632.00	115.359	T+58 sec	2:28:24
T+60 sec	2:28:26	59.890	3804.39	335.00	218.33	16.00	10.00	0.00	-103.00	7632.00	113.301	T+60 sec	2:28:26
T+62 sec	2:28:28	59.889	3805.50	335.00	217.38	16.00	10.00	0.00	-103.00	7632.00	114.330	T+62 sec	2:28:28
T+64 sec	2:28:30	59.882	3805.62	335.00	217.38	16.00	10.00	0.00	-103.00	7632.00	121.540	T+64 sec	2:28:30
T+66 sec	2:28:32	59.873	3809.24	335.00	217.38	16.00	10.00	0.00	-103.00	7631.00	130.809	T+66 sec	2:28:32
T+68 sec	2:28:34	59.857	3811.50	335.00	217.38	16.00	10.00	0.00	-103.00	7625.00	147.292	T+68 sec	2:28:34
T+70 sec	2:28:36	59.849	3814.86	335.00	217.38	16.00	10.00	0.00	-103.00	7623.00	155.531	T+70 sec	2:28:36
T+72 sec	2:28:38	59.852	3815.89	335.00	214.83	16.00	10.00	0.00	-103.00	7621.00	152.439	T+72 sec	2:28:38
T+74 sec	2:28:40	59.858	3825.64	335.00	214.83	16.00	10.00	0.00	-103.00	7623.00	146.258	T+74 sec	2:28:40
T+76 sec	2:28:42	59.863	3826.05	335.00	214.83	16.00	10.00	0.00	-103.00	7625.00	141.111	T+76 sec	2:28:42
T+78 sec	2:28:44	59.866	3826.00	335.00	214.83	16.00	10.00	0.00	-103.00	7627.00	138.019	T+78 sec	2:28:44
T+80 sec	2:28:46	59.865	3827.52	335.00	214.83	16.00	10.00	0.00	-103.00	7628.00	139.048	T+80 sec	2:28:46
T+82 sec	2:28:48	59.867	3826.75	335.00	227.66	16.00	10.00	0.00	-103.00	7628.00	136.989	T+82 sec	2:28:48
T+84 sec	2:28:50	59.866	3826.78	335.00	227.66	16.00	10.00	0.00	-103.00	7629.00	138.019	$\mathrm{T}+84 \mathrm{sec}$	2:28:50
T+86 sec	2:28:52	59.871	3826.45	335.00	227.66	16.00	10.00	0.00	-103.00	7630.00	132.872	T+86 sec	2:28:52
T+88 sec	2:28:54	59.874	3825.71	335.00	227.66	16.00	10.00	0.00	-103.00	7631.00	129.779	T+88 sec	2:28:54
T+90 sec	2:28:56	59.879	3823.83	335.00	227.66	16.00	10.00	0.00	-103.00	7635.00	124.628	T+90 sec	2:28:56
T+92 sec	2:28:58	59.880	3822.51	335.00	225.02	16.00	10.00	0.00	-103.00	7638.00	123.599	T+92 sec	2:28:58
T+94 sec	2:29:00	59.883	3819.08	335.00	225.02	16.00	10.00	0.00	-103.00	7639.00	120.511	T+94 sec	2:29:00
T+96 sec	2:29:02	59.886	3818.06	335.00	225.02	16.00	10.00	0.00	-103.00	7642.00	117.418	T+96 sec	2:29:02
T+98 sec	2:29:04	59.890	3816.81	335.00	225.02	16.00	10.00	0.00	-103.00	7644.00	113.301	T+98 sec	2:29:04
$\mathrm{T}+100 \mathrm{sec}$	2:29:06	59.892	3815.01	335.00	225.02	16.00	10.00	0.00	-103.00	7645.00	111.242	T+100 sec	2:29:06
$\mathrm{T}+102 \mathrm{sec}$	2:29:08	59.889	3813.78	335.00	228.37	16.00	10.00	0.00	-103.00	7647.00	114.330	T+102 sec	2:29:08
T+104 sec	2:29:10	59.893	3811.84	335.00	228.37	16.00	10.00	0.00	-103.00	7648.00	110.208	T+104 sec	2:29:10
T+106 sec	2:29:12	59.899	3809.65	335.00	228.37	16.00	10.00	0.00	-103.00	7649.00	104.032	T+106 sec	2:29:12
T+108 sec	2:29:14	59.903	3806.97	335.00	228.37	16.00	10.00	0.00	-103.00	7650.00	99.910	T+108 sec	2:29:14
$\mathrm{T}+110 \mathrm{sec}$	2:29:16	59.902	3805.59	335.00	228.37	16.00	10.00	0.00	-103.00	7651.00	100.940	T+110 sec	2:29:16
$\mathrm{T}+112 \mathrm{sec}$	2:29:18	59.902	3804.19	335.00	234.08	16.00	10.00	0.00	-103.00	7652.00	100.940	T+112 sec	2:29:18
$\mathrm{T}+114 \mathrm{sec}$	2:29:20	59.904	3796.08	335.00	234.08	16.00	10.00	0.00	-103.00	7653.00	98.881	T+114 sec	2:29:20

T+116 sec	2:29:22	59.907	3793.98	335.00	234.08	16.00	10.00	0.00	-103.00	7654.00	$95.788 \mathrm{~T}+116 \mathrm{sec}$	2:29:22
T+118 sec	2:29:24	59.911	3792.17	335.00	234.08	16.00	10.00	0.00	-103.00	7655.00	$91.671 \mathrm{~T}+118 \mathrm{sec}$	2:29:24
T+120 sec	2:29:26	59.916	3791.50	335.00	234.08	16.00	10.00	0.00	-103.00	7655.00	$86.520 \mathrm{~T}+120 \mathrm{sec}$	2:29:26
T+122 sec	2:29:28	59.916	3789.53	335.00	228.80	16.00	10.00	0.00	-103.00	7656.00	$86.520 \mathrm{~T}+122 \mathrm{sec}$	2:29:28
T+124 sec	2:29:30	59.917	3788.13	335.00	228.80	16.00	10.00	0.00	-103.00	7656.00	$85.490 \mathrm{~T}+124 \mathrm{sec}$	2:29:30
T+126 sec	2:29:32	59.918	3784.56	335.00	228.80	16.00	10.00	0.00	-103.00	7657.00	$84.461 \mathrm{~T}+126 \mathrm{sec}$	2:29:32
T+128 sec	2:29:34	59.920	3783.03	335.00	228.80	16.00	10.00	0.00	-103.00	7657.00	$82.402 \mathrm{~T}+128 \mathrm{sec}$	2:29:34
T+130 sec	2:29:36	59.921	3781.70	335.00	228.80	16.00	10.00	0.00	-103.00	7658.00	$81.369 \mathrm{~T}+130 \mathrm{sec}$	2:29:36
T+132 sec	2:29:38	59.920	3776.36	335.00	229.47	16.00	10.00	0.00	-103.00	7658.00	$82.402 \mathrm{~T}+132 \mathrm{sec}$	2:29:38
T+134 sec	2:29:40	59.917	3775.64	335.00	229.47	16.00	10.00	0.00	-103.00	7659.00	$85.490 \mathrm{~T}+134 \mathrm{sec}$	2:29:40
T+136 sec	2:29:42	59.920	3774.60	335.00	229.47	16.00	10.00	0.00	-103.00	7659.00	$82.402 \mathrm{~T}+136 \mathrm{sec}$	2:29:42
T+138 sec	2:29:44	59.921	3773.33	335.00	229.47	16.00	10.00	0.00	-103.00	7659.00	$81.369 \mathrm{~T}+138 \mathrm{sec}$	2:29:44
T+140 sec	2:29:46	59.923	3773.96	335.00	229.47	16.00	10.00	0.00	-103.00	7660.00	$79.310 \mathrm{~T}+140 \mathrm{sec}$	2:29:46
$\mathrm{T}+142 \mathrm{sec}$	2:29:48	59.926	3772.72	335.00	228.98	16.00	10.00	0.00	-103.00	7660.00	$76.221 \mathrm{~T}+142 \mathrm{sec}$	2:29:48
T+144 sec	2:29:50	59.925	3771.67	335.00	228.98	16.00	10.00	0.00	-103.00	7661.00	$77.251 \mathrm{~T}+144 \mathrm{sec}$	2:29:50
T+146 sec	2:29:52	59.928	3769.63	335.00	228.98	16.00	10.00	0.00	-103.00	7661.00	$74.159 \mathrm{~T}+146 \mathrm{sec}$	2:29:52
T+148 sec	2:29:54	59.927	3768.71	335.00	228.98	16.00	10.00	0.00	-103.00	7662.00	$75.192 \mathrm{~T}+148 \mathrm{sec}$	2:29:54
T+150 sec	2:29:56	59.932	3767.64	335.00	228.98	16.00	10.00	0.00	-103.00	7662.00	$70.041 \mathrm{~T}+150 \mathrm{sec}$	2:29:56
T+152 sec	2:29:58	59.927	3767.02	335.00	219.98	16.00	10.00	0.00	-103.00	7663.00	$75.192 \mathrm{~T}+152 \mathrm{sec}$	2:29:58
T+154 sec	2:30:00	59.928	3767.41	335.00	219.98	16.00	10.00	0.00	-103.00	7663.00	$74.159 \mathrm{~T}+154 \mathrm{sec}$	2:30:00
T+156 sec	2:30:02	59.931	3766.79	335.00	219.98	16.00	10.00	0.00	-103.00	7664.00	$71.070 \mathrm{~T}+156 \mathrm{sec}$	2:30:02
T+158 sec	2:30:04	59.929	3766.26	335.00	219.98	16.00	10.00	0.00	-103.00	7664.00	$73.129 \mathrm{~T}+158 \mathrm{sec}$	2:30:04
T+160 sec	2:30:06	59.931	3765.67	335.00	219.98	16.00	10.00	0.00	-103.00	7665.00	$71.070 \mathrm{~T}+160 \mathrm{sec}$	2:30:06
T+162 sec	2:30:08	59.933	3766.12	335.00	229.09	16.00	10.00	0.00	-103.00	7666.00	$69.011 \mathrm{~T}+162 \mathrm{sec}$	2:30:08
T+164 sec	2:30:10	59.937	3764.24	335.00	229.09	16.00	10.00	0.00	-103.00	7666.00	$64.890 \mathrm{~T}+164 \mathrm{sec}$	2:30:10
T+166 sec	2:30:12	59.937	3765.10	335.00	229.09	16.00	10.00	0.00	-103.00	7667.00	$64.890 \mathrm{~T}+166 \mathrm{sec}$	2:30:12
T+168 sec	2:30:14	59.945	3762.94	335.00	229.09	16.00	10.00	0.00	-103.00	7668.00	$56.650 \mathrm{~T}+168 \mathrm{sec}$	2:30:14
T+170 sec	2:30:16	59.949	3758.39	335.00	229.09	16.00	10.00	0.00	-103.00	7668.00	$52.529 \mathrm{~T}+170 \mathrm{sec}$	2:30:16
T+172 sec	2:30:18	59.947	3753.92	335.00	229.66	16.00	10.00	0.00	-103.00	7669.00	$54.591 \mathrm{~T}+172 \mathrm{sec}$	2:30:18
T+174 sec	2:30:20	59.942	3749.87	335.00	229.66	16.00	10.00	0.00	-103.00	7669.00	$59.739 \mathrm{~T}+174 \mathrm{sec}$	2:30:20
T+176 sec	2:30:22	59.941	3746.89	335.00	229.66	16.00	10.00	0.00	-103.00	7670.00	$60.768 \mathrm{~T}+176 \mathrm{sec}$	2:30:22
T+178 sec	2:30:24	59.942	3747.88	335.00	229.66	16.00	10.00	0.00	-103.00	7670.00	$59.739 \mathrm{~T}+178 \mathrm{sec}$	2:30:24
T+180 sec	2:30:26	59.945	3749.59	335.00	229.66	16.00	10.00	0.00	-103.00	7671.00	$56.650 \mathrm{~T}+180 \mathrm{sec}$	2:30:26
	2:30:28	59.948	3748.66	335.00	229.23	16.00	10.00	0.00	-103.00	7671.00	53.558	
	2:30:30	59.947	3746.71	335.00	229.23	16.00	10.00	0.00	-103.00	7672.00	54.591	
	2:30:32	59.949	3749.08	335.00	229.23	16.00	10.00	0.00	-103.00	7673.00	52.529	
	2:30:34	59.951	3742.74	335.00	229.23	16.00	10.00	0.00	-103.00	7673.00	50.470	
	2:30:36	59.952	3740.26	350.00	229.23	16.00	10.00	0.00	-103.00	7673.00	49.440	
	2:30:38	59.953	3736.14	350.00	231.41	16.00	10.00	0.00	-103.00	7673.00	48.411	
	2:30:40	59.951	3731.38	350.00	231.41	16.00	10.00	0.00	-103.00	7673.00	50.470	
	2:30:42	59.952	3727.84	350.00	231.41	16.00	10.00	0.00	-103.00	7673.00	49.440	
	2:30:44	59.952	3725.95	350.00	231.41	16.00	10.00	0.00	-103.00	7673.00	49.440	
	2:30:46	59.952	3722.65	350.00	231.41	16.00	10.00	0.00	-103.00	7673.00	49.440	
	2:30:48	59.955	3720.58	350.00	218.62	16.00	10.00	0.00	-103.00	7673.00	46.348	
	2:30:50	59.952	3718.00	350.00	218.62	16.00	10.00	0.00	-103.00	7673.00	49.440	
	2:30:52	59.954	3718.14	350.00	218.62	16.00	10.00	0.00	-103.00	7673.00	47.381	

2:30:54	59.952	3715.75	350.00	218.62	16.00	10.00	0.00	-103.00	7673.00	49.440
2:30:56	59.953	3713.69	350.00	218.62	16.00	10.00	0.00	-103.00	7673.00	48.411
2:30:58	59.953	3713.48	350.00	213.54	16.00	10.00	0.00	-103.00	7673.00	48.411
2:31:00	59.952	3710.85	350.00	213.54	16.00	10.00	0.00	-103.00	7673.00	49.440
2:31:02	59.954	3710.81	350.00	213.54	16.00	10.00	0.00	-103.00	7673.00	47.381
2:31:04	59.954	3712.09	350.00	213.54	16.00	10.00	0.00	-103.00	7674.00	47.381
2:31:06	59.959	3714.62	350.00	213.54	16.00	10.00	0.00	-103.00	7675.00	42.230
2:31:08	59.957	3715.13	350.00	225.65	16.00	10.00	0.00	-103.00	7676.00	44.289
2:31:10	59.956	3716.17	350.00	225.65	16.00	10.00	0.00	-103.00	7677.00	45.319
2:31:12	59.954	3716.46	350.00	225.65	16.00	10.00	0.00	-103.00	7678.00	47.381
2:31:14	59.956	3716.98	350.00	225.65	16.00	10.00	0.00	-103.00	7679.00	45.319
2:31:16	59.955	3717.76	350.00	225.65	16.00	10.00	0.00	-103.00	7680.00	46.348
2:31:18	59.958	3722.36	350.00	212.57	16.00	10.00	0.00	-103.00	7681.00	43.260
2:31:20	59.961	3721.97	350.00	212.57	16.00	10.00	0.00	-103.00	7682.00	40.172
2:31:22	59.962	3722.66	350.00	212.57	16.00	10.00	0.00	-103.00	7684.00	39.138
2:31:24	59.962	3722.27	350.00	212.57	16.00	10.00	0.00	-103.00	7685.00	39.138
2:31:26	59.968	3722.28	350.00	212.57	16.00	10.00	0.00	-103.00	7687.00	32.962
2:31:28	59.966	3721.79	350.00	219.90	16.00	10.00	0.00	-103.00	7689.00	35.020
2:31:30	59.966	3723.09	350.00	219.90	16.00	10.00	0.00	-103.00	7690.00	35.020
2:31:32	59.968	3723.98	350.00	219.90	16.00	10.00	0.00	-103.00	7692.00	32.962
2:31:34	59.970	3723.43	350.00	219.90	16.00	10.00	0.00	-103.00	7692.00	30.899
2:31:36	59.974	3723.89	350.00	219.90	16.00	10.00	0.00	-103.00	7693.00	26.781
2:31:38	59.970	3725.40	350.00	231.18	16.00	10.00	0.00	-103.00	7693.00	30.899
2:31:40	59.969	3727.12	350.00	231.18	16.00	10.00	0.00	-103.00	7694.00	31.928
2:31:42	59.969	3728.05	350.00	231.18	16.00	10.00	0.00	-103.00	7694.00	31.928
2:31:44	59.970	3731.13	350.00	231.18	16.00	10.00	0.00	-103.00	7695.00	30.899
2:31:46	59.971	3732.53	350.00	231.18	16.00	10.00	0.00	-103.00	7695.00	29.869
2:31:48	59.973	3733.33	350.00	226.63	16.00	10.00	0.00	-103.00	7695.00	27.810
2:31:50	59.973	3736.54	350.00	226.63	16.00	10.00	0.00	-103.00	7696.00	27.810
2:31:52	59.976	3736.91	350.00	226.63	16.00	10.00	0.00	-103.00	7696.00	24.718
2:31:54	59.978	3736.82	350.00	226.63	16.00	10.00	0.00	-103.00	7697.00	22.659
2:31:56	59.978	3738.70	350.00	226.63	16.00	10.00	0.00	-103.00	7697.00	22.659
2:31:58	59.976	3739.94	350.00	227.26	16.00	10.00	0.00	-103.00	7697.00	24.718
2:32:00	59.978	3740.88	350.00	227.26	16.00	10.00	0.00	-103.00	7698.00	22.659
2:32:02	59.976	3741.79	350.00	227.26	16.00	10.00	0.00	-103.00	7698.00	24.718
2:32:04	59.978	3745.23	350.00	227.26	16.00	10.00	0.00	-103.00	7698.33	22.659
2:32:06	59.977	3746.61	350.00	227.26	16.00	10.00	0.00	-103.00	7698.66	23.689
2:32:08	59.980	3748.30	350.00	229.29	16.00	10.00	0.00	-103.00	7698.99	20.600
2:32:10	59.982	3750.72	350.00	229.29	16.00	10.00	0.00	-103.00	7699.32	18.542
2:32:12	59.981	3751.56	350.00	229.29	16.00	10.00	0.00	-103.00	7699.65	19.571
2:32:14	59.980	3752.75	350.00	229.29	16.00	10.00	0.00	-103.00	7699.98	20.600
2:32:16	59.979	3755.60	350.00	229.29	16.00	10.00	0.00	-103.00	7700.31	21.630
2:32:18	59.980	3756.41	350.00	221.46	16.00	10.00	0.00	-103.00	7700.64	20.600
2:32:20	59.979	3756.98	350.00	221.46	16.00	10.00	0.00	-103.00	7700.97	21.630
2:32:22	59.983	3760.41	350.00	221.46	16.00	10.00	0.00	-103.00	7701.30	17.508
2:32:24	59.983	3760.98	350.00	221.46	16.00	10.00	0.00	-103.00	7701.63	17.508

2:32:26	59.984	3761.41	350.00	221.46	16.00	10.00	0.00	-103.00	7701.96	16.479
2:32:28	59.988	3762.74	350.00	241.27	16.00	10.00	0.00	-103.00	7702.29	12.361
2:32:30	59.989	3763.21	350.00	241.27	16.00	10.00	0.00	-103.00	7702.62	11.332
2:32:32	59.987	3764.96	350.00	241.27	16.00	10.00	0.00	-103.00	7702.95	13.391
2:32:34	59.987	3766.09	350.00	241.27	16.00	10.00	0.00	-103.00	7703.28	13.391
2:32:36	59.991	3766.43	350.00	241.27	16.00	10.00	0.00	-103.00	7703.61	9.269
2:32:38	59.993	3767.25	350.00	243.07	16.00	10.00	0.00	-103.00	7703.94	7.210
2:32:40	59.992	3767.79	350.00	243.07	16.00	10.00	0.00	-103.00	7704.27	8.239
2:32:42	59.991	3768.63	350.00	243.07	16.00	10.00	0.00	-103.00	7704.60	9.269
2:32:44	59.989	3771.15	350.00	243.07	16.00	10.00	0.00	-103.00	7704.93	11.332
2:32:46	59.986	3772.44	350.00	243.07	16.00	10.00	0.00	-103.00	7705.26	14.420
2:32:48	59.983	3773.69	350.00	241.67	16.00	10.00	0.00	-103.00	7705.59	17.508
2:32:50	59.983	3774.67	350.00	241.67	16.00	10.00	0.00	-103.00	7705.92	17.508
2:32:52	59.988	3775.84	350.00	241.67	16.00	10.00	0.00	-103.00	7706.25	12.361
2:32:54	59.993	3775.36	350.00	241.67	16.00	10.00	0.00	-103.00	7706.58	7.210
2:32:56	59.996	3774.87	350.00	241.67	16.00	10.00	0.00	-103.00	7706.91	4.122
2:32:58	59.998	3775.49	350.00	228.15	16.00	10.00	0.00	-103.00	7707.24	2.059
2:33:00	59.999	3776.42	350.00	228.15	16.00	10.00	0.00	-103.00	7707.57	1.029
2:33:02	60.001	3778.55	350.00	228.15	16.00	10.00	0.00	-103.00	7707.90	-1.029
2:33:04	59.999	3779.69	350.00	228.15	16.00	10.00	0.00	-103.00	7708.23	1.029
2:33:06	59.999	3781.26	350.00	228.15	16.00	10.00	0.00	-103.00	7708.56	1.029
2:33:08	59.999	3780.59	350.00	235.13	16.00	10.00	0.00	-103.00	7708.89	1.029
2:33:10	60.002	3783.09	350.00	235.13	16.00	10.00	0.00	-103.00	7709.22	-2.059
2:33:12	60.005	3783.90	350.00	235.13	16.00	10.00	0.00	-103.00	7709.55	-5.151
2:33:14	60.007	3784.42	350.00	235.13	16.00	10.00	0.00	-103.00	7709.88	-7.210
2:33:16	60.008	3785.77	350.00	235.13	16.00	10.00	0.00	-103.00	7710.21	-8.239
2:33:18	60.011	3785.46	350.00	246.43	16.00	10.00	0.00	-103.00	7710.54	-11.332
2:33:20	60.014	3786.85	350.00	246.43	16.00	10.00	0.00	-103.00	7710.87	-14.420
2:33:22	60.017	3786.30	350.00	246.43	16.00	10.00	0.00	-103.00	7711.20	-17.508
2:33:24	60.019	3787.26	350.00	246.43	16.00	10.00	0.00	-103.00	7711.53	-19.571
2:33:26	60.021	3787.52	350.00	246.43	16.00	10.00	0.00	-103.00	7711.86	-21.630
2:33:28	60.017	3787.96	350.00	236.55	16.00	10.00	0.00	-103.00	7712.19	-17.508
2:33:30	60.017	3788.03	350.00	236.55	16.00	10.00	0.00	-103.00	7712.52	-17.508
2:33:32	60.019	3788.61	350.00	236.55	16.00	10.00	0.00	-103.00	7712.85	-19.571
2:33:34	60.023	3789.22	350.00	236.55	16.00	10.00	0.00	-103.00	7713.18	-23.689
2:33:36	60.024	3787.54	350.00	236.55	16.00	10.00	0.00	-103.00	7713.51	-24.718
2:33:38	60.025	3785.84	350.00	230.30	16.00	10.00	0.00	-103.00	7713.84	-25.752
2:33:40	60.021	3786.08	350.00	230.30	16.00	10.00	0.00	-103.00	7714.17	-21.630
2:33:42	60.019	3787.93	350.00	230.30	16.00	10.00	0.00	-103.00	7714.50	-19.571
2:33:44	60.024	3788.76	350.00	230.30	16.00	10.00	0.00	-103.00	7714.83	-24.718
2:33:46	60.024	3786.87	350.00	230.30	16.00	10.00	0.00	-103.00	7715.16	-24.718
2:33:48	60.021	3786.55	350.00	231.18	16.00	10.00	0.00	-103.00	7715.49	-21.630
2:33:50	60.020	3787.36	350.00	231.18	16.00	10.00	0.00	-103.00	7715.82	-20.600
2:33:52	60.025	3785.02	350.00	231.18	16.00	10.00	0.00	-103.00	7716.15	-25.752
2:33:54	60.024	3785.61	350.00	231.18	16.00	10.00	0.00	-103.00	7716.48	-24.718
2:33:56	60.020	3785.95	350.00	231.18	16.00	10.00	0.00	-103.00	7716.81	-20.600

2:33:58	60.020	3785.80	350.00	225.62	16.00	10.00	0.00	-103.00	7717.14	-20.600
2:34:00	60.022	3786.86	350.00	225.62	16.00	10.00	0.00	-103.00	7717.47	-22.659
2:34:02	60.022	3786.88	350.00	225.62	16.00	10.00	0.00	-103.00	7717.80	-22.659
2:34:04	60.022	3785.25	350.00	225.62	16.00	10.00	0.00	-103.00	7718.13	-22.659
2:34:06	60.021	3785.73	350.00	225.62	16.00	10.00	0.00	-103.00	7718.46	-21.630
2:34:08	60.021	3786.35	350.00	230.73	16.00	10.00	0.00	-103.00	7718.79	-21.630
2:34:10	60.023	3785.82	350.00	230.73	16.00	10.00	0.00	-103.00	7719.12	-23.689
2:34:12	60.023	3785.80	350.00	230.73	16.00	10.00	0.00	-103.00	7719.45	-23.689
2:34:14	60.022	3786.28	350.00	230.73	16.00	10.00	0.00	-103.00	7719.78	-22.659
2:34:16	60.019	3786.94	350.00	230.73	16.00	10.00	0.00	-103.00	7720.11	-19.571
2:34:18	60.016	3787.63	350.00	234.85	16.00	10.00	0.00	-103.00	7720.44	-16.479
2:34:20	60.018	3789.44	350.00	234.85	16.00	10.00	0.00	-103.00	7720.77	-18.542
2:34:22	60.018	3789.67	350.00	234.85	16.00	10.00	0.00	-103.00	7721.10	-18.542
2:34:24	60.018	3789.40	350.00	234.85	16.00	10.00	0.00	-103.00	7721.43	-18.542
2:34:26	60.019	3788.48	350.00	234.85	16.00	10.00	0.00	-103.00	7721.76	-19.571
2:34:28	60.019	3789.18	350.00	228.96	16.00	10.00	0.00	-103.00	7722.09	-19.571
2:34:30	60.016	3789.37	350.00	228.96	16.00	10.00	0.00	-103.00	7722.42	-16.479
2:34:32	60.015	3789.00	350.00	228.96	16.00	10.00	0.00	-103.00	7722.75	-15.449
2:34:34	60.016	3788.66	350.00	228.96	16.00	10.00	0.00	-103.00	7723.08	-16.479
2:34:36	60.014	3788.93	350.00	228.96	16.00	10.00	0.00	-103.00	7723.41	-14.420
2:34:38	60.013	3790.67	350.00	231.18	16.00	10.00	0.00	-103.00	7723.74	-13.391
2:34:40	60.012	3790.81	350.00	231.18	16.00	10.00	0.00	-103.00	7724.07	-12.361
2:34:42	60.012	3790.41	350.00	231.18	16.00	10.00	0.00	-103.00	7724.40	-12.361
2:34:44	60.010	3789.77	350.00	231.18	16.00	10.00	0.00	-103.00	7724.73	-10.298
2:34:46	60.007	3791.54	350.00	231.18	16.00	10.00	0.00	-103.00	7725.06	-7.210
2:34:48	60.007	3792.95	350.00	236.49	16.00	10.00	0.00	-103.00	7725.39	-7.210
2:34:50	60.009	3791.03	350.00	236.49	16.00	10.00	0.00	-103.00	7725.72	-9.269
2:34:52	60.009	3791.44	350.00	236.49	16.00	10.00	0.00	-103.00	7726.05	-9.269
2:34:54	60.010	3791.43	350.00	236.49	16.00	10.00	0.00	-103.00	7726.38	-10.298
2:34:56	60.003	3790.60	350.00	236.49	16.00	10.00	0.00	-103.00	7726.71	-3.088
2:34:58	59.999	3790.46	350.00	245.04	16.00	10.00	0.00	-103.00	7727.04	1.029
2:35:00	59.995	3790.22	350.00	245.04	16.00	10.00	0.00	-103.00	7727.37	5.151
2:35:02	59.992	3789.58	350.00	245.04	16.00	10.00	0.00	-103.00	7727.70	8.239
2:35:04	59.991	3788.46	350.00	245.04	16.00	10.00	0.00	-103.00	7728.03	9.269
2:35:06	59.992	3788.10	350.00	245.04	16.00	10.00	0.00	-103.00	7728.36	8.239
2:35:08	59.992	3788.06	350.00	223.61	16.00	10.00	0.00	-103.00	7728.69	8.239
2:35:10	59.988	3788.19	350.00	223.61	16.00	10.00	0.00	-103.00	7729.02	12.361
2:35:12	59.986	3788.50	350.00	223.61	16.00	10.00	0.00	-103.00	7729.35	14.420
2:35:14	59.985	3788.54	350.00	223.61	16.00	10.00	0.00	-103.00	7729.68	15.449
2:35:16	59.984	3788.57	350.00	223.61	16.00	10.00	0.00	-103.00	7730.01	16.479
2:35:18	59.985	3788.10	350.00	231.12	16.00	10.00	0.00	-103.00	7730.34	15.449
2:35:20	59.984	3787.13	350.00	231.12	16.00	10.00	0.00	-103.00	7730.67	16.479
2:35:22	59.982	3786.45	350.00	231.12	16.00	10.00	0.00	-103.00	7731.00	18.542
2:35:24	59.981	3787.73	350.00	231.12	16.00	10.00	0.00	-103.00	7731.33	19.571
2:35:26	59.982	3788.81	350.00	231.12	16.00	10.00	0.00	-103.00	7731.66	18.542
2:35:28	59.979	3789.29	350.00	237.21	16.00	10.00	0.00	-103.00	7731.99	21.630

2:35:30	59.977	3788.26	350.00	237.21	16.00	10.00	0.00	-103.00	7732.32	23.689
2:35:32	59.976	3788.41	350.00	237.21	16.00	10.00	0.00	-103.00	7732.65	24.718
2:35:34	59.976	3790.47	350.00	237.21	16.00	10.00	0.00	-103.00	7732.98	24.718
2:35:36	59.979	3790.66	350.00	237.21	16.00	10.00	0.00	-103.00	7733.31	21.630
2:35:38	59.982	3790.42	350.00	240.52	16.00	10.00	0.00	-103.00	7733.64	18.542
2:35:40	59.978	3789.67	350.00	240.52	16.00	10.00	0.00	-103.00	7733.97	22.659
2:35:42	59.976	3789.27	350.00	240.52	16.00	10.00	0.00	-103.00	7734.30	24.718
2:35:44	59.974	3789.15	350.00	240.52	16.00	10.00	0.00	-103.00	7734.63	26.781
2:35:46	59.976	3790.43	350.00	240.52	16.00	10.00	0.00	-103.00	7734.96	24.718
2:35:48	59.977	3789.91	350.00	237.57	16.00	10.00	0.00	-103.00	7735.29	23.689
2:35:50	59.977	3786.24	350.00	237.57	16.00	10.00	0.00	-103.00	7735.62	23.689
2:35:52	59.975	3787.44	350.00	237.57	16.00	10.00	0.00	-103.00	7735.95	25.752
2:35:54	59.973	3788.96	350.00	237.57	16.00	10.00	0.00	-103.00	7736.28	27.810
2:35:56	59.969	3790.60	350.00	237.57	16.00	10.00	0.00	-103.00	7736.61	31.928
2:35:58	59.970	3791.88	350.00	231.58	16.00	10.00	0.00	-103.00	7736.94	30.899
2:36:00	59.971	3792.91	350.00	231.58	16.00	10.00	0.00	-103.00	7737.27	29.869
2:36:02	59.973	3792.31	350.00	231.58	16.00	10.00	0.00	-103.00	7737.60	27.810
2:36:04	59.978	3789.13	350.00	231.58	16.00	10.00	0.00	-103.00	7737.93	22.659
2:36:06	59.981	3788.08	350.00	231.58	16.00	10.00	0.00	-103.00	7738.26	19.571
2:36:08	59.978	3787.84	350.00	235.85	16.00	10.00	0.00	-103.00	7738.59	22.659
2:36:10	59.975	3787.14	350.00	235.85	16.00	10.00	0.00	-103.00	7738.92	25.752
2:36:12	59.972	3787.16	350.00	235.85	16.00	10.00	0.00	-103.00	7739.25	28.840
2:36:14	59.976	3787.00	350.00	235.85	16.00	10.00	0.00	-103.00	7739.58	24.718
2:36:16	59.975	3787.40	350.00	235.85	16.00	10.00	0.00	-103.00	7739.91	25.752
2:36:18	59.973	3786.49	350.00	233.56	16.00	10.00	0.00	-103.00	7740.24	27.810
2:36:20	59.969	3787.08	350.00	233.56	16.00	10.00	0.00	-103.00	7740.57	31.928
2:36:22	59.966	3789.21	350.00	233.56	16.00	10.00	0.00	-103.00	7740.90	35.020
2:36:24	59.965	3790.51	350.00	233.56	16.00	10.00	0.00	-103.00	7741.23	36.050
2:36:26	59.966	3791.22	350.00	233.56	16.00	10.00	0.00	-103.00	7741.56	35.020
2:36:28	59.969	3792.22	350.00	219.01	16.00	10.00	0.00	-103.00	7741.89	31.928
2:36:30	59.970	3790.96	350.00	219.01	16.00	10.00	0.00	-103.00	7742.22	30.899
2:36:32	59.968	3788.82	350.00	219.01	16.00	10.00	0.00	-103.00	7742.55	32.962
2:36:34	59.965	3789.03	350.00	219.01	16.00	10.00	0.00	-103.00	7742.88	36.050
2:36:36	59.964	3789.17	350.00	219.01	16.00	10.00	0.00	-103.00	7743.21	37.079
2:36:38	59.970	3787.39	350.00	205.34	16.00	10.00	0.00	-103.00	7743.54	30.899
2:36:40	59.972	3785.69	350.00	205.34	16.00	10.00	0.00	-103.00	7743.87	28.840
2:36:42	59.967	3784.83	350.00	205.34	16.00	10.00	0.00	-103.00	7744.20	33.991
2:36:44	59.967	3785.01	350.00	205.34	16.00	10.00	0.00	-103.00	7744.53	33.991
2:36:46	59.969	3784.32	350.00	205.34	16.00	10.00	0.00	-103.00	7744.86	31.928
2:36:48	59.968	3782.81	350.00	236.29	16.00	10.00	0.00	-103.00	7745.19	32.962
2:36:50	59.969	3782.11	350.00	236.29	16.00	10.00	0.00	-103.00	7745.52	31.928
2:36:52	59.967	3779.35	350.00	236.29	16.00	10.00	0.00	-103.00	7745.85	33.991
2:36:54	59.967	3779.06	350.00	236.29	16.00	10.00	0.00	-103.00	7746.18	33.991
2:36:56	59.966	3778.63	350.00	236.29	16.00	10.00	0.00	-103.00	7746.51	35.020
2:36:58	59.965	3779.21	350.00	223.02	16.00	10.00	0.00	-103.00	7746.84	36.050
2:37:00	59.971	3779.33	350.00	223.02	16.00	10.00	0.00	-103.00	7747.17	29.869

2:37:02	59.967	3776.43	350.00	223.02	16.00	10.00	0.00	-103.00	7747.50	33.991
2:37:04	59.965	3775.65	350.00	223.02	16.00	10.00	0.00	-103.00	7747.83	36.050
2:37:06	59.962	3776.60	350.00	223.02	16.00	10.00	0.00	-103.00	7748.16	39.138
2:37:08	59.964	3776.56	350.00	223.02	16.00	10.00	0.00	-103.00	7748.49	37.079
2:37:10	59.970	3776.02	350.00	223.02	16.00	10.00	0.00	-103.00	7748.82	30.899
2:37:12	59.967	3773.17	350.00	223.02	16.00	10.00	0.00	-103.00	7749.15	33.991
2:37:14	59.969	3771.73	350.00	223.02	16.00	10.00	0.00	-103.00	7749.48	31.928
2:37:16	59.968	3768.79	350.00	223.02	16.00	10.00	0.00	-103.00	7749.81	32.962
2:37:18	59.963	3768.50	350.00	223.02	16.00	10.00	0.00	-103.00	7750.14	38.109
2:37:20	59.965	3768.92	350.00	223.02	16.00	10.00	0.00	-103.00	7750.47	36.050
2:37:22	59.970	3767.37	350.00	223.02	16.00	10.00	0.00	-103.00	7750.80	30.899
2:37:24	59.973	3764.79	350.00	223.02	16.00	10.00	0.00	-103.00	7751.13	27.810
2:37:26	59.968	3760.30	350.00	223.02	16.00	10.00	0.00	-103.00	7751.46	32.962
2:37:28	59.965	3759.59	350.00	223.02	16.00	10.00	0.00	-103.00	7751.79	36.050
2:37:30	59.968	3761.89	350.00	223.02	16.00	10.00	0.00	-103.00	7752.12	32.962
2:37:32	59.969	3761.78	350.00	223.02	16.00	10.00	0.00	-103.00	7752.45	31.928
2:37:34	59.967	3760.58	350.00	223.02	16.00	10.00	0.00	-103.00	7752.78	33.991
2:37:36	59.964	3760.16	350.00	223.02	16.00	10.00	0.00	-103.00	7753.11	37.079
2:37:38	59.966	3759.78	350.00	223.02	16.00	10.00	0.00	-103.00	7753.44	35.020
2:37:40	59.979	3759.49	350.00	223.02	16.00	10.00	0.00	-103.00	7753.77	21.630
2:37:42	59.990	3757.77	350.00	223.02	16.00	10.00	0.00	-103.00	7754.10	10.298
2:37:44	59.983	3753.28	350.00	223.02	16.00	10.00	0.00	-103.00	7754.43	17.508
2:37:46	59.974	3753.09	350.00	223.02	16.00	10.00	0.00	-103.00	7754.76	26.781
2:37:48	59.967	3751.64	350.00	223.02	16.00	10.00	0.00	-103.00	7755.09	33.991
2:37:50	59.965	3753.75	350.00	223.02	16.00	10.00	0.00	-103.00	7755.42	36.050
2:37:52	59.962	3758.22	350.00	223.02	16.00	10.00	0.00	-103.00	7755.75	39.138
2:37:54	59.962	3759.25	350.00	223.02	16.00	10.00	0.00	-103.00	7756.08	39.138
2:37:56	59.961	3758.04	350.00	223.02	16.00	10.00	0.00	-103.00	7756.41	40.172
2:37:58	59.961	3760.96	350.00	223.02	16.00	10.00	0.00	-103.00	7756.74	40.172
2:38:00	59.960	3762.02	350.00	223.02	16.00	10.00	0.00	-103.00	7757.07	41.201
2:38:02	59.963	3763.82	350.00	223.02	16.00	10.00	0.00	-103.00	7757.40	38.109
2:38:04	59.959	3763.10	350.00	223.02	16.00	10.00	0.00	-103.00	7757.73	42.230
2:38:06	59.956	3763.86	350.00	223.02	16.00	10.00	0.00	-103.00	7758.06	45.319
2:38:08	59.951	3764.16	350.00	223.02	16.00	10.00	0.00	-103.00	7758.39	50.470
2:38:10	59.953	3766.13	350.00	223.02	16.00	10.00	0.00	-103.00	7758.72	48.411
2:38:12	59.954	3768.34	350.00	223.02	16.00	10.00	0.00	-103.00	7759.05	47.381
2:38:14	59.957	3767.97	350.00	223.02	16.00	10.00	0.00	-103.00	7759.38	44.289
2:38:16	59.956	3767.44	350.00	223.02	16.00	10.00	0.00	-103.00	7759.71	45.319
2:38:18	59.961	3765.61	350.00	223.02	16.00	10.00	0.00	-103.00	7760.04	40.172
2:38:20	59.963	3762.69	350.00	223.02	16.00	10.00	0.00	-103.00	7760.37	38.109
2:38:22	59.961	3761.57	350.00	223.02	16.00	10.00	0.00	-103.00	7760.70	40.172
2:38:24	59.959	3761.92	350.00	223.02	16.00	10.00	0.00	-103.00	7761.03	42.230
2:38:26	59.963	3759.63	350.00	223.02	16.00	10.00	0.00	-103.00	7761.36	38.109
2:38:28	59.963	3758.52	350.00	223.02	16.00	10.00	0.00	-103.00	7761.69	38.109
2:38:30	59.965	3752.43	350.00	223.02	16.00	10.00	0.00	-103.00	7762.02	36.050
2:38:32	59.968	3750.10	350.00	223.02	16.00	10.00	0.00	-103.00	7762.35	32.962

2:38:34	59.968	3753.83	350.00	223.02	16.00	10.00	0.00	-103.00	7762.68	32.962
2:38:36	59.968	3753.51	350.00	223.02	16.00	10.00	0.00	-103.00	7763.01	32.962
2:38:38	59.970	3753.52	350.00	223.02	16.00	10.00	0.00	-103.00	7763.34	30.899
2:38:40	59.973	3752.74	350.00	223.02	16.00	10.00	0.00	-103.00	7763.67	27.810
2:38:42	59.971	3753.18	350.00	223.02	16.00	10.00	0.00	-103.00	7764.00	29.869
2:38:44	59.965	3752.73	350.00	223.02	16.00	10.00	0.00	-103.00	7764.33	36.050
2:38:46	59.967	3753.29	350.00	223.02	16.00	10.00	0.00	-103.00	7764.66	33.991
2:38:48	59.967	3752.87	350.00	223.02	16.00	10.00	0.00	-103.00	7764.99	33.991
2:38:50	59.972	3752.36	350.00	223.02	16.00	10.00	0.00	-103.00	7765.32	28.840
2:38:52	59.976	3749.40	350.00	223.02	16.00	10.00	0.00	-103.00	7765.65	24.718
2:38:54	59.975	3747.48	350.00	223.02	16.00	10.00	0.00	-103.00	7765.98	25.752
2:38:56	59.969	3740.37	350.00	223.02	16.00	10.00	0.00	-103.00	7766.31	31.928
2:38:58	59.973	3741.29	350.00	223.02	16.00	10.00	0.00	-103.00	7766.64	27.810
2:39:00	59.974	3746.65	350.00	223.02	16.00	10.00	0.00	-103.00	7766.97	26.781
2:39:02	59.978	3745.74	350.00	223.02	16.00	10.00	0.00	-103.00	7767.30	22.659
2:39:04	59.981	3743.35	350.00	223.02	16.00	10.00	0.00	-103.00	7767.63	19.571
2:39:06	59.981	3741.62	350.00	223.02	16.00	10.00	0.00	-103.00	7767.96	19.571
2:39:08	59.981	3740.31	350.00	223.02	16.00	10.00	0.00	-103.00	7768.29	19.571
2:39:10	59.982	3738.48	350.00	223.02	16.00	10.00	0.00	-103.00	7768.62	18.542
2:39:12	59.982	3738.90	350.00	223.02	16.00	10.00	0.00	-103.00	7768.95	18.542
2:39:14	59.984	3737.40	350.00	223.02	16.00	10.00	0.00	-103.00	7769.28	16.479
2:39:16	59.982	3737.27	350.00	223.02	16.00	10.00	0.00	-103.00	7769.61	18.542
2:39:18	59.981	3736.31	350.00	223.02	16.00	10.00	0.00	-103.00	7769.94	19.571
2:39:20	59.979	3736.27	350.00	223.02	16.00	10.00	0.00	-103.00	7770.27	21.630
2:39:22	59.980	3735.45	350.00	223.02	16.00	10.00	0.00	-103.00	7770.60	20.600
2:39:24	59.978	3735.65	350.00	223.02	16.00	10.00	0.00	-103.00	7770.93	22.659
2:39:26	59.978	3737.54	350.00	223.02	16.00	10.00	0.00	-103.00	7771.26	22.659
2:39:28	59.980	3738.01	350.00	223.02	16.00	10.00	0.00	-103.00	7771.59	20.600
2:39:30	59.981	3736.75	350.00	223.02	16.00	10.00	0.00	-103.00	7771.92	19.571
2:39:32	59.980	3736.69	350.00	223.02	16.00	10.00	0.00	-103.00	7772.25	20.600
2:39:34	59.978	3736.07	350.00	223.02	16.00	10.00	0.00	-103.00	7772.58	22.659
2:39:36	59.976	3736.09	350.00	223.02	16.00	10.00	0.00	-103.00	7772.91	24.718
2:39:38	59.972	3736.57	350.00	223.02	16.00	10.00	0.00	-103.00	7773.24	28.840
2:39:40	59.971	3738.57	350.00	223.02	16.00	10.00	0.00	-103.00	7773.57	29.869
2:39:42	59.969	3738.87	350.00	223.02	16.00	10.00	0.00	-103.00	7773.90	31.928
2:39:44	59.974	3738.93	350.00	223.02	16.00	10.00	0.00	-103.00	7774.23	26.781
2:39:46	59.975	3738.65	350.00	223.02	16.00	10.00	0.00	-103.00	7774.56	25.752
2:39:48	59.976	3737.68	350.00	223.02	16.00	10.00	0.00	-103.00	7774.89	24.718
2:39:50	59.972	3737.38	350.00	223.02	16.00	10.00	0.00	-103.00	7775.22	28.840
2:39:52	59.969	3737.89	350.00	223.02	16.00	10.00	0.00	-103.00	7775.55	31.928
2:39:54	59.971	3740.02	350.00	223.02	16.00	10.00	0.00	-103.00	7775.88	29.869
2:39:56	59.974	3740.33	350.00	223.02	16.00	10.00	0.00	-103.00	7776.21	26.781
2:39:58	59.972	3742.05	350.00	223.02	16.00	10.00	0.00	-103.00	7776.54	28.840
2:40:00	59.972	3742.42	350.00	223.02	16.00	10.00	0.00	-103.00	7776.87	28.840
2:40:02	59.972	3742.52	350.00	223.02	16.00	10.00	0.00	-103.00	7777.20	28.840
2:40:04	59.977	3742.25	350.00	223.02	16.00	10.00	0.00	-103.00	7777.53	23.689

2:40:06	59.982	3741.72	350.00	223.02	16.00	10.00	0.00	-103.00	7777.86	18.542
2:40:08	59.978	3740.09	350.00	223.02	16.00	10.00	0.00	-103.00	7778.19	22.659
2:40:10	59.976	3740.63	350.00	223.02	16.00	10.00	0.00	-103.00	7778.52	24.718
2:40:12	59.973	3739.96	350.00	223.02	16.00	10.00	0.00	-103.00	7778.85	27.810
2:40:14	59.974	3740.78	350.00	223.02	16.00	10.00	0.00	-103.00	7779.18	26.781
2:40:16	59.977	3742.83	350.00	223.02	16.00	10.00	0.00	-103.00	7779.51	23.689
2:40:18	59.977	3741.27	350.00	223.02	16.00	10.00	0.00	-103.00	7779.84	23.689
2:40:20	59.978	3739.78	350.00	223.02	16.00	10.00	0.00	-103.00	7780.17	22.659
2:40:22	59.979	3738.97	350.00	223.02	16.00	10.00	0.00	-103.00	7780.50	21.630
2:40:24	59.981	3738.71	350.00	223.02	16.00	10.00	0.00	-103.00	7780.83	19.571
2:40:26	59.977	3738.88	350.00	223.02	16.00	10.00	0.00	-103.00	7781.16	23.689
2:40:28	59.974	3739.86	350.00	223.02	16.00	10.00	0.00	-103.00	7781.49	26.781
2:40:30	59.971	3738.10	350.00	223.02	16.00	10.00	0.00	-103.00	7781.82	29.869
2:40:32	59.971	3738.56	350.00	223.02	16.00	10.00	0.00	-103.00	7782.15	29.869
2:40:34	59.971	3743.51	350.00	223.02	16.00	10.00	0.00	-103.00	7782.48	29.869
2:40:36	59.972	3743.42	350.00	223.02	16.00	10.00	0.00	-103.00	7782.81	28.840
2:40:38	59.968	3745.25	350.00	223.02	16.00	10.00	0.00	-103.00	7783.14	32.962
2:40:40	59.966	3745.74	350.00	223.02	16.00	10.00	0.00	-103.00	7783.47	35.020
2:40:42	59.966	3747.34	350.00	223.02	16.00	10.00	0.00	-103.00	7783.80	35.020
2:40:44	59.971	3750.70	350.00	223.02	16.00	10.00	0.00	-103.00	7784.13	29.869
2:40:46	59.973	3749.75	350.00	223.02	16.00	10.00	0.00	-103.00	7784.46	27.810
2:40:48	59.972	3746.22	350.00	223.02	16.00	10.00	0.00	-103.00	7784.79	28.840
2:40:50	59.969	3744.68	350.00	223.02	16.00	10.00	0.00	-103.00	7785.12	31.928
2:40:52	59.972	3743.75	350.00	223.02	16.00	10.00	0.00	-103.00	7785.45	28.840
2:40:54	59.974	3743.15	350.00	223.02	16.00	10.00	0.00	-103.00	7785.78	26.781
2:40:56	59.973	3740.30	350.00	223.02	16.00	10.00	0.00	-103.00	7786.11	27.810
2:40:58	59.970	3739.45	350.00	223.02	16.00	10.00	0.00	-103.00	7786.44	30.899
2:41:00	59.971	3733.38	350.00	223.02	16.00	10.00	0.00	-103.00	7786.77	29.869
2:41:02	59.974	3731.83	350.00	223.02	16.00	10.00	0.00	-103.00	7787.10	26.781
2:41:04	59.982	3737.58	350.00	223.02	16.00	10.00	0.00	-103.00	7787.43	18.542
2:41:06	59.985	3736.23	350.00	223.02	16.00	10.00	0.00	-103.00	7787.76	15.449
2:41:08	59.985	3734.90	350.00	223.02	16.00	10.00	0.00	-103.00	7788.09	15.449
2:41:10	59.985	3733.43	350.00	223.02	16.00	10.00	0.00	-103.00	7788.42	15.449
2:41:12	59.987	3733.12	350.00	223.02	16.00	10.00	0.00	-103.00	7788.75	13.391
2:41:14	59.989	3730.51	350.00	223.02	16.00	10.00	0.00	-103.00	7789.08	11.332
2:41:16	59.989	3729.18	350.00	223.02	16.00	10.00	0.00	-103.00	7789.41	11.332
2:41:18	59.986	3725.46	350.00	223.02	16.00	10.00	0.00	-103.00	7789.74	14.420
2:41:20	59.987	3724.78	350.00	223.02	16.00	10.00	0.00	-103.00	7790.07	13.391
2:41:22	59.990	3720.11	350.00	223.02	16.00	10.00	0.00	-103.00	7790.40	10.298
2:41:24	59.994	3720.94	350.00	223.02	16.00	10.00	0.00	-103.00	7790.73	6.181
2:41:26	59.996	3725.66	350.00	223.02	16.00	10.00	0.00	-103.00	7791.06	4.122
2:41:28	60.001	3725.68	350.00	223.02	16.00	10.00	0.00	-103.00	7791.39	-1.029
2:41:30	60.003	3727.75	350.00	223.02	16.00	10.00	0.00	-103.00	7791.72	-3.088
2:41:32	60.004	3727.82	350.00	223.02	16.00	10.00	0.00	-103.00	7792.05	-4.122
2:41:34	60.006	3727.68	350.00	223.02	16.00	10.00	0.00	-103.00	7792.38	-6.181
2:41:36	60.012	3727.23	350.00	223.02	16.00	10.00	0.00	-103.00	7792.71	-12.361

2:41:38	60.014	3725.01	350.00	223.02	16.00	10.00	0.00	-103.00	7793.04	-14.420
2:41:40	60.019	3726.45	350.00	223.02	16.00	10.00	0.00	-103.00	7793.37	-19.571
2:41:42	60.021	3726.02	350.00	223.02	16.00	10.00	0.00	-103.00	7793.70	-21.630
2:41:44	60.025	3719.12	350.00	223.02	16.00	10.00	0.00	-103.00	7794.03	-25.752
2:41:46	60.026	3716.37	350.00	223.02	16.00	10.00	0.00	-103.00	7794.36	-26.781
2:41:48	60.027	3717.33	350.00	223.02	16.00	10.00	0.00	-103.00	7794.69	-27.810
2:41:50	60.029	3717.56	350.00	223.02	16.00	10.00	0.00	-103.00	7795.02	-29.869
2:41:52	60.029	3717.14	350.00	223.02	16.00	10.00	0.00	-103.00	7795.35	-29.869
2:41:54	60.037	3715.17	350.00	223.02	16.00	10.00	0.00	-103.00	7795.68	-38.109
2:41:56	60.036	3713.63	350.00	223.02	16.00	10.00	0.00	-103.00	7796.01	-37.079
2:41:58	60.037	3710.28	350.00	223.02	16.00	10.00	0.00	-103.00	7796.34	-38.109
2:42:00	60.037	3710.16	350.00	223.02	16.00	10.00	0.00	-103.00	7796.67	-38.109
2:42:02	60.036	3699.36	350.00	223.02	16.00	10.00	0.00	-103.00	7797.00	-37.079
2:42:04	60.041	3698.59	350.00	223.02	16.00	10.00	0.00	-103.00	7797.33	-42.230
2:42:06	60.043	3704.59	350.00	223.02	16.00	10.00	0.00	-103.00	7797.66	-44.289
2:42:08	60.044	3703.28	350.00	223.02	16.00	10.00	0.00	-103.00	7797.99	-45.319
2:42:10	60.043	3702.48	350.00	223.02	16.00	10.00	0.00	-103.00	7798.32	-44.289
2:42:12	60.046	3701.32	350.00	223.02	16.00	10.00	0.00	-103.00	7798.65	-47.381
2:42:14	60.048	3700.83	350.00	223.02	16.00	10.00	0.00	-103.00	7798.98	-49.440
2:42:16	60.046	3699.53	350.00	223.02	16.00	10.00	0.00	-103.00	7799.31	-47.381
2:42:18	60.046	3699.73	350.00	223.02	16.00	10.00	0.00	-103.00	7799.64	-47.381
2:42:20	60.043	3690.10	350.00	223.02	16.00	10.00	0.00	-103.00	7799.97	-44.289
2:42:22	60.043	3690.48	350.00	223.02	16.00	10.00	0.00	-103.00	7800.30	-44.289
2:42:24	60.044	3696.86	350.00	223.02	16.00	10.00	0.00	-103.00	7800.63	-45.319
2:42:26	60.043	3696.88	350.00	223.02	16.00	10.00	0.00	-103.00	7800.96	-44.289

60.042	3645.73	350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389			
60.042	3645.73	350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389			
60.042	3645.73	350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389			
60.042	3645.73	350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389			
60.042	3645.73	350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389			
60.042	3645.73	350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389			
60.042	3645.73	350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389			
60.042	3645.73	350.000	165.336	0.000	10.000	15.000	-103.00	7651.31	-43.389			
											51.252	-26.96
											89.794	-43.56
											89.563	-51.73
											89.563	-51.73
											92.047	-61.31
											116.139	-76.85
											121.003	-74.64
											121.084	-72.89
											123.767	-74.06
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	124.815	-78.44
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	135.511	-87.36
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	136.482	-87.42

59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	137.389	-87.44	0.1150
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	139.852	-90.15	0.1130
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	139.620	-90.59	0.1120
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	139.309	-91.57	0.1100
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	142.962	-97.17	0.1050
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	143.218	-96.69	0.1060
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	143.758	-96.40	0.1070
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	143.362	-96.78	0.1060
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	147.166	-99.35	0.1060
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	147.964	-97.91	0.1090
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	149.264	-98.12	0.1100
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	154.318	-98.21	0.1150
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7633.00	114.209	3843.77	155.317	-98.85	0.1150
59.889	3788.35	335.000	214.128	6.353	10.000	0.000	-103.00	7632.00	114.209	3843.77	154.849	-100.47	0.1120
											158.515	-102.19	0.1130
											157.815	-102.39	0.1120
											157.841	-102.41	0.1120
											159.278	-104.70	0.1100
											160.386	-104.74	0.1110
											160.507	-100.24	0.1180
											164.127	-97.05	0.1270
											166.393	-89.88	0.1430
											169.752	-87.90	0.1510
											170.779	-89.82	0.1480
											180.532	-98.05	0.1420
											180.943	-101.01	0.1370
											180.892	-102.71	0.1340
											182.414	-102.99	0.1350
											181.643	-103.72	0.1330
											181.673	-103.15	0.1340
											181.344	-105.97	0.1290
											180.603	-107.42	0.1260
											178.716	-109.56	0.1210
											177.395	-109.42	0.1200
											173.971	-109.33	0.1170
											172.945	-110.77	0.1140
											171.705	-112.87	0.1100
											169.900	-113.17	0.1080
											168.673	-110.15	0.1110
											166.728	-111.81	0.1070
											164.542	-114.96	0.1010
											161.862	-116.34	0.0970
											160.483	-114.53	0.0980
											159.078	-113.53	0.0980
											150.968	-109.30	0.0960

148.865	-110.17	0.0930
147.059	-112.15	0.0890
146.392	-116.07	0.0840
144.424	-114.51	0.0840
143.022	-114.30	0.0830
139.453	-112.35	0.0820
137.918	-112.93	0.0800
136.591	-112.77	0.0790
131.248	-107.47	0.0800
130.525	-104.32	0.0830
129.494	-106.03	0.0800
128.224	-105.86	0.0790
128.848	-108.16	0.0770
127.612	-109.89	0.0740
126.560	-108.05	0.0750
124.520	-109.11	0.0720
123.597	-107.36	0.0730
122.533	-111.27	0.0680
121.911	-105.89	0.0730
122.298	-107.16	0.0720
121.678	-109.50	0.0690
121.149	-107.09	0.0710
120.562	-108.49	0.0690
121.012	-110.89	0.0670
119.133	-113.32	0.0630
119.995	-114.15	0.0630
117.825	-121.31	0.0550
113.277	-121.64	0.0510
108.812	-114.39	0.0530
104.757	-104.63	0.0580
101.779	-100.65	0.0590
102.765	-102.64	0.0580
104.483	-107.58	0.0550
103.551	-110.02	0.0520
101.596	-106.80	0.0530
103.967	-111.64	0.0510
97.631	-107.14	0.0490
95.149	-105.57	0.0480
91.029	-102.14	0.0470
86.272	-94.67	0.0490
82.728	-91.79	0.0480
80.842	-89.70	0.0480
77.539	-86.03	0.0480
75.468	-86.62	0.0450
72.886	-80.87	0.0480
73.032	-82.87	0.0460

70.643	-78.38	0.0480
68.584	-76.95	0.0470
68.374	-76.72	0.0470
65.738	-72.94	0.0480
65.700	-74.55	0.0460
66.982	-76.01	0.0460
69.512	-83.62	0.0410
70.020	-82.26	0.0430
71.058	-82.51	0.0440
71.351	-80.96	0.0460
71.870	-83.45	0.0440
72.649	-83.39	0.0450
77.251	-91.83	0.0420
76.863	-94.74	0.0390
77.548	-96.79	0.0380
77.157	-96.30	0.0380
77.168	-104.10	0.0320
76.677	-100.72	0.0340
77.981	-102.44	0.0340
78.874	-106.40	0.0320
78.324	-108.60	0.0300
78.783	-115.64	0.0260
80.293	-111.33	0.0300
82.011	-112.15	0.0310
82.943	-113.43	0.0310
86.020	-119.27	0.0300
87.420	-122.91	0.0290
88.217	-127.62	0.0270
91.425	-132.26	0.0270
91.797	-138.83	0.0240
91.712	-143.02	0.0220
93.589	-145.95	0.0220
94.834	-143.42	0.0240
95.767	-149.35	0.0220
96.684	-146.22	0.0240
100.124	-156.14	0.0220
101.498	-155.85	0.0230
103.190	-166.10	0.0200
105.606	-175.64	0.0180
106.448	-174.14	0.0190
107.637	-173.26	0.0200
110.489	-175.03	0.0210
111.297	-179.15	0.0200
111.865	-177.21	0.0210
115.295	-195.01	0.0170
115.872	-195.98	0.0170

116.297	-200.08	0.0160
117.627	-217.32	0.0120
118.102	-222.30	0.0110
119.847	-217.41	0.0130
120.975	-219.45	0.0130
121.323	-237.31	0.0090
122.141	-248.63	0.0070
122.682	-244.75	0.0080
123.523	-241.61	0.0090
126.036	-237.24	0.0110
127.335	-226.88	0.0140
128.585	-217.48	0.0170
129.558	-219.13	0.0170
130.731	-241.53	0.0120
130.253	-265.15	0.0070
129.756	-281.30	0.0040
130.382	-295.49	0.0020
131.310	-304.49	0.0010
132.827		0.0010
133.965		0.0010
135.529		0.0010
134.868		0.0010
137.365		0.0020
138.168		0.0050
138.694		0.0070
140.041		0.0080
139.736		0.0110
141.123		0.0140
140.577		0.0170
141.532		0.0190
141.789		0.0210
142.228		0.0170
142.303		0.0170
142.880		0.0190
143.489		0.0230
141.810		0.0240
140.115		0.0250
140.350		0.0190
142.203	0.0240	
143.033	0.0210	
141.148	0.0200	
140.823	0.0250	
141.631		0.0200
139.291		
139.887		
140.222		

140.077	0.0200
141.137	0.0220
141.150	0.0220
139.527	0.0220
139.999	0.0210
140.620	0.0210
140.094	0.0230
140.071	0.0230
140.557	0.0220
141.212	0.0190
141.900	0.0160
143.717	0.0180
143.946	0.0180
143.677	0.0180
142.752	0.0190
143.456	0.0190
143.642	0.0160
143.278	0.0150
142.938	0.0160
143.206	0.0140
144.940	
145.078	0.0130
144.684	0.0120
144.042	0.0120
145.813	0.0100
147.218	0.0070
145.300	0.0070
145.716	0.0090
145.699	0.0090
144.876	0.0100
144.730	0.0030
144.489	0.0010
143.858	0.0050
142.730	0.0080
142.378	0.0090
142.330	0.0080
142.462	0.0080
142.770	0.0120
142.813	0.0140
142.844	0.0150
142.374	0.0160
141.406	0.0150
140.726	0.0160
142.005	0.0180
143.086	0.0190
143.558	0.0180
	0.0210

142.529	0.0230
142.683	0.0240
144.740	
144.938	0.0240
144.693	0.0210
143.947	0.0180
143.540	
143.421	0.0220
144.703	0.0240
144.187	0.0260
140.516	0.0240
141.715	0.0230
143.236	0.0230
144.875	0.0250
146.150	0.0270
147.184	0.0310
146.584	0.0300
143.398	0.0290
142.353	0.0270
142.117	0.0220
141.408	0.0190
141.437	0.0220
141.269	0.0250
141.678	0.0280
140.760	0.0240
141.352	0.0250
143.487	0.0270
144.785	0.0310
145.494	0.0340
146.491	0.0350
145.232	0.0340
143.097	0.0310
143.299	0.0300
143.440	0.0320
141.667	0.0350
139.963	0.0360
139.104	0.0300
139.282	0.0280
138.593	0.0330
137.082	0.0330
136.383	0.0310
133.625	0.0320
133.329	0.0310
132.906	0.0330
133.485	0.0330
133.608	0.0340
	0.0350
	0.0290

130.702	
129.920	
130.870	0.0330
130.832	0.0350
130.296	
127.443	0.0380
126.003	0.0360
123.066	0.0300
122.776	0.0330
123.190	0.0310
121.639	0.0320
119.059	0.0370
114.568	0.0350
113.865	0.0300
116.167	0.0270
116.050	0.0320
114.855	0.0350
114.430	0.0320
114.054	0.0310
113.768	0.0330
112.046	0.0360
107.550	0.0340
107.360	0.0210
105.910	0.0100
108.024	0.0170
112.498	0.0260
113.523	0.0330
112.314	0.0350
115.238	0.0380
116.295	0.0380
118.095	0.0390
117.373	0.0390
118.131	0.0400
118.431	0.0370
120.400	0.0410
122.612	0.0440
122.245	0.0490
121.710	0.0470
119.879	0.0460
116.961	0.0430
115.843	0.0440
116.193	0.0390
113.900	0.0370
112.795	0.0390
106.702	0.0410
104.375	0.0370
	0.0370
	0.0350
	0.0320

108.103	0.0320
107.783	
107.796	
107.014	0.0320
107.451	0.0300
107.002	
107.563	0.0270
107.145	0.0290
106.632	0.0350
103.671	0.0330
101.749	0.0330
94.643	0.0280
95.558	0.0240
100.924	0.0250
100.011	0.0310
97.624	0.0270
95.891	0.0260
94.579	0.0220
92.757	0.0190
93.174	0.0190
91.677	0.0190
91.546	0.0180
90.581	0.0180
90.545	0.0160
89.721	0.0180
89.923	0.0190
91.813	0.0210
92.285	0.0200
91.021	0.0220
90.966	0.0220
90.340	0.0200
90.367	0.0190
90.848	0.0200
92.844	0.0220
93.148	0.0240
93.208	0.0280
92.920	0.0290
91.957	0.0310
91.655	0.0260
92.165	0.0250
94.290	0.0240
94.602	0.0280
96.326	0.0310
96.697	0.0290
96.797	0.0260
96.518	0.0280
	0.0280
	0.0280
	0.0230

95.996	0.0180
94.358	0.0220
94.902	0.0240
94.237	0.0270
95.048	0.0260
97.105	0.0230
95.541	0.0230
94.049	0.0220
93.239	0.0210
92.979	0.0190
93.152	0.0230
94.133	0.0260
92.375	0.0290
92.831	0.0290
97.780	0.0290
97.692	0.0280
99.524	0.0320
100.017	0.0340
101.613	0.0340
104.973	0.0290
104.023	0.0270
100.490	0.0280
98.956	0.0310
98.018	0.0280
97.422	0.0260
94.572	0.0270
93.726	0.0300
87.649	0.0290
86.103	0.0260
91.855	0.0180
90.502	0.0150
89.170	0.0150
87.707	0.0150
87.388	0.0130
84.783	0.0110
83.453	0.0110
79.732	0.0140
79.058	0.0130
74.381	0.0100
75.211	0.0060
79.934	0.0040
79.950	0.0010
82.027	0.0030
82.098	0.0040
81.956	0.0060
81.504	0.0120

79.285	0.0140
80.719	0.0190
80.289	0.0210
73.396	0.0250
70.647	0.0260
71.605	0.0270
71.833	0.0290
71.415	0.0290
69.439	0.0370
67.905	0.0360
64.556	0.0370
64.431	0.0370
53.629	0.0360
52.864	0.0410
58.864	0.0430
57.548	0.0440
56.755	0.0430
55.589	0.0460
55.099	0.0480
53.802	0.0460
53.999	0.0460
44.373	0.0430
44.750	0.0430
51.137	0.0440
51.150	0.0430

ie Evaluation Points			
	Transferred	Contingent	
Pumped	Frequency	BA	Adjusted
Hydro	Response	Lost Generation	P.U.
Adjustment	Adjustment	Adjustment	Performance
11.00	15.21	-15.00	0.856
16.00	17.91	-15.00	0.808
16.00	14.31	-15.00	0.829
16.00	12.21	-15.00	0.633
16.00	10.51	-15.00	0.689

A zero value aligns the data to the hightest Frequency change value. Usually the event begins one or two data scans earlier than this scan.

Increasing this value shifts graph data to the right.
Decreasing this value shifts graph data to the left.

Note: The P.U. Performance values indicate performance as a P.U. value of BA Bias setting. For BAs that utilize a variable Bias, the Bias average during $T(+20)$ to $T(+52)$ is used.
P.U. values above 1.0 indicate that the Bias setting was below measured Frequency Response, P.U. values below 1.0 indicate that the Bias setting was above measured Frequency Response.

First change in frequency of the event should occur here on the vertical grid line.
It is important that the pre-event frequency average to NOT contain frequency data of the event, "Average Frequency" trend to the left of center of the graph
To shift the data on the graph left or right, adjust the value in cell Q3 highlighted in yellow above.

			Value B 20 to 52 second Average Period Evaluation										
					JOU	Non-			Transferred	Contingent			
BA	BA	Bias		Net	Dynamic	Conforming	Pumped	Not	Frequency	BA	Initial	Initial	Sustained
Bias	Load	Setting		Actual	Schedules	Load	Hydro	Used	Response	Lost Generation	Performance	Performance	Performance
Setting		EPFR	Frequency	Interchange	$\operatorname{Imp}(-) \operatorname{Exp}(+)$	Load (-)	Load (-) Gen (+)		$\operatorname{Rec}(-) \operatorname{Del}(+)$	Load (-) Gen (+)	Adjusted	Unadjusted	
MW/0.1 Hz	MW	MW	Hz	MW	MW	MW	MW		MW	MW	P.U.	P.U.	P.U.
-103.00	7651.305	-43.39	59.889	3803.35	335.00	165.34	6.35	0.00	11.09	0.00	0.744	1.000	0.758

				Frequency Response Initiative - Additional Primary Frequency Response Evaluation Points									
			Average	Unadjusted	Unadjusted	Unadjusted	Unadjusted	Unadjusted	Adjusted	Adjusted	Adjusted	Adjusted	Adjusted
BA	BA	Bias	Bias While	PFR									
Bias	Load	Setting	$\mathrm{Hz}>+/-0.036$	Performance									
Setting		EPFR	Hz	@ T(+46)	@ T(+76)	@ T(+106)	@ T(+136)	@ T(+166)	@ T(+46)	@ T(+76)	@ T(+106)	@ T(+136)	@ T(+166)
MW/0.1 Hz	MW	MW	MW/0.1 Hz	P.U.									
-103.00	7632.00	114.21	-103.00	1.399	1.293	1.582	1.571	1.849	0.856	0.808	0.829	0.633	0.689

Teps To be completed for each event evaluated

1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Set-up Data collection in exact same order as the "Data" sheet
Column A: Date and Time in this format, $\mathrm{mm} / \mathrm{dd} / \mathrm{yy} \mathrm{HH}: \mathrm{MM}$: SS
Column B: Frequency H
Column C. Net Actual Interchang
Column D: Joint Owned Unit dynamic schedule
Column E: Non Conforming Load
Column f. Pumped Hy
olumn G: Not Used
Column H: Transferred Frequency Response
Column I: Contingent BA Lost load or generation
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D, E, F and H are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign ($+/$-) convention defined in FRS Form 1.
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must start a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event with up to 60 minutes of data Be sure the "Data" worksheet is clear of any old data. Collect the same total minutes of data for each event evaluated to minimize your effort and time.
using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data.
5 Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on the graph on the "Copy Results" worksheet If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process.

6 Once data is in place in the "Data" worksheet, confirm the Auto selection of the beginning of the event by observing the "Graph 20 to 52 s " worksheet. Adjust the selection if necessary. To make an adjustment, change the value in cell "Q3" on the "Graph 20 to 52 s " worksheet. Usually a 0,1 or 2 will achive the correct alignment of $\mathrm{T}(0)$.

7 If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency (red trend) of the event on the center vertical grid line of the graph.
8 The end of the event will be Auto selected based on the frequency value in cell " N 2 " on the Data worksheet. This will be the frequency at the beginning of the event or 60 Hz , whichever is lower. (for low Hz events his value controls the end of the "Sustained Frequency Response" evaluation period.
Primary Frequency Response should be sustained during the event recovery period. This evaluation determines how well you achieved this goal
9 Use the "Copy Form 2 data for Pasting into Form 1" button provided on the "Copy Results" worksheet (Cells B21 through B28) to copy the evaluation and event specific data for the "FRS Form 1" of this field trial. This data is summarized in the correct order on worksheet "Form 1 Summary Data"
10 Use PasteSpecial/Values and paste the copied data into FRS Form 1 on the appropriate event row. Be sure to use the latest version of Form 1, currently Form 1.9.
11 Save this Form 2 using the file name convention on the "Copy Results" worksheet. The complete file name is in bold in cell B38. Return all completed Form $2 s$ with your Form 1 to NERC.

Steps To be completed the first time you use Form 2 for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Copy Results" worksheet. For example: "NYISO"
B For informational and educational purposes, a "Sustained" performance evaluation is provided in the "Evaluation" worksheet and in the "Sustained" Graph. This evaluation uses a Time Constant (TC) to model the frequency response of your BA. The time constant is located in cell "L13" of the "Evaluation" spreadsheet and should be edited for the types of generators in your BA. Presently this time constant is set at 0.35 ,
he higher the value of the time constant, the faster the delivery of frequency response is expected. Setting the TC to 1.0 effectively turns off the delay and instantaneous frequency response will be modeled. Do not set higher than 1.0 his time constant is only used in the "Sustained" evaluation and is not used for the Field Trial evaluation of performance to the FRO.
A typical setting for this time constant is 0.08 to 0.15 for hydro units, 0.10 to 0.20 for large steam turbines and 0.20 to 0.40 for combustion turbines.
By observing the slope of your "Interchange Actual" on the "Sustained" Graph, adjust the time constant until the initial slope of the "Target" is similar to the slope of the NAl data.
When set appropriately, the "Target" trend on the "Sustained" graph will model what the Net Actua Interchange should have done during the event recovery period based on your Bias setting during the event

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW		$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 59.999 } \\ \text { 8:06:38 } \\ \text { 8:10:30 } \\ \text { 03:52 } \end{gathered}$	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:40:00	60.0097	471		0		0			-653	29756.85		0				
05/16/11 07:40:02	60.00745	471		0		0			-653	29756.85	0	0	0	-0.002	0.002	
05/16/11 07:40:04	60.00452	471		0		0			-653	29756.82	0	0	0	-0.003	0.003	
05/16/11 07:40:06	60.00259	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:08	60.00034	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:10	59.99872	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:12	59.9971	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:14	59.99548	471		0		0			-653	29766.46	0	0	0	-0.002	0.002	
05/16/11 07:40:16	59.99353	471		0		0			-653	29766.46	0	0	0	-0.002	0.002	
05/16/11 07:40:18	59.99063	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:20	59.9874	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:22	59.98416	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:24	59.98093	471		0		0			-653	29766.37	0	0	0	-0.003	0.003	
05/16/11 07:40:26	59.97867	471		0		0			-653	29766.37	0	0	0	-0.002	0.002	
05/16/11 07:40:28	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:30	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:32	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:34	59.97577	471		0		0			-653	29780.98	0	0	0	-0.003	0.003	
05/16/11 07:40:36	59.97382	471		0		0			-653	29780.98	0	0	0	-0.002	0.002	
05/16/11 07:40:38	59.97223	471		0		0			-653	29780.98	0	0	0	-0.002	0.002	
05/16/11 07:40:40	59.97223	471		0		0			-653	29780.98	0	0	0	0.000	0.000	
05/16/11 07:40:42	59.97318	471		0		0			-653	29780.98	0	0	0	0.001	0.001	
05/16/11 07:40:44	59.97351	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:46	59.97415	471		0		0			-653	29780.95	0	0	0	0.001	0.001	
05/16/11 07:40:48	59.97287	471		0		0			-653	29780.95	0	0	0	-0.001	0.001	
05/16/11 07:40:50	59.97287	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:52	59.97287	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:54	59.96832	471		0		0			-653	29770.34	0	0	0	-0.005	0.005	
05/16/11 07:40:56	59.96768	471		0		0			-653	29770.34	0	0	0	-0.001	0.001	
05/16/11 07:40:58	59.96899	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:00	59.97028	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:02	59.97223	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:04	59.97382	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:06	59.97479	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:08	59.9761	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:10	59.97769	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:12	59.97998	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:14	59.98318	471		0		0			-653	29782.73	0	0	0	0.003	0.003	
05/16/11 07:41:16	59.98578	471		0		0			-653	29782.73	0	0	0	0.003	0.003	
05/16/11 07:41:18	59.9874	471		0		0			-653	29782.73	0	0	0	0.002	0.002	
05/16/11 07:41:20	59.98868	471		0		0			-653	29782.73	0	0	0	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.078$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:41:22	59.98999	471		0		0			-653	29782.73	0	0	0	0.001	0.001	
05/16/11 07:41:24	59.99191	471		0		0			-653	29782.82	0	0	0	0.002	0.002	
05/16/11 07:41:26	59.99353	471		0		0			-653	29782.82	0	0	0	0.002	0.002	
05/16/11 07:41:28	59.99612	471		0		0			-653	29782.82	0	0	0	0.003	0.003	
05/16/11 07:41:30	59.99805	471		0		0			-653	29782.82	0	0	0	0.002	0.002	
05/16/11 07:41:32	59.99902	471		0		0			-653	29782.82	0	0	0	0.001	0.001	
05/16/11 07:41:34	59.99902	471		0		0			-653	29786.15	0	0	0	0.000	0.000	
05/16/11 07:41:36	59.99774	471		0		0			-653	29786.15	0	0	0	-0.001	0.001	
05/16/11 07:41:38	59.99646	471		0		0			-653	29786.15	0	0	0	-0.001	0.001	
05/16/11 07:41:40	59.99579	471		0		0			-653	29786.15	0	0	0	-0.001	0.001	
05/16/11 07:41:42	59.99612	471		0		0			-653	29786.15	0	0	0	0.000	0.000	
05/16/11 07:41:44	59.9971	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:46	59.99774	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:48	59.99838	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:50	59.99936	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:52	60	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:54	60.00064	471		0		0			-653	29778.98	0	0	0	0.001	0.001	
05/16/11 07:41:56	60.00128	471		0		0			-653	29778.98	0	0	0	0.001	0.001	
05/16/11 07:41:58	60.00226	471		0		0			-653	29778.98	0	0	0	0.001	0.001	
05/16/11 07:42:00	60.00388	471		0		0			-653	29778.98	0	0	0	0.002	0.002	
05/16/11 07:42:02	60.00647	471		0		0			-653	29778.98	0	0	0	0.003	0.003	
05/16/11 07:42:04	60.0097	471		0		0			-653	29778.92	0	0	0	0.003	0.003	
05/16/11 07:42:06	60.01358	471		0		0			-653	29778.92	0	0	0	0.004	0.004	
05/16/11 07:42:08	60.01614	471		0		0			-653	29778.92	0	0	0	0.003	0.003	
05/16/11 07:42:10	60.01776	471		0		0			-653	29778.92	0	0	0	0.002	0.002	
05/16/11 07:42:12	60.01776	471		0		0			-653	29778.92	0	0	0	0.000	0.000	
05/16/11 07:42:14	60.01486	471		0		0			-653	29787.9	0	0	0	-0.003	0.003	
05/16/11 07:42:16	60.01163	471		0		0			-653	29787.9	0	0	0	-0.003	0.003	
05/16/11 07:42:18	60.00903	471		0		0			-653	29787.9	0	0	0	-0.003	0.003	
05/16/11 07:42:20	60.00775	471		0		0			-653	29787.9	0	0	0	-0.001	0.001	
05/16/11 07:42:22	60.00775	471		0		0			-653	29787.9	0	0	0	0.000	0.000	
05/16/11 07:42:24	60.00903	471		0		0			-653	29787.84	0	0	0	0.001	0.001	
05/16/11 07:42:26	60.00903	471		0		0			-653	29787.84	0	0	0	0.000	0.000	
05/16/11 07:42:28	60.01324	471		0		0			-653	29787.84	0	0	0	0.004	0.004	
05/16/11 07:42:30	60.01486	471		0		0			-653	29787.84	0	0	0	0.002	0.002	
05/16/11 07:42:32	60.0152	471		0		0			-653	29787.84	0	0	0	0.000	0.000	
05/16/11 07:42:34	60.0152	471		0		0			-653	29813.39	0	0	0	0.000	0.000	
05/16/11 07:42:36	60.01486	471		0		0			-653	29813.39	0	0	0	0.000	0.000	
05/16/11 07:42:38	60.01422	471		0		0			-653	29813.39	0	0	0	-0.001	0.001	
05/16/11 07:42:40	60.01358	471		0		0			-653	29813.39	0	0	0	-0.001	0.001	
05/16/11 07:42:42	60.01227	471		0		0			-653	29813.39	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 59.999 } \\ \text { 8:06:38 } \\ \text { 8:10:30 } \\ 03: 52 \end{gathered}$	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:42:44	60.01099	471		0		0			-653	29813.33	0	0	0	-0.001	0.001	
05/16/11 07:42:46	60.00873	471		0		0			-653	29813.33	0	0	0	-0.002	0.002	
05/16/11 07:42:48	60.00647	471		0		0			-653	29813.33	0	0	0	-0.002	0.002	
05/16/11 07:42:50	60.00485	471		0		0			-653	29813.33	0	0	0	-0.002	0.002	
05/16/11 07:42:52	60.00354	471		0		0			-653	29813.33	0	0	0	-0.001	0.001	
05/16/11 07:42:54	60.00195	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:42:56	60	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:42:58	59.99774	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:43:00	59.99612	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:43:02	59.99646	471		0		0			-653	29797.46	0	0	0	0.000	0.000	
05/16/11 07:43:04	59.99741	471		0		0			-653	29797.52	0	0	0	0.001	0.001	
05/16/11 07:43:06	59.99838	471		0		0			-653	29797.52	0	0	0	0.001	0.001	
05/16/11 07:43:08	59.99936	471		0		0			-653	29797.52	0	0	0	0.001	0.001	
05/16/11 07:43:10	59.99902	471		0		0			-653	29797.52	0	0	0	0.000	0.000	
05/16/11 07:43:12	59.99872	471		0		0			-653	29797.52	0	0	0	0.000	0.000	
05/16/11 07:43:14	59.99774	471		0		0			-653	29780.33	0	0	0	-0.001	0.001	
05/16/11 07:43:16	59.99646	471		0		0			-653	29780.33	0	0	0	-0.001	0.001	
05/16/11 07:43:18	59.99677	471		0		0			-653	29780.33	0	0	0	0.000	0.000	
05/16/11 07:43:20	59.99677	471		0		0			-653	29780.33	0	0	0	0.000	0.000	
05/16/11 07:43:22	59.99774	471		0		0			-653	29780.33	0	0	0	0.001	0.001	
05/16/11 07:43:24	59.99805	471		0		0			-653	29780.27	0	0	0	0.000	0.000	
05/16/11 07:43:26	59.99774	471		0		0			-653	29780.27	0	0	0	0.000	0.000	
05/16/11 07:43:28	59.99579	471		0		0			-653	29780.27	0	0	0	-0.002	0.002	
05/16/11 07:43:30	59.99387	471		0		0			-653	29780.27	0	0	0	-0.002	0.002	
05/16/11 07:43:32	59.99255	471		0		0			-653	29780.27	0	0	0	-0.001	0.001	
05/16/11 07:43:34	59.99127	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:36	59.98999	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:38	59.98965	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:40	59.98837	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:42	59.98709	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:44	59.98642	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:46	59.98642	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:48	59.98642	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:50	59.98676	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:52	59.98676	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:54	59.98642	471		0		0			-653	29787.12	0	0	0	0.000	0.000	
05/16/11 07:43:56	59.98611	471		0		0			-653	29787.12	0	0	0	0.000	0.000	
05/16/11 07:43:58	59.98611	471		0		0			-653	29787.12	0	0	0	0.000	0.000	
05/16/11 07:44:00	59.98514	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:02	59.98416	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:04	59.98352	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 59.999 } \\ \text { 8:06:38 } \\ \text { 8:10:30 } \\ 03: 52 \end{gathered}$	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:44:06	59.98224	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:08	59.98029	471		0		0			-653	29787.12	0	0	0	-0.002	0.002	
05/16/11 07:44:10	59.979	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:12	59.97769	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:14	59.97675	471		0		0			-653	29780.67	0	0	0	-0.001	0.001	
05/16/11 07:44:16	59.97641	471		0		0			-653	29780.67	0	0	0	0.000	0.000	
05/16/11 07:44:18	59.97739	471		0		0			-653	29780.67	0	0	0	0.001	0.001	
05/16/11 07:44:20	59.97998	471		0		0			-653	29780.67	0	0	0	0.003	0.003	
05/16/11 07:44:22	59.98318	471		0		0			-653	29780.67	0	0	0	0.003	0.003	
05/16/11 07:44:24	59.98611	471		0		0			-653	29780.76	0	0	0	0.003	0.003	
05/16/11 07:44:26	59.98837	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:28	59.9903	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:30	59.99191	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:32	59.99353	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:34	59.99579	471		0		0			-653	29777.7	0	0	0	0.002	0.002	
05/16/11 07:44:36	60	471		0		0			-653	29777.7	0	0	0	0.004	0.004	
05/16/11 07:44:38	60.00354	471		0		0			-653	29777.7	0	0	0	0.004	0.004	
05/16/11 07:44:40	60.00647	471		0		0			-653	29777.7	0	0	0	0.003	0.003	
05/16/11 07:44:42	60.00839	471		0		0			-653	29777.7	0	0	0	0.002	0.002	
05/16/11 07:44:44	60.00903	471		0		0			-653	29777.7	0	0	0	0.001	0.001	
05/16/11 07:44:46	60.00873	471		0		0			-653	29777.7	0	0	0	0.000	0.000	
05/16/11 07:44:48	60.00873	471		0		0			-653	29777.7	0	0	0	0.000	0.000	
05/16/11 07:44:50	60.00937	471		0		0			-653	29777.7	0	0	0	0.001	0.001	
05/16/11 07:44:52	60.01099	471		0		0			-653	29777.7	0	0	0	0.002	0.002	
05/16/11 07:44:54	60.01453	471		0		0			-653	29788.63	0	0	0	0.004	0.004	
05/16/11 07:44:56	60.0181	471		0		0			-653	29788.63	0	0	0	0.004	0.004	
05/16/11 07:44:58	60.02002	471		0		0			-653	29788.63	0	0	0	0.002	0.002	
05/16/11 07:45:00	60.02036	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:02	60.02002	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:04	60.02002	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:06	60.01907	471		0		0			-653	29788.63	0	0	0	-0.001	0.001	
05/16/11 07:45:08	60.0181	471		0		0			-653	29788.63	0	0	0	-0.001	0.001	
05/16/11 07:45:10	60.01712	471		0		0			-653	29788.63	0	0	0	-0.001	0.001	
05/16/11 07:45:12	60.01712	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:14	60.01712	471		0		0			-653	29788.51	0	0	0	0.000	0.000	
05/16/11 07:45:16	60.01453	471		0		0			-653	29788.51	0	0	0	-0.003	0.003	
05/16/11 07:45:18	60.01358	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:20	60.01227	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:22	60.01163	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:24	60.01065	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:26	60.0097	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:45:28	60.00839	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:30	60.00745	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:32	60.00775	471		0		0			-653	29788.51	0	0	0	0.000	0.000	
05/16/11 07:45:34	60.00839	471		0		0			-653	29780.62	0	0	0	0.001	0.001	
05/16/11 07:45:36	60.00839	471		0		0			-653	29780.62	0	0	0	0.000	0.000	
05/16/11 07:45:38	60.00809	471		0		0			-653	29780.62	0	0	0	0.000	0.000	
05/16/11 07:45:40	60.00745	471		0		0			-653	29780.62	0	0	0	-0.001	0.001	
05/16/11 07:45:42	60.00711	471		0		0			-653	29780.62	0	0	0	0.000	0.000	
05/16/11 07:45:44	60.00839	471		0		0			-653	29780.56	0	0	0	0.001	0.001	
05/16/11 07:45:46	60.00937	471		0		0			-653	29780.56	0	0	0	0.001	0.001	
05/16/11 07:45:48	60.0097	471		0		0			-653	29780.56	0	0	0	0.000	0.000	
05/16/11 07:45:50	60.01001	471		0		0			-653	29780.56	0	0	0	0.000	0.000	
05/16/11 07:45:52	60.01065	471		0		0			-653	29780.56	0	0	0	0.001	0.001	
05/16/11 07:45:54	60.01196	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:45:56	60.01324	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:45:58	60.01453	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:46:00	60.01614	471		0		0			-653	29784.96	0	0	0	0.002	0.002	
05/16/11 07:46:02	60.01712	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:46:04	60.01712	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:06	60.01614	471		0		0			-653	29784.93	0	0	0	-0.001	0.001	
05/16/11 07:46:08	60.01584	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:10	60.01614	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:12	60.01584	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:14	60.01486	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:16	60.01422	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:18	60.01227	471		0		0			-653	29760.42	0	0	0	-0.002	0.002	
05/16/11 07:46:20	60.0097	471		0		0			-653	29760.42	0	0	0	-0.003	0.003	
05/16/11 07:46:22	60.00711	471		0		0			-653	29760.42	0	0	0	-0.003	0.003	
05/16/11 07:46:24	60.00583	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:26	60.00516	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:28	60.00516	471		0		0			-653	29760.42	0	0	0	0.000	0.000	
05/16/11 07:46:30	60.00485	471		0		0			-653	29760.42	0	0	0	0.000	0.000	
05/16/11 07:46:32	60.00388	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:34	60.00259	471		0		0			-653	29782.35	0	0	0	-0.001	0.001	
05/16/11 07:46:36	59.99902	471		0		0			-653	29782.35	0	0	0	-0.004	0.004	
05/16/11 07:46:38	59.9971	471		0		0			-653	29782.35	0	0	0	-0.002	0.002	
05/16/11 07:46:40	59.99646	471		0		0			-653	29782.35	0	0	0	-0.001	0.001	
05/16/11 07:46:42	59.99579	471		0		0			-653	29782.35	0	0	0	-0.001	0.001	
05/16/11 07:46:44	59.99417	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:46	59.99225	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:48	59.9903	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 59.999 } \\ \text { 8:06:38 } \\ \text { 8:10:30 } \\ 03: 52 \end{gathered}$	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:46:50	59.98804	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:52	59.98709	471		0		0			-653	29782.44	0	0	0	-0.001	0.001	
05/16/11 07:46:54	59.98676	471		0		0			-653	29785.52	0	0	0	0.000	0.000	
05/16/11 07:46:56	59.98578	471		0		0			-653	29785.52	0	0	0	-0.001	0.001	
05/16/11 07:46:58	59.9845	471		0		0			-653	29785.52	0	0	0	-0.001	0.001	
05/16/11 07:47:00	59.98288	471		0		0			-653	29785.52	0	0	0	-0.002	0.002	
05/16/11 07:47:02	59.98224	471		0		0			-653	29785.52	0	0	0	-0.001	0.001	
05/16/11 07:47:04	59.98224	471		0		0			-653	29785.55	0	0	0	0.000	0.000	
05/16/11 07:47:06	59.98224	471		0		0			-653	29785.55	0	0	0	0.000	0.000	
05/16/11 07:47:08	59.98254	471		0		0			-653	29785.55	0	0	0	0.000	0.000	
05/16/11 07:47:10	59.98386	471		0		0			-653	29785.55	0	0	0	0.001	0.001	
05/16/11 07:47:12	59.9848	471		0		0			-653	29785.55	0	0	0	0.001	0.001	
05/16/11 07:47:14	59.98578	471		0		0			-653	29788.21	0	0	0	0.001	0.001	
05/16/11 07:47:16	59.98642	471		0		0			-653	29788.21	0	0	0	0.001	0.001	
05/16/11 07:47:18	59.98999	471		0		0			-653	29788.21	0	0	0	0.004	0.004	
05/16/11 07:47:20	59.99225	471		0		0			-653	29788.21	0	0	0	0.002	0.002	
05/16/11 07:47:22	59.99323	471		0		0			-653	29788.21	0	0	0	0.001	0.001	
05/16/11 07:47:24	59.99646	471		0		0			-653	29788.06	0	0	0	0.003	0.003	
05/16/11 07:47:26	59.99902	471		0		0			-653	29788.06	0	0	0	0.003	0.003	
05/16/11 07:47:28	60.00064	471		0		0			-653	29788.06	0	0	0	0.002	0.002	
05/16/11 07:47:30	60.00647	471		0		0			-653	29788.06	0	0	0	0.006	0.006	
05/16/11 07:47:32	60.00903	471		0		0			-653	29788.06	0	0	0	0.003	0.003	
05/16/11 07:47:34	60.01099	471		0		0			-653	29776.11	0	0	0	0.002	0.002	
05/16/11 07:47:36	60.01132	471		0		0			-653	29776.11	0	0	0	0.000	0.000	
05/16/11 07:47:38	60.01291	471		0		0			-653	29776.11	0	0	0	0.002	0.002	
05/16/11 07:47:40	60.01324	471		0		0			-653	29776.11	0	0	0	0.000	0.000	
05/16/11 07:47:42	60.01324	471		0		0			-653	29776.11	0	0	0	0.000	0.000	
05/16/11 07:47:44	60.01422	471		0		0			-653	29776.17	0	0	0	0.001	0.001	
05/16/11 07:47:46	60.0181	471		0		0			-653	29776.17	0	0	0	0.004	0.004	
05/16/11 07:47:48	60.01907	471		0		0			-653	29776.17	0	0	0	0.001	0.001	
05/16/11 07:47:50	60.02133	471		0		0			-653	29776.17	0	0	0	0.002	0.002	
05/16/11 07:47:52	60.02197	471		0		0			-653	29776.17	0	0	0	0.001	0.001	
05/16/11 07:47:54	60.02164	471		0		0			-653	29794.69	0	0	0	0.000	0.000	
05/16/11 07:47:56	60.01971	471		0		0			-653	29794.69	0	0	0	-0.002	0.002	
05/16/11 07:47:58	60.01907	471		0		0			-653	29794.69	0	0	0	-0.001	0.001	
05/16/11 07:48:00	60.01746	471		0		0			-653	29794.69	0	0	0	-0.002	0.002	
05/16/11 07:48:02	60.01776	471		0		0			-653	29794.69	0	0	0	0.000	0.000	
05/16/11 07:48:04	60.0184	471		0		0			-653	29794.66	0	0	0	0.001	0.001	
05/16/11 07:48:06	60.01776	471		0		0			-653	29794.66	0	0	0	-0.001	0.001	
05/16/11 07:48:08	60.0152	471		0		0			-653	29794.66	0	0	0	-0.003	0.003	
05/16/11 07:48:10	60.01389	471		0		0			-653	29794.66	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 59.999 } \\ \text { 8:06:38 } \\ \text { 8:10:30 } \\ 03: 52 \end{gathered}$	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:48:12	60.01422	471		0		0			-653	29794.66	0	0	0	0.000	0.000	
05/16/11 07:48:14	60.0152	471		0		0			-653	29804.78	0	0	0	0.001	0.001	
05/16/11 07:48:16	60.01614	471		0		0			-653	29804.78	0	0	0	0.001	0.001	
05/16/11 07:48:18	60.01614	471		0		0			-653	29804.78	0	0	0	0.000	0.000	
05/16/11 07:48:20	60.01422	471		0		0			-653	29804.78	0	0	0	-0.002	0.002	
05/16/11 07:48:22	60.01196	471		0		0			-653	29804.78	0	0	0	-0.002	0.002	
05/16/11 07:48:24	60.01035	471		0		0			-653	29804.86	0	0	0	-0.002	0.002	
05/16/11 07:48:26	60.00809	471		0		0			-653	29804.86	0	0	0	-0.002	0.002	
05/16/11 07:48:28	60.00613	471		0		0			-653	29804.86	0	0	0	-0.002	0.002	
05/16/11 07:48:30	60.00516	471		0		0			-653	29804.86	0	0	0	-0.001	0.001	
05/16/11 07:48:32	60.00452	471		0		0			-653	29804.86	0	0	0	-0.001	0.001	
05/16/11 07:48:34	60.00354	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:36	60.00128	471		0		0			-653	29800.12	0	0	0	-0.002	0.002	
05/16/11 07:48:38	60	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:40	59.99936	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:42	59.99838	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:44	59.99741	471		0		0			-653	29800.18	0	0	0	-0.001	0.001	
05/16/11 07:48:46	59.99579	471		0		0			-653	29800.18	0	0	0	-0.002	0.002	
05/16/11 07:48:48	59.99515	471		0		0			-653	29800.18	0	0	0	-0.001	0.001	
05/16/11 07:48:50	59.99646	471		0		0			-653	29800.18	0	0	0	0.001	0.001	
05/16/11 07:48:52	59.99872	471		0		0			-653	29800.18	0	0	0	0.002	0.002	
05/16/11 07:48:54	60.00128	471		0		0			-653	29799.82	0	0	0	0.003	0.003	
05/16/11 07:48:56	60.00323	471		0		0			-653	29799.82	0	0	0	0.002	0.002	
05/16/11 07:48:58	60.00421	471		0		0			-653	29799.82	0	0	0	0.001	0.001	
05/16/11 07:49:00	60.00485	471		0		0			-653	29799.82	0	0	0	0.001	0.001	
05/16/11 07:49:02	60.00549	471		0		0			-653	29799.82	0	0	0	0.001	0.001	
05/16/11 07:49:04	60.00583	471		0		0			-653	29799.79	0	0	0	0.000	0.000	
05/16/11 07:49:06	60.00583	471		0		0			-653	29799.79	0	0	0	0.000	0.000	
05/16/11 07:49:08	60.00549	471		0		0			-653	29799.79	0	0	0	0.000	0.000	
05/16/11 07:49:10	60.00388	471		0		0			-653	29799.79	0	0	0	-0.002	0.002	
05/16/11 07:49:12	60.00226	471		0		0			-653	29799.79	0	0	0	-0.002	0.002	
05/16/11 07:49:14	60.00226	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:16	60	471		0		0			-653	29795.67	0	0	0	-0.002	0.002	
05/16/11 07:49:18	60	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:20	60	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:22	60	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:24	60.00452	471		0		0			-653	29795.55	0	0	0	0.005	0.005	
05/16/11 07:49:26	60.00583	471		0		0			-653	29795.55	0	0	0	0.001	0.001	
05/16/11 07:49:28	60.00613	471		0		0			-653	29795.55	0	0	0	0.000	0.000	
05/16/11 07:49:30	60.00583	471		0		0			-653	29795.55	0	0	0	0.000	0.000	
05/16/11 07:49:32	60.00516	471		0		0			-653	29795.55	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 59.999 } \\ \text { 8:06:38 } \\ \text { 8:10:30 } \\ 03: 52 \end{gathered}$	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:49:34	60.00388	471		0		0			-653	29783.53	0	0	0	-0.001	0.001	
05/16/11 07:49:36	60.00195	471		0		0			-653	29783.53	0	0	0	-0.002	0.002	
05/16/11 07:49:38	60.00128	471		0		0			-653	29783.53	0	0	0	-0.001	0.001	
05/16/11 07:49:40	60.00098	471		0		0			-653	29783.53	0	0	0	0.000	0.000	
05/16/11 07:49:42	60.00034	471		0		0			-653	29783.53	0	0	0	-0.001	0.001	
05/16/11 07:49:44	60	471		0		0			-653	29783.47	0	0	0	0.000	0.000	
05/16/11 07:49:46	59.99902	471		0		0			-653	29783.47	0	0	0	-0.001	0.001	
05/16/11 07:49:48	59.99872	471		0		0			-653	29783.47	0	0	0	0.000	0.000	
05/16/11 07:49:50	59.99838	471		0		0			-653	29783.47	0	0	0	0.000	0.000	
05/16/11 07:49:52	59.99612	471		0		0			-653	29783.47	0	0	0	-0.002	0.002	
05/16/11 07:49:54	59.99579	471		0		0			-653	29788.38	0	0	0	0.000	0.000	
05/16/11 07:49:56	59.99515	471		0		0			-653	29788.38	0	0	0	-0.001	0.001	
05/16/11 07:49:58	59.99387	471		0		0			-653	29788.38	0	0	0	-0.001	0.001	
05/16/11 07:50:00	59.99225	471		0		0			-653	29788.38	0	0	0	-0.002	0.002	
05/16/11 07:50:02	59.99225	471		0		0			-653	29788.38	0	0	0	0.000	0.000	
05/16/11 07:50:04	59.99484	471		0		0			-653	29788.38	0	0	0	0.003	0.003	
05/16/11 07:50:06	59.99646	471		0		0			-653	29788.38	0	0	0	0.002	0.002	
05/16/11 07:50:08	59.9971	471		0		0			-653	29788.38	0	0	0	0.001	0.001	
05/16/11 07:50:10	59.99548	471		0		0			-653	29788.38	0	0	0	-0.002	0.002	
05/16/11 07:50:12	59.99289	471		0		0			-653	29788.38	0	0	0	-0.003	0.003	
05/16/11 07:50:14	59.98999	471		0		0			-653	29790.16	0	0	0	-0.003	0.003	
05/16/11 07:50:16	59.98773	471		0		0			-653	29790.16	0	0	0	-0.002	0.002	
05/16/11 07:50:18	59.98642	471		0		0			-653	29790.16	0	0	0	-0.001	0.001	
05/16/11 07:50:20	59.98547	471		0		0			-653	29790.16	0	0	0	-0.001	0.001	
05/16/11 07:50:22	59.98547	471		0		0			-653	29790.16	0	0	0	0.000	0.000	
05/16/11 07:50:24	59.98611	471		0		0			-653	29790.07	0	0	0	0.001	0.001	
05/16/11 07:50:26	59.98611	471		0		0			-653	29790.07	0	0	0	0.000	0.000	
05/16/11 07:50:28	59.98676	471		0		0			-653	29790.07	0	0	0	0.001	0.001	
05/16/11 07:50:30	59.98709	471		0		0			-653	29790.07	0	0	0	0.000	0.000	
05/16/11 07:50:32	59.9874	471		0		0			-653	29790.07	0	0	0	0.000	0.000	
05/16/11 07:50:34	59.98676	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:36	59.98611	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:38	59.98642	471		0		0			-653	29777.49	0	0	0	0.000	0.000	
05/16/11 07:50:40	59.9874	471		0		0			-653	29777.49	0	0	0	0.001	0.001	
05/16/11 07:50:42	59.98804	471		0		0			-653	29777.49	0	0	0	0.001	0.001	
05/16/11 07:50:44	59.9874	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:46	59.98676	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:48	59.9848	471		0		0			-653	29777.49	0	0	0	-0.002	0.002	
05/16/11 07:50:50	59.98288	471		0		0			-653	29777.49	0	0	0	-0.002	0.002	
05/16/11 07:50:52	59.98062	471		0		0			-653	29777.49	0	0	0	-0.002	0.002	
05/16/11 07:50:54	59.97998	471		0		0			-653	29782.49	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:50:56	59.97931	471		0		0			-653	29782.49	0	0	0	-0.001	0.001	
05/16/11 07:50:58	59.979	471		0		0			-653	29782.49	0	0	0	0.000	0.000	
05/16/11 07:51:00	59.97931	471		0		0			-653	29782.49	0	0	0	0.000	0.000	
05/16/11 07:51:02	59.98093	471		0		0			-653	29782.49	0	0	0	0.002	0.002	
05/16/11 07:51:04	59.98126	471		0		0			-653	29782.46	0	0	0	0.000	0.000	
05/16/11 07:51:06	59.98126	471		0		0			-653	29782.46	0	0	0	0.000	0.000	
05/16/11 07:51:08	59.9819	471		0		0			-653	29782.46	0	0	0	0.001	0.001	
05/16/11 07:51:10	59.98126	471		0		0			-653	29782.46	0	0	0	-0.001	0.001	
05/16/11 07:51:12	59.97964	471		0		0			-653	29782.46	0	0	0	-0.002	0.002	
05/16/11 07:51:14	59.97705	471		0		0			-653	29756.13	0	0	0	-0.003	0.003	
05/16/11 07:51:16	59.97479	471		0		0			-653	29756.13	0	0	0	-0.002	0.002	
05/16/11 07:51:18	59.97351	471		0		0			-653	29756.13	0	0	0	-0.001	0.001	
05/16/11 07:51:20	59.97287	471		0		0			-653	29756.13	0	0	0	-0.001	0.001	
05/16/11 07:51:22	59.97223	471		0		0			-653	29756.13	0	0	0	-0.001	0.001	
05/16/11 07:51:24	59.97189	471		0		0			-653	29756.18	0	0	0	0.000	0.000	
05/16/11 07:51:26	59.97125	471		0		0			-653	29756.18	0	0	0	-0.001	0.001	
05/16/11 07:51:28	59.97156	471		0		0			-653	29756.18	0	0	0	0.000	0.000	
05/16/11 07:51:30	59.97318	471		0		0			-653	29756.18	0	0	0	0.002	0.002	
05/16/11 07:51:32	59.97415	471		0		0			-653	29756.18	0	0	0	0.001	0.001	
05/16/11 07:51:34	59.97479	471		0		0			-653	29777.58	0	0	0	0.001	0.001	
05/16/11 07:51:36	59.97382	471		0		0			-653	29777.58	0	0	0	-0.001	0.001	
05/16/11 07:51:38	59.97287	471		0		0			-653	29777.58	0	0	0	-0.001	0.001	
05/16/11 07:51:40	59.97318	471		0		0			-653	29777.58	0	0	0	0.000	0.000	
05/16/11 07:51:42	59.97449	471		0		0			-653	29777.58	0	0	0	0.001	0.001	
05/16/11 07:51:44	59.97675	471		0		0			-653	29777.4	0	0	0	0.002	0.002	
05/16/11 07:51:46	59.97803	471		0		0			-653	29777.4	0	0	0	0.001	0.001	
05/16/11 07:51:48	59.97998	471		0		0			-653	29777.4	0	0	0	0.002	0.002	
05/16/11 07:51:50	59.98093	471		0		0			-653	29777.4	0	0	0	0.001	0.001	
05/16/11 07:51:52	59.98093	471		0		0			-653	29777.4	0	0	0	0.000	0.000	
05/16/11 07:51:54	59.97964	471		0		0			-653	29802.24	0	0	0	-0.001	0.001	
05/16/11 07:51:56	59.97803	471		0		0			-653	29802.24	0	0	0	-0.002	0.002	
05/16/11 07:51:58	59.97705	471		0		0			-653	29802.24	0	0	0	-0.001	0.001	
05/16/11 07:52:00	59.97739	471		0		0			-653	29802.24	0	0	0	0.000	0.000	
05/16/11 07:52:02	59.97836	471		0		0			-653	29802.24	0	0	0	0.001	0.001	
05/16/11 07:52:04	59.97931	471		0		0			-653	29802.18	0	0	0	0.001	0.001	
05/16/11 07:52:06	59.98126	471		0		0			-653	29802.18	0	0	0	0.002	0.002	
05/16/11 07:52:08	59.98416	471		0		0			-653	29802.18	0	0	0	0.003	0.003	
05/16/11 07:52:10	59.98611	471		0		0			-653	29802.18	0	0	0	0.002	0.002	
05/16/11 07:52:12	59.98709	471		0		0			-653	29802.18	0	0	0	0.001	0.001	
05/16/11 07:52:14	59.9874	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:16	59.98804	471		0		0			-653	29802.29	0	0	0	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 59.999 } \\ \text { 8:06:38 } \\ \text { 8:10:30 } \\ 03: 52 \end{gathered}$	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:52:18	59.98804	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:20	59.98773	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:22	59.9874	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:24	59.9874	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:26	59.9874	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:28	59.9874	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:30	59.98773	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:32	59.98901	471		0		0			-653	29802.32	0	0	0	0.001	0.001	
05/16/11 07:52:34	59.98965	471		0		0			-653	29795.02	0	0	0	0.001	0.001	
05/16/11 07:52:36	59.98935	471		0		0			-653	29795.02	0	0	0	0.000	0.000	
05/16/11 07:52:38	59.98837	471		0		0			-653	29795.02	0	0	0	-0.001	0.001	
05/16/11 07:52:40	59.98868	471		0		0			-653	29795.02	0	0	0	0.000	0.000	
05/16/11 07:52:42	59.98868	471		0		0			-653	29795.02	0	0	0	0.000	0.000	
05/16/11 07:52:44	59.9874	471		0		0			-653	29795.05	0	0	0	-0.001	0.001	
05/16/11 07:52:46	59.98611	471		0		0			-653	29795.05	0	0	0	-0.001	0.001	
05/16/11 07:52:48	59.98611	471		0		0			-653	29795.05	0	0	0	0.000	0.000	
05/16/11 07:52:50	59.98709	471		0		0			-653	29795.05	0	0	0	0.001	0.001	
05/16/11 07:52:52	59.98837	471		0		0			-653	29795.05	0	0	0	0.001	0.001	
05/16/11 07:52:54	59.98935	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:52:56	59.98999	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:52:58	59.99127	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:53:00	59.99255	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:53:02	59.99387	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:53:04	59.99387	471		0		0			-653	29781.45	0	0	0	0.000	0.000	
05/16/11 07:53:06	59.99289	471		0		0			-653	29781.45	0	0	0	-0.001	0.001	
05/16/11 07:53:08	59.99097	471		0		0			-653	29781.45	0	0	0	-0.002	0.002	
05/16/11 07:53:10	59.98868	471		0		0			-653	29781.45	0	0	0	-0.002	0.002	
05/16/11 07:53:12	59.98642	471		0		0			-653	29781.45	0	0	0	-0.002	0.002	
05/16/11 07:53:14	59.98386	471		0		0			-653	29802.43	0	0	0	-0.003	0.003	
05/16/11 07:53:16	59.9816	471		0		0			-653	29802.43	0	0	0	-0.002	0.002	
05/16/11 07:53:18	59.97931	471		0		0			-653	29802.43	0	0	0	-0.002	0.002	
05/16/11 07:53:20	59.97675	471		0		0			-653	29802.43	0	0	0	-0.003	0.003	
05/16/11 07:53:22	59.97415	471		0		0			-653	29802.43	0	0	0	-0.003	0.003	
05/16/11 07:53:24	59.97287	471		0		0			-653	29802.4	0	0	0	-0.001	0.001	
05/16/11 07:53:26	59.97223	471		0		0			-653	29802.4	0	0	0	-0.001	0.001	
05/16/11 07:53:28	59.97318	471		0		0			-653	29802.4	0	0	0	0.001	0.001	
05/16/11 07:53:30	59.97449	471		0		0			-653	29802.4	0	0	0	0.001	0.001	
05/16/11 07:53:32	59.97351	471		0		0			-653	29802.4	0	0	0	-0.001	0.001	
05/16/11 07:53:34	59.97253	471		0		0			-653	29804.4	0	0	0	-0.001	0.001	
05/16/11 07:53:36	59.97253	471		0		0			-653	29804.4	0	0	0	0.000	0.000	
05/16/11 07:53:38	59.97223	471		0		0			-653	29804.4	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 59.999 } \\ \text { 8:06:38 } \\ \text { 8:10:30 } \\ 03: 52 \end{gathered}$	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:53:40	59.97156	471		0		0			-653	29804.4	0	0	0	-0.001	0.001	
05/16/11 07:53:42	59.97189	471		0		0			-653	29804.4	0	0	0	0.000	0.000	
05/16/11 07:53:44	59.97318	471		0		0			-653	29804.4	0	0	0	0.001	0.001	
05/16/11 07:53:46	59.97479	471		0		0			-653	29804.4	0	0	0	0.002	0.002	
05/16/11 07:53:48	59.9761	471		0		0			-653	29804.4	0	0	0	0.001	0.001	
05/16/11 07:53:50	59.97803	471		0		0			-653	29804.4	0	0	0	0.002	0.002	
05/16/11 07:53:52	59.98062	471		0		0			-653	29804.4	0	0	0	0.003	0.003	
05/16/11 07:53:54	59.98254	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:53:56	59.98416	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:53:58	59.98611	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:54:00	59.98804	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:54:02	59.9903	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:54:04	59.99161	471		0		0			-653	29797.29	0	0	0	0.001	0.001	
05/16/11 07:54:06	59.99323	471		0		0			-653	29797.29	0	0	0	0.002	0.002	
05/16/11 07:54:08	59.99484	471		0		0			-653	29797.29	0	0	0	0.002	0.002	
05/16/11 07:54:10	59.99579	471		0		0			-653	29797.29	0	0	0	0.001	0.001	
05/16/11 07:54:12	59.99515	471		0		0			-653	29797.29	0	0	0	-0.001	0.001	
05/16/11 07:54:14	59.99612	471		0		0			-653	29823.76	0	0	0	0.001	0.001	
05/16/11 07:54:16	59.99805	471		0		0			-653	29823.76	0	0	0	0.002	0.002	
05/16/11 07:54:18	59.99936	471		0		0			-653	29823.76	0	0	0	0.001	0.001	
05/16/11 07:54:20	60.00064	471		0		0			-653	29823.76	0	0	0	0.001	0.001	
05/16/11 07:54:22	60.00098	471		0		0			-653	29823.76	0	0	0	0.000	0.000	
05/16/11 07:54:24	60.00064	471		0		0			-653	29818.41	0	0	0	0.000	0.000	
05/16/11 07:54:26	60	471		0		0			-653	29818.41	0	0	0	-0.001	0.001	
05/16/11 07:54:28	59.99902	471		0		0			-653	29818.41	0	0	0	-0.001	0.001	
05/16/11 07:54:30	59.99872	471		0		0			-653	29818.41	0	0	0	0.000	0.000	
05/16/11 07:54:32	59.99936	471		0		0			-653	29818.41	0	0	0	0.001	0.001	
05/16/11 07:54:34	60.00034	471		0		0			-653	29808.89	0	0	0	0.001	0.001	
05/16/11 07:54:36	60.00162	471		0		0			-653	29808.89	0	0	0	0.001	0.001	
05/16/11 07:54:38	60.00354	471		0		0			-653	29808.89	0	0	0	0.002	0.002	
05/16/11 07:54:40	60.00485	471		0		0			-653	29808.89	0	0	0	0.001	0.001	
05/16/11 07:54:42	60.00421	471		0		0			-653	29808.89	0	0	0	-0.001	0.001	
05/16/11 07:54:44	60.00195	471		0		0			-653	29814.89	0	0	0	-0.002	0.002	
05/16/11 07:54:46	59.99902	471		0		0			-653	29814.89	0	0	0	-0.003	0.003	
05/16/11 07:54:48	59.99646	471		0		0			-653	29814.89	0	0	0	-0.003	0.003	
05/16/11 07:54:50	59.99417	471		0		0			-653	29814.89	0	0	0	-0.002	0.002	
05/16/11 07:54:52	59.99323	471		0		0			-653	29814.89	0	0	0	-0.001	0.001	
05/16/11 07:54:54	59.99127	471		0		0			-653	29826.47	0	0	0	-0.002	0.002	
05/16/11 07:54:56	59.98935	471		0		0			-653	29826.47	0	0	0	-0.002	0.002	
05/16/11 07:54:58	59.98709	471		0		0			-653	29826.47	0	0	0	-0.002	0.002	
05/16/11 07:55:00	59.98578	471		0		0			-653	29826.47	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 59.999 } \\ \text { 8:06:38 } \\ \text { 8:10:30 } \\ 03: 52 \end{gathered}$	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:55:02	59.98547	471		0		0			-653	29826.47	0	0	0	0.000	0.000	
05/16/11 07:55:04	59.98547	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:06	59.98514	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:08	59.9845	471		0		0			-653	29826.41	0	0	0	-0.001	0.001	
05/16/11 07:55:10	59.9845	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:12	59.9848	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:14	59.9848	471		0		0			-653	29834.18	0	0	0	0.000	0.000	
05/16/11 07:55:16	59.98611	471		0		0			-653	29834.18	0	0	0	0.001	0.001	
05/16/11 07:55:18	59.9874	471		0		0			-653	29834.18	0	0	0	0.001	0.001	
05/16/11 07:55:20	59.98868	471		0		0			-653	29834.18	0	0	0	0.001	0.001	
05/16/11 07:55:22	59.98837	471		0		0			-653	29834.18	0	0	0	0.000	0.000	
05/16/11 07:55:24	59.98837	471		0		0			-653	29836.13	0	0	0	0.000	0.000	
05/16/11 07:55:26	59.98578	471		0		0			-653	29836.13	0	0	0	-0.003	0.003	
05/16/11 07:55:28	59.9845	471		0		0			-653	29836.13	0	0	0	-0.001	0.001	
05/16/11 07:55:30	59.9848	471		0		0			-653	29836.13	0	0	0	0.000	0.000	
05/16/11 07:55:32	59.98547	471		0		0			-653	29836.13	0	0	0	0.001	0.001	
05/16/11 07:55:34	59.98642	471		0		0			-653	29821.84	0	0	0	0.001	0.001	
05/16/11 07:55:36	59.98773	471		0		0			-653	29821.84	0	0	0	0.001	0.001	
05/16/11 07:55:38	59.98965	471		0		0			-653	29821.84	0	0	0	0.002	0.002	
05/16/11 07:55:40	59.99063	471		0		0			-653	29821.84	0	0	0	0.001	0.001	
05/16/11 07:55:42	59.99063	471		0		0			-653	29821.84	0	0	0	0.000	0.000	
05/16/11 07:55:44	59.99063	471		0		0			-653	29821.87	0	0	0	0.000	0.000	
05/16/11 07:55:46	59.99063	471		0		0			-653	29821.87	0	0	0	0.000	0.000	
05/16/11 07:55:48	59.98642	471		0		0			-653	29821.87	0	0	0	-0.004	0.004	
05/16/11 07:55:50	59.9845	471		0		0			-653	29821.87	0	0	0	-0.002	0.002	
05/16/11 07:55:52	59.98224	471		0		0			-653	29821.87	0	0	0	-0.002	0.002	
05/16/11 07:55:54	59.98062	471		0		0			-653	29831.33	0	0	0	-0.002	0.002	
05/16/11 07:55:56	59.97739	471		0		0			-653	29831.33	0	0	0	-0.003	0.003	
05/16/11 07:55:58	59.97641	471		0		0			-653	29831.33	0	0	0	-0.001	0.001	
05/16/11 07:56:00	59.97641	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:02	59.9761	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:04	59.97543	471		0		0			-653	29831.33	0	0	0	-0.001	0.001	
05/16/11 07:56:06	59.97577	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:08	59.97675	471		0		0			-653	29831.33	0	0	0	0.001	0.001	
05/16/11 07:56:10	59.97705	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:12	59.97705	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:14	59.97705	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:16	59.97675	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:18	59.97705	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:20	59.97739	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:22	59.97803	471		0		0			-653	29835.51	0	0	0	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:56:24	59.97803	471		0		0			-653	29856.55	0	0	0	0.000	0.000	
05/16/11 07:56:26	59.97867	471		0		0			-653	29856.55	0	0	0	0.001	0.001	
05/16/11 07:56:28	59.97964	471		0		0			-653	29856.55	0	0	0	0.001	0.001	
05/16/11 07:56:30	59.9816	471		0		0			-653	29856.55	0	0	0	0.002	0.002	
05/16/11 07:56:32	59.98352	471		0		0			-653	29856.55	0	0	0	0.002	0.002	
05/16/11 07:56:34	59.98642	471		0		0			-653	29846.76	0	0	0	0.003	0.003	
05/16/11 07:56:36	59.9903	471		0		0			-653	29846.76	0	0	0	0.004	0.004	
05/16/11 07:56:38	59.99451	471		0		0			-653	29846.76	0	0	0	0.004	0.004	
05/16/11 07:56:40	59.99741	471		0		0			-653	29846.76	0	0	0	0.003	0.003	
05/16/11 07:56:42	59.99838	471		0		0			-653	29846.76	0	0	0	0.001	0.001	
05/16/11 07:56:44	59.99805	471		0		0			-653	29860.05	0	0	0	0.000	0.000	
05/16/11 07:56:46	59.99677	471		0		0			-653	29860.05	0	0	0	-0.001	0.001	
05/16/11 07:56:48	59.99612	471		0		0			-653	29860.05	0	0	0	-0.001	0.001	
05/16/11 07:56:50	59.99548	471		0		0			-653	29860.05	0	0	0	-0.001	0.001	
05/16/11 07:56:52	59.99612	471		0		0			-653	29860.05	0	0	0	0.001	0.001	
05/16/11 07:56:54	59.99936	471		0		0			-653	29873.15	0	0	0	0.003	0.003	
05/16/11 07:56:56	60.00323	471		0		0			-653	29873.15	0	0	0	0.004	0.004	
05/16/11 07:56:58	60.00745	471		0		0			-653	29873.15	0	0	0	0.004	0.004	
05/16/11 07:57:00	60.01163	471		0		0			-653	29873.15	0	0	0	0.004	0.004	
05/16/11 07:57:02	60.01453	471		0		0			-653	29873.15	0	0	0	0.003	0.003	
05/16/11 07:57:04	60.01746	471		0		0			-653	29873.15	0	0	0	0.003	0.003	
05/16/11 07:57:06	60.01907	471		0		0			-653	29873.15	0	0	0	0.002	0.002	
05/16/11 07:57:08	60.01938	471		0		0			-653	29873.15	0	0	0	0.000	0.000	
05/16/11 07:57:10	60.01938	471		0		0			-653	29873.15	0	0	0	0.000	0.000	
05/16/11 07:57:12	60.01938	471		0		0			-653	29873.15	0	0	0	0.000	0.000	
05/16/11 07:57:14	60.02036	471		0		0			-653	29889.67	0	0	0	0.001	0.001	
05/16/11 07:57:16	60.02197	471		0		0			-653	29889.67	0	0	0	0.002	0.002	
05/16/11 07:57:18	60.02423	471		0		0			-653	29889.67	0	0	0	0.002	0.002	
05/16/11 07:57:20	60.02682	471		0		0			-653	29889.67	0	0	0	0.003	0.003	
05/16/11 07:57:22	60.02811	471		0		0			-653	29889.67	0	0	0	0.001	0.001	
05/16/11 07:57:24	60.02939	471		0		0			-653	29886.6	0	0	0	0.001	0.001	
05/16/11 07:57:26	60.03036	471		0		0			-653	29886.6	0	0	0	0.001	0.001	
05/16/11 07:57:28	60.02875	471		0		0			-653	29886.6	0	0	0	-0.002	0.002	
05/16/11 07:57:30	60.02682	471		0		0			-653	29886.6	0	0	0	-0.002	0.002	
05/16/11 07:57:32	60.02457	471		0		0			-653	29886.6	0	0	0	-0.002	0.002	
05/16/11 07:57:34	60.02261	471		0		0			-653	29891.67	0	0	0	-0.002	0.002	
05/16/11 07:57:36	60.02231	471		0		0			-653	29891.67	0	0	0	0.000	0.000	
05/16/11 07:57:38	60.02295	471		0		0			-653	29891.67	0	0	0	0.001	0.001	
05/16/11 07:57:40	60.02359	471		0		0			-653	29891.67	0	0	0	0.001	0.001	
05/16/11 07:57:42	60.02261	471		0		0			-653	29891.67	0	0	0	-0.001	0.001	
05/16/11 07:57:44	60.02164	471		0		0			-653	29891.64	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:57:46	60.01971	471		0		0			-653	29891.64	0	0	0	-0.002	0.002	
05/16/11 07:57:48	60.01776	471		0		0			-653	29891.64	0	0	0	-0.002	0.002	
05/16/11 07:57:50	60.01746	471		0		0			-653	29891.64	0	0	0	0.000	0.000	
05/16/11 07:57:52	60.01682	471		0		0			-653	29891.64	0	0	0	-0.001	0.001	
05/16/11 07:57:54	60.01712	471		0		0			-653	29891.51	0	0	0	0.000	0.000	
05/16/11 07:57:56	60.0184	471		0		0			-653	29891.51	0	0	0	0.001	0.001	
05/16/11 07:57:58	60.01874	471		0		0			-653	29891.51	0	0	0	0.000	0.000	
05/16/11 07:58:00	60.0181	471		0		0			-653	29891.51	0	0	0	-0.001	0.001	
05/16/11 07:58:02	60.01682	471		0		0			-653	29891.51	0	0	0	-0.001	0.001	
05/16/11 07:58:04	60.0152	471		0		0			-653	29891.6	0	0	0	-0.002	0.002	
05/16/11 07:58:06	60.0152	471		0		0			-653	29891.6	0	0	0	0.000	0.000	
05/16/11 07:58:08	60.0155	471		0		0			-653	29891.6	0	0	0	0.000	0.000	
05/16/11 07:58:10	60.0155	471		0		0			-653	29891.6	0	0	0	0.000	0.000	
05/16/11 07:58:12	60.01453	471		0		0			-653	29891.6	0	0	0	-0.001	0.001	
05/16/11 07:58:14	60.01453	471		0		0			-653	29884.5	0	0	0	0.000	0.000	
05/16/11 07:58:16	60.0152	471		0		0			-653	29884.5	0	0	0	0.001	0.001	
05/16/11 07:58:18	60.01584	471		0		0			-653	29884.5	0	0	0	0.001	0.001	
05/16/11 07:58:20	60.01614	471		0		0			-653	29884.5	0	0	0	0.000	0.000	
05/16/11 07:58:22	60.01584	471		0		0			-653	29884.5	0	0	0	0.000	0.000	
05/16/11 07:58:24	60.0152	471		0		0			-653	29881.79	0	0	0	-0.001	0.001	
05/16/11 07:58:26	60.0155	471		0		0			-653	29881.79	0	0	0	0.000	0.000	
05/16/11 07:58:28	60.01614	471		0		0			-653	29881.79	0	0	0	0.001	0.001	
05/16/11 07:58:30	60.01776	471		0		0			-653	29881.79	0	0	0	0.002	0.002	
05/16/11 07:58:32	60.01907	471		0		0			-653	29881.79	0	0	0	0.001	0.001	
05/16/11 07:58:34	60.02069	471		0		0			-653	29887.14	0	0	0	0.002	0.002	
05/16/11 07:58:36	60.02133	471		0		0			-653	29887.14	0	0	0	0.001	0.001	
05/16/11 07:58:38	60.02069	471		0		0			-653	29887.14	0	0	0	-0.001	0.001	
05/16/11 07:58:40	60.01907	471		0		0			-653	29887.14	0	0	0	-0.002	0.002	
05/16/11 07:58:42	60.01746	471		0		0			-653	29887.14	0	0	0	-0.002	0.002	
05/16/11 07:58:44	60.01614	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:46	60.0152	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:48	60.01453	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:50	60.01389	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:52	60.01358	471		0		0			-653	29873.08	0	0	0	0.000	0.000	
05/16/11 07:58:54	60.01099	471		0		0			-653	29862.1	0	0	0	-0.003	0.003	
05/16/11 07:58:56	60.00549	471		0		0			-653	29862.1	0	0	0	-0.005	0.005	
05/16/11 07:58:58	59.99966	471		0		0			-653	29862.1	0	0	0	-0.006	0.006	
05/16/11 07:59:00	59.99451	471		0		0			-653	29862.1	0	0	0	-0.005	0.005	
05/16/11 07:59:02	59.99127	471		0		0			-653	29862.1	0	0	0	-0.003	0.003	
05/16/11 07:59:04	59.98965	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:06	59.98868	471		0		0			-653	29861.95	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:59:08	59.98676	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:10	59.9848	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:12	59.98288	471		0		0			-653	29861.95		0	0	-0.002	0.002	
05/16/11 07:59:14	59.98062	471		0		0			-653	29906.21	0	0	0	-0.002	0.002	
05/16/11 07:59:16	59.97803	471		0		0			-653	29906.21	0	0	0	-0.003	0.003	
05/16/11 07:59:18	59.9761	471		0		0			-653	29906.21	0	0	0	-0.002	0.002	
05/16/11 07:59:20	59.97577	471		0		0			-653	29906.21	0	0	0	0.000	0.000	
05/16/11 07:59:22	59.9761	471		0		0			-653	29906.21	0	0	0	0.000	0.000	
05/16/11 07:59:24	59.9761	471		0		0			-653	29878.69	0	0	0	0.000	0.000	
05/16/11 07:59:26	59.97641	471		0		0			-653	29878.69	0	0	0	0.000	0.000	
05/16/11 07:59:28	59.97543	471		0		0			-653	29878.69	0	0	0	-0.001	0.001	
05/16/11 07:59:30	59.97479	471		0		0			-653	29878.69	0	0	0	-0.001	0.001	
05/16/11 07:59:32	59.97382	471		0		0			-653	29878.69	0	0	0	-0.001	0.001	
05/16/11 07:59:34	59.97253	471		0		0			-653	29900.56	0	0	0	-0.001	0.001	
05/16/11 07:59:36	59.97223	471		0		0			-653	29900.56	0	0	0	0.000	0.000	
05/16/11 07:59:38	59.97253	471		0		0			-653	29900.56	0	0	0	0.000	0.000	
05/16/11 07:59:40	59.97351	471		0		0			-653	29900.56	0	0	0	0.001	0.001	
05/16/11 07:59:42	59.97351	471		0		0			-653	29900.56	0	0	0	0.000	0.000	
05/16/11 07:59:44	59.97318	471		0		0			-653	29896.99	0	0	0	0.000	0.000	
05/16/11 07:59:46	59.97189	471		0		0			-653	29896.99	0	0	0	-0.001	0.001	
05/16/11 07:59:48	59.97092	471		0		0			-653	29896.99	0	0	0	-0.001	0.001	
05/16/11 07:59:50	59.97028	471		0		0			-653	29896.99	0	0	0	-0.001	0.001	
05/16/11 07:59:52	59.97028	471		0		0			-653	29896.99	0	0	0	0.000	0.000	
05/16/11 07:59:54	59.97028	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 07:59:56	59.97028	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 07:59:58	59.97061	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 08:00:00	59.97287	471		0		0			-653	29905.8		0	0	0.002	0.002	
05/16/11 08:00:02	59.97287	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 08:00:04	59.97479	471		0		0			-653	29905.77	0	0	0	0.002	0.002	
05/16/11 08:00:06	59.97479	471		0		0			-653	29905.77	0	0	0	0.000	0.000	
05/16/11 08:00:08	59.97382	471		0		0			-653	29905.77	0	0	0	-0.001	0.001	
05/16/11 08:00:10	59.96832	471		0		0			-653	29905.77	0	0	0	-0.005	0.005	
05/16/11 08:00:12	59.96802	471		0		0			-653	29905.77	0	0	0	0.000	0.000	
05/16/11 08:00:14	59.96899	471		0		0			-653	29914.9		0	0	0.001	0.001	
05/16/11 08:00:16	59.96994	471		0		0			-653	29914.9	0	0	0	0.001	0.001	
05/16/11 08:00:18	59.97382	471		0		0			-653	29914.9	0	0	0	0.004	0.004	
05/16/11 08:00:20	59.97382	471		0		0			-653	29914.9	0	0	0	0.000	0.000	
05/16/11 08:00:22	59.97382	471		0		0			-653	29914.9	0	0	0	0.000	0.000	
05/16/11 08:00:24	59.97769	471		0		0			-653	29925.58	0	0	0	0.004	0.004	
05/16/11 08:00:26	59.97739	471		0		0			-653	29925.58	0	0	0	0.000	0.000	
05/16/11 08:00:28	59.9761	471		0		0			-653	29925.58	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 59.999 } \\ \text { 8:06:38 } \\ \text { 8:10:30 } \\ 03: 52 \end{gathered}$	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:00:30	59.9761	471		0		0			-653	29925.58	0	0	0	0.000	0.000	
05/16/11 08:00:32	59.97705	471		0		0			-653	29925.58	0	0	0	0.001	0.001	
05/16/11 08:00:34	59.97769	471		0		0			-653	29938.87	0	0	0	0.001	0.001	
05/16/11 08:00:36	59.97803	471		0		0			-653	29938.87	0	0	0	0.000	0.000	
05/16/11 08:00:38	59.97803	471		0		0			-653	29938.87	0	0	0	0.000	0.000	
05/16/11 08:00:40	59.97739	471		0		0			-653	29938.87	0	0	0	-0.001	0.001	
05/16/11 08:00:42	59.97675	471		0		0			-653	29938.87	0	0	0	-0.001	0.001	
05/16/11 08:00:44	59.97641	471		0		0			-653	29952.51	0	0	0	0.000	0.000	
05/16/11 08:00:46	59.97479	471		0		0			-653	29952.51	0	0	0	-0.002	0.002	
05/16/11 08:00:48	59.97449	471		0		0			-653	29952.51	0	0	0	0.000	0.000	
05/16/11 08:00:50	59.97543	471		0		0			-653	29952.51	0	0	0	0.001	0.001	
05/16/11 08:00:52	59.97705	471		0		0			-653	29952.51	0	0	0	0.002	0.002	
05/16/11 08:00:54	59.97931	471		0		0			-653	29952.51	0	0	0	0.002	0.002	
05/16/11 08:00:56	59.97964	471		0		0			-653	29948.95	0	0	0	0.000	0.000	
05/16/11 08:00:58	59.979	471		0		0			-653	29948.95	0	0	0	-0.001	0.001	
05/16/11 08:01:00	59.97803	471		0		0			-653	29948.95	0	0	0	-0.001	0.001	
05/16/11 08:01:02	59.97803	471		0		0			-653	29948.95	0	0	0	0.000	0.000	
05/16/11 08:01:04	59.979	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:06	59.98029	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:08	59.9819	471		0		0			-653	29948.95	0	0	0	0.002	0.002	
05/16/11 08:01:10	59.98318	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:12	59.9845	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:14	59.98578	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:16	59.98642	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:18	59.98642	471		0		0			-653	29951.05	0	0	0	0.000	0.000	
05/16/11 08:01:20	59.98709	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:22	59.98773	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:24	59.98965	471		0		0			-653	29955.09	0	0	0	0.002	0.002	
05/16/11 08:01:26	59.99161	471		0		0			-653	29955.09	0	0	0	0.002	0.002	
05/16/11 08:01:28	59.99255	471		0		0			-653	29955.09	0	0	0	0.001	0.001	
05/16/11 08:01:30	59.99323	471		0		0			-653	29955.09	0	0	0	0.001	0.001	
05/16/11 08:01:32	59.99289	471		0		0			-653	29955.09	0	0	0	0.000	0.000	
05/16/11 08:01:34	59.99097	471		0		0			-653	29967.69	0	0	0	-0.002	0.002	
05/16/11 08:01:36	59.98804	471		0		0			-653	29967.69	0	0	0	-0.003	0.003	
05/16/11 08:01:38	59.98578	471		0		0			-653	29967.69	0	0	0	-0.002	0.002	
05/16/11 08:01:40	59.98386	471		0		0			-653	29967.69	0	0	0	-0.002	0.002	
05/16/11 08:01:42	59.98318	471		0		0			-653	29967.69	0	0	0	-0.001	0.001	
05/16/11 08:01:44	59.98318	471		0		0			-653	29983.13	0	0	0	0.000	0.000	
05/16/11 08:01:46	59.98288	471		0		0			-653	29983.13	0	0	0	0.000	0.000	
05/16/11 08:01:48	59.98126	471		0		0			-653	29983.13	0	0	0	-0.002	0.002	
05/16/11 08:01:50	59.97998	471		0		0			-653	29983.13	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:01:52	59.97964	471		0		0			-653	29983.13	0	0	0	0.000	0.000	
05/16/11 08:01:54	59.98029	471		0		0			-653	29976.75	0	0	0	0.001	0.001	
05/16/11 08:01:56	59.98126	471		0		0			-653	29976.75	0	0	0	0.001	0.001	
05/16/11 08:01:58	59.98352	471		0		0			-653	29976.75	0	0	0	0.002	0.002	
05/16/11 08:02:00	59.98386	471		0		0			-653	29976.75	0	0	0	0.000	0.000	
05/16/11 08:02:02	59.98126	471		0		0			-653	29976.75	0	0	0	-0.003	0.003	
05/16/11 08:02:04	59.97543	471		0		0			-653	29976.78	0	0	0	-0.006	0.006	
05/16/11 08:02:06	59.96832	471		0		0			-653	29976.78	0	0	0	-0.007	0.007	
05/16/11 08:02:08	59.9635	471		0		0			-653	29976.78	0	0	0	-0.005	0.005	
05/16/11 08:02:10	59.96155	471		0		0			-653	29976.78	0	0	0	-0.002	0.002	
05/16/11 08:02:12	59.96091	471		0		0			-653	29976.78	0	0	0	-0.001	0.001	
05/16/11 08:02:14	59.96155	471		0		0			-653	30008.51	0	0	0	0.001	0.001	
05/16/11 08:02:16	59.96057	471		0		0			-653	30008.51	0	0	0	-0.001	0.001	
05/16/11 08:02:18	59.95801	471		0		0			-653	30008.51	0	0	0	-0.003	0.003	
05/16/11 08:02:20	59.95575	471		0		0			-653	30008.51	0	0	0	-0.002	0.002	
05/16/11 08:02:22	59.95575	471		0		0			-653	30008.51	0	0	0	0.000	0.000	
05/16/11 08:02:24	59.95703	471		0		0			-653	30037.25	0	0	0	0.001	0.001	
05/16/11 08:02:26	59.95895	471		0		0			-653	30037.25	0	0	0	0.002	0.002	
05/16/11 08:02:28	59.96057	471		0		0			-653	30037.25	0	0	0	0.002	0.002	
05/16/11 08:02:30	59.96155	471		0		0			-653	30037.25	0	0	0	0.001	0.001	
05/16/11 08:02:32	59.96252	471		0		0			-653	30037.25	0	0	0	0.001	0.001	
05/16/11 08:02:34	59.96414	471		0		0			-653	30055.73	0	0	0	0.002	0.002	
05/16/11 08:02:36	59.96512	471		0		0			-653	30055.73	0	0	0	0.001	0.001	
05/16/11 08:02:38	59.96512	471		0		0			-653	30055.73	0	0	0	0.000	0.000	
05/16/11 08:02:40	59.96576	471		0		0			-653	30055.73	0	0	0	0.001	0.001	
05/16/11 08:02:42	59.96704	471		0		0			-653	30055.73	0	0	0	0.001	0.001	
05/16/11 08:02:44	59.96994	471		0		0			-653	30068.76	0	0	0	0.003	0.003	
05/16/11 08:02:46	59.97253	471		0		0			-653	30068.76	0	0	0	0.003	0.003	
05/16/11 08:02:48	59.97415	471		0		0			-653	30068.76	0	0	0	0.002	0.002	
05/16/11 08:02:50	59.9761	471		0		0			-653	30068.76	0	0	0	0.002	0.002	
05/16/11 08:02:52	59.97739	471		0		0			-653	30068.76	0	0	0	0.001	0.001	
05/16/11 08:02:54	59.97931	471		0		0			-653	30068.21	0	0	0	0.002	0.002	
05/16/11 08:02:56	59.98029	471		0		0			-653	30068.21	0	0	0	0.001	0.001	
05/16/11 08:02:58	59.98062	471		0		0			-653	30068.21	0	0	0	0.000	0.000	
05/16/11 08:03:00	59.98029	471		0		0			-653	30068.21	0	0	0	0.000	0.000	
05/16/11 08:03:02	59.98029	471		0		0			-653	30068.21	0	0	0	0.000	0.000	
05/16/11 08:03:04	59.97836	471		0		0			-653	30068.24	0	0	0	-0.002	0.002	
05/16/11 08:03:06	59.97836	471		0		0			-653	30068.24	0	0	0	0.000	0.000	
05/16/11 08:03:08	59.979	471		0		0			-653	30068.24	0	0	0	0.001	0.001	
05/16/11 08:03:10	59.97998	471		0		0			-653	30068.24	0	0	0	0.001	0.001	
05/16/11 08:03:12	59.98029	471		0		0			-653	30068.24	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:03:14	59.98093	471		0		0			-653	30076.2	0	0	0	0.001	0.001	
05/16/11 08:03:16	59.98093	471		0		0			-653	30076.2	0	0	0	0.000	0.000	
05/16/11 08:03:18	59.97998	471		0		0			-653	30076.2	0	0	0	-0.001	0.001	
05/16/11 08:03:20	59.98062	471		0		0			-653	30076.2	0	0	0	0.001	0.001	
05/16/11 08:03:22	59.98029	471		0		0			-653	30076.2		0	0	0.000	0.000	
05/16/11 08:03:24	59.97998	471		0		0			-653	30093.95	0	0	0	0.000	0.000	
05/16/11 08:03:26	59.979	471		0		0			-653	30093.95	0	0	0	-0.001	0.001	
05/16/11 08:03:28	59.97931	471		0		0			-653	30093.95	0	0	0	0.000	0.000	
05/16/11 08:03:30	59.97998	471		0		0			-653	30093.95	0	0	0	0.001	0.001	
05/16/11 08:03:32	59.98029	471		0		0			-653	30093.95	0	0	0	0.000	0.000	
05/16/11 08:03:34	59.98029	471		0		0			-653	30100.97	0	0	0	0.000	0.000	
05/16/11 08:03:36	59.98029	471		0		0			-653	30100.97	0	0	0	0.000	0.000	
05/16/11 08:03:38	59.97964	471		0		0			-653	30100.97	0	0	0	-0.001	0.001	
05/16/11 08:03:40	59.979	471		0		0			-653	30100.97	0	0	0	-0.001	0.001	
05/16/11 08:03:42	59.97803	471		0		0			-653	30100.97	0	0	0	-0.001	0.001	
05/16/11 08:03:44	59.97803	471		0		0			-653	30118.87	0	0	0	0.000	0.000	
05/16/11 08:03:46	59.97867	471		0		0			-653	30118.87	0	0	0	0.001	0.001	
05/16/11 08:03:48	59.97964	471		0		0			-653	30118.87	0	0	0	0.001	0.001	
05/16/11 08:03:50	59.98224	471		0		0			-653	30118.87	0	0	0	0.003	0.003	
05/16/11 08:03:52	59.9848	471		0		0			-653	30118.87	0	0	0	0.003	0.003	
05/16/11 08:03:54	59.98514	471		0		0			-653	30118.77	0	0	0	0.000	0.000	
05/16/11 08:03:56	59.98416	471		0		0			-653	30118.77	0	0	0	-0.001	0.001	
05/16/11 08:03:58	59.98224	471		0		0			-653	30118.77	0	0	0	-0.002	0.002	
05/16/11 08:04:00	59.98029	471		0		0			-653	30118.77	0	0	0	-0.002	0.002	
05/16/11 08:04:02	59.979	471		0		0			-653	30118.77	0	0	0	-0.001	0.001	
05/16/11 08:04:04	59.97867	471		0		0			-653	30118.74	0	0	0	0.000	0.000	
05/16/11 08:04:06	59.97931	471		0		0			-653	30118.74	0	0	0	0.001	0.001	
05/16/11 08:04:08	59.97998	471		0		0			-653	30118.74	0	0	0	0.001	0.001	
05/16/11 08:04:10	59.97931	471		0		0			-653	30118.74	0	0	0	-0.001	0.001	
05/16/11 08:04:12	59.979	471		0		0			-653	30118.74	0	0	0	0.000	0.000	
05/16/11 08:04:14	59.97803	471		0		0			-653	30106.93	0	0	0	-0.001	0.001	
05/16/11 08:04:16	59.97675	471		0		0			-653	30106.93	0	0	0	-0.001	0.001	
05/16/11 08:04:18	59.97739	471		0		0			-653	30106.93	0	0	0	0.001	0.001	
05/16/11 08:04:20	59.979	471		0		0			-653	30106.93	0	0	0	0.002	0.002	
05/16/11 08:04:22	59.97964	471		0		0			-653	30106.93	0	0	0	0.001	0.001	
05/16/11 08:04:24	59.98093	471		0		0			-653	30106.61	0	0	0	0.001	0.001	
05/16/11 08:04:26	59.98224	471		0		0			-653	30106.61	0	0	0	0.001	0.001	
05/16/11 08:04:28	59.98318	471		0		0			-653	30106.61	0	0	0	0.001	0.001	
05/16/11 08:04:30	59.98318	471		0		0			-653	30106.61	0	0	0	0.000	0.000	
05/16/11 08:04:32	59.98224	471		0		0			-653	30106.61	0	0	0	-0.001	0.001	
05/16/11 08:04:34	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:04:36	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:38	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:40	59.9816	471		0		0			-653	30116.02		0	0	0.000	0.000	
05/16/11 08:04:42	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:44	59.9816	471		0		0			-653	30141.59	0	0	0	0.000	0.000	
05/16/11 08:04:46	59.98126	471		0		0			-653	30141.59	0	0	0	0.000	0.000	
05/16/11 08:04:48	59.9816	471		0		0			-653	30141.59	0	0	0	0.000	0.000	
05/16/11 08:04:50	59.98254	471		0		0			-653	30141.59	0	0	0	0.001	0.001	
05/16/11 08:04:52	59.98352	471		0		0			-653	30141.59	0	0	0	0.001	0.001	
05/16/11 08:04:54	59.98416	471		0		0			-653	30144.23	0	0	0	0.001	0.001	
05/16/11 08:04:56	59.98416	471		0		0			-653	30144.23	0	0	0	0.000	0.000	
05/16/11 08:04:58	59.98416	471		0		0			-653	30144.23	0	0	0	0.000	0.000	
05/16/11 08:05:00	59.98514	471		0		0			-653	30144.23	0	0	0	0.001	0.001	
05/16/11 08:05:02	59.9874	471		0		0			-653	30144.23	0	0	0	0.002	0.002	
05/16/11 08:05:04	59.98901	471		0		0			-653	30144.23	0	0	0	0.002	0.002	
05/16/11 08:05:06	59.98804	471		0		0			-653	30144.23	0	0	0	-0.001	0.001	
05/16/11 08:05:08	59.98642	471		0		0			-653	30144.23	0	0	0	-0.002	0.002	
05/16/11 08:05:10	59.98288	471		0		0			-653	30144.23	0	0	0	-0.004	0.004	
05/16/11 08:05:12	59.98254	471		0		0			-653	30144.23	0	0	0	0.000	0.000	
05/16/11 08:05:14	59.98318	471		0		0			-653	30148.67	0	0	0	0.001	0.001	
05/16/11 08:05:16	59.9819	471		0		0			-653	30148.67	0	0	0	-0.001	0.001	
05/16/11 08:05:18	59.98062	471		0		0			-653	30148.67	0	0	0	-0.001	0.001	
05/16/11 08:05:20	59.97964	471		0		0			-653	30148.67	0	0	0	-0.001	0.001	
05/16/11 08:05:22	59.97964	471		0		0			-653	30148.67	0	0	0	0.000	0.000	
05/16/11 08:05:24	59.97964	471		0		0			-653	30155.67	0	0	0	0.000	0.000	
05/16/11 08:05:26	59.98029	471		0		0			-653	30155.67	0	0	0	0.001	0.001	
05/16/11 08:05:28	59.98224	471		0		0			-653	30155.67		0	0	0.002	0.002	
05/16/11 08:05:30	59.98352	471		0		0			-653	30155.67	0	0	0	0.001	0.001	
05/16/11 08:05:32	59.98578	471		0		0			-653	30155.67	0	0	0	0.002	0.002	
05/16/11 08:05:34	59.9874	471		0		0			-653	30142.79	0	0	0	0.002	0.002	
05/16/11 08:05:36	59.98804	471		0		0			-653	30142.79	0	0	0	0.001	0.001	
05/16/11 08:05:38	59.9874	471		0		0			-653	30142.79	0	0	0	-0.001	0.001	
05/16/11 08:05:40	59.98611	471		0		0			-653	30142.79	0	0	0	-0.001	0.001	
05/16/11 08:05:42	59.9848	471		0		0			-653	30142.79		0	0	-0.001	0.001	
05/16/11 08:05:44	59.98352	471		0		0			-653	30154.67	0	0	0	-0.001	0.001	
05/16/11 08:05:46	59.98318	471		0		0			-653	30154.67	0	0	0	0.000	0.000	
05/16/11 08:05:48	59.98352	471		0		0			-653	30154.67	0	0	0	0.000	0.000	
05/16/11 08:05:50	59.98416	471.3000183		0		0			-653	30150.35	0	0	0	0.001	0.001	
05/16/11 08:05:52	59.98514	471.3000183		0		0			-653	30150.35	0	0	0	0.001	0.001	
05/16/11 08:05:54	59.98547	471.3000183		0		0			-653	30159.63	0	0	0	0.000	0.000	
05/16/11 08:05:56	59.98642	471.3000183		0		0			-653	30159.63	0	0	0	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:05:58	59.98676	471.8999939		0		0			-653	30159.63	0	0	0	0.000	0.000	
05/16/11 08:06:00	59.9874	471.8999939		0		0			-653	30159.63	0	0	0	0.001	0.001	
05/16/11 08:06:02	59.98773	471.8999939		0		0			-653	30151.42	0	0	0	0.000	0.000	
05/16/11 08:06:04	59.98901	471.8999939		0		0			-653	30151.42	0	0	0	0.001	0.001	
05/16/11 08:06:06	59.98901	471.8999939		0		0			-653	30156.16	0	0	0	0.000	0.000	
05/16/11 08:06:08	59.98804	471.3999939		0		0			-653	30156.16	0	0	0	-0.001	0.001	
05/16/11 08:06:10	59.98642	471.3999939		0		0			-653	30156.16	0	0	0	-0.002	0.002	
05/16/11 08:06:12	59.98547	471.3999939		0		0			-653	30156.16	0	0	0	-0.001	0.001	
05/16/11 08:06:14	59.98642	471.3999939		0		0			-653	30164.15	0	0	0	0.001	0.001	
05/16/11 08:06:16	59.98935	471.3999939		0		0			-653	30164.15	0	0	0	0.003	0.003	
05/16/11 08:06:18	59.99225	471.3999939		0		0			-653	30164.15	0	0	0	0.003	0.003	
05/16/11 08:06:20	59.99515	471.3999939		0		0			-653	30164.15	0	0	0	0.003	0.003	
05/16/11 08:06:22	59.99579	471.3999939		0		0			-653	30203.91	0	0	0	0.001	0.001	
05/16/11 08:06:24	59.99515	471.3999939		0		0			-653	30203.91	0	0	0	-0.001	0.001	
05/16/11 08:06:26	59.99548	471.3999939		0		0			-653	30203.73	0	0	0	0.000	0.000	
05/16/11 08:06:28	59.99741	470.8999939		0		0			-653	30203.73	0	0	0	0.002	0.002	
05/16/11 08:06:30	60	470.8999939		0		0			-653	30203.73	0	0	0	0.003	0.003	
05/16/11 08:06:32	60.00162	470.8999939		0		0			-653	30203.73	0	0	0	0.002	0.002	
05/16/11 08:06:34	60.00162	470.8999939		0		0			-653	30199.61	0	0	0	0.000	0.000	
05/16/11 08:06:36	60.00195	470.8999939		0		0			-653	30199.61	0	0	0	0.000	0.000	
05/16/11 08:06:38	59.95963	0		0		0			-653	30199.61	0	0	1	-0.042	0.042	
05/16/11 08:06:40	59.88144	0		0		0			-653	30199.61	1	0	1	-0.078	0.078	
05/16/11 08:06:42	59.87237	0		0		0			-653	30086.11	1	0	,	-0.009	0.009	
05/16/11 08:06:44	59.87011	0		0		0			-653	30086.11	1	0	1	-0.002	0.002	
05/16/11 08:06:46	59.87432	0		0		0			-653	30086.14	1	0	1	0.004	0.004	
05/16/11 08:06:48	59.88076	0		0		0			-653	30086.14	1	0	1	0.006	0.006	
05/16/11 08:06:50	59.88531	0		0		0			-653	30086.14	1	0	1	0.005	0.005	
05/16/11 08:06:52	59.88787	0		0		0			-653	30086.14	1	0	1	0.003	0.003	
05/16/11 08:06:54	59.88949	0		0		0			-653	30094.43	1	0	1	0.002	0.002	
05/16/11 08:06:56	59.8908	0		0		0			-653	30094.43	1	0	1	0.001	0.001	
05/16/11 08:06:58	59.89175	0		0		0			-653	30094.43	1	0	1	0.001	0.001	
05/16/11 08:07:00	59.89242	0		0		0			-653	30094.43	1	0	1	0.001	0.001	
05/16/11 08:07:02	59.89306	0		0		0			-653	30139.49	1	0	1	0.001	0.001	
05/16/11 08:07:04	59.89306	0		0		0			-653	30139.49		0	1	0.000	0.000	
05/16/11 08:07:06	59.89306	0		0		0			-653	30133.38	1	0	1	0.000	0.000	
05/16/11 08:07:08	59.89532	0		0		0			-653	30133.38	1	0	1	0.002	0.002	
05/16/11 08:07:10	59.89788	0		0		0			-653	30133.38	1	0	1	0.003	0.003	
05/16/11 08:07:12	59.8995	0		0		0			-653	30133.38	1	0	1	0.002	0.002	
05/16/11 08:07:14	59.90081	0		0		0			-653	30137.26	1	0	1	0.001	0.001	
05/16/11 08:07:16	59.9021	0		0		0			-653	30137.26	1	0	1	0.001	0.001	
05/16/11 08:07:18	59.90179	0		0		0			-653	30137.26	1	0	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:07:20	59.90081	0		0		0			-653	30137.26		0	1	-0.001	0.001	
05/16/11 08:07:22	59.90081	0		0		0			-653	30171.38	1	0	1	0.000	0.000	
05/16/11 08:07:24	59.90048	0		0		0			-653	30171.38	1	0	1	0.000	0.000	
05/16/11 08:07:26	59.8992	0		0		0			-653	30168.76	1	0	1	-0.001	0.001	
05/16/11 08:07:28	59.89886	0		0		0			-653	30168.76	1	0	1	0.000	0.000	
05/16/11 08:07:30	59.89856	0		0		0			-653	30168.76	1	0	1	0.000	0.000	
05/16/11 08:07:32	59.90017	0		0		0			-653	30168.76	1	0	1	0.002	0.002	
05/16/11 08:07:34	59.90243	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:36	59.90469	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:38	59.90695	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:40	59.90887	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:42	59.90921	0		0		0			-653	30205.66	1	0	1	0.000	0.000	
05/16/11 08:07:44	59.90857	0		0		0			-653	30205.66	1	0	1	-0.001	0.001	
05/16/11 08:07:46	59.90887	0		0		0			-653	30205.66	1	0	1	0.000	0.000	
05/16/11 08:07:48	59.91018	0		0		0			-653	30205.66	1	0	1	0.001	0.001	
05/16/11 08:07:50	59.91244	0		0		0			-653	30205.66	,	0	1	0.002	0.002	
05/16/11 08:07:52	59.9147	0		0		0			-653	30205.66	1	0	1	0.002	0.002	
05/16/11 08:07:54	59.9176	0		0		0			-653	30211.75	1	0	1	0.003	0.003	
05/16/11 08:07:56	59.91922	0		0		0			-653	30211.75	1	0	1	0.002	0.002	
05/16/11 08:07:58	59.92083	0		0		0			-653	30211.75	1	0	1	0.002	0.002	
05/16/11 08:08:00	59.92215	0		0		0			-653	30211.75	1	0	1	0.001	0.001	
05/16/11 08:08:02	59.92309	0		0		0			-653	30217.55	1	0	1	0.001	0.001	
05/16/11 08:08:04	59.92505	0		0		0			-653	30217.55	1	0	1	0.002	0.002	
05/16/11 08:08:06	59.92505	0		0		0			-653	30217.57	1	0	1	0.000	0.000	
05/16/11 08:08:08	59.9273	0		0		0			-653	30217.57	1	0	1	0.002	0.002	
05/16/11 08:08:10	59.93246	0		0		0			-653	30217.57	1	0	1	0.005	0.005	
05/16/11 08:08:12	59.93505	0		0		0			-653	30217.57	1	0	1	0.003	0.003	
05/16/11 08:08:14	59.93701	0		0		0			-653	30217.59	1	0	1	0.002	0.002	
05/16/11 08:08:16	59.93765	0		0		0			-653	30217.59	1	0	1	0.001	0.001	
05/16/11 08:08:18	59.93927	0		0		0			-653	30217.59	1	0	1	0.002	0.002	
05/16/11 08:08:20	59.94183	0		0		0			-653	30217.59	1	0	1	0.003	0.003	
05/16/11 08:08:22	59.94409	0		0		0			-653	30210.49	1	0	1	0.002	0.002	
05/16/11 08:08:24	59.94571	0		0		0			-653	30210.49	1	0	1	0.002	0.002	
05/16/11 08:08:26	59.94797	0		0		0			-653	30210.26	1	0	1	0.002	0.002	
05/16/11 08:08:28	59.94766	0		0		0			-653	30210.26	,	0	1	0.000	0.000	
05/16/11 08:08:30	59.9454	0		0		0			-653	30210.26	1	0	1	-0.002	0.002	
05/16/11 08:08:32	59.94443	0		0		0			-653	30210.26	,	0	1	-0.001	0.001	
05/16/11 08:08:34	59.94409	0		0		0			-653	30234.59	1	0	1	0.000	0.000	
05/16/11 08:08:36	59.94507	0		0		0			-653	30234.59		0	1	0.001	0.001	
05/16/11 08:08:38	59.94604	0		0		0			-653	30234.59	1	0	1	0.001	0.001	
05/16/11 08:08:40	59.94638	0		0		0			-653	30234.59	1	0	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:08:42	59.94733	0		0		0			-653	30223.6		0	1	0.001	0.001	
05/16/11 08:08:44	59.9483	0		0		0			-653	30223.6	1	0	1	0.001	0.001	
05/16/11 08:08:46	59.94894	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:48	59.94992	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:50	59.9509	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:52	59.95154	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:54	59.95187	0		0		0			-653	30224.39	,	0	1	0.000	0.000	
05/16/11 08:08:56	59.95346	0		0		0			-653	30224.39	1	0	1	0.002	0.002	
05/16/11 08:08:58	59.95508	0		0		0			-653	30224.39	1	0	1	0.002	0.002	
05/16/11 08:09:00	59.95575	0		0		0			-653	30224.39	1	0	1	0.001	0.001	
05/16/11 08:09:02	59.95639	0		0		0			-653	30255.53	1	0	1	0.001	0.001	
05/16/11 08:09:04	59.95801	0		0		0			-653	30255.53	1	0	1	0.002	0.002	
05/16/11 08:09:06	59.96124	0		0		0			-653	30252.87	1	0	1	0.003	0.003	
05/16/11 08:09:08	59.96252	0		0		0			-653	30252.87	1	0	1	0.001	0.001	
05/16/11 08:09:10	59.96188	0		0		0			-653	30252.87	1	0	1	-0.001	0.001	
05/16/11 08:09:12	59.96124	0		0		0			-653	30252.87	,	0	1	-0.001	0.001	
05/16/11 08:09:14	59.96027	0		0		0			-653	30232.45	1	0	1	-0.001	0.001	
05/16/11 08:09:16	59.96057	0		0		0			-653	30232.45	1	0	1	0.000	0.000	
05/16/11 08:09:18	59.96219	0		0		0			-653	30232.45	1	0	1	0.002	0.002	
05/16/11 08:09:20	59.96512	0		0		0			-653	30232.45	1	0	1	0.003	0.003	
05/16/11 08:09:22	59.96738	0		0		0			-653	30263.99	1	0	1	0.002	0.002	
05/16/11 08:09:24	59.96899	0		0		0			-653	30263.99	1	0	1	0.002	0.002	
05/16/11 08:09:26	59.97061	0		0		0			-653	30263.68	1	0	1	0.002	0.002	
05/16/11 08:09:28	59.97318	0		0		0			-653	30263.68	1	0	1	0.003	0.003	
05/16/11 08:09:30	59.97351	0		0		0			-653	30263.68	1	0	1	0.000	0.000	
05/16/11 08:09:32	59.97287	0		0		0			-653	30263.68	1	0	1	-0.001	0.001	
05/16/11 08:09:34	59.97253	0		0		0			-653	30264.96	1	0	1	0.000	0.000	
05/16/11 08:09:36	59.97318	0		0		0			-653	30264.96	1	0	1	0.001	0.001	
05/16/11 08:09:38	59.97415	0		0		0			-653	30264.96	1	0	1	0.001	0.001	
05/16/11 08:09:40	59.97543	0		0		0			-653	30264.96	1	0	1	0.001	0.001	
05/16/11 08:09:42	59.97577	0		0		0			-653	30263.63	1	0	1	0.000	0.000	
05/16/11 08:09:44	59.9761	0		0		0			-653	30263.63	1	0	1	0.000	0.000	
05/16/11 08:09:46	59.97675	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:48	59.97803	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:50	59.97931	0		0		0			-653	30279.39	,	0	1	0.001	0.001	
05/16/11 08:09:52	59.97998	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:54	59.97964	0		0		0			-653	30255.32	1	0	1	0.000	0.000	
05/16/11 08:09:56	59.979	0		0		0			-653	30255.32	1	0	1	-0.001	0.001	
05/16/11 08:09:58	59.97964	0		0		0			-653	30255.32		0	1	0.001	0.001	
05/16/11 08:10:00	59.98093	0		0		0			-653	30255.32	1	0	1	0.001	0.001	
05/16/11 08:10:02	59.98224	0		0		0			-653	30260.67	1	0	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:10:04	59.98386	0		0		0			-653	30260.67		0	1	0.002	0.002	
05/16/11 08:10:06	59.98514	0		0		0			-653	30259.99	1	0	1	0.001	0.001	
05/16/11 08:10:08	59.98773	0		0		0			-653	30259.99	1	0	1	0.003	0.003	
05/16/11 08:10:10	59.9903	0		0		0			-653	30259.99	1	0	1	0.003	0.003	
05/16/11 08:10:12	59.99289	0		0		0			-653	30259.99	1	0	1	0.003	0.003	
05/16/11 08:10:14	59.99579	0		0		0			-653	30274.08	1	0	1	0.003	0.003	
05/16/11 08:10:16	59.99646	0		0		0			-653	30274.08	,	0	1	0.001	0.001	
05/16/11 08:10:18	59.99579	0		0		0			-653	30274.08	1	0	1	-0.001	0.001	
05/16/11 08:10:20	59.99612	0		0		0			-653	30274.08	1	0	1	0.000	0.000	
05/16/11 08:10:22	59.99579	0		0		0			-653	30297.68	1	0	1	0.000	0.000	
05/16/11 08:10:24	59.99484	0		0		0			-653	30297.68	1	0	1	-0.001	0.001	
05/16/11 08:10:26	59.99484	0		0		0			-653	30297.65	1	0	1	0.000	0.000	
05/16/11 08:10:28	59.99805	0		0		0			-653	30297.65	1	0	1	0.003	0.003	
05/16/11 08:10:30	59.99872	0		0		0			-653	30297.65	,	1	1	0.001	0.001	
05/16/11 08:10:32	60.00034	0		0		0			-653	30297.65	1	1	1	0.002	0.002	
05/16/11 08:10:34	60.00195	0		0		0			-653	30300.1	,	1	1	0.002	0.002	
05/16/11 08:10:36	60.00259	0		0		0			-653	30300.1	1	1	1	0.001	0.001	
05/16/11 08:10:38	60.00226	0		0		0			-653	30300.1	1	1	1	0.000	0.000	
05/16/11 08:10:40	60.00195	0		0		0			-653	30300.1	1	1	1	0.000	0.000	
05/16/11 08:10:42	60.00064	0		0		0			-653	30314.84	1	1	1	-0.001	0.001	
05/16/11 08:10:44	59.99646	0		0		0			-653	30314.84	1	0	1	-0.004	0.004	
05/16/11 08:10:46	59.99191	0		0		0			-653	30309.71	1	0	1	-0.005	0.005	
05/16/11 08:10:48	59.98901	0		0		0			-653	30309.71	1	0	1	-0.003	0.003	
05/16/11 08:10:50	59.98773	0		0		0			-653	30309.71	1	0	1	-0.001	0.001	
05/16/11 08:10:52	59.98901	0		0		0			-653	30309.71	1	0	1	0.001	0.001	
05/16/11 08:10:54	59.99255	0		0		0			-653	30319.5	1	0	1	0.004	0.004	
05/16/11 08:10:56	59.99579	0		0		0			-653	30319.5	1	0	1	0.003	0.003	
05/16/11 08:10:58	59.99902	0		0		0			-653	30319.5	1	1	1	0.003	0.003	
05/16/11 08:11:00	60.00195	0		0		0			-653	30319.5	1	1	1	0.003	0.003	
05/16/11 08:11:02	60.00485	0		0		0			-653	30357.21	1	1	1	0.003	0.003	
05/16/11 08:11:04	60.00809	0		0		0			-653	30357.21	1	1	1	0.003	0.003	
05/16/11 08:11:06	60.01163	0		0		0			-653	30357.18	1	1	1	0.004	0.004	
05/16/11 08:11:08	60.01422	0		0		0			-653	30357.18	1	1	1	0.003	0.003	
05/16/11 08:11:10	60.0152	0		0		0			-653	30357.18	1	1	1	0.001	0.001	
05/16/11 08:11:12	60.0155	0		0		0			-653	30357.18	,	1	1	0.000	0.000	
05/16/11 08:11:14	60.0155	0		0		0			-653	30354.26	1	1	1	0.000	0.000	
05/16/11 08:11:16	60.01682	0		0		0			-653	30354.26	,	1	1	0.001	0.001	
05/16/11 08:11:18	60.01907	0		0		0			-653	30354.26	1	1	1	0.002	0.002	
05/16/11 08:11:20	60.02295	0		0		0			-653	30354.26		1	1	0.004	0.004	
05/16/11 08:11:22	60.02618	0		0		0			-653	30354.48	1	1	1	0.003	0.003	
05/16/11 08:11:24	60.02972	0		0		0			-653	30354.48	1	1	1	0.004	0.004	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:11:26	60.03262	0		0		0			-653	30353.83	1	1	1	0.003	0.003	
05/16/11 08:11:28	60.03458	0		0		0			-653	30353.83	1	1	1	0.002	0.002	
05/16/11 08:11:30	60.03522	0		0		0			-653	30353.83	1	1	1	0.001	0.001	
05/16/11 08:11:32	60.03424	0		0		0			-653	30353.83	1	1	1	-0.001	0.001	
05/16/11 08:11:34	60.0336	0		0		0			-653	30370.41	1	1	1	-0.001	0.001	
05/16/11 08:11:36	60.03522	0		0		0			-653	30370.41	1	1	1	0.002	0.002	
05/16/11 08:11:38	60.03812	0		0		0			-653	30370.41	1	1	1	0.003	0.003	
05/16/11 08:11:40	60.04037	0		0		0			-653	30370.41	1	1	1	0.002	0.002	
05/16/11 08:11:42	60.04105	0		0		0			-653	30374.79	1	1	1	0.001	0.001	
05/16/11 08:11:44	60.04199	0		0		0			-653	30374.79	1	,	1	0.001	0.001	
05/16/11 08:11:46	60.04233	0		0		0			-653	30366.14	1	1	1	0.000	0.000	
05/16/11 08:11:48	60.0433	0		0		0			-653	30366.14	1	1	1	0.001	0.001	
05/16/11 08:11:50	60.04425	0		0		0			-653	30366.14	1	1	1	0.001	0.001	
05/16/11 08:11:52	60.04492	0		0		0			-653	30366.14	1	1	1	0.001	0.001	
05/16/11 08:11:54	60.04556	0		0		0			-653	30373.53	1	1	1	0.001	0.001	
05/16/11 08:11:56	60.04587	0		0		0			-653	30373.53		1	1	0.000	0.000	
05/16/11 08:11:58	60.04654	0		0		0			-653	30373.53	1	1	1	0.001	0.001	
05/16/11 08:12:00	60.0488	0		0		0			-653	30373.53	1	1	1	0.002	0.002	
05/16/11 08:12:02	60.04974	0		0		0			-653	30343.46	,	1	1	0.001	0.001	
05/16/11 08:12:04	60.0491	0		0		0			-653	30343.46	1	1	1	-0.001	0.001	
05/16/11 08:12:06	60.0491	0		0		0			-653	30335.12	1	1	1	0.000	0.000	
05/16/11 08:12:08	60.05042	0		0		0			-653	30335.12	1	1	1	0.001	0.001	
05/16/11 08:12:10	60.04974	0		0		0			-653	30335.12	1	1	1	-0.001	0.001	
05/16/11 08:12:12	60.04846	0		0		0			-653	30335.12	1	1	1	-0.001	0.001	
05/16/11 08:12:14	60.04718	0		0		0			-653	30337.29	1	1	1	-0.001	0.001	
05/16/11 08:12:16	60.04587	0		0		0			-653	30337.29	1	1	1	-0.001	0.001	
05/16/11 08:12:18	60.04587	0		0		0			-653	30337.29	1	1	1	0.000	0.000	
05/16/11 08:12:20	60.04556	0		0		0			-653	30337.29	1	1	1	0.000	0.000	
05/16/11 08:12:22	60.04425	0		0		0			-653	30350.2	,	1	1	-0.001	0.001	
05/16/11 08:12:24	60.04297	0		0		0			-653	30350.2	1	1		-0.001	0.001	
05/16/11 08:12:26	60.04169	0		0		0			-653	30350.07	1	1	1	-0.001	0.001	
05/16/11 08:12:28	60.04233	0		0		0			-653	30350.07	1	1	1	0.001	0.001	
05/16/11 08:12:30	60.04459	0		0		0			-653	30350.07	,	1	1	0.002	0.002	
05/16/11 08:12:32	60.04654	0		0		0			-653	30350.07	1	1	1	0.002	0.002	
05/16/11 08:12:34	60.04718	0		0		0			-653	30354.77		1	1	0.001	0.001	
05/16/11 08:12:36	60.0462	0		0		0			-653	30354.77	1	1	1	-0.001	0.001	
05/16/11 08:12:38	60.04425	0		0		0			-653	30354.77	1	1	1	-0.002	0.002	
05/16/11 08:12:40	60.04492	0		0		0			-653	30354.77	1	1	- 1	0.001	0.001	
05/16/11 08:12:42	60.04523	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:44	60.04523	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:46	60.04556	0		0		0			-653	30372.38		1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52		Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:12:48	60.0462	0		0		0			-653	30372.38		,	1	0.001	0.001	
05/16/11 08:12:50	60.04654	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:52	60.04654	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:54	60.04523	0		0		0			-653	30349.1	1	1	1	-0.001	0.001	
05/16/11 08:12:56	60.04361	0		0		0			-653	30349.1	1	1	1	-0.002	0.002	
05/16/11 08:12:58	60.04199	0		0		0			-653	30349.1	1	1	1	-0.002	0.002	
05/16/11 08:13:00	60.04071	0		0		0			-653	30349.1	1	1	1	-0.001	0.001	
05/16/11 08:13:02	60.03876	0		0		0			-653	30363.65	1	1	1	-0.002	0.002	
05/16/11 08:13:04	60.03586	0		0		0			-653	30363.65	1	1	1	-0.003	0.003	
05/16/11 08:13:06	60.03394	0		0		0			-653	30363.88	1	1	1	-0.002	0.002	
05/16/11 08:13:08	60.0336	0		0		0			-653	30363.88	1	1	1	0.000	0.000	
05/16/11 08:13:10	60.03262	0		0		0			-653	30363.88	1	1	1	-0.001	0.001	
05/16/11 08:13:12	60.03006	0		0		0			-653	30363.88	1	1	1	-0.003	0.003	
05/16/11 08:13:14	60.02747	0		0		0			-653	30364.77	1	1	1	-0.003	0.003	
05/16/11 08:13:16	60.02682	0		0		0			-653	30364.77	1	1	1	-0.001	0.001	
05/16/11 08:13:18	60.02585	0		0		0			-653	30364.77	,	1	1	-0.001	0.001	
05/16/11 08:13:20	60.02359	0		0		0			-653	30364.77	1	1	1	-0.002	0.002	
05/16/11 08:13:22	60.02197	0		0		0			-653	30374.33	1	1	1	-0.002	0.002	
05/16/11 08:13:24	60.02164	0		0		0			-653	30374.33	1	1	1	0.000	0.000	
05/16/11 08:13:26	60.02231			0		0			-653	30364.67	1	1	1	0.001	0.001	
05/16/11 08:13:28	60.02133	0		0		0			-653	30364.67	1	1	1	-0.001	0.001	
05/16/11 08:13:30	60.02133	0		0		0			-653	30364.67	1	1	1	0.000	0.000	
05/16/11 08:13:32	60.02002	0		0		0			-653	30364.67	1	,	1	-0.001	0.001	
05/16/11 08:13:34	60.01776	0		0		0			-653	30361.56	1	1	1	-0.002	0.002	
05/16/11 08:13:36	60.01584	0		0		0			-653	30361.56	1	1	1	-0.002	0.002	
05/16/11 08:13:38	60.01291	0		0		0			-653	30361.56	1	1	1	-0.003	0.003	
05/16/11 08:13:40	60.01132	0		0		0			-653	30361.56	1	1	1	-0.002	0.002	
05/16/11 08:13:42	60.01001	0		0		0			-653	30350.69	1	1	1	-0.001	0.001	
05/16/11 08:13:44	60.00937	0		0		0			-653	30350.69	1	1	1	-0.001	0.001	
05/16/11 08:13:46	60.00775	0		0		0			-653	30344.52	1	1	1	-0.002	0.002	
05/16/11 08:13:48	60.00516	0		0		0			-653	30344.52	1	1	1	-0.003	0.003	
05/16/11 08:13:50	60.00452	0		0		0			-653	30344.52	1	1	1	-0.001	0.001	
05/16/11 08:13:52	60.00613	0		0		0			-653	30344.52	1	1	1	0.002	0.002	
05/16/11 08:13:54	60.00613	0		0		0			-653	30354.37	1	1	1	0.000	0.000	
05/16/11 08:13:56	60.00549	0		0		0			-653	30354.37	,	1	1	-0.001	0.001	
05/16/11 08:13:58	60.00516	0		0		0			-653	30354.37	1	1	1	0.000	0.000	
05/16/11 08:14:00	60.00388	0		0		0			-653	30354.37	1	1	1	-0.001	0.001	
05/16/11 08:14:02	60.00259	0		0		0			-653	30373.31	1	1	1	-0.001	0.001	
05/16/11 08:14:04	60.00128	0		0		0			-653	30373.31		1	1	-0.001	0.001	
05/16/11 08:14:06	60.00128	0		0		0			-653	30373.78	1	1	1	0.000	0.000	
05/16/11 08:14:08	60.00064	,		0		0			-653	30373.78	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52		Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:14:10	60.00034	0		0		0			-653	30373.78		,	1	0.000	0.000	
05/16/11 08:14:12	60.00226	0		0		0			-653	30373.78	1	1	1	0.002	0.002	
05/16/11 08:14:14	60.00421	0		0		0			-653	30366.33	1	1	1	0.002	0.002	
05/16/11 08:14:16	60.00677	0		0		0			-653	30366.33	1	1	1	0.003	0.003	
05/16/11 08:14:18	60.00903	0		0		0			-653	30366.33	1	1	1	0.002	0.002	
05/16/11 08:14:20	60.01291	0		0		0			-653	30366.33	1	1	1	0.004	0.004	
05/16/11 08:14:22	60.01486	0		0		0			-653	30373.85	1	1	1	0.002	0.002	
05/16/11 08:14:24	60.01453	0		0		0			-653	30373.85	1	1	1	0.000	0.000	
05/16/11 08:14:26	60.01422	0		0		0			-653	30373.05	1	1	1	0.000	0.000	
05/16/11 08:14:28	60.0152	0		0		0			-653	30373.05	1	1	1	0.001	0.001	
05/16/11 08:14:30	60.01614	0		0		0			-653	30373.05	1	1	1	0.001	0.001	
05/16/11 08:14:32	60.01682	0		0		0			-653	30373.05	1	1	1	0.001	0.001	
05/16/11 08:14:34	60.01746	0		0		0			-653	30369.77	1	1	1	0.001	0.001	
05/16/11 08:14:36	60.01712	0		0		0			-653	30369.77	,	1	1	0.000	0.000	
05/16/11 08:14:38	60.01682	0		0		0			-653	30369.77	1	1	1	0.000	0.000	
05/16/11 08:14:40	60.01648	0		0		0			-653	30369.77	,	1	1	0.000	0.000	
05/16/11 08:14:42	60.01614	0		0		0			-653	30388.99	1	1	1	0.000	0.000	
05/16/11 08:14:44	60.01746	0		0		0			-653	30388.99	1	1	1	0.001	0.001	
05/16/11 08:14:46	60.01776	0		0		0			-653	30388.16	1	1	1	0.000	0.000	
05/16/11 08:14:48	60.01776	0		0		0			-653	30388.16	1	,	1	0.000	0.000	
05/16/11 08:14:50	60.01648	0		0		0			-653	30388.16	1	,	1	-0.001	0.001	
05/16/11 08:14:52	60.01584	0		0		0			-653	30388.16	1	1	1	-0.001	0.001	
05/16/11 08:14:54	60.01648	0		0		0			-653	30376.94	1	1	1	0.001	0.001	
05/16/11 08:14:56	60.01584	0		0		0			-653	30376.94	,	1	1	-0.001	0.001	
05/16/11 08:14:58	60.01358	0		0		0			-653	30376.94	1	1	1	-0.002	0.002	
05/16/11 08:15:00	60.01163	0		0		0			-653	30376.94	1	1	1	-0.002	0.002	
05/16/11 08:15:02	60.01132	0		0		0			-653	30371.85	1	1	1	0.000	0.000	
05/16/11 08:15:04	60.01132	0		0		0			-653	30371.85	1	,	1	0.000	0.000	
05/16/11 08:15:06	60.01099	0		0		0			-653	30362.65	1	1	1	0.000	0.000	
05/16/11 08:15:08	60.01099	0		0		0			-653	30362.65	1	1	1	0.000	0.000	
05/16/11 08:15:10	60.01291	0		0		0			-653	30362.65	1	1	1	0.002	0.002	
05/16/11 08:15:12	60.01486	0		0		0			-653	30362.65	1	1	1	0.002	0.002	
05/16/11 08:15:14	60.01776	0		0		0			-653	30395.46	1	1	1	0.003	0.003	
05/16/11 08:15:16	60.01776	0		0		0			-653	30395.46	1	1	1	0.000	0.000	
05/16/11 08:15:18	60.0184	0		0		0			-653	30395.46	,	1	1	0.001	0.001	
05/16/11 08:15:20	60.0181	0		0		0			-653	30395.46	1	1	1	0.000	0.000	
05/16/11 08:15:22	60.01746	0		0		0			-653	30397.03	,	1	1	-0.001	0.001	
05/16/11 08:15:24	60.0152	0		0		0			-653	30397.03	1	1	1	-0.002	0.002	
05/16/11 08:15:26	60.0152	0		0		0			-653	30396.67		1	1	0.000	0.000	
05/16/11 08:15:28	60.01389	0		0		0			-653	30396.67	,	1	1	-0.001	0.001	
05/16/11 08:15:30	60.01746	0		0		0			-653	30396.67	1	1	1	0.004	0.004	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52		Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:15:32	60.01907	0		0		0			-653	30396.67		,	1	0.002	0.002	
05/16/11 08:15:34	60.01907	0		0		0			-653	30388.62	1	1	1	0.000	0.000	
05/16/11 08:15:36	60.02036	0		0		0			-653	30388.62	1	1	1	0.001	0.001	
05/16/11 08:15:38	60.01874	0		0		0			-653	30388.62	1	1	1	-0.002	0.002	
05/16/11 08:15:40	60.01874	0		0		0			-653	30388.62	1	1	1	0.000	0.000	
05/16/11 08:15:42	60.01971	0		0		0			-653	30381.78	1	1	1	0.001	0.001	
05/16/11 08:15:44	60.01971	0		0		0			-653	30381.78	,	1	1	0.000	0.000	
05/16/11 08:15:46	60.01971	0		0		0			-653	30382.96	1	1	1	0.000	0.000	
05/16/11 08:15:48	60.0184	0		0		0			-653	30382.96	1	1	1	-0.001	0.001	
05/16/11 08:15:50	60.01486	0		0		0			-653	30382.96	1	1	1	-0.004	0.004	
05/16/11 08:15:52	60.01358	0		0		0			-653	30382.96	1	1	1	-0.001	0.001	
05/16/11 08:15:54	60.01389	0		0		0			-653	30381.48	1	1	1	0.000	0.000	
05/16/11 08:15:56	60.01227	0		0		0			-653	30381.48	1	1	1	-0.002	0.002	
05/16/11 08:15:58	60.01001	0		0		0			-653	30381.48	1	1	1	-0.002	0.002	
05/16/11 08:16:00	60.00583	0		0		0			-653	30381.48	1	1	1	-0.004	0.004	
05/16/11 08:16:02	60.00162	0		0		0			-653	30394.03	,	1	1	-0.004	0.004	
05/16/11 08:16:04	60.00162	0		0		0			-653	30394.03	1	1	1	0.000	0.000	
05/16/11 08:16:06	59.99805	0		0		0			-653	30394.07	1	0	1	-0.004	0.004	
05/16/11 08:16:08	59.99353	0		0		0			-653	30394.07	1	0	1	-0.005	0.005	
05/16/11 08:16:10	59.99255	0		0		0			-653	30394.07	1	0	1	-0.001	0.001	
05/16/11 08:16:12	59.99225	0		0		0			-653	30394.07	1	0	1	0.000	0.000	
05/16/11 08:16:14	59.98999	0		0		0			-653	30376.91	1	0	1	-0.002	0.002	
05/16/11 08:16:16	59.98837	0		0		0			-653	30376.91	1	0	1	-0.002	0.002	
05/16/11 08:16:18	59.98416	0		0		0			-653	30376.91	1	0	1	-0.004	0.004	
05/16/11 08:16:20	59.9816	0		0		0			-653	30376.91	1	0	1	-0.003	0.003	
05/16/11 08:16:22	59.98093	0		0		0			-653	30367.96	1	0	1	-0.001	0.001	
05/16/11 08:16:24	59.98029	0		0		0			-653	30367.96	1	0	1	-0.001	0.001	
05/16/11 08:16:26	59.97998	0		0		0			-653	30367.46	1	0	1	0.000	0.000	
05/16/11 08:16:28	59.97836	0		0		0			-653	30367.46	1	0	1	-0.002	0.002	
05/16/11 08:16:30	59.97513	0		0		0			-653	30367.46	1	0	1	-0.003	0.003	
05/16/11 08:16:32	59.97287	0		0		0			-653	30367.46	1	0	1	-0.002	0.002	
05/16/11 08:16:34	59.97189	0		0		0			-653	30361.18	1	0	1	-0.001	0.001	
05/16/11 08:16:36	59.97156	0		0		0			-653	30361.18	1	0	1	0.000	0.000	
05/16/11 08:16:38	59.97382	0		0		0			-653	30361.18	1	0	1	0.002	0.002	
05/16/11 08:16:40	59.97641	0		0		0			-653	30361.18	,	0	1	0.003	0.003	
05/16/11 08:16:42	59.97836	0		0		0			-653	30365.59	1	0	1	0.002	0.002	
05/16/11 08:16:44	59.97705	0		0		0			-653	30365.59	1	0	1	-0.001	0.001	
05/16/11 08:16:46	59.97449	0		0		0			-653	30365.19	1	0	1	-0.003	0.003	
05/16/11 08:16:48	59.97125	0		0		0			-653	30365.19		0	1	-0.003	0.003	
05/16/11 08:16:50	59.97092	0		0		0			-653	30365.19	,	0	1	0.000	0.000	
05/16/11 08:16:52	59.97287	0		0		0			-653	30365.19	1	0	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:16:54	59.97449	0		0		0			-653	30375.91		0	1	0.002	0.002	
05/16/11 08:16:56	59.97382	0		0		0			-653	30375.91	1	0	1	-0.001	0.001	
05/16/11 08:16:58	59.97318	0		0		0			-653	30375.91	1	0	1	-0.001	0.001	
05/16/11 08:17:00	59.97449	0		0		0			-653	30375.91	1	0	1	0.001	0.001	
05/16/11 08:17:02	59.9761	0		0		0			-653	30367.4	1	0	1	0.002	0.002	
05/16/11 08:17:04	59.97739	0		0		0			-653	30367.4	1	0	1	0.001	0.001	
05/16/11 08:17:06	59.97836	0		0		0			-653	30367.72	1	0	1	0.001	0.001	
05/16/11 08:17:08	59.97769	0		0		0			-653	30367.72	1	0	1	-0.001	0.001	
05/16/11 08:17:10	59.97705	0		0		0			-653	30367.72	1	0	1	-0.001	0.001	
05/16/11 08:17:12	59.97641	0		0		0			-653	30367.72	1	0	1	-0.001	0.001	
05/16/11 08:17:14	59.97543	0		0		0			-653	30416.87	1	0	1	-0.001	0.001	
05/16/11 08:17:16	59.97382	0		0		0			-653	30416.87	1	0	1	-0.002	0.002	
05/16/11 08:17:18	59.97318	0		0		0			-653	30416.87	1	0	1	-0.001	0.001	
05/16/11 08:17:20	59.97223	0		0		0			-653	30416.87	,	0	1	-0.001	0.001	
	59.97189	0		0		0			-653	30413.65	1	0	1	0.000	0.000	
05/16/11 08:17:24	59.97092	0		0		0			-653	30413.65	1	0	1	-0.001	0.001	
05/16/11 08:17:26	59.96994	0		0		0			-653	30406.3	1	0	1	-0.001	0.001	
05/16/11 08:17:28	59.96832	0		0		0			-653	30406.3	1	0	1	-0.002	0.002	
05/16/11 08:17:30	59.96606	0		0		0			-653	30406.3	1	0	1	-0.002	0.002	
05/16/11 08:17:32	59.96542	0		0		0			-653	30406.3	1	0	1	-0.001	0.001	
05/16/11 08:17:34	59.96606	0		0		0			-653	30418.59	1	0	1	0.001	0.001	
05/16/11 08:17:36	59.9693	0		0		0			-653	30418.59	1	0	1	0.003	0.003	
05/16/11 08:17:38	59.97253	0		0		0			-653	30418.59	1	0	1	0.003	0.003	
05/16/11 08:17:40	59.97351	0		0		0			-653	30418.59	,	0	1	0.001	0.001	
05/16/11 08:17:42	59.97382	0		0		0			-653	30433.31	1	0	1	0.000	0.000	
05/16/11 08:17:44	59.97253	0		0		0			-653	30433.31	1	0	1	-0.001	0.001	
05/16/11 08:17:46	59.97253	0		0		0			-653	30433.31	1	0	1	0.000	0.000	
05/16/11 08:17:48	59.97253	0		0		0			-653	30433.31	1	0	1	0.000	0.000	
05/16/11 08:17:50	59.96768	0		0		0			-653	30433.31	1	0	1	-0.005	0.005	
05/16/11 08:17:52	59.97125	0		0		0			-653	30433.31	1	0	1	0.004	0.004	
05/16/11 08:17:54	59.97577	0		0		0			-653	30451.3	1	0	1	0.005	0.005	
05/16/11 08:17:56	59.97577	0		0		0			-653	30451.3	1	0	1	0.000	0.000	
05/16/11 08:17:58	59.97577	0		0		0			-653	30451.3	1	0	1	0.000	0.000	
05/16/11 08:18:00	59.98416	0		0		0			-653	30451.3	1	0	1	0.008	0.008	
05/16/11 08:18:02	59.9819	0		0		0			-653	30425.74	,	0	1	-0.002	0.002	
05/16/11 08:18:04	59.979	0		0		0			-653	30425.74	1	0	1	-0.003	0.003	
05/16/11 08:18:06	59.97769	0		0		0			-653	30419.18	,	0	1	-0.001	0.001	
05/16/11 08:18:08	59.97769	0		0		0			-653	30419.18	1	0	1	0.000	0.000	
05/16/11 08:18:10	59.98126	0		0		0			-653	30419.18		0	1	0.004	0.004	
05/16/11 08:18:12	59.9848	0		0		0			-653	30419.18	,	0	1	0.004	0.004	
05/16/11 08:18:14	59.98868	0		0		0			-653	30424.29	1	0	1	0.004	0.004	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:18:16	59.99161	0		0		0			-653	30424.29		0	1	0.003	0.003	
05/16/11 08:18:18	59.99353	0		0		0			-653	30424.29	1	0	1	0.002	0.002	
05/16/11 08:18:20	59.99579	0		0		0			-653	30424.29	1	0	1	0.002	0.002	
05/16/11 08:18:22	59.99677	0		0		0			-653	30440.82	1	0	1	0.001	0.001	
05/16/11 08:18:24	59.99774	0		0		0			-653	30440.82	1	0	1	0.001	0.001	
05/16/11 08:18:26	59.99838	0		0		0			-653	30431.58	1	0	1	0.001	0.001	
05/16/11 08:18:28	59.99774	0		0		0			-653	30431.58	,	0	1	-0.001	0.001	
05/16/11 08:18:30	59.9971	0		0		0			-653	30431.58	1	0	1	-0.001	0.001	
05/16/11 08:18:32	59.99741	0		0		0			-653	30431.58	1	0	1	0.000	0.000	
05/16/11 08:18:34	59.99741	0		0		0			-653	30444.25	1	0	1	0.000	0.000	
05/16/11 08:18:36	59.99741	0		0		0			-653	30444.25	1	0	1	0.000	0.000	
05/16/11 08:18:38	60.00064	0		0		0			-653	30444.25	1	1	1	0.003	0.003	
05/16/11 08:18:40	60.00323	0		0		0			-653	30444.25	1	1	1	0.003	0.003	
05/16/11 08:18:42	60.00354	0		0		0			-653	30465.11	1	1	1	0.000	0.000	
05/16/11 08:18:44	60.00259	0		0		0			-653	30465.11	1	1	1	-0.001	0.001	
05/16/11 08:18:46	60.00098	0		0		0			-653	30465.3	,	1	1	-0.002	0.002	
05/16/11 08:18:48	59.99936	0		0		0			-653	30465.3	1	1	1	-0.002	0.002	
05/16/11 08:18:50	59.99741	0		0		0			-653	30465.3	1	0	1	-0.002	0.002	
05/16/11 08:18:52	59.99677	0		0		0			-653	30465.3	1	0	1	-0.001	0.001	
05/16/11 08:18:54	59.99677			0		0			-653	30478.25	1	0	1	0.000	0.000	
05/16/11 08:18:56	59.9971	0		0		0			-653	30478.25	1	0	1	0.000	0.000	
05/16/11 08:18:58	59.99774	0		0		0			-653	30478.25	1	0	1	0.001	0.001	
05/16/11 08:19:00	59.99872	0		0		0			-653	30478.25	1	1	1	0.001	0.001	
05/16/11 08:19:02	59.99966	0		0		0			-653	30473.86	1	1	1	0.001	0.001	
05/16/11 08:19:04	60	0		0		0			-653	30473.86	1	1	1	0.000	0.000	
05/16/11 08:19:06	60.00034	-		0		0			-653	30468.84	1	1	1	0.000	0.000	
05/16/11 08:19:08	60.00098	0		0		0			-653	30468.84	1	1	1	0.001	0.001	
05/16/11 08:19:10	60.00226	0		0		0			-653	30468.84	1	1	1	0.001	0.001	
05/16/11 08:19:12	60.0029	0		0		0			-653	30468.84	1	1	1	0.001	0.001	
05/16/11 08:19:14	60.00259	0		0		0			-653	30469.63	1	1	1	0.000	0.000	
05/16/11 08:19:16	60.00226	0		0		0			-653	30469.63	1	1	1	0.000	0.000	
05/16/11 08:19:18	60.00226	0		0		0			-653	30469.63	1	1	1	0.000	0.000	
05/16/11 08:19:20	60.00323	0		0		0			-653	30469.63	1	1	1	0.001	0.001	
05/16/11 08:19:22	60.00421	0		0		0			-653	30488.41	1	1	1	0.001	0.001	
05/16/11 08:19:24	60.00485	0		0		0			-653	30488.41	,	1	1	0.001	0.001	
05/16/11 08:19:26	60.00452	0		0		0			-653	30480.29	1	1	1	0.000	0.000	
05/16/11 08:19:28	60.00354	0		0		0			-653	30480.29	,	1	1	-0.001	0.001	
05/16/11 08:19:30	60.00354	0		0		0			-653	30480.29	1	1	1	0.000	0.000	
05/16/11 08:19:32	60.00354	0		0		0			-653	30480.29		1	1	0.000	0.000	
05/16/11 08:19:34	60.00354	0		0		0			-653	30477.13	,	1	1	0.000	0.000	
05/16/11 08:19:36	60.00354	,		0		0			-653	30477.13	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52		Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:19:38	60.00354	0		0		0			-653	30477.13		,	1	0.000	0.000	
05/16/11 08:19:40	60.00354	0		0		0			-653	30477.13	1	1	1	0.000	0.000	
05/16/11 08:19:42	60.00613	0		0		0			-653	30487.82	1	1	1	0.003	0.003	
05/16/11 08:19:44	60.00485	0		0		0			-653	30487.82	1	1	1	-0.001	0.001	
05/16/11 08:19:46	60.00452	0		0		0			-653	30489.73	1	1	1	0.000	0.000	
05/16/11 08:19:48	60.00452	0		0		0			-653	30489.73	1	1	1	0.000	0.000	
05/16/11 08:19:50	60.00354	0		0		0			-653	30489.73	,	1	1	-0.001	0.001	
05/16/11 08:19:52	60.0029	0		0		0			-653	30489.73	1	1	1	-0.001	0.001	
05/16/11 08:19:54	60.00162	0		0		0			-653	30480.09	1	1	1	-0.001	0.001	
05/16/11 08:19:56	60.00162	0		0		0			-653	30480.09	1	1	1	0.000	0.000	
05/16/11 08:19:58	60.00421	0		0		0			-653	30480.09	1	1	1	0.003	0.003	
05/16/11 08:20:00	60.00421	0		0		0			-653	30480.09	1	1	1	0.000	0.000	
05/16/11 08:20:02	60.0029	0		0		0			-653	30480.91	1	1	1	-0.001	0.001	
05/16/11 08:20:04	60.00034	0		0		0			-653	30480.91	1	1	1	-0.003	0.003	
05/16/11 08:20:06	59.99805	0		0		0			-653	30480.84	1	0	1	-0.002	0.002	
05/16/11 08:20:08	59.99646	0		0		0			-653	30480.84	,	0	1	-0.002	0.002	
05/16/11 08:20:10	59.99515	0		0		0			-653	30480.84	1	0	1	-0.001	0.001	
05/16/11 08:20:12	59.99387	0		0		0			-653	30480.84	1	0	1	-0.001	0.001	
05/16/11 08:20:14	59.99289	0		0		0			-653	30476.09	1	0	1	-0.001	0.001	
05/16/11 08:20:16	59.99255	0		0		0			-653	30476.09	1	0	1	0.000	0.000	
05/16/11 08:20:18	59.99225	0		0		0			-653	30476.09	1	0	1	0.000	0.000	
05/16/11 08:20:20	59.98965	0		0		0			-653	30476.09	1	0	1	-0.003	0.003	
05/16/11 08:20:22	59.98514	0		0		0			-653	30456.76	1	0	1	-0.005	0.005	
05/16/11 08:20:24	59.98254	0		0		0			-653	30456.76	1	0	1	-0.003	0.003	
05/16/11 08:20:26	59.97836	0		0		0			-653	30457.12	1	0	1	-0.004	0.004	
05/16/11 08:20:28	59.97641	-		0		0			-653	30457.12	1	0	1	-0.002	0.002	
05/16/11 08:20:30	59.97705	0		0		0			-653	30457.12	1	0	1	0.001	0.001	
05/16/11 08:20:32	59.97705	0		0		0			-653	30457.12	1	0	1	0.000	0.000	
05/16/11 08:20:34	59.97705	0		0		0			-653	30446.98	1	0	1	0.000	0.000	
05/16/11 08:20:36	59.97803	0		0		0			-653	30446.98	1	0	1	0.001	0.001	
05/16/11 08:20:38	59.97964	0		0		0			-653	30446.98	1	0	1	0.002	0.002	
05/16/11 08:20:40	59.9816	0		0		0			-653	30446.98	1	0	1	0.002	0.002	
05/16/11 08:20:42	59.98126	0		0		0			-653	30461.02	1	0	1	0.000	0.000	
05/16/11 08:20:44	59.97931	0		0		0			-653	30461.02	1	0	1	-0.002	0.002	
05/16/11 08:20:46	59.9761	0		0		0			-653	30460.94	,	0	1	-0.003	0.003	
05/16/11 08:20:48	59.97543	-		0		0			-653	30460.94	1	0	1	-0.001	0.001	
05/16/11 08:20:50	59.97577	0		0		0			-653	30460.94	,	0	1	0.000	0.000	
05/16/11 08:20:52	59.97675	0		0		0			-653	30460.94	1	0	1	0.001	0.001	
05/16/11 08:20:54	59.97803	0		0		0			-653	30469.23		0	1	0.001	0.001	
05/16/11 08:20:56	59.979	0		0		0			-653	30469.23	1	0	1	0.001	0.001	
05/16/11 08:20:58	59.97964	,		0		0			-653	30469.23	1	0	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:21:00	59.98062	0		0		0			-653	30469.23		0	1	0.001	0.001	
05/16/11 08:21:02	59.9819	0		0		0			-653	30481.49	1	0	1	0.001	0.001	
05/16/11 08:21:04	59.98224	0		0		0			-653	30481.49	1	0	1	0.000	0.000	
05/16/11 08:21:06	59.98254	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:08	59.98288	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:10	59.98254	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:12	59.98254	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:14	59.98288	0		0		0			-653	30473.15	1	0	1	0.000	0.000	
05/16/11 08:21:16	59.98611	0		0		0			-653	30473.15	1	0	1	0.003	0.003	
05/16/11 08:21:18	59.99387	0		0		0			-653	30473.15	1	0	1	0.008	0.008	
05/16/11 08:21:20	60.00226	0		0		0			-653	30473.15	1	1	1	0.008	0.008	
05/16/11 08:21:22	60.01099	0		0		0			-653	30470.66	1	1	1	0.009	0.009	
05/16/11 08:21:24	60.01712	0		0		0			-653	30470.66	1	1	1	0.006	0.006	
05/16/11 08:21:26	60.02069	0		0		0			-653	30470.6	,	1	1	0.004	0.004	
05/16/11 08:21:28	60.02133	0		0		0			-653	30470.6	1	1	1	0.001	0.001	
05/16/11 08:21:30	60.02133	0		0		0			-653	30470.6	,	1	1	0.000	0.000	
05/16/11 08:21:32	60.02133	0		0		0			-653	30470.6	1	1	1	0.000	0.000	
05/16/11 08:21:34	60.02325	0		0		0			-653	30461.28	1	1	1	0.002	0.002	
05/16/11 08:21:36	60.02551	0		0		0			-653	30461.28	1	1	1	0.002	0.002	
05/16/11 08:21:38	60.02682	0		0		0			-653	30461.28	1	1	1	0.001	0.001	
05/16/11 08:21:40	60.02844	0		0		0			-653	30461.28	1	1	1	0.002	0.002	
05/16/11 08:21:42	60.02972	0		0		0			-653	30450.44	1	1	1	0.001	0.001	
05/16/11 08:21:44	60.03101	0		0		0			-653	30450.44	1	,	1	0.001	0.001	
05/16/11 08:21:46	60.03198	0		0		0			-653	30451.91	1	1	1	0.001	0.001	
05/16/11 08:21:48	60.03296	0		0		0			-653	30451.91	1	1	1	0.001	0.001	
05/16/11 08:21:50	60.03458	0		0		0			-653	30451.91	1	1	1	0.002	0.002	
05/16/11 08:21:52	60.03488	0		0		0			-653	30451.91	1	1	1	0.000	0.000	
05/16/11 08:21:54	60.03488	0		0		0			-653	30446.52	1	1	1	0.000	0.000	
05/16/11 08:21:56	60.03424	0		0		0			-653	30446.52	1	1	1	-0.001	0.001	
05/16/11 08:21:58	60.03458	0		0		0			-653	30446.52	1	1	1	0.000	0.000	
05/16/11 08:22:00	60.03458	0		0		0			-653	30446.52	1	1	1	0.000	0.000	
05/16/11 08:22:02	60.03555	0		0		0			-653	30452.43	1	1	1	0.001	0.001	
05/16/11 08:22:04	60.03586	0		0		0			-653	30452.43	1	1	1	0.000	0.000	
05/16/11 08:22:06	60.03683	0		0		0			-653	30452.43	1	1	1	0.001	0.001	
05/16/11 08:22:08	60.03748	0		0		0			-653	30452.43	,	1	1	0.001	0.001	
05/16/11 08:22:10	60.03748	0		0		0			-653	30452.43	1	1	1	0.000	0.000	
05/16/11 08:22:12	60.03717	0		0		0			-653	30452.43	1	,	1	0.000	0.000	
05/16/11 08:22:14	60.03781	0		0		0			-653	30473.21	1	1	1	0.001	0.001	
05/16/11 08:22:16	60.03781	0		0		0			-653	30473.21		1	1	0.000	0.000	
05/16/11 08:22:18	60.03748	0		0		0			-653	30473.21	1	1	1	0.000	0.000	
05/16/11 08:22:20	60.0365	0		0		0			-653	30473.21	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52		Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:22:22	60.03683	0		0		0			-653	30476.61		,	1	0.000	0.000	
05/16/11 08:22:24	60.03748	0		0		0			-653	30476.61	1	1	1	0.001	0.001	
05/16/11 08:22:26	60.03748	0		0		0			-653	30476.55	1	1	1	0.000	0.000	
05/16/11 08:22:28	60.03812	0		0		0			-653	30476.55	1	1	1	0.001	0.001	
05/16/11 08:22:30	60.03876	0		0		0			-653	30476.55	1	1	1	0.001	0.001	
05/16/11 08:22:32	60.04007	0		0		0			-653	30476.55	1	1	1	0.001	0.001	
05/16/11 08:22:34	60.04169	0		0		0			-653	30473.8	1	1	1	0.002	0.002	
05/16/11 08:22:36	60.04361	0		0		0			-653	30473.8	1	1	1	0.002	0.002	
05/16/11 08:22:38	60.04523	0		0		0			-653	30473.8	1	1	1	0.002	0.002	
05/16/11 08:22:40	60.04492	0		0		0			-653	30473.8	1	1	1	0.000	0.000	
05/16/11 08:22:42	60.04459	0		0		0			-653	30471	1	1	1	0.000	0.000	
05/16/11 08:22:44	60.04395	0		0		0			-653	30471	1	1	1	-0.001	0.001	
05/16/11 08:22:46	60.04199	0		0		0			-653	30471.97	1	1	1	-0.002	0.002	
05/16/11 08:22:48	60.03717	0		0		0			-653	30471.97	1	1	1	-0.005	0.005	
05/16/11 08:22:50	60.03296	0		0		0			-653	30471.97	1	1	1	-0.004	0.004	
05/16/11 08:22:52	60.03101	0		0		0			-653	30471.97	,	1	1	-0.002	0.002	
05/16/11 08:22:54	60.03134	0		0		0			-653	30485.47	1	1	1	0.000	0.000	
05/16/11 08:22:56	60.03168	0		0		0			-653	30485.47	1	1	1	0.000	0.000	
05/16/11 08:22:58	60.03101	0		0		0			-653	30485.47	1	1	1	-0.001	0.001	
05/16/11 08:23:00	60.03101	0		0		0			-653	30485.47	1	1	1	0.000	0.000	
05/16/11 08:23:02	60.03232	0		0		0			-653	30505.49	1	1	1	0.001	0.001	
05/16/11 08:23:04	60.03326	0		0		0			-653	30505.49	1	1	1	0.001	0.001	
05/16/11 08:23:06	60.03326	0		0		0			-653	30505.26	1	1	1	0.000	0.000	
05/16/11 08:23:08	60.03394	0		0		0			-653	30505.26	1	1	1	0.001	0.001	
05/16/11 08:23:10	60.03296	0		0		0			-653	30505.26	1	1	1	-0.001	0.001	
05/16/11 08:23:12	60.03232	0		0		0			-653	30505.26	1	1	1	-0.001	0.001	
05/16/11 08:23:14	60.03168	0		0		0			-653	30515.6	1	1	1	-0.001	0.001	
05/16/11 08:23:16	60.03168	0		0		0			-653	30515.6	1	1	1	0.000	0.000	
05/16/11 08:23:18	60.03232	0		0		0			-653	30515.6	1	1	1	0.001	0.001	
05/16/11 08:23:20	60.03232	0		0		0			-653	30515.6	1	1	1	0.000	0.000	
05/16/11 08:23:22	60.03168	0		0		0			-653	30505.28	1	1	1	-0.001	0.001	
05/16/11 08:23:24	60.03168	0		0		0			-653	30505.28	1	1	1	0.000	0.000	
05/16/11 08:23:26	60.03134	0		0		0			-653	30506.12	1	1	1	0.000	0.000	
05/16/11 08:23:28	60.03101	0		0		0			-653	30506.12	1	1	1	0.000	0.000	
05/16/11 08:23:30	60.03036	0		0		0			-653	30506.12	,	1	1	-0.001	0.001	
05/16/11 08:23:32	60.03036	0		0		0			-653	30506.12	1	1	1	0.000	0.000	
05/16/11 08:23:34	60.02972	0		0		0			-653	30493.68	1	1	1	-0.001	0.001	
05/16/11 08:23:36	60.02875	0		0		0			-653	30493.68	1	1	1	-0.001	0.001	
05/16/11 08:23:38	60.03006	0		0		0			-653	30493.68		1	1	0.001	0.001	
05/16/11 08:23:40	60.03198	0		0		0			-653	30493.68	1	1	1	0.002	0.002	
05/16/11 08:23:42	60.03326	0		0		0			-653	30529.28	1	1	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52		Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:23:44	60.03458	0		0		0			-653	30529.28		,	1	0.001	0.001	
05/16/11 08:23:46	60.03488	0		0		0			-653	30529.08	1	1	1	0.000	0.000	
05/16/11 08:23:48	60.0336	0		0		0			-653	30529.08	1	1	1	-0.001	0.001	
05/16/11 08:23:50	60.03326	0		0		0			-653	30529.08	1	1	1	0.000	0.000	
05/16/11 08:23:52	60.03232	0		0		0			-653	30529.08	1	1	1	-0.001	0.001	
05/16/11 08:23:54	60.03134	0		0		0			-653	30529.52	1	1	1	-0.001	0.001	
05/16/11 08:23:56	60.03168	0		0		0			-653	30529.52	1	1	1	0.000	0.000	
05/16/11 08:23:58	60.03326	0		0		0			-653	30529.52	1	1	1	0.002	0.002	
05/16/11 08:24:00	60.03458	0		0		0			-653	30529.52	1	1	1	0.001	0.001	
05/16/11 08:24:02	60.03586	0		0		0			-653	30535.57	1	1	1	0.001	0.001	
05/16/11 08:24:04	60.0365	0		0		0			-653	30535.57	1	1	1	0.001	0.001	
05/16/11 08:24:06	60.03748	0		0		0			-653	30533.89	1	1	1	0.001	0.001	
05/16/11 08:24:08	60.03683	0		0		0			-653	30533.89	1	1	1	-0.001	0.001	
05/16/11 08:24:10	60.03619	0		0		0			-653	30533.89	1	1	1	-0.001	0.001	
05/16/11 08:24:12	60.03522	0		0		0			-653	30533.89	1	1	1	-0.001	0.001	
05/16/11 08:24:14	60.03424	0		0		0			-653	30521.82	,	1	1	-0.001	0.001	
05/16/11 08:24:16	60.03296	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:18	60.03198	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:20	60.03134	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:22	60.03168	0		0		0			-653	30533.64	1	1	1	0.000	0.000	
05/16/11 08:24:24	60.03134	0		0		0			-653	30533.64	1	1	1	0.000	0.000	
05/16/11 08:24:26	60.03101	0		0		0			-653	30532.32	1	1	1	0.000	0.000	
05/16/11 08:24:28	60.03036	0		0		0			-653	30532.32	1	1	1	-0.001	0.001	
05/16/11 08:24:30	60.02972	0		0		0			-653	30532.32	1	1	1	-0.001	0.001	
05/16/11 08:24:32	60.03006	0		0		0			-653	30532.32	1	1	1	0.000	0.000	
05/16/11 08:24:34	60.0307	0		0		0			-653	30551.2	1	1	1	0.001	0.001	
05/16/11 08:24:36	60.03168	0		0		0			-653	30551.2	1	1	1	0.001	0.001	
05/16/11 08:24:38	60.0336	0		0		0			-653	30551.2	1	1	1	0.002	0.002	
05/16/11 08:24:40	60.03488	0		0		0			-653	30551.2	1	1	1	0.001	0.001	
05/16/11 08:24:42	60.03522	0		0		0			-653	30548.06	1	,	1	0.000	0.000	
05/16/11 08:24:44	60.03586	0		0		0			-653	30548.06	1	1	1	0.001	0.001	
05/16/11 08:24:46	60.03717	0		0		0			-653	30543.69	1	1	1	0.001	0.001	
05/16/11 08:24:48	60.03812	0		0		0			-653	30543.69	1	1	1	0.001	0.001	
05/16/11 08:24:50	60.03717	0		0		0			-653	30543.69	1	1	1	-0.001	0.001	
05/16/11 08:24:52	60.03748	0		0		0			-653	30543.69	,	1	1	0.000	0.000	
05/16/11 08:24:54	60.03845	0		0		0			-653	30546.32	1	1	1	0.001	0.001	
05/16/11 08:24:56	60.03876	0		0		0			-653	30546.32	1	1	1	0.000	0.000	
05/16/11 08:24:58	60.03781	0		0		0			-653	30546.32	1	1	1	-0.001	0.001	
05/16/11 08:25:00	60.03619	0		0		0			-653	30546.32		1	1	-0.002	0.002	
05/16/11 08:25:02	60.03488	0		0		0			-653	30546.28	1	1	1	-0.001	0.001	
05/16/11 08:25:04	60.03394	0		0		0			-653	30546.28	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52		Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:25:06	60.0336	0		0		0			-653	30546.38		,	1	0.000	0.000	
05/16/11 08:25:08	60.0336	0		0		0			-653	30546.38	1	1	1	0.000	0.000	
05/16/11 08:25:10	60.03458	0		0		0			-653	30546.38	1	1	1	0.001	0.001	
05/16/11 08:25:12	60.0365	0		0		0			-653	30546.38	1	1	1	0.002	0.002	
05/16/11 08:25:14	60.03748	0		0		0			-653	30556.84	1	1	1	0.001	0.001	
05/16/11 08:25:16	60.03781	0		0		0			-653	30556.84	1	1	1	0.000	0.000	
05/16/11 08:25:18	60.03748	0		0		0			-653	30556.84	1	1	1	0.000	0.000	
05/16/11 08:25:20	60.0365	0		0		0			-653	30556.84	1	1	1	-0.001	0.001	
05/16/11 08:25:22	60.03488	0		0		0			-653	30557.42	1	1	1	-0.002	0.002	
05/16/11 08:25:24	60.0336	0		0		0			-653	30557.42	1	1	1	-0.001	0.001	
05/16/11 08:25:26	60.03232	0		0		0			-653	30557.43	1	1	1	-0.001	0.001	
05/16/11 08:25:28	60.03134	0		0		0			-653	30557.43	1	1	1	-0.001	0.001	
05/16/11 08:25:30	60.03101	0		0		0			-653	30557.43	1	1	1	0.000	0.000	
05/16/11 08:25:32	60.03101	0		0		0			-653	30557.43	1	1	1	0.000	0.000	
05/16/11 08:25:34	60.0307			0		0			-653	30566.39	1	1	1	0.000	0.000	
05/16/11 08:25:36	60.02972	0		0		0			-653	30566.39	,	1	1	-0.001	0.001	
05/16/11 08:25:38	60.02908	0		0		0			-653	30566.39	1	1	1	-0.001	0.001	
05/16/11 08:25:40	60.02811	0		0		0			-653	30566.39	1	1	1	-0.001	0.001	
05/16/11 08:25:42	60.02649	0		0		0			-653	30567.26	1	1	1	-0.002	0.002	
05/16/11 08:25:44	60.02521			0		0			-653	30567.26	1	1	1	-0.001	0.001	
05/16/11 08:25:46	60.02359	0		0		0			-653	30562.43	1	1	1	-0.002	0.002	
05/16/11 08:25:48	60.02133	0		0		0			-653	30562.43	1	1	1	-0.002	0.002	
05/16/11 08:25:50	60.02002	0		0		0			-653	30562.43	1	1	1	-0.001	0.001	
05/16/11 08:25:52	60.02002	0		0		0			-653	30562.43	1	1	1	0.000	0.000	
05/16/11 08:25:54	60.02069	0		0		0			-653	30573.32	1	1	1	0.001	0.001	
05/16/11 08:25:56	60.02133	0		0		0			-653	30573.32	1	1	1	0.001	0.001	
05/16/11 08:25:58	60.021			0		0			-653	30573.32	1	1	1	0.000	0.000	
05/16/11 08:26:00	60.02036	0		0		0			-653	30573.32	1	1	1	-0.001	0.001	
05/16/11 08:26:02	60.01938	0		0		0			-653	30567	1	1	1	-0.001	0.001	
05/16/11 08:26:04	60.01938	0		0		0			-653	30567	1	1	1	0.000	0.000	
05/16/11 08:26:06	60.01938	0		0		0			-653	30567.04	1	1	1	0.000	0.000	
05/16/11 08:26:08	60.01971	0		0		0			-653	30567.04	1	1	1	0.000	0.000	
05/16/11 08:26:10	60.01971	0		0		0			-653	30567.04	1	1	1	0.000	0.000	
05/16/11 08:26:12	60.01907	0		0		0			-653	30567.04	1	1	1	-0.001	0.001	
05/16/11 08:26:14	60.01938	0		0		0			-653	30556.49	,	1	1	0.000	0.000	
05/16/11 08:26:16	60.02036	0		0		0			-653	30556.49	1	1	1	0.001	0.001	
05/16/11 08:26:18	60.02036	0		0		0			-653	30556.49	1	1	1	0.000	0.000	
05/16/11 08:26:20	60.01907	0		0		0			-653	30556.49	1	1	1	-0.001	0.001	
05/16/11 08:26:22	60.01712	0		0		0			-653	30530.19		1	1	-0.002	0.002	
05/16/11 08:26:24	60.01584	0		0		0			-653	30530.19	1	1	1	-0.001	0.001	
05/16/11 08:26:26	60.0152	0		0		0			-653	30530.04	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52		Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:26:28	60.0155	0		0		0			-653	30530.04		,	1	0.000	0.000	
05/16/11 08:26:30	60.01614	0		0		0			-653	30530.04	1	1	1	0.001	0.001	
05/16/11 08:26:32	60.01746	0		0		0			-653	30530.04	1	1	1	0.001	0.001	
05/16/11 08:26:34	60.0181	0		0		0			-653	30542.27	1	1	1	0.001	0.001	
05/16/11 08:26:36	60.01746	0		0		0			-653	30542.27	1	1	1	-0.001	0.001	
05/16/11 08:26:38	60.01712	0		0		0			-653	30542.27	1	1	1	0.000	0.000	
05/16/11 08:26:40	60.01648	0		0		0			-653	30542.27	1	1	1	-0.001	0.001	
05/16/11 08:26:42	60.01486	0		0		0			-653	30559.64	1	1	1	-0.002	0.002	
05/16/11 08:26:44	60.01227	0		0		0			-653	30559.64	1	1	1	-0.003	0.003	
05/16/11 08:26:46	60.01035	0		0		0			-653	30559.67	1	1	1	-0.002	0.002	
05/16/11 08:26:48	60.00937	0		0		0			-653	30559.67	1	1	1	-0.001	0.001	
05/16/11 08:26:50	60.00903	0		0		0			-653	30559.67	1	1	1	0.000	0.000	
05/16/11 08:26:52	60.00937	0		0		0			-653	30559.67	1	1	1	0.000	0.000	
05/16/11 08:26:54	60.01065	0		0		0			-653	30552.02	1	1	1	0.001	0.001	
05/16/11 08:26:56	60.01163	0		0		0			-653	30552.02	1	1	1	0.001	0.001	
05/16/11 08:26:58	60.01227	0		0		0			-653	30552.02	,	1	1	0.001	0.001	
05/16/11 08:27:00	60.01163	0		0		0			-653	30552.02	1	1	1	-0.001	0.001	
05/16/11 08:27:02	60.00873	0		0		0			-653	30556.78	1	1	1	-0.003	0.003	
05/16/11 08:27:04	60.00647	0		0		0			-653	30556.78	1	1	1	-0.002	0.002	
05/16/11 08:27:06	60.00583	0		0		0			-653	30550.7	1	1	1	-0.001	0.001	
05/16/11 08:27:08	60.00613	0		0		0			-653	30550.7	1	1	1	0.000	0.000	
05/16/11 08:27:10	60.00613	0		0		0			-653	30550.7	1	1	1	0.000	0.000	
05/16/11 08:27:12	60.00711	0		0		0			-653	30550.7	1	,	1	0.001	0.001	
05/16/11 08:27:14	60.00903	0		0		0			-653	30559.76	1	1	1	0.002	0.002	
05/16/11 08:27:16	60.01099	0		0		0			-653	30559.76	1	1	1	0.002	0.002	
05/16/11 08:27:18	60.01099	0		0		0			-653	30559.76	1	1	1	0.000	0.000	
05/16/11 08:27:20	60.01035	0		0		0			-653	30559.76	1	1	1	-0.001	0.001	
05/16/11 08:27:22	60.0097	0		0		0			-653	30563.61	1	1	1	-0.001	0.001	
05/16/11 08:27:24	60.00873	0		0		0			-653	30563.61	1	1	1	-0.001	0.001	
05/16/11 08:27:26	60.00711	0		0		0			-653	30556.57	1	,	1	-0.002	0.002	
05/16/11 08:27:28	60.00613	0		0		0			-653	30556.57	1	1	1	-0.001	0.001	
05/16/11 08:27:30	60.00583	0		0		0			-653	30556.57	1	1	1	0.000	0.000	
05/16/11 08:27:32	60.00711	0		0		0			-653	30556.57	1	1	1	0.001	0.001	
05/16/11 08:27:34	60.00809	0		0		0			-653	30556.7	1	1	1	0.001	0.001	
05/16/11 08:27:36	60.00839	0		0		0			-653	30556.7	,	1	1	0.000	0.000	
05/16/11 08:27:38	60.00809	0		0		0			-653	30556.7	1	1	1	0.000	0.000	
05/16/11 08:27:40	60.00711	0		0		0			-653	30556.7	1	1	1	-0.001	0.001	
05/16/11 08:27:42	60.00677	0		0		0			-653	30544.52	1	1	1	0.000	0.000	
05/16/11 08:27:44	60.00775	0		0		0			-653	30544.52		1	1	0.001	0.001	
05/16/11 08:27:46	60.00711	0		0		0			-653	30543.34	1	1	1	-0.001	0.001	
05/16/11 08:27:48	60.00647	0		0		0			-653	30543.34	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:27:50	60.00388	0		0		0			-653	30543.34	1	1	1	-0.003	0.003	
05/16/11 08:27:52	60.00128	0		0		0			-653	30543.34	1	1	1	-0.003	0.003	
05/16/11 08:27:54	59.99936	0		0		0			-653	30554.42	1	1	1	-0.002	0.002	
05/16/11 08:27:56	59.99805	0		0		0			-653	30554.42	1	0	1	-0.001	0.001	
05/16/11 08:27:58	59.99741	0		0		0			-653	30554.42	1	0	1	-0.001	0.001	
05/16/11 08:28:00	59.9971	0		0		0			-653	30554.42	1	0	1	0.000	0.000	
05/16/11 08:28:02	59.99677	0		0		0			-653	30534.33	1	0	1	0.000	0.000	
05/16/11 08:28:04	59.9971	0		0		0			-653	30534.33	1	0	1	0.000	0.000	
05/16/11 08:28:06	59.99646	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:08	59.99579	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:10	59.99451	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:12	59.99353	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:14	59.99289	0		0		0			-653	30557.2	1	0	1	-0.001	0.001	
05/16/11 08:28:16	59.99191	0		0		0			-653	30557.2	1	0	1	-0.001	0.001	
05/16/11 08:28:18	59.98901	0		0		0			-653	30557.2	1	0	1	-0.003	0.003	
05/16/11 08:28:20	59.98611	0		0		0			-653	30557.2	,	0	1	-0.003	0.003	
05/16/11 08:28:22	59.9845	0		0		0			-653	30560.91		0	1	-0.002	0.002	
05/16/11 08:28:24	59.98318	0		0		0			-653	30560.91	1	0	1	-0.001	0.001	
05/16/11 08:28:26	59.9819	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:28	59.98093	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:30	59.97964	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:32	59.97867	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:34	59.97964	0		0		0			-653	30560.08	1	0	1	0.001	0.001	
05/16/11 08:28:36	59.97998	0		0		0			-653	30560.08	1	0	1	0.000	0.000	
05/16/11 08:28:38	59.98062	0		0		0			-653	30560.08	1	0	1	0.001	0.001	
05/16/11 08:28:40	59.98029	0		0		0			-653	30560.08	1	0	1	0.000	0.000	
05/16/11 08:28:42	59.979	0		0		0			-653	30558.72	1	0	1	-0.001	0.001	
05/16/11 08:28:44	59.97739	0		0		0			-653	30558.72	1	0	1	-0.002	0.002	
05/16/11 08:28:46	59.97513	0		0		0			-653	30553.46	1	0	1	-0.002	0.002	
05/16/11 08:28:48	59.97351	0		0		0			-653	30553.46	1	0	1	-0.002	0.002	
05/16/11 08:28:50	59.97253	0		0		0			-653	30553.46	1	0	1	-0.001	0.001	
05/16/11 08:28:52	59.97189	0		0		0			-653	30553.46	1	0	1	-0.001	0.001	
05/16/11 08:28:54	59.97318	0		0		0			-653	30562.63	1	0	1	0.001	0.001	
05/16/11 08:28:56	59.97415	0		0		0			-653	30562.63	1	0	1	0.001	0.001	
05/16/11 08:28:58	59.97449	0		0		0			-653	30562.63	1	0	1	0.000	0.000	
05/16/11 08:29:00	59.97513	0		0		0			-653	30562.63	1	0	1	0.001	0.001	
05/16/11 08:29:02	59.97577	0		0		0			-653	30578.05	1	0	1	0.001	0.001	
05/16/11 08:29:04	59.97641	0		0		0			-653	30578.05	1	0	1	0.001	0.001	
05/16/11 08:29:06	59.97705	0		0		0			-653	30570.97	1	0	1	0.001	0.001	
05/16/11 08:29:08	59.97675	0		0		0			-653	30570.97	1	0	1	0.000	0.000	
05/16/11 08:29:10	59.97675	0		0		0			-653	30570.97	1	0	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:29:12	59.97675	0		0		0			-653	30570.97		0	1	0.000	0.000	
05/16/11 08:29:14	59.9761	0		0		0			-653	30593.17	1	0	1	-0.001	0.001	
05/16/11 08:29:16	59.9761	0		0		0			-653	30593.17	1	0	1	0.000	0.000	
05/16/11 08:29:18	59.97641	0		0		0			-653	30593.17	1	0	1	0.000	0.000	
05/16/11 08:29:20	59.97705	0		0		0			-653	30593.17	1	0	1	0.001	0.001	
05/16/11 08:29:22	59.97803	0		0		0			-653	30575.07	1	0	1	0.001	0.001	
05/16/11 08:29:24	59.98029	0		0		0			-653	30575.07	,	0	1	0.002	0.002	
05/16/11 08:29:26	59.98318	0		0		0			-653	30575.07	1	0	1	0.003	0.003	
05/16/11 08:29:28	59.98547	0		0		0			-653	30575.07	1	0	1	0.002	0.002	
05/16/11 08:29:30	59.98709	0		0		0			-653	30575.07	1	0	1	0.002	0.002	
05/16/11 08:29:32	59.98965	0		0		0			-653	30575.07	1	0	1	0.003	0.003	
05/16/11 08:29:34	59.99225	0		0		0			-653	30575.72	1	0	1	0.003	0.003	
05/16/11 08:29:36	59.99484	0		0		0			-653	30575.72	1	0	1	0.003	0.003	
05/16/11 08:29:38	59.99646	0		0		0			-653	30575.72	1	0	1	0.002	0.002	
05/16/11 08:29:40	59.99774	0		0		0			-653	30575.72	1	0	1	0.001	0.001	
05/16/11 08:29:42	59.99966	0		0		0			-653	30583.84	,	1	1	0.002	0.002	
05/16/11 08:29:4	60.00034	0		0		0			-653	30583.84	1	1	1	0.001	0.001	
05/16/11 08:29:46	60.00128	0		0		0			-653	30586.4	1	1	1	0.001	0.001	
05/16/11 08:29:48	60.00195	0		0		0			-653	30586.4	1	1	1	0.001	0.001	
05/16/11 08:29:50	60.00226	0		0		0			-653	30586.4	1	1	1	0.000	0.000	
05/16/11 08:29:52	60.0029	0		0		0			-653	30586.4	1	1	1	0.001	0.001	
05/16/11 08:29:54	60.00354	0		0		0			-653	30589.72	1	1	1	0.001	0.001	
05/16/11 08:29:56	60.00421	0		0		0			-653	30589.72	1	,	1	0.001	0.001	
05/16/11 08:29:58	60.00452	0		0		0			-653	30589.72	1	1	1	0.000	0.000	
05/16/11 08:30:00	60.00388	0		0		0			-653	30589.72	1	1	1	-0.001	0.001	
05/16/11 08:30:02	60.00388	0		0		0			-653	30590.3	1	1	1	0.000	0.000	
05/16/11 08:30:04	60.00421	0		0		0			-653	30590.3	1	1	1	0.000	0.000	
05/16/11 08:30:06	60.00421	0		0		0			-653	30590.22	1	1	1	0.000	0.000	
05/16/11 08:30:08	60.00388	0		0		0			-653	30590.22	1	1	1	0.000	0.000	
05/16/11 08:30:10	60.00195	0		0		0			-653	30590.22	1	1	1	-0.002	0.002	
05/16/11 08:30:12	59.99966	0		0		0			-653	30590.22	1	1	1	-0.002	0.002	
05/16/11 08:30:14	59.99387	0		0		0			-653	30600.12	1	0	1	-0.006	0.006	
05/16/11 08:30:16	59.99387	0		0		0			-653	30600.12	1	0	1	0.000	0.000	
05/16/11 08:30:18	59.98999	0		0		0			-653	30600.12	1	0	1	-0.004	0.004	
05/16/11 08:30:20	59.98868	0		0		0			-653	30600.12	,	0	1	-0.001	0.001	
05/16/11 08:30:22	59.98709	0		0		0			-653	30603.38	1	0	1	-0.002	0.002	
05/16/11 08:30:24	59.98578	0		0		0			-653	30603.38	1	0	1	-0.001	0.001	
05/16/11 08:30:26	59.98578	0		0		0			-653	30597.09	1	0	1	0.000	0.000	
05/16/11 08:30:28	59.98288	0		0		0			-653	30597.09		0	1	-0.003	0.003	
05/16/11 08:30:30	59.97964	0		0		0			-653	30597.09	1	0	1	-0.003	0.003	
05/16/11 08:30:32	59.97675	0		0		0			-653	30597.09	1	0	1	-0.003	0.003	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:30:34	59.97479	0		0		0			-653	30603.96		0	1	-0.002	0.002	
05/16/11 08:30:36	59.97479	0		0		0			-653	30603.96	1	0	1	0.000	0.000	
05/16/11 08:30:38	59.97641	0		0		0			-653	30603.96	1	0	1	0.002	0.002	
05/16/11 08:30:40	59.97641	0		0		0			-653	30603.96	1	0	1	0.000	0.000	
05/16/11 08:30:42	59.97543	0		0		0			-653	30607.96	,	0	1	-0.001	0.001	
05/16/11 08:30:44	59.97351	0		0		0			-653	30607.96	1	0	1	-0.002	0.002	
05/16/11 08:30:46	59.97318	0		0		0			-653	30601.98	1	0	1	0.000	0.000	
05/16/11 08:30:48	59.97513	0		0		0			-653	30601.98	1	0	1	0.002	0.002	
05/16/11 08:30:50	59.97641	0		0		0			-653	30597.09	1	0	1	0.001	0.001	
05/16/11 08:30:52	59.97705	0		0		0			-653	30597.09	1	0	1	0.001	0.001	
05/16/11 08:30:54	59.97867	0		0		0			-653	30607.96	1	0	1	0.002	0.002	
05/16/11 08:30:56	59.97836	0		0		0			-653	30607.96	1	0	1	0.000	0.000	
05/16/11 08:30:58	59.97803	0		0		0			-653	30607.96	1	0	1	0.000	0.000	
05/16/11 08:31:00	59.97543	0		0		0			-653	30607.96	1	0	1	-0.003	0.003	
	59.97415	0		0		0			-653	30607.96	1	0	1	-0.001	0.001	
05/16/11 08:31:04	59.97415	0		0		0			-653	30601.98	1	0	1	0.000	0.000	
05/16/11 08:31:06	59.97479	0		0		0			-653	30601.98	1	0	1	0.001	0.001	
05/16/11 08:31:08	59.97415	0		0		0			-653	30601.98	1	0	1	-0.001	0.001	
05/16/11 08:31:10	59.97351	0		0		0			-653	30601.98	1	0	1	-0.001	0.001	
05/16/11 08:31:12	59.97351	0		0		0			-653	30601.98	1	0	1	0.000	0.000	
05/16/11 08:31:14	59.97543	0		0		0			-653	30632.79	1	0	1	0.002	0.002	
05/16/11 08:31:16	59.97769	0		0		0			-653	30632.79	1	0	1	0.002	0.002	
05/16/11 08:31:18	59.98062	0		0		0			-653	30632.79	1	0	1	0.003	0.003	
05/16/11 08:31:20	59.98514	0		0		0			-653	30632.79	,	0	1	0.005	0.005	
05/16/11 08:31:22	59.98773	0		0		0			-653	30632.79	1	0	1	0.003	0.003	
05/16/11 08:31:24	59.98965	0		0		0			-653	30633.18	1	0	1	0.002	0.002	
05/16/11 08:31:26	59.99097	0		0		0			-653	30633.18	1	0	1	0.001	0.001	
05/16/11 08:31:28	59.99225	0		0		0			-653	30633.18	1	0	1	0.001	0.001	
05/16/11 08:31:30	59.99323	0		0		0			-653	30633.18	1	0	1	0.001	0.001	
05/16/11 08:31:32	59.99612	0		0		0			-653	30633.18	1	0	1	0.003	0.003	
05/16/11 08:31:34	60.00034	0		0		0			-653	30620.6	1	1	1	0.004	0.004	
05/16/11 08:31:36	60.00452	0		0		0			-653	30620.6	1	1	1	0.004	0.004	
05/16/11 08:31:38	60.00809	0		0		0			-653	30620.6	1	1	1	0.004	0.004	
05/16/11 08:31:40	60.01099	0		0		0			-653	30620.6	1	1	1	0.003	0.003	
05/16/11 08:31:42	60.01389	0		0		0			-653	30620.6	,	1	1	0.003	0.003	
05/16/11 08:31:44	60.01776	0		0		0			-653	30620.91	1	1	1	0.004	0.004	
05/16/11 08:31:46	60.02069	0		0		0			-653	30620.91	,	1	1	0.003	0.003	
05/16/11 08:31:48	60.02164	0		0		0			-653	30620.91	1	1	1	0.001	0.001	
05/16/11 08:31:50	60.021	0		0		0			-653	30620.91		1	1	-0.001	0.001	
05/16/11 08:31:52	60.01907	0		0		0			-653	30620.91	1	1	1	-0.002	0.002	
05/16/11 08:31:54	60.0181	0		0		0			-653	30661.87	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52		Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:31:56	60.0184	0		0		0			-653	30661.87		,	1	0.000	0.000	
05/16/11 08:31:58	60.02069	0		0		0			-653	30661.87	1	1	1	0.002	0.002	
05/16/11 08:32:00	60.0239	0		0		0			-653	30661.87	1	1	1	0.003	0.003	
05/16/11 08:32:02	60.02618	0		0		0			-653	30661.87	1	1	1	0.002	0.002	
05/16/11 08:32:04	60.02682	0		0		0			-653	30663.73	1	1	1	0.001	0.001	
05/16/11 08:32:06	60.02649	0		0		0			-653	30663.73	1	1	1	0.000	0.000	
05/16/11 08:32:08	60.02585	0		0		0			-653	30663.73	1	1	1	-0.001	0.001	
05/16/11 08:32:10	60.02359	0		0		0			-653	30663.73	1	1	1	-0.002	0.002	
05/16/11 08:32:12	60.02359	0		0		0			-653	30663.73	1	1	1	0.000	0.000	
05/16/11 08:32:14	60.02164	0		0		0			-653	30659.84	1	1	1	-0.002	0.002	
05/16/11 08:32:16	60.02231	0		0		0			-653	30659.84	1	1	1	0.001	0.001	
05/16/11 08:32:18	60.02325	0		0		0			-653	30659.84	1	1	1	0.001	0.001	
05/16/11 08:32:20	60.02359	0		0		0			-653	30659.84	1	1	1	0.000	0.000	
05/16/11 08:32:22	60.02295	0		0		0			-653	30659.84	1	1	1	-0.001	0.001	
05/16/11 08:32:24	60.02133	0		0		0			-653	30653.46	1	1	1	-0.002	0.002	
05/16/11 08:32:26	60.021	0		0		0			-653	30653.46	,	1	1	0.000	0.000	
05/16/11 08:32:28	60.021	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:30	60.02133	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:32	60.021	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:34	60.02036			0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:36	60.02002	0		0		0			-653	30661.6	1	1	1	0.000	0.000	
05/16/11 08:32:38	60.01938	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:40	60.0184	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:42	60.01712	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:44	60.01584	0		0		0			-653	30655.51	1	1	1	-0.001	0.001	
05/16/11 08:32:46	60.01486	0		0		0			-653	30655.51	1	1	1	-0.001	0.001	
05/16/11 08:32:48	60.01453	0		0		0			-653	30655.51	1	1	1	0.000	0.000	
05/16/11 08:32:50	60.01486	0		0		0			-653	30655.51	1	1	1	0.000	0.000	
05/16/11 08:32:52	60.01453	0		0		0			-653	30655.51	1	1	1	0.000	0.000	
05/16/11 08:32:54	60.01486	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:32:56	60.0152	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:32:58	60.01486	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:33:00	60.0152	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:33:02	60.0152	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:33:04	60.01648	0		0		0			-653	30648.29	,	1	1	0.001	0.001	
05/16/11 08:33:06	60.01614	0		0		0			-653	30648.29	1	1	1	0.000	0.000	
05/16/11 08:33:08	60.0152	0		0		0			-653	30648.29	1	1	1	-0.001	0.001	
05/16/11 08:33:10	60.01486	0		0		0			-653	30648.29	1	1	1	0.000	0.000	
05/16/11 08:33:12	60.01453	0		0		0			-653	30648.29		1	1	0.000	0.000	
05/16/11 08:33:14	60.01291	0		0		0			-653	30652.04	1	1	1	-0.002	0.002	
05/16/11 08:33:16	60.01099	0		0		0			-653	30652.04	1	1	1	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta $\quad \mathrm{Hz}$ $\quad 0.078$ $\mathrm{t}(0)$ t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta $\begin{gathered} \mathrm{Hz} \\ 0.009 \end{gathered}$ Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:33:18	60.00775	0		0		0			-653	30652.04		,	1	-0.003	0.003	
05/16/11 08:33:20	60.00421	0		0		0			-653	30652.04	1	1	1	-0.004	0.004	
05/16/11 08:33:22	60.00162	0		0		0			-653	30652.04	1	1	1	-0.003	0.003	
05/16/11 08:33:24	60	0		0		0			-653	30651.84	1	1	1	-0.002	0.002	
05/16/11 08:33:26	59.99774	0		0		0			-653	30651.84	1	0	1	-0.002	0.002	
05/16/11 08:33:28	59.99515	0		0		0			-653	30651.84	1	0	1	-0.003	0.003	
05/16/11 08:33:30	59.99255	0		0		0			-653	30651.84	,	0	1	-0.003	0.003	
05/16/11 08:33:32	59.9903	0		0		0			-653	30651.84	1	0	1	-0.002	0.002	
05/16/11 08:33:34	59.98676	0		0		0			-653	30633.8	1	0	1	-0.004	0.004	
05/16/11 08:33:36	59.98352	0		0		0			-653	30633.8	1	0	1	-0.003	0.003	
05/16/11 08:33:38	59.98062	0		0		0			-653	30633.8	1	0	1	-0.003	0.003	
05/16/11 08:33:40	59.97964	0		0		0			-653	30633.8	1	0	1	-0.001	0.001	
05/16/11 08:33:42	59.97867	0		0		0			-653	30633.8	1	0	1	-0.001	0.001	
05/16/11 08:33:44	59.97705	0		0		0			-653	30627.71	1	0	1	-0.002	0.002	
05/16/11 08:33:46	59.97641	0		0		0			-653	30627.71	1	0	1	-0.001	0.001	
05/16/11 08:33:48	59.97675	0		0		0			-653	30627.71	,	0	1	0.000	0.000	
05/16/11 08:33:50	59.97641	0		0		0			-653	30627.71	1	0	1	0.000	0.000	
05/16/11 08:33:52	59.97577	0		0		0			-653	30627.71	1	0	1	-0.001	0.001	
05/16/11 08:33:54	59.97479	0		0		0			-653	30634.13	1	0	1	-0.001	0.001	
05/16/11 08:33:56	59.97415	0		0		0			-653	30634.13	1	0	1	-0.001	0.001	
05/16/11 08:33:58	59.97287	0		0		0			-653	30634.13	1	0	\square	-0.001	0.001	
05/16/11 08:34:00	59.97125	0		0		0			-653	30634.13	,	0	1	-0.002	0.002	
05/16/11 08:34:02	59.97092	0		0		0			-653	30634.13	1	0	1	0.000	0.000	
05/16/11 08:34:04	59.97125	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:06	59.97061	0		0		0			-653	30627.05	1	0	1	-0.001	0.001	
05/16/11 08:34:08	59.97092	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:10	59.97125	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:12	59.97156	0		0		0			-653	30627.05	1	0	\square	0.000	0.000	
05/16/11 08:34:14	59.97253	0		0		0			-653	30662.72	1	0	1	0.001	0.001	
05/16/11 08:34:16	59.97449	0		0		0			-653	30662.72	1	0	1	0.002	0.002	
05/16/11 08:34:18	59.97577	0		0		0			-653	30662.72	1	0	1	0.001	0.001	
05/16/11 08:34:20	59.97641	0		0		0			-653	30662.72	1	0		0.001	0.001	
05/16/11 08:34:22	59.97641	0		0		0			-653	30662.72	1	0	1	0.000	0.000	
05/16/11 08:34:24	59.97513	0		0		0			-653	30656.52	1	0	1	-0.001	0.001	
05/16/11 08:34:26	59.9761	0		0		0			-653	30656.52	,	0	1	0.001	0.001	
05/16/11 08:34:28	59.979	0		0		0			-653	30656.52	1	0	1	0.003	0.003	
05/16/11 08:34:30	59.98126	0		0		0			-653	30656.52	1	0	1	0.002	0.002	
05/16/11 08:34:32	59.98224	0		0		0			-653	30656.52	1	0	1	0.001	0.001	
05/16/11 08:34:34	59.98254	0		0		0			-653	30642.25		0	1	0.000	0.000	
05/16/11 08:34:36	59.98254	0		0		0			-653	30642.25	1	0	1	0.000	0.000	
05/16/11 08:34:38	59.9816	0		0		0			-653	30642.25	1	0	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align T(0) 1
05/16/11 08:34:40	59.98029	0		0		0			-653	30642.25	1	0	1	-0.001	0.001	
05/16/11 08:34:42	59.97964	0		0		0			-653	30642.25	1	0	1	-0.001	0.001	
05/16/11 08:34:44	59.98062	0		0		0			-653	30642.49	1	0	1	0.001	0.001	
05/16/11 08:34:46	59.98093	0		0		0			-653	30642.49	1	0	1	0.000	0.000	
05/16/11 08:34:48	59.98029	0		0		0			-653	30642.49	1	0	1	-0.001	0.001	
05/16/11 08:34:50	59.97931	0		0		0			-653	30642.49	1	0	1	-0.001	0.001	
05/16/11 08:34:52	59.97836	0		0		0			-653	30642.49	1	0	1	-0.001	0.001	
05/16/11 08:34:54	59.97803	0		0		0			-653	30645.72	1	0	1	0.000	0.000	
05/16/11 08:34:56	59.97803	0		0		0			-653	30645.72	1	0	1	0.000	0.000	
05/16/11 08:34:58	59.97867	0		0		0			-653	30645.72	1	0	1	0.001	0.001	
05/16/11 08:35:00	59.97964			0		0			-653	30645.72	1	0	1	0.001	0.001	
05/16/11 08:35:02	59.98062	0		0		0			-653	30645.72	1	0	1	0.001	0.001	
05/16/11 08:35:04	59.98126	0		0		0			-653	30648.55	1	0	1	0.001	0.001	
05/16/11 08:35:06	59.98224	0		0		0			-653	30648.55	1	0	1	0.001	0.001	
05/16/11 08:35:08	59.98416	0		0		0			-653	30648.55	1	0	1	0.002	0.002	
05/16/11 08:35:10	59.98547	0		0		0			-653	30648.55	1	0	1	0.001	0.001	
05/16/11 08:35:12	59.98578	0		0		0			-653	30648.55	1	0	1	0.000	0.000	
05/16/11 08:35:14	59.98578	0		0		0			-653	30661.06	1	0	1	0.000	0.000	
05/16/11 08:35:16	59.98676	0		0		0			-653	30661.06	1	0	1	0.001	0.001	
05/16/11 08:35:18	59.99063	0		0		0			-653	30661.06	1	0	1	0.004	0.004	
05/16/11 08:35:20	59.99417	0		0		0			-653	30661.06	1	0	1	0.004	0.004	
05/16/11 08:35:22	59.99805	0		0		0			-653	30661.06	1	0	1	0.004	0.004	
05/16/11 08:35:24	59.99966	0		0		0			-653	30661.06	1	1	1	0.002	0.002	
05/16/11 08:35:26	60.00226	0		0		0			-653	30661.06	1	1	1	0.003	0.003	
05/16/11 08:35:28	60.00195	0		0		0			-653	30661.06	1	1	1	0.000	0.000	
05/16/11 08:35:30	60.00098	0		0		0			-653	30661.06	1	1	1	-0.001	0.001	
05/16/11 08:35:32	59.99936	0		0		0			-653	30661.06	1	1	1	-0.002	0.002	
05/16/11 08:35:34	59.99872	0		0		0			-653	30684.31	1	1	1	-0.001	0.001	
05/16/11 08:35:36	59.99774	0		0		0			-653	30684.31	1	0	1	-0.001	0.001	
05/16/11 08:35:38	59.99741	0		0		0			-653	30684.31	1	0	1	0.000	0.000	
05/16/11 08:35:40	59.99741	0		0		0			-653	30684.31	1	0	1	0.000	0.000	
05/16/11 08:35:42	59.99838	0		0		0			-653	30684.31	1	0	1	0.001	0.001	
05/16/11 08:35:44	59.99966	0		0		0			-653	30686.83	1	1	1	0.001	0.001	
05/16/11 08:35:46	60.00064	0		0		0			-653	30686.83	1	1	1	0.001	0.001	
05/16/11 08:35:48	60.00098	0		0		0			-653	30686.83	1	1	1	0.000	0.000	
05/16/11 08:35:50	60.00064	0		0		0			-653	30686.83	1	1	1	0.000	0.000	
05/16/11 08:35:52	60	0		0		0			-653	30686.83	1	1	1	-0.001	0.001	
05/16/11 08:35:54	59.99936	0		0		0			-653	30678.05	1	1	1	-0.001	0.001	
05/16/11 08:35:56	59.99741	0		0		0			-653	30678.05	1	0	1	-0.002	0.002	
05/16/11 08:35:58	59.99484	0		0		0				30678.05	1	0	1	-0.003	0.003	
05/16/11 08:36:00	59.99289	,		0		0				30678.05	1	0	1	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align T(0) 1
05/16/11 08:36:02	59.99097	0		0		0				30678.05	1	0	1	-0.002	0.002	
05/16/11 08:36:04	59.98965	0		0		0				30679.19	1	0	1	-0.001	0.001	
05/16/11 08:36:06	59.98804	0		0		0				30679.19	1	0	1	-0.002	0.002	
05/16/11 08:36:08	59.98773	0		0		0				30679.19	1	0	1	0.000	0.000	
05/16/11 08:36:10	59.98804	0		0		0				30679.19	1	0	1	0.000	0.000	
05/16/11 08:36:12	59.98901	0		0		0				30679.19	1	0	1	0.001	0.001	
05/16/11 08:36:14	59.99063	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:16	59.99255	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:18	59.99484	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:20	59.99677	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:22	59.99838	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:24	59.99872	0		0		0				30684.99	1	1	1	0.000	0.000	
05/16/11 08:36:26	59.99872	0		0		0				30684.99	1	1	1	0.000	0.000	
05/16/11 08:36:28	59.99936	0		0		0				30684.99	1	1	1	0.001	0.001	
05/16/11 08:36:30	60.00195	0		0		0				30684.99	1	1	1	0.003	0.003	
05/16/11 08:36:32	60.00485	0		0		0				30684.99	1	1	1	0.003	0.003	
05/16/11 08:36:34	60.00809	0		0		0				30687.29	1	1	1	0.003	0.003	
05/16/11 08:36:36	60.01099	0		0		0				30687.29	1	1	1	0.003	0.003	
05/16/11 08:36:38	60.01324	0		0		0				30687.29	1	1	1	0.002	0.002	
05/16/11 08:36:40	60.01422	0		0		0				30687.29	1	1	1	0.001	0.001	
05/16/11 08:36:42	60.01486	0		0		0				30687.29	1	1	1	0.001	0.001	
05/16/11 08:36:44	60.01453	0		0		0				30687.59	1	1	1	0.000	0.000	
05/16/11 08:36:46	60.01227	0		0		0				30687.59	1	1	1	-0.002	0.002	
05/16/11 08:36:48	60.01099	0		0		0				30687.59	1	1	1	-0.001	0.001	
05/16/11 08:36:50	60.01099	0		0		0				30687.59	1	1	1	0.000	0.000	
05/16/11 08:36:52	60.01227	0		0		0				30687.59	1	1	1	0.001	0.001	
05/16/11 08:36:54	60.01227	0		0		0				30726.76	1	1	1	0.000	0.000	
05/16/11 08:36:56	60.01163	0		0		0				30726.76	1	1	1	-0.001	0.001	
05/16/11 08:36:58	60.01132	0		0		0				30726.76	1	1	1	0.000	0.000	
05/16/11 08:37:00	60.01132	0		0		0				30726.76	1	1	1	0.000	0.000	
05/16/11 08:37:02	60.01065	0		0		0				30726.76	1	1	1	-0.001	0.001	
05/16/11 08:37:04	60.00903	0		0		0				30726.82	1	1	1	-0.002	0.002	
05/16/11 08:37:06	60.00839	0		0		0				30726.82	1	1	1	-0.001	0.001	
05/16/11 08:37:08	60.00809	0		0		0				30726.82	1	1	1	0.000	0.000	
05/16/11 08:37:10	60.00809	0		0		0				30726.82	1	1	1	0.000	0.000	
05/16/11 08:37:12	60.00937	0		0		0				30726.82	1	1	1	0.001	0.001	
05/16/11 08:37:14	60.01099	0		0		0				30720.93	1	1	1	0.002	0.002	
05/16/11 08:37:16	60.01227	0		0		0				30720.93	1	1	1	0.001	0.001	
05/16/11 08:37:18	60.01291	0		0		0				30720.93	1	1	1	0.001	0.001	
05/16/11 08:37:20	60.0126	0		0		0				30720.93	1	1	1	0.000	0.000	
05/16/11 08:37:22	60.01132	0		0		0				30720.93	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align T(0) 1
05/16/11 08:37:24	60.0097	0		0		0				30720.53	1	1	1	-0.002	0.002	
05/16/11 08:37:26	60.00613	0		0		0				30720.53	1	1	1	-0.004	0.004	
05/16/11 08:37:28	60.00259	0		0		0				30720.53	1	1	1	-0.004	0.004	
05/16/11 08:37:30	59.99936	0		0		0				30720.53	1	1	1	-0.003	0.003	
05/16/11 08:37:32	59.99902	0		0		0				30720.53	1	1	1	0.000	0.000	
05/16/11 08:37:34	60.00034	0		0		0				30720.62	1	1	1	0.001	0.001	
05/16/11 08:37:36	60.00064	0		0		0				30720.62	1	1	1	0.000	0.000	
05/16/11 08:37:38	59.99936	0		0		0				30720.62	1	1	1	-0.001	0.001	
05/16/11 08:37:40	59.99741	0		0		0				30720.62	1	0	1	-0.002	0.002	
05/16/11 08:37:42	59.99579	0		0		0				30720.62	1	0	1	-0.002	0.002	
05/16/11 08:37:44	59.99387	0		0		0				30721.15	1	0	1	-0.002	0.002	
05/16/11 08:37:46	59.99255	0		0		0				30721.15	1	0	1	-0.001	0.001	
05/16/11 08:37:48	59.99191	0		0		0				30721.15	1	0	1	-0.001	0.001	
05/16/11 08:37:50	59.99255	0		0		0				30721.15	1	0	,	0.001	0.001	
05/16/11 08:37:52	59.99548	0		0		0				30721.15	1	0	1	0.003	0.003	
05/16/11 08:37:54	60	0		0		0				30726.87	1	1		0.005	0.005	
05/16/11 08:37:56	60.00323	0		0		0				30726.87	1	1	1	0.003	0.003	
05/16/11 08:37:58	60.00516	0		0		0				30726.87	1	1	1	0.002	0.002	
05/16/11 08:38:00	60.00485	0		0		0				30726.87	1	1	1	0.000	0.000	
05/16/11 08:38:02	60.00354	0		0		0				30726.87	1	1	1	-0.001	0.001	
05/16/11 08:38:04	60.00226	0		0		0				30734.84	1	1	1	-0.001	0.001	
05/16/11 08:38:06	60.00098	0		0		0				30734.84	1	1	1	-0.001	0.001	
05/16/11 08:38:08	60	0		0		0				30734.84	1	1	1	-0.001	0.001	
05/16/11 08:38:10	59.99966	0		0		0				30734.84	1	1	1	0.000	0.000	
05/16/11 08:38:12	59.99966	0		0		0				30734.84	1	1	1	0.000	0.000	
05/16/11 08:38:14	59.99774	0		0		0				30757.45	1	0	1	-0.002	0.002	
05/16/11 08:38:16	59.9971	0		0		0				30757.45	1	0	1	-0.001	0.001	
05/16/11 08:38:18	59.99741	0		0		0				30757.45	1	0	1	0.000	0.000	
05/16/11 08:38:20	59.99805	0		0		0				30757.45	1	0	1	0.001	0.001	
05/16/11 08:38:22	59.99872	0		0		0				30757.45	1	1	1	0.001	0.001	
05/16/11 08:38:24	59.99936	0		0		0				30757.92	1	1	1	0.001	0.001	
05/16/11 08:38:26	60	0		0		0				30757.92	1	1	1	0.001	0.001	
05/16/11 08:38:28	60.00162	0		0		0				30757.92	1	1	1	0.002	0.002	
05/16/11 08:38:30	60.00323	0		0		0				30757.92	1	1	1	0.002	0.002	
05/16/11 08:38:32	60.00388	0		0		0				30757.92	1	1	1	0.001	0.001	
05/16/11 08:38:34	60.00485	0		0		0				30752.27	1	1	1	0.001	0.001	
05/16/11 08:38:36	60.00549	0		0		0				30752.27	1	1	1	0.001	0.001	
05/16/11 08:38:38	60.00613	0		0		0				30752.27	1	1	1	0.001	0.001	
05/16/11 08:38:40	60.00647	0		0		0				30752.27	1	1	1	0.000	0.000	
05/16/11 08:38:42	60.00677	0		0		0				30752.27	1	1	1	0.000	0.000	
05/16/11 08:38:44	60.00677	0		0		0				30752.33	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	$\begin{gathered} \text { Recovery } \\ \text { Target Freq: } \\ \text { 59.999 } \\ \text { 8:06:38 } \\ \text { 8:10:30 } \\ \text { 03:52 } \end{gathered}$	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:38:46	60.00613	0		0		0				30752.33	1	1	1	-0.001	0.001	
05/16/11 08:38:48	60.00549	0		0		0				30752.33	1	1	1	-0.001	0.001	
05/16/11 08:38:50	60.00485	0		0		0				30752.33	1	1	1	-0.001	0.001	
05/16/11 08:38:52	60.00485	0		0		0				30752.33	,	1	1	0.000	0.000	
05/16/11 08:38:54	60.00613	0		0		0				30755.63	1	1	1	0.001	0.001	
05/16/11 08:38:56	60.01001	0		0		0				30755.63	1	1	1	0.004	0.004	
05/16/11 08:38:58	60.01324	0		0		0				30755.63	1	1	1	0.003	0.003	
05/16/11 08:39:00	60.01614	0		0		0				30755.63	1	1	1	0.003	0.003	
05/16/11 08:39:02	60.0184	0		0		0				30755.63	1	1	1	0.002	0.002	
05/16/11 08:39:04	60.01971	0		0		0				30755.66	1	1	1	0.001	0.001	
05/16/11 08:39:06	60.021	0		0		0				30755.66	1	1	1	0.001	0.001	
05/16/11 08:39:08	60.02133	0		0		0				30755.66	1	1	1	0.000	0.000	
05/16/11 08:39:10	60.02197	0		0		0				30755.66	1	1	1	0.001	0.001	
05/16/11 08:39:12	60.02359	0		0		0				30755.66	1	1	1	0.002	0.002	
05/16/11 08:39:14	60.02682	0		0		0				30784.89	1	1	1	0.003	0.003	
05/16/11 08:39:16	60.0307	0		0		0				30784.89	1	1	1	0.004	0.004	
05/16/11 08:39:18	60.0336	0		0		0				30784.89	1	1	1	0.003	0.003	
05/16/11 08:39:20	60.03424	0		0		0				30784.89	1	1	1	0.001	0.001	
05/16/11 08:39:22	60.03326	0		0		0				30784.89	1	1	1	-0.001	0.001	
05/16/11 08:39:24	60.0307	0		0		0				30786.98	1	1	1	-0.003	0.003	
05/16/11 08:39:26	60.02875	0		0		0				30786.98	,	1	1	-0.002	0.002	
05/16/11 08:39:28	60.02875	0		0		0				30786.98	1	1	1	0.000	0.000	
05/16/11 08:39:30	60.02939	0		0		0				30786.98	1	1	1	0.001	0.001	
05/16/11 08:39:32	60.02908	0		0		0				30786.98	1	1	1	0.000	0.000	
05/16/11 08:39:34	60.02844	0		0		0				30796.28	1	1	1	-0.001	0.001	
05/16/11 08:39:36	60.02777	0		0		0				30796.28	1	1	1	-0.001	0.001	
05/16/11 08:39:38	60.02811	0		0		0				30796.28	1	1	1	0.000	0.000	
05/16/11 08:39:40	60.02777	0		0		0				30796.28	,	1	1	0.000	0.000	
05/16/11 08:39:42	60.02777	0		0		0				30796.28	1	1	1	0.000	0.000	
05/16/11 08:39:44	60.02777	0		0		0				30792.94	1	1	1	0.000	0.000	
05/16/11 08:39:46	60.02747	0		0		0				30792.94	1	1	1	0.000	0.000	
05/16/11 08:39:48	60.02713	0		0		0				30792.94	1	1	1	0.000	0.000	
05/16/11 08:39:50	60.02618	0		0		0				30792.94	1	1	1	-0.001	0.001	
05/16/11 08:39:52	60.02521	0		0		0				30792.94	1	1	1	-0.001	0.001	
05/16/11 08:39:54	60.02457	0		0		0				30803.58	1	1	1	-0.001	0.001	
05/16/11 08:39:56	60.02487	0		0		0				30803.58	1	1	1	0.000	0.000	
05/16/11 08:39:58	60.02551	0		0		0				30803.58	1	1	1	0.001	0.001	
05/16/11 08:40:00	60.02618	0		0		0				30803.58	1	1	1	0.001	0.001	

Balancing Authority Name: MyBA
.
Note: See "Instruction" tab for more detailed instructions.

59.300 Hz
60.700 Hz

8:06:38 $\frac{\text { Auto }}{\text { Aut }}$ Event Detection 8:06:38 $\quad 1245$ Manually selected row number of the Event Starting Time. 8:10:30 $\quad 1442$ Manually selected row number of the Event Ending Time.

Event Frequency Data

"Auto" Event Detection adjustment of $\mathrm{T}(0)$
\# of rows to shift $\mathrm{T}(0)$
1
A zero value aligns the data to the hightest Frequency change value. Usually the event begins one or two data scans earlier than this scan

Increasing this value shifts graph data to the right. Decreasing this value shifts graph data to the left.

Note: The P.U. Performance values indicate performance as a P.U. value of BA Bias setting. For BAs that utilize a variable Bias, the Bias average during $\mathrm{T}(+20)$ to $\mathrm{T}(+52)$ is used
P.U. values above 1.0 indicate that the Bias setting was below measured Frequency Response. P.U. values below 1.0 indicate that the Bias setting was above measured Frequency Response.

$T(0)$

First change in frequency of the event should occur here on the vertical grid line.
It is important that the pre-event frequency average to NOT contain frequency data of the event, "Average Frequency" trend to the left of center of the graph.
To shift the data on the graph left or right, adjust the value in cell Q 3 highlighted in yellow above.

Steps To be completed for each event evaluated
1 Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this orde
Column A: Date and Time in this format, mm/dd/yy HH:MM:SS
Column B: Frequency Hz
Column C: Contingent Resouce Lost MW or Lost Load
Column D: Load Resources tripped during the event.
Column E: Non Conforming Load
Column F: Spare
Column G: Not Used
Column H: Spare
Column I: Spare
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D \& E are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign (+/-) convention defined in FRS Form
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation
4 Data must start a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event with up to 60 minutes of data Be sure the "Data" worksheet is clear of any old data. Collect the same total minutes of data for each event evaluated to minimize your effort and time
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the date
5 Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on the graph on the "Copy Results" workshee
If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process.
6 Once data is in place in the "Data" worksheet, confirm the Auto selection of the beginning of the event by observing the "Graph 20 to 52 s " worksheet. Adjust the selection if necessar To make an adjustment, change the value in cell " $Q 3$ " on the "Graph 20 to 52 s " worksheet. Usually a 0,1 or 2 will achive the correct alignment of $T(0)$

7 If the correct row is selected, the "Graph 20 to 52 s " worksheet will indicate the first change in frequency (red trend) of the event on the center vertical grid line of the grapl
8 The end of the event will be Auto selected based on the frequency value in cell " N 2 " on the Data worksheet. This will be the frequency at the beginning of the event or 60 Hz , whichever is lower. (for low Hz event This value controls the end of the "Sustained Frequency Response" evaluation period
Primary Frequency Response should be sustained during the event recovery period. This evaluation determines how well you achieved this goa
$9 \quad$ Use the "Copy Form 2 data for Pasting into Form 1" button provided on the "Copy Results" worksheet (Cells B21 through B28) to copy the evaluation and event specific data for the "FRS Form 1" of this field trial. This data is summarize in the correct order on worksheet "Form 1 Summary Data"
10 Use PasteSpecial/Values and paste the copied data into FRS Form 1 on the appropriate event row. Be sure to use the latest version of Form 1, currently Form 1.5
11 Save this Form 2 using the file name convention on the "Copy Results" worksheet. The complete file name is in bold in cell B38. Return all completed Form 2 s with your Form 1 to NERC

Steps To be completed the first time you use Form 2 for your BA

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Copy Results" worksheet. For example: "ERCOT"

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52		Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:40:00	60.0097	471		0		0			-653	29756.85		0				
05/16/11 07:40:02	60.00745	471		0		0			-653	29756.85	0	0	0	-0.002	0.002	
05/16/11 07:40:04	60.00452	471		0		0			-653	29756.82	-	0	0	-0.003	0.003	
05/16/11 07:40:06	60.00259	471		0		0			-653	29756.82		0	0	-0.002	0.002	
05/16/11 07:40:08	60.00034	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:10	59.99872	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:12	59.9971	471		0		0			-653	29756.82	0	0	0	-0.002	0.002	
05/16/11 07:40:14	59.99548	471		0		0			-653	29766.46	0	0	0	-0.002	0.002	
05/16/11 07:40:16	59.99353	471		0		0			-653	29766.46	0	0	0	-0.002	0.002	
05/16/11 07:40:18	59.99063	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:20	59.9874	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:22	59.98416	471		0		0			-653	29766.46	0	0	0	-0.003	0.003	
05/16/11 07:40:24	59.98093	471		0		0			-653	29766.37	0	0	0	-0.003	0.003	
05/16/11 07:40:26	59.97867	471		0		0			-653	29766.37	0	0	0	-0.002	0.002	
05/16/11 07:40:28	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:30	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:32	59.97836	471		0		0			-653	29766.37	0	0	0	0.000	0.000	
05/16/11 07:40:34	59.97577	471		0		0			-653	29780.98	0	0	0	-0.003	0.003	
05/16/11 07:40:36	59.97382	471		0		0			-653	29780.98	0	0	0	-0.002	0.002	
05/16/11 07:40:38	59.97223	471		0		0			-653	29780.98	0	0	0	-0.002	0.002	
05/16/11 07:40:40	59.97223	471		0		0			-653	29780.98	0	0	0	0.000	0.000	
05/16/11 07:40:42	59.97318	471		0		0			-653	29780.98	0	0	0	0.001	0.001	
05/16/11 07:40:44	59.97351	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:46	59.97415	471		0		0			-653	29780.95	0	0	0	0.001	0.001	
05/16/11 07:40:48	59.97287	471		0		0			-653	29780.95	0		0	-0.001	0.001	
05/16/11 07:40:50	59.97287	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:52	59.97287	471		0		0			-653	29780.95	0	0	0	0.000	0.000	
05/16/11 07:40:54	59.96832	471		0		0			-653	29770.34	0	0	0	-0.005	0.005	
05/16/11 07:40:56	59.96768	471		0		0			-653	29770.34	0	0	0	-0.001	0.001	
05/16/11 07:40:58	59.96899	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:00	59.97028	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:02	59.97223	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:04	59.97382	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:06	59.97479	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:08	59.9761	471		0		0			-653	29770.34	0	0	0	0.001	0.001	
05/16/11 07:41:10	59.97769	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:12	59.97998	471		0		0			-653	29770.34	0	0	0	0.002	0.002	
05/16/11 07:41:14	59.98318	471		0		0			-653	29782.73	0	0	0	0.003	0.003	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$
05/16/11 07:41:16	59.98578	471		0		0			-653	29782.73	0	0	0	0.003	0.003	
05/16/11 07:41:18	59.9874	471		0		0			-653	29782.73	0	0	0	0.002	0.002	
05/16/11 07:41:20	59.98868	471		0		0			-653	29782.73	0	0	0	0.001	0.001	
05/16/11 07:41:22	59.98999	471		0		0			-653	29782.73	0	0	0	0.001	0.001	
05/16/11 07:41:24	59.99191	471		0		0			-653	29782.82	0	0	0	0.002	0.002	
05/16/11 07:41:26	59.99353	471		0		0			-653	29782.82	0	0	0	0.002	0.002	
05/16/11 07:41:28	59.99612	471		0		0			-653	29782.82	0	0	0	0.003	0.003	
05/16/11 07:41:30	59.99805	471		0		0			-653	29782.82	0	0	0	0.002	0.002	
05/16/11 07:41:32	59.99902	471		0		0			-653	29782.82	0	0	0	0.001	0.001	
05/16/11 07:41:34	59.99902	471		0		0			-653	29786.15	0	0	0	0.000	0.000	
05/16/11 07:41:36	59.99774	471		0		0			-653	29786.15	0	0	0	-0.001	0.001	
05/16/11 07:41:38	59.99646	471		0		0			-653	29786.15	0	0	0	-0.001	0.001	
05/16/11 07:41:40	59.99579	471		0		0			-653	29786.15	0	0	0	-0.001	0.001	
05/16/11 07:41:42	59.99612	471		0		0			-653	29786.15	0	0	0	0.000	0.000	
05/16/11 07:41:44	59.9971	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:46	59.99774	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:48	59.99838	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:50	59.99936	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:52	60	471		0		0			-653	29786.21	0	0	0	0.001	0.001	
05/16/11 07:41:54	60.00064	471		0		0			-653	29778.98	0	0	0	0.001	0.001	
05/16/11 07:41:56	60.00128	471		0		0			-653	29778.98	0	0	0	0.001	0.001	
05/16/11 07:41:58	60.00226	471		0		0			-653	29778.98	0	0	0	0.001	0.001	
05/16/11 07:42:00	60.00388	471		0		0			-653	29778.98	0	0	0	0.002	0.002	
05/16/11 07:42:02	60.00647	471		0		0			-653	29778.98	0	0	0	0.003	0.003	
05/16/11 07:42:04	60.0097	471		0		0			-653	29778.92	0	0	0	0.003	0.003	
05/16/11 07:42:06	60.01358	471		0		0			-653	29778.92	0	0	0	0.004	0.004	
05/16/11 07:42:08	60.01614	471		0		0			-653	29778.92	0	0	0	0.003	0.003	
05/16/11 07:42:10	60.01776	471		0		0			-653	29778.92	0	0	0	0.002	0.002	
05/16/11 07:42:12	60.01776	471		0		0			-653	29778.92	0	0	0	0.000	0.000	
05/16/11 07:42:14	60.01486	471		0		0			-653	29787.9	0	0	0	-0.003	0.003	
05/16/11 07:42:16	60.01163	471		0		0			-653	29787.9	0	0		-0.003	0.003	
05/16/11 07:42:18	60.00903	471		0		0			-653	29787.9	0	0	0	-0.003	0.003	
05/16/11 07:42:20	60.00775	471		0		0			-653	29787.9	0	0	0	-0.001	0.001	
05/16/11 07:42:22	60.00775	471		0		0			-653	29787.9	0	0	0	0.000	0.000	
05/16/11 07:42:24	60.00903	471		0		0			-653	29787.84	0	0	0	0.001	0.001	
05/16/11 07:42:26	60.00903	471		0		0			-653	29787.84	0	0	0	0.000	0.000	
05/16/11 07:42:28	60.01324	471		0		0			-653	29787.84	0	0	0	0.004	0.004	
05/16/11 07:42:30	60.01486	471		0		0			-653	29787.84	0	0	0	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:42:32	60.0152	471		0		0			-653	29787.84	0	0	0	0.000	0.000	
05/16/11 07:42:34	60.0152	471		0		0			-653	29813.39	0	0	0	0.000	0.000	
05/16/11 07:42:36	60.01486	471		0		0			-653	29813.39	0	0	0	0.000	0.000	
05/16/11 07:42:38	60.01422	471		0		0			-653	29813.39	0	0	0	-0.001	0.001	
05/16/11 07:42:40	60.01358	471		0		0			-653	29813.39	0	0	0	-0.001	0.001	
05/16/11 07:42:42	60.01227	471		0		0			-653	29813.39	0	0	0	-0.001	0.001	
05/16/11 07:42:44	60.01099	471		0		0			-653	29813.33	0	0	0	-0.001	0.001	
05/16/11 07:42:46	60.00873	471		0		0			-653	29813.33	0	0	0	-0.002	0.002	
05/16/11 07:42:48	60.00647	471		0		0			-653	29813.33	0	0	0	-0.002	0.002	
05/16/11 07:42:50	60.00485	471		0		0			-653	29813.33	0	0	0	-0.002	0.002	
05/16/11 07:42:52	60.00354	471		0		0			-653	29813.33	0	0	0	-0.001	0.001	
05/16/11 07:42:54	60.00195	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:42:56	60	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:42:58	59.99774	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:43:00	59.99612	471		0		0			-653	29797.46	0	0	0	-0.002	0.002	
05/16/11 07:43:02	59.99646	471		0		0			-653	29797.46	0	0	0	0.000	0.000	
05/16/11 07:43:04	59.99741	471		0		0			-653	29797.52	0	0	0	0.001	0.001	
05/16/11 07:43:06	59.99838	471		0		0			-653	29797.52	0	0	0	0.001	0.001	
05/16/11 07:43:08	59.99936	471		0		0			-653	29797.52	0	0	0	0.001	0.001	
05/16/11 07:43:10	59.99902	471		0		0			-653	29797.52	0	0	0	0.000	0.000	
05/16/11 07:43:12	59.99872	471		0		0			-653	29797.52	0	0	0	0.000	0.000	
05/16/11 07:43:14	59.99774	471		0		0			-653	29780.33	0	0	0	-0.001	0.001	
05/16/11 07:43:16	59.99646	471		0		0			-653	29780.33	0	0	0	-0.001	0.001	
05/16/11 07:43:18	59.99677	471		0		0			-653	29780.33	0	0	0	0.000	0.000	
05/16/11 07:43:20	59.99677	471		0		0			-653	29780.33	0	0	0	0.000	0.000	
05/16/11 07:43:22	59.99774	471		0		0			-653	29780.33	0	0	0	0.001	0.001	
05/16/11 07:43:24	59.99805	471		0		0			-653	29780.27	0	0	0	0.000	0.000	
05/16/11 07:43:26	59.99774	471		0		0			-653	29780.27	0	0	0	0.000	0.000	
05/16/11 07:43:28	59.99579	471		0		0			-653	29780.27	0	0	0	-0.002	0.002	
05/16/11 07:43:30	59.99387	471		0		0			-653	29780.27	0	0	0	-0.002	0.002	
05/16/11 07:43:32	59.99255	471		0		0			-653	29780.27	0	0	0	-0.001	0.001	
05/16/11 07:43:34	59.99127	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:36	59.98999	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:38	59.98965	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:40	59.98837	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:42	59.98709	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:44	59.98642	471		0		0			-653	29785.63	0	0	0	-0.001	0.001	
05/16/11 07:43:46	59.98642	471		0		0			-653	29785.63	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:43:48	59.98642	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:50	59.98676	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:52	59.98676	471		0		0			-653	29785.63	0	0	0	0.000	0.000	
05/16/11 07:43:54	59.98642	471		0		0			-653	29787.12	0	0	0	0.000	0.000	
05/16/11 07:43:56	59.98611	471		0		0			-653	29787.12	0	0	0	0.000	0.000	
05/16/11 07:43:58	59.98611	471		0		0			-653	29787.12	0	0	0	0.000	0.000	
05/16/11 07:44:00	59.98514	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:02	59.98416	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:04	59.98352	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:06	59.98224	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:08	59.98029	471		0		0			-653	29787.12	0	0	0	-0.002	0.002	
05/16/11 07:44:10	59.979	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:12	59.97769	471		0		0			-653	29787.12	0	0	0	-0.001	0.001	
05/16/11 07:44:14	59.97675	471		0		0			-653	29780.67	0	0	0	-0.001	0.001	
05/16/11 07:44:16	59.97641	471		0		0			-653	29780.67	0	0	0	0.000	0.000	
05/16/11 07:44:18	59.97739	471		0		0			-653	29780.67	0	0	0	0.001	0.001	
05/16/11 07:44:20	59.97998	471		0		0			-653	29780.67	0	0	0	0.003	0.003	
05/16/11 07:44:22	59.98318	471		0		0			-653	29780.67	0	0	0	0.003	0.003	
05/16/11 07:44:24	59.98611	471		0		0			-653	29780.76	0	0	0	0.003	0.003	
05/16/11 07:44:26	59.98837	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:28	59.9903	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:30	59.99191	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:32	59.99353	471		0		0			-653	29780.76	0	0	0	0.002	0.002	
05/16/11 07:44:34	59.99579	471		0		0			-653	29777.7	0	0	0	0.002	0.002	
05/16/11 07:44:36	60	471		0		0			-653	29777.7	0	0	0	0.004	0.004	
05/16/11 07:44:38	60.00354	471		0		0			-653	29777.7	0	0	0	0.004	0.004	
05/16/11 07:44:40	60.00647	471		0		0			-653	29777.7	0	0	0	0.003	0.003	
05/16/11 07:44:42	60.00839	471		0		0			-653	29777.7	0	0	0	0.002	0.002	
05/16/11 07:44:44	60.00903	471		0		0			-653	29777.7	0	0	0	0.001	0.001	
05/16/11 07:44:46	60.00873	471		0		0			-653	29777.7	0	0	0	0.000	0.000	
05/16/11 07:44:48	60.00873	471		0		0			-653	29777.7	0	0	0	0.000	0.000	
05/16/11 07:44:50	60.00937	471		0		0			-653	29777.7	0	0	0	0.001	0.001	
05/16/11 07:44:52	60.01099	471		0		0			-653	29777.7	0	0	0	0.002	0.002	
05/16/11 07:44:54	60.01453	471		0		0			-653	29788.63	0	0	0	0.004	0.004	
05/16/11 07:44:56	60.0181	471		0		0			-653	29788.63	0	0	0	0.004	0.004	
05/16/11 07:44:58	60.02002	471		0		0			-653	29788.63	0	0	0	0.002	0.002	
05/16/11 07:45:00	60.02036	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:02	60.02002	471		0		0			-653	29788.63	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:45:04	60.02002	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:06	60.01907	471		0		0			-653	29788.63	0	0	0	-0.001	0.001	
05/16/11 07:45:08	60.0181	471		0		0			-653	29788.63	0	0	0	-0.001	0.001	
05/16/11 07:45:10	60.01712	471		0		0			-653	29788.63	0	0	0	-0.001	0.001	
05/16/11 07:45:12	60.01712	471		0		0			-653	29788.63	0	0	0	0.000	0.000	
05/16/11 07:45:14	60.01712	471		0		0			-653	29788.51	0	0	0	0.000	0.000	
05/16/11 07:45:16	60.01453	471		0		0			-653	29788.51	0	0	0	-0.003	0.003	
05/16/11 07:45:18	60.01358	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:20	60.01227	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:22	60.01163	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:24	60.01065	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:26	60.0097	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:28	60.00839	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:30	60.00745	471		0		0			-653	29788.51	0	0	0	-0.001	0.001	
05/16/11 07:45:32	60.00775	471		0		0			-653	29788.51	0	0	0	0.000	0.000	
05/16/11 07:45:34	60.00839	471		0		0			-653	29780.62	0	0	0	0.001	0.001	
05/16/11 07:45:36	60.00839	471		0		0			-653	29780.62	0	0	0	0.000	0.000	
05/16/11 07:45:38	60.00809	471		0		0			-653	29780.62	0	0	0	0.000	0.000	
05/16/11 07:45:40	60.00745	471		0		0			-653	29780.62	0	0	0	-0.001	0.001	
05/16/11 07:45:42	60.00711	471		0		0			-653	29780.62	0	0	0	0.000	0.000	
05/16/11 07:45:44	60.00839	471		0		0			-653	29780.56	0	0	0	0.001	0.001	
05/16/11 07:45:46	60.00937	471		0		0			-653	29780.56	0	0	0	0.001	0.001	
05/16/11 07:45:48	60.0097	471		0		0			-653	29780.56	0	0	0	0.000	0.000	
05/16/11 07:45:50	60.01001	471		0		0			-653	29780.56	0	0	0	0.000	0.000	
05/16/11 07:45:52	60.01065	471		0		0			-653	29780.56	0	0	0	0.001	0.001	
05/16/11 07:45:54	60.01196	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:45:56	60.01324	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:45:58	60.01453	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:46:00	60.01614	471		0		0			-653	29784.96	0	0	0	0.002	0.002	
05/16/11 07:46:02	60.01712	471		0		0			-653	29784.96	0	0	0	0.001	0.001	
05/16/11 07:46:04	60.01712	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:06	60.01614	471		0		0			-653	29784.93	0	0	0	-0.001	0.001	
05/16/11 07:46:08	60.01584	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:10	60.01614	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:12	60.01584	471		0		0			-653	29784.93	0	0	0	0.000	0.000	
05/16/11 07:46:14	60.01486	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:16	60.01422	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:18	60.01227	471		0		0			-653	29760.42	0	0	0	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:46:20	60.0097	471		0		0			-653	29760.42	0	0	0	-0.003	0.003	
05/16/11 07:46:22	60.00711	471		0		0			-653	29760.42	0	0	0	-0.003	0.003	
05/16/11 07:46:24	60.00583	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:26	60.00516	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:28	60.00516	471		0		0			-653	29760.42	0	0	0	0.000	0.000	
05/16/11 07:46:30	60.00485	471		0		0			-653	29760.42	0	0	0	0.000	0.000	
05/16/11 07:46:32	60.00388	471		0		0			-653	29760.42	0	0	0	-0.001	0.001	
05/16/11 07:46:34	60.00259	471		0		0			-653	29782.35	0	0	0	-0.001	0.001	
05/16/11 07:46:36	59.99902	471		0		0			-653	29782.35	0	0	0	-0.004	0.004	
05/16/11 07:46:38	59.9971	471		0		0			-653	29782.35	0	0	0	-0.002	0.002	
05/16/11 07:46:40	59.99646	471		0		0			-653	29782.35	0	0	0	-0.001	0.001	
05/16/11 07:46:42	59.99579	471		0		0			-653	29782.35	0	0	0	-0.001	0.001	
05/16/11 07:46:44	59.99417	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:46	59.99225	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:48	59.9903	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:50	59.98804	471		0		0			-653	29782.44	0	0	0	-0.002	0.002	
05/16/11 07:46:52	59.98709	471		0		0			-653	29782.44	0	0	0	-0.001	0.001	
05/16/11 07:46:54	59.98676	471		0		0			-653	29785.52	0	0	0	0.000	0.000	
05/16/11 07:46:56	59.98578	471		0		0			-653	29785.52	0	0	0	-0.001	0.001	
05/16/11 07:46:58	59.9845	471		0		0			-653	29785.52	0	0	0	-0.001	0.001	
05/16/11 07:47:00	59.98288	471		0		0			-653	29785.52	0	0	0	-0.002	0.002	
05/16/11 07:47:02	59.98224	471		0		0			-653	29785.52	0	0	0	-0.001	0.001	
05/16/11 07:47:04	59.98224	471		0		0			-653	29785.55	0	0	0	0.000	0.000	
05/16/11 07:47:06	59.98224	471		0		0			-653	29785.55	0	0	0	0.000	0.000	
05/16/11 07:47:08	59.98254	471		0		0			-653	29785.55	0	0	0	0.000	0.000	
05/16/11 07:47:10	59.98386	471		0		0			-653	29785.55	0	0	0	0.001	0.001	
05/16/11 07:47:12	59.9848	471		0		0			-653	29785.55	0	0	0	0.001	0.001	
05/16/11 07:47:14	59.98578	471		0		0			-653	29788.21	0	0	0	0.001	0.001	
05/16/11 07:47:16	59.98642	471		0		0			-653	29788.21	0	0	0	0.001	0.001	
05/16/11 07:47:18	59.98999	471		0		0			-653	29788.21	0	0	0	0.004	0.004	
05/16/11 07:47:20	59.99225	471		0		0			-653	29788.21	0	0		0.002	0.002	
05/16/11 07:47:22	59.99323	471		0		0			-653	29788.21	0	0	0	0.001	0.001	
05/16/11 07:47:24	59.99646	471		0		0			-653	29788.06	0	0	0	0.003	0.003	
05/16/11 07:47:26	59.99902	471		0		0			-653	29788.06	0	0	0	0.003	0.003	
05/16/11 07:47:28	60.00064	471		0		0			-653	29788.06	0	0	0	0.002	0.002	
05/16/11 07:47:30	60.00647	471		0		0			-653	29788.06	0	0	0	0.006	0.006	
05/16/11 07:47:32	60.00903	471		0		0			-653	29788.06	0	0	0	0.003	0.003	
05/16/11 07:47:34	60.01099	471		0		0			-653	29776.11	0	0	0	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$
05/16/11 07:47:36	60.01132	471		0		0			-653	29776.11	0	0	0	0.000	0.000	
05/16/11 07:47:38	60.01291	471		0		0			-653	29776.11	0	0	0	0.002	0.002	
05/16/11 07:47:40	60.01324	471		0		0			-653	29776.11	0	0	0	0.000	0.000	
05/16/11 07:47:42	60.01324	471		0		0			-653	29776.11	0	0	0	0.000	0.000	
05/16/11 07:47:44	60.01422	471		0		0			-653	29776.17	0	0	0	0.001	0.001	
05/16/11 07:47:46	60.0181	471		0		0			-653	29776.17	0	0	0	0.004	0.004	
05/16/11 07:47:48	60.01907	471		0		0			-653	29776.17	0	0	0	0.001	0.001	
05/16/11 07:47:50	60.02133	471		0		0			-653	29776.17	0	0	0	0.002	0.002	
05/16/11 07:47:52	60.02197	471		0		0			-653	29776.17	0	0	0	0.001	0.001	
05/16/11 07:47:54	60.02164	471		0		0			-653	29794.69	0	0	0	0.000	0.000	
05/16/11 07:47:56	60.01971	471		0		0			-653	29794.69	0	0	0	-0.002	0.002	
05/16/11 07:47:58	60.01907	471		0		0			-653	29794.69	0	0	0	-0.001	0.001	
05/16/11 07:48:00	60.01746	471		0		0			-653	29794.69	0	0	0	-0.002	0.002	
05/16/11 07:48:02	60.01776	471		0		0			-653	29794.69	0	0	0	0.000	0.000	
05/16/11 07:48:04	60.0184	471		0		0			-653	29794.66	0	0	0	0.001	0.001	
05/16/11 07:48:06	60.01776	471		0		0			-653	29794.66	0	0	0	-0.001	0.001	
05/16/11 07:48:08	60.0152	471		0		0			-653	29794.66	0	0	0	-0.003	0.003	
05/16/11 07:48:10	60.01389	471		0		0			-653	29794.66	0	0	0	-0.001	0.001	
05/16/11 07:48:12	60.01422	471		0		0			-653	29794.66	0	0	0	0.000	0.000	
05/16/11 07:48:14	60.0152	471		0		0			-653	29804.78	0	0	0	0.001	0.001	
05/16/11 07:48:16	60.01614	471		0		0			-653	29804.78	0	0	0	0.001	0.001	
05/16/11 07:48:18	60.01614	471		0		0			-653	29804.78	0	0	0	0.000	0.000	
05/16/11 07:48:20	60.01422	471		0		0			-653	29804.78	0	0	0	-0.002	0.002	
05/16/11 07:48:22	60.01196	471		0		0			-653	29804.78	0	0	0	-0.002	0.002	
05/16/11 07:48:24	60.01035	471		0		0			-653	29804.86	0	0	0	-0.002	0.002	
05/16/11 07:48:26	60.00809	471		0		0			-653	29804.86	0	0	0	-0.002	0.002	
05/16/11 07:48:28	60.00613	471		0		0			-653	29804.86	0	0	0	-0.002	0.002	
05/16/11 07:48:30	60.00516	471		0		0			-653	29804.86	0	0	0	-0.001	0.001	
05/16/11 07:48:32	60.00452	471		0		0			-653	29804.86	0	0	0	-0.001	0.001	
05/16/11 07:48:34	60.00354	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:36	60.00128	471		0		0			-653	29800.12	0	0		-0.002	0.002	
05/16/11 07:48:38	60	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:40	59.99936	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:42	59.99838	471		0		0			-653	29800.12	0	0	0	-0.001	0.001	
05/16/11 07:48:44	59.99741	471		0		0			-653	29800.18	0	0	0	-0.001	0.001	
05/16/11 07:48:46	59.99579	471		0		0			-653	29800.18	0	0	0	-0.002	0.002	
05/16/11 07:48:48	59.99515	471		0		0			-653	29800.18	0	0	0	-0.001	0.001	
05/16/11 07:48:50	59.99646	471		0		0			-653	29800.18	0	0	0	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:48:52	59.99872	471		0		0			-653	29800.18	0	0	0	0.002	0.002	
05/16/11 07:48:54	60.00128	471		0		0			-653	29799.82	0	0	0	0.003	0.003	
05/16/11 07:48:56	60.00323	471		0		0			-653	29799.82	0	0	0	0.002	0.002	
05/16/11 07:48:58	60.00421	471		0		0			-653	29799.82	0	0	0	0.001	0.001	
05/16/11 07:49:00	60.00485	471		0		0			-653	29799.82	0	0	0	0.001	0.001	
05/16/11 07:49:02	60.00549	471		0		0			-653	29799.82	0	0	0	0.001	0.001	
05/16/11 07:49:04	60.00583	471		0		0			-653	29799.79	0	0	0	0.000	0.000	
05/16/11 07:49:06	60.00583	471		0		0			-653	29799.79	0	0	0	0.000	0.000	
05/16/11 07:49:08	60.00549	471		0		0			-653	29799.79	0	0	0	0.000	0.000	
05/16/11 07:49:10	60.00388	471		0		0			-653	29799.79	0	0	0	-0.002	0.002	
05/16/11 07:49:12	60.00226	471		0		0			-653	29799.79	0	0	0	-0.002	0.002	
05/16/11 07:49:14	60.00226	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:16	60	471		0		0			-653	29795.67	0	0	0	-0.002	0.002	
05/16/11 07:49:18	60	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:20	60	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:22	60	471		0		0			-653	29795.67	0	0	0	0.000	0.000	
05/16/11 07:49:24	60.00452	471		0		0			-653	29795.55	0	0	0	0.005	0.005	
05/16/11 07:49:26	60.00583	471		0		0			-653	29795.55	0	0	0	0.001	0.001	
05/16/11 07:49:28	60.00613	471		0		0			-653	29795.55	0	0	0	0.000	0.000	
05/16/11 07:49:30	60.00583	471		0		0			-653	29795.55	0	0	0	0.000	0.000	
05/16/11 07:49:32	60.00516	471		0		0			-653	29795.55	0	0	0	-0.001	0.001	
05/16/11 07:49:34	60.00388	471		0		0			-653	29783.53	0	0	0	-0.001	0.001	
05/16/11 07:49:36	60.00195	471		0		0			-653	29783.53	0	0	0	-0.002	0.002	
05/16/11 07:49:38	60.00128	471		0		0			-653	29783.53	0	0	0	-0.001	0.001	
05/16/11 07:49:40	60.00098	471		0		0			-653	29783.53	0	0	0	0.000	0.000	
05/16/11 07:49:42	60.00034	471		0		0			-653	29783.53	0	0	0	-0.001	0.001	
05/16/11 07:49:44	60	471		0		0			-653	29783.47	0	0	0	0.000	0.000	
05/16/11 07:49:46	59.99902	471		0		0			-653	29783.47	0	0	0	-0.001	0.001	
05/16/11 07:49:48	59.99872	471		0		0			-653	29783.47	0	0	0	0.000	0.000	
05/16/11 07:49:50	59.99838	471		0		0			-653	29783.47	0	0	0	0.000	0.000	
05/16/11 07:49:52	59.99612	471		0		0			-653	29783.47	0	0	0	-0.002	0.002	
05/16/11 07:49:54	59.99579	471		0		0			-653	29788.38	0	0	0	0.000	0.000	
05/16/11 07:49:56	59.99515	471		0		0			-653	29788.38	0	0	0	-0.001	0.001	
05/16/11 07:49:58	59.99387	471		0		0			-653	29788.38	0	0	0	-0.001	0.001	
05/16/11 07:50:00	59.99225	471		0		0			-653	29788.38	0	0	0	-0.002	0.002	
05/16/11 07:50:02	59.99225	471		0		0			-653	29788.38	0	0	0	0.000	0.000	
05/16/11 07:50:04	59.99484	471		0		0			-653	29788.38	0	0	0	0.003	0.003	
05/16/11 07:50:06	59.99646	471		0		0			-653	29788.38	0	0	0	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:50:08	59.9971	471		0		0			-653	29788.38	0	0	0	0.001	0.001	
05/16/11 07:50:10	59.99548	471		0		0			-653	29788.38	0	0	0	-0.002	0.002	
05/16/11 07:50:12	59.99289	471		0		0			-653	29788.38	0	0	0	-0.003	0.003	
05/16/11 07:50:14	59.98999	471		0		0			-653	29790.16	0	0	0	-0.003	0.003	
05/16/11 07:50:16	59.98773	471		0		0			-653	29790.16	0	0	0	-0.002	0.002	
05/16/11 07:50:18	59.98642	471		0		0			-653	29790.16	0	0	0	-0.001	0.001	
05/16/11 07:50:20	59.98547	471		0		0			-653	29790.16	0	0	0	-0.001	0.001	
05/16/11 07:50:22	59.98547	471		0		0			-653	29790.16	0	0	0	0.000	0.000	
05/16/11 07:50:24	59.98611	471		0		0			-653	29790.07	0	0	0	0.001	0.001	
05/16/11 07:50:26	59.98611	471		0		0			-653	29790.07	0	0	0	0.000	0.000	
05/16/11 07:50:28	59.98676	471		0		0			-653	29790.07	0	0	0	0.001	0.001	
05/16/11 07:50:30	59.98709	471		0		0			-653	29790.07	0	0	0	0.000	0.000	
05/16/11 07:50:32	59.9874	471		0		0			-653	29790.07	0	0	0	0.000	0.000	
05/16/11 07:50:34	59.98676	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:36	59.98611	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:38	59.98642	471		0		0			-653	29777.49	0	0	0	0.000	0.000	
05/16/11 07:50:40	59.9874	471		0		0			-653	29777.49	0	0	0	0.001	0.001	
05/16/11 07:50:42	59.98804	471		0		0			-653	29777.49	0	0	0	0.001	0.001	
05/16/11 07:50:44	59.9874	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:46	59.98676	471		0		0			-653	29777.49	0	0	0	-0.001	0.001	
05/16/11 07:50:48	59.9848	471		0		0			-653	29777.49	0	0	0	-0.002	0.002	
05/16/11 07:50:50	59.98288	471		0		0			-653	29777.49	0	0	0	-0.002	0.002	
05/16/11 07:50:52	59.98062	471		0		0			-653	29777.49	0	0	0	-0.002	0.002	
05/16/11 07:50:54	59.97998	471		0		0			-653	29782.49	0	0	0	-0.001	0.001	
05/16/11 07:50:56	59.97931	471		0		0			-653	29782.49	0	0	0	-0.001	0.001	
05/16/11 07:50:58	59.979	471		0		0			-653	29782.49	0	0	0	0.000	0.000	
05/16/11 07:51:00	59.97931	471		0		0			-653	29782.49	0	0	0	0.000	0.000	
05/16/11 07:51:02	59.98093	471		0		0			-653	29782.49	0	0	0	0.002	0.002	
05/16/11 07:51:04	59.98126	471		0		0			-653	29782.46	0	0	0	0.000	0.000	
05/16/11 07:51:06	59.98126	471		0		0			-653	29782.46	0	0	0	0.000	0.000	
05/16/11 07:51:08	59.9819	471		0		0			-653	29782.46	0	0	0	0.001	0.001	
05/16/11 07:51:10	59.98126	471		0		0			-653	29782.46	0	0	0	-0.001	0.001	
05/16/11 07:51:12	59.97964	471		0		0			-653	29782.46	0	0	0	-0.002	0.002	
05/16/11 07:51:14	59.97705	471		0		0			-653	29756.13	0	0	0	-0.003	0.003	
05/16/11 07:51:16	59.97479	471		0		0			-653	29756.13	0	0	0	-0.002	0.002	
05/16/11 07:51:18	59.97351	471		0		0			-653	29756.13	0	0	0	-0.001	0.001	
05/16/11 07:51:20	59.97287	471		0		0			-653	29756.13	0	0	0	-0.001	0.001	
05/16/11 07:51:22	59.97223	471		0		0			-653	29756.13	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:51:24	59.97189	471		0		0			-653	29756.18	0	0	0	0.000	0.000	
05/16/11 07:51:26	59.97125	471		0		0			-653	29756.18	0	0	0	-0.001	0.001	
05/16/11 07:51:28	59.97156	471		0		0			-653	29756.18	0	0	0	0.000	0.000	
05/16/11 07:51:30	59.97318	471		0		0			-653	29756.18	0	0	0	0.002	0.002	
05/16/11 07:51:32	59.97415	471		0		0			-653	29756.18	0	0	0	0.001	0.001	
05/16/11 07:51:34	59.97479	471		0		0			-653	29777.58	0	0	0	0.001	0.001	
05/16/11 07:51:36	59.97382	471		0		0			-653	29777.58	0	0	0	-0.001	0.001	
05/16/11 07:51:38	59.97287	471		0		0			-653	29777.58	0	0	0	-0.001	0.001	
05/16/11 07:51:40	59.97318	471		0		0			-653	29777.58	0	0	0	0.000	0.000	
05/16/11 07:51:42	59.97449	471		0		0			-653	29777.58	0	0	0	0.001	0.001	
05/16/11 07:51:44	59.97675	471		0		0			-653	29777.4	0	0	0	0.002	0.002	
05/16/11 07:51:46	59.97803	471		0		0			-653	29777.4	0	0	0	0.001	0.001	
05/16/11 07:51:48	59.97998	471		0		0			-653	29777.4	0	0	0	0.002	0.002	
05/16/11 07:51:50	59.98093	471		0		0			-653	29777.4	0	0	0	0.001	0.001	
05/16/11 07:51:52	59.98093	471		0		0			-653	29777.4	0	0	0	0.000	0.000	
05/16/11 07:51:54	59.97964	471		0		0			-653	29802.24	0	0	0	-0.001	0.001	
05/16/11 07:51:56	59.97803	471		0		0			-653	29802.24	0	0	0	-0.002	0.002	
05/16/11 07:51:58	59.97705	471		0		0			-653	29802.24	0	0	0	-0.001	0.001	
05/16/11 07:52:00	59.97739	471		0		0			-653	29802.24	0	0	0	0.000	0.000	
05/16/11 07:52:02	59.97836	471		0		0			-653	29802.24	0	0	0	0.001	0.001	
05/16/11 07:52:04	59.97931	471		0		0			-653	29802.18	0	0	0	0.001	0.001	
05/16/11 07:52:06	59.98126	471		0		0			-653	29802.18	0	0	0	0.002	0.002	
05/16/11 07:52:08	59.98416	471		0		0			-653	29802.18	0	0	0	0.003	0.003	
05/16/11 07:52:10	59.98611	471		0		0			-653	29802.18	0	0	0	0.002	0.002	
05/16/11 07:52:12	59.98709	471		0		0			-653	29802.18	0	0	0	0.001	0.001	
05/16/11 07:52:14	59.9874	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:16	59.98804	471		0		0			-653	29802.29	0	0	0	0.001	0.001	
05/16/11 07:52:18	59.98804	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:20	59.98773	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:22	59.9874	471		0		0			-653	29802.29	0	0	0	0.000	0.000	
05/16/11 07:52:24	59.9874	471		0		0			-653	29802.32	0	0		0.000	0.000	
05/16/11 07:52:26	59.9874	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:28	59.9874	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:30	59.98773	471		0		0			-653	29802.32	0	0	0	0.000	0.000	
05/16/11 07:52:32	59.98901	471		0		0			-653	29802.32	0	0	0	0.001	0.001	
05/16/11 07:52:34	59.98965	471		0		0			-653	29795.02	0	0	0	0.001	0.001	
05/16/11 07:52:36	59.98935	471		0		0			-653	29795.02	0	0	0	0.000	0.000	
05/16/11 07:52:38	59.98837	471		0		0			-653	29795.02	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:52:40	59.98868	471		0		0			-653	29795.02	0	0	0	0.000	0.000	
05/16/11 07:52:42	59.98868	471		0		0			-653	29795.02	0	0	0	0.000	0.000	
05/16/11 07:52:44	59.9874	471		0		0			-653	29795.05	0	0	0	-0.001	0.001	
05/16/11 07:52:46	59.98611	471		0		0			-653	29795.05	0	0	0	-0.001	0.001	
05/16/11 07:52:48	59.98611	471		0		0			-653	29795.05	0	0	0	0.000	0.000	
05/16/11 07:52:50	59.98709	471		0		0			-653	29795.05	0	0	0	0.001	0.001	
05/16/11 07:52:52	59.98837	471		0		0			-653	29795.05	0	0	0	0.001	0.001	
05/16/11 07:52:54	59.98935	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:52:56	59.98999	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:52:58	59.99127	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:53:00	59.99255	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:53:02	59.99387	471		0		0			-653	29781.42	0	0	0	0.001	0.001	
05/16/11 07:53:04	59.99387	471		0		0			-653	29781.45	0	0	0	0.000	0.000	
05/16/11 07:53:06	59.99289	471		0		0			-653	29781.45	0	0	0	-0.001	0.001	
05/16/11 07:53:08	59.99097	471		0		0			-653	29781.45	0	0	0	-0.002	0.002	
05/16/11 07:53:10	59.98868	471		0		0			-653	29781.45	0	0	0	-0.002	0.002	
05/16/11 07:53:12	59.98642	471		0		0			-653	29781.45	0	0	0	-0.002	0.002	
05/16/11 07:53:14	59.98386	471		0		0			-653	29802.43	0	0	0	-0.003	0.003	
05/16/11 07:53:16	59.9816	471		0		0			-653	29802.43	0	0	0	-0.002	0.002	
05/16/11 07:53:18	59.97931	471		0		0			-653	29802.43	0	0	0	-0.002	0.002	
05/16/11 07:53:20	59.97675	471		0		0			-653	29802.43	0	0	0	-0.003	0.003	
05/16/11 07:53:22	59.97415	471		0		0			-653	29802.43	0	0	0	-0.003	0.003	
05/16/11 07:53:24	59.97287	471		0		0			-653	29802.4	0	0	0	-0.001	0.001	
05/16/11 07:53:26	59.97223	471		0		0			-653	29802.4	0	0	0	-0.001	0.001	
05/16/11 07:53:28	59.97318	471		0		0			-653	29802.4	0	0	0	0.001	0.001	
05/16/11 07:53:30	59.97449	471		0		0			-653	29802.4	0	0	0	0.001	0.001	
05/16/11 07:53:32	59.97351	471		0		0			-653	29802.4	0	0	0	-0.001	0.001	
05/16/11 07:53:34	59.97253	471		0		0			-653	29804.4	0	0	0	-0.001	0.001	
05/16/11 07:53:36	59.97253	471		0		0			-653	29804.4	0	0	0	0.000	0.000	
05/16/11 07:53:38	59.97223	471		0		0			-653	29804.4	0	0	0	0.000	0.000	
05/16/11 07:53:40	59.97156	471		0		0			-653	29804.4	0	0		-0.001	0.001	
05/16/11 07:53:42	59.97189	471		0		0			-653	29804.4	0	0	0	0.000	0.000	
05/16/11 07:53:44	59.97318	471		0		0			-653	29804.4	0	0	0	0.001	0.001	
05/16/11 07:53:46	59.97479	471		0		0			-653	29804.4	0	0	0	0.002	0.002	
05/16/11 07:53:48	59.9761	471		0		0			-653	29804.4	0	0	0	0.001	0.001	
05/16/11 07:53:50	59.97803	471		0		0			-653	29804.4	0	0	0	0.002	0.002	
05/16/11 07:53:52	59.98062	471		0		0			-653	29804.4	0	0	0	0.003	0.003	
05/16/11 07:53:54	59.98254	471		0		0			-653	29797.32	0	0	0	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:53:56	59.98416	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:53:58	59.98611	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:54:00	59.98804	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:54:02	59.9903	471		0		0			-653	29797.32	0	0	0	0.002	0.002	
05/16/11 07:54:04	59.99161	471		0		0			-653	29797.29	0	0	0	0.001	0.001	
05/16/11 07:54:06	59.99323	471		0		0			-653	29797.29	0	0	0	0.002	0.002	
05/16/11 07:54:08	59.99484	471		0		0			-653	29797.29	0	0	0	0.002	0.002	
05/16/11 07:54:10	59.99579	471		0		0			-653	29797.29	0	0	0	0.001	0.001	
05/16/11 07:54:12	59.99515	471		0		0			-653	29797.29	0	0	0	-0.001	0.001	
05/16/11 07:54:14	59.99612	471		0		0			-653	29823.76	0	0	0	0.001	0.001	
05/16/11 07:54:16	59.99805	471		0		0			-653	29823.76	0	0	0	0.002	0.002	
05/16/11 07:54:18	59.99936	471		0		0			-653	29823.76	0	0	0	0.001	0.001	
05/16/11 07:54:20	60.00064	471		0		0			-653	29823.76	0	0	0	0.001	0.001	
05/16/11 07:54:22	60.00098	471		0		0			-653	29823.76	0	0	0	0.000	0.000	
05/16/11 07:54:24	60.00064	471		0		0			-653	29818.41	0	0	0	0.000	0.000	
05/16/11 07:54:26	60	471		0		0			-653	29818.41	0	0	0	-0.001	0.001	
05/16/11 07:54:28	59.99902	471		0		0			-653	29818.41	0	0	0	-0.001	0.001	
05/16/11 07:54:30	59.99872	471		0		0			-653	29818.41	0	0	0	0.000	0.000	
05/16/11 07:54:32	59.99936	471		0		0			-653	29818.41	0	0	0	0.001	0.001	
05/16/11 07:54:34	60.00034	471		0		0			-653	29808.89	0	0	0	0.001	0.001	
05/16/11 07:54:36	60.00162	471		0		0			-653	29808.89	0	0	0	0.001	0.001	
05/16/11 07:54:38	60.00354	471		0		0			-653	29808.89	0	0	0	0.002	0.002	
05/16/11 07:54:40	60.00485	471		0		0			-653	29808.89	0	0	0	0.001	0.001	
05/16/11 07:54:42	60.00421	471		0		0			-653	29808.89	0	0	0	-0.001	0.001	
05/16/11 07:54:44	60.00195	471		0		0			-653	29814.89	0	0	0	-0.002	0.002	
05/16/11 07:54:46	59.99902	471		0		0			-653	29814.89	0	0	0	-0.003	0.003	
05/16/11 07:54:48	59.99646	471		0		0			-653	29814.89	0	0	0	-0.003	0.003	
05/16/11 07:54:50	59.99417	471		0		0			-653	29814.89	0	0	0	-0.002	0.002	
05/16/11 07:54:52	59.99323	471		0		0			-653	29814.89	0	0	0	-0.001	0.001	
05/16/11 07:54:54	59.99127	471		0		0			-653	29826.47	0	0	0	-0.002	0.002	
05/16/11 07:54:56	59.98935	471		0		0			-653	29826.47	0	0		-0.002	0.002	
05/16/11 07:54:58	59.98709	471		0		0			-653	29826.47	0	0	0	-0.002	0.002	
05/16/11 07:55:00	59.98578	471		0		0			-653	29826.47	0	0	0	-0.001	0.001	
05/16/11 07:55:02	59.98547	471		0		0			-653	29826.47	0	0	0	0.000	0.000	
05/16/11 07:55:04	59.98547	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:06	59.98514	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:08	59.9845	471		0		0			-653	29826.41	0	0	0	-0.001	0.001	
05/16/11 07:55:10	59.9845	471		0		0			-653	29826.41	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:55:12	59.9848	471		0		0			-653	29826.41	0	0	0	0.000	0.000	
05/16/11 07:55:14	59.9848	471		0		0			-653	29834.18	0	0	0	0.000	0.000	
05/16/11 07:55:16	59.98611	471		0		0			-653	29834.18	0	0	0	0.001	0.001	
05/16/11 07:55:18	59.9874	471		0		0			-653	29834.18	0	0	0	0.001	0.001	
05/16/11 07:55:20	59.98868	471		0		0			-653	29834.18	0	0	0	0.001	0.001	
05/16/11 07:55:22	59.98837	471		0		0			-653	29834.18	0	0	0	0.000	0.000	
05/16/11 07:55:24	59.98837	471		0		0			-653	29836.13	0	0	0	0.000	0.000	
05/16/11 07:55:26	59.98578	471		0		0			-653	29836.13	0	0	0	-0.003	0.003	
05/16/11 07:55:28	59.9845	471		0		0			-653	29836.13	0	0	0	-0.001	0.001	
05/16/11 07:55:30	59.9848	471		0		0			-653	29836.13	0	0	0	0.000	0.000	
05/16/11 07:55:32	59.98547	471		0		0			-653	29836.13	0	0	0	0.001	0.001	
05/16/11 07:55:34	59.98642	471		0		0			-653	29821.84	0	0	0	0.001	0.001	
05/16/11 07:55:36	59.98773	471		0		0			-653	29821.84	0	0	0	0.001	0.001	
05/16/11 07:55:38	59.98965	471		0		0			-653	29821.84	0	0	0	0.002	0.002	
05/16/11 07:55:40	59.99063	471		0		0			-653	29821.84	0	0	0	0.001	0.001	
05/16/11 07:55:42	59.99063	471		0		0			-653	29821.84	0	0	0	0.000	0.000	
05/16/11 07:55:44	59.99063	471		0		0			-653	29821.87	0	0	0	0.000	0.000	
05/16/11 07:55:46	59.99063	471		0		0			-653	29821.87	0	0	0	0.000	0.000	
05/16/11 07:55:48	59.98642	471		0		0			-653	29821.87	0	0	0	-0.004	0.004	
05/16/11 07:55:50	59.9845	471		0		0			-653	29821.87	0	0	0	-0.002	0.002	
05/16/11 07:55:52	59.98224	471		0		0			-653	29821.87	0	0	0	-0.002	0.002	
05/16/11 07:55:54	59.98062	471		0		0			-653	29831.33	0	0	0	-0.002	0.002	
05/16/11 07:55:56	59.97739	471		0		0			-653	29831.33	0	0	0	-0.003	0.003	
05/16/11 07:55:58	59.97641	471		0		0			-653	29831.33	0	0	0	-0.001	0.001	
05/16/11 07:56:00	59.97641	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:02	59.9761	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:04	59.97543	471		0		0			-653	29831.33	0	0	0	-0.001	0.001	
05/16/11 07:56:06	59.97577	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:08	59.97675	471		0		0			-653	29831.33	0	0	0	0.001	0.001	
05/16/11 07:56:10	59.97705	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:12	59.97705	471		0		0			-653	29831.33	0	0	0	0.000	0.000	
05/16/11 07:56:14	59.97705	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:16	59.97675	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:18	59.97705	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:20	59.97739	471		0		0			-653	29835.51	0	0	0	0.000	0.000	
05/16/11 07:56:22	59.97803	471		0		0			-653	29835.51	0	0	0	0.001	0.001	
05/16/11 07:56:24	59.97803	471		0		0			-653	29856.55	0	0	0	0.000	0.000	
05/16/11 07:56:26	59.97867	471		0		0			-653	29856.55	0	0	0	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 07:56:28	59.97964	471		0		0			-653	29856.55	0	0	0	0.001	0.001	
05/16/11 07:56:30	59.9816	471		0		0			-653	29856.55	0	0	0	0.002	0.002	
05/16/11 07:56:32	59.98352	471		0		0			-653	29856.55	0	0	0	0.002	0.002	
05/16/11 07:56:34	59.98642	471		0		0			-653	29846.76	0	0	0	0.003	0.003	
05/16/11 07:56:36	59.9903	471		0		0			-653	29846.76	0	0	0	0.004	0.004	
05/16/11 07:56:38	59.99451	471		0		0			-653	29846.76	0	0	0	0.004	0.004	
05/16/11 07:56:40	59.99741	471		0		0			-653	29846.76	0	0	0	0.003	0.003	
05/16/11 07:56:42	59.99838	471		0		0			-653	29846.76	0	0	0	0.001	0.001	
05/16/11 07:56:44	59.99805	471		0		0			-653	29860.05	0	0	0	0.000	0.000	
05/16/11 07:56:46	59.99677	471		0		0			-653	29860.05	0	0	0	-0.001	0.001	
05/16/11 07:56:48	59.99612	471		0		0			-653	29860.05	0	0	0	-0.001	0.001	
05/16/11 07:56:50	59.99548	471		0		0			-653	29860.05	0	0	0	-0.001	0.001	
05/16/11 07:56:52	59.99612	471		0		0			-653	29860.05	0	0	0	0.001	0.001	
05/16/11 07:56:54	59.99936	471		0		0			-653	29873.15	0	0	0	0.003	0.003	
05/16/11 07:56:56	60.00323	471		0		0			-653	29873.15	0	0	0	0.004	0.004	
05/16/11 07:56:58	60.00745	471		0		0			-653	29873.15	0	0	0	0.004	0.004	
05/16/11 07:57:00	60.01163	471		0		0			-653	29873.15	0	0	0	0.004	0.004	
05/16/11 07:57:02	60.01453	471		0		0			-653	29873.15	0	0	0	0.003	0.003	
05/16/11 07:57:04	60.01746	471		0		0			-653	29873.15	0	0	0	0.003	0.003	
05/16/11 07:57:06	60.01907	471		0		0			-653	29873.15	0	0	0	0.002	0.002	
05/16/11 07:57:08	60.01938	471		0		0			-653	29873.15	0	0	0	0.000	0.000	
05/16/11 07:57:10	60.01938	471		0		0			-653	29873.15	0	0	0	0.000	0.000	
05/16/11 07:57:12	60.01938	471		0		0			-653	29873.15	0	0	0	0.000	0.000	
05/16/11 07:57:14	60.02036	471		0		0			-653	29889.67	0	0	0	0.001	0.001	
05/16/11 07:57:16	60.02197	471		0		0			-653	29889.67	0	0	0	0.002	0.002	
05/16/11 07:57:18	60.02423	471		0		0			-653	29889.67	0	0	0	0.002	0.002	
05/16/11 07:57:20	60.02682	471		0		0			-653	29889.67	0	0	0	0.003	0.003	
05/16/11 07:57:22	60.02811	471		0		0			-653	29889.67	0	0	0	0.001	0.001	
05/16/11 07:57:24	60.02939	471		0		0			-653	29886.6	0	0	0	0.001	0.001	
05/16/11 07:57:26	60.03036	471		0		0			-653	29886.6	0	0	0	0.001	0.001	
05/16/11 07:57:28	60.02875	471		0		0			-653	29886.6	0	0	0	-0.002	0.002	
05/16/11 07:57:30	60.02682	471		0		0			-653	29886.6	0	0	0	-0.002	0.002	
05/16/11 07:57:32	60.02457	471		0		0			-653	29886.6	0	0	0	-0.002	0.002	
05/16/11 07:57:34	60.02261	471		0		0			-653	29891.67	0	0	0	-0.002	0.002	
05/16/11 07:57:36	60.02231	471		0		0			-653	29891.67	0	0	0	0.000	0.000	
05/16/11 07:57:38	60.02295	471		0		0			-653	29891.67	0	0	0	0.001	0.001	
05/16/11 07:57:40	60.02359	471		0		0			-653	29891.67	0	0	0	0.001	0.001	
05/16/11 07:57:42	60.02261	471		0		0			-653	29891.67	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:57:44	60.02164	471		0		0			-653	29891.64	0	0	0	-0.001	0.001	
05/16/11 07:57:46	60.01971	471		0		0			-653	29891.64	0	0	0	-0.002	0.002	
05/16/11 07:57:48	60.01776	471		0		0			-653	29891.64	0	0	0	-0.002	0.002	
05/16/11 07:57:50	60.01746	471		0		0			-653	29891.64	0	0	0	0.000	0.000	
05/16/11 07:57:52	60.01682	471		0		0			-653	29891.64	0	0	0	-0.001	0.001	
05/16/11 07:57:54	60.01712	471		0		0			-653	29891.51	0	0	0	0.000	0.000	
05/16/11 07:57:56	60.0184	471		0		0			-653	29891.51	0	0	0	0.001	0.001	
05/16/11 07:57:58	60.01874	471		0		0			-653	29891.51	0	0	0	0.000	0.000	
05/16/11 07:58:00	60.0181	471		0		0			-653	29891.51	0	0	0	-0.001	0.001	
05/16/11 07:58:02	60.01682	471		0		0			-653	29891.51	0	0	0	-0.001	0.001	
05/16/11 07:58:04	60.0152	471		0		0			-653	29891.6	0	0	0	-0.002	0.002	
05/16/11 07:58:06	60.0152	471		0		0			-653	29891.6	0	0	0	0.000	0.000	
05/16/11 07:58:08	60.0155	471		0		0			-653	29891.6	0	0	0	0.000	0.000	
05/16/11 07:58:10	60.0155	471		0		0			-653	29891.6	0	0	0	0.000	0.000	
05/16/11 07:58:12	60.01453	471		0		0			-653	29891.6	0	0	0	-0.001	0.001	
05/16/11 07:58:14	60.01453	471		0		0			-653	29884.5	0	0	0	0.000	0.000	
05/16/11 07:58:16	60.0152	471		0		0			-653	29884.5	0	0	0	0.001	0.001	
05/16/11 07:58:18	60.01584	471		0		0			-653	29884.5	0	0	0	0.001	0.001	
05/16/11 07:58:20	60.01614	471		0		0			-653	29884.5	0	0	0	0.000	0.000	
05/16/11 07:58:22	60.01584	471		0		0			-653	29884.5	0	0	0	0.000	0.000	
05/16/11 07:58:24	60.0152	471		0		0			-653	29881.79	0	0	0	-0.001	0.001	
05/16/11 07:58:26	60.0155	471		0		0			-653	29881.79	0	0	0	0.000	0.000	
05/16/11 07:58:28	60.01614	471		0		0			-653	29881.79	0	0	0	0.001	0.001	
05/16/11 07:58:30	60.01776	471		0		0			-653	29881.79	0	0	0	0.002	0.002	
05/16/11 07:58:32	60.01907	471		0		0			-653	29881.79	0	0	0	0.001	0.001	
05/16/11 07:58:34	60.02069	471		0		0			-653	29887.14	0	0	0	0.002	0.002	
05/16/11 07:58:36	60.02133	471		0		0			-653	29887.14	0	0	0	0.001	0.001	
05/16/11 07:58:38	60.02069	471		0		0			-653	29887.14	0	0	0	-0.001	0.001	
05/16/11 07:58:40	60.01907	471		0		0			-653	29887.14	0	0	0	-0.002	0.002	
05/16/11 07:58:42	60.01746	471		0		0			-653	29887.14	0	0	0	-0.002	0.002	
05/16/11 07:58:44	60.01614	471		0		0			-653	29873.08	0	0		-0.001	0.001	
05/16/11 07:58:46	60.0152	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:48	60.01453	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:50	60.01389	471		0		0			-653	29873.08	0	0	0	-0.001	0.001	
05/16/11 07:58:52	60.01358	471		0		0			-653	29873.08	0	0	0	0.000	0.000	
05/16/11 07:58:54	60.01099	471		0		0			-653	29862.1	0	0	0	-0.003	0.003	
05/16/11 07:58:56	60.00549	471		0		0			-653	29862.1	0	0	0	-0.005	0.005	
05/16/11 07:58:58	59.99966	471		0		0			-653	29862.1	0	0	0	-0.006	0.006	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 07:59:00	59.99451	471		0		0			-653	29862.1	0	0	0	-0.005	0.005	
05/16/11 07:59:02	59.99127	471		0		0			-653	29862.1	0	0	0	-0.003	0.003	
05/16/11 07:59:04	59.98965	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:06	59.98868	471		0		0			-653	29861.95	0	0	0	-0.001	0.001	
05/16/11 07:59:08	59.98676	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:10	59.9848	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:12	59.98288	471		0		0			-653	29861.95	0	0	0	-0.002	0.002	
05/16/11 07:59:14	59.98062	471		0		0			-653	29906.21	0	0	0	-0.002	0.002	
05/16/11 07:59:16	59.97803	471		0		0			-653	29906.21	0	0	0	-0.003	0.003	
05/16/11 07:59:18	59.9761	471		0		0			-653	29906.21	0	0	0	-0.002	0.002	
05/16/11 07:59:20	59.97577	471		0		0			-653	29906.21	0	0	0	0.000	0.000	
05/16/11 07:59:22	59.9761	471		0		0			-653	29906.21	0	0	0	0.000	0.000	
05/16/11 07:59:24	59.9761	471		0		0			-653	29878.69	0	0	0	0.000	0.000	
05/16/11 07:59:26	59.97641	471		0		0			-653	29878.69	0	0	0	0.000	0.000	
05/16/11 07:59:28	59.97543	471		0		0			-653	29878.69	0	0	0	-0.001	0.001	
05/16/11 07:59:30	59.97479	471		0		0			-653	29878.69	0	0	0	-0.001	0.001	
05/16/11 07:59:32	59.97382	471		0		0			-653	29878.69	0	0	0	-0.001	0.001	
05/16/11 07:59:34	59.97253	471		0		0			-653	29900.56	0	0	0	-0.001	0.001	
05/16/11 07:59:36	59.97223	471		0		0			-653	29900.56	0	0	0	0.000	0.000	
05/16/11 07:59:38	59.97253	471		0		0			-653	29900.56	0	0	0	0.000	0.000	
05/16/11 07:59:40	59.97351	471		0		0			-653	29900.56	0	0	0	0.001	0.001	
05/16/11 07:59:42	59.97351	471		0		0			-653	29900.56	0	0	0	0.000	0.000	
05/16/11 07:59:44	59.97318	471		0		0			-653	29896.99	0	0	0	0.000	0.000	
05/16/11 07:59:46	59.97189	471		0		0			-653	29896.99	0	0	0	-0.001	0.001	
05/16/11 07:59:48	59.97092	471		0		0			-653	29896.99	0	0	0	-0.001	0.001	
05/16/11 07:59:50	59.97028	471		0		0			-653	29896.99	0	0	0	-0.001	0.001	
05/16/11 07:59:52	59.97028	471		0		0			-653	29896.99	0	0	0	0.000	0.000	
05/16/11 07:59:54	59.97028	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 07:59:56	59.97028	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 07:59:58	59.97061	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 08:00:00	59.97287	471		0		0			-653	29905.8	0	0		0.002	0.002	
05/16/11 08:00:02	59.97287	471		0		0			-653	29905.8	0	0	0	0.000	0.000	
05/16/11 08:00:04	59.97479	471		0		0			-653	29905.77	0	0	0	0.002	0.002	
05/16/11 08:00:06	59.97479	471		0		0			-653	29905.77	0	0	0	0.000	0.000	
05/16/11 08:00:08	59.97382	471		0		0			-653	29905.77	0	0	0	-0.001	0.001	
05/16/11 08:00:10	59.96832	471		0		0			-653	29905.77	0	0	0	-0.005	0.005	
05/16/11 08:00:12	59.96802	471		0		0			-653	29905.77	0	0	0	0.000	0.000	
05/16/11 08:00:14	59.96899	471		0		0			-653	29914.9	0	0	0	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:00:16	59.96994	471		0		0			-653	29914.9	0	0	0	0.001	0.001	
05/16/11 08:00:18	59.97382	471		0		0			-653	29914.9	0	0	0	0.004	0.004	
05/16/11 08:00:20	59.97382	471		0		0			-653	29914.9	0	0	0	0.000	0.000	
05/16/11 08:00:22	59.97382	471		0		0			-653	29914.9	0	0	0	0.000	0.000	
05/16/11 08:00:24	59.97769	471		0		0			-653	29925.58	0	0	0	0.004	0.004	
05/16/11 08:00:26	59.97739	471		0		0			-653	29925.58	0	0	0	0.000	0.000	
05/16/11 08:00:28	59.9761	471		0		0			-653	29925.58	0	0	0	-0.001	0.001	
05/16/11 08:00:30	59.9761	471		0		0			-653	29925.58	0	0	0	0.000	0.000	
05/16/11 08:00:32	59.97705	471		0		0			-653	29925.58	0	0	0	0.001	0.001	
05/16/11 08:00:34	59.97769	471		0		0			-653	29938.87	0	0	0	0.001	0.001	
05/16/11 08:00:36	59.97803	471		0		0			-653	29938.87	0	0	0	0.000	0.000	
05/16/11 08:00:38	59.97803	471		0		0			-653	29938.87	0	0	0	0.000	0.000	
05/16/11 08:00:40	59.97739	471		0		0			-653	29938.87	0	0	0	-0.001	0.001	
05/16/11 08:00:42	59.97675	471		0		0			-653	29938.87	0	0	0	-0.001	0.001	
05/16/11 08:00:44	59.97641	471		0		0			-653	29952.51	0	0	0	0.000	0.000	
05/16/11 08:00:46	59.97479	471		0		0			-653	29952.51	0	0	0	-0.002	0.002	
05/16/11 08:00:48	59.97449	471		0		0			-653	29952.51	0	0	0	0.000	0.000	
05/16/11 08:00:50	59.97543	471		0		0			-653	29952.51	0	0	0	0.001	0.001	
05/16/11 08:00:52	59.97705	471		0		0			-653	29952.51	0	0	0	0.002	0.002	
05/16/11 08:00:54	59.97931	471		0		0			-653	29952.51	0	0	0	0.002	0.002	
05/16/11 08:00:56	59.97964	471		0		0			-653	29948.95	0	0	0	0.000	0.000	
05/16/11 08:00:58	59.979	471		0		0			-653	29948.95	0	0	0	-0.001	0.001	
05/16/11 08:01:00	59.97803	471		0		0			-653	29948.95	0	0	0	-0.001	0.001	
05/16/11 08:01:02	59.97803	471		0		0			-653	29948.95	0	0	0	0.000	0.000	
05/16/11 08:01:04	59.979	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:06	59.98029	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:08	59.9819	471		0		0			-653	29948.95	0	0	0	0.002	0.002	
05/16/11 08:01:10	59.98318	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:12	59.9845	471		0		0			-653	29948.95	0	0	0	0.001	0.001	
05/16/11 08:01:14	59.98578	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:16	59.98642	471		0		0			-653	29951.05	0	0		0.001	0.001	
05/16/11 08:01:18	59.98642	471		0		0			-653	29951.05	0	0	0	0.000	0.000	
05/16/11 08:01:20	59.98709	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:22	59.98773	471		0		0			-653	29951.05	0	0	0	0.001	0.001	
05/16/11 08:01:24	59.98965	471		0		0			-653	29955.09	0	0	0	0.002	0.002	
05/16/11 08:01:26	59.99161	471		0		0			-653	29955.09	0	0	0	0.002	0.002	
05/16/11 08:01:28	59.99255	471		0		0			-653	29955.09	0	0	0	0.001	0.001	
05/16/11 08:01:30	59.99323	471		0		0			-653	29955.09	0	0	0	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$
05/16/11 08:01:32	59.99289	471		0		0			-653	29955.09	0	0	0	0.000	0.000	
05/16/11 08:01:34	59.99097	471		0		0			-653	29967.69	0	0	0	-0.002	0.002	
05/16/11 08:01:36	59.98804	471		0		0			-653	29967.69	0	0	0	-0.003	0.003	
05/16/11 08:01:38	59.98578	471		0		0			-653	29967.69	0	0	0	-0.002	0.002	
05/16/11 08:01:40	59.98386	471		0		0			-653	29967.69	0	0	0	-0.002	0.002	
05/16/11 08:01:42	59.98318	471		0		0			-653	29967.69	0	0	0	-0.001	0.001	
05/16/11 08:01:44	59.98318	471		0		0			-653	29983.13	0	0	0	0.000	0.000	
05/16/11 08:01:46	59.98288	471		0		0			-653	29983.13	0	0	0	0.000	0.000	
05/16/11 08:01:48	59.98126	471		0		0			-653	29983.13	0	0	0	-0.002	0.002	
05/16/11 08:01:50	59.97998	471		0		0			-653	29983.13	0	0	0	-0.001	0.001	
05/16/11 08:01:52	59.97964	471		0		0			-653	29983.13	0	0	0	0.000	0.000	
05/16/11 08:01:54	59.98029	471		0		0			-653	29976.75	0	0	0	0.001	0.001	
05/16/11 08:01:56	59.98126	471		0		0			-653	29976.75	0	0	0	0.001	0.001	
05/16/11 08:01:58	59.98352	471		0		0			-653	29976.75	0	0	0	0.002	0.002	
05/16/11 08:02:00	59.98386	471		0		0			-653	29976.75	0	0	0	0.000	0.000	
05/16/11 08:02:02	59.98126	471		0		0			-653	29976.75	0	0	0	-0.003	0.003	
05/16/11 08:02:04	59.97543	471		0		0			-653	29976.78	0	0	0	-0.006	0.006	
05/16/11 08:02:06	59.96832	471		0		0			-653	29976.78	0	0	0	-0.007	0.007	
05/16/11 08:02:08	59.9635	471		0		0			-653	29976.78	0	0	0	-0.005	0.005	
05/16/11 08:02:10	59.96155	471		0		0			-653	29976.78	0	0	0	-0.002	0.002	
05/16/11 08:02:12	59.96091	471		0		0			-653	29976.78	0	0	0	-0.001	0.001	
05/16/11 08:02:14	59.96155	471		0		0			-653	30008.51	0	0	0	0.001	0.001	
05/16/11 08:02:16	59.96057	471		0		0			-653	30008.51	0	0	0	-0.001	0.001	
05/16/11 08:02:18	59.95801	471		0		0			-653	30008.51	0	0	0	-0.003	0.003	
05/16/11 08:02:20	59.95575	471		0		0			-653	30008.51	0	0	0	-0.002	0.002	
05/16/11 08:02:22	59.95575	471		0		0			-653	30008.51	0	0	0	0.000	0.000	
05/16/11 08:02:24	59.95703	471		0		0			-653	30037.25	0	0	0	0.001	0.001	
05/16/11 08:02:26	59.95895	471		0		0			-653	30037.25	0	0	0	0.002	0.002	
05/16/11 08:02:28	59.96057	471		0		0			-653	30037.25	0	0	0	0.002	0.002	
05/16/11 08:02:30	59.96155	471		0		0			-653	30037.25	0	0	0	0.001	0.001	
05/16/11 08:02:32	59.96252	471		0		0			-653	30037.25	0	0		0.001	0.001	
05/16/11 08:02:34	59.96414	471		0		0			-653	30055.73	0	0	0	0.002	0.002	
05/16/11 08:02:36	59.96512	471		0		0			-653	30055.73	0	0	0	0.001	0.001	
05/16/11 08:02:38	59.96512	471		0		0			-653	30055.73	0	0	0	0.000	0.000	
05/16/11 08:02:40	59.96576	471		0		0			-653	30055.73	0	0	0	0.001	0.001	
05/16/11 08:02:42	59.96704	471		0		0			-653	30055.73	0	0	0	0.001	0.001	
05/16/11 08:02:44	59.96994	471		0		0			-653	30068.76	0	0	0	0.003	0.003	
05/16/11 08:02:46	59.97253	471		0		0			-653	30068.76	0	0	0	0.003	0.003	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:02:48	59.97415	471		0		0			-653	30068.76	0	0	0	0.002	0.002	
05/16/11 08:02:50	59.9761	471		0		0			-653	30068.76	0	0	0	0.002	0.002	
05/16/11 08:02:52	59.97739	471		0		0			-653	30068.76	0	0	0	0.001	0.001	
05/16/11 08:02:54	59.97931	471		0		0			-653	30068.21	0	0	0	0.002	0.002	
05/16/11 08:02:56	59.98029	471		0		0			-653	30068.21	0	0	0	0.001	0.001	
05/16/11 08:02:58	59.98062	471		0		0			-653	30068.21	0	0	0	0.000	0.000	
05/16/11 08:03:00	59.98029	471		0		0			-653	30068.21	0	0	0	0.000	0.000	
05/16/11 08:03:02	59.98029	471		0		0			-653	30068.21	0	0	0	0.000	0.000	
05/16/11 08:03:04	59.97836	471		0		0			-653	30068.24	0	0	0	-0.002	0.002	
05/16/11 08:03:06	59.97836	471		0		0			-653	30068.24	0	0	0	0.000	0.000	
05/16/11 08:03:08	59.979	471		0		0			-653	30068.24	0	0	0	0.001	0.001	
05/16/11 08:03:10	59.97998	471		0		0			-653	30068.24	0	0	0	0.001	0.001	
05/16/11 08:03:12	59.98029	471		0		0			-653	30068.24	0	0	0	0.000	0.000	
05/16/11 08:03:14	59.98093	471		0		0			-653	30076.2	0	0	0	0.001	0.001	
05/16/11 08:03:16	59.98093	471		0		0			-653	30076.2	0	0	0	0.000	0.000	
05/16/11 08:03:18	59.97998	471		0		0			-653	30076.2	0	0	0	-0.001	0.001	
05/16/11 08:03:20	59.98062	471		0		0			-653	30076.2	0	0	0	0.001	0.001	
05/16/11 08:03:22	59.98029	471		0		0			-653	30076.2	0	0	0	0.000	0.000	
05/16/11 08:03:24	59.97998	471		0		0			-653	30093.95	0	0	0	0.000	0.000	
05/16/11 08:03:26	59.979	471		0		0			-653	30093.95	0	0	0	-0.001	0.001	
05/16/11 08:03:28	59.97931	471		0		0			-653	30093.95	0	0	0	0.000	0.000	
05/16/11 08:03:30	59.97998	471		0		0			-653	30093.95	0	0	0	0.001	0.001	
05/16/11 08:03:32	59.98029	471		0		0			-653	30093.95	0	0	0	0.000	0.000	
05/16/11 08:03:34	59.98029	471		0		0			-653	30100.97	0	0	0	0.000	0.000	
05/16/11 08:03:36	59.98029	471		0		0			-653	30100.97	0	0	0	0.000	0.000	
05/16/11 08:03:38	59.97964	471		0		0			-653	30100.97	0	0	0	-0.001	0.001	
05/16/11 08:03:40	59.979	471		0		0			-653	30100.97	0	0	0	-0.001	0.001	
05/16/11 08:03:42	59.97803	471		0		0			-653	30100.97	0	0	0	-0.001	0.001	
05/16/11 08:03:44	59.97803	471		0		0			-653	30118.87	0	0	0	0.000	0.000	
05/16/11 08:03:46	59.97867	471		0		0			-653	30118.87	0	0	0	0.001	0.001	
05/16/11 08:03:48	59.97964	471		0		0			-653	30118.87	0	0	0	0.001	0.001	
05/16/11 08:03:50	59.98224	471		0		0			-653	30118.87	0	0	0	0.003	0.003	
05/16/11 08:03:52	59.9848	471		0		0			-653	30118.87	0	0	0	0.003	0.003	
05/16/11 08:03:54	59.98514	471		0		0			-653	30118.77	0	0	0	0.000	0.000	
05/16/11 08:03:56	59.98416	471		0		0			-653	30118.77	0	0	0	-0.001	0.001	
05/16/11 08:03:58	59.98224	471		0		0			-653	30118.77	0	0	0	-0.002	0.002	
05/16/11 08:04:00	59.98029	471		0		0			-653	30118.77	0	0	0	-0.002	0.002	
05/16/11 08:04:02	59.979	471		0		0			-653	30118.77	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:04:04	59.97867	471		0		0			-653	30118.74	0	0	0	0.000	0.000	
05/16/11 08:04:06	59.97931	471		0		0			-653	30118.74	0	0	0	0.001	0.001	
05/16/11 08:04:08	59.97998	471		0		0			-653	30118.74	0	0	0	0.001	0.001	
05/16/11 08:04:10	59.97931	471		0		0			-653	30118.74	0	0	0	-0.001	0.001	
05/16/11 08:04:12	59.979	471		0		0			-653	30118.74	0	0	0	0.000	0.000	
05/16/11 08:04:14	59.97803	471		0		0			-653	30106.93	0	0	0	-0.001	0.001	
05/16/11 08:04:16	59.97675	471		0		0			-653	30106.93	0	0	0	-0.001	0.001	
05/16/11 08:04:18	59.97739	471		0		0			-653	30106.93	0	0	0	0.001	0.001	
05/16/11 08:04:20	59.979	471		0		0			-653	30106.93	0	0	0	0.002	0.002	
05/16/11 08:04:22	59.97964	471		0		0			-653	30106.93	0	0	0	0.001	0.001	
05/16/11 08:04:24	59.98093	471		0		0			-653	30106.61	0	0	0	0.001	0.001	
05/16/11 08:04:26	59.98224	471		0		0			-653	30106.61	0	0	0	0.001	0.001	
05/16/11 08:04:28	59.98318	471		0		0			-653	30106.61	0	0	0	0.001	0.001	
05/16/11 08:04:30	59.98318	471		0		0			-653	30106.61	0	0	0	0.000	0.000	
05/16/11 08:04:32	59.98224	471		0		0			-653	30106.61	0	0	0	-0.001	0.001	
05/16/11 08:04:34	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:36	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:38	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:40	59.9816	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:42	59.9819	471		0		0			-653	30116.02	0	0	0	0.000	0.000	
05/16/11 08:04:44	59.9816	471		0		0			-653	30141.59	0	0	0	0.000	0.000	
05/16/11 08:04:46	59.98126	471		0		0			-653	30141.59	0	0	0	0.000	0.000	
05/16/11 08:04:48	59.9816	471		0		0			-653	30141.59	0	0	0	0.000	0.000	
05/16/11 08:04:50	59.98254	471		0		0			-653	30141.59	0	0	0	0.001	0.001	
05/16/11 08:04:52	59.98352	471		0		0			-653	30141.59	0	0	0	0.001	0.001	
05/16/11 08:04:54	59.98416	471		0		0			-653	30144.23	0	0	0	0.001	0.001	
05/16/11 08:04:56	59.98416	471		0		0			-653	30144.23	0	0	0	0.000	0.000	
05/16/11 08:04:58	59.98416	471		0		0			-653	30144.23	0	0	0	0.000	0.000	
05/16/11 08:05:00	59.98514	471		0		0			-653	30144.23	0	0	0	0.001	0.001	
05/16/11 08:05:02	59.9874	471		0		0			-653	30144.23	0	0	0	0.002	0.002	
05/16/11 08:05:04	59.98901	471		0		0			-653	30144.23	0	0		0.002	0.002	
05/16/11 08:05:06	59.98804	471		0		0			-653	30144.23	0	0	0	-0.001	0.001	
05/16/11 08:05:08	59.98642	471		0		0			-653	30144.23	0	0	0	-0.002	0.002	
05/16/11 08:05:10	59.98288	471		0		0			-653	30144.23	0	0	0	-0.004	0.004	
05/16/11 08:05:12	59.98254	471		0		0			-653	30144.23	0	0	0	0.000	0.000	
05/16/11 08:05:14	59.98318	471		0		0			-653	30148.67	0	0	0	0.001	0.001	
05/16/11 08:05:16	59.9819	471		0		0			-653	30148.67	0	0	0	-0.001	0.001	
05/16/11 08:05:18	59.98062	471		0		0			-653	30148.67	0	0	0	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:05:20	59.97964	471		0		0			-653	30148.67	0	0	0	-0.001	0.001	
05/16/11 08:05:22	59.97964	471		0		0			-653	30148.67	0	0	0	0.000	0.000	
05/16/11 08:05:24	59.97964	471		0		0			-653	30155.67	0	0	0	0.000	0.000	
05/16/11 08:05:26	59.98029	471		0		0			-653	30155.67	0	0	0	0.001	0.001	
05/16/11 08:05:28	59.98224	471		0		0			-653	30155.67	0	0	0	0.002	0.002	
05/16/11 08:05:30	59.98352	471		0		0			-653	30155.67	0	0	0	0.001	0.001	
05/16/11 08:05:32	59.98578	471		0		0			-653	30155.67	0	0	0	0.002	0.002	
05/16/11 08:05:34	59.9874	471		0		0			-653	30142.79	0	0	0	0.002	0.002	
05/16/11 08:05:36	59.98804	471		0		0			-653	30142.79	0	0	0	0.001	0.001	
05/16/11 08:05:38	59.9874	471		0		0			-653	30142.79	0	0	0	-0.001	0.001	
05/16/11 08:05:40	59.98611	471		0		0			-653	30142.79	0	0	0	-0.001	0.001	
05/16/11 08:05:42	59.9848	471		0		0			-653	30142.79	0	0	0	-0.001	0.001	
05/16/11 08:05:44	59.98352	471		0		0			-653	30154.67	0	0	0	-0.001	0.001	
05/16/11 08:05:46	59.98318	471		0		0			-653	30154.67	0	0	0	0.000	0.000	
05/16/11 08:05:48	59.98352	471		0		0			-653	30154.67	0	0	0	0.000	0.000	
05/16/11 08:05:50	59.98416	471.3000183		0		0			-653	30150.35	0	0	0	0.001	0.001	
05/16/11 08:05:52	59.98514	471.3000183		0		0			-653	30150.35	0	0	0	0.001	0.001	
05/16/11 08:05:54	59.98547	471.3000183		0		0			-653	30159.63	0	0	0	0.000	0.000	
05/16/11 08:05:56	59.98642	471.3000183		0		0			-653	30159.63	0	0	0	0.001	0.001	
05/16/11 08:05:58	59.98676	471.8999939		0		0			-653	30159.63	0	0	0	0.000	0.000	
05/16/11 08:06:00	59.9874	471.8999939		0		0			-653	30159.63	0	0	0	0.001	0.001	
05/16/11 08:06:02	59.98773	471.8999939		0		0			-653	30151.42	0	0	0	0.000	0.000	
05/16/11 08:06:04	59.98901	471.8999939		0		0			-653	30151.42	0	0	0	0.001	0.001	
05/16/11 08:06:06	59.98901	471.8999939		0		0			-653	30156.16	0	0	0	0.000	0.000	
05/16/11 08:06:08	59.98804	471.3999939		0		0			-653	30156.16	0	0	0	-0.001	0.001	
05/16/11 08:06:10	59.98642	471.3999939		0		0			-653	30156.16	0	0	0	-0.002	0.002	
05/16/11 08:06:12	59.98547	471.3999939		0		0			-653	30156.16	0	0	0	-0.001	0.001	
05/16/11 08:06:14	59.98642	471.3999939		0		0			-653	30164.15	0	0	0	0.001	0.001	
05/16/11 08:06:16	59.98935	471.3999939		0		0			-653	30164.15	0	0	0	0.003	0.003	
05/16/11 08:06:18	59.99225	471.3999939		0		0			-653	30164.15	0	0	0	0.003	0.003	
05/16/11 08:06:20	59.99515	471.3999939		0		0			-653	30164.15	0	0	0	0.003	0.003	
05/16/11 08:06:22	59.99579	471.3999939		0		0			-653	30203.91	0	0	0	0.001	0.001	
05/16/11 08:06:24	59.99515	471.3999939		0		0			-653	30203.91	0	0	0	-0.001	0.001	
05/16/11 08:06:26	59.99548	471.3999939		0		0			-653	30203.73	0	0	0	0.000	0.000	
05/16/11 08:06:28	59.99741	470.8999939		0		0			-653	30203.73	0	0	0	0.002	0.002	
05/16/11 08:06:30	60	470.8999939		0		0			-653	30203.73	0	0	0	0.003	0.003	
05/16/11 08:06:32	60.00162	470.8999939		0		0			-653	30203.73	0	0	0	0.002	0.002	
05/16/11 08:06:34	60.00162	470.8999939		0		0			-653	30199.61	0	0	0	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:06:36	60.00195	470.8999939		0		0			-653	30199.61	0	0	0	0.000	0.000	
05/16/11 08:06:38	59.95963	0		0		0			-653	30199.61	0	0	1	-0.042	0.042	
05/16/11 08:06:40	59.88144	0		0		0			-653	30199.61	1	0	1	-0.078	0.078	
05/16/11 08:06:42	59.87237	0		0		0			-653	30086.11	1	0		-0.009	0.009	
05/16/11 08:06:44	59.87011	0		0		0			-653	30086.11	1	0	1	-0.002	0.002	
05/16/11 08:06:46	59.87432	0		0		0			-653	30086.14	1	0	,	0.004	0.004	
05/16/11 08:06:48	59.88076	0		0		0			-653	30086.14	1	0	1	0.006	0.006	
05/16/11 08:06:50	59.88531	0		0		0			-653	30086.14	1	0	1	0.005	0.005	
05/16/11 08:06:52	59.88787	0		0		0			-653	30086.14	1	0	1	0.003	0.003	
05/16/11 08:06:54	59.88949	0		0		0			-653	30094.43	1	0	1	0.002	0.002	
05/16/11 08:06:56	59.8908	0		0		0			-653	30094.43	1	0	1	0.001	0.001	
05/16/11 08:06:58	59.89175	0		0		0			-653	30094.43	1	0	1	0.001	0.001	
05/16/11 08:07:00	59.89242	0		0		0			-653	30094.43	1	0	1	0.001	0.001	
05/16/11 08:07:02	59.89306	0		0		0			-653	30139.49	1	0	1	0.001	0.001	
05/16/11 08:07:04	59.89306	0		0		0			-653	30139.49	1	0	1	0.000	0.000	
05/16/11 08:07:06	59.89306	0		0		0			-653	30133.38	1	0	1	0.000	0.000	
05/16/11 08:07:08	59.89532	0		0		0			-653	30133.38	1	0	1	0.002	0.002	
05/16/11 08:07:10	59.89788	0		0		0			-653	30133.38	1	0	,	0.003	0.003	
05/16/11 08:07:12	59.8995	0		0		0			-653	30133.38	1	0	1	0.002	0.002	
05/16/11 08:07:14	59.90081	0		0		0			-653	30137.26	1	0	1	0.001	0.001	
05/16/11 08:07:16	59.9021	0		0		0			-653	30137.26	1	0	1	0.001	0.001	
05/16/11 08:07:18	59.90179	0		0		0			-653	30137.26	1	0	1	0.000	0.000	
05/16/11 08:07:20	59.90081	0		0		0			-653	30137.26	1	0	1	-0.001	0.001	
05/16/11 08:07:22	59.90081	0		0		0			-653	30171.38	1	0	1	0.000	0.000	
05/16/11 08:07:24	59.90048	0		0		0			-653	30171.38	1	0	1	0.000	0.000	
05/16/11 08:07:26	59.8992	0		0		0			-653	30168.76	1	0	1	-0.001	0.001	
05/16/11 08:07:28	59.89886	0		0		0			-653	30168.76	1	0	1	0.000	0.000	
05/16/11 08:07:30	59.89856	0		0		0			-653	30168.76	1	0	1	0.000	0.000	
05/16/11 08:07:32	59.90017	0		0		0			-653	30168.76	1	0	1	0.002	0.002	
05/16/11 08:07:34	59.90243	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:36	59.90469	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:38	59.90695	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:40	59.90887	0		0		0			-653	30208.99	1	0	1	0.002	0.002	
05/16/11 08:07:42	59.90921	0		0		0			-653	30205.66	1	0	1	0.000	0.000	
05/16/11 08:07:44	59.90857	0		0		0			-653	30205.66	1	0	1	-0.001	0.001	
05/16/11 08:07:46	59.90887	0		0		0			-653	30205.66	1	0	1	0.000	0.000	
05/16/11 08:07:48	59.91018	0		0		0			-653	30205.66	1	0	1	0.001	0.001	
05/16/11 08:07:50	59.91244	0		0		0			-653	30205.66	1	0	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:07:52	59.9147	0		0		0			-653	30205.66	1	0	1	0.002	0.002	
05/16/11 08:07:54	59.9176	0		0		0			-653	30211.75	1	0	1	0.003	0.003	
05/16/11 08:07:56	59.91922	0		0		0			-653	30211.75	1	0	1	0.002	0.002	
05/16/11 08:07:58	59.92083	0		0		0			-653	30211.75	1	0	1	0.002	0.002	
05/16/11 08:08:00	59.92215	0		0		0			-653	30211.75	1	0	1	0.001	0.001	
05/16/11 08:08:02	59.92309	0		0		0			-653	30217.55	1	0	1	0.001	0.001	
05/16/11 08:08:04	59.92505	0		0		0			-653	30217.55	1	0	1	0.002	0.002	
05/16/11 08:08:06	59.92505	0		0		0			-653	30217.57	1	0	1	0.000	0.000	
05/16/11 08:08:08	59.9273	0		0		0			-653	30217.57	1	0	1	0.002	0.002	
05/16/11 08:08:10	59.93246	0		0		0			-653	30217.57	1	0	1	0.005	0.005	
05/16/11 08:08:12	59.93505	0		0		0			-653	30217.57	1	0	1	0.003	0.003	
05/16/11 08:08:14	59.93701	0		0		0			-653	30217.59	1	0	1	0.002	0.002	
05/16/11 08:08:16	59.93765	0		0		0			-653	30217.59	1	0	1	0.001	0.001	
05/16/11 08:08:18	59.93927	0		0		0			-653	30217.59	1	0	1	0.002	0.002	
05/16/11 08:08:20	59.94183	0		0		0			-653	30217.59	1	0	1	0.003	0.003	
05/16/11 08:08:22	59.94409	0		0		0			-653	30210.49	1	0	1	0.002	0.002	
05/16/11 08:08:24	59.94571	0		0		0			-653	30210.49	1	0	1	0.002	0.002	
05/16/11 08:08:26	59.94797	0		0		0			-653	30210.26	1	0	1	0.002	0.002	
05/16/11 08:08:28	59.94766	0		0		0			-653	30210.26	1	0	1	0.000	0.000	
05/16/11 08:08:30	59.9454	0		0		0			-653	30210.26	1	0	1	-0.002	0.002	
05/16/11 08:08:32	59.94443	0		0		0			-653	30210.26	1	0	1	-0.001	0.001	
05/16/11 08:08:34	59.94409	0		0		0			-653	30234.59	1	0	1	0.000	0.000	
05/16/11 08:08:36	59.94507	0		0		0			-653	30234.59	1	0	1	0.001	0.001	
05/16/11 08:08:38	59.94604	0		0		0			-653	30234.59	1	0	1	0.001	0.001	
05/16/11 08:08:40	59.94638	0		0		0			-653	30234.59	1	0	1	0.000	0.000	
05/16/11 08:08:42	59.94733	0		0		0			-653	30223.6	1	0	1	0.001	0.001	
05/16/11 08:08:44	59.9483	0		0		0			-653	30223.6	1	0	1	0.001	0.001	
05/16/11 08:08:46	59.94894	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:48	59.94992	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:50	59.9509	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:52	59.95154	0		0		0			-653	30223.73	1	0	1	0.001	0.001	
05/16/11 08:08:54	59.95187	0		0		0			-653	30224.39	1	0	1	0.000	0.000	
05/16/11 08:08:56	59.95346	0		0		0			-653	30224.39	1	0	1	0.002	0.002	
05/16/11 08:08:58	59.95508	0		0		0			-653	30224.39	1	0	1	0.002	0.002	
05/16/11 08:09:00	59.95575	0		0		0			-653	30224.39	1	0	1	0.001	0.001	
05/16/11 08:09:02	59.95639	0		0		0			-653	30255.53	1	0	1	0.001	0.001	
05/16/11 08:09:04	59.95801	0		0		0			-653	30255.53	1	0	1	0.002	0.002	
05/16/11 08:09:06	59.96124	0		0		0			-653	30252.87	1	0	1	0.003	0.003	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:09:08	59.96252	0		0		0			-653	30252.87	1	0	1	0.001	0.001	
05/16/11 08:09:10	59.96188	0		0		0			-653	30252.87	1	0	1	-0.001	0.001	
05/16/11 08:09:12	59.96124	0		0		0			-653	30252.87	1	0	1	-0.001	0.001	
05/16/11 08:09:14	59.96027	0		0		0			-653	30232.45	1	0	1	-0.001	0.001	
05/16/11 08:09:16	59.96057	0		0		0			-653	30232.45	1	0	1	0.000	0.000	
05/16/11 08:09:18	59.96219	0		0		0			-653	30232.45	1	0	,	0.002	0.002	
05/16/11 08:09:20	59.96512	0		0		0			-653	30232.45	1	0	1	0.003	0.003	
05/16/11 08:09:22	59.96738	0		0		0			-653	30263.99	1	0	1	0.002	0.002	
05/16/11 08:09:24	59.96899	0		0		0			-653	30263.99	1	0		0.002	0.002	
05/16/11 08:09:26	59.97061	0		0		0			-653	30263.68	1	0	1	0.002	0.002	
05/16/11 08:09:28	59.97318	0		0		0			-653	30263.68	1	0	1	0.003	0.003	
05/16/11 08:09:30	59.97351	0		0		0			-653	30263.68	1	0	1	0.000	0.000	
05/16/11 08:09:32	59.97287	0		0		0			-653	30263.68	1	0	1	-0.001	0.001	
05/16/11 08:09:34	59.97253	0		0		0			-653	30264.96	1	0	1	0.000	0.000	
05/16/11 08:09:36	59.97318	0		0		0			-653	30264.96	1	0	1	0.001	0.001	
05/16/11 08:09:38	59.97415	0		0		0			-653	30264.96	1	0	1	0.001	0.001	
05/16/11 08:09:40	59.97543	0		0		0			-653	30264.96	1	0	1	0.001	0.001	
05/16/11 08:09:42	59.97577	0		0		0			-653	30263.63	1	0		0.000	0.000	
05/16/11 08:09:44	59.9761	0		0		0			-653	30263.63	1	0	1	0.000	0.000	
05/16/11 08:09:46	59.97675	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:48	59.97803	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:50	59.97931	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:52	59.97998	0		0		0			-653	30279.39	1	0	1	0.001	0.001	
05/16/11 08:09:54	59.97964	0		0		0			-653	30255.32	1	0	1	0.000	0.000	
05/16/11 08:09:56	59.979	0		0		0			-653	30255.32	1	0	1	-0.001	0.001	
05/16/11 08:09:58	59.97964	0		0		0			-653	30255.32	1	0	1	0.001	0.001	
05/16/11 08:10:00	59.98093	0		0		0			-653	30255.32	1	0	1	0.001	0.001	
05/16/11 08:10:02	59.98224	0		0		0			-653	30260.67	1	0	1	0.001	0.001	
05/16/11 08:10:04	59.98386	0		0		0			-653	30260.67	1	0	1	0.002	0.002	
05/16/11 08:10:06	59.98514	0		0		0			-653	30259.99	1	0	1	0.001	0.001	
05/16/11 08:10:08	59.98773	0		0		0			-653	30259.99	1	0	1	0.003	0.003	
05/16/11 08:10:10	59.9903	0		0		0			-653	30259.99	1	0	1	0.003	0.003	
05/16/11 08:10:12	59.99289	0		0		0			-653	30259.99	1	0	1	0.003	0.003	
05/16/11 08:10:14	59.99579	0		0		0			-653	30274.08	1	0	1	0.003	0.003	
05/16/11 08:10:16	59.99646	0		0		0			-653	30274.08	1	0	1	0.001	0.001	
05/16/11 08:10:18	59.99579	0		0		0			-653	30274.08	1	0	1	-0.001	0.001	
05/16/11 08:10:20	59.99612	0		0		0			-653	30274.08	1	0	1	0.000	0.000	
05/16/11 08:10:22	59.99579	0		0		0			-653	30297.68	1	0	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:10:24	59.99484	0		0		0			-653	30297.68	1	0	1	-0.001	0.001	
05/16/11 08:10:26	59.99484	0		0		0			-653	30297.65	1	0	1	0.000	0.000	
05/16/11 08:10:28	59.99805	0		0		0			-653	30297.65	1	0	1	0.003	0.003	
05/16/11 08:10:30	59.99872	0		0		0			-653	30297.65	1	1	1	0.001	0.001	
05/16/11 08:10:32	60.00034	0		0		0			-653	30297.65	1	1	1	0.002	0.002	
05/16/11 08:10:34	60.00195	0		0		0			-653	30300.1	1	1	1	0.002	0.002	
05/16/11 08:10:36	60.00259			0		0			-653	30300.1	1	1	1	0.001	0.001	
05/16/11 08:10:38	60.00226	0		0		0			-653	30300.1	1	1	1	0.000	0.000	
05/16/11 08:10:40	60.00195	0		0		0			-653	30300.1	1	1	1	0.000	0.000	
05/16/11 08:10:42	60.00064	0		0		0			-653	30314.84	1	1	1	-0.001	0.001	
05/16/11 08:10:44	59.99646	0		0		0			-653	30314.84	1	0	1	-0.004	0.004	
05/16/11 08:10:46	59.99191	0		0		0			-653	30309.71	1	0	1	-0.005	0.005	
05/16/11 08:10:48	59.98901	0		0		0			-653	30309.71	1	0	1	-0.003	0.003	
05/16/11 08:10:50	59.98773	0		0		0			-653	30309.71	1	0	1	-0.001	0.001	
05/16/11 08:10:52	59.98901	0		0		0			-653	30309.71	1	0	1	0.001	0.001	
05/16/11 08:10:54	59.99255	0		0		0			-653	30319.5	1	0		0.004	0.004	
05/16/11 08:10:56	59.99579	0		0		0			-653	30319.5	1	0	1	0.003	0.003	
05/16/11 08:10:58	59.99902	0		0		0			-653	30319.5	1	1	1	0.003	0.003	
05/16/11 08:11:00	60.00195	0		0		0			-653	30319.5	1	1	,	0.003	0.003	
05/16/11 08:11:02	60.00485	0		0		0			-653	30357.21	1	1	1	0.003	0.003	
05/16/11 08:11:04	60.00809	0		0		0			-653	30357.21	1	1	1	0.003	0.003	
05/16/11 08:11:06	60.01163	0		0		0			-653	30357.18	1	1	1	0.004	0.004	
05/16/11 08:11:08	60.01422	0		0		0			-653	30357.18	1	1	1	0.003	0.003	
05/16/11 08:11:10	60.0152	0		0		0			-653	30357.18	1	1	1	0.001	0.001	
05/16/11 08:11:12	60.0155	0		0		0			-653	30357.18	1	1	1	0.000	0.000	
05/16/11 08:11:14	60.0155	0		0		0			-653	30354.26	1	1	1	0.000	0.000	
05/16/11 08:11:16	60.01682	0		0		0			-653	30354.26	1	1		0.001	0.001	
05/16/11 08:11:18	60.01907	0		0		0			-653	30354.26	1	1	1	0.002	0.002	
05/16/11 08:11:20	60.02295	0		0		0			-653	30354.26	1	1	1	0.004	0.004	
05/16/11 08:11:22	60.02618	0		0		0			-653	30354.48	1	1	1	0.003	0.003	
05/16/11 08:11:24	60.02972	0		0		0			-653	30354.48	1	1	1	0.004	0.004	
05/16/11 08:11:26	60.03262	0		0		0			-653	30353.83	1	1	,	0.003	0.003	
05/16/11 08:11:28	60.03458	0		0		0			-653	30353.83	1	1	1	0.002	0.002	
05/16/11 08:11:30	60.03522	0		0		0			-653	30353.83	1	1	1	0.001	0.001	
05/16/11 08:11:32	60.03424	0		0		0			-653	30353.83	1	1	1	-0.001	0.001	
05/16/11 08:11:34	60.0336	0		0		0			-653	30370.41	1	1	1	-0.001	0.001	
05/16/11 08:11:36	60.03522	0		0		0			-653	30370.41	1	1	1	0.002	0.002	
05/16/11 08:11:38	60.03812	0		0		0			-653	30370.41	1	1	1	0.003	0.003	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \\ \hline \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:11:40	60.04037	0		0		0			-653	30370.41	1	1	1	0.002	0.002	
05/16/11 08:11:42	60.04105	0		0		0			-653	30374.79	1	1	1	0.001	0.001	
05/16/11 08:11:44	60.04199	0		0		0			-653	30374.79	1	1	1	0.001	0.001	
05/16/11 08:11:46	60.04233	0		0		0			-653	30366.14	1	1	1	0.000	0.000	
05/16/11 08:11:48	60.0433	0		0		0			-653	30366.14	1	1	1	0.001	0.001	
05/16/11 08:11:50	60.04425	0		0		0			-653	30366.14	1	1	1	0.001	0.001	
05/16/11 08:11:52	60.04492	0		0		0			-653	30366.14	1	1	1	0.001	0.001	
05/16/11 08:11:54	60.04556	0		0		0			-653	30373.53	1	1	1	0.001	0.001	
05/16/11 08:11:56	60.04587	0		0		0			-653	30373.53	1	1		0.000	0.000	
05/16/11 08:11:58	60.04654	0		0		0			-653	30373.53	1	1	1	0.001	0.001	
05/16/11 08:12:00	60.0488	0		0		0			-653	30373.53	1	1	1	0.002	0.002	
05/16/11 08:12:02	60.04974	0		0		0			-653	30343.46	1	1	1	0.001	0.001	
05/16/11 08:12:04	60.0491	0		0		0			-653	30343.46	1	1	1	-0.001	0.001	
05/16/11 08:12:06	60.0491	0		0		0			-653	30335.12	1	1	1	0.000	0.000	
05/16/11 08:12:08	60.05042	0		0		0			-653	30335.12	1	1	1	0.001	0.001	
05/16/11 08:12:10	60.04974	0		0		0			-653	30335.12	1	1	1	-0.001	0.001	
05/16/11 08:12:12	60.04846	0		0		0			-653	30335.12	1	1	1	-0.001	0.001	
05/16/11 08:12:14	60.04718	0		0		0			-653	30337.29	1	1		-0.001	0.001	
05/16/11 08:12:16	60.04587	0		0		0			-653	30337.29	1	1	1	-0.001	0.001	
05/16/11 08:12:18	60.04587	0		0		0			-653	30337.29	1	1	1	0.000	0.000	
05/16/11 08:12:20	60.04556	0		0		0			-653	30337.29	1	1	1	0.000	0.000	
05/16/11 08:12:22	60.04425	0		0		0			-653	30350.2	1	1	1	-0.001	0.001	
05/16/11 08:12:24	60.04297	0		0		0			-653	30350.2	1	1	1	-0.001	0.001	
05/16/11 08:12:26	60.04169	0		0		0			-653	30350.07	1	1	1	-0.001	0.001	
05/16/11 08:12:28	60.04233	0		0		0			-653	30350.07	1	1	1	0.001	0.001	
05/16/11 08:12:30	60.04459	0		0		0			-653	30350.07	1	1	1	0.002	0.002	
05/16/11 08:12:32	60.04654	0		0		0			-653	30350.07	1	1	1	0.002	0.002	
05/16/11 08:12:34	60.04718	0		0		0			-653	30354.77	1	1	1	0.001	0.001	
05/16/11 08:12:36	60.0462	0		0		0			-653	30354.77	1	1	1	-0.001	0.001	
05/16/11 08:12:38	60.04425	0		0		0			-653	30354.77	1	1	1	-0.002	0.002	
05/16/11 08:12:40	60.04492	0		0		0			-653	30354.77	1	1	1	0.001	0.001	
05/16/11 08:12:42	60.04523	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:44	60.04523	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:46	60.04556	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:48	60.0462	0		0		0			-653	30372.38	1	,	1	0.001	0.001	
05/16/11 08:12:50	60.04654	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:52	60.04654	0		0		0			-653	30372.38	1	1	1	0.000	0.000	
05/16/11 08:12:54	60.04523	0		0		0			-653	30349.1	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:12:56	60.04361	0		0		0			-653	30349.1	1	1	1	-0.002	0.002	
05/16/11 08:12:58	60.04199	0		0		0			-653	30349.1	1	1	1	-0.002	0.002	
05/16/11 08:13:00	60.04071	0		0		0			-653	30349.1	1	1	1	-0.001	0.001	
05/16/11 08:13:02	60.03876	0		0		0			-653	30363.65	1	1	1	-0.002	0.002	
05/16/11 08:13:04	60.03586	0		0		0			-653	30363.65	1	1	1	-0.003	0.003	
05/16/11 08:13:06	60.03394	0		0		0			-653	30363.88	1	1	1	-0.002	0.002	
05/16/11 08:13:08	60.0336	0		0		0			-653	30363.88	1	1	1	0.000	0.000	
05/16/11 08:13:10	60.03262	0		0		0			-653	30363.88	1	1	1	-0.001	0.001	
05/16/11 08:13:12	60.03006	0		0		0			-653	30363.88	1	1		-0.003	0.003	
05/16/11 08:13:14	60.02747	0		0		0			-653	30364.77	1	1	1	-0.003	0.003	
05/16/11 08:13:16	60.02682	0		0		0			-653	30364.77	1	1	1	-0.001	0.001	
05/16/11 08:13:18	60.02585	0		0		0			-653	30364.77	1	1	1	-0.001	0.001	
05/16/11 08:13:20	60.02359	0		0		0			-653	30364.77	1	1	1	-0.002	0.002	
05/16/11 08:13:22	60.02197	0		0		0			-653	30374.33	1	1	1	-0.002	0.002	
05/16/11 08:13:24	60.02164	0		0		0			-653	30374.33	1	1	1	0.000	0.000	
05/16/11 08:13:26	60.02231	0		0		0			-653	30364.67	1	1	1	0.001	0.001	
05/16/11 08:13:28	60.02133	0		0		0			-653	30364.67	1	1	1	-0.001	0.001	
05/16/11 08:13:30	60.02133	0		0		0			-653	30364.67	1	1		0.000	0.000	
05/16/11 08:13:32	60.02002	0		0		0			-653	30364.67	1	1	1	-0.001	0.001	
05/16/11 08:13:34	60.01776	0		0		0			-653	30361.56	1	1	1	-0.002	0.002	
05/16/11 08:13:36	60.01584	0		0		0			-653	30361.56	1	1	1	-0.002	0.002	
05/16/11 08:13:38	60.01291	0		0		0			-653	30361.56	1	1	1	-0.003	0.003	
05/16/11 08:13:40	60.01132	0		0		0			-653	30361.56	1	1	1	-0.002	0.002	
05/16/11 08:13:42	60.01001	0		0		0			-653	30350.69	1	1	1	-0.001	0.001	
05/16/11 08:13:44	60.00937	0		0		0			-653	30350.69	1	1	1	-0.001	0.001	
05/16/11 08:13:46	60.00775	0		0		0			-653	30344.52	1	1	1	-0.002	0.002	
05/16/11 08:13:48	60.00516	0		0		0			-653	30344.52	1	1	1	-0.003	0.003	
05/16/11 08:13:50	60.00452	0		0		0			-653	30344.52	1	1	1	-0.001	0.001	
05/16/11 08:13:52	60.00613	0		0		0			-653	30344.52	1	1	1	0.002	0.002	
05/16/11 08:13:54	60.00613	0		0		0			-653	30354.37	1	1	1	0.000	0.000	
05/16/11 08:13:56	60.00549	0		0		0			-653	30354.37	1	1	1	-0.001	0.001	
05/16/11 08:13:58	60.00516	0		0		0			-653	30354.37	1	1	1	0.000	0.000	
05/16/11 08:14:00	60.00388	0		0		0			-653	30354.37	1	1	1	-0.001	0.001	
05/16/11 08:14:02	60.00259	0		0		0			-653	30373.31	1	1	1	-0.001	0.001	
05/16/11 08:14:04	60.00128	0		0		0			-653	30373.31	1	1	1	-0.001	0.001	
05/16/11 08:14:06	60.00128	0		0		0			-653	30373.78	1	1	1	0.000	0.000	
05/16/11 08:14:08	60.00064	0		0		0			-653	30373.78	1	1	1	-0.001	0.001	
05/16/11 08:14:10	60.00034	0		0		0			-653	30373.78	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:14:12	60.00226	0		0		0			-653	30373.78	1	1	1	0.002	0.002	
05/16/11 08:14:14	60.00421	0		0		0			-653	30366.33	1	1	1	0.002	0.002	
05/16/11 08:14:16	60.00677	0		0		0			-653	30366.33	1	1	1	0.003	0.003	
05/16/11 08:14:18	60.00903	0		0		0			-653	30366.33	1	1	1	0.002	0.002	
05/16/11 08:14:20	60.01291	0		0		0			-653	30366.33	1	1	1	0.004	0.004	
05/16/11 08:14:22	60.01486	0		0		0			-653	30373.85	1	1	1	0.002	0.002	
05/16/11 08:14:24	60.01453	0		0		0			-653	30373.85	1	1	1	0.000	0.000	
05/16/11 08:14:26	60.01422	0		0		0			-653	30373.05	1	1	1	0.000	0.000	
05/16/11 08:14:28	60.0152	0		0		0			-653	30373.05	1	1	1	0.001	0.001	
05/16/11 08:14:30	60.01614	0		0		0			-653	30373.05	1	1	1	0.001	0.001	
05/16/11 08:14:32	60.01682	0		0		0			-653	30373.05	1	1	1	0.001	0.001	
05/16/11 08:14:34	60.01746	0		0		0			-653	30369.77	1	1	1	0.001	0.001	
05/16/11 08:14:36	60.01712	0		0		0			-653	30369.77	1	1	1	0.000	0.000	
05/16/11 08:14:38	60.01682	0		0		0			-653	30369.77	1	1	1	0.000	0.000	
05/16/11 08:14:40	60.01648	0		0		0			-653	30369.77	1	1	1	0.000	0.000	
05/16/11 08:14:42	60.01614	0		0		0			-653	30388.99	1	1	1	0.000	0.000	
05/16/11 08:14:44	60.01746	0		0		0			-653	30388.99	1	1	1	0.001	0.001	
05/16/11 08:14:46	60.01776	0		0		0			-653	30388.16	1	1	1	0.000	0.000	
05/16/11 08:14:48	60.01776	0		0		0			-653	30388.16	1	1	1	0.000	0.000	
05/16/11 08:14:50	60.01648	0		0		0			-653	30388.16	1	1	1	-0.001	0.001	
05/16/11 08:14:52	60.01584	0		0		0			-653	30388.16	1	1	1	-0.001	0.001	
05/16/11 08:14:54	60.01648	0		0		0			-653	30376.94	1	1	1	0.001	0.001	
05/16/11 08:14:56	60.01584	0		0		0			-653	30376.94	1	1	1	-0.001	0.001	
05/16/11 08:14:58	60.01358	0		0		0			-653	30376.94	1	1	1	-0.002	0.002	
05/16/11 08:15:00	60.01163	0		0		0			-653	30376.94	1	1	1	-0.002	0.002	
05/16/11 08:15:02	60.01132	0		0		0			-653	30371.85	1	1	1	0.000	0.000	
05/16/11 08:15:04	60.01132	0		0		0			-653	30371.85	1	1	1	0.000	0.000	
05/16/11 08:15:06	60.01099	0		0		0			-653	30362.65	1	1	1	0.000	0.000	
05/16/11 08:15:08	60.01099	0		0		0			-653	30362.65	1	1	1	0.000	0.000	
05/16/11 08:15:10	60.01291	0		0		0			-653	30362.65	1	1	1	0.002	0.002	
05/16/11 08:15:12	60.01486	0		0		0			-653	30362.65	1	1	1	0.002	0.002	
05/16/11 08:15:14	60.01776	0		0		0			-653	30395.46	1	1	1	0.003	0.003	
05/16/11 08:15:16	60.01776	0		0		0			-653	30395.46	1	1	1	0.000	0.000	
05/16/11 08:15:18	60.0184	0		0		0			-653	30395.46	1	1	1	0.001	0.001	
05/16/11 08:15:20	60.0181	0		0		0			-653	30395.46	1	1	1	0.000	0.000	
05/16/11 08:15:22	60.01746	0		0		0			-653	30397.03	1	1	1	-0.001	0.001	
05/16/11 08:15:24	60.0152	0		0		0			-653	30397.03	1	1	1	-0.002	0.002	
05/16/11 08:15:26	60.0152	0		0		0			-653	30396.67	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52		Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:15:28	60.01389	0		0		0			-653	30396.67	1	1	1	-0.001	0.001	
05/16/11 08:15:30	60.01746	0		0		0			-653	30396.67	1	1	1	0.004	0.004	
05/16/11 08:15:32	60.01907	0		0		0			-653	30396.67	1	1	1	0.002	0.002	
05/16/11 08:15:34	60.01907	0		0		0			-653	30388.62	1	1	1	0.000	0.000	
05/16/11 08:15:36	60.02036	0		0		0			-653	30388.62	1	1	1	0.001	0.001	
05/16/11 08:15:38	60.01874	0		0		0			-653	30388.62	1	1	1	-0.002	0.002	
05/16/11 08:15:40	60.01874	0		0		0			-653	30388.62	1	1	1	0.000	0.000	
05/16/11 08:15:42	60.01971	0		0		0			-653	30381.78	1	1	1	0.001	0.001	
05/16/11 08:15:44	60.01971	0		0		0			-653	30381.78	1	1	1	0.000	0.000	
05/16/11 08:15:46	60.01971	0		0		0			-653	30382.96	1	1	1	0.000	0.000	
05/16/11 08:15:48	60.0184	0		0		0			-653	30382.96	1	1	1	-0.001	0.001	
05/16/11 08:15:50	60.01486	0		0		0			-653	30382.96	1	1	1	-0.004	0.004	
05/16/11 08:15:52	60.01358	0		0		0			-653	30382.96	1	1	1	-0.001	0.001	
05/16/11 08:15:54	60.01389	0		0		0			-653	30381.48	1	1	1	0.000	0.000	
05/16/11 08:15:56	60.01227	0		0		0			-653	30381.48	1	1	1	-0.002	0.002	
05/16/11 08:15:58	60.01001	0		0		0			-653	30381.48	1	1	1	-0.002	0.002	
05/16/11 08:16:00	60.00583	0		0		0			-653	30381.48	1	1	1	-0.004	0.004	
05/16/11 08:16:02	60.00162	0		0		0			-653	30394.03	1	1	1	-0.004	0.004	
05/16/11 08:16:04	60.00162	0		0		0			-653	30394.03	1	1	1	0.000	0.000	
05/16/11 08:16:06	59.99805	0		0		0			-653	30394.07	1	0	1	-0.004	0.004	
05/16/11 08:16:08	59.99353	0		0		0			-653	30394.07	1	0	1	-0.005	0.005	
05/16/11 08:16:10	59.99255	0		0		0			-653	30394.07	1	0	1	-0.001	0.001	
05/16/11 08:16:12	59.99225	0		0		0			-653	30394.07	1	0	1	0.000	0.000	
05/16/11 08:16:14	59.98999	0		0		0			-653	30376.91	1	0	1	-0.002	0.002	
05/16/11 08:16:16	59.98837	0		0		0			-653	30376.91	1	0	1	-0.002	0.002	
05/16/11 08:16:18	59.98416	0		0		0			-653	30376.91	1	0	1	-0.004	0.004	
05/16/11 08:16:20	59.9816	0		0		0			-653	30376.91	1	0	1	-0.003	0.003	
05/16/11 08:16:22	59.98093	0		0		0			-653	30367.96	1	0	1	-0.001	0.001	
05/16/11 08:16:24	59.98029	0		0		0			-653	30367.96	1	0	1	-0.001	0.001	
05/16/11 08:16:26	59.97998	0		0		0			-653	30367.46	1	0	1	0.000	0.000	
05/16/11 08:16:28	59.97836	0		0		0			-653	30367.46	1	0	1	-0.002	0.002	
05/16/11 08:16:30	59.97513	0		0		0			-653	30367.46	1	0	1	-0.003	0.003	
05/16/11 08:16:32	59.97287	0		0		0			-653	30367.46	1	0	1	-0.002	0.002	
05/16/11 08:16:34	59.97189	0		0		0			-653	30361.18	1	0	1	-0.001	0.001	
05/16/11 08:16:36	59.97156	0		0		0			-653	30361.18	1	0	1	0.000	0.000	
05/16/11 08:16:38	59.97382	0		0		0			-653	30361.18	1	0	1	0.002	0.002	
05/16/11 08:16:40	59.97641	0		0		0			-653	30361.18	1	0	1	0.003	0.003	
05/16/11 08:16:42	59.97836	0		0		0			-653	30365.59	1	0	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:16:44	59.97705	0		0		0			-653	30365.59	1	0	1	-0.001	0.001	
05/16/11 08:16:46	59.97449	0		0		0			-653	30365.19	1	0	1	-0.003	0.003	
05/16/11 08:16:48	59.97125	0		0		0			-653	30365.19	1	0	1	-0.003	0.003	
05/16/11 08:16:50	59.97092	0		0		0			-653	30365.19	1	0	1	0.000	0.000	
05/16/11 08:16:52	59.97287	0		0		0			-653	30365.19	1	0	1	0.002	0.002	
05/16/11 08:16:54	59.97449	0		0		0			-653	30375.91	1	0	1	0.002	0.002	
05/16/11 08:16:56	59.97382	0		0		0			-653	30375.91	1	0	1	-0.001	0.001	
05/16/11 08:16:58	59.97318	0		0		0			-653	30375.91	1	0	1	-0.001	0.001	
05/16/11 08:17:00	59.97449	0		0		0			-653	30375.91	1	0	1	0.001	0.001	
05/16/11 08:17:02	59.9761	0		0		0			-653	30367.4	1	0	1	0.002	0.002	
05/16/11 08:17:04	59.97739	0		0		0			-653	30367.4	1	0	1	0.001	0.001	
05/16/11 08:17:06	59.97836	0		0		0			-653	30367.72	1	0	1	0.001	0.001	
05/16/11 08:17:08	59.97769	0		0		0			-653	30367.72	1	0	1	-0.001	0.001	
05/16/11 08:17:10	59.97705	0		0		0			-653	30367.72	1	0	1	-0.001	0.001	
05/16/11 08:17:12	59.97641	0		0		0			-653	30367.72	1	0	1	-0.001	0.001	
05/16/11 08:17:14	59.97543	0		0		0			-653	30416.87	1	0	1	-0.001	0.001	
05/16/11 08:17:16	59.97382	0		0		0			-653	30416.87	1	0	1	-0.002	0.002	
05/16/11 08:17:18	59.97318	0		0		0			-653	30416.87	1	0	1	-0.001	0.001	
05/16/11 08:17:20	59.97223	0		0		0			-653	30416.87	1	0	1	-0.001	0.001	
05/16/11 08:17:22	59.97189	0		0		0			-653	30413.65	1	0	1	0.000	0.000	
05/16/11 08:17:24	59.97092	0		0		0			-653	30413.65	1	0	1	-0.001	0.001	
05/16/11 08:17:26	59.96994	0		0		0			-653	30406.3	1	0	1	-0.001	0.001	
05/16/11 08:17:28	59.96832	0		0		0			-653	30406.3	1	0	1	-0.002	0.002	
05/16/11 08:17:30	59.96606	0		0		0			-653	30406.3	1	0	1	-0.002	0.002	
05/16/11 08:17:32	59.96542	0		0		0			-653	30406.3	1	0	1	-0.001	0.001	
05/16/11 08:17:34	59.96606	0		0		0			-653	30418.59	1	0	1	0.001	0.001	
05/16/11 08:17:36	59.9693	0		0		0			-653	30418.59	1	0	1	0.003	0.003	
05/16/11 08:17:38	59.97253	0		0		0			-653	30418.59	1	0	1	0.003	0.003	
05/16/11 08:17:40	59.97351	0		0		0			-653	30418.59	1	0	1	0.001	0.001	
05/16/11 08:17:42	59.97382	0		0		0			-653	30433.31	1	0	1	0.000	0.000	
05/16/11 08:17:44	59.97253	0		0		0			-653	30433.31	1	0	1	-0.001	0.001	
05/16/11 08:17:46	59.97253	0		0		0			-653	30433.31	1	0	1	0.000	0.000	
05/16/11 08:17:48	59.97253	0		0		0			-653	30433.31	1	0	1	0.000	0.000	
05/16/11 08:17:50	59.96768	0		0		0			-653	30433.31	1	0	1	-0.005	0.005	
05/16/11 08:17:52	59.97125	0		0		0			-653	30433.31	1	0	1	0.004	0.004	
05/16/11 08:17:54	59.97577	0		0		0			-653	30451.3	1	0	1	0.005	0.005	
05/16/11 08:17:56	59.97577	0		0		0			-653	30451.3	1	0	1	0.000	0.000	
05/16/11 08:17:58	59.97577	0		0		0			-653	30451.3	1	0	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:18:00	59.98416	0		0		0			-653	30451.3	1	0	1	0.008	0.008	
05/16/11 08:18:02	59.9819	0		0		0			-653	30425.74	1	0	1	-0.002	0.002	
05/16/11 08:18:04	59.979	0		0		0			-653	30425.74	1	0	1	-0.003	0.003	
05/16/11 08:18:06	59.97769	0		0		0			-653	30419.18	1	0	1	-0.001	0.001	
05/16/11 08:18:08	59.97769	0		0		0			-653	30419.18	1	0	1	0.000	0.000	
05/16/11 08:18:10	59.98126	0		0		0			-653	30419.18	1	0	1	0.004	0.004	
05/16/11 08:18:12	59.9848	0		0		0			-653	30419.18	1	0	1	0.004	0.004	
05/16/11 08:18:14	59.98868	0		0		0			-653	30424.29	1	0	1	0.004	0.004	
05/16/11 08:18:16	59.99161	0		0		0			-653	30424.29	1	0	1	0.003	0.003	
05/16/11 08:18:18	59.99353	0		0		0			-653	30424.29	1	0	1	0.002	0.002	
05/16/11 08:18:20	59.99579	0		0		0			-653	30424.29	1	0	1	0.002	0.002	
05/16/11 08:18:22	59.99677	0		0		0			-653	30440.82	1	0	1	0.001	0.001	
05/16/11 08:18:24	59.99774	0		0		0			-653	30440.82	1	0	1	0.001	0.001	
05/16/11 08:18:26	59.99838	0		0		0			-653	30431.58	1	0	1	0.001	0.001	
05/16/11 08:18:28	59.99774	0		0		0			-653	30431.58	1	0	1	-0.001	0.001	
05/16/11 08:18:30	59.9971	0		0		0			-653	30431.58	1	0	1	-0.001	0.001	
05/16/11 08:18:32	59.99741	0		0		0			-653	30431.58	1	0	1	0.000	0.000	
05/16/11 08:18:34	59.99741	0		0		0			-653	30444.25	1	0	1	0.000	0.000	
05/16/11 08:18:36	59.99741	0		0		0			-653	30444.25	1	0	1	0.000	0.000	
05/16/11 08:18:38	60.00064	0		0		0			-653	30444.25	1	1	1	0.003	0.003	
05/16/11 08:18:40	60.00323	0		0		0			-653	30444.25	1	1	1	0.003	0.003	
05/16/11 08:18:42	60.00354	0		0		0			-653	30465.11	1	1	1	0.000	0.000	
05/16/11 08:18:44	60.00259	0		0		0			-653	30465.11	1	1	1	-0.001	0.001	
05/16/11 08:18:46	60.00098	0		0		0			-653	30465.3	1	1	1	-0.002	0.002	
05/16/11 08:18:48	59.99936	0		0		0			-653	30465.3	1	1	1	-0.002	0.002	
05/16/11 08:18:50	59.99741	0		0		0			-653	30465.3	1	0	1	-0.002	0.002	
05/16/11 08:18:52	59.99677	0		0		0			-653	30465.3	1	0	1	-0.001	0.001	
05/16/11 08:18:54	59.99677	0		0		0			-653	30478.25	1	0	1	0.000	0.000	
05/16/11 08:18:56	59.9971	0		0		0			-653	30478.25	1	0	1	0.000	0.000	
05/16/11 08:18:58	59.99774	0		0		0			-653	30478.25	1	0	1	0.001	0.001	
05/16/11 08:19:00	59.99872	0		0		0			-653	30478.25	1	1	1	0.001	0.001	
05/16/11 08:19:02	59.99966	0		0		0			-653	30473.86	1	1	1	0.001	0.001	
05/16/11 08:19:04	60	0		0		0			-653	30473.86	1	1	1	0.000	0.000	
05/16/11 08:19:06	60.00034	0		0		0			-653	30468.84	1	1	1	0.000	0.000	
05/16/11 08:19:08	60.00098	0		0		0			-653	30468.84	1	1	1	0.001	0.001	
05/16/11 08:19:10	60.00226	0		0		0			-653	30468.84	1	1	1	0.001	0.001	
05/16/11 08:19:12	60.0029	0		0		0			-653	30468.84	1	1	1	0.001	0.001	
05/16/11 08:19:14	60.00259	0		0		0			-653	30469.63	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:19:16	60.00226	0		0		0			-653	30469.63	1	1	1	0.000	0.000	
05/16/11 08:19:18	60.00226	0		0		0			-653	30469.63	1	1	1	0.000	0.000	
05/16/11 08:19:20	60.00323	0		0		0			-653	30469.63	1	,	1	0.001	0.001	
05/16/11 08:19:22	60.00421	0		0		0			-653	30488.41	1	1	1	0.001	0.001	
05/16/11 08:19:24	60.00485	0		0		0			-653	30488.41	1	1	1	0.001	0.001	
05/16/11 08:19:26	60.00452	0		0		0			-653	30480.29	1	1	1	0.000	0.000	
05/16/11 08:19:28	60.00354	0		0		0			-653	30480.29	1	1	1	-0.001	0.001	
05/16/11 08:19:30	60.00354	0		0		0			-653	30480.29	1	1	1	0.000	0.000	
05/16/11 08:19:32	60.00354	0		0		0			-653	30480.29	1	1	1	0.000	0.000	
05/16/11 08:19:34	60.00354	0		0		0			-653	30477.13	1	1	1	0.000	0.000	
05/16/11 08:19:36	60.00354	0		0		0			-653	30477.13	1	1	1	0.000	0.000	
05/16/11 08:19:38	60.00354	0		0		0			-653	30477.13	1	1	1	0.000	0.000	
05/16/11 08:19:40	60.00354	0		0		0			-653	30477.13	1	1	1	0.000	0.000	
05/16/11 08:19:42	60.00613	0		0		0			-653	30487.82	1	1	1	0.003	0.003	
05/16/11 08:19:44	60.00485	0		0		0			-653	30487.82	1	1	1	-0.001	0.001	
05/16/11 08:19:46	60.00452	0		0		0			-653	30489.73	1	1	1	0.000	0.000	
05/16/11 08:19:48	60.00452	0		0		0			-653	30489.73	1	1	1	0.000	0.000	
05/16/11 08:19:50	60.00354	0		0		0			-653	30489.73	1	1	1	-0.001	0.001	
05/16/11 08:19:52	60.0029	0		0		0			-653	30489.73	1	1	1	-0.001	0.001	
05/16/11 08:19:54	60.00162	0		0		0			-653	30480.09	1	1	1	-0.001	0.001	
05/16/11 08:19:56	60.00162	0		0		0			-653	30480.09	1	1	1	0.000	0.000	
05/16/11 08:19:58	60.00421	0		0		0			-653	30480.09	1	1	1	0.003	0.003	
05/16/11 08:20:00	60.00421	0		0		0			-653	30480.09	1	1	1	0.000	0.000	
05/16/11 08:20:02	60.0029	0		0		0			-653	30480.91	1	1	1	-0.001	0.001	
05/16/11 08:20:04	60.00034	0		0		0			-653	30480.91	1	1	1	-0.003	0.003	
05/16/11 08:20:06	59.99805	0		0		0			-653	30480.84	1	0	1	-0.002	0.002	
05/16/11 08:20:08	59.99646	0		0		0			-653	30480.84	1	0	1	-0.002	0.002	
05/16/11 08:20:10	59.99515	0		0		0			-653	30480.84	1	0	1	-0.001	0.001	
05/16/11 08:20:12	59.99387	0		0		0			-653	30480.84	1	0	1	-0.001	0.001	
05/16/11 08:20:14	59.99289	0		0		0			-653	30476.09	1	0	1	-0.001	0.001	
05/16/11 08:20:16	59.99255	0		0		0			-653	30476.09	1	0	1	0.000	0.000	
05/16/11 08:20:18	59.99225	0		0		0			-653	30476.09	1	0	1	0.000	0.000	
05/16/11 08:20:20	59.98965	0		0		0			-653	30476.09	1	0	1	-0.003	0.003	
05/16/11 08:20:22	59.98514	0		0		0			-653	30456.76	1	0	1	-0.005	0.005	
05/16/11 08:20:24	59.98254	0		0		0			-653	30456.76	1	0	1	-0.003	0.003	
05/16/11 08:20:26	59.97836	0		0		0			-653	30457.12	1	0	1	-0.004	0.004	
05/16/11 08:20:28	59.97641	0		0		0			-653	30457.12	1	0	1	-0.002	0.002	
05/16/11 08:20:30	59.97705	0		0		0			-653	30457.12	1	0	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:20:32	59.97705	0		0		0			-653	30457.12	1	0	1	0.000	0.000	
05/16/11 08:20:34	59.97705	0		0		0			-653	30446.98	1	0	1	0.000	0.000	
05/16/11 08:20:36	59.97803	0		0		0			-653	30446.98	1	0	1	0.001	0.001	
05/16/11 08:20:38	59.97964	0		0		0			-653	30446.98	1	0	1	0.002	0.002	
05/16/11 08:20:40	59.9816	0		0		0			-653	30446.98	1	0	1	0.002	0.002	
05/16/11 08:20:42	59.98126	0		0		0			-653	30461.02	1	0	1	0.000	0.000	
05/16/11 08:20:44	59.97931	0		0		0			-653	30461.02	1	0	1	-0.002	0.002	
05/16/11 08:20:46	59.9761	0		0		0			-653	30460.94	1	0	1	-0.003	0.003	
05/16/11 08:20:48	59.97543	0		0		0			-653	30460.94	1	0	1	-0.001	0.001	
05/16/11 08:20:50	59.97577	0		0		0			-653	30460.94	1	0	1	0.000	0.000	
05/16/11 08:20:52	59.97675	0		0		0			-653	30460.94	1	0	1	0.001	0.001	
05/16/11 08:20:54	59.97803	0		0		0			-653	30469.23	1	0	1	0.001	0.001	
05/16/11 08:20:56	59.979	0		0		0			-653	30469.23	1	0	1	0.001	0.001	
05/16/11 08:20:58	59.97964	0		0		0			-653	30469.23	1	0		0.001	0.001	
05/16/11 08:21:00	59.98062	0		0		0			-653	30469.23	1	0	1	0.001	0.001	
05/16/11 08:21:02	59.9819	0		0		0			-653	30481.49	1	0		0.001	0.001	
05/16/11 08:21:04	59.98224	0		0		0			-653	30481.49	1	0	1	0.000	0.000	
05/16/11 08:21:06	59.98254	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:08	59.98288	0		0		0			-653	30480.29	1	0	,	0.000	0.000	
05/16/11 08:21:10	59.98254	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:12	59.98254	0		0		0			-653	30480.29	1	0	1	0.000	0.000	
05/16/11 08:21:14	59.98288	0		0		0			-653	30473.15	1	0	1	0.000	0.000	
05/16/11 08:21:16	59.98611	0		0		0			-653	30473.15	1	0	1	0.003	0.003	
05/16/11 08:21:18	59.99387	0		0		0			-653	30473.15	1	0	1	0.008	0.008	
05/16/11 08:21:20	60.00226	0		0		0			-653	30473.15	1	1	1	0.008	0.008	
05/16/11 08:21:22	60.01099	0		0		0			-653	30470.66	1	1	1	0.009	0.009	
05/16/11 08:21:24	60.01712	0		0		0			-653	30470.66	1	1		0.006	0.006	
05/16/11 08:21:26	60.02069	0		0		0			-653	30470.6	1	1	1	0.004	0.004	
05/16/11 08:21:28	60.02133	0		0		0			-653	30470.6	1	1	1	0.001	0.001	
05/16/11 08:21:30	60.02133	0		0		0			-653	30470.6	1	1	1	0.000	0.000	
05/16/11 08:21:32	60.02133	0		0		0			-653	30470.6	1	1	1	0.000	0.000	
05/16/11 08:21:34	60.02325	0		0		0			-653	30461.28	1	1	,	0.002	0.002	
05/16/11 08:21:36	60.02551	0		0		0			-653	30461.28	1	1	1	0.002	0.002	
05/16/11 08:21:38	60.02682	0		0		0			-653	30461.28	1	1	1	0.001	0.001	
05/16/11 08:21:40	60.02844	0		0		0			-653	30461.28	1	1	1	0.002	0.002	
05/16/11 08:21:42	60.02972	0		0		0			-653	30450.44	1	1	1	0.001	0.001	
05/16/11 08:21:44	60.03101	0		0		0			-653	30450.44	1	1	1	0.001	0.001	
05/16/11 08:21:46	60.03198	0		0		0			-653	30451.91	1	1	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:21:48	60.03296	0		0		0			-653	30451.91	1	1	1	0.001	0.001	
05/16/11 08:21:50	60.03458	0		0		0			-653	30451.91	1	1	1	0.002	0.002	
05/16/11 08:21:52	60.03488	0		0		0			-653	30451.91	1	1	1	0.000	0.000	
05/16/11 08:21:54	60.03488	0		0		0			-653	30446.52	1	1	1	0.000	0.000	
05/16/11 08:21:56	60.03424	0		0		0			-653	30446.52	1	1	1	-0.001	0.001	
05/16/11 08:21:58	60.03458	0		0		0			-653	30446.52	1	1	1	0.000	0.000	
05/16/11 08:22:00	60.03458	0		0		0			-653	30446.52	1	1	1	0.000	0.000	
05/16/11 08:22:02	60.03555	0		0		0			-653	30452.43	1	1	1	0.001	0.001	
05/16/11 08:22:04	60.03586	0		0		0			-653	30452.43	1	1	1	0.000	0.000	
05/16/11 08:22:06	60.03683	0		0		0			-653	30452.43	1	1	1	0.001	0.001	
05/16/11 08:22:08	60.03748	0		0		0			-653	30452.43	1	1	1	0.001	0.001	
05/16/11 08:22:10	60.03748	0		0		0			-653	30452.43	1	1	1	0.000	0.000	
05/16/11 08:22:12	60.03717	0		0		0			-653	30452.43	1	1	1	0.000	0.000	
05/16/11 08:22:14	60.03781	0		0		0			-653	30473.21	1	1	1	0.001	0.001	
05/16/11 08:22:16	60.03781	0		0		0			-653	30473.21	1	1	1	0.000	0.000	
05/16/11 08:22:18	60.03748	0		0		0			-653	30473.21	1	1	1	0.000	0.000	
05/16/11 08:22:20	60.0365	0		0		0			-653	30473.21	1	1	1	-0.001	0.001	
05/16/11 08:22:22	60.03683	0		0		0			-653	30476.61	1	1	1	0.000	0.000	
05/16/11 08:22:24	60.03748	0		0		0			-653	30476.61	1	1	1	0.001	0.001	
05/16/11 08:22:26	60.03748	0		0		0			-653	30476.55	1	1	1	0.000	0.000	
05/16/11 08:22:28	60.03812	0		0		0			-653	30476.55	1	1	1	0.001	0.001	
05/16/11 08:22:30	60.03876	0		0		0			-653	30476.55	1	1	1	0.001	0.001	
05/16/11 08:22:32	60.04007	0		0		0			-653	30476.55	1	1	1	0.001	0.001	
05/16/11 08:22:34	60.04169	0		0		0			-653	30473.8	1	1	1	0.002	0.002	
05/16/11 08:22:36	60.04361	0		0		0			-653	30473.8	1	1	1	0.002	0.002	
05/16/11 08:22:38	60.04523	0		0		0			-653	30473.8	1	1	1	0.002	0.002	
05/16/11 08:22:40	60.04492	0		0		0			-653	30473.8	1	1	1	0.000	0.000	
05/16/11 08:22:42	60.04459	0		0		0			-653	30471	1	1	1	0.000	0.000	
05/16/11 08:22:44	60.04395	0		0		0			-653	30471	1	1	1	-0.001	0.001	
05/16/11 08:22:46	60.04199	0		0		0			-653	30471.97	1	1	1	-0.002	0.002	
05/16/11 08:22:48	60.03717	0		0		0			-653	30471.97	1	1	1	-0.005	0.005	
05/16/11 08:22:50	60.03296	0		0		0			-653	30471.97	1	1	1	-0.004	0.004	
05/16/11 08:22:52	60.03101	0		0		0			-653	30471.97	1	1	1	-0.002	0.002	
05/16/11 08:22:54	60.03134	0		0		0			-653	30485.47	1	1	1	0.000	0.000	
05/16/11 08:22:56	60.03168	0		0		0			-653	30485.47	1	1	1	0.000	0.000	
05/16/11 08:22:58	60.03101	0		0		0			-653	30485.47	1	1	1	-0.001	0.001	
05/16/11 08:23:00	60.03101	0		0		0			-653	30485.47	1	1	1	0.000	0.000	
05/16/11 08:23:02	60.03232	0		0		0			-653	30505.49	1	1	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:23:04	60.03326	0		0		0			-653	30505.49	1	1	1	0.001	0.001	
05/16/11 08:23:06	60.03326	0		0		0			-653	30505.26	1	1	1	0.000	0.000	
05/16/11 08:23:08	60.03394	0		0		0			-653	30505.26	1	1	1	0.001	0.001	
05/16/11 08:23:10	60.03296	0		0		0			-653	30505.26	1	1	1	-0.001	0.001	
05/16/11 08:23:12	60.03232	0		0		0			-653	30505.26	1	1	1	-0.001	0.001	
05/16/11 08:23:14	60.03168	0		0		0			-653	30515.6	1	1	1	-0.001	0.001	
05/16/11 08:23:16	60.03168	0		0		0			-653	30515.6	1	1	1	0.000	0.000	
05/16/11 08:23:18	60.03232	0		0		0			-653	30515.6	1	1	1	0.001	0.001	
05/16/11 08:23:20	60.03232	0		0		0			-653	30515.6	1	1	1	0.000	0.000	
05/16/11 08:23:22	60.03168	0		0		0			-653	30505.28	1	1	1	-0.001	0.001	
05/16/11 08:23:24	60.03168	0		0		0			-653	30505.28	1	1	1	0.000	0.000	
05/16/11 08:23:26	60.03134	0		0		0			-653	30506.12	1	1	1	0.000	0.000	
05/16/11 08:23:28	60.03101	0		0		0			-653	30506.12	1	1	1	0.000	0.000	
05/16/11 08:23:30	60.03036	0		0		0			-653	30506.12	1	1	1	-0.001	0.001	
05/16/11 08:23:32	60.03036	0		0		0			-653	30506.12	1	1	1	0.000	0.000	
05/16/11 08:23:34	60.02972	0		0		0			-653	30493.68	1	1	1	-0.001	0.001	
05/16/11 08:23:36	60.02875	0		0		0			-653	30493.68	1	1	1	-0.001	0.001	
05/16/11 08:23:38	60.03006	0		0		0			-653	30493.68	1	1	1	0.001	0.001	
05/16/11 08:23:40	60.03198	0		0		0			-653	30493.68	1	1	1	0.002	0.002	
05/16/11 08:23:42	60.03326	0		0		0			-653	30529.28	1	1	1	0.001	0.001	
05/16/11 08:23:44	60.03458	0		0		0			-653	30529.28	1	1	1	0.001	0.001	
05/16/11 08:23:46	60.03488	0		0		0			-653	30529.08	1	1	1	0.000	0.000	
05/16/11 08:23:48	60.0336	0		0		0			-653	30529.08	1	1	1	-0.001	0.001	
05/16/11 08:23:50	60.03326	0		0		0			-653	30529.08	1	1	1	0.000	0.000	
05/16/11 08:23:52	60.03232	0		0		0			-653	30529.08	1	1	1	-0.001	0.001	
05/16/11 08:23:54	60.03134	0		0		0			-653	30529.52	1	1	1	-0.001	0.001	
05/16/11 08:23:56	60.03168	0		0		0			-653	30529.52	1	1	1	0.000	0.000	
05/16/11 08:23:58	60.03326	0		0		0			-653	30529.52	1	1	1	0.002	0.002	
05/16/11 08:24:00	60.03458	0		0		0			-653	30529.52	1	1	1	0.001	0.001	
05/16/11 08:24:02	60.03586	0		0		0			-653	30535.57	1	1	1	0.001	0.001	
05/16/11 08:24:04	60.0365	0		0		0			-653	30535.57	1	1	1	0.001	0.001	
05/16/11 08:24:06	60.03748	0		0		0			-653	30533.89	1	1	1	0.001	0.001	
05/16/11 08:24:08	60.03683	0		0		0			-653	30533.89	1	1	1	-0.001	0.001	
05/16/11 08:24:10	60.03619	0		0		0			-653	30533.89	1	1	1	-0.001	0.001	
05/16/11 08:24:12	60.03522	0		0		0			-653	30533.89	1	1	1	-0.001	0.001	
05/16/11 08:24:14	60.03424	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:16	60.03296	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:18	60.03198	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52		Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:24:20	60.03134	0		0		0			-653	30521.82	1	1	1	-0.001	0.001	
05/16/11 08:24:22	60.03168	0		0		0			-653	30533.64	1	1	1	0.000	0.000	
05/16/11 08:24:24	60.03134	0		0		0			-653	30533.64	1	1	1	0.000	0.000	
05/16/11 08:24:26	60.03101	0		0		0			-653	30532.32	1	1	1	0.000	0.000	
05/16/11 08:24:28	60.03036	0		0		0			-653	30532.32	1	1	1	-0.001	0.001	
05/16/11 08:24:30	60.02972	0		0		0			-653	30532.32	1	1	1	-0.001	0.001	
05/16/11 08:24:32	60.03006	0		0		0			-653	30532.32	1	1	1	0.000	0.000	
05/16/11 08:24:34	60.0307	0		0		0			-653	30551.2	1	1	1	0.001	0.001	
05/16/11 08:24:36	60.03168	0		0		0			-653	30551.2	1	1	1	0.001	0.001	
05/16/11 08:24:38	60.0336	0		0		0			-653	30551.2	1	1	1	0.002	0.002	
05/16/11 08:24:40	60.03488	0		0		0			-653	30551.2	1	1	1	0.001	0.001	
05/16/11 08:24:42	60.03522	0		0		0			-653	30548.06	1	1	1	0.000	0.000	
05/16/11 08:24:44	60.03586	0		0		0			-653	30548.06	1	1	1	0.001	0.001	
05/16/11 08:24:46	60.03717	0		0		0			-653	30543.69	1	1	1	0.001	0.001	
05/16/11 08:24:48	60.03812	0		0		0			-653	30543.69	1	1	1	0.001	0.001	
05/16/11 08:24:50	60.03717	0		0		0			-653	30543.69	1	1	1	-0.001	0.001	
05/16/11 08:24:52	60.03748	0		0		0			-653	30543.69	1	1	1	0.000	0.000	
05/16/11 08:24:54	60.03845	0		0		0			-653	30546.32	1	1	1	0.001	0.001	
05/16/11 08:24:56	60.03876	0		0		0			-653	30546.32	1	1	1	0.000	0.000	
05/16/11 08:24:58	60.03781	0		0		0			-653	30546.32	1	1	1	-0.001	0.001	
05/16/11 08:25:00	60.03619	0		0		0			-653	30546.32	1	1	1	-0.002	0.002	
05/16/11 08:25:02	60.03488	0		0		0			-653	30546.28	1	1	1	-0.001	0.001	
05/16/11 08:25:04	60.03394	0		0		0			-653	30546.28	1	1	1	-0.001	0.001	
05/16/11 08:25:06	60.0336	0		0		0			-653	30546.38	1	1	1	0.000	0.000	
05/16/11 08:25:08	60.0336	0		0		0			-653	30546.38	1	1	1	0.000	0.000	
05/16/11 08:25:10	60.03458	0		0		0			-653	30546.38	1	1	1	0.001	0.001	
05/16/11 08:25:12	60.0365	0		0		0			-653	30546.38	1	1	1	0.002	0.002	
05/16/11 08:25:14	60.03748	0		0		0			-653	30556.84	1	1	1	0.001	0.001	
05/16/11 08:25:16	60.03781	0		0		0			-653	30556.84	1	1	1	0.000	0.000	
05/16/11 08:25:18	60.03748	0		0		0			-653	30556.84	1	1	1	0.000	0.000	
05/16/11 08:25:20	60.0365	0		0		0			-653	30556.84	1	1	1	-0.001	0.001	
05/16/11 08:25:22	60.03488	0		0		0			-653	30557.42	1	1	1	-0.002	0.002	
05/16/11 08:25:24	60.0336	0		0		0			-653	30557.42	1	1	1	-0.001	0.001	
05/16/11 08:25:26	60.03232	0		0		0			-653	30557.43	1	1	1	-0.001	0.001	
05/16/11 08:25:28	60.03134	0		0		0			-653	30557.43	1	1	1	-0.001	0.001	
05/16/11 08:25:30	60.03101	0		0		0			-653	30557.43	1	1	1	0.000	0.000	
05/16/11 08:25:32	60.03101	0		0		0			-653	30557.43	1	1	1	0.000	0.000	
05/16/11 08:25:34	60.0307	0		0		0			-653	30566.39	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:25:36	60.02972	0		0		0			-653	30566.39	1	1	1	-0.001	0.001	
05/16/11 08:25:38	60.02908	0		0		0			-653	30566.39	1	1	1	-0.001	0.001	
05/16/11 08:25:40	60.02811	0		0		0			-653	30566.39	1	1	1	-0.001	0.001	
05/16/11 08:25:42	60.02649	0		0		0			-653	30567.26	1	1	1	-0.002	0.002	
05/16/11 08:25:44	60.02521	0		0		0			-653	30567.26	1	1	1	-0.001	0.001	
05/16/11 08:25:46	60.02359	0		0		0			-653	30562.43	1	1	1	-0.002	0.002	
05/16/11 08:25:48	60.02133	0		0		0			-653	30562.43	1	1	1	-0.002	0.002	
05/16/11 08:25:50	60.02002	0		0		0			-653	30562.43	1	1	1	-0.001	0.001	
05/16/11 08:25:52	60.02002	0		0		0			-653	30562.43	1	1	1	0.000	0.000	
05/16/11 08:25:54	60.02069	0		0		0			-653	30573.32	1	1	1	0.001	0.001	
05/16/11 08:25:56	60.02133	0		0		0			-653	30573.32	1	1	1	0.001	0.001	
05/16/11 08:25:58	60.021	0		0		0			-653	30573.32	1	1	1	0.000	0.000	
05/16/11 08:26:00	60.02036	0		0		0			-653	30573.32	1	1	1	-0.001	0.001	
05/16/11 08:26:02	60.01938	0		0		0			-653	30567	1	1	1	-0.001	0.001	
05/16/11 08:26:04	60.01938	0		0		0			-653	30567	1	1	1	0.000	0.000	
05/16/11 08:26:06	60.01938	0		0		0			-653	30567.04	1	1	1	0.000	0.000	
05/16/11 08:26:08	60.01971	0		0		0			-653	30567.04	1	1	1	0.000	0.000	
05/16/11 08:26:10	60.01971	0		0		0			-653	30567.04	1	1	1	0.000	0.000	
05/16/11 08:26:12	60.01907	0		0		0			-653	30567.04	1	1	1	-0.001	0.001	
05/16/11 08:26:14	60.01938	0		0		0			-653	30556.49	1	1	1	0.000	0.000	
05/16/11 08:26:16	60.02036	0		0		0			-653	30556.49	1	1	1	0.001	0.001	
05/16/11 08:26:18	60.02036	0		0		0			-653	30556.49	1	1	1	0.000	0.000	
05/16/11 08:26:20	60.01907	0		0		0			-653	30556.49	1	1	1	-0.001	0.001	
05/16/11 08:26:22	60.01712	0		0		0			-653	30530.19	1	1	1	-0.002	0.002	
05/16/11 08:26:24	60.01584	0		0		0			-653	30530.19	1	1	1	-0.001	0.001	
05/16/11 08:26:26	60.0152	0		0		0			-653	30530.04	1	1	1	-0.001	0.001	
05/16/11 08:26:28	60.0155	0		0		0			-653	30530.04	1	1	1	0.000	0.000	
05/16/11 08:26:30	60.01614	0		0		0			-653	30530.04	1	1	1	0.001	0.001	
05/16/11 08:26:32	60.01746	0		0		0			-653	30530.04	1	1	1	0.001	0.001	
05/16/11 08:26:34	60.0181	0		0		0			-653	30542.27	1	1	1	0.001	0.001	
05/16/11 08:26:36	60.01746	0		0		0			-653	30542.27	1	1	1	-0.001	0.001	
05/16/11 08:26:38	60.01712	0		0		0			-653	30542.27	1	1	1	0.000	0.000	
05/16/11 08:26:40	60.01648	0		0		0			-653	30542.27	1	1	1	-0.001	0.001	
05/16/11 08:26:42	60.01486	0		0		0			-653	30559.64	1	1	1	-0.002	0.002	
05/16/11 08:26:44	60.01227	0		0		0			-653	30559.64	1	1	1	-0.003	0.003	
05/16/11 08:26:46	60.01035	0		0		0			-653	30559.67	1	1	1	-0.002	0.002	
05/16/11 08:26:48	60.00937	0		0		0			-653	30559.67	1	1	1	-0.001	0.001	
05/16/11 08:26:50	60.00903	0		0		0			-653	30559.67	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:26:52	60.00937	0		0		0			-653	30559.67	1	1	1	0.000	0.000	
05/16/11 08:26:54	60.01065	0		0		0			-653	30552.02	1	1	1	0.001	0.001	
05/16/11 08:26:56	60.01163	0		0		0			-653	30552.02	1	1	1	0.001	0.001	
05/16/11 08:26:58	60.01227	0		0		0			-653	30552.02	1	1	1	0.001	0.001	
05/16/11 08:27:00	60.01163	0		0		0			-653	30552.02	1	1	1	-0.001	0.001	
05/16/11 08:27:02	60.00873	0		0		0			-653	30556.78	1	1	1	-0.003	0.003	
05/16/11 08:27:04	60.00647	0		0		0			-653	30556.78	1	1	1	-0.002	0.002	
05/16/11 08:27:06	60.00583	0		0		0			-653	30550.7	1	1	1	-0.001	0.001	
05/16/11 08:27:08	60.00613	0		0		0			-653	30550.7	1	1		0.000	0.000	
05/16/11 08:27:10	60.00613	0		0		0			-653	30550.7	1	1	1	0.000	0.000	
05/16/11 08:27:12	60.00711	0		0		0			-653	30550.7	1	1	1	0.001	0.001	
05/16/11 08:27:14	60.00903	0		0		0			-653	30559.76	1	1	1	0.002	0.002	
05/16/11 08:27:16	60.01099	0		0		0			-653	30559.76	1	1	1	0.002	0.002	
05/16/11 08:27:18	60.01099	0		0		0			-653	30559.76	1	1	1	0.000	0.000	
05/16/11 08:27:20	60.01035	0		0		0			-653	30559.76	1	1	1	-0.001	0.001	
05/16/11 08:27:22	60.0097	0		0		0			-653	30563.61	1	1	1	-0.001	0.001	
05/16/11 08:27:24	60.00873	0		0		0			-653	30563.61	1	1	1	-0.001	0.001	
05/16/11 08:27:26	60.00711	0		0		0			-653	30556.57	1	1		-0.002	0.002	
05/16/11 08:27:28	60.00613	0		0		0			-653	30556.57	1	1	1	-0.001	0.001	
05/16/11 08:27:30	60.00583	0		0		0			-653	30556.57	1	1	1	0.000	0.000	
05/16/11 08:27:32	60.00711	0		0		0			-653	30556.57	1	1	1	0.001	0.001	
05/16/11 08:27:34	60.00809	0		0		0			-653	30556.7	1	1	1	0.001	0.001	
05/16/11 08:27:36	60.00839	0		0		0			-653	30556.7	1	1	1	0.000	0.000	
05/16/11 08:27:38	60.00809	0		0		0			-653	30556.7	1	1	1	0.000	0.000	
05/16/11 08:27:40	60.00711	0		0		0			-653	30556.7	1	1	1	-0.001	0.001	
05/16/11 08:27:42	60.00677	0		0		0			-653	30544.52	1	1	1	0.000	0.000	
05/16/11 08:27:44	60.00775	0		0		0			-653	30544.52	1	1	1	0.001	0.001	
05/16/11 08:27:46	60.00711	0		0		0			-653	30543.34	1	1	1	-0.001	0.001	
05/16/11 08:27:48	60.00647	0		0		0			-653	30543.34	1	1	1	-0.001	0.001	
05/16/11 08:27:50	60.00388	0		0		0			-653	30543.34	1	1	1	-0.003	0.003	
05/16/11 08:27:52	60.00128	0		0		0			-653	30543.34	1	1	1	-0.003	0.003	
05/16/11 08:27:54	59.99936	0		0		0			-653	30554.42	1	1	1	-0.002	0.002	
05/16/11 08:27:56	59.99805	0		0		0			-653	30554.42	1	0	1	-0.001	0.001	
05/16/11 08:27:58	59.99741	0		0		0			-653	30554.42	1	0	1	-0.001	0.001	
05/16/11 08:28:00	59.9971	0		0		0			-653	30554.42	1	0	1	0.000	0.000	
05/16/11 08:28:02	59.99677	0		0		0			-653	30534.33	1	0	1	0.000	0.000	
05/16/11 08:28:04	59.9971	0		0		0			-653	30534.33	1	0	1	0.000	0.000	
05/16/11 08:28:06	59.99646	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $T(0)$ 1
05/16/11 08:28:08	59.99579	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:10	59.99451	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:12	59.99353	0		0		0			-653	30533.84	1	0	1	-0.001	0.001	
05/16/11 08:28:14	59.99289	0		0		0			-653	30557.2	1	0	1	-0.001	0.001	
05/16/11 08:28:16	59.99191	0		0		0			-653	30557.2	1	0	1	-0.001	0.001	
05/16/11 08:28:18	59.98901	0		0		0			-653	30557.2	1	0	1	-0.003	0.003	
05/16/11 08:28:20	59.98611	0		0		0			-653	30557.2	1	0	1	-0.003	0.003	
05/16/11 08:28:22	59.9845	0		0		0			-653	30560.91	1	0	1	-0.002	0.002	
05/16/11 08:28:24	59.98318	0		0		0			-653	30560.91	1	0	1	-0.001	0.001	
05/16/11 08:28:26	59.9819	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:28	59.98093	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:30	59.97964	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:32	59.97867	0		0		0			-653	30560.56	1	0	1	-0.001	0.001	
05/16/11 08:28:34	59.97964	0		0		0			-653	30560.08	1	0	1	0.001	0.001	
05/16/11 08:28:36	59.97998	0		0		0			-653	30560.08	1	0	1	0.000	0.000	
05/16/11 08:28:38	59.98062	0		0		0			-653	30560.08	1	0	1	0.001	0.001	
05/16/11 08:28:40	59.98029	0		0		0			-653	30560.08	1	0	1	0.000	0.000	
05/16/11 08:28:42	59.979	0		0		0			-653	30558.72	1	0	1	-0.001	0.001	
05/16/11 08:28:44	59.97739	0		0		0			-653	30558.72	1	0	1	-0.002	0.002	
05/16/11 08:28:46	59.97513	0		0		0			-653	30553.46	1	0	1	-0.002	0.002	
05/16/11 08:28:48	59.97351	0		0		0			-653	30553.46	1	0	1	-0.002	0.002	
05/16/11 08:28:50	59.97253	0		0		0			-653	30553.46	1	0	1	-0.001	0.001	
05/16/11 08:28:52	59.97189	0		0		0			-653	30553.46	1	0	1	-0.001	0.001	
05/16/11 08:28:54	59.97318	0		0		0			-653	30562.63	1	0	1	0.001	0.001	
05/16/11 08:28:56	59.97415	0		0		0			-653	30562.63	1	0	1	0.001	0.001	
05/16/11 08:28:58	59.97449	0		0		0			-653	30562.63	1	0	1	0.000	0.000	
05/16/11 08:29:00	59.97513	0		0		0			-653	30562.63	1	0	1	0.001	0.001	
05/16/11 08:29:02	59.97577	0		0		0			-653	30578.05	1	0	1	0.001	0.001	
05/16/11 08:29:04	59.97641	0		0		0			-653	30578.05	1	0	1	0.001	0.001	
05/16/11 08:29:06	59.97705	0		0		0			-653	30570.97	1	0	1	0.001	0.001	
05/16/11 08:29:08	59.97675	0		0		0			-653	30570.97	1	0	1	0.000	0.000	
05/16/11 08:29:10	59.97675	0		0		0			-653	30570.97	1	0	1	0.000	0.000	
05/16/11 08:29:12	59.97675	0		0		0			-653	30570.97	1	0	1	0.000	0.000	
05/16/11 08:29:14	59.9761	0		0		0			-653	30593.17	1	0	1	-0.001	0.001	
05/16/11 08:29:16	59.9761	0		0		0			-653	30593.17	1	0	1	0.000	0.000	
05/16/11 08:29:18	59.97641	0		0		0			-653	30593.17	1	0	1	0.000	0.000	
05/16/11 08:29:20	59.97705	0		0		0			-653	30593.17	1	0	1	0.001	0.001	
05/16/11 08:29:22	59.97803	0		0		0			-653	30575.07	1	0	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/ 0.1 Hz	BA Load MW	Event Detection Row805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:29:24	59.98029	0		0		0			-653	30575.07	1	0	1	0.002	0.002	
05/16/11 08:29:26	59.98318	0		0		0			-653	30575.07	1	0	1	0.003	0.003	
05/16/11 08:29:28	59.98547	0		0		0			-653	30575.07	1	0	1	0.002	0.002	
05/16/11 08:29:30	59.98709	0		0		0			-653	30575.07	1	0	1	0.002	0.002	
05/16/11 08:29:32	59.98965	0		0		0			-653	30575.07	1	0	1	0.003	0.003	
05/16/11 08:29:34	59.99225	0		0		0			-653	30575.72	1	0	1	0.003	0.003	
05/16/11 08:29:36	59.99484	0		0		0			-653	30575.72	1	0	1	0.003	0.003	
05/16/11 08:29:38	59.99646	0		0		0			-653	30575.72	1	0	1	0.002	0.002	
05/16/11 08:29:40	59.99774	0		0		0			-653	30575.72	1	0	1	0.001	0.001	
05/16/11 08:29:42	59.99966	0		0		0			-653	30583.84	1	1	1	0.002	0.002	
05/16/11 08:29:44	60.00034	0		0		0			-653	30583.84	1	1	1	0.001	0.001	
05/16/11 08:29:46	60.00128	0		0		0			-653	30586.4	1	1	1	0.001	0.001	
05/16/11 08:29:48	60.00195	0		0		0			-653	30586.4	1	1	1	0.001	0.001	
05/16/11 08:29:50	60.00226	0		0		0			-653	30586.4	1	1	1	0.000	0.000	
05/16/11 08:29:52	60.0029	0		0		0			-653	30586.4	1	1	1	0.001	0.001	
05/16/11 08:29:54	60.00354	0		0		0			-653	30589.72	1	1	1	0.001	0.001	
05/16/11 08:29:56	60.00421	0		0		0			-653	30589.72	1	1	1	0.001	0.001	
05/16/11 08:29:58	60.00452	0		0		0			-653	30589.72	1	1	1	0.000	0.000	
05/16/11 08:30:00	60.00388	0		0		0			-653	30589.72	1	1	1	-0.001	0.001	
05/16/11 08:30:02	60.00388	0		0		0			-653	30590.3	1	1	1	0.000	0.000	
05/16/11 08:30:04	60.00421	0		0		0			-653	30590.3	1	1	1	0.000	0.000	
05/16/11 08:30:06	60.00421	0		0		0			-653	30590.22	1	1	1	0.000	0.000	
05/16/11 08:30:08	60.00388	0		0		0			-653	30590.22	1	1	1	0.000	0.000	
05/16/11 08:30:10	60.00195	0		0		0			-653	30590.22	1	1	1	-0.002	0.002	
05/16/11 08:30:12	59.99966	0		0		0			-653	30590.22	1	1	1	-0.002	0.002	
05/16/11 08:30:14	59.99387	0		0		0			-653	30600.12	1	0	1	-0.006	0.006	
05/16/11 08:30:16	59.99387	0		0		0			-653	30600.12	1	0	1	0.000	0.000	
05/16/11 08:30:18	59.98999	0		0		0			-653	30600.12	1	0	1	-0.004	0.004	
05/16/11 08:30:20	59.98868	0		0		0			-653	30600.12	1	0	1	-0.001	0.001	
05/16/11 08:30:22	59.98709	0		0		0			-653	30603.38	1	0	1	-0.002	0.002	
05/16/11 08:30:24	59.98578	0		0		0			-653	30603.38	1	0	1	-0.001	0.001	
05/16/11 08:30:26	59.98578	0		0		0			-653	30597.09	1	0	1	0.000	0.000	
05/16/11 08:30:28	59.98288	0		0		0			-653	30597.09	1	0	1	-0.003	0.003	
05/16/11 08:30:30	59.97964	0		0		0			-653	30597.09	1	0	1	-0.003	0.003	
05/16/11 08:30:32	59.97675	0		0		0			-653	30597.09	1	0	1	-0.003	0.003	
05/16/11 08:30:34	59.97479	0		0		0			-653	30603.96	1	0	1	-0.002	0.002	
05/16/11 08:30:36	59.97479	0		0		0			-653	30603.96	1	0	1	0.000	0.000	
05/16/11 08:30:38	59.97641	0		0		0			-653	30603.96	1	0	1	0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:30:40	59.97641	0		0		0			-653	30603.96	1	0	1	0.000	0.000	
05/16/11 08:30:42	59.97543	0		0		0			-653	30607.96	1	0	1	-0.001	0.001	
05/16/11 08:30:44	59.97351	0		0		0			-653	30607.96	1	0	1	-0.002	0.002	
05/16/11 08:30:46	59.97318	0		0		0			-653	30601.98	1	0	1	0.000	0.000	
05/16/11 08:30:48	59.97513	0		0		0			-653	30601.98	1	0	1	0.002	0.002	
05/16/11 08:30:50	59.97641	0		0		0			-653	30597.09	1	0	1	0.001	0.001	
05/16/11 08:30:52	59.97705	0		0		0			-653	30597.09	1	0	1	0.001	0.001	
05/16/11 08:30:54	59.97867	0		0		0			-653	30607.96	1	0	1	0.002	0.002	
05/16/11 08:30:56	59.97836	0		0		0			-653	30607.96	1	0	1	0.000	0.000	
05/16/11 08:30:58	59.97803	0		0		0			-653	30607.96	1	0	1	0.000	0.000	
05/16/11 08:31:00	59.97543	0		0		0			-653	30607.96	1	0	1	-0.003	0.003	
05/16/11 08:31:02	59.97415	0		0		0			-653	30607.96	1	0	1	-0.001	0.001	
05/16/11 08:31:04	59.97415	0		0		0			-653	30601.98	1	0	1	0.000	0.000	
05/16/11 08:31:06	59.97479	0		0		0			-653	30601.98	1	0	1	0.001	0.001	
05/16/11 08:31:08	59.97415	0		0		0			-653	30601.98	1	0	1	-0.001	0.001	
05/16/11 08:31:10	59.97351	0		0		0			-653	30601.98	1	0	1	-0.001	0.001	
05/16/11 08:31:12	59.97351	0		0		0			-653	30601.98	1	0	1	0.000	0.000	
05/16/11 08:31:14	59.97543	0		0		0			-653	30632.79	1	0	1	0.002	0.002	
05/16/11 08:31:16	59.97769	0		0		0			-653	30632.79	1	0	1	0.002	0.002	
05/16/11 08:31:18	59.98062	0		0		0			-653	30632.79	1	0	1	0.003	0.003	
05/16/11 08:31:20	59.98514	0		0		0			-653	30632.79	1	0	1	0.005	0.005	
05/16/11 08:31:22	59.98773	0		0		0			-653	30632.79	1	0	1	0.003	0.003	
05/16/11 08:31:24	59.98965	0		0		0			-653	30633.18	1	0	1	0.002	0.002	
05/16/11 08:31:26	59.99097	0		0		0			-653	30633.18	1	0	1	0.001	0.001	
05/16/11 08:31:28	59.99225	0		0		0			-653	30633.18	1	0	1	0.001	0.001	
05/16/11 08:31:30	59.99323	0		0		0			-653	30633.18	1	0	1	0.001	0.001	
05/16/11 08:31:32	59.99612	0		0		0			-653	30633.18	1	0	1	0.003	0.003	
05/16/11 08:31:34	60.00034	0		0		0			-653	30620.6	1	1	1	0.004	0.004	
05/16/11 08:31:36	60.00452	0		0		0			-653	30620.6	1	1	1	0.004	0.004	
05/16/11 08:31:38	60.00809	0		0		0			-653	30620.6	1	1	1	0.004	0.004	
05/16/11 08:31:40	60.01099	0		0		0			-653	30620.6	1	1	1	0.003	0.003	
05/16/11 08:31:42	60.01389	0		0		0			-653	30620.6	1	1	1	0.003	0.003	
05/16/11 08:31:44	60.01776	0		0		0			-653	30620.91	1	1	1	0.004	0.004	
05/16/11 08:31:46	60.02069	0		0		0			-653	30620.91	1	1	1	0.003	0.003	
05/16/11 08:31:48	60.02164	0		0		0			-653	30620.91	1	1	1	0.001	0.001	
05/16/11 08:31:50	60.021	0		0		0			-653	30620.91	1	1	1	-0.001	0.001	
05/16/11 08:31:52	60.01907	0		0		0			-653	30620.91	1	1	1	-0.002	0.002	
05/16/11 08:31:54	60.0181	0		0		0			-653	30661.87	1	1	1	-0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:31:56	60.0184	0		0		0			-653	30661.87	1	1	1	0.000	0.000	
05/16/11 08:31:58	60.02069	0		0		0			-653	30661.87	1	1	1	0.002	0.002	
05/16/11 08:32:00	60.0239	0		0		0			-653	30661.87	1	1	1	0.003	0.003	
05/16/11 08:32:02	60.02618	0		0		0			-653	30661.87	1	1	1	0.002	0.002	
05/16/11 08:32:04	60.02682	0		0		0			-653	30663.73	1	1	1	0.001	0.001	
05/16/11 08:32:06	60.02649	0		0		0			-653	30663.73	1	1	1	0.000	0.000	
05/16/11 08:32:08	60.02585	0		0		0			-653	30663.73	1	1	1	-0.001	0.001	
05/16/11 08:32:10	60.02359	0		0		0			-653	30663.73	1	1	1	-0.002	0.002	
05/16/11 08:32:12	60.02359	0		0		0			-653	30663.73	1	1	1	0.000	0.000	
05/16/11 08:32:14	60.02164	0		0		0			-653	30659.84	1	1	1	-0.002	0.002	
05/16/11 08:32:16	60.02231	0		0		0			-653	30659.84	1	1	1	0.001	0.001	
05/16/11 08:32:18	60.02325	0		0		0			-653	30659.84	1	1	1	0.001	0.001	
05/16/11 08:32:20	60.02359	0		0		0			-653	30659.84	1	1	1	0.000	0.000	
05/16/11 08:32:22	60.02295	0		0		0			-653	30659.84	1	1	1	-0.001	0.001	
05/16/11 08:32:24	60.02133	0		0		0			-653	30653.46	1	1	1	-0.002	0.002	
05/16/11 08:32:26	60.021	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:28	60.021	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:30	60.02133	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:32	60.021	0		0		0			-653	30653.46	1	1	1	0.000	0.000	
05/16/11 08:32:34	60.02036	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:36	60.02002	0		0		0			-653	30661.6	1	1	1	0.000	0.000	
05/16/11 08:32:38	60.01938	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:40	60.0184	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:42	60.01712	0		0		0			-653	30661.6	1	1	1	-0.001	0.001	
05/16/11 08:32:44	60.01584	0		0		0			-653	30655.51	1	1	1	-0.001	0.001	
05/16/11 08:32:46	60.01486	0		0		0			-653	30655.51	1	1	1	-0.001	0.001	
05/16/11 08:32:48	60.01453	0		0		0			-653	30655.51	1	1	1	0.000	0.000	
05/16/11 08:32:50	60.01486	0		0		0			-653	30655.51	1	1	1	0.000	0.000	
05/16/11 08:32:52	60.01453	0		0		0			-653	30655.51	1	1	1	0.000	0.000	
05/16/11 08:32:54	60.01486	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:32:56	60.0152	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:32:58	60.01486	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:33:00	60.0152	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:33:02	60.0152	0		0		0			-653	30648.14	1	1	1	0.000	0.000	
05/16/11 08:33:04	60.01648	0		0		0			-653	30648.29	1	1	1	0.001	0.001	
05/16/11 08:33:06	60.01614	0		0		0			-653	30648.29	1	1	1	0.000	0.000	
05/16/11 08:33:08	60.0152	0		0		0			-653	30648.29	1	1	1	-0.001	0.001	
05/16/11 08:33:10	60.01486	0		0		0			-653	30648.29	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:33:12	60.01453	0		0		0			-653	30648.29	1	1	1	0.000	0.000	
05/16/11 08:33:14	60.01291	0		0		0			-653	30652.04	1	1	1	-0.002	0.002	
05/16/11 08:33:16	60.01099	0		0		0			-653	30652.04	1	1	1	-0.002	0.002	
05/16/11 08:33:18	60.00775	0		0		0			-653	30652.04	1	1	1	-0.003	0.003	
05/16/11 08:33:20	60.00421	0		0		0			-653	30652.04	1	1	1	-0.004	0.004	
05/16/11 08:33:22	60.00162	0		0		0			-653	30652.04	1	1	1	-0.003	0.003	
05/16/11 08:33:24	60	0		0		0			-653	30651.84	1	1	1	-0.002	0.002	
05/16/11 08:33:26	59.99774	0		0		0			-653	30651.84	1	0	1	-0.002	0.002	
05/16/11 08:33:28	59.99515	0		0		0			-653	30651.84	1	0	1	-0.003	0.003	
05/16/11 08:33:30	59.99255	0		0		0			-653	30651.84	1	0	1	-0.003	0.003	
05/16/11 08:33:32	59.9903	0		0		0			-653	30651.84	1	0	1	-0.002	0.002	
05/16/11 08:33:34	59.98676	0		0		0			-653	30633.8	1	0	1	-0.004	0.004	
05/16/11 08:33:36	59.98352	0		0		0			-653	30633.8	1	0	1	-0.003	0.003	
05/16/11 08:33:38	59.98062	0		0		0			-653	30633.8	1	0	1	-0.003	0.003	
05/16/11 08:33:40	59.97964	0		0		0			-653	30633.8	1	0	1	-0.001	0.001	
05/16/11 08:33:42	59.97867	0		0		0			-653	30633.8	1	0	1	-0.001	0.001	
05/16/11 08:33:44	59.97705	0		0		0			-653	30627.71	1	0	1	-0.002	0.002	
05/16/11 08:33:46	59.97641	0		0		0			-653	30627.71	1	0	1	-0.001	0.001	
05/16/11 08:33:48	59.97675	0		0		0			-653	30627.71	1	0	1	0.000	0.000	
05/16/11 08:33:50	59.97641	0		0		0			-653	30627.71	1	0	1	0.000	0.000	
05/16/11 08:33:52	59.97577	0		0		0			-653	30627.71	1	0	1	-0.001	0.001	
05/16/11 08:33:54	59.97479	0		0		0			-653	30634.13	1	0	1	-0.001	0.001	
05/16/11 08:33:56	59.97415	0		0		0			-653	30634.13	1	0	1	-0.001	0.001	
05/16/11 08:33:58	59.97287	0		0		0			-653	30634.13	1	0	1	-0.001	0.001	
05/16/11 08:34:00	59.97125	0		0		0			-653	30634.13	1	0	1	-0.002	0.002	
05/16/11 08:34:02	59.97092	0		0		0			-653	30634.13	1	0	1	0.000	0.000	
05/16/11 08:34:04	59.97125	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:06	59.97061	0		0		0			-653	30627.05	1	0	1	-0.001	0.001	
05/16/11 08:34:08	59.97092	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:10	59.97125	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:12	59.97156	0		0		0			-653	30627.05	1	0	1	0.000	0.000	
05/16/11 08:34:14	59.97253	0		0		0			-653	30662.72	1	0	1	0.001	0.001	
05/16/11 08:34:16	59.97449	0		0		0			-653	30662.72	1	0	1	0.002	0.002	
05/16/11 08:34:18	59.97577	0		0		0			-653	30662.72	1	0	1	0.001	0.001	
05/16/11 08:34:20	59.97641	0		0		0			-653	30662.72	1	0	1	0.001	0.001	
05/16/11 08:34:22	59.97641	0		0		0			-653	30662.72	1	0	1	0.000	0.000	
05/16/11 08:34:24	59.97513	0		0		0			-653	30656.52	1	0	1	-0.001	0.001	
05/16/11 08:34:26	59.9761	0		0		0			-653	30656.52	1	0	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW		Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) t(Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:34:28	59.979	0		0		0			-653	30656.52	1	0	1	0.003	0.003	
05/16/11 08:34:30	59.98126	0		0		0			-653	30656.52	1	0	1	0.002	0.002	
05/16/11 08:34:32	59.98224	0		0		0			-653	30656.52	1	0	1	0.001	0.001	
05/16/11 08:34:34	59.98254	0		0		0			-653	30642.25	1	0	1	0.000	0.000	
05/16/11 08:34:36	59.98254	0		0		0			-653	30642.25	1	0	1	0.000	0.000	
05/16/11 08:34:38	59.9816	0		0		0			-653	30642.25	1	0	1	-0.001	0.001	
05/16/11 08:34:40	59.98029	0		0		0			-653	30642.25	1	0	1	-0.001	0.001	
05/16/11 08:34:42	59.97964	0		0		0			-653	30642.25	1	0	1	-0.001	0.001	
05/16/11 08:34:44	59.98062	0		0		0			-653	30642.49	1	0	,	0.001	0.001	
05/16/11 08:34:46	59.98093	0		0		0			-653	30642.49	1	0	1	0.000	0.000	
05/16/11 08:34:48	59.98029	0		0		0			-653	30642.49	1	0	1	-0.001	0.001	
05/16/11 08:34:50	59.97931	0		0		0			-653	30642.49	1	0	1	-0.001	0.001	
05/16/11 08:34:52	59.97836	0		0		0			-653	30642.49	1	0	1	-0.001	0.001	
05/16/11 08:34:54	59.97803	0		0		0			-653	30645.72	1	0	1	0.000	0.000	
05/16/11 08:34:56	59.97803	0		0		0			-653	30645.72	1	0	1	0.000	0.000	
05/16/11 08:34:58	59.97867	0		0		0			-653	30645.72	1	0	1	0.001	0.001	
05/16/11 08:35:00	59.97964	0		0		0			-653	30645.72	1	0	1	0.001	0.001	
05/16/11 08:35:02	59.98062	0		0		0			-653	30645.72	1	0	,	0.001	0.001	
05/16/11 08:35:04	59.98126	0		0		0			-653	30648.55	1	0	1	0.001	0.001	
05/16/11 08:35:06	59.98224	0		0		0			-653	30648.55	1	0	1	0.001	0.001	
05/16/11 08:35:08	59.98416	0		0		0			-653	30648.55	1	0	1	0.002	0.002	
05/16/11 08:35:10	59.98547	0		0		0			-653	30648.55	1	0	1	0.001	0.001	
05/16/11 08:35:12	59.98578	0		0		0			-653	30648.55	1	0	1	0.000	0.000	
05/16/11 08:35:14	59.98578	0		0		0			-653	30661.06	1	0	1	0.000	0.000	
05/16/11 08:35:16	59.98676	0		0		0			-653	30661.06	1	0	1	0.001	0.001	
05/16/11 08:35:18	59.99063	0		0		0			-653	30661.06	1	0	1	0.004	0.004	
05/16/11 08:35:20	59.99417	0		0		0			-653	30661.06	1	0	1	0.004	0.004	
05/16/11 08:35:22	59.99805	0		0		0			-653	30661.06	1	0	1	0.004	0.004	
05/16/11 08:35:24	59.99966	0		0		0			-653	30661.06	1	1	1	0.002	0.002	
05/16/11 08:35:26	60.00226	0		0		0			-653	30661.06	1	1	1	0.003	0.003	
05/16/11 08:35:28	60.00195	0		0		0			-653	30661.06	1	1	1	0.000	0.000	
05/16/11 08:35:30	60.00098	0		0		0			-653	30661.06	1	1	1	-0.001	0.001	
05/16/11 08:35:32	59.99936	0		0		0			-653	30661.06	1	1	1	-0.002	0.002	
05/16/11 08:35:34	59.99872	0		0		0			-653	30684.31	1	1	1	-0.001	0.001	
05/16/11 08:35:36	59.99774	0		0		0			-653	30684.31	1	0	1	-0.001	0.001	
05/16/11 08:35:38	59.99741	0		0		0			-653	30684.31	1	0	1	0.000	0.000	
05/16/11 08:35:40	59.99741	0		0		0			-653	30684.31	1	0	1	0.000	0.000	
05/16/11 08:35:42	59.99838	0		0		0			-653	30684.31	1	0	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	$\begin{gathered} \text { BA } \\ \text { Load } \\ \text { MW } \end{gathered}$	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:35:44	59.99966	0		0		0			-653	30686.83	1	1	1	0.001	0.001	
05/16/11 08:35:46	60.00064	0		0		0			-653	30686.83	1	1	1	0.001	0.001	
05/16/11 08:35:48	60.00098	0		0		0			-653	30686.83	1	1	1	0.000	0.000	
05/16/11 08:35:50	60.00064	0		0		0			-653	30686.83	1	1	1	0.000	0.000	
05/16/11 08:35:52	60	0		0		0			-653	30686.83	1	1	1	-0.001	0.001	
05/16/11 08:35:54	59.99936	0		0		0			-653	30678.05	1	1	1	-0.001	0.001	
05/16/11 08:35:56	59.99741	0		0		0			-653	30678.05	1	0	1	-0.002	0.002	
05/16/11 08:35:58	59.99484	0		0		0				30678.05	1	0	1	-0.003	0.003	
05/16/11 08:36:00	59.99289	0		0		0				30678.05	1	0	1	-0.002	0.002	
05/16/11 08:36:02	59.99097	0		0		0				30678.05	1	0	1	-0.002	0.002	
05/16/11 08:36:04	59.98965	0		0		0				30679.19	1	0	1	-0.001	0.001	
05/16/11 08:36:06	59.98804	0		0		0				30679.19	1	0	1	-0.002	0.002	
05/16/11 08:36:08	59.98773	0		0		0				30679.19	1	0	1	0.000	0.000	
05/16/11 08:36:10	59.98804	0		0		0				30679.19	1	0	1	0.000	0.000	
05/16/11 08:36:12	59.98901	0		0		0				30679.19	1	0	1	0.001	0.001	
05/16/11 08:36:14	59.99063	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:16	59.99255	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:18	59.99484	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:20	59.99677	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:22	59.99838	0		0		0				30684.85	1	0	1	0.002	0.002	
05/16/11 08:36:24	59.99872	0		0		0				30684.99	1	1	1	0.000	0.000	
05/16/11 08:36:26	59.99872	0		0		0				30684.99	1	1	1	0.000	0.000	
05/16/11 08:36:28	59.99936	0		0		0				30684.99	1	1	1	0.001	0.001	
05/16/11 08:36:30	60.00195	0		0		0				30684.99	1	1	1	0.003	0.003	
05/16/11 08:36:32	60.00485	0		0		0				30684.99	1	1	1	0.003	0.003	
05/16/11 08:36:34	60.00809	0		0		0				30687.29	1	1	1	0.003	0.003	
05/16/11 08:36:36	60.01099	0		0		0				30687.29	1	1	1	0.003	0.003	
05/16/11 08:36:38	60.01324	0		0		0				30687.29	1	1	1	0.002	0.002	
05/16/11 08:36:40	60.01422	0		0		0				30687.29	1	1	1	0.001	0.001	
05/16/11 08:36:42	60.01486	0		0		0				30687.29	1	1	1	0.001	0.001	
05/16/11 08:36:44	60.01453	0		0		0				30687.59	1	1	1	0.000	0.000	
05/16/11 08:36:46	60.01227	0		0		0				30687.59	1	1	1	-0.002	0.002	
05/16/11 08:36:48	60.01099	0		0		0				30687.59	1	1	1	-0.001	0.001	
05/16/11 08:36:50	60.01099	0		0		0				30687.59	1	1	1	0.000	0.000	
05/16/11 08:36:52	60.01227	0		0		0				30687.59	1	1	1	0.001	0.001	
05/16/11 08:36:54	60.01227	0		0		0				30726.76	1	1	1	0.000	0.000	
05/16/11 08:36:56	60.01163	0		0		0				30726.76	1	1	1	-0.001	0.001	
05/16/11 08:36:58	60.01132	0		0		0				30726.76	1	1	1	0.000	0.000	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:37:00	60.01132	0		0		0				30726.76	1	1	1	0.000	0.000	
05/16/11 08:37:02	60.01065	0		0		0				30726.76	1	1	1	-0.001	0.001	
05/16/11 08:37:04	60.00903	0		0		0				30726.82	1	1	1	-0.002	0.002	
05/16/11 08:37:06	60.00839	0		0		0				30726.82	1	1	1	-0.001	0.001	
05/16/11 08:37:08	60.00809	0		0		0				30726.82	1	1	1	0.000	0.000	
05/16/11 08:37:10	60.00809	0		0		0				30726.82	1	1	1	0.000	0.000	
05/16/11 08:37:12	60.00937	0		0		0				30726.82	1	1	1	0.001	0.001	
05/16/11 08:37:14	60.01099	0		0		0				30720.93	1	1	1	0.002	0.002	
05/16/11 08:37:16	60.01227	0		0		0				30720.93	1	1	1	0.001	0.001	
05/16/11 08:37:18	60.01291	0		0		0				30720.93	1	1	1	0.001	0.001	
05/16/11 08:37:20	60.0126	0		0		0				30720.93	1	1	1	0.000	0.000	
05/16/11 08:37:22	60.01132	0		0		0				30720.93	1	1	1	-0.001	0.001	
05/16/11 08:37:24	60.0097	0		0		0				30720.53	1	1	1	-0.002	0.002	
05/16/11 08:37:26	60.00613	0		0		0				30720.53	1	1	1	-0.004	0.004	
05/16/11 08:37:28	60.00259	0		0		0				30720.53	1	1	1	-0.004	0.004	
05/16/11 08:37:30	59.99936	0		0		0				30720.53	1	1	1	-0.003	0.003	
05/16/11 08:37:32	59.99902	0		0		0				30720.53	1	1	1	0.000	0.000	
05/16/11 08:37:34	60.00034	0		0		0				30720.62	1	1	1	0.001	0.001	
05/16/11 08:37:36	60.00064	0		0		0				30720.62	1	1	1	0.000	0.000	
05/16/11 08:37:38	59.99936	0		0		0				30720.62	1	1	1	-0.001	0.001	
05/16/11 08:37:40	59.99741	0		0		0				30720.62	1	0	1	-0.002	0.002	
05/16/11 08:37:42	59.99579	0		0		0				30720.62	1	0	1	-0.002	0.002	
05/16/11 08:37:44	59.99387	0		0		0				30721.15	1	0	1	-0.002	0.002	
05/16/11 08:37:46	59.99255	0		0		0				30721.15	1	0	1	-0.001	0.001	
05/16/11 08:37:48	59.99191	0		0		0				30721.15	1	0	1	-0.001	0.001	
05/16/11 08:37:50	59.99255	0		0		0				30721.15	1	0	1	0.001	0.001	
05/16/11 08:37:52	59.99548	0		0		0				30721.15	1	0	1	0.003	0.003	
05/16/11 08:37:54	60	0		0		0				30726.87	1	1	1	0.005	0.005	
05/16/11 08:37:56	60.00323	0		0		0				30726.87	1	1	1	0.003	0.003	
05/16/11 08:37:58	60.00516	0		0		0				30726.87	1	1	1	0.002	0.002	
05/16/11 08:38:00	60.00485	0		0		0				30726.87	1	1	1	0.000	0.000	
05/16/11 08:38:02	60.00354	0		0		0				30726.87	1	1	1	-0.001	0.001	
05/16/11 08:38:04	60.00226	0		0		0				30734.84	1	1	1	-0.001	0.001	
05/16/11 08:38:06	60.00098	0		0		0				30734.84	1	1	1	-0.001	0.001	
05/16/11 08:38:08	60	0		0		0				30734.84	1	1	1	-0.001	0.001	
05/16/11 08:38:10	59.99966	0		0		0				30734.84	1	1	1	0.000	0.000	
05/16/11 08:38:12	59.99966	0		0		0				30734.84	1	1	1	0.000	0.000	
05/16/11 08:38:14	59.99774	0		0		0				30757.45	1	0	1	-0.002	0.002	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	$\begin{gathered} \text { BA } \\ \text { Bias } \\ \text { Setting } \\ \text { MW/0.1 Hz } \end{gathered}$	BA Load MW	Event Detection Row 805 921 806	Recovery Target Freq: 59.999 8:06:38 8:10:30 $03: 52$	Max Absolute Delta Hz 0.078 t(0) t (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$ 1
05/16/11 08:38:16	59.9971	0		0		0				30757.45	1	0	1	-0.001	0.001	
05/16/11 08:38:18	59.99741	0		0		0				30757.45	1	0	1	0.000	0.000	
05/16/11 08:38:20	59.99805	0		0		0				30757.45	1	0	1	0.001	0.001	
05/16/11 08:38:22	59.99872	0		0		0				30757.45	1	1	1	0.001	0.001	
05/16/11 08:38:24	59.99936	0		0		0				30757.92	1	1	1	0.001	0.001	
05/16/11 08:38:26	60	0		0		0				30757.92	1	1	1	0.001	0.001	
05/16/11 08:38:28	60.00162	0		0		0				30757.92	1	1	1	0.002	0.002	
05/16/11 08:38:30	60.00323	0		0		0				30757.92	1	1	1	0.002	0.002	
05/16/11 08:38:32	60.00388	0		0		0				30757.92	1	1	1	0.001	0.001	
05/16/11 08:38:34	60.00485	0		0		0				30752.27	1	1	1	0.001	0.001	
05/16/11 08:38:36	60.00549	0		0		0				30752.27	1	1	1	0.001	0.001	
05/16/11 08:38:38	60.00613	0		0		0				30752.27	1	1	1	0.001	0.001	
05/16/11 08:38:40	60.00647	0		0		0				30752.27	1	1	1	0.000	0.000	
05/16/11 08:38:42	60.00677	0		0		0				30752.27	1	1	1	0.000	0.000	
05/16/11 08:38:44	60.00677	0		0		0				30752.33	1	1	1	0.000	0.000	
05/16/11 08:38:46	60.00613	0		0		0				30752.33	1	1	1	-0.001	0.001	
05/16/11 08:38:48	60.00549	0		0		0				30752.33	1	1	1	-0.001	0.001	
05/16/11 08:38:50	60.00485	0		0		0				30752.33	1	1	1	-0.001	0.001	
05/16/11 08:38:52	60.00485	0		0		0				30752.33	1	1	1	0.000	0.000	
05/16/11 08:38:54	60.00613	0		0		0				30755.63	1	1	1	0.001	0.001	
05/16/11 08:38:56	60.01001	0		0		0				30755.63	1	1	1	0.004	0.004	
05/16/11 08:38:58	60.01324	0		0		0				30755.63	1	1	1	0.003	0.003	
05/16/11 08:39:00	60.01614	0		0		0				30755.63	1	1	1	0.003	0.003	
05/16/11 08:39:02	60.0184	0		0		0				30755.63	1	1	1	0.002	0.002	
05/16/11 08:39:04	60.01971	0		0		0				30755.66	1	1	1	0.001	0.001	
05/16/11 08:39:06	60.021	0		0		0				30755.66	1	1	1	0.001	0.001	
05/16/11 08:39:08	60.02133	0		0		0				30755.66	1	1	1	0.000	0.000	
05/16/11 08:39:10	60.02197	0		0		0				30755.66	1	1	1	0.001	0.001	
05/16/11 08:39:12	60.02359	0		0		0				30755.66	1	1	1	0.002	0.002	
05/16/11 08:39:14	60.02682	0		0		0				30784.89	1	1	1	0.003	0.003	
05/16/11 08:39:16	60.0307	0		0		0				30784.89	1	1	1	0.004	0.004	
05/16/11 08:39:18	60.0336	0		0		0				30784.89	1	1	1	0.003	0.003	
05/16/11 08:39:20	60.03424	0		0		0				30784.89	1	1	1	0.001	0.001	
05/16/11 08:39:22	60.03326	0		0		0				30784.89	1	1	1	-0.001	0.001	
05/16/11 08:39:24	60.0307	0		0		0				30786.98	1	1	1	-0.003	0.003	
05/16/11 08:39:26	60.02875	0		0		0				30786.98	1	1	1	-0.002	0.002	
05/16/11 08:39:28	60.02875	0		0		0				30786.98	1	1	1	0.000	0.000	
05/16/11 08:39:30	60.02939	0		0		0				30786.98	1	1	1	0.001	0.001	

Time (T)	Hz	Contingent Resource Lost MW	Load Resources Tripped MW	NonConforming Load Load (-) MW	Not Used	Not Used	Not Used	Not Used	BA Bias Setting MW/0.1 Hz	BA Load MW	Event DetectionRow805921806	Recovery Target Freq: 59.999 8:06:38 8:10:30 03:52	Max Absolute Delta Hz 0.078 t(0) (Recovery) Event Length mm:ss	Lowest Delta Hz -0.078 Delta Hz	Highest Delta Hz 0.009 Absolute Delta Hz	Rows of data to shift to align $\mathrm{T}(0)$
05/16/11 08:39:32	60.02908	0		0		0				30786.98	1	1	1	0.000	0.000	
05/16/11 08:39:34	60.02844	0		0		0				30796.28	1	1	1	-0.001	0.001	
05/16/11 08:39:36	60.02777	0		0		0				30796.28	1	1	1	-0.001	0.001	
05/16/11 08:39:38	60.02811	0		0		0				30796.28	1	1	1	0.000	0.000	
05/16/11 08:39:40	60.02777	0		0		0				30796.28	1	1	1	0.000	0.000	
05/16/11 08:39:42	60.02777	0		0		0				30796.28	1	1	1	0.000	0.000	
05/16/11 08:39:44	60.02777	0		0		0				30792.94	1	1	1	0.000	0.000	
05/16/11 08:39:46	60.02747	0		0		0				30792.94	1	1	1	0.000	0.000	
05/16/11 08:39:48	60.02713	0		0		0				30792.94	1	1	1	0.000	0.000	
05/16/11 08:39:50	60.02618	0		0		0				30792.94	1	1	1	-0.001	0.001	
05/16/11 08:39:52	60.02521	0		0		0				30792.94	1	1	1	-0.001	0.001	
05/16/11 08:39:54	60.02457	0		0		0				30803.58	1	1	1	-0.001	0.001	
05/16/11 08:39:56	60.02487	0		0		0				30803.58	1	1	1	0.000	0.000	
05/16/11 08:39:58	60.02551	0		0		0				30803.58	1	1	1	0.001	0.001	
05/16/11 08:40:00	60.02618	0		0		0				30803.58	1	1	1	0.001	0.001	

Note: See "Instruction" tab for more detailed instructions.

| Step 1. | Copy and Paste Event Data into the appropriate cells of the "Data" worksheet.
 Maintain date and time format of mm/dd/yy hh:mm:ss. |
| :--- | :--- | :--- |
| Step 2. | Data must start at least 2 full minutes before the beginning of the event.
 Collect the same amount of data for each event. Suggest 2 to 3 minutes before to 15 minutes after (up
 to 60 minutes total). Delete unused rows of data in the Data worksheet below your data, columns A
 through R. You must also delete any un-used event detection formulas in columns N through R as well. |
| Step 3. Enter your BA name in cell B1 of this worksheet. | |

58.500 Hz
61.500 Hz

| | Auto | Event Detection |
| :--- | :--- | :--- | :--- |
| 8:06:38 | 1245 | Manually selected row number of the Event Starting Time. |
| 8:10:30 | 1442 | Manually selected row number of the Event Ending Time. |

Event Frequency Data

11/05/16 Date yymmdd 8:06 Time hh:ss of T(0)

Where "MyBA" = your BA mnemonic

H

毋

แนา

 คัْ

"Auto" Event Detection adjustment of $\mathrm{T}(0)$.
\# of rows to shift $\mathrm{T}(0)$
A zero value aligns the data to the hightest Frequency change value. Usually the event begins one or two data scans earlier than this scan

Increasing this value shifts graph data to the right.
Decreasing this value shifts graph data to the left.

Note: The P.U. Performance values indicate performance as a P.U. value of BA Bias setting. For BAs that utilize a variable Bias, the Bias average during $\mathrm{T}(+20)$ to $\mathrm{T}(+52)$ is used.
P.U. values above 1.0 indicate that the Bias setting was below measured Frequency Response P.U. values below 1.0 indicate that the Bias setting was above measured Frequency Response,

$T(0)$
 First change in frequency of the event should occur here on the vertical grid line.

It is important that the pre-event frequency average to NOT contain frequency data of the event, "Average Frequency" trend to the left of center of the graph.
To shift the data on the graph left or right, adjust the value in cell Q 3 highlighted in yellow above.

To be completed for each event evaluated.

Set-up Data collection in exact same order as the "Data" sheet of this work book. Data should be in this order:
Column A: Date and Time in this format, mm/dd/yy HH:MM:SS
Column B: Frequency Hz
Column C: Contingent Resouce Lost MW or Lost Load
Column D: Load Resources tripped during the event.
Column E: Non Conforming Load
Column F: Spare
Column G: Not Used
Column H: Spare
Column I: Spare
Column J: BA Bias Setting
Column K: BA Load
2 Note: Columns D \& E are optional data. If you choose not to use these, leave the columns blank. Do not delete the columns. Use the sign ($+/-$) convention defined in FRS Form 1
3 Data compression must be turned off for each data point. Quality data will give you quality results in the evaluation.
4 Data must start a minimum of two (2) minutes before the event begins and includes a minimum of 15 minutes after the beginning of the event with up to 60 minutes of data.
Be sure the "Data" worksheet is clear of any old data. Collect the same total minutes of data for each event evaluated to minimize your effort and time.
If using PI historian as your data source, use "PasteSpecial/Values" to enter data into the spreadsheet. Do not include historian data collection formulas in the data.
5 Verify that the "Auto" Event Detection selected the correct event. Verify time and delta Hz by comparing time of event and delta Hz on the graph on the "Copy Results" worksheet
If the wrong event was selected, in cell "E4" of this worksheet select "Manual" and manually select the beginning and ending row numbers of the desired event and enter these in cells "E5" and "E6". Only rarely should you have to use the "Manual" process.
6 Once data is in place in the "Data" worksheet, confirm the Auto selection of the beginning of the event by observing the "Graph 20 to 52 s " worksheet. Adjust the selection if necessary. To make an adjustment, change the value in cell "Q3" on the "Graph 20 to 52 s " worksheet. Usually a 0,1 or 2 will achive the correct alignment of $\mathrm{T}(0)$.

If the correct row is selected, the "Graph 20 to 52s" worksheet will indicate the first change in frequency (red trend) of the event on the center vertical grid line of the graph.
The end of the event will be Auto selected based on the frequency value in cell " N 2 " on the Data worksheet. This will be the frequency at the beginning of the event or 60 Hz , whichever is lower. (for low Hz events) This value controls the end of the "Sustained Frequency Response" evaluation period.
Primary Frequency Response should be sustained during the event recovery period. This evaluation determines how well you achieved this goal
 in the correct order on worksheet "Form 1 Summary Data"
10 Use PasteSpecial/Values and paste the copied data into FRS Form 1 on the appropriate event row. Be sure to use the latest version of Form 1, currently Form 1.9.
11 Save this Form 2 using the file name convention on the "Copy Results" worksheet. The complete file name is in bold in cell B38. Return all completed Form $2 s$ with your Form 1 to NERC

Steps To be completed the first time you use form 2 for your BA.

A Enter the Balancing Authority name as you want it to appear on the graphs in cell "B1" of the "Copy Results" worksheet. For example: "ERCOT".

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Standards Announcement Project 2007-12 Frequency Response

Recirculation Ballot is now open through 8 p.m. Friday, December 21, 2012

Now Available

A recirculation ballot window for BAL-003-1 - Frequency Response and Frequency Bias Setting is now open through 8 p.m. Eastern on Friday, December 21, 2012.

The Frequency Response Standard Drafting Team did not make any substantive changes to the documents, but did make the following minor changes based on stakeholder comments:

- Made clarifying changes to the proposed standard including replacing the term "...subject to..." with "...in accordance with..." in Requirement R2.
- Clarified the description of the calculation for the Interconnection IFRO in Attachment A.
- Modified Attachment A and the Procedure to provide consistency with the use of the term "resource contingency criteria."
- Corrected typographical errors in all documents.

Instructions

In the recirculation ballot, votes are counted by exception. Only members of the ballot pool may cast a ballot; all ballot pool members may change their previously cast votes. A ballot pool member who failed to cast a ballot during the last ballot window may cast a ballot in the recirculation ballot window. If a ballot pool member does not participate in the recirculation ballot, that member's vote cast in the previous ballot will be carried over as that member's vote in the recirculation ballot.

Members of the ballot pool associated with this project may log in and submit their vote for the standard by clicking here.

Next Steps

Voting results will be posted and announced after the ballot window closes. If approved, the standard will be submitted to the Board of Trustees for adoption and then filed with the appropriate regulatory authorities.

Background

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. There is evidence of continuing
decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard would set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation.

Additional information is available on the project page.

Standards Process

The Standard Processes Manual contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate.

For more information or assistance, please contact Wendy Muller, Standards Development Administrator, at wendy.muller@nerc.net or at 404-446-2560.

North American Electric Reliability Corporation
3353 Peachtree Rd.NE Suite 600, North Tower

Atlanta, GA 30326
404-446-2560 | www.nerc.com

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Standards Announcement
 Project 2007-12 Frequency Response

Recirculation Ballot Results

Now Available

A recirculation ballot for BAL-003-1 - Frequency Response and Frequency Bias Setting concluded at 8 p.m. Eastern on Friday, December 21, 2012.

Voting statistics are listed below, and the Ballot Results page provides a link to the detailed results.

Approval
Quorum: 86.19\%
Approval: 76.53%

Next Steps

The standard will be presented to the Board of Trustees for adoption and then filed with the appropriate regulatory authorities.

Background

Frequency Response, a measure of an Interconnection's ability to stabilize frequency immediately following the sudden loss of generation or load, is a critical component to the reliable operation of the bulk power system, particularly during disturbances and restoration. There is evidence of continuing decline in Frequency Response over the past 10 years, but no confirmed reason for the apparent decline. The proposed standard would set a minimum Frequency Response obligation, provide a uniform calculation of Frequency Bias Settings that transition to values closer to Frequency Response, and encourage coordinated AGC operation.

Additional information is available on the project page.

Standards Process

The Standard Processes Manual contains all the procedures governing the standards development process. The success of the NERC standards development process depends on stakeholder participation. We extend our thanks to all those who participate.

For more information or assistance, please contact Wendy Muller, Standards Development Administrator, at wendy.muller@ nerc.net or at 404-446-2560.

North American Electric Reliability Corporation
3353 Peachtree Rd.NE
Suite 600, North Tower
Atlanta, GA 30326
404-446-2560 | www.nerc.com

NERC

NORTH AMERICAN ELECTRIC
RELIABILITY CORPORATION

Newsroom • Site Map • Contact NERC

SEARCH NERC.com

Advanced Search
\vee About NERC $~$ Standards \vee Compliance \vee Assessments \& Trends \vee Events Analysis \vee Programs

Password

Log in
Register
-Ballot Pools
-Current Ballots
-Ballot Results
-Registered Ballot Body
-Proxy Voters
Home Page

Ballot Results	
Ballot Name:	Project 2007-12 Frequency Response Recirculation Ballot December $2012 _$in
Ballot Period:	$12 / 12 / 2012-12 / 21 / 2012$
Ballot Type:	Recirculation
Total \# Votes:	312
Total Ballot Pool:	362
Quorum:	$\mathbf{8 6 . 1 9 \%}$ The Quorum has been reached
Weighted Segment	76.53%
Vote:	
Ballot Results:	The Standard has Passed

Summary of Ballot Results									
Segment	Ballot Pool	Segment Weight	Affirmative		Negative			Abstain	No Vote
			Votes	Fraction	Votes			\# Votes	
1-Segment 1.	92	21	41	0.661		21	0.339	20	10
2-Segment 2.	11	1	5	0.5		5	0.5	51	0
3-Segment 3.	79	1	40	0.769		2	0.231	16	11
4 - Segment 4.	28	1	16	0.889		2	0.111	$1{ }^{1}$	5
5 - Segment 5.	80	1	42	0.75		4	0.25	510	14
6 - Segment 6.	48	1	28	0.824		6	0.176	-6	8
7 - Segment 7.	0	$0 \quad 0$	0	0		0	0	0	0
8 - Segment 8.	9	$9 \quad 0.7$	7	0.7		0	0	02	0
9 - Segment 9.	6	60.3	1	0.1		2	0.2	21	2
10 - Segment 10.	9	$9 \quad 0.7$	7	0.7		0	0	0 2	0
Totals	362	27.7	187	5.893	62	2	1.807	7 63	50

Individual Ballot Pool Results

Segment	Organization	Member	Ballot	Comments
1 A	Ameren Services	Kirit Shah	Affirmative	
1 A	American Electric Power	Paul B. Johnson		
1 A	Arizona Public Service Co.	Robert Smith	Negative	
1 A	Associated Electric Cooperative, Inc.	John Bussman	Affirmative	
1 A	Austin Energy	James Armke		
1 A	Avista Corp.	Scott J Kinney	Negative	
$1 \quad \mathrm{~B}$	Balancing Authority of Northern California	Kevin Smith	Affirmative	

6	Tacoma Public Utilities	Michael C Hill	Affirmative	
6	Tampa Electric Co.	Benjamin F Smith II		
6	Tennessee Valley Authority	Marjorie S. Parsons	Affirmative	
6	Westar Energy	Grant L Wilkerson	Affirmative	
6	Western Area Power Administration - UGP Marketing	Peter H Kinney	Affirmative	
6	Xcel Energy, Inc.	David F Lemmons	Affirmative	
8		Roger C Zaklukiewicz	Affirmative	
8		James A Maenner	Abstain	
8		Robert Blohm	Affirmative	
8		Edward C Stein	Affirmative	
8	Energy Mark, Inc.	Howard F. Illian	Affirmative	
8	JDRJC Associates	Jim Cyrulewski	Affirmative	
8	Power Energy Group LLC	Peggy Abbadini	Affirmative	
8	Utility Services, Inc.	Brian Evans-Mongeon	Abstain	
8	Volkmann Consulting, Inc.	Terry Volkmann	Affirmative	
9	California Energy Commission	William M Chamberlain		
9	Commonwealth of Massachusetts Department of Public Utilities	Donald Nelson	Affirmative	
9	National Association of Regulatory Utility Commissioners	Diane J. Barney	Negative	
9	New York State Department of Public Service	Thomas G. Dvorsky	Negative	
9	Oregon Public Utility Commission	Jerome Murray	Abstain	
9	Public Utilities Commission of Ohio	Klaus Lambeck		
10	Florida Reliability Coordinating Council	Linda Campbell	Abstain	
10	Midwest Reliability Organization	James D Burley	Affirmative	
10	New York State Reliability Council	Alan Adamson	Affirmative	
10	Northeast Power Coordinating Council	Guy V. Zito	Affirmative	
10	ReliabilityFirst Corporation	Anthony E Jablonski	Affirmative	
10	SERC Reliability Corporation	Carter B. Edge	Affirmative	
10	Southwest Power Pool RE	Emily Pennel	Abstain	
10	Texas Reliability Entity, Inc.	Donald G Jones	Affirmative	
10	Western Electricity Coordinating Council	Steven L. Rueckert	Affirmative	

[^126]
[^0]: ${ }^{1}$ The highest under-frequency setting in the Eastern Interconnection is 59.82 Hz . This is limited to a single Control Area. The 59.7 Hz setting is widely used as a first step.

[^1]: * If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

[^2]: * If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

[^3]: ${ }^{1}$ The appeals process is in the Reliability Standards Process Manual: http://www.nerc.com/standards/newstandardsprocess.html.

[^4]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^5]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^6]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^7]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^8]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^9]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^10]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^11]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^12]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^13]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^14]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^15]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^16]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on the prior page.

[^17]: ${ }^{1}$ The appeals process is in the Reliability Standards Process Manual: http://www.nerc.com/standards/newstandardsprocess.html.

[^18]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^19]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

[^20]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^21]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^22]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^23]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^24]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^25]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^26]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^27]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^28]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^29]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^30]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^31]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^32]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

[^33]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^34]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^35]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^36]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these comments. Regional acronyms and segment numbers are shown on prior page.

[^37]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^38]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^39]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^40]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^41]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^42]: *If more than one Region or Segment applies, indicate the best fit for the purpose of these

[^43]: ${ }^{1}$ The appeals process is in the Reliability Standards Development Procedures: http://www.nerc.com/standards/newstandardsprocess.html.

[^44]: Sincerely,

 cc: Registered Ballot Body Registered Users
 Standards Mailing List
 NERC Roster

[^45]: ${ }^{1}$ Cohn, Nathan. Control of Generation and Power Flow on Interconnected Systems. (New York: John Wiley \& Sons, 1966)

[^46]: ${ }^{1}$ Rotating (motor) and inductive loads are the dominant load response factors; resistive loads do not change with changing frequency.

[^47]: ${ }^{2}$ An amount of kinetic energy proportional to the power (generation) lost will be withdrawn from the stored energy in rotating machines with direct mechanical-to-electrical coupling throughout the Interconnection. As the mechanical speeds are reduced, Interconnection frequency decreases proportionally.

[^48]: 3 This example assumes dynamic scheduling, not the use of pseudo-ties.
 4 This example assumes dynamic scheduling, not the use of pseudo-ties.

[^49]: ${ }^{1}$ On March 18, 2010, FERC Ordered NERC to deliver a performance-based Frequency Response Standard within 6 months. While FERC granted rehearing to provide time for a technical conference, the Order No 693 directives on BAL-003 must still be addressed. BAL-003-1 is one of the top priority standards for NERC in 2010.

[^50]: the requirement be modified to consider the reliability impact on its own balancing area, the balancing areas of adjacent BA's and the interconnection.
 No
 How can hard dates for the phasing out of the current R5 be in the implementation plan for a standard under development? The concept of phasing out R5 and phasing in R2 could be done, however, this would take considerable thought as to how to implement that. This current proposed implementation plan should be carefully reconsidered.

[^51]: ${ }^{1}$ The appeals process is in the Reliability Standards Development Procedures: $\underline{h t t p: / / w w w . n e r c . c o m / s t a n d a r d s / n e w s t a n d a r d s p r o c e s s . h t m l . ~}$

[^52]: Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

[^53]: Consideration of Comments: Project 2007-12 BAL-003-1 - $1^{\text {st }}$ Draft

[^54]: $\begin{array}{llllll}0000 & 3769.619 & 3764.981 & 3786.628 & 3776.278 & 3756.708\end{array}$ $\begin{array}{llllll}0.000 & 3769.619 & 3764.981 & 3786.628 & 3776.278 & 3756.708 \\ 0.000 & 3766.872 & 3764.893 & 3786.582 & 3776.278 & 3756.754\end{array}$ $\begin{array}{lllllll}0.000 & 3766.872 & 3764.893 & 3786.582 & 3776.278 & 3756.754 \\ 0.000 & 3763.407 & 3764.803 & 3786.528 & 3776.278 & 3756.799\end{array}$ $\begin{array}{llllll}0.000 & 3763.407 & 3764.803 & 3786.528 & 3776.278 & 3756.799 \\ 0.000 & 3761.155 & 3764.712 & 3786.469 & 3776.278 & 3756.845\end{array}$ $\begin{array}{llllll}0.000 & 3761.155 & 3764.712 & 3786.469 & 3776.278 & 3756.845 \\ 0.000 & 3759.691 & 3764.623 & 3786.407 & 3776.278 & 3756.890\end{array}$ $\begin{array}{llllll}0.000 & 3759.691 & 3764.623 & 3786.407 & 3776.278 & 3756.890 \\ 0.000 & 3757.620 & 3764.511 & 3786.340 & 3776.278 & 3756.935\end{array}$ $\begin{array}{lllllll}0.000 & 3756.274 & 3764.400 & 3786.271 & 3776.278 & 3756.980\end{array}$ $\begin{array}{lllllll}0.000 & 3753.159 & 3764.291 & 3786.194 & 3776.278 & 3757.024\end{array}$ $\begin{array}{lllllll}0.000 & 3751.134 & 3764.182 & 3786.114 & 3776.278 & 3757.069\end{array}$ $\begin{array}{lllllll}0.000 & 3749.818 & 3764.075 & 3786.031 & 3776.278 & 3757.113\end{array}$ $\begin{array}{llllllll}0.000 & 3748.963 & 3763.959 & 3785.946 & 3776.278 & 3757.157\end{array}$ $\begin{array}{llllllll}0 & 000 & 3748.407 & 3763.844 & 3785.860 & 3776.278 & 3757.200\end{array}$ $\begin{array}{llllll}0.000 & 3748.407 & 3763.844 & 3785.860 & 3776.278 & 3757.200 \\ 0.000 & 3746.925 & 3763.697 & 3785.771 & 3776.278 & 3757.244\end{array}$ $\begin{array}{lllllll}0.000 & 3746.925 & 3763.697 & 3785.771 & 3776.278 & 3757.244 \\ 0 & 3745.962 & 3763.551 & 3785.681 & 3776.278 & 3757.287\end{array}$ $\begin{array}{lllllll}0.000 & 3745.962 & 3763.551 & 3785.681 & 3776.278 & 3757.287 \\ 0000 & 3745.335 & 3763.405 & 3785.589 & 3776.278 & 3757.330\end{array}$ 0757.287 .330 075757.373 $\begin{array}{lllllll}0.000 & 3743.740 & 3763.140 & 3785.402 & 3776.278 & 3757.416\end{array}$ $\begin{array}{lllllll}0.000 & 3741.932 & 3763.001 & 3785.304 & 3776.278 & 3757.459\end{array}$ $\begin{array}{lllllll}0.000 & 3740.756 & 3762.862 & 3785.204 & 3776.278 & 3757.501\end{array}$ $\begin{array}{lllllll}0.000 & 3739.992 & 3762.724 & 3785.102 & 3776.278 & 3757.543\end{array}$ $\begin{array}{lllllll}0.000 & 3740.895 & 3762.583 & 3785.004 & 3776.278 & 3757.585\end{array}$ $\begin{array}{lllllll}0.000 & 3741.483 & 3762.442 & 3784.906 & 3776.278 & 3757.627\end{array}$ $\begin{array}{llllll}0.000 & 3741.585 & 3762.282 & 3784.810 & 3776.278 & 3757.669\end{array}$ $\begin{array}{lllllll}0.000 & 3741.651 & 3762.122 & 3784.714 & 3776.278 & 3757.710\end{array}$ $\begin{array}{lllllll}0.000 & 3741.694 & 3761.963 & 3784.619 & 3776.278 & 3757.752\end{array}$

[^55]: $\begin{array}{lllllll}0.000 & 3808.010 & 3772.491 & 3784.036 & 3778.562 & 3751.772\end{array}$ $\begin{array}{llllll}0.000 & 3806.928 & 3772.434 & 3784.104 & 3778.562 & 3751.852\end{array}$ $\begin{array}{lllllll}0.000 & 3806.928 & 3772.434 & 3784.104 & 3778.562 & 3751.852 \\ 0.000 & 3806.225 & 3772.378 & 3784.170 & 3778.562 & 3751.932\end{array}$ $\begin{array}{llllll}0.000 & 3806.225 & 3772.378 & 3784.170 & 3778.562 & 3751.932 \\ 0.000 & 3804.367 & 3772.321 & 3784.230 & 3778.562 & 3752.011\end{array}$ $\begin{array}{llllll}0.000 & 3804.367 & 3772.321 & 3784.230 & 3778.562 & 3752.011 \\ 0.000 & 3803.160 & 3772.265 & 3784.286 & 3778.562 & 3752.089\end{array}$ $\begin{array}{llllll}0.000 & 3803.160 & 3772.265 & 3784.286 & 3778.562 & 3752.089 \\ 0.000 & 3802.375 & 3772.208 & 3784.339 & 3778.562 & 3752.167\end{array}$ $\begin{array}{lllllll}0.000 & 3802.375 & 3772.208 & 3784.339 & 3778.562 & 3752.167 \\ 0.000 & 3803.545 & 3772.152 & 3784.395 & 3778.562 & 3752.245\end{array}$ $\begin{array}{lllllll}0.000 & 3804.305 & 3772.095 & 3784.453 & 3778.562 & 3752.322\end{array}$ $\begin{array}{lllllll}0.000 & 3804.799 & 3772.039 & 3784.513 & 3778.562 & 3752.399\end{array}$ $\begin{array}{lllllll}0.000 & 3802.600 & 3771.968 & 3784.565 & 3778.562 & 3752.475\end{array}$ $\begin{array}{lllllll}0.000 & 3801.170 & 3771.897 & 3784.613 & 3778.562 & 3752.551\end{array}$ $\begin{array}{llllllll}0.000 & 3800.241 & 3771.826 & 3784.659 & 3778.562 & 3752.626\end{array}$ $\begin{array}{lllllll}0.000 & 3800.241 & 3771.826 & 3784.659 & 3778.562 & 3752.626 \\ 0.000 & 3800.478 & 3771.754 & 3784.704 & 3778.562 & 3752.701\end{array}$ $\begin{array}{lllllll}0.000 & 3800.478 & 3771.754 & 3784.704 & 3778.562 & 3752.701 \\ 0.000 & 3800.632 & 3771.682 & 3784.750 & 3778.562 & 3752.776\end{array}$ $\begin{array}{lllllll}0.000 & 3800.632 & 3771.682 & 3784.750 & 3778.562 & 3752.776\end{array}$ $\begin{array}{lllllll}0.000 & 3800.731 & 3771.610 & 3784.796 & 3778.562 & 3752.850\end{array}$ $\begin{array}{lllllll}0.000 & 3798.557 & 3771.524 & 3784.835 & 3778.562 & 3752.924\end{array}$ $\begin{array}{lllllll}0.000 & 3797.143 & 3771.439 & 3784.870 & 3778.562 & 3752.997\end{array}$ $\begin{array}{lllllll}0.000 & 3796.224 & 3771.354 & 3784.902 & 3778.562 & 3753.070\end{array}$ $\begin{array}{lllllll}0.000 & 3795.347 & 3771.262 & 3784.932 & 3778.562 & 3753.142\end{array}$ $\begin{array}{lllllll}0.000 & 3794.777 & 3771.171 & 3784.960 & 3778.562 & 3753.214\end{array}$ $\begin{array}{lllllll}0.000 & 3794.406 & 3771.080 & 3784.986 & 3778.562 & 3753.286\end{array}$ $\begin{array}{lllllll}0.000 & 3794.165 & 3770.982 & 3785.012 & 3778.562 & 3753.357\end{array}$ $\begin{array}{lllllll}0.000 & 3794.009 & 3770.885 & 3785.037 & 3778.562 & 3753.428\end{array}$ $\begin{array}{lllllll}0.000 & 3793.907 & 3770.789 & 3785.062 & 3778.562 & 3753.498\end{array}$ $\begin{array}{lllllll}0.000 & 3794.401 & 3770.691 & 3785.088 & 3778.562 & 3753.568\end{array}$ $\begin{array}{lllllll}0.000 & 3794.721 & 3770.593 & 3785.115 & 3778.562 & 3753.638\end{array}$ $\begin{array}{llllllll}0.000 & 3794.930 & 3770.497 & 3785.142 & 3778.562 & 3753.707\end{array}$ $\begin{array}{lllllll}0.000 & 3795.065 & 3770.403 & 3785.170 & 3778.562 & 3753.776\end{array}$ $\begin{array}{llllll}0.000 & 3795.065 & 3770.403 & 3785.170 & 3778.562 & 3753.776 \\ 0.000 & 3795.154 & 3770.311 & 3785.197 & 3778.562 & 3753.844\end{array}$ $\begin{array}{lllllll}0.000 & 3795.154 & 3770.311 & 3785.197 & 3778.562 & 3753.844 \\ 0.000 & 3795.211 & 3770.219 & 3785.225 & 3778.562 & 3753.912\end{array}$ $\begin{array}{lllllll}0.000 & 3795.211 & 3770.219 & 3785.225 & 3778.562 & 3753.912\end{array}$ $\begin{array}{llllll}0.000 & 3795.808 & 3770.125 & 3785.254 & 3778.562 & 3753.980 \\ 0.000 & 3796.196 & 3770.032 & 3785.283 & 3778.562 & 3754.047\end{array}$ $\begin{array}{llllll}0.000 & 3796.196 & 3770.032 & 3785.283 & 3778.562 & 3754.047\end{array}$ $\begin{array}{llllll}0.000 & 3796.448 & 3769.940 & 3785.314 & 3778.562 & 3754.114 \\ 0.000 & 3798.572 & 3769.855 & 3785.350 & 3778.562 & 3754.181\end{array}$ $\begin{array}{lllllll}0.000 & 3798.572 & 3769.855 & 3785.350 & 3778.562 & 3754.181\end{array}$ $\begin{array}{lllllll}0.000 & 3799.952 & 3769.771 & 3785.389 & 3778.562 & 3754.247\end{array}$ $\begin{array}{lllllll}0.000 & 3800.850 & 3769.688 & 3785.431 & 3778.562 & 3754.313\end{array}$ $\begin{array}{lllllll}0.000 & 3800.314 & 3769.601 & 3785.471 & 3778.562 & 3754.379\end{array}$ $\begin{array}{lllllll}0.000 & 3799.965 & 3769.516 & 3785.510 & 3778.562 & 3754.444\end{array}$ $\begin{array}{lllllll}0.000 & 3799.739 & 3769.430 & 3785.548 & 3778.562 & 3754.509\end{array}$ $\begin{array}{lllllll}0.000 & 3801.270 & 3769.352 & 3785.590 & 3778.562 & 3754.573\end{array}$ $\begin{array}{lllllll}0.000 & 3802.266 & 3769.273 & 3785.635 & 3778.562 & 3754.637\end{array}$ $\begin{array}{lllllll}0.000 & 3802.913 & 3769.196 & 3785.681 & 3778.562 & 3754.701\end{array}$ $\begin{array}{lllllll}0.000 & 3802.495 & 3769.125 & 3785.726 & 3778.562 & 3754.765\end{array}$ $\begin{array}{lllllll}0.000 & 3802.222 & 3769.054 & 3785.769 & 3778.562 & 3754.828\end{array}$ $\begin{array}{lllllll}0.000 & 3802.222 & 3769.054 & 3785.769 & 3778.562 & 3754.828 \\ 0.000 & 3802.045 & 3768.984 & 3785.812 & 3778.562 & 3754.891\end{array}$ $\begin{array}{lllllll}0.000 & 3800.530 & 3768.912 & 3785.851 & 3778.562 & 3754.953\end{array}$

[^56]: Legal and Privacy : 609.452.8060 voice : 609.452.9550 fax : 116-390 Village Boulevard : Princeton, NJ 08540-5721

[^57]: No
 In addition to the requirements, reducing frequency bias obligation results in generation tripping closer to the set point. It seems that Lowering the Minimum Frequency Bias Setting from 1\% to .8\% will result in a lower response, which in turn will lower the natural frequency response. Over time it seems this pattern would lead to poorer response.

 As a final comment we believe there needs to have consideration for a coordinated response rather than a setting threshold. Coordinated response thresholds values will provide for a desired and anticipated frequency response.

[^58]: ${ }^{1}$ The appeals process is in the Standard Processes Manual: http://www.nerc.com/files/Appendix_3A StandardsProcessesManual 20120131.pdf

[^59]: ${ }^{2}$ Control of Generation and Power Flow on Interconnected Systems, John Wiley \& Sons, 1967

[^60]: ${ }^{3}$ Control of Generation and Power Flow on Interconnected Systems, John Wiley \& Sons, 1967

[^61]: ${ }^{4}$ Control of Generation and Power Flow on Interconnected Systems, John Wiley \& Sons, 1967

[^62]: Response: The drafting team does not agree, but believes an explanation would be helpful.

[^63]: ${ }^{5}$ Control of Generation and Power Flow on Interconnected Systems, John Wiley \& Sons, 1967

[^64]: ${ }^{6}$ Control of Generation and Power Flow on Interconnected Systems, John Wiley \& Sons, 1967

[^65]: ${ }^{7}$ Control of Generation and Power Flow on Interconnected Systems, John Wiley \& Sons, 1967

[^66]: ${ }^{1}$ Unless otherwise designated herein, all capitalized terms shall have the meaning set forth in the Glossary of Terms Used in NERC Reliability Standards, available here: http://www.nerc.com/files/Glossary_of_Terms.pdf.
 2 Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. \& Regs. ๆ| 31,242 at PP 368-375, order on reh'g, Order No. 693-A, 120 FERC 9 61,053 (2007).

[^67]: 3 The "Law of Conservation of Energy" is applied here in the form of power. If energy must be conserved, then power which is the first derivative of energy with respect to time, must also be conserved.
 4
 The term "balancing Inertia" is coined here from the terms "inertial frequency response" and "balancing energy". Inertial frequency response is a common term used to describe the power supplied for this portion of the frequency response and balancing energy is a term used to describe the market energy supposedly purchased to restore energy balance.

[^68]: ${ }^{5}$ Interconnected Power System Response to Generation Governing: Present Practice and Outstanding Concerns Final Report, IEEE, May 2007, pp. 1-6 - 1-9.
 ${ }^{6}$ Interconnected Power System Response to Generation Governing: Present Practice and Outstanding Concerns Final Report, IEEE, May 2007, pp. 1-4-1-6.
 ${ }^{7}$ Interconnected Power System Response to Generation Governing: Present Practice and Outstanding Concerns Final Report, IEEE, May 2007, pp. 1-16-1-19.

[^69]: ${ }^{8}$ Single Event Analysis based on results of Frequency Response Standard Field Trial Analysis, September 17, 2012.

[^70]: Project 2007-12 Frequency Response

[^71]: ${ }^{1}$ North American Electric Reliability Corp., 119 FERC 61,145, order on reh'g and compliance filing, 120 FERC 61,145 (2007) ("VRF Rehearing Order").
 ${ }^{2}$ Id. at footnote 15.

[^72]: ${ }^{1}$ North American Electric Reliability Corp., 119 FERC 61,145, order on reh'g and compliance filing, 120 FERC 61,145 (2007) ("VRF Rehearing Order").
 ${ }^{2} \mathrm{Id}$. at footnote 15.

[^73]: MyBA_091012_0227_FRS_Form2.9.x|sm
 59.500 Hz
 60.500 H

 Auto Event Detection
 2:27.26 1245 Manually selected row number of the Event Starting Time.
 2:33:00 $\quad 1442$ Manually selected row number of the Event Ending Time.

[^74]: Legal and Privacy
 404.446.2560 voice : 404.446.2595 fax

 Atlanta Office: 3353 Peachtree Road, N.E. : Suite 600, North Tower : Atlanta, GA 30326
 Washington Office: 1325 G Street, N.W. : Suite 600 : Washington, DC 20005-3801

[^75]: ${ }^{1}$ The appeals process is in the Standard Processes Manual: http://www.nerc.com/files/Appendix_3A_StandardsProcessesManual 20120131.pdf

[^76]: ${ }^{1}$ This term and definition is identical to the definition in BAL-012-1 proposed standard.

[^77]: ${ }^{1}$ This term and definition is identical to the definition in BAL-012-1 proposed standard.

[^78]: ${ }^{1}$ This term and definition is identical to the definition in BAL-012-1 proposed standard.

[^79]: | ${ }^{1}$ This term and definition is identical to the definition in BAL-012-1 proposed standard.

[^80]: ${ }^{1}$ Unless otherwise designated herein, all capitalized terms shall have the meaning set forth in the Glossary of Terms Used in NERC Reliability Standards, available here: http://www.nerc.com/files/Glossary_of_Terms.pdf.
 2 Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. \& Regs. ๆ| 31,242 at PP 368-375, order on reh'g, Order No. 693-A, 120 FERC 9 61,053 (2007).

[^81]: 3 The "Law of Conservation of Energy" is applied here in the form of power. If energy must be conserved, then power which is the first derivative of energy with respect to time, must also be conserved.
 4
 The term "balancing Inertia" is coined here from the terms "inertial frequency response" and "balancing energy". Inertial frequency response is a common term used to describe the power supplied for this portion of the frequency response and balancing energy is a term used to describe the market energy supposedly purchased to restore energy balance.

[^82]: ${ }^{5}$ Interconnected Power System Response to Generation Governing: Present Practice and Outstanding Concerns Final Report, IEEE, May 2007, pp. 1-6-1-9.
 ${ }^{6}$ Interconnected Power System Response to Generation Governing: Present Practice and Outstanding Concerns Final Report, IEEE, May 2007, pp. 1-4 - 1-6.

[^83]: ${ }^{7}$ Interconnected Power System Response to Generation Governing: Present Practice and Outstanding Concerns Final Report, IEEE, May 2007, pp. 1-16 - 1-19.

[^84]: 8 Single Event Analysis based on results of Frequency Response Standard Field Trial Analysis, September 17, 2012.

[^85]: ${ }^{1}$ Unless otherwise designated herein, all capitalized terms shall have the meaning set forth in the Glossary of Terms Used in NERC Reliability Standards, available here: http://www.nerc.com/files/Glossary_of_Terms.pdf.
 2 Mandatory Reliability Standards for the Bulk-Power System, Order No. 693, FERC Stats. \& Regs. ๆ| 31,242 at PP 368-375, order on reh'g, Order No. 693-A, 120 FERC 9 61,053 (2007).

[^86]: 3 The "Law of Conservation of Energy" is applied here in the form of power. If energy must be conserved, then power which is the first derivative of energy with respect to time, must also be conserved.
 4
 The term "balancing Inertia" is coined here from the terms "inertial frequency response" and "balancing energy". Inertial frequency response is a common term used to describe the power supplied for this portion of the frequency response and balancing energy is a term used to describe the market energy supposedly purchased to restore energy balance.

[^87]: ${ }^{5}$ Interconnected Power System Response to Generation Governing: Present Practice and Outstanding Concerns Final Report, IEEE, May 2007, pp. 1-6-1-9.
 ${ }^{6}$ Interconnected Power System Response to Generation Governing: Present Practice and Outstanding Concerns Final Report, IEEE, May 2007, pp. 1-4 - 1-6.

[^88]: ${ }^{7}$ Interconnected Power System Response to Generation Governing: Present Practice and Outstanding Concerns Final Report, IEEE, May 2007, pp. 1-16 - 1-19.

[^89]: 8 Single Event Analysis based on results of Frequency Response Standard Field Trial Analysis, September 17, 2012.

[^90]: ${ }^{1}$ North American Electric Reliability Corp., 119 FERC 61,145, order on reh'g and compliance filing, 120 FERC 61,145 (2007) ("VRF Rehearing Order").
 ${ }^{2}$ Id. at footnote 15.

[^91]: ${ }^{1}$ As of June 18, 2007, FERC granted NERC the legal authority to enforce reliability standards with all U.S. users, owners, and operators of the bulk power system, and made compliance with those standards mandatory and enforceable. In Canada, NERC has memorandums of understanding in place with provincial authorities in Ontario, New Brunswick, Nova Scotia, Québec, and Saskatchewan, and with the Canadian National Energy Board. NERC standards are mandatory and enforceable in Ontario and New Brunswick as a matter of provincial law. NERC has an agreement with Manitoba Hydro that makes reliability standards mandatory for that entity, and Manitoba has recently adopted legislation setting out a framework for standards to become mandatory for users, owners, and operators in the province. In addition, NERC has been designated the "electric reliability organization" under Alberta's Transportation Regulation, and certain reliability standards have been approved in that jurisdiction; others are pending. NERC and NPCC have been recognized as standards-setting bodies by the Régie de l'énergie of Québec, and Québec has the framework in place for reliability standards to become mandatory. Nova Scotia and British Columbia also have frameworks in place for reliability standards to become mandatory and enforceable. NERC is working with the other governmental authorities in Canada to achieve equivalent recognition.

[^92]: ${ }^{2}$ http://www.nerc.com/docs/pc/tis/Agenda Item 5.d Draft TIS IFRO Criteria\%20Rev Final.pdf

[^93]: ${ }^{3}$ The highest UFLS setpoint in the Eastern Interconnection is 59.7 Hz in FRCC, based on internal stability concerns. The FRCC concluded that the IFRO starting frequency of the prevalent 59.5 Hz for the Eastern Interconnection is acceptable in that it imposes no greater risk of UFLS operation in FRCC for an external resource loss event than for an internal FRCC event.
 ${ }^{4} C B_{R}$ value limited to 1.0 because values lower than that indicate the Value B is lower than Point C and does not need to be adjusted. The calculated value is 0.989 .

[^94]: ${ }^{5}$ Based on Québec UFLS design between their 58.5 Hz UFLS with 300 millisecond operating time (responsive to Point C) and 59.0 Hz UFLS step with a 20-second delay (responsive to Value B or beyond) with a 0.05 Hz confidence interval. See the Adjustment for Differences between Value B and Point C section of this report for further details.
 ${ }^{6}$ Adjustment for the differences between 1-second and sub-second Point C observations for frequency events.
 ${ }^{7}$ Adjustment for the differences between Point C and Value B.
 ${ }^{8} \mathrm{CB}_{\mathrm{R}}$ value for the Eastern Interconnection limited to 1.0 because values lower than that indicate the Value B is lower than Point C and does not need to be adjusted. The calculated value is 0.989 .
 ${ }^{9}$ Based on Québec UFLS design between their 58.5 Hz UFLS with 300 ms operating time (responsive to Point C)and 59.0 Hz UFLS step with a 20second delay (responsive to Value B or beyond).
 ${ }^{10} \mathrm{DF}_{\mathrm{cc}} / \mathrm{CB}_{\mathrm{R}}$
 ${ }^{11}$ Adjustment for the event nadir being below the Value B (Eastern Interconnection only) due to primary frequency response withdrawal.

[^95]: ${ }^{12}$ IFRO $=$
 ${ }^{13}$ Current Interconnection Frequency Response Performance: EI $=-2,467 \mathrm{MW} / 0.1 \mathrm{~Hz}, \mathrm{WI}=-1,179 \mathrm{MW} / 0.1 \mathrm{~Hz}, \mathrm{TI}=-586 \mathrm{MW} / 0.1 \mathrm{~Hz}$, and QI = $750 \mathrm{MW} / 0.1 \mathrm{~Hz}$.
 ${ }^{14}$ Interconnection projected Total Internal Demands from the 2010 NERC Long-Term Reliability Assessment: EI $=604,245 \mathrm{MW}, \mathrm{WI}=148,895$ $\mathrm{MW}, \mathrm{TI}=63,810 \mathrm{MW}$, and QI winter load $=36,000 \mathrm{MW}$.

[^96]: ${ }^{15}$ Capitalized as referenced in the NERC Glossary of Terms; lowercased otherwise.
 ${ }^{16}$ The "Law of Conservation of Energy" is applied here in the form of power. If energy must be conserved, then power-which is the first derivative of energy with respect to time-must also be conserved.

[^97]: ${ }^{17}$ The term "balancing inertia" is coined here from the terms "inertial frequency response" and "balancing energy." Inertial frequency response is a common term used to describe the power supplied for this portion of the frequency response, and balancing energy is a term used to describe the market energy supposedly purchased to restore energy balance.

[^98]: ${ }^{18}$ As defined in the NERC Glossary: "A value, usually expressed in megawatts per 0.1 hertz ($\mathrm{MW} / 0.1 \mathrm{~Hz}$), associated with a Balancing Authority Area that approximates the Balancing Authority Area's response to Interconnection frequency error."

[^99]: ${ }^{19}$ As proposed in Standard BAL-003-1 - Frequency Response.

[^100]: ${ }^{20}$ See Illian, H.F. Frequency Control Performance Measurement and Requirements, LBNL-4145E (December 2010).
 ${ }^{21}$ EPRI Report TR-101080, Impacts of Governor Response Changes on the Security of North American Interconnections, October 1992.
 ${ }^{22}$ See EPRI Report TR-101080, Impacts of Governor Response Changes on the Security of North American Interconnections, October 1992 ("An analysis of the 14 Frequency Response Characteristics Surveys conducted by NERC over the 1971 to 1993 period showed that the Frequency Response in percent MW/O. 1Hz has deteriorated. This value in 1971 was between 2.25 and 3.25% (depending on the area) and by 1993 had dropped to 0.75 and 1.25%.").
 ${ }^{23}$ Available here: http://www.nerc.com/docs/oc/rs/Frequency Response White Paper.pdf ("Frequency Response Standard Whitepaper").

[^101]: ${ }^{24}$ The Transmission Issues Subcommittee is now the System Analysis and Modeling Subcommittee (SAMS).
 ${ }^{25}$ Available here: http://www.nerc.com/docs/pc/tis/Agenda Item 5.d Draft TIS IFRO Criteria\%20Rev Final.pdf.
 ${ }^{26}$ Available here:
 http://www.nerc.com/docs/oc/rs/NERC\%20RS\%20Position\%20Paper\%20on\%20Frequency\%20Response\%20Final\%20(May\%2027\%202011).p df.

[^102]: ${ }^{27}$ The Frequency Response data from 1994 through 2009 displayed in figure 2 is from a report by J. Ingleson \& E. Allen, Tracking the Eastern Interconnection Frequency Governing Characteristic that was presented at the 2010 IEEE.
 ${ }^{28}$ Filing available at: http://www.nerc.com/files/MotionExtTime_RM06-16 03302012.pdf
 ${ }^{29}$ Order available at: http://www.nerc.com/files/Order_Motion_Extension_Time_Compliance_Sched_2012.5.4.pdf

[^103]: ${ }^{30}$ NERC interconnections 2011 typical event frequency patterns using the median of the same second of each RS-FWG selected eve nt Revised: 09/26/12 provided by Advanced Systems Researchers.

[^104]: ${ }^{31}$ http://www.nerc.com/files/NERC Rules of Procedure_EFFECTIVE 20110412.pdf

[^105]: ${ }^{32}$ Numbers of samples vary due to exclusion of data drop-outs and other obvious observation anomalies.

[^106]: ${ }^{33}$ Sub-second data from Québec was not available.

[^107]: ${ }^{34} \mathrm{CB}_{\mathrm{R}}$ value limited to 1.0 because values lower than that indicate the Value B is lower than Point C and does not need to be adjusted. The calculated value is 0.989 .
 ${ }^{35}$ Based on Québec UFLS design between their 58.5 Hz UFLS with 300 millisecond operating time (responsive to Point C)and 59.0 Hz UFLS step with a 20 second delay (responsive to Value B or beyond).

[^108]: ${ }^{36}$ The highest UFLS setpoint in the Eastern Interconnection is 59.7 Hz in FRCC, based on internal stability concerns. The FRCC concluded that the IFRO starting frequency of the prevalent 59.5 Hz for the Eastern Interconnection is acceptable in that it imposes no greater risk of UFLS operation in FRCC for an external resource loss event than for an internal FRCC event.

[^109]: ${ }^{37}$ Nelson Bi-poles 1 and 2 are rated 1,854 MW and 2,000 MW, respectively.
 ${ }^{38}$ Net winter ratings per Form EIA-860 reporting.
 ${ }^{39}$ Net rating from ERCOT Resource Asset Registration Form (RARF).

[^110]: ${ }^{40}$ Net winter ratings from the NERC Electricity Supply and Demand.
 ${ }^{41}$ Net winter ratings per Form EIA-860 reporting.
 ${ }^{42}$ Net rating from ERCOT Resource Asset Registration Form (RARF).
 ${ }^{43}$ The August 4, 2007 frequency excursion was a complex, multi-faceted event involving nine generators across three states. Of those nine generators, seven tripped because of turbine control actions, and the others tripped on instability. This was not an N-1 event.
 ${ }^{44}$ The June 14, 2004 disturbance was a complex series of events thattripped ten generators across the western Interconnection as the result of a protracted fault. This was not an $\mathrm{N}-1$ event.

[^111]: ${ }^{45}$ The May 15, 2003 disturbance was a complex series of events that tripped six generators due to a protracted fault. This was not an N-1 event.
 ${ }^{46}$ Net winter ratings per Form EIA-860 reporting.
 ${ }^{47}$ Net rating from ERCOT Resource Asset Registration Form (RARF).

[^112]: ${ }^{48}$ The highest UFLS setpoint in the Eastern Interconnection is 59.7 Hz in FRCC, based on internal stability concerns. The FRCC concluded that the IFRO starting frequency of the prevalent 59.5 Hz for the Eastern Interconnection is acceptable in that it imposes no greater risk of UFLS operation in FRCC for an external resource loss event than for an internal FRCC event.
 ${ }^{49} \mathrm{CB}_{\mathrm{R}}$ value for the Eastern Interconnection limited to 1.0 because values lower than that indicate the Value B is lower than Point C and does not need to be adjusted. The calculated value is 0.989 .
 ${ }^{50}$ Based on Québec UFLS design between their 58.5 Hz UFLS with 300 ms operating time (responsive to Point C) and 59.0 Hz UFLS step with a 20-second delay (responsive to Value B or beyond).
 ${ }^{51} \mathrm{DF}_{\mathrm{cc}} / \mathrm{CB}_{\mathrm{R}}$

[^113]: ${ }^{52}$ IFRO $=$
 ${ }^{53}$ Current Interconnection Frequency Response Performance: $\mathrm{EI}=-2,467 \mathrm{MW} / 0.1 \mathrm{~Hz}, \mathrm{WI}=-1,179 \mathrm{MW} / 0.1 \mathrm{~Hz}, \mathrm{TI}=-586 \mathrm{MW} / 0.1 \mathrm{~Hz}$, and QI = $-750 \mathrm{MW} / 0.1 \mathrm{~Hz}$.
 ${ }^{54}$ Interconnection projected Total Internal Demands from the 2010 NERC Long-Term Reliability Assessment: EI $=604,245 \mathrm{MW}, \mathrm{WI}=148,895$ $\mathrm{MW}, \mathrm{TI}=63,810 \mathrm{MW}$, and QI winter load $=36,000 \mathrm{MW}$.

[^114]: ${ }^{55}$ IFRO $=$
 ${ }^{56}$ Current Interconnection Frequency Response Performance: EI $=-2,467 \mathrm{MW} / 0.1 \mathrm{~Hz}, \mathrm{WI}=-1,179 \mathrm{MW} / 0.1 \mathrm{~Hz}, \mathrm{TI}=-586 \mathrm{MW} / 0.1 \mathrm{~Hz}$, and QI = $750 \mathrm{MW} / 0.1 \mathrm{~Hz}$.
 ${ }^{57}$ Interconnection projected Total Internal Demands from the 2010 NERC Long-Term Reliability Assessment: EI $=604,245 \mathrm{MW}, \mathrm{WI}=148,895$ $\mathrm{MW}, \mathrm{TI}=63,810 \mathrm{MW}$, and QI winter load $=36,000 \mathrm{MW}$.

[^115]: ${ }^{58}$ IFRO $=$
 ${ }^{59}$ Current Interconnection Frequency Response Performance: EI $=-2,467 \mathrm{MW} / 0.1 \mathrm{~Hz}, \mathrm{WI}=-1,179 \mathrm{MW} / 0.1 \mathrm{~Hz}, \mathrm{TI}=-586 \mathrm{MW} / 0.1 \mathrm{~Hz}$, and QI = $750 \mathrm{MW} / 0.1 \mathrm{~Hz}$.
 ${ }^{60}$ Interconnection projected Total Internal Demands from the 2010 NERC Long-Term Reliability Assessment: EI $=604,245 \mathrm{MW}, \mathrm{WI}=148,895$ $\mathrm{MW}, \mathrm{TI}=63,810 \mathrm{MW}$, and QI winter load $=36,000 \mathrm{MW}$.

[^116]: ${ }^{61}$ IFRO $=$
 ${ }^{62}$ Current Interconnection Frequency Response Performance: EI $=-2,467 \mathrm{MW} / 0.1 \mathrm{~Hz}, \mathrm{WI}=-1,179 \mathrm{MW} / 0.1 \mathrm{~Hz}, \mathrm{TI}=-586 \mathrm{MW} / 0.1 \mathrm{~Hz}$, and QI $=-750 \mathrm{MW} / 0.1 \mathrm{~Hz}$.
 ${ }^{63}$ Interconnection projected Total Internal Demands from the 2010 NERC Long-Term Reliability Assessment: EI $=604,245 \mathrm{MW}, \mathrm{WI}=148,895$ $\mathrm{MW}, \mathrm{TI}=63,810 \mathrm{MW}$, and QI winter load $=36,000 \mathrm{MW}$.

[^117]: ${ }^{64}$ IFRO $=$
 ${ }^{65}$ Current Interconnection Frequency Response Performance: $\mathrm{WI}=-1,179 \mathrm{MW} / 0.1 \mathrm{~Hz}$.
 ${ }^{66}$ Interconnection projected Total Internal Demands from the 2010 NERC Long-Term Reliability Assessment: WI $=148,895 \mathrm{MW}$.

[^118]: ${ }^{67}$ Based on the frequency response performance calculated in the daily CERTS-EPG Automated Reliability Reports for 2011 through August 16, 2011.
 ${ }^{68}$ Interconnection projected Total Internal Demands from the 2010 NERC Long-Term Reliability Assessment: EI $=604,245 \mathrm{MW}, \mathrm{WI}=148,895$ $\mathrm{MW}, \mathrm{TI}=63,810 \mathrm{MW}$, and $\mathrm{QI}=20,599 \mathrm{MW}$.

[^119]: ${ }^{69}$ As recommended by the Project 2007-12 Frequency Response Standards Drafting Team during the May 2012 Frequency Response Technical Conferences.

[^120]: ${ }^{70}$ An absolute-deviation loss function is used to minimize the risk of estimate error when dealing with uniform distributions. Appendix 3 provides a description of Uniform Distributions and a derivation of the median.
 ${ }^{71}$ A squared-error loss function is used to minimize the risk when dealing with normal (Gaussian) distributions. Appendix 4 provides a description of normal (Gaussian) distributions and a derivation of the mean.
 ${ }^{72}$ Appendix H provides a derivation of the linear regression.

[^121]: ${ }^{73}$ A linear system is a system in which the sum of the parts is equal to the whole.
 ${ }^{74} \mathrm{~A}$ non-linear system is a system in which the sum of the parts is not equal to the whole.

[^122]: ${ }^{75}$ Hoffman, Stephen P., Frequency Response Characteristic Study for ComEd and the Eastern Interconnection, Proceedings of the American Power Conference, 1997. Kennedy, T., Hoyt, S. M., Abell, C. F., Variable, Non-linear Tie Line Frequency Bias for Interconnected Systems Control, IEEE Transactions on Power Systems, Vol. 3, No. 3, August 1988.

[^123]: ${ }^{1}$ Participation made possible through funding provided by the U.S. Department of Energy Office of Electricity and Energy Reliability, coordinated through the Lawrence Berkeley National Laboratory.

[^124]: ${ }^{2}$ Frequency Response is in fact a negative value. However to reduce confusion for the reader, Frequency Response is expressed in this report as positive values (the absolute value of the actual calculated value).

[^125]: MyBA_091012_0227_FRS_Form2.9.x|sm
 59.500 Hz
 60.500 H

 Auto Event Detection
 2:27.26 1245 Manually selected row number of the Event Starting Time.
 2:33:00 $\quad 1442$ Manually selected row number of the Event Ending Time.

[^126]: Legal and Privacy
 404.446.2560 voice : 404.446.2595 fax

 Atlanta Office: 3353 Peachtree Road, N.E. : Suite 600, North Tower: Atlanta, GA 30326
 Washington Office: 1325 G Street, N.W. : Suite 600 : Washington, DC 20005-3801

 D Account Log-In/Register

 Copyright © 2012 by the North American Electric Reliability Corporation. : All rights reserved.
 A New Jersey Nonprofit Corporation

